WorldWideScience

Sample records for diazotroph gluconacetobacter diazotrophicus

  1. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Saravanan, V S; Madhaiyan, M; Thangaraju, M

    2007-01-01

    Gluconacetobacter diazotrophicus an endophytic diazotroph also encountered as rhizosphere bacterium is reported to possess different plant growth promoting characteristics. In this study, we assessed the zinc solubilizing potential of G. diazotrophicus under in vitro conditions with different Zn compounds using glucose or sucrose as carbon sources. G. diazotrophicus showed variations in their solubilization potential with the strains used and the Zn compounds tested. G. diazotrophicus PAl5 efficiently solubilized the Zn compounds tested and ZnO was effectively solubilized than ZnCO(3) or Zn(3)(PO(4))(2). The soluble Zn concentration was determined in the culture supernatant through Atomic Absorption Spectrophotometer. Gas chromatography coupled Mass Spectrometry analysis revealed 5-ketogluconic acid, a derivative of gluconic acid as the major organic acid produced by G. diazotrophicus PAl5 cultured with glucose as carbon source. This organic anion may be an important agent that helped in the solubilization of insoluble Zn compounds.

  2. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice.

    Science.gov (United States)

    Muthukumarasamy, Ramachandran; Cleenwerck, Ilse; Revathi, Gopalakrishnan; Vadivelu, Muthaiyan; Janssens, D; Hoste, B; Gum, Kang Ui; Park, Ki-Do; Son, Cho Young; Sa, Tongmin; Caballero-Mellado, Jesus

    2005-04-01

    The family Acetobacteraceae currently includes three known nitrogen-fixing species, Gluconacetobacter diazotrophicus, G. johannae and G. azotocaptans. In the present study, acetic acid-producing nitrogen-fixing bacteria were isolated from four different wetland rice varieties cultivated in the state of Tamilnadu, India. Most of these isolates were identified as G. diazotrophicus on the basis of their phenotypic characteristics and PCR assays using specific primers for that species. Based on 16S rDNA partial sequence analysis and DNA: DNA reassociation experiments the remaining isolates were identified as Acetobacter peroxydans, another species of the Acetobacteraceae family, thus far never reported as diazotrophic. The presence of nifH genes in A. peroxydans was confirmed by PCR amplification with nifH specific primers. Scope for the findings: This is the first report of the occurrence and association of N2-fixing Gluconacetobacter diazotrophicus and Acetobacter peroxydans with wetland rice varieties. This is the first report of diazotrophic nature of A. peroxydans.

  3. Evidence for protection of nitrogenase from O(2) by colony structure in the aerobic diazotroph Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Dong, Z; Zelmer, C D; Canny, M J; McCully, M E; Luit, B; Pan, B; Faustino, R S; Pierce, G N; Vessey, J K

    2002-08-01

    Gluconacetobacter diazotrophicus is an endophytic diazotroph of sugarcane which exhibits nitrogenase activity when growing in colonies on solid media. Nitrogenase activity of G. diazotrophicus colonies can adapt to changes in atmospheric partial pressure of oxygen (pO(2)). This paper investigates whether colony structure and the position of G. diazotrophicus cells in the colonies are components of the bacterium's ability to maintain nitrogenase activity at a variety of atmospheric pO(2) values. Colonies of G. diazotrophicus were grown on solid medium at atmospheric pO(2) of 2 and 20 kPa. Imaging of live, intact colonies by confocal laser scanning microscopy and of fixed, sectioned colonies by light microscopy revealed that at 2 kPa O(2) the uppermost bacteria in the colony were very near the upper surface of the colony, while the uppermost bacteria of colonies cultured at 20 kPa O(2) were positioned deeper in the mucilaginous matrix of the colony. Disruption of colony structure by physical manipulation or due to 'slumping' associated with colony development resulted in significant declines in nitrogenase activity. These results support the hypothesis that G. diazotrophicus utilizes the path-length of colony mucilage between the atmosphere and the bacteria to achieve a flux of O(2) that maintains aerobic respiration while not inhibiting nitrogenase activity.

  4. Response of the endophytic diazotroph Gluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O(2) pressure.

    Science.gov (United States)

    Pan, B; Vessey, J K

    2001-10-01

    Gluconacetobacter diazotrophicus is an N(2)-fixing endophyte isolated from sugarcane. G. diazotrophicus was grown on solid medium at atmospheric partial O(2) pressures (pO(2)) of 10, 20, and 30 kPa for 5 to 6 days. Using a flowthrough gas exchange system, nitrogenase activity and respiration rate were then measured at a range of atmospheric pO(2) (5 to 60 kPa). Nitrogenase activity was measured by H(2) evolution in N(2)-O(2) and in Ar-O(2), and respiration rate was measured by CO(2) evolution in N(2)-O(2). To validate the use of H(2) production as an assay for nitrogenase activity, a non-N(2)-fixing (Nif(-)) mutant of G. diazotrophicus was tested and found to have a low rate of uptake hydrogenase (Hup(+)) activity (0.016 +/- 0.009 micromol of H(2) 10(10) cells(-1) h(-1)) when incubated in an atmosphere enriched in H(2). However, Hup(+) activity was not detectable under the normal assay conditions used in our experiments. G. diazotrophicus fixed nitrogen at all atmospheric pO(2) tested. However, when the assay atmospheric pO(2) was below the level at which the colonies had been grown, nitrogenase activity was decreased. Optimal atmospheric pO(2) for nitrogenase activity was 0 to 20 kPa above the pO(2) at which the bacteria had been grown. As atmospheric pO(2) was increased in 10-kPa steps to the highest levels (40 to 60 kPa), nitrogenase activity decreased in a stepwise manner. Despite the decrease in nitrogenase activity as atmospheric pO(2) was increased, respiration rate increased marginally. A large single-step increase in atmospheric pO(2) from 20 to 60 kPa caused a rapid 84% decrease in nitrogenase activity. However, upon returning to 20 kPa of O(2), 80% of nitrogenase activity was recovered within 10 min, indicating a "switch-off/switch-on" O(2) protection mechanism of nitrogenase activity. Our study demonstrates that colonies of G. diazotrophicus can fix N(2) at a wide range of atmospheric pO(2) and can adapt to maintain nitrogenase activity in response to

  5. Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans

    Directory of Open Access Journals (Sweden)

    Nogueira Eduardo de Matos

    2001-01-01

    Full Text Available Several Brazilian sugarcane varieties have the ability to grow with little addition of inorganic nitrogen fertilizers, showing high contributions of Biological Nitrogen Fixation (BNF. A particular type of nitrogen-fixing association has been described in this crop, where endophytic diazotrophs such as Gluconacetobacter diazotrophicus and Herbaspirillum spp. colonize plant tissues without causing disease symptoms. In order to gain insight into the role played by the sugarcane in the interaction between this plant and endophytic diazotrophs, we investigated gene expression profiles of sugarcane plants colonized by G. diazotrophicus and H. rubrisubalbicans by searching the sugarcane expressed sequence tag SUCEST Database (http://sucest.lad.ic.unicamp.br/en/. We produced an inventory of sugarcane genes, candidates for exclusive or preferential expression during the nitrogen-fixing association. This data suggests that the host plant might be actively involved in the establishment of the interaction with G. diazotrophicus and H. rubrisubalbicans.

  6. Gluconic acid produced by Gluconacetobacter diazotrophicus Pal5 possesses antimicrobial properties.

    Science.gov (United States)

    Nieto-Peñalver, Carlos G; Savino, María J; Bertini, Elisa V; Sánchez, Leandro A; de Figueroa, Lucía I C

    2014-09-01

    Gluconic acid is produced in large quantities by the endophytic and diazotrophic bacterium Gluconacetobacter diazotrophicus Pal5. This organic acid derives from direct oxidation of glucose by a pyrroloquinoline-quinone-linked glucose dehydrogenase in this plant growth-promoting bacterium. In the present article, evidence is presented showing that gluconic acid is also responsible for the antimicrobial activity of G. diazotrophicus Pal5. The broad antagonistic spectrum includes Gram-positive and -negative bacteria. Eukaryotic microorganisms are more resistant to growth inhibition by this acid. Inhibition by gluconic acid can be modified through the presence of other organic acids. In contrast to other microorganisms, the Quorum Sensing system of G. diazotrophicus Pal5, a regulatory mechanism that plays a key role in several microbe-microbe interactions, is not related to gluconic acid production and the concomitant antagonistic activity.

  7. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5

    Directory of Open Access Journals (Sweden)

    Neves Anna

    2009-09-01

    Full Text Available Abstract Background Gluconacetobacter diazotrophicus Pal5 is an endophytic diazotrophic bacterium that lives in association with sugarcane plants. It has important biotechnological features such as nitrogen fixation, plant growth promotion, sugar metabolism pathways, secretion of organic acids, synthesis of auxin and the occurrence of bacteriocins. Results Gluconacetobacter diazotrophicus Pal5 is the third diazotrophic endophytic bacterium to be completely sequenced. Its genome is composed of a 3.9 Mb chromosome and 2 plasmids of 16.6 and 38.8 kb, respectively. We annotated 3,938 coding sequences which reveal several characteristics related to the endophytic lifestyle such as nitrogen fixation, plant growth promotion, sugar metabolism, transport systems, synthesis of auxin and the occurrence of bacteriocins. Genomic analysis identified a core component of 894 genes shared with phylogenetically related bacteria. Gene clusters for gum-like polysaccharide biosynthesis, tad pilus, quorum sensing, for modulation of plant growth by indole acetic acid and mechanisms involved in tolerance to acidic conditions were identified and may be related to the sugarcane endophytic and plant-growth promoting traits of G. diazotrophicus. An accessory component of at least 851 genes distributed in genome islands was identified, and was most likely acquired by horizontal gene transfer. This portion of the genome has likely contributed to adaptation to the plant habitat. Conclusion The genome data offer an important resource of information that can be used to manipulate plant/bacterium interactions with the aim of improving sugarcane crop production and other biotechnological applications.

  8. The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Gómez-Manzo, Saúl; Contreras-Zentella, Martha; González-Valdez, Alejandra; Sosa-Torres, Martha; Arreguín-Espinoza, Roberto; Escamilla-Marván, Edgardo

    2008-06-30

    The oxidation of ethanol to acetic acid is the most characteristic process in acetic acid bacteria. Gluconacetobacter diazotrophicus is rather unique among the acetic acid bacteria as it carries out nitrogen fixation and is a true endophyte, originally isolated from sugar cane. Aside its peculiar life style, Ga. diazotrophicus, possesses a constitutive membrane-bound oxidase system for ethanol. The Alcohol dehydrogenase complex (ADH) of Ga. diazotrophicus was purified to homogeneity from the membrane fraction. It-exhibited two subunits with molecular masses of 71.4 kDa and 43.5 kDa. A positive peroxidase reaction confirmed the presence of cytochrome c in both subunits. Pyrroloquinoline quinone (PQQ) of ADH was identified by UV-visible light and fluorescence spectroscopy. The enzyme was purified in its full reduced state; potassium ferricyanide induced its oxidation. Ethanol or acetaldehyde restored the full reduced state. The enzyme showed an isoelectric point (pI) of 6.1 and its optimal pH was 6.0. Both ethanol and acetaldehyde were oxidized at almost the same rate, thus suggesting that the ADH complex of Ga. diazotrophicus could be kinetically competent to catalyze, at least in vitro, the double oxidation of ethanol to acetic acid.

  9. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways.

    Directory of Open Access Journals (Sweden)

    Lívia Vargas

    Full Text Available Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to

  10. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways.

    Science.gov (United States)

    Vargas, Lívia; Santa Brígida, Ailton B; Mota Filho, José P; de Carvalho, Thais G; Rojas, Cristian A; Vaneechoutte, Dries; Van Bel, Michiel; Farrinelli, Laurent; Ferreira, Paulo C G; Vandepoele, Klaas; Hemerly, Adriana S

    2014-01-01

    Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70

  11. Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways

    Science.gov (United States)

    Vargas, Lívia; Santa Brígida, Ailton B.; Mota Filho, José P.; de Carvalho, Thais G.; Rojas, Cristian A.; Vaneechoutte, Dries; Van Bel, Michiel; Farrinelli, Laurent; Ferreira, Paulo C. G.; Vandepoele, Klaas; Hemerly, Adriana S.

    2014-01-01

    Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70

  12. Recombinant Gluconacetobacter diazotrophicus containing Cry1Ac gene codes for 130-kDa toxin protein.

    Science.gov (United States)

    Subashini, M; Moushumi Priya, A; Sundarakrishnan, B; Jayachandran, S

    2011-01-01

    Recombinant Gluconacetobacter diazotrophicus containing Cry1Ac gene from Bacillus thuringiensis var. kurstaki borne on pKT230, shuttle vector, was generated. PCR amplification of Cry1Ac gene present in recombinant G. diazotrophicus yielded a 278-bp DNA product. The nitrogenase assay has revealed that the recombinant G. diazotrophicus in sugarcane stem produced similar levels of nitrogenase compared to wild-type G. diazotrophicus. The presence of 130-kDa protein in apoplastic fluid from sugarcane stem harvested from pots inoculated with recombinant G. diazotrophicus shows that the translocated G. diazotrophicus produces 130-kDa protein which is recognized by the hyperimmune antiserum raised against 130-kDa protein. The first instar Eldana saccharina neonate larvae that fed on artificial medium containing recombinant G. diazotrophicus died within 72 h after incubation.

  13. AISLAMIENTO Y CARACTERIZACIÓN DE CEPAS DE Gluconacetobacter diazotrophicus

    Directory of Open Access Journals (Sweden)

    Yoania Ríos Rocafull

    2016-01-01

    Full Text Available Gluconacetobacter diazotrophicus es un microorganismo endófito que presenta, dentro de sus características, mecanismos directos e indirectos de estimulación del crecimiento vegetal. A pesar de sus grandes perspectivas para constituir el principio activo de un bioproducto de uso agrícola, en Cuba no existe ninguno elaborado a partir de esta especie bacteriana. El aislamiento de cepas del microorganismo y su caracterización constituyen pasos importantes para la obtención de un biopreparado, pues permiten la selección inicial de cepas que tengan características adecuadas para la estimulación del crecimiento. En la presente investigación se purificaron 85 aislados de microorganismos endófitos, a partir de los diferentes órganos de 24 especies vegetales. Cuatro de ellos fueron identificados como Gluconacetobacter diazotrophicus, al comparar sus características con las de cepas patrones de la especie bacteriana. Los microorganismos seleccionados provenían de frutos de guayaba (Psidium guajava L. y mango (Mangifera indica L., así como de tallos de yuca (Manihot esculenta Crantz. y remolacha (Beta vulgaris L.. Se destacó la presencia del microorganismo en los dos primeros cultivos para Cuba y el aislamiento en la guayaba a nivel internacional. Las cuatro cepas mostraron diferencias en su capacidad de solubilizar fósforo, producir ácido indol acético y en su actividad antagonista frente a Fusarium moniliforme y Fusarium incarnatum. Al agruparse las cepas por sus características, se diferenciaron los microorganismos provenientes de mango y remolacha, los que se consideran promisorios para realizar estudios en condiciones in vivo del efecto de su interacción con otros cultivos.

  14. Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets.

    Science.gov (United States)

    dos Santos, Marise Fonseca; Muniz de Pádua, Vânia Lúcia; de Matos Nogueira, Eduardo; Hemerly, Adriana Silva; Domont, Gilberto Barbosa

    2010-03-10

    Gluconacetobacter diazotrophicus is a micro-aerobic bacterium able to fix atmospheric nitrogen in endophytic mode. A proteomic approach was used to analyze proteins differentially expressed in the presence and absence of sugarcane plantlets. Two-dimensional gel electrophoresis (2-DE) showed 42 spots with altered levels of expression. Analysis of these spots by matrix-assisted laser desorption ionization time-of-flight in tandem (MALDI-TOF-TOF) identified 38 proteins. Differentially expressed proteins were associated with carbohydrate and energy metabolism, folding, sorting and degradation processes, and transcription and translation. Among proteins expressed in co-cultivated bacteria, four belong to membrane systems; others, like a transcription elongation factor (GreA), a 60 kDa chaperonin (GroEL), and an outer membrane lipoprotein (Omp16) have also been described in other plant-bacteria associations, indicating a common protein expression pattern as a result of symbiosis. A high protein content of 60kDa chaperonin isoforms was detected as non-differentially expressed proteins of the bacteria proteome. These results allow the assessment of the physiological significance of specific proteins to G. diazotrophicus metabolism and to the pathways involved in bacteria-host endophytic interaction.

  15. Nitrogenase proteins from Gluconacetobacter diazotrophicus, a sugarcane-colonizing bacterium.

    Science.gov (United States)

    Fisher, Karl; Newton, William E

    2005-06-30

    Gluconacetobacter diazotrophicus Pal-5 grew well and expressed nitrogenase activity in the absence of NH4+ and at initial O2 concentrations greater than 5% in the culture atmosphere. G. diazotrophicus nitrogenase consisted of two components, Gd1 and Gd2, which were difficult to separate but were purified individually to homogeneity. Their compositions were very similar to those of Azotobacter vinelandii nitrogenase, however, all subunits were slightly smaller in size. The purified Gd1 protein contained a 12:1 Fe/Mo ratio as compared to 14:1 found for Av1 purified in parallel. Both Gd2 and Av2 contained 3.9 Fe atoms per molecule. Dithionite-reduced Gd1 exhibited EPR features at g=3.69, 3.96, and 4.16 compared with 3.64 and 4.27 for Av1. Gd2 gave an S=1/2 EPR signal identical to that of Av2. A Gd1 maximum specific activity of 1600 nmol H2 (min mg of protein)(-1) was obtained when complemented with either Gd2 or Av2, however, more Av2 was required. Gd2 had specific activities of 600 and 1100 nmol H2 (min mg protein)(-1) when complemented with Av1 and Gd1, respectively. The purified G. diazotrophicus nitrogenase exhibited a narrowed pH range for effective catalysis compared to the A. vinelandii nitrogenase, however, both exhibited maximum specific activity at about pH 7. The Gd-nitrogenase was more sensitive to ionic strength than the Av-nitrogenase.

  16. Energy generation by extracellular aldose oxidation in N(2)-fixing Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Luna, María F; Bernardelli, Cecilia E; Mignone, Carlos F; Boiardi, José L

    2002-04-01

    Gluconacetobacter diazotrophicus PAL3 was grown in a chemostat with N(2) and mixtures of xylose and gluconate. Xylose was oxidized to xylonate, which was accumulated in the culture supernatants. Biomass yields and carbon from gluconate incorporated into biomass increased with the rate of xylose oxidation. By using metabolic balances it is demonstrated that extracellular xylose oxidation led N(2)-fixing G. diazotrophicus cultures to increase the efficiency of energy generation.

  17. N-fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants.

    Science.gov (United States)

    Muthukumarasamy, Ramachandran; Govindarajan, Munusamy; Vadivelu, Muthaiyan; Revathi, Gopalakrishnan

    2006-01-01

    Colonization of micropropagated sugarcane plants by Gluconacetobacter diazotrophicus and Herbaspirillum sp. was confirmed by a dot-immunoblot assay. In all, a 45-day short-term and 180-day long-term experiments conducted on micropropagated sugarcane plants of Co 86032, a sugar rich popular variety in South India, indicated the usefulness of these diazotrophs as plant growth promoting bacteria. Co-inoculation of these two bacteria enhanced the biomass considerably under N-limited condition in the short duration experiment. In the long-term experiment, the establishment of inoculated Herbaspirillum sp. remained stable with the age of the crop up to 180 days, while there was a reduction in population of G. diazotrophicus for the same period. The total bio-mass and leaf N were higher in plants inoculated with G. diazotrophicus and Herbaspirillum sp. without N fertilization and also in plants with 50% of the recommended N (140 kg ha(-1)) than the plants fertilized with recommended dose of inorganic N (280 kg ha(-1)). This experiment showed that inoculation with these bacteria in sugarcane variety Co 86032 could mitigate fertilizer N application considerably in sugarcane cultivation.

  18. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5.

    Science.gov (United States)

    Alquéres, Sylvia; Meneses, Carlos; Rouws, Luc; Rothballer, Michael; Baldani, Ivo; Schmid, Michael; Hartmann, Anton

    2013-08-01

    Gluconacetobacter diazotrophicus is an aerobic diazotrophic plant-growth-promoting bacterium isolated from different gramineous plants. We showed that reactive oxygen species (ROS) were produced at early stages of rice root colonization, a typical plant defense response against pathogens. The transcription of the pathogen-related-10 gene of the jasmonic acid (JA) pathway but not of the PR-1 gene of the salicylic acid pathway was activated by the endophytic colonization of rice roots by G. diazotrophicus strain PAL5. Quantitative polymerase chain reaction analyses showed that, at early stages of colonization, the bacteria upregulated the transcript levels of ROS-detoxifying genes such as superoxide dismutase (SOD) and glutathione reductase (GR). To proof the role of ROS-scavenging enzymes in the colonization and interaction process, transposon insertion mutants of the SOD and GR genes of strain PAL5 were constructed. The SOD and GR mutants were unable to efficiently colonize the roots, indicated by the decrease of tightly root-associated bacterial cell counts and endophytic colonization and by fluorescence in situ hybridization analysis. Interestingly, the mutants did not induce the PR-10 of the JA-pathway, probably due to the inability of endophytic colonization. Thus, ROS-scavenging enzymes of G. diazotrophicus strain PAL5 play an important role in the endophytic colonization of rice plants.

  19. Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media.

    Science.gov (United States)

    Nieto-Peñalver, Carlos G; Bertini, Elisa V; de Figueroa, Lucía I C

    2012-07-01

    The endophytic diazotrophic Gluconacetobacter diazotrophicus PAL5 was originally isolated from sugarcane (Saccharum officinarum). The biological nitrogen fixation, phytohormones secretion, solubilization of mineral nutrients and phytopathogen antagonism allow its classification as a plant growth-promoting bacterium. The recent genomic sequence of PAL5 unveiled the presence of a quorum sensing (QS) system. QS are regulatory mechanisms that, through the production of signal molecules or autoinducers, permit a microbial population the regulation of the physiology in a coordinated manner. The most studied autoinducers in gram-negative bacteria are the N-acyl homoserine lactones (AHLs). The usage of biosensor strains evidenced the presence of AHL-like molecules in cultures of G. diazotrophicus PAL5 grown in complex and synthetic media. Analysis of AHLs performed by LC-APCI-MS permitted the identification of eight different signal molecules, including C6-, C8-, C10-, C12- and C14-HSL. Mass spectra confirmed that this diazotrophic strain also synthesizes autoinducers with carbonyl substitutions in the acyl chain. No differences in the profile of AHLs could be determined under both culture conditions. However, although the level of short-chain AHLs was not affected, a decrease of 30% in the production of long-chain AHLs could be measured in synthetic medium.

  20. Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen.

    Science.gov (United States)

    Piñón, Dolores; Casas, Mario; Blanch, María; Fontaniella, Blanca; Blanco, Yolanda; Vicente, Carlos; Solas, María-Teresa; Legaz, María-Estrella

    2002-01-01

    Gluconacetobacter diazotrophicus in liquid culture secretes proteins into the medium. Both medium containing Gluconacetobacter protein and a solution of this protein after acetone precipitation appeared to inhibit the growth of Xanthomonas albilineans in solid culture. This apparent inhibition of bacterial growth has, in fact, been revealed to be lysis of bacterial cells, as demonstrated by transmission electron microscopy. Fractionation of the Gluconacetobacter protein mixture in size-exclusion chromatography reveals a main fraction with lysozyme-like activity which produces lysis of both living bacteria and isolated cell walls.

  1. A type II protein secretory pathway required for levansucrase secretion by Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Arrieta, Juan G; Sotolongo, Mailin; Menéndez, Carmen; Alfonso, Dubiel; Trujillo, Luis E; Soto, Melvis; Ramírez, Ricardo; Hernández, Lázaro

    2004-08-01

    The endophytic diazotroph Gluconacetobacter diazotrophicus secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10) to utilize plant sucrose. LsdA, unlike other extracellular levansucrases from gram-negative bacteria, is transported to the periplasm by a signal-peptide-dependent pathway. We identified an unusually organized gene cluster encoding at least the components LsdG, -O, -E, -F, -H, -I, -J, -L, -M, -N, and -D of a type II secretory system required for LsdA translocation across the outer membrane. Another open reading frame, designated lsdX, is located between the operon promoter and lsdG, but it was not identified in BLASTX searches of the DDBJ/EMBL/GenBank databases. The lsdX, -G, and -O genes were isolated from a cosmid library of strain SRT4 by complementation of an ethyl methanesulfonate mutant unable to transport LsdA across the outer membrane. The downstream genes lsdE, -F, -H, -I, -J, -L, -M, -N, and -D were isolated through chromosomal walking. The high G+C content (64 to 74%) and the codon usage of the genes identified are consistent with the G+C content and codon usage of the standard G. diazotrophicus structural gene. Sequence analysis of the gene cluster indicated that a polycistronic transcript is synthesized. Targeted disruption of lsdG, lsdO, or lsdF blocked LsdA secretion, and the bacterium failed to grow on sucrose. Replacement of Cys(162) by Gly at the C terminus of the pseudopilin LsdG abolished the protein functionality, suggesting that there is a relationship with type IV pilins. Restriction fragment length polymorphism analysis revealed conservation of the type II secretion operon downstream of the levansucrase-levanase (lsdA-lsdB) locus in 14 G. diazotrophicus strains representing 11 genotypes recovered from four different host plants in diverse geographical regions. To our knowledge, this is the first report of a type II pathway for protein secretion in the Acetobacteraceae.

  2. Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association.

    Science.gov (United States)

    Muñoz-Rojas, Jesús; Fuentes-Ramírez, Luis E; Caballero-Mellado, Jesús

    2005-09-01

    In this study the antagonistic activity among 55 Gluconacetobacter diazotrophicus strains, belonging to 13 electrophoretic types (ETs), in culture media was analyzed. Antagonistic effects were seen only in strains belonging to two ETs named ET-1 and ET-3. Two out of 29 ET-1 strains, and 3 out of 7 ET-3 strains of G. diazotrophicus showed antagonistic effects against many other strains belonging to all the ETs of this species analyzed, and against closely related strains of Gluconacetobacter species, including Gluconacetobacter johannae, Gluconacetobacter azotocaptans and Gluconacetobacter liquefaciens but not against other phylogenetically distant bacterial species. Results showed that the substance responsible of such antagonistic activity is a low molecular mass molecule (approximately 3400 Da), stable from pH 3.5 to 8.5, and very stable at 4 degrees C for 10 months. This substance was sensitive to proteases, and the antagonistic activity was lost after 2 h at 95 degrees C. All of these features show that the substance is related to bacteriocin-like molecules. The antagonistic substance should be chromosomally encoded because ET-3 strains of G. diazotrophicus do not harbor any plasmids. The antagonistic ability of ET-3 strains of G. diazotrophicus could be an advantage for the natural colonization of the sugarcane environment, as was observed in experiments with micropropagated sterile sugarcane plantlets co-inoculated with a bacteriocin-producer strain and a bacteriocin-sensitive strain of G. diazotrophicus. In these experiments, both in the rhizosphere as well as inside the roots, the bacteriocin-sensitive population decreased drastically. In addition, this study shows that inside the plants there may exist antagonistic interactions among endophytic bacteria like to those described among the rhizospheric community.

  3. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5.

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production.

  4. Evidence for Conformational Protection of Nitrogenase against Oxygen in Gluconacetobacter diazotrophicus by a Putative FeSII Protein

    OpenAIRE

    Ureta, Alejandro; Nordlund, Stefan

    2002-01-01

    The mechanisms protecting nitrogenase in Gluconacetobacter diazotrophicus from damage by oxygen were studied. Evidence is provided suggesting that in G. diazotrophicus these mechanisms include respiratory protection as well as conformational protection in which a putative FeSII Shethna protein is involved.

  5. Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein.

    Science.gov (United States)

    Ureta, Alejandro; Nordlund, Stefan

    2002-10-01

    The mechanisms protecting nitrogenase in Gluconacetobacter diazotrophicus from damage by oxygen were studied. Evidence is provided suggesting that in G. diazotrophicus these mechanisms include respiratory protection as well as conformational protection in which a putative FeSII Shethna protein is involved.

  6. Quantification of natural populations of Gluconacetobacter diazotrophicus and Herbaspirillum spp. In sugar cane (Saccharum spp.) Using differente polyclonal antibodies.

    Science.gov (United States)

    da Silva-Froufe, Lúcia Gracinda; Boddey, Robert Michael; Reis, Veronica Massena

    2009-10-01

    The species Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and H. rubrisubalbicans are endophytic N2-fixing [diazotrophic] bacteria which colonise not only roots, but also the aerial tissue of sugar cane. However, the technique most commonly used to quantify the populations of these microbes in plants is by culturing serial dilutions of macerates of plant tissues in N free semi-solid media which are only semi-selective for the species/genera [the Most Probable Number (MPN) Technique] and each culture must be further subjected to several tests to identify the isolates at the species level. The use of species-specific polyclonal antibodies with the indirect ELISA (enzyme-linked immunosorbent assay) can be an alternative which is rapid and specific to quantify these populations of bacteria. This study was performed to investigate the viability of adapting the indirect ELISA technique to quantify individually the populations of these three species of diazotroph within the root and shoot tissues of sugarcane. The results showed that species-specific polyclonal antibodies could be obtained by purifying sera in protein-A columns which removed non-specific immuno-globulins. It was possible to quantify the three bacterial species in the Brazilian sugarcane variety SP 70-1143 in numbers above 10(5) cells per g fresh weight in roots, rhizomes and leaves. The numbers of the different bacterial species evaluated using the ELISA technique were found to be higher than when the same populations were evaluated using the MPN technique, reaching 1400 times greater for G. diazotrophicus and 225 times greater for Herbaspirillum spp. These results constitute the first quantification of Herbaspirillum using immunological techniques.

  7. Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response Against a Pathogenic Bacteria Xanthomonas albilineans

    Science.gov (United States)

    Vinagre, Fabiano; Estevez, Yandi; Bernal, Aydiloide; Perez, Juana; Cavalcanti, Janaina; Santana, Ignacio; Hemerly, Adriana S

    2006-01-01

    A new role for the plant growth-promoting nitrogen-fixing endophytic bacteria Gluconacetobacter diazotrophicus has been identified and characterized while it is involved in the sugarcane-Xanthomonas albilineans pathogenic interactions. Living G.diazotrophicus possess and/or produce elicitor molecules which activate the sugarcane defense response resulting in the plant resistance to X. albilineans, in this particular case controlling the pathogen transmission to emerging agamic shoots. A total of 47 differentially expressed transcript derived fragments (TDFs) were identified by cDNA-AFLP. Transcripts showed significant homologies to genes of the ethylene signaling pathway (26%), proteins regulates by auxins (9%), β-1,3 Glucanase proteins (6%) and ubiquitin genes (4%), all major signaling mechanisms. Results point toward a form of induction of systemic resistance in sugarcane-G. diazotrophicus interactions which protect the plant against X. albilineans attack. PMID:19516988

  8. Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response Against a Pathogenic Bacteria Xanthomonas albilineans.

    Science.gov (United States)

    Arencibia, Ariel D; Vinagre, Fabiano; Estevez, Yandi; Bernal, Aydiloide; Perez, Juana; Cavalcanti, Janaina; Santana, Ignacio; Hemerly, Adriana S

    2006-09-01

    A new role for the plant growth-promoting nitrogen-fixing endophytic bacteria Gluconacetobacter diazotrophicus has been identified and characterized while it is involved in the sugarcane-Xanthomonas albilineans pathogenic interactions. Living G.diazotrophicus possess and/or produce elicitor molecules which activate the sugarcane defense response resulting in the plant resistance to X. albilineans, in this particular case controlling the pathogen transmission to emerging agamic shoots. A total of 47 differentially expressed transcript derived fragments (TDFs) were identified by cDNA-AFLP. Transcripts showed significant homologies to genes of the ethylene signaling pathway (26%), proteins regulates by auxins (9%), beta-1,3 Glucanase proteins (6%) and ubiquitin genes (4%), all major signaling mechanisms. Results point toward a form of induction of systemic resistance in sugarcane-G. diazotrophicus interactions which protect the plant against X. albilineans attack.

  9. Structural levansucrase gene (lsdA) constitutes a functional locus conserved in the species Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Hernández, L; Sotolongo, M; Rosabal, Y; Menéndez, C; Ramírez, R; Caballero-Mellado, J; Arrieta, J

    2000-01-01

    Levansucrase (EC 2.4.1.10) was identified as a constitutive exoenzyme in 14 Gluconacetobacter diazotrophicus strains recovered from different host plants in diverse geographical regions. The enzyme, consisting of a single 60-kDa polypeptide, hydrolysed sucrose to synthesise oligofructans and levan. Sugar-cane-associated strains of the most abundant genotype (electrophoretic type 1) showed maximal values of levansucrase production. These values were three-fold higher than those of the isolates recovered from coffee plants. Restriction fragment length polymorphism analysis revealed a high degree of conservation of the levansucrase locus (IsdA) among the 14 strains under study, which represented 11 different G. diazotrophicus genotypes. Targeted disruption of the lsdA gene in four representative strains abolished their ability to grow on sucrose, indicating that the endophytic species G. diazotrophicus utilises plant sucrose via levansucrase.

  10. Influence of carbon and nitrogen sources on growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Tejera, Noel A; Ortega, Eduardo; Rodés, Rosa; Lluch, Carmen

    2004-09-01

    The effects of different carbon and nitrogen sources on the growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus were investigated. The amino acids asparagine, aspartic acid, and glutamic acid affected microbial growth and nitrogenase activity. Several enzymatic activities involved in the tricarboxylic acid cycle were affected by the carbon source used. In addition, glucose and gluconate significantly increased the oxygen consumption (respiration rate) of whole cells of G. diazotrophicus grown under aerobic conditions. Enzymes responsible for direct oxidation of glucose and gluconate were especially active in cells grown with sucrose and gluconate. The presence of amino acids in the apoplastic and symplastic sap of sugarcane stems suggests that these compounds might be of importance in the regulation of growth and nitrogenase activity during the symbiotic association. The information obtained from the plant-bacterium association together with the results of other biochemical studies could contribute to the development of biotechnological applications of G. diazotrophicus.

  11. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  12. Purification and characterization of the membrane-bound quinoprotein glucose dehydrogenase of Gluconacetobacter diazotrophicus PAL 5.

    Science.gov (United States)

    Sará-Páez, Martin; Contreras-Zentella, Martha; Gómez-Manzo, Saúl; González-Valdez, Alejandra Abigail; Gasca-Licea, Rolando; Mendoza-Hernández, Guillermo; Escamilla, José Edgardo; Reyes-Vivas, Horacio

    2015-02-01

    Acetic acid bacteria oxidize a great number of substrates, such as alcohols and sugars, using different enzymes that are anchored to the membrane. In particular, Gluconacetobacter diazotrophicus is distinguished for its N2-fixing activity under high-aeration conditions. Ga. diazotrophicus is a true endophyte that also has membrane-bound enzymes to oxidize sugars and alcohols. Here we reported the purification and characterization of the membrane-bound glucose dehydrogenase (GDHm), an oxidoreductase of Ga. diazotrophicus. GDHm was solubilized and purified by chromatographic methods. Purified GDHm was monomeric, with a molecular mass of 86 kDa. We identified the prosthetic group as pyrroloquinoline quinone, whose redox state was reduced. GDHm showed an optimum pH of 7.2, and its isoelectric point was 6.0. This enzyme preferentially oxidized D-glucose, 2-deoxy-D-glucose, D-galactose and D-xylose; its affinity towards glucose was ten times greater than that of E. coli GDHm. Finally, Ga. diazotrophicus GDHm was capable of reducing quinones such as Q 1, Q 2, and decylubiquinone; this activity was entirely abolished in the presence of micromolar concentrations of the inhibitor, myxothiazol. Hence, our purification method yielded a highly purified GDHm whose molecular and kinetic parameters were determined. The possible implications of GDHm activity in the mechanism for reducing competitor microorganisms, as well as its participation in the respiratory system of Ga. diazotrophicus, are discussed.

  13. Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions.

    Science.gov (United States)

    James, E K; Olivares, F L; de Oliveira, A L; dos Reis, F B; da Silva, L G; Reis, V M

    2001-04-01

    Sugar cane (Saccharum spp.) variety SP 70-1143 was inoculated with Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) in two experiments. In experiment 1 the bacteria were inoculated into a modified, low sucrose MS medium within which micropropagated plantlets were rooted. After 10 d there was extensive anatomical evidence of endophytic colonization by G. diazotrophicus, particularly in lower stems, where high numbers of bacteria were visible within some of the xylem vessels. The identity of the bacteria was confirmed by immunogold labelling with an antibody raised against G. diazotrophicus. On the lower stems there were breaks caused by the separation of the plantlets into individuals, and at these 'wounds' bacteria were seen colonizing the xylem and intercellular spaces. Bacteria were also occasionally seen entering leaves via damaged stomata, and subsequently colonizing sub-stomatal cavities and intercellular spaces. A localized host defence response in the form of fibrillar material surrounding the bacteria was associated with both the stem and leaf invasion. In experiment 2, stems of 5-week-old greenhouse-grown plants were inoculated by injection with a suspension of G. diazotrophicus containing 10(8) bacteria ml(-1). No hypersensitive response (HR) was observed, and no symptoms were visible on the leaves and stems for the duration of the experiment (7 d). Close to the point of inoculation, G. diazotrophicus cells were observed within the protoxylem and the xylem parenchyma, where they were surrounded by fibrillar material that stained light-green with toluidine blue. In leaf samples taken up to 4 cm from the inoculation points, G. diazotrophicus cells were mainly found within the metaxylem, where they were surrounded by a light green-staining material. The bacteria were growing in relatively low numbers adjacent to the xylem cell walls, and they were separated from the host-derived material by electron-transparent 'haloes' that contained material that

  14. Diversidade de Gluconacetobacter diazotrophicus isolada de plantas de cana-de-açúcar cultivadas no Brasil Diversity of Gluconacetobacter diazotrophicus isolated from sugarcane plants cultivated in Brazil

    Directory of Open Access Journals (Sweden)

    Liamara Perin

    2004-08-01

    Full Text Available O objetivo deste trabalho foi avaliar a diversidade da população de Gluconacetobacter diazotrophicus oriunda de cultivares de cana-de-açúcar (Saccharum spp. de diferentes regiões e bancos de germoplasma. O estudo foi realizado com 123 isolados, obtidos de folhas, colmos e raízes de 80 espécies e híbridos de cana-de-açúcar, procedentes de diferentes países e mantidos em coleções de germoplasma nos Estados da Bahia e Rio de Janeiro. Foram utilizados cinco isolados obtidos de plantas de café (Coffea arabica, dois de abacaxi (Ananas comosus e um de Pennisetum purpureum e mais 10 estirpes com padrões eletroforéticos distintos, após o uso de enzimas comuns do metabolismo microbiano (MLEE. O agrupamento obtido por meio da técnica de imunoadsorção com enzima acoplada (ELISA sugere que as variações expressas pelos isolados não estão relacionadas com a espécie de planta, a variedade de cana-de-açúcar, a origem geográfica, a parte da planta de onde os isolados foram obtidos e o tempo de amostragem. Altas doses de nitrogênio levaram à diminuição da diversidade de G. diazotrophicus.The objective of this study was to evaluate the diversity of Gluconacetobacter diazotrophicus isolates from different sugarcane (Saccharum spp. varieties. This study was developed using 123 strains from the internal tissues of stems and roots, isolated from 80 species and hybrids of sugarcane, originated from different countries and maintained in two germoplasm collections localized in Bahia and Rio de Janeiro States. Five isolates obtained from coffee plants (Coffea arabica, two from pineapple (Ananas comosus, one from Pennisetum purpureum and 10 strains, which present different electrophoretic patterns, were used in the comparison. Cluster analysis of enzyme-linked immunosorbent assay (ELISA results suggested that variations were not correlated with the plant species, sugarcane variety, geographic origin, parts of plants nor with sampling time

  15. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system.

    Science.gov (United States)

    Bertini, Elisa V; Nieto Peñalver, Carlos G; Leguina, Ana C; Irazusta, Verónica P; de Figueroa, Lucía I C

    2014-09-01

    The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.

  16. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5.

    Science.gov (United States)

    Urzúa, Lucia Soto; Vázquez-Candanedo, Ada P; Sánchez-Espíndola, Adriana; Ramírez, Carlos Ávila; Baca, Beatriz E

    2013-06-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-Km(R) -mutant strains in a medium without iron supplementation and in a medium containing 2, 2'-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-Km(R) -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus.

  17. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  18. Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Luna, M F; Galar, M L; Aprea, J; Molinari, M L; Boiardi, J L

    2010-08-01

    Colonization of sorghum and wheat after seed inoculation with Gluconacetobacter diazotrophicus strains PAL 5 and UAP 5541/pRGS561 (containing the marker gene gusA) was studied by colony counting and microscopic observation of plant tissues. Inoculum levels as low as 10(2) CFU per seed were enough for root colonization and further spreading in aerial tissues. Rhizoplane colonization was around 7 log CFU g(-1) (fresh weight). G. diazotrophicus was found inside sorghum and wheat roots with populations higher than 5 log CFU g(-1) (fresh weight). Stem colonization remained stable for 30 days post inoculation with endophyte concentrations from 4 to 5 log CFU g(-1) (fresh weight) (in both plants). Population in leaves decreased continuously being undetectable after 17 days post inoculation.

  19. Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc.

    Science.gov (United States)

    Intorne, Aline C; de Oliveira, Marcos Vinicius V; Lima, Mariana L; da Silva, Juliana F; Olivares, Fábio L; de Souza Filho, Gonçalo Apolinário

    2009-05-01

    Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium, which is able to colonize sugarcane and other plant species of economic importance. The potentially beneficial effects promoted by this bacterium on plants are nitrogen-fixation, production of phythormones, action against pathogens and mineral nutrient solubilization. In this study, the molecular mechanisms associated with phosphorus and zinc solubilization were analyzed. A transposon mutant library was constructed and screened to select for mutants defective for phosphorous [Ca(5)(PO(4))(3)OH] and zinc (ZnO) solubilization. A total of five mutants were identified in each screen. Both screenings, performed independently, allowed to select the same mutants. The interrupted gene in each mutant was identified by sequencing and the results demonstrate that the production of gluconic acid is a required pathway for solubilization of such nutrients in G. diazotrophicus.

  20. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Meneses, Carlos H S G; Rouws, Luc F M; Simoes-Araujo, Jean L; Vidal, Marcia S; Baldani, Jos I

    2011-12-01

    The genome of the endophytic diazotrophic bacterial species Gluconacetobacter diazotrophicus PAL5 (PAL5) revealed the presence of a gum gene cluster. In this study, the gumD gene homologue, which is predicted to be responsible for the first step in exopolysaccharide (EPS) production, was insertionally inactivated and the resultant mutant (MGD) was functionally studied. The mutant MGD presented normal growth and nitrogen (N(2)) fixation levels but did not produce EPS when grown on different carbon sources. MGD presented altered colony morphology on soft agar plates (0.3% agar) and was defective in biofilm formation on glass wool. Most interestingly, MGD was defective in rice root surface attachment and in root surface and endophytic colonization. Genetic complementation reverted all mutant phenotypes. Also, the addition of EPS purified from culture supernatants of the wild-type strain PAL5 to the mutant MGD was effective in partially restoring wild-type biofilm formation and plant colonization. These data provide strong evidence that the PAL5 gumD gene is involved in EPS biosynthesis and that EPS biosynthesis is required for biofilm formation and plant colonization. To our knowledge, this is the first report of a role of EPS in the endophytic colonization of graminaceous plants by a nitrogen-fixing bacterium.

  1. Isolation and characterization of the glnD gene of Gluconacetobacter diazotrophicus, encoding a putative uridylyltransferase/uridylyl-removing enzyme.

    Science.gov (United States)

    Perlova, Olena; Nawroth, Roman; Zellermann, Eva-Maria; Meletzus, Dietmar

    2002-09-04

    The glnD gene of Gluconacetobacter diazotrophicus was isolated by complementation of the Azotobacter vinelandii glnD (nfrX) mutant strain MV17 using a pLAFR3 cosmid library. The 5 kb chromosomal DNA region encoding the glnD gene on cosmid pAD401 was identified by introduction of deletions as well as subcloning of restriction fragments followed by subsequent DNA sequencing. Three open reading frames were identified with the deduced amino acid sequence of ORF1 showing significant homologies to known GlnD proteins of other proteobacteria such as Sinorhizobium meliloti, Rhizobium tropici, Escherichia coli and Azotobacter vinelandii.A mutagenesis of the chromosomal glnD gene was carried out by insertion of an interposon carrying the kanamycin resistance gene of Tn5. Mutants carrying the cassette inserted into a central region of glnD could not be isolated, while an interposon mutation at the 3' end of glnD was successful. The resulting strain showed a prolonged generation time in complex growth medium and was unable to utilize ammonium as sole nitrogen source. This phenotype appears to be pleiotropic, since the addition of single amino acids to the minimal medium was not sufficient to allow growth. Furthermore, the glnD mutant was able to express nitrogenase under diazotrophic as well as repressing growth conditions.

  2. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth.

    Science.gov (United States)

    Muñoz-Rojas, J; Caballero-Mellado, J

    2003-11-01

    Different experiments have estimated that the contribution of biological nitrogen fixation (BNF) is largely variable among sugarcane cultivars. Which bacteria are the most important in sugarcane-associated BNF is unknown. However, Gluconacetobacter diazotrophicus has been suggested as a strong candidate responsible for the BNF observed. In the present study, bacteria-free micropropagated plantlets of five sugarcane cultivars were inoculated with three G. diazotrophicus strains belonging to different genotypes. Bacterial colonization was monitored under different nitrogen fertilization levels and at different stages of plant growth. Analysis of the population dynamics of G. diazotrophicus strains in the different sugarcane varieties showed that the bacterial populations decreased drastically in relation to plant age, regardless of the nitrogen fertilization level, bacterial genotype or sugarcane cultivars. However, the persistence of the three strains was significantly longer in some cultivars (e.g., MEX 57-473) than in others (e.g., MY 55-14). In addition, some strains (e.g., PAl 5(T)) persisted for longer periods in higher numbers than other strains (e.g., PAl 3) inside plants of all the cultivars tested. Indeed, the study showed that the inoculation of G. diazotrophicus may be beneficial for sugarcane plant growth, but this response is dependent both on the G. diazotrophicus genotype and the sugarcane variety. The most positive response to inoculation was observed with the combination of strain PAl 5(T) and the variety MEX 57-473. Although the positive effect on sugarcane growth apparently occurred by mechanisms other than nitrogen fixation, the results show the importance of the sugarcane variety for the persistence of the plant-bacteria interaction, and it could explain the different rates of BNF estimated among sugarcane cultivars.

  3. Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR.

    Science.gov (United States)

    Galisa, Péricles S; da Silva, Helder A P; Macedo, Aline V M; Reis, Verônica M; Vidal, Márcia S; Baldani, José I; Simões-Araújo, Jean L

    2012-10-01

    Gluconacetobacter diazotrophicus strain PAL5 is a nitrogen-fixing endophytic bacterium originally isolated from sugarcane and later on was found to colonize other plants such as rice, elephant grass, sweet potato, coffee, and pineapple. Currently, G. diazotrophicus has been considered a plant growth-promoting bacterium due to its characteristics of biological nitrogen fixation, phytohormone secretion, solubilization of mineral nutrients and antagonism to phytopathogens. Reverse transcription followed by quantitative real-time polymerase chain reaction (RT-qPCR) is a method applied for the quantification of nucleic acids because of its specificity and high sensitivity. However, the decision about the reference genes suitable for data validation is still a major issue, especially for nitrogen-fixing bacteria. To evaluate and identify suitable reference genes for gene expression normalization in the diazotrophic G. diazotrophicus, mRNA levels of fourteen candidate genes (rpoA, rpoC, recA, rpoD, fabD, gmk, recF, rho, ldhD, gyrB, gyrBC, dnaG, lpxC and 23SrRNA) and three target genes (matE, omp16 and sucA) were quantified by RT-qPCR after growing the bacteria in different carbon sources. The geNorm and Normfinder programs were used to calculate the expression stabilities. The analyses identified three genes, rho, 23SrRNA and rpoD, whose expressions were stable throughout the growth of strain PAL5 in the chosen carbon sources. In conclusion our results strongly suggest that these three genes are suitable to be used as reference genes for real-time RT-qPCR data normalization in G. diazotrophicus.

  4. Structural studies of an exopolysaccharide produced by Gluconacetobacter diazotrophicus Pal5.

    Science.gov (United States)

    Serrato, Rodrigo V; Meneses, Carlos H S G; Vidal, Marcia S; Santana-Filho, Arquimedes P; Iacomini, Marcello; Sassaki, Guilherme L; Baldani, José I

    2013-10-15

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium that has been found colonizing several plants. This acid-tolerant bacterium produces phytohormones that promote plant growth and is also able to grow in high-sugar concentrations. It has been demonstrated that exopolysaccharides (EPS), which are produced by strain Pal5 of G. diazotrophicus, play an important role in plant infection. We have investigated the structure of the EPS, which was produced by a strain of Pal5 grown in liquid medium containing mannitol as the sole carbon source. The results reveal an EPS with Glc, Gal, Man in a molar ratio of 6:3:1, respectively. NMR spectroscopy and chemical derivatization have revealed that the EPS structure has 4-O-substituted units of β-glucose, 3-O-substituted units of β-galactose and 2-O-substituted units of α-mannose. Glucose and galactose units linked at C6 were also found. The structure proposed herein is different from EPS produced by other species of Gluconacetobacter published to date.

  5. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    Science.gov (United States)

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

  6. INTERACCIÓN DE LA BACTERIA Gluconacetobacter diazotrophicus Y HORTALIZAS DE RAÍZ

    Directory of Open Access Journals (Sweden)

    Yoania Ríos Rocafull

    2016-01-01

    Full Text Available Gluconacetobacter diazotrophicus es una bacteria endófita que presenta dentro de sus características metabólicas, mecanismos directos e indirectos de estimulación del crecimiento vegetal. Se han obtenido resultados positivos por su aplicación, fundamentalmente, en gramíneas y viandas tropicales. Sin embargo, en hortalizas, las investigaciones de esta interacción plantamicroorganismo son escasas. El presente trabajo tuvo como objetivo evaluar el efecto de cuatro cepas de G. diazotrophicus aisladas de ecosistemas agrícolas cubanos, sobre el crecimiento de zanahoria (Daucus carota L. y remolacha (Beta vulgaris L.. Se demostró que la procedencia del microorganismo no tiene una relación directa con la especie vegetal que puede beneficiar con su interacción, ya que los mejores resultados se obtuvieron con una cepa proveniente de los frutos del mango. Esta cepa se seleccionó como promisoria para constituir el principio activo de un producto con efecto positivo sobre ambas hortalizas. Además, presentó un efecto estimulador del crecimiento mayor que el patrón de la especie bacteriana (PAL5, lo que indica la importancia del empleo de microorganismos autóctonos. Los resultados sugieren que G. diazotrophicus puede ser utilizada en la estimulación del crecimiento de hortalizas de raíz como zanahoria y remolacha y evidencian cuan compleja es la interacción planta-microorganismo.

  7. Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth-promoting bacterium.

    Science.gov (United States)

    Lery, Leticia M S; Coelho, Ana; von Kruger, Wanda M A; Gonçalves, Mayla S M; Santos, Marise F; Valente, Richard H; Santos, Eidy O; Rocha, Surza L G; Perales, Jonas; Domont, Gilberto B; Teixeira, Katia R S; Bertalan, Marcelo; Ferreira, Paulo C G; Bisch, Paulo M

    2008-04-01

    This is the first broad proteomic description of Gluconacetobacter diazotrophicus, an endophytic bacterium, responsible for the major fraction of the atmospheric nitrogen fixed in sugarcane in tropical regions. Proteomic coverage of G. diazotrophicus PAL5 was obtained by two independent approaches: 2-DE followed by MALDI-TOF or TOF-TOF MS and 1-DE followed by chromatography in a C18 column online coupled to an ESI-Q-TOF or ESI-IT mass spectrometer. The 583 identified proteins were sorted into functional categories and used to describe potential metabolic pathways for nucleotides, amino acids, carbohydrates, lipids, cofactors and energy production, according to the Enzyme Commission of Enzyme Nomenclature (EC) and Kyoto Encyclopedia of genes and genomes (KEGG) databases. The identification of such proteins and their possible insertion in conserved biochemical routes will allow comparisons between G. diazotrophicus and other bacterial species. Furthermore, the 88 proteins classified as conserved unknown or unknown constitute a potential target for functional genomic studies, aiming at the understanding of protein function and regulation of gene expression. The knowledge of metabolic fundamentals and coordination of these actions are crucial for the rational, safe and sustainable interference on crops. The entire dataset, including peptide sequence information, is available as Supporting Information and is the major contribution of this work.

  8. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India.

    Science.gov (United States)

    Madhaiyan, M; Saravanan, V S; Jovi, D Bhakiya Silba Sandal; Lee, Hyoungseok; Thenmozhi, R; Hari, K; Sa, Tongmin

    2004-01-01

    Endophytic bacteria were isolated from the tissues of surface sterilized roots, stems, and leaves of fifty different crop plants. Phenotypic, biochemical tests and species-specific PCR assay permitted identification of four isolates of Gluconacetobacter diazotrophicus from root tissues of carrot (Daucus carota L.), raddish (Raphanus sativus L.), beetroot (Beta vulgaris L.) and coffee (Coffea arabica L.). Further the plant growth promoting traits such as nitrogenase activity, production of phytohormone indole acetic acid (IAA), phosphorus and zinc solubilization were assessed. Significant nitrogenase activity was recorded among the isolates and all the isolates produced IAA in the presence of tryptophan. Though all the four isolates efficiently solubilized phosphorus, the zinc solubilizing ability differed among the isolates.

  9. Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells.

    Science.gov (United States)

    Saravanan, Venkatakrishnan Sivaraj; Osborne, Jabez; Madhaiyan, Munusamy; Mathew, Lazar; Chung, Jongbae; Ahn, Kisup; Sa, Tongmin

    2007-09-01

    Gluconacetobacter diazotrophicus strain PAl5 exhibited a minimum inhibitory concentration value of 11 mM in an LGI medium amended with ZnCl2. When an LGI medium was amended with Zn metal, solubilization halos were observed in a plate assay, and further solubilization was confirmed in a broth assay. The maximum solubilization was recorded after 120 h with a 0.1% Zn metal amendment. During solubilization, the culture growth and pH of the broth were indirectly correlated. Using a Fourier Transform Infrared Spectroscopy analysis, one of the agents solubilizing the Zn metal was identified as gluconic acid. When the Zn-amended broth was observed under a bright field microscope, long involution cells were observed, and further analysis with Atomic Force Microscopy revealed highly deformed, pleomorphic, aggregate-like cells.

  10. NUEVOS AISLADOS DE Gluconacetobacter diazotrophicus EN CULTIVOS DE IMPORTANCIA ECONÓMICA PARA CUBA

    Directory of Open Access Journals (Sweden)

    B. Dibut

    2005-01-01

    Full Text Available En los últimos años, un llamado importante para los microbiólogos del suelo ha sido el estudio de microorganismos endófitos que se asocian con plantas superiores, con el consiguiente beneficio sobre los cultivos. En este trabajo, se ofrecen los resultados sobre el aislamiento y la distribución de Gluconacetobacter diazotrophicus en cultivos de importancia económica para Cuba. La bacteria se aisló a partir de filtrados y secciones de diferentes órganos del vegetal dispuestos sobre medios de cultivo LGI-P, donde se comprobó el crecimiento característico a las 96 h de incubación a 320C de temperatura, obteniéndose finalmente 22 aislados a partir de diez especies cultivables. Experimentos de dinámica poblacional desarrollados en condiciones de invernadero mediante diseño completamente aleatorizado permitieron cuantificar el microorganismo en hojas, tallos y raíces de maíz, boniato, yuca, malanga y caña de azúcar, con poblaciones que oscilan entre 1.8 x 102-2.3 x 107 células por gramo de tejido fresco. Las poblaciones celulares más altas se detectaron en las hojas, seguido de los tallos y por último las raíces o tubérculos. La respuesta favorable de ocho cultivos a la inoculación de la bacteria, esta vez crecida en medio de cultivo SG e incubada a 320C durante 72 h, permite plantear la potencialidad que este microorganismo presenta como biofertilizante. Se informa por primera vez la presencia de la Gluconacetobacter diazotrophicus en cinco especies de plantas pertenecientes cada una a diferentes familias botánicas.

  11. Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane.

    Science.gov (United States)

    Lery, Letícia M S; Hemerly, Adriana S; Nogueira, Eduardo M; von Krüger, Wanda M A; Bisch, Paulo M

    2011-05-01

    Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus-sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by (15)N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant-bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium-plant interaction, which generated insights into early signaling of the G. diazotrophicus-sugarcane interaction.

  12. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes.

    Science.gov (United States)

    Lee, Sunhee; Flores-Encarnación, M; Contreras-Zentella, M; Garcia-Flores, L; Escamilla, J E; Kennedy, Christina

    2004-08-01

    Gluconacetobacter diazotrophicus is an endophyte of sugarcane frequently found in plants grown in agricultural areas where nitrogen fertilizer input is low. Recent results from this laboratory, using mutant strains of G. diazotrophicus unable to fix nitrogen, suggested that there are two beneficial effects of G. diazotrophicus on sugarcane growth: one dependent and one not dependent on nitrogen fixation. A plant growth-promoting substance, such as indole-3-acetic acid (IAA), known to be produced by G. diazotrophicus, could be a nitrogen fixation-independent factor. One strain, MAd10, isolated by screening a library of Tn5 mutants, released only approximately 6% of the amount of IAA excreted by the parent strain in liquid culture. The mutation causing the IAA(-) phenotype was not linked to Tn5. A pLAFR3 cosmid clone that complemented the IAA deficiency was isolated. Sequence analysis of a complementing subclone indicated the presence of genes involved in cytochrome c biogenesis (ccm, for cytochrome c maturation). The G. diazotrophicus ccm operon was sequenced; the individual ccm gene products were 37 to 52% identical to ccm gene products of Escherichia coli and equivalent cyc genes of Bradyrhizobium japonicum. Although several ccm mutant phenotypes have been described in the literature, there are no reports of ccm gene products being involved in IAA production. Spectral analysis, heme-associated peroxidase activities, and respiratory activities of the cell membranes revealed that the ccm genes of G. diazotrophicus are involved in cytochrome c biogenesis.

  13. Isolation and identification of Gluconacetobacter diazotrophicus from sugarcane varieties in Cuba

    Directory of Open Access Journals (Sweden)

    Marcia Rojas

    2012-09-01

    Full Text Available Sugarcane is one of the most important commercial crops in Cuba and other countries in the world. The worldwide occurrence of G. diazotrophicus in sugarcane and other plants suggest a beneficial association between this species and grass species. The potentialities of endophytes in the agricultural biotechnology are very high, that is why the detec-tion of this bacterium inside of sugarcane is so important. The aim of this work was to detect the occurrence of Gluconacetobacter diazotrophicus in 18 varieties of sugarcane growing in Cuba. This species was isolated in 13 varieties on the basis of micromorphological and colonies characteristics. For the first time it was isolated G. diazotrophi-cusfrom varieties Cuba 1616-75, Cuba 751-75, Campos Brasil 44-52 and SP701143 cultivated in Cuba. The 46 isolates from the varieties Jaronú 60-5, Cuba 323-68 and Media Luna 318 were identified as G. diazotrophicusby morphological and biochemical test.

  14. Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3.

    Science.gov (United States)

    Luna, María F; Bernardelli, Cecilia E; Galar, María L; Boiardi, José L

    2006-03-01

    Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)). Its synthesis was stimulated by conditions of high energetic demand (i.e., N(2)-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N(2)-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)-linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.

  15. Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Trujillo, L E.; Arrieta, J G.; Dafhnis, F; García, J; Valdés, J; Tambara, Y; Pérez, M; Hernández, L

    2001-02-01

    Levansucrase (LsdA) (EC 2.4.1.10) from Gluconacetobacter diazotrophicus (formerly Acetobacter diazotrophicus) yields high levels of fructo-oligosaccharides (FOS) from sucrose. A DNA fragment encoding the precursor LsdA lacking the first 57 amino acids was fused to the pho1 signal sequence under the control of the Pichia pastoris-alcohol oxidase 1 (AOX1) promoter. Methanol induction of a P. pastoris strain harboring a single copy of the lsdA expression cassette integrated in the genome resulted in the production of active levansucrase. After fermentation of the recombinant yeast, LsdA activity was detected in the periplasmic fraction (81%) and in the culture supernatant (18%) with an overall yield of 1% of total protein. The recombinant LsdA was glycosylated and displayed optimal pH and temperature for enzyme activity similar to those of the native enzyme, but thermal stability was increased. Neither fructosylpolymerase activity nor FOS production was affected. Incubation of recombinant LsdA in sucrose (500 g l(-1)) yielded 43% (w/w) of total sugar as 1-kestose, with a conversion efficiency about 70%. Intact recombinant yeast cells also converted sucrose to FOS although for a 30% efficiency.

  16. Isolation and characterization of active promoters from Gluconacetobacter diazotrophicus strain PAL5 using a promoter-trapping plasmid.

    Science.gov (United States)

    Schwab, Stefan; Pessoa, Cristiane Alves; de Lima Bergami, Amanda Aparecida; de Azevedo Figueiredo, Nathália Lima; Dos Santos Teixeira, Kátia Regina; Baldani, José Ivo

    2016-07-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing, endophytic bacterium that has the potential to promote plant growth and increase yield. Genetically modified strains might get more benefits to host plants, including through expression of useful proteins, such as Cry toxins from B. thuringiensis, or enzymes involved in phytohormone production, proteins with antagonistic activity for phytopathogens, or that improve nutrient utilization by the plant. For that, expression systems for G. diazotrophicus are needed, which requires active promoters fused to foreign (or innate) genes. This article describes the construction of a G. diazotrophicus PAL5 promoter library using a promoter-less lacZ-bearing vector, and the identification of six active promoters through β-galactosidase activity assays, sequencing and localization in the bacterial genome. The characterized promoters, which are located on distinct regions of the bacterial genome and encoding either sense or antisense transcripts, present variable expression strengths and might be used in the future for expressing useful proteins.

  17. Essential role of the czc determinant for cadmium, cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAl 5.

    Science.gov (United States)

    Intorne, Aline C; de Oliveira, Marcos Vinicius V; de M Pereira, Leandro; de Souza Filho, Gonçalo A

    2012-06-01

    The mechanisms of cadmium, cobalt and zinc resistance were characterized in the plant-growth-promoting bacterium Gluconacetobacter diazotrophicus PAl 5. The resistance level of the wild-type strain was evaluated through the establishment of minimum inhibitory concentrations (MIC) of the soluble compounds CdCl2·H2O, CoCl2·6H2O and ZnCl2. Gluconacetobacter diazotrophicus PAl 5 was resistant to high concentrations of Cd, Co and Zn, with MICs of 1.2, 20 and 20 mM, respectively. Screening of an insertion library from transposon EZ-Tn5 in the presence of ZnO revealed that the mutant GDP30H3 was unable to grow in the presence of the compound. This mutant was also highly sensitive to CdCl2·H2O, CoCl2·6H2O and ZnCl2. Molecular characterization established that the mutation affected the czcA gene, which encodes a protein involved in metal efflux. In silico analysis showed that czcA is a component of the czcCBARS operon together with four other genes. This work provides evidence of the high tolerance of G. diazotrophicus PAl 5 to heavy metals and that czc is a determinant for metal resistance in this bacterium.

  18. Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Martínez-Fleites, Carlos; Ortíz-Lombardía, Miguel; Pons, Tirso; Tarbouriech, Nicolas; Taylor, Edward J; Arrieta, Juan G; Hernández, Lázaro; Davies, Gideon J

    2005-08-15

    The endophytic Gram-negative bacterium Gluconacetobacter diazotrophicus SRT4 secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10), which converts sucrose into fructooligosaccharides and levan. The enzyme is included in GH (glycoside hydrolase) family 68 of the sequence-based classification of glycosidases. The three-dimensional structure of LsdA has been determined by X-ray crystallography at a resolution of 2.5 A (1 A=0.1 nm). The structure was solved by molecular replacement using the homologous Bacillus subtilis (Bs) levansucrase (Protein Data Bank accession code 1OYG) as a search model. LsdA displays a five-bladed beta-propeller architecture, where the catalytic residues that are responsible for sucrose hydrolysis are perfectly superimposable with the equivalent residues of the Bs homologue. The comparison of both structures, the mutagenesis data and the analysis of GH68 family multiple sequences alignment show a strong conservation of the sucrose hydrolytic machinery among levansucrases and also a structural equivalence of the Bs levansucrase Ca2+-binding site to the LsdA Cys339-Cys395 disulphide bridge, suggesting similar fold-stabilizing roles. Despite the strong conservation of the sucrose-recognition site observed in LsdA, Bs levansucrase and GH32 family Thermotoga maritima invertase, structural differences appear around residues involved in the transfructosylation reaction.

  19. High levan accumulation in transgenic tobacco plants expressing the Gluconacetobacter diazotrophicus levansucrase gene.

    Science.gov (United States)

    Banguela, Alexander; Arrieta, Juan G; Rodríguez, Raisa; Trujillo, Luis E; Menéndez, Carmen; Hernández, Lázaro

    2011-06-10

    Bacterial levansucrase (EC 2.4.1.10) converts sucrose into non-linear levan consisting of long β(2,6)-linked fructosyl chains with β(2,1) branches. Bacterial levan has wide food and non-food applications, but its production in industrial reactors is costly and low yielding. Here, we report the constitutive expression of Gluconacetobacter diazotrophicus levansucrase (LsdA) fused to the vacuolar targeting pre-pro-peptide of onion sucrose:sucrose 1-fructosyltransferase (1-SST) in tobacco, a crop that does not naturally produce fructans. In the transgenic plants, levan with degree of polymerization above 10(4) fructosyl units was detected in leaves, stem, root, and flowers, but not in seeds. High levan accumulation in leaves led to gradual phenotypic alterations that increased with plant age through the flowering stage. In the transgenic lines, the fructan content in mature leaves varied from 10 to 70% of total dry weight. No oligofructans were stored in the plant organs, although the in vitro reaction of transgenic LsdA with sucrose yielded β(2,1)-linked FOS and levan. Transgenic lines with levan representing up to 30mgg(-1) of fresh leaf weight produced viable seeds and the polymer accumulation remained stable in the tested T1 and T2 progenies. The lsdA-expressing tobacco represents an alternative source of highly polymerized levan.

  20. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5.

    Science.gov (United States)

    De Oliveira, Marcos Vinicius V; Intorne, Aline C; Vespoli, Luciano de S; Madureira, Hérika C; Leandro, Mariana R; Pereira, Telma N S; Olivares, Fábio L; Berbert-Molina, Marília A; De Souza Filho, Gonçalo A

    2016-04-01

    Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments.

  1. Molecular and Catalytic Properties of the Aldehyde Dehydrogenase of Gluconacetobacter diazotrophicus, a Quinoheme Protein Containing Pyrroloquinoline Quinone, Cytochrome b, and Cytochrome c▿

    Science.gov (United States)

    Gómez-Manzo, S.; Chavez-Pacheco, J. L.; Contreras-Zentella, M.; Sosa-Torres, M. E.; Arreguín-Espinosa, R.; Pérez de la Mora, M.; Membrillo-Hernández, J.; Escamilla, J. E.

    2010-01-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone. PMID:20802042

  2. Identification of three genes encoding P(II)-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation.

    Science.gov (United States)

    Perlova, Olena; Ureta, Alejandro; Nordlund, Stefan; Meletzus, Dietmar

    2003-10-01

    In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) protein-encoding genes, identified as glnK1 and glnK2, were located upstream of amtB1 and amtB2, respectively, genes which in other organisms encode ammonium (or methylammonium) transporters. Single and double mutants and a triple mutant with respect to the three P(II) protein-encoding genes were constructed, and the effects of the mutations on nitrogenase expression and activity in the presence of either ammonium starvation or ammonium sufficiency were studied. Based on the results presented here, it is suggested that none of the three P(II) homologs is required for nif gene expression, that the GlnK2 protein acts primarily as an inhibitor of nif gene expression, and that GlnB and GlnK1 control the expression of nif genes in response to ammonium availability, both directly and by relieving the inhibition by GlnK2. This model includes novel regulatory features of P(II) proteins.

  3. Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c.

    Science.gov (United States)

    Gómez-Manzo, S; Chavez-Pacheco, J L; Contreras-Zentella, M; Sosa-Torres, M E; Arreguín-Espinosa, R; Pérez de la Mora, M; Membrillo-Hernández, J; Escamilla, J E

    2010-11-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone.

  4. Transcriptional regulation and signal-peptide-dependent secretion of exolevanase (LsdB) in the endophyte Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Menéndez, Carmen; Banguela, Alexander; Caballero-Mellado, Jesús; Hernández, Lázaro

    2009-03-01

    Gluconacetobacter diazotrophicus utilizes plant sucrose with a constitutively expressed levansucrase (LsdA), producing extracellular levan, which may be degraded under energetically unfavored conditions. Reverse transcriptase-PCR analysis revealed that lsdA and the downstream exolevanase gene (lsdB) form an operon. lsdB transcription was induced during growth with low fructose concentrations (0.44 to 33 mM) and repressed by glucose. Transport of LsdB to the periplasm involved N-terminal signal peptide cleavage. Type II secretion mutants failed to transfer LsdB across the outer membrane, impeding levan hydrolysis.

  5. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors.

    Science.gov (United States)

    Blanco, Y; Arroyo, M; Legaz, M E; Vicente, C

    2005-11-04

    Glycoproteins from sugarcane stalks have been isolated from plants field-grown by size-exclusion chromatography. Some of these glycoproteins, previously labelled with fluorescein isothiocyanate, are able to bind to the cell wall of the sugarcane endophyte, N2-fixing Gluconacetobacter diazotrophicus, and largely removed after washing the bacterial cells with sucrose. This implies that sugarcane glycoproteins use beta-(1-->2)-fructofuranosyl fructose domains in their glycosidic moiety to bind to specific receptors in the bacterial cell walls. These receptors have been isolated by affinity chromatography on a sugarcane glycoprotein-agarose matrix, desorbed with sucrose and characterized by sodium dodecyl sulfate polyacrylamide gel electrophresisand capillary electrophoresis (CE).

  6. Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues.

    Science.gov (United States)

    Blanco, Yolanda; Blanch, María; Piñón, Dolores; Legaz, María-Estrella; Vicente, Carlos

    2005-04-01

    Xanthomonas albilineans, a pathogenic bacterium that produces leaf scald disease of sugarcane, secretes a xanthan-like gum that invades both xylem and phloem of the host. Xanthan production has been verified after experimental infection of stalk segments of healthy plants. Moreover, Gluconacetobacter diazotrophicus is a nitrogen-fixing endosymbiont of sugarcane plants that antagonizes with X. albilineans by impeding the production of the bacterial gum. The physiological basis of this antagonism has been studied using tissues of sugarcane stalks previously inoculated with the endosymbiont, then immobilized in calcium alginate and maintained in a culture medium for Gluconacetobacter. Under these conditions, bacteria infecting immobilized tissues are able to secrete to the medium a lysozyme-like bacteriocin that inhibits the growth of X. albilineans.

  7. INTERACCIONES ENTRE Gluconacetobacter diazotrophicus Y LA COMUNIDAD BACTERIANA ENDÓFITA DE LA CAÑA DE AZÚCAR

    Directory of Open Access Journals (Sweden)

    Marcia M. Rojas

    2007-01-01

    Full Text Available Gluconacetobacter diazotrophicus es una bacteria endófita de caña de azúcar, que se ha comprobado que es capaz de fijar cantidades considerables de nitrógeno y producir sustancias estimuladoras del crecimiento vegetal, lo cual puede ser de suma importancia en el mejoramiento de este cultivo sobre bases agroecológicas. En el presente trabajo se demuestran, por primera vez, las interacciones que esta especie establece con otros representantes de la comunidad bacteriana endófita de la caña de azúcar empleando el micrométodo en portaobjetos. G. diazotrophicus ejerce efecto antagonista sobre otros miembros de la comunidad, lo cual está influido por las cepas y el tiempo de crecimiento de la especie, que a su vez es estimulada por otras presentes en el interior de la caña de azúcar. Este hecho pudiera contribuir a potenciar la promoción del crecimiento que puede ejercer G. diazotrophicus en la caña de azúcar.

  8. Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation.

    Science.gov (United States)

    Velázquez-Hernández, M Lourdes; Baizabal-Aguirre, Víctor M; Cruz-Vázquez, Fermín; Trejo-Contreras, Mayra J; Fuentes-Ramírez, Luis E; Bravo-Patiño, Alejandro; Cajero-Juárez, Marcos; Chávez-Moctezuma, Martha P; Valdez-Alarcón, Juan J

    2011-02-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane, which expresses levansucrase, a fructosyltransferase exoenzyme with sucrose hydrolytic and levan biosynthetic activities. As a result of their physical properties, the levan can provide protection against stress caused by abiotic or biotic factors and participate in the formation of biofilms. In this study, we investigated the construction and function of a levansucrase-defective mutant of G. diazotrophicus. The lsdA mutant showed a decreased tolerance (65.5%) to 50-150 mM NaCl and a decrease of 89% in 876 mM (30%) sucrose, a reduction (99%) in tolerance to desiccation after 18 h, and a decrease (36.9-58.5%) in the ability to form cell aggregates on abiotic surfaces. Complementation of the mutant with the complete lsdA gene leads to a recovery of the ability to grow on sucrose-containing medium and to form slimy colonies, the ability to form the cell aggregates on abiotic surfaces and the tolerance to NaCl. This report demonstrates the importance of levansucrase in environmental adaptation of G. diazotrophicus under high osmotic stress and in biofilm formation.

  9. Essential role of K(+) uptake permease (Kup) for resistance to sucrose-induced stress in Gluconacetobacter diazotrophicus PAl 5.

    Science.gov (United States)

    de Oliveira, Marcos V V; Intorne, Aline C; Vespoli, Luciano de S; Andrade, Leandro F; Pereira, Leandro de M; Rangel, Patrícia L; de Souza Filho, Gonçalo A

    2017-04-01

    Microorganisms are constantly challenged by stressful conditions, such as sugar-rich environments. Such environments can cause an imbalance of biochemical activities and compromise cell multiplication. Gluconacetobacter diazotrophicus PAl 5 is among the most sugar-tolerant bacteria, capable of growing in the presence of up to 876 mM sucrose. However, the molecular mechanisms involved in its response to high sucrose remain unknown. The present work aimed to identify sucrose-induced stress resistance genes in G. diazotrophicus PAl 5. Screening of a Tn5 transposon insertion library identified a mutant that was severely compromised in its resistance to high sucrose concentrations. Molecular characterization revealed that the mutation affected the kupA gene, which encodes a K(+) uptake transporter (KupA). Functional complementation of the mutant with the wild type kupA gene recovered the sucrose-induced stress resistance phenotype. High sucrose resistance assay, under different potassium concentrations, revealed that KupA acts as a high-affinity K(+) transporter, which is essential for resistance to sucrose-induced stress, when extracellular potassium levels are low. This study is the first to show the essential role of the KupA protein for resistance to sucrose-induced stress in bacteria by acting as a high-affinity potassium transporter in G. diazotrophicus PAl 5.

  10. Uso de diferentes fontes de carbono por estirpes de Gluconacetobacter diazotrophicus isoladas de cana-de-açúcar Use of different carbon sources by strains of Gluconacetobacter diazotrophicus isolated from sugarcane

    Directory of Open Access Journals (Sweden)

    Edilene Alves Barbosa

    2006-05-01

    Full Text Available O objetivo deste trabalho foi quantificar a população de Gluconactobacter diazotrophicus presente em plântulas de 34 variedades de cana-de-açúcar, e caracterizar os isolados quanto à capacidade de utilizar diversas fontes de carbono e formar pigmento róseo em presença de luz. A população de G. diazotrophicus foi quantificada pela técnica do número mais provável e isolada em meios de cultura semi-seletivos. A população de G. diazotrophicus foi maior no sistema radicular do que na parte aérea, e maior nas variedades brasileiras de cana-de-açúcar. Os isolados utilizaram poucas fontes de carbono, e aqueles obtidos do sistema radicular utilizaram maior número de fontes, em comparação aos da parte aérea. Apenas a estirpe padrão Ppe-4 e quatro outros isolados formam pigmento róseo em presença de luz. A baixa variação observada pode estar relacionada com o habitat ou com a adaptação dessa população às condições específicas do interior das plantas e, por isso, a estrutura genética da população dessas bactérias é limitada e conservada.The objective of this work was to quantify the population of Gluconacetobacter diazotrophicus present in plantlets of 34 sugarcane varieties and to characterize the isolates according to their capacity to use carbon sources and produce pink pigments under light. G. diazotrophicus population was estimated using the most probable number technique, and then, isolated in semi-selective culture media. The highest population number of G. diazotrophicus was found in the roots; Brazilian varieties presented the highest population. The isolates used little carbon sources, and those strains obtained from the root used the highest number of carbon sources. Only the strain Ppe-4 and four other ones produce pink pigments under light. The low variation observed may be related to the habitat or to the adaptation of this population to specific internal plant conditions, and for this reason, the

  11. Glycine betaine enhances growth of nitrogen-fixing bacteria Gluconacetobacter diazotrophicus PAL5 under saline stress conditions.

    Science.gov (United States)

    Boniolo, Fabrízio Siqueira; Rodrigues, Raphael Cardoso; Delatorre, Edson Oliveira; da Silveira, Mauricio Moura; Flores, Victor Martín Quintana; Berbert-Molina, Marília Amorim

    2009-12-01

    In this study, the effect of glycine betaine as osmoprotectant compound for Gluconacetobacter diazotrophicus PAL5 was evaluated by kinetic growth parameters. Batch fermentation assays were performed employing media supplemented with different sodium chloride concentrations to simulate saline stress conditions. Salt concentrations of 50-300 mM led to decreased cell concentrations, while the maximum specific growth rates and cell productivities were reduced at concentrations above 100-mM NaCl. Salt inhibition was mainly observed in media with 200- and 300-mM NaCl, in which drastic changes in cell morphology were also noted. The addition of glycine betaine to the media showed to be efficient to counteract the salt inhibitory effect by increasing some fermentation parameters. However, the osmoprotectant was not able to revert the polymorphism promoted by higher salt concentrations.

  12. Crystallization and preliminary X-ray diffraction analysis of levansucrase (LsdA) from Gluconacetobacter diazotrophicus SRT4.

    Science.gov (United States)

    Martínez-Fleites, Carlos; Tarbouriech, Nicolas; Ortiz-Lombardia, Miguel; Taylor, Edward; Rodríguez, Armando; Ramírez, Ricardo; Hernández, Lázaro; Davies, Gideon J

    2004-01-01

    The endophytic bacterium Gluconacetobacter diazotrophicus SRT4 secretes a constitutively expressed levansucrase (LsdA; EC 2.4.1.10), which converts sucrose to fructo-oligosaccharides and levan. Fully active LsdA was purified to high homogeneity by non-denaturing reversed-phase HPLC and was crystallized at room temperature by the hanging-drop vapour-diffusion method using ammonium sulfate and ethanol as precipitants. The crystals are extremely sensitive, but native data have been collected to 2.5 A under cryogenic conditions using synchrotron radiation. LsdA crystals belong to the orthorhombic space group P22(1)2(1) or P2(1)2(1)2, with unit-cell parameters a = 53.80, b = 119.39, c = 215.10 A.

  13. Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants.

    Science.gov (United States)

    Fuentes-Ramírez, L E; Bustillos-Cristales, R; Tapia-Hernández, A; Jiménez-Salgado, T; Wang, E T; Martínez-Romero, E; Caballero-Mellado, J

    2001-07-01

    Diazotrophic bacteria were isolated, in two different years, from the rhizosphere and rhizoplane of coffee (Coffea arabica L.) plants cultivated in Mexico; they were designated as type DOR and type SAd isolates. They showed characteristics of the family Acetobacteraceae, having some features in common with Gluconacetobacter (formerly Acetobacter) diazotrophicus, the only known N2-fixing species of the acetic acid bacteria, but they differed from this species with regard to several characteristics. Type DOR isolates can be differentiated phenotypically from type SAd isolates. Type DOR isolates and type SAd isolates can both be differentiated from Gluconacetobacter diazotrophicus by their growth features on culture media, their use of amino acids as nitrogen sources and their carbon-source usage. These results, together with the electrophoretic mobility patterns of metabolic enzymes and amplified rDNA restriction analysis, suggested that the type DOR and type SAd isolates represent two novel N2-fixing species. Comparative analysis of the 16S rRNA sequences revealed that strains CFN-Cf55T (type DOR isolate) and CFN-Ca54T (type SAd isolate) were closer to Gluconacetobacter diazotrophicus (both strains had sequence similarities of 98.3%) than to Gluconacetobacter liquefaciens, Gluconacetobacter sacchari (similarities Gluconacetobacter johannae sp. nov. (for the type DOR isolates), with strain CFN-Cf55T (= ATCC 700987T = DSM 13595T) as the type strain, and Gluconacetobacter azotocaptans sp. nov. (for the type SAd isolates), with strain CFN-Ca54T (= ATCC 70098ST = DSM 13594T) as the type strain.

  14. Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Alquéres, Sylvia M C; Oliveira, Jose Henrique M; Nogueira, Eduardo M; Guedes, Helma V; Oliveira, Pedro L; Câmara, Fernando; Baldani, Jose I; Martins, Orlando B

    2010-10-01

    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N(2). This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo-Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation.

  15. Validation of a Tn5 transposon mutagenesis system for Gluconacetobacter diazotrophicus through characterization of a flagellar mutant.

    Science.gov (United States)

    Rouws, Luc F M; Simões-Araújo, Jean L; Hemerly, Adriana S; Baldani, José I

    2008-04-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium, which was originally isolated from the interior of sugarcane plants. The genome of strain PAL5 of G. diazotrophicus has been completely sequenced and a next step is the functional characterization of its genes. The aim of this study was to establish an efficient mutagenesis method, using the commercial Tn5 transposon EZ::Tn5Tnp Transposome (Epicentre). Up to 1 x 10(6) mutants per microgram of transposome were generated in a single electroporation experiment. Insertion-site flanking sequences were amplified by inverse PCR and sequenced for 31 mutants. For ten of these mutants, both insertion flanks could be identified, confirming the 9 bp duplication that is typical for Tn5 transposition. Insertions occurred in a random fashion and were genetically stable for at least 50 generations. One mutant had an insertion in a homolog of the flagellar gene flgA, and was therefore predicted to be affected in flagella-dependent traits and used to validate the applied mutagenesis methodology. This mutant lacked flagella and was non-motile on soft agar. Interestingly, it was also strongly affected in the ability to form biofilm on glass wool.

  16. Inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenotype and biomass of Triticum aestivum var. Nana-F2007 at 50% of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    Jesús Jaime Hernández-Escareño

    2015-03-01

    Full Text Available Wheat (Triticum aestivum L consuming requires of nitrogen fertilizer (NF, as ammonium nitrate (NH4NO3, which one in excess causes lost soil productivity. An alternative to reduce and optimize NF to wheat is to inoculate with endophytic promoting growth bacteria (EPGB, as genus Burkholderia cepacia and Gluconacetobacter diazotrophicus able to improve radical uptake of NF, its suggesting by inducing synthesis of growth promoting vegetal substances (GPVS. The aim of this research was to evaluate the inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenology and biomass of T.aestivum at 50% dose of NF. A trial in greenhouse condition wasconducted inoculating seed T.aestivum´s with both EPGB by measuring its phenology: (PH plant height, (RL root length and biomass: total fresh weight (TFW and dry (TDW at seedling and flowering stages. Results showed a positive effect of B. cepacia in wheat on its TDW with 0.61g value statistically significant compared to 0.53g TDW of wheat used as relative control fed with NF 100% dose (RC. B. cepacia and G. diazotrophicus inoculated to wheat had a positive increased on its TDW with 4.23 g value statistically significant compared to 1.13 g TDW of wheat used as RC. Conclusion suggested that B. cepacia and G. diazotrophicus by synthetized GPVS had a positive effect on wheat growth at reduced dose of NF.

  17. Identification of genes involved in indole-3-acetic acid biosynthesis by Gluconacetobacter diazotrophicus PAL5 strain using transposon mutagenesis

    Directory of Open Access Journals (Sweden)

    ELISETE PAINS RODRIGUES

    2016-10-01

    Full Text Available Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA; however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01, which exhibited 95% less indolic compounds that the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA and indole-3-lactate (ILA. In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO. GDI2456 (lao gene forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao, cccA and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with

  18. Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis

    Science.gov (United States)

    Rodrigues, Elisete P.; Soares, Cleiton de Paula; Galvão, Patrícia G.; Imada, Eddie L.; Simões-Araújo, Jean L.; Rouws, Luc F. M.; de Oliveira, André L. M.; Vidal, Márcia S.; Baldani, José I.

    2016-01-01

    Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and

  19. Assessing the Zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labelled (65)Zn compounds.

    Science.gov (United States)

    Sarathambal, C; Thangaraju, M; Paulraj, C; Gomathy, M

    2010-10-01

    Solubilization of insoluble zinc compounds like ZnCO(3) and ZnO by G. diazotrophicus was confirmed using radiotracers. The zinc compounds (ZnCO(3) and ZnO) were tagged with (65)Zn. (65)ZnCO(3) and (65)ZnO was effectively solubilized and the uptake of zn by the plants also more in G. diazotrophicus inoculated treatments compared to the uninoculated treatments. Three types of soils (Zn deficientsterile, Zn deficient-unsterile, and Zn sufficient-sterile) were used in experiment. Among the three soils, Zn deficient-unsterile soil registered maximum zinc solubilization compared to other two soils. This may be due to other soil microorganisms in unsterile soil. Application of ZnO with G. diazotrophicus showed better uptake of the nutrient.

  20. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis.

    NARCIS (Netherlands)

    Falcao Salles, Joana; Gitahy, P.M.; Skot, L.; Baldani, J.L.

    2000-01-01

    The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR1128

  1. The membrane-bound quinohemoprotein alcohol dehydrogenase from Gluconacetobacter diazotrophicus PAL5 carries a [2Fe-2S] cluster.

    Science.gov (United States)

    Gómez-Manzo, S; Solano-Peralta, A; Saucedo-Vázquez, J P; Escamilla-Marván, J E; Kroneck, P M H; Sosa-Torres, M E

    2010-03-23

    Gluconacetobacter diazotrophicus stands out among the acetic acid bacteria as it fixes dinitrogen and is a true endophyte. It has a set of constitutive enzymes to oxidize ethanol and acetaldehyde which is upregulated during N(2)-dependent growth. The membrane-bound alcohol dehydrogenase (ADH) is a heterodimer (subunit I approximately 72 kDa, subunit II approximately 44 kDa) and constitutes an important component of this organism. ADH of Ga. diazotrophicus is a typical quinohemoprotein with one pyrroloquinoline quinone (PQQ) and four c-type cytochromes. For the first time, a [2Fe-2S] cluster has been identified by EPR spectroscopy in this type of enzyme. This finding is supported by quantitative chemical analysis, revealing 5.90 +/- 0.15 Fe and 2.06 +/- 0.10 acid-labile sulfurs per ADH heterodimer. The X-band EPR spectrum of ADH (as isolated in the presence of dioxygen, 20 K) showed three broad resonances at g 2.007, 1.941, and 1.920 (g(av) 1.956), as well as an intense narrow line centered at g = 2.0034. The latter signal, which was still detected at 100 K, was attributed to the PQQ semiquinone radical (PQQ(sq)). The broad resonances observed at lower temperature were assigned to the [2Fe-2S] cluster in the one-electron reduced state. The oxidation-reduction potentials E(m) (pH 6.0 vs SHE) of the four c-type cytochromes were estimated to E(m1) = -64 (+/-2) mV, E(m2) = -8 (+/-2) mV, E(m3) = +185 (+/-15) mV, and E(m4) = +210 (+/-10) mV (spectroelectrochemistry), E(mFeS) = -250 (+/-5) mV for the [2Fe-2S] cluster, and E(mPQQ) = -210 (+/-5) mV for the PQQ/PQQH(2) couple (EPR spectroscopy). We propose a model for the membrane-bound ADH of Ga. diazotrophicus showing hypothetical intra- and intermolecular electron pathways. Subunit I binds the PQQ cofactor, the [2Fe-2S] cluster, and one c-type cytochrome. Subunit II harbors three c-type cytochromes, thus providing an efficient electron transfer route to quinones located in the cytoplasmic membrane.

  2. Polyphasic characterization of Gluconacetobacter diazotrophicus isolates obtained from different sugarcane varieties.

    Science.gov (United States)

    Guedes, Helma V; Dos Santos, Samuel T; Perin, Liamara; Teixeira, Kátia R Dos S; Reis, Veronica M; Baldani, José I

    2008-10-01

    A polyphasic approach was applied to characterize 35 G. diazotrophicus isolates obtained from sugarcane varieties cultivated in Brazil. The isolates were analyzed by phenotypic (use of different carbon sources) and genotypic tests (ARDRA and RISA-RFLP techniques). Variability among the isolates was observed in relation to the carbon source use preference. Glucose and sucrose were used by all isolates in contrast to myo-inositol, galactose and ribose that were not metabolized. The results of the analysis showed the presence of two groups clustered at 68% of similarity. The genetic distance was higher when RISA-RFLP analysis was used. Analysis of 16S rDNA sequences from isolates showed that all of them belonged to the G. diazotrophicus species. Neither effect of the plant part nor sugarcane variety was observed during the cluster analysis. The observed metabolic and genetic variability will be helpful during the strain selection studies for sugarcane inoculation in association with sugarcane breeding programs.

  3. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments.

    Science.gov (United States)

    Rodríguez-Andrade, Osvaldo; Fuentes-Ramírez, Luis E; Morales-García, Yolanda E; Molina-Romero, Dalia; Bustillos-Cristales, María R; Martínez-Contreras, Rebeca D; Muñoz-Rojas, Jesús

    2015-01-01

    It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus.

  4. Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in genome sequence submission.

    Science.gov (United States)

    Giongo, Adriana; Tyler, Heather L; Zipperer, Ursula N; Triplett, Eric W

    2010-06-15

    Gluconacetobacter diazotrophicus PAl 5 is of agricultural significance due to its ability to provide fixed nitrogen to plants. Consequently, its genome sequence has been eagerly anticipated to enhance understanding of endophytic nitrogen fixation. Two groups have sequenced the PAl 5 genome from the same source (ATCC 49037), though the resulting sequences contain a surprisingly high number of differences. Therefore, an optical map of PAl 5 was constructed in order to determine which genome assembly more closely resembles the chromosomal DNA by aligning each sequence against a physical map of the genome. While one sequence aligned very well, over 98% of the second sequence contained numerous rearrangements. The many differences observed between these two genome sequences could be owing to either assembly errors or rapid evolutionary divergence. The extent of the differences derived from sequence assembly errors could be assessed if the raw sequencing reads were provided by both genome centers at the time of genome sequence submission. Hence, a new genome sequence standard is proposed whereby the investigator supplies the raw reads along with the closed sequence so that the community can make more accurate judgments on whether differences observed in a single stain may be of biological origin or are simply caused by differences in genome assembly procedures.

  5. Quantification of natural populations of Gluconacetobacter diazotrophicus and Herbaspirillum spp. In sugar cane (Saccharum spp. Using differente polyclonal antibodies

    Directory of Open Access Journals (Sweden)

    Lúcia Gracinda da Silva-Froufe

    2009-12-01

    Full Text Available The species Gluconacetobacterdiazotrophicus, Herbaspirillum seropedicae and H. rubrisubalbicans are endophytic N2-fixing [diazotrophic] bacteria which colonise not only roots, but also the aerial tissue of sugar cane. However, the technique most commonly used to quantify the populations of these microbes in plants is by culturing serial dilutions of macerates of plant tissues in N free semi-solid media which are only semi-selective for the species/genera [the Most Probable Number (MPN Technique] and each culture must be further subjected to several tests to identify the isolates at the species level. The use of species-specific polyclonal antibodies with the indirect ELISA (enzyme-linked immunosorbent assay can be an alternative which is rapid and specific to quantify these populations of bacteria. This study was performed to investigate the viability of adapting the indirect ELISA technique to quantify individually the populations of these three species of diazotroph within the root and shoot tissues of sugarcane. The results showed that species-specific polyclonal antibodies could be obtained by purifying sera in protein-A columns which removed non-specific immuno-globulins. It was possible to quantify the three bacterial species in the Brazilian sugarcane variety SP 70-1143 in numbers above 10(5 cells per g fresh weight in roots, rhizomes and leaves. The numbers of the different bacterial species evaluated using the ELISA technique were found to be higher than when the same populations were evaluated using the MPN technique, reaching 1400 times greater for G. diazotrophicus and 225 times greater for Herbaspirillum spp. These results constitute the first quantification of Herbaspirillum using immunological techniques.

  6. Efecto de la mutación del gen que codifica para la levansacarasa (isdA) de gluconacetobacter diazotrophicus sobre la colonización de la caña de azúcar

    OpenAIRE

    Velázquez Hernández, Ma. de Lourdes

    2011-01-01

    En la simbiosis Gluconacetobacter diazotrophicus-caña de azúcar, la bacteria es considerada promotara del crecimiento ya que es capaz de fijar N2 atmosférico en la planta, produce fitohormonas, solubiliza sales minerales y produce sustancias que inhiben el desarrollo de patógenos de la caña de azúcar.

  7. Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus.

    Science.gov (United States)

    Lee, S; Reth, A; Meletzus, D; Sevilla, M; Kennedy, C

    2000-12-01

    A major 30.5-kb cluster of nif and associated genes of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus), a nitrogen-fixing endophyte of sugarcane, was sequenced and analyzed. This cluster represents the largest assembly of contiguous nif-fix and associated genes so far characterized in any diazotrophic bacterial species. Northern blots and promoter sequence analysis indicated that the genes are organized into eight transcriptional units. The overall arrangement of genes is most like that of the nif-fix cluster in Azospirillum brasilense, while the individual gene products are more similar to those in species of Rhizobiaceae or in Rhodobacter capsulatus.

  8. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  9. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  10. Respiratory system of Gluconacetobacter diazotrophicus PAL5. Evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases.

    Science.gov (United States)

    González, B; Martínez, S; Chávez, J L; Lee, S; Castro, N A; Domínguez, M A; Gómez, S; Contreras, M L; Kennedy, C; Escamilla, J E

    2006-12-01

    In highly aerobic environments, Gluconacetobacter diazotrophicus uses a respiratory protection mechanism to preserve nitrogenase activity from deleterious oxygen. Here, the respiratory system was examined in order to ascertain the nature of the respiratory components, mainly of the cyanide sensitive and resistant pathways. The membranes of G. diazotrophicus contain Q(10), Q(9) and PQQ in a 13:1:6.6 molar ratios. UV(360 nm) photoinactivation indicated that ubiquinone is the electron acceptor for the dehydrogenases of the outer and inner faces of the membrane. Strong inhibition by rotenone and capsaicin and resistance to flavone indicated that NADH-quinone oxidoreductase is a NDH-1 type enzyme. KCN-titration revealed the presence of at least two terminal oxidases that were highly sensitive and resistant to the inhibitor. Tetrachorohydroquinol was preferentially oxidized by the KCN-sensitive oxidase. Neither the quinoprotein alcohol dehydrogenase nor its associated cytochromes c were instrumental components of the cyanide resistant pathway. CO-difference spectrum and photodissociation of heme-CO compounds suggested the presence of cytochromes b-CO and a(1)-CO adducts. Air-oxidation of cytochrome b (432 nm) was arrested by concentrations of KCN lower than 25 microM while cytochrome a(1) (442 nm) was not affected. A KCN-sensitive (I(50)=5 microM) cytochrome bb and a KCN-resistant (I(50)=450 microM) cytochrome ba quinol oxidases were separated by ion exchange chromatography.

  11. Tn5 insertion in the tonB gene promoter affects iron-related phenotypes and increases extracellular siderophore levels in Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    de Paula Soares, Cleiton; Rodrigues, Elisete Pains; de Paula Ferreira, Jéssica; Simões Araújo, Jean Luiz; Rouws, Luc Felicianus Marie; Baldani, José Ivo; Vidal, Marcia Soares

    2015-03-01

    TonB-dependent receptors in concert with the TonB-ExbB-ExbD protein complex are responsible for the uptake of iron and substances such as vitamin B12 in several bacterial species. In this study, Tn5 mutagenesis of the sugarcane endophytic bacterium Gluconacetobacter diazotrophicus led to the isolation of a mutant with a single Tn5-insertion in the promoter region of a tonB gene ortholog. This mutant, named Gdiaa31, displayed a reduced growth rate and a lack of response to iron availability when compared to the wild-type strain PAL5(T). Several efforts to generate null-mutants for the tonB gene by insertional mutagenesis were without success. RT-qPCR analysis demonstrated reduced transcription of tonB in Gdiaa31 when compared to PAL5(T). tonB transcription was inhibited in the presence of Fe(3+) ions both in PAL5(T) and in Gdiaa31. In comparison with PAL5(T), Gdiaa31 also demonstrated decreased nitrogenase activity and biofilm formation capability, two iron-requiring physiological characteristics of G. diazotrophicus. Additionally, Gdiaa31 accumulated higher siderophore levels in culture supernatant. The genetic complementation of the Gdiaa31 strain with a plasmid that carried the tonB gene including its putative promoter region (pP(tonB)) restored nitrogenase activity and siderophore accumulation phenotypes. These results indicate that the TonB complex has a role in iron/siderophore transport and may be essential in the physiology of G. diazotrophicus.

  12. Molecular cloning and expression in Escherichia coli of an exo-levanase gene from the endophytic bacterium Gluconacetobacter diazotrophicus SRT4.

    Science.gov (United States)

    Menéndez, Carmen; Hernández, Lázaro; Selman, Guillermo; Mendoza, Milady F; Hevia, Pedro; Sotolongo, Mailin; Arrieta, Juan G

    2002-07-01

    Gluconacetobacter diazotrophicus produces levan from sucrose by a secreted levansucrase (LsdA). A levanase-encoding gene ( lsdB), starting 51 bp downstream of the lsdA gene, was cloned from strain SRT4. The lsdB gene (1605 bp) encodes a protein (calculated molecular mass 58.4 kDa) containing a putative 36-amino-acid signal peptide at the N-terminus. The deduced amino acid sequence shares 34%, 33%, 32%, and 29% identities with levanases from Actinomyces naeslundii, Bacillus subtilis, Paenibacillus polymyxa, and Bacteroides fragilis, respectively. The lsdB expression in Escherichia coli under the control of the T7 RNA polymerase promoter resulted in an active enzyme which hydrolyzed levan, inulin, 1-kestose, raffinose, and sucrose, but not melezitose. Levanase activity was maximal at pH 6.0 and 30 degrees C, and it was not inhibited by the metal ion chelator EDTA or the denaturing agents dithiothreitol and beta-mercaptoethanol. The recombinant LsdB showed a fourfold higher rate of hydrolysis on levan compared to inulin, and the reaction on both substrates resulted in the successive liberation of the terminal fructosyl residues without formation of intermediate oligofructans, indicating a non-specific exo-levanase activity.

  13. Relación de la fijación de nitrógeno y la producción de auxinas en cepas de Gluconacetobacter diazotrophicus procedentes de diferentes cultivos

    Directory of Open Access Journals (Sweden)

    Marcia M. Rojas

    2009-08-01

    Full Text Available Relationships between nitrogen fixation and auxins production in Gluconacetobacter diazotrophicus strains from different crops ResumenSe determinó la capacidad de fijar nitrógeno mediante la actividad reductora de acetileno para 8 cepas de G. diazotrophicus aisladas de diferentes ecosistemas empleando el medio LGI-P. Además, se determinó la producción de auxinas a través del método de Salkowski y se analizó la influencia del aminoácido triptófano y del AIA en la actividad de la nitrogenasa. El triptófano, al igual que otros aminoácidos y las diferentes concentraciones de AIA, inhiben en distinta medida la actividad de la enzima solo parcialmente. Se demostró que las condiciones de nitrofijación no afectan la producción de AIA en esta bacteria. Esta relación entre ambas capacidades fisiológicas beneficiosas para los cultivos agrícolas pudiera tener gran importancia ya que pueden desarrollarse paralelamente, y potenciar la acción beneficiosa hacia la planta, basada en la dinitrofijación y la producción de auxinas estimuladoras del crecimiento vegetal.Palabras clave: Gluconacetobacter diazotrophicus; auxinas; fijación de nitrógeno. Abstract: The capacity to fix nitrogen of 8 strains of G. diazotrophicus from different ecosystems was determined by acetylene reduction assay using LGIP medium. Moreover, auxins production was determined by Salkowski’s method and the influence of triptophan and indoleacetic acid (IAA in the nitrogenase activity were analyzed. The triptophan as other aminoacids and different concentrations of IAA, inhibit at different levels the nitrogen fixation only partially. There were demonstrated that the nitrogen fixation conditions do not affect the auxins production of this bacteria. This relationship between both crop beneficial physiological capacities should be a great importance since they may be parallely developed, and enhance the beneficial action to the plant, based on dinitrogen fixation

  14. Isolation and identification of Gluconacetobacter azotocaptans from corn rhizosphere.

    Science.gov (United States)

    Mehnaz, Samina; Weselowski, Brian; Lazarovits, George

    2006-09-01

    Six acetic acid producing, diazotrophic bacteria were isolated from soil adhering to corn roots. These isolates were shown to be Gluconacetobacter azotocaptans and they shared some features with G. johannae and G. diazotrophicus but differed on the basis of colony morphology on different media, use of carbon sources and use of l-amino acids as a nitrogen source. The species identity was confirmed using 16S rDNA sequence analysis, PCR amplification of 16S rRNA gene with species-specific primers and amplified rDNA restriction analysis. This is the first report of the presence of this bacteria on corn plants. Scope of the paper: This is the first report of the occurrence and association of Gluconacetobacter azotocaptans with corn.

  15. SITUACIÓN ACTUAL Y PERSPECTIVA DE LAS RELACIONES ENDÓFITAS PLANTA-BACTERIA. ESTUDIO DE CASO Gluconacetobacter diazotrophicus-CULTIVOS DE IMPORTANCIA ECONÓMICA

    Directory of Open Access Journals (Sweden)

    B. Dibut

    2009-01-01

    Full Text Available En los últimos años, ha ganado especial interés el estudio de las asociaciones endofíticas planta-microoganismos, con énfasis en la introducción en la práctica agrícola de los buenos resultados que se han obtenido en la agrobiología. En este trabajo se ofrece una panorámica de la situación actual y perspectiva de estas asociaciones ilustradas en gran medida por las interacciones Rhizobium-cereales, Azorhizobium-arroz, Azospirillum y Herbaspirillum, al igual que cereales y Gluconacetobacter diazotrophicus con diferentes cultivos. Se plantea un proceso de rotación microbiana que manifiesta la bacteria Rhizobium en las diferentes fases de asociación cíclica en el agroecosistema (leguminosa, nódulo-suelo-gramínea-suelo-leguminosa en función de la fisiología de la productividad y el rendimiento. En el estudio con G. diazotrophicus, en las determinaciones realizadas en viandas tropicales y frutales en las condiciones de Cuba, se encontró una concentración de células de 4.2x105 por gramo de tejido fresco en las plantas bacterizadas y 2.7x102 células por gramo de tejido fresco para las hojas de plantas controles (sin bacterizar; por eso, es necesario aumentar la concentración bacteriana, tanto en las condiciones experimentales como de extensión, para obtener una respuesta favorable del efecto agrobiológico sobre las especies antes relacionadas. La respuesta a la inoculación encontrada para yuca, malanga y papaya constituyen un primer informe mundial. El impacto económico como consecuencia de la inoculación es elevado, con una relación beneficio/ costo superior a 40:1, por lo que resulta una biotecnología sumamente atractiva para ser introducida en el mercado actual de agrobiológicos. Igualmente, el resultado presenta impacto científico, tecnológico, ambiental y social.

  16. ESTUDIO DE LA ASOCIACIÓN Gluconacetobacter diazotrophicus-VIANDAS TROPICALES EN SUELO FERRALÍTICO ROJO.I. SELECCIÓN DE CEPAS EFECTIVAS PARA LA BIOFERTILIZACIÓNDE BONIATO, YUCA Y MALANGA

    Directory of Open Access Journals (Sweden)

    B. Dibut

    2010-01-01

    Full Text Available El interés de la comunidad científica internacionalpor la bacteria endófita Gluconacetobacter diazotrophicus,microorganismo fijador de nitrógeno atmosférico y productorde sustancias promotoras del crecimiento vegetal, se haincrementado en los últimos años. Por lo que teniendo en cuentasu potencial agrobiológico y los escasos estudios sobre elefecto que puede provocar la aplicación de productos elaboradosa partir de la fermentación de cepas efectivas, se diseñó estainvestigación, con el objetivo de seleccionar una cepa deGluconacetobacter diazotrophicus efectiva para estimular elcrecimiento, desarrollo y rendimiento de viandas tropicales,como son el boniato (Ipomea batatas Lam., la yuca (Manihotesculenta, Crantz y la malanga (Xanthosoma spp., cultivadossobre suelo un Ferralítico Rojo. La cepa INIFAT Abn1, aisladadel cultivo del boniato, fue la más promisoria para incrementarlos diferentes indicadores en los tres cultivos, con incrementosen valores de estimulación entre 23 y 46 %. Se demostró laimportancia de contar con una colección de amplia diversidadpara realizar una selección adecuada, así como la no existenciade una relación directa cultivo de procedencia-efectividad dela cepa.

  17. Transfer of Acetobacter oboediens Sokollek et al 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov.

    Science.gov (United States)

    Yamada, Y

    2000-11-01

    Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 are transferred to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. because, on the basis of their 16S rRNA gene sequences, the type strains of both species are located in the cluster of the genus Gluconacetobacter along with those of Gluconacetobacter xylinus, Gluconacetobacter europaeus, Gluconacetobacter hansenii, Gluconacetobacter liquefaciens (the type species) and Gluconacetobacter diazotrophicus. The significance of growth on mannitol agar and the presence of a ubiquinone isoprenologue composed of Q-10 is discussed for characterization of the genus Gluconacetobacter.

  18. The shifts of diazotrophic communities in spring and summer associated with coral Galaxea astreata, Pavona decussata and Porites lutea

    Directory of Open Access Journals (Sweden)

    Yanying Zhang

    2016-11-01

    Full Text Available The coral holobiont often resides in oligotrophic waters; both coral cells and their symbiotic dinoflagellates possess ammonium assimilation enzymes and potentially benefit from the nitrogen fixation of coral-associated diazotrophs. However, the seasonal dynamics of coral-associated diazotrophs are not well characterized. Here, the seasonal variations of diazotrophic communities associated with three corals, Galaxea astreata, Pavona decussata and Porites lutea, were studied using nifH gene amplicon pyrosequencing techniques. Our results revealed a great diversity of coral-associated diazotrophs. nifH sequences related to Alphaproteobacteria, Deltaproteobacteria and Gammaproteobacteria were ubiquitous and dominant in all corals in two seasons. In contrast with the coral P. decussata, both G. astreata and P. lutea showed significant seasonal changes in the diazotrophic communities and nifH gene abundance. Variable diazotroph groups accounted for a range from 11% to 49% within individual coral samples. Most of the variable diazotrophic groups from P. decussata were species-specific, however, the majority of overlapping variable groups in G. astreata and P. lutea showed the same seasonal variation characteristics. Rhodopseudomonas palustris- and Gluconacetobacter diazotrophicus-affiliated sequences were relatively abundant in the summer, whereas a nifH sequence related to Halorhodospira halophila was relatively abundant in spring G. astreata and P. lutea. The seasonal variations of all diazotrophic communities were significantly correlated with the seasonal shifts of ammonium and nitrate, suggesting that diazotrophs play an important role in the nitrogen cycle of the coral holobiont.

  19. Inoculación de Burkholderia cepacia y Gluconacetobacter diazotrophicus sobre la fenología y biomasa de Triticum aestivum var. Nana F2007 a 50% de fertilizante nitrogenado

    Directory of Open Access Journals (Sweden)

    Jesús Jaime Hernández-Escareño

    2015-01-01

    Full Text Available El aumento en el consumo de Triticum aestivum (trigo var Nana-F2007 requiere de la aplicación de fertilizante nitrogenado (FN, como NH4NO3 (nitrato de amonio, él que en exceso causa la pérdida de fertilidad del suelo. Una alternativa para reducir y optimizar la dosis de FN en T. aestivum, es inocular su semilla con géneros de bacterias promotoras del crecimiento vegetal endófitas (BPCVE. Se sugiere que cuando éstas invaden internamente su raíz inducen la síntesis de sustancias promotoras de crecimiento vegetal (SPCV, que mejoran la absorción radical del FN. El objetivo de esta investigación fue evaluar el efecto de inoculación de Burkholderia cepacia y Gluconacetobacter diazotrophicus en la fenología y biomasa de T. aestivum a dosis 50% del FN. En invernadero la semilla de trigo se trató con ambos géneros de BPCVE. Con las variables respuesta: fenología: altura de planta, longitud de raíz y biomasa peso fresco/seco total aéreo y radical a plántula y floración. Los resultados mostraron que B. cepacia en T. aestivum causó un incremento en su peso seco total (PST con 0,61 g, valor estadísticamente significativo comparado con los 0,53 g del PST del trigo control relativo (CR con el FN al 100%. La combinación B. cepacia.-G. diazotrophicus en T. aestivum incrementó su PST con 4,23g, valor estadísticamente significativo comparado con los 1,13 g de PST del T. aestivum (CR. Lo anterior sugiere que B. cepacia y G. diazotrophicus mediante SPCV ejercieron un efecto positivo en la fenología y biomasa de T. aestivum a la dosis 50% del FN para esta variedad.

  20. A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound.

    Science.gov (United States)

    Lery, L M S; von Krüger, W M A; Viana, F C; Teixeira, K R S; Bisch, P M

    2008-11-01

    A proteomic view of G. diazotrophicus PAL5 at the exponential (E) and stationary phases (S) of cultures in the presence of low (L) and high levels (H) of combined nitrogen is presented. The proteomes analyzed on 2D-gels showed 131 proteins (42E+32S+29H+28L) differentially expressed by G. diazotrophicus, from which 46 were identified by combining mass spectrometry and bioinformatics tools. Proteins related to cofactor, energy and DNA metabolisms and cytoplasmic pH homeostasis were differentially expressed in E growth phase, under L and H conditions, in line with the high metabolic rate of the cells and the low pH of the media. Proteins most abundant in S-phase cells were stress associated and transporters plus transferases in agreement with the general phenomenon that binding protein-dependent systems are induced under nutrient limitation as part of hunger response. Cells grown in L condition produced nitrogen-fixation accessory proteins with roles in biosynthesis and stabilization of the nitrogenase complex plus proteins for protection of the nitrogenases from O(2)-induced inactivation. Proteins of the cell wall biogenesis apparatus were also expressed under nitrogen limitation and might function in the reshaping of the nitrogen-fixing G. diazotrophicus cells previously described. Genes whose protein products were detected in our analysis were mapped onto the chromosome and, based on the tendency of functionally related bacterial genes to cluster, we identified genes of particular pathways that could be organized in operons and are co-regulated. These results showed the great potential of proteomics to describe events in G. diazotrophicus cells by looking at proteins expressed under distinct growth conditions.

  1. The active (ADHa) and inactive (ADHi) forms of the PQQ-alcohol dehydrogenase from Gluconacetobacter diazotrophicus differ in their respective oligomeric structures and redox state of their corresponding prosthetic groups.

    Science.gov (United States)

    Gómez-Manzo, Saúl; González-Valdez, Alejandra Abigail; Oria-Hernández, Jesús; Reyes-Vivas, Horacio; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena; Escamilla, Jose E

    2012-03-01

    The membrane-bound alcohol dehydrogenase of Gluconacetobacter diazotrophicus contains one pyrroloquinoline quinone moiety (PQQ), one [2Fe-2S] cluster, and four c-type cytochromes. Here, we describe a novel and inactive enzyme. ADHi, similarly to ADHa, is a heterodimer of 72- and 44-kDa subunits and contains the expected prosthetic groups. However, ADHa showed a threefold molecular mass as compared to ADHi. Noteworthy, the PQQ, the [2Fe-2S] and most of the cytochromes in purified ADHi is in the oxidized form, contrasting with ADHa where the PQQ-semiquinone is detected and the [2Fe-2S] cluster as well as the cytochromes c remained fully reduced after purification. Reduction kinetics of the ferricyanide-oxidized enzymes showed that while ADHa was brought back by ethanol to its full reduction state, in ADHi, only one-quarter of the total heme c was reduced. The dithionite-reduced ADHi was largely oxidized by ubiquinone-2, thus indicating that intramolecular electron transfer is not impaired in ADHi. The acidic pH of the medium might be deleterious for the membrane-bound ADH by causing conformational changes leading to changes in the relative orientation of heme groups and shift of corresponding redox potential to higher values. This would hamper electron transfer resulting in the low activity observed in ADHi.

  2. Survival of endophytic diazotrophic bacteria in soil under different moisture levels Sobrevivência de bactérias diazotróficas endofíticas no solo sob diferentes teores de umidade

    Directory of Open Access Journals (Sweden)

    André L.M. Oliveira

    2004-12-01

    Full Text Available The effects of soil moisture on the survival of three diazotrophic bacteria species (Azospirillum amazonense, Gluconacetobacter diazotrophicus and Azospirillum brasilense were tested. Soil moisture had little influence on the survival of A. brasilense, which is considered a free-living species. On the other hand, increased soil moisture extended the survival of the endophytes A. amazonense and G. diazotrophicus. These results indicate that nitrogen-fixing endophytic species are more affected by soil moisture than associative nitrogen-fixing species.Neste trabalho foi avaliado o efeito da umidade do solo na sobrevivência de três espécies de bactérias diazotróficas (Azospirillum amazonense, Gluconacetobacter diazotrophicus e Azospirillum brasilense. O teor de umidade apresentou pouca influência na sobrevivência de A. brasilense, considerada uma espécie cosmopolita, enquanto A. amazonense e G. diazotrophicus, consideradas endofíticas, aumentaram o período de culturabilidade na presença de umidade no solo. Os resultados demonstram que o teor de umidade do solo possui maior influência nas espécies endofíticas, em comparação às espécies associativas.

  3. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  4. In silico differential display of defense-related expressed sequence tags from sugarcane tissues infected with diazotrophic endophytes

    Directory of Open Access Journals (Sweden)

    Lambais Marcio R.

    2001-01-01

    Full Text Available The expression patterns of 277 sugarcane expressed sequence tags (EST-contigs encoding putative defense-related (DR proteins were evaluated using the Sugarcane EST database. The DR proteins evaluated included chitinases, beta-1,3-glucanases, phenylalanine ammonia-lyases, chalcone synthases, chalcone isomerases, isoflavone reductases, hydroxyproline-rich glycoproteins, proline-rich glycoproteins, peroxidases, catalases, superoxide dismutases, WRKY-like transcription factors and proteins involved in cell death control. Putative sugarcane WRKY proteins were compared and their phylogenetic relationships determined. A hierarchical clustering approach was used to identify DR ESTs with similar expression profiles in representative cDNA libraries. To identify DR ESTs differentially expressed in sugarcane tissues infected with Gluconacetobacter diazotrophicus or Herbaspirillum rubrisubalbicans, 179 putative DR EST-contigs expressed in non-infected tissues (leaves and roots and/or infected tissues were selected and arrayed by similarity of their expression profiles. Changes in the expression levels of 124 putative DR EST-contigs, expressed in non-infected tissues, were evaluated in infected tissues. Approximately 42% of these EST-contigs showed no expression in infected tissues, whereas 15% and 3% showed more than 2-fold suppression in tissues infected with G. diazotrophicus or H. rubrisubalbicans, respectively. Approximately 14 and 8% of the DR EST-contigs evaluated showed more than 2-fold induction in tissues infected with G. diazotrophicus or H. rubrisubalbicans, respectively. The differential expression of clusters of DR genes may be important in the establishment of a compatible interaction between sugarcane and diazotrophic endophytes. It is suggested that the hierarchical clustering approach can be used on a genome-wide scale to identify genes likely involved in controlling plant-microorganism interactions.

  5. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice.

    Science.gov (United States)

    Govindarajan, Munusamy; Balandreau, Jacques; Kwon, Soon-Wo; Weon, Hang-Yeon; Lakshminarasimhan, Cunthipuram

    2008-01-01

    During a survey of endophytic diazotrophic bacteria associated with different rice varieties in Tamilnadu, some "endophytes" were obtained. Thirteen bacterial isolates from surface-sterilized roots and shoots were obtained in pure culture, which produced indole acetic acid (IAA) and reduced acetylene to ethylene. Polymerase chain reaction (PCR) amplification confirmed the presence of nif-H gene in all the isolates. Morphological, biochemical, and molecular characteristics indicated that all of them belonged to the genus Burkholderia One of them, MGK3, was consistently more active in reducing acetylene, and 16S rDNA sequences of isolate MGK3 confirmed its identification as Burkholderia vietnamiensis. Colonization of rice root was confirmed by strain MGK3 marked with gusA gene. The inoculated roots showed a blue color, which was most intense at the points of lateral root emergence and at the root tip. Transverse sections of roots, 15 days after inoculation, revealed beta-glucuronidase (GUS) activity within many of the cortical intercellular spaces next to the stele and within the aerenchyma. Nitrogen fixation was quantified by using (15)N isotope dilution method with two different cultivars grown in pot and field experiments. Higher nitrogen fixation was observed in variety Ponni than in ADT-43, where nearly 42% (field) and 40% (pot) of the nitrogen was derived from the atmosphere (% Ndfa). Isolate MGK3 was used to inoculate rice seedlings in a comparison with four other diazotrophs, viz., Gluconacetobacter diazotrophicus LMG7603, Herbaspirillum seropedicae LMG6513, Azospirillum lipoferum 4B LMG4348, and B. vietnamiensis LMG10929. They were used to conduct two pot and four field inoculation experiments. MGK3 alone, and combined with other diazotrophs, performed best under both pot and field conditions: combined inoculation produced yield increases between 9.5 and 23.6%, while MGK3 alone increased yield by 5.6 to 12.16% over the uninoculated control treatment.

  6. Isolamento de Gluconacetobacter spp. em diferentes tipos de solos Isolation of Gluconacetobacter spp. in different soil types

    Directory of Open Access Journals (Sweden)

    Carla Cristiane Rocha dos Santos

    2006-01-01

    Full Text Available O objetivo deste trabalho foi o aprimoramento da técnica de imunocaptura para utilização em amostras de solo contendo altos teores de argila e sua aplicação no isolamento de estirpes de Gluconacetobacter diazotrophicus a partir de amostras de solo cultivado com cana-de-açúcar e café. A técnica de imunocaptura foi aplicada com sucesso no isolamento de bactérias de amostras de solo. A modificação do método de imunocaptura com Al2(SO43 permitiu a sua aplicação em amostras de solo argiloso pela floculação da argila em suspensão. Este método mostrou-se efetivo no isolamento de G. diazotrophicus inoculada em amostras de solo arenoso e argiloso aos cinco dias após a inoculação. A sensibilidade máxima do método em isolar células de G. diazotrophicus mediante cultura pura foi de 10³ células mL-1 . A modificação da técnica permitiu o isolamento de Gluconacetobacter spp. de amostras de solo colhidas a 50 cm das raízes de plantas de café, mas não de amostras de solo colhidas à mesma distância de plantas de cana-de-açúcar.The objective of this work was to improve the immunocapture method for the application to soil samples containing high levels of clay particles and to utilize it for the isolation of Gluconacetobacter diazotrophicus strains from soil cultivated with sugarcane and coffee. The immunocapture technique was applied successfully for isolation of bacterium from soil samples. The modified immunocapture technique with Al2(SO43 allowed the application of the method using clayed soil samples by the flocculation of the suspended clay. It proved to be effective for isolation of G. diazotrophicus inoculated in sterile sandy and clay soils five days after inoculation. The maximum sensitivity of the method to isolate G. diazotrophicus cells, using pure culture, was 10³ cells mL-1. The modification of the technique allows the capture of Gluconacetobacter spp. from soil samples near the coffee plants but not from

  7. Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities.

    Science.gov (United States)

    Bagwell, Christopher E; Rocque, Jeannine R; Smith, Garriett W; Polson, Shawn W; Friez, Michael J; Longshore, John W; Lovell, Charles R

    2002-02-01

    Denaturing gradient gel electrophoresis (DGGE) was employed to resolve PCR-amplified nifH sequences from vegetated and unvegetated sediments from two oligotrophic seagrass bed sites on San Salvador Island, Bahamas, in order to assess diazotroph species composition. All DGGE profiles from these sites showed the same prominent bands. These bands were sequenced, yielding 67 different nifH sequences, which were used in phylogenetic reconstructions. Most sequences were from anaerobes, but some were affiliated with the alpha- and (gamma-+beta-) Proteobacteria. Several NifH sequences were nearly identical to those from Azospirillum brasilense and Vibrio diazotrophicus. These seagrass bed sediments support a diverse diazotroph assemblage that is, at least superficially, similar to that associated with an intertidal grass (Spartina alterniflora).

  8. Design, development, and use of molecular primers and probes for the detection of Gluconacetobacter species in the pink sugarcane mealybug.

    Science.gov (United States)

    Franke-Whittle, Ingrid H; O'Shea, Michael G; Leonard, Graham J; Sly, Lindsay I

    2005-07-01

    Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of "squashed" whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.

  9. Transcriptional Regulation and Signal-Peptide-Dependent Secretion of Exolevanase (LsdB) in the Endophyte Gluconacetobacter diazotrophicus▿

    Science.gov (United States)

    Menéndez, Carmen; Banguela, Alexander; Caballero-Mellado, Jesús; Hernández, Lázaro

    2009-01-01

    Gluconacetobacter diazotrophicus utilizes plant sucrose with a constitutively expressed levansucrase (LsdA), producing extracellular levan, which may be degraded under energetically unfavored conditions. Reverse transcriptase-PCR analysis revealed that lsdA and the downstream exolevanase gene (lsdB) form an operon. lsdB transcription was induced during growth with low fructose concentrations (0.44 to 33 mM) and repressed by glucose. Transport of LsdB to the periplasm involved N-terminal signal peptide cleavage. Type II secretion mutants failed to transfer LsdB across the outer membrane, impeding levan hydrolysis. PMID:19139238

  10. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug.

    Science.gov (United States)

    Franke, I H; Fegan, M; Hayward, C; Leonard, G; Stackebrandt, E; Sly, L I

    1999-10-01

    A new species of the genus Gluconacetobacter, for which the name Gluconacetobacter sacchari sp. nov. is proposed, was isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug, Saccharicoccus sacchari, found on sugar cane growing in Queensland and northern New South Wales, Australia. The nearest phylogenetic relatives in the alpha-subclass of the Proteobacteria are Gluconacetobacter liquefaciens and Gluconacetobacter diazotrophicus, which have 98.8-99.3% and 97.9-98.5% 16S rDNA sequence similarity, respectively, to members of Gluconacetobacter sacchari. On the basis of the phylogenetic positioning of the strains, DNA reassociation studies, phenotypic tests and the presence of the Q10 ubiquinone, this new species was assigned to the genus Gluconacetobacter. No single phenotypic characteristic is unique to the species, but the species can be differentiated phenotypically from closely related members of the acetic acid bacteria by growth in the presence of 0.01% malachite green, growth on 30% glucose, an inability to fix nitrogen and an inability to grow with the L-amino acids asparagine, glycine, glutamine, threonine and tryptophan when D-mannitol was supplied as the sole carbon and energy source. The type strain of this species is strain SRI 1794T (= DSM 12717T).

  11. Lipopolysaccharides in diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Rodrigo Vassoler Serrato

    2014-09-01

    Full Text Available Biological nitrogen fixation is a process in which the atmospheric nitrogen (N2 is transformed into ammonia (NH3 by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS and lipochitooligosaccharides (LCO produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS, anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  12. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  13. Expression of nifH genes by diazotrophic bacteria in the rhizosphere of short form Spartina alterniflora.

    Science.gov (United States)

    Brown, Michelle M; Friez, Michael J; Lovell, Charles R

    2003-04-01

    Abstract A diverse assemblage of diazotrophic bacteria exists in the rhizosphere of the smooth cordgrass, Spartina alterniflora, but the taxa actively involved in nitrogen fixation have not been determined. In order to identify the diazotrophs that were actively expressing nifH, the gene encoding the nitrogenase iron protein, mRNA was extracted from Spartina rhizosphere samples and nifH-specific seminested reverse transcriptase-PCR performed. Expressed nifH sequences were recovered from organisms affiliated with the (gamma-+beta-) Proteobacteria and the anaerobes. Most of the expressed nifH sequences were highly similar (>/=95% similarity) to sequences previously recovered from Spartina rhizosphere DNA using conventional nifH-specific PCR. These sequences were also similar, although not identical to the nifH sequences of Pseudomonas stutzeri, Vibrio diazotrophicus, Desulfovibrio africanus, and Desulfovibrio gigas.

  14. Molecular detection of Gluconacetobacter sacchari associated with the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell) and the sugarcane leaf sheath microenvironment by FISH and PCR.

    Science.gov (United States)

    Franke; Fegan; Hayward; Leonard; Sly

    2000-01-01

    Molecular tools for the detection of the newly described acetic acid bacterium Gluconacetobacter sacchari from the pink sugarcane mealybug, Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae), and in the sugarcane leaf sheath microenvironment were developed. G. sacchari specific 16S rRNA-targeted oligonucleotide primers were designed and used in PCR amplification of G. sacchari DNA directly from mealybugs, and in a nested PCR to detect low numbers of the bacteria from sugarcane leaf sheath fluid and cane internode scrapings. A sensitivity level of detection of 40-400 cells/reaction was obtained using PCR from exponentially grown bacterial cultures and of 1-10 cells in cane internode scrapings and leaf sheath fluid samples using nested PCR. The specificity of the primer set was demonstrated by the lack of amplification product formation in PCR by closely related acetic acid bacteria, including Gluconacetobacter liquefaciens, and Gluconacetobacter diazotrophicus. A Cy3 labeled probe for G. sacchari was designed and shown to be specific for the species. Investigation of the mealybug microenvironment by whole cell fluorescent in situ hybridization revealed that G. sacchari appears to represent only a minor proportion of the population of the microbiota in the mealybugs tested. This study has shown the usefulness of 16S rRNA-based molecular tools in the identification and detection of G. sacchari from environmental samples and will allow these tools to be used in further ecological research.

  15. Effects of Selected Diazotrophs on Maize Growth

    Science.gov (United States)

    Kifle, Medhin H.; Laing, Mark D.

    2016-01-01

    Laboratory, greenhouse, and field experiments were conducted at the University of KwaZulu-Natal, Pietermaritzburg, South Africa in the 2010/2011 and 2011∖2012 seasons to study the effects of eight strains of diazotrophic bacteria on the growth and yield of maize. Maize seeds were treated with Bacillus megaterium (V16), Pseudomonas sp. (StB5, A3, A6, and A61), Burkholderia ambifaria (V9), Enterobacter cloacae (L1) and Pantoea ananatis (LB5), aiming to stimulate plant growth, and maintain or increase yields while reducing the need for N fertilization. All the diazotrophic bacteria increased germination of maize seed, and Pseudomonas sp. (StB5) and B. megaterium (V16) significantly increased shoot length. Pseudomonas sp. (StB5), B. megaterium (V16), E. cloacae (L1), B. ambifaria (V9), and Pseudomonas sp. (A3) very significantly increased root length and seed vigor index. Under greenhouse conditions, plants treated with diazotrophic bacteria developed more leaf chlorophyll and greater dry weight, albeit not significantly (n.s.). In a field trial in 2010/2011, application of the best five diazotrophic bacteria, with or without 33% N-fertilizer, had no significant effect on germination, grain yield, dry weight, plant height and leaf chlorophyll. In the 2011/2012 growing season, at 60 days after planting (DAP), all the diazotrophic bacteria increased plant dry weights to equal that of the fertilized control (33%N-fertilizer) (n.s.). After inoculation with the diazotrophs alone increased plant heights (n.s.), and chlorophyll contents (n.s.). With the addition of 33%N-fertilizer at planting, the diazotrophs still caused increases of chlorophyll content relative to the control with 33%N (n.s.). It may be concluded that the tested diazotrophs alone may be beneficial for use on maize growth. PMID:27713756

  16. EFFECTS OF SELECTED DIAZOTROPHS ON MAIZE GROWTH

    Directory of Open Access Journals (Sweden)

    Medhin Hadish Kifle

    2016-09-01

    Full Text Available Laboratory, greenhouse, and field experiments were conducted at the University of KwaZulu-Natal, Pietermaritzburg, South Africa in the 2010 2011 and 2011 2012 seasons to study the effects of eight strains of diazotrophic bacteria on the growth and yield of maize. Maize seeds were treated with Bacillus megaterium (V16, Pseudomonas sp. (StB5, A3, A6, and A61, Burkholderia ambifaria (V9, Enterobacter cloacae (L1 and Pantoea ananatis (LB5, aiming to stimulate plant growth, and maintain or increase yields while reducing the need for N fertilization. All the diazotrophic bacteria increased germination of maize seed, and Pseudomonas sp. (StB5 and B. megaterium (V16 significantly increased shoot length. Pseudomonas sp. (StB5, B. megaterium (V16, E. cloacae (L1, B. ambifaria (V9 and Pseudomonas sp. (A3 very significantly increased root length and seed vigor index. Under greenhouse conditions, plants treated with diazotrophic bacteria developed more leaf chlorophyll and greater dry weight, albeit not significantly (n.s.. In a field trial in 2010/2011, application of the best five diazotrophic bacteria, with or without 33% N-fertilizer, had no significant effect on germination, grain yield, dry weight, plant height and leaf chlorophyll. In the 2011/2012 growing season, at 60 days after planting (DAP, all the diazotrophic bacteria increased plant dry weights to equal that of the fertilized control (33%N-fertilizer(n.s.. After inoculation with the diazotrophs alone increased plant heights (n.s., and chlorophyll contents (n.s.. With the addition of 33%N-fertilizer at planting, the diazotrophs still caused increases of chlorophyll content relative to the control with 33%N (n.s.. It may be concluded that the tested diazotrophs alone may be beneficial for use on maize growth.

  17. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains.

    Science.gov (United States)

    Fang, Lin; Catchmark, Jeffrey M

    2015-01-22

    This study characterized the cellulosic and non-cellulosic exopolysaccharides (EPS) produced by four Gluconacetobacter strains. The yields of bacterial cellulose and water-soluble polysaccharides were dependent on both carbon source and Gluconacetobacter strain. The carbon substrate also affected the composition of the free EPS. When galactose served as an exclusive carbon source, Gluconacetobacter xylinus (G. xylinus) ATCC 53524 and ATCC 700178 produced a distinct alkaline stable crystalline product, which influenced the crystallization of cellulose. Gluconacetobacter hansenii (G. hansenii) ATCC 23769 and ATCC 53582, however, did not exhibit any significant change in cellulose crystal properties when galactose was used as the carbon source. Microscopic observation further confirmed significant incorporation of EPS into the cellulose composites. The cellulosic network produced from galactose medium showed distinctive morphological and structural features compared to that from glucose medium.

  18. Relação entre distribuição de nitrogênio e colonização por bactérias diazotróficas em cana-de-açúcar Relationship between nitrogen distribution and diazotrophic bacteria colonization in sugarcane

    Directory of Open Access Journals (Sweden)

    Arão Araújo Gomes

    2005-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a relação entre a distribuição de nitrogênio na planta e a colonização por Gluconacetobacter diazotrophicus e Herbaspirillum spp. Foi implantado um experimento em parcelas subdivididas, tendo como tratamentos quatro genótipos: SP70-1143, SP79-2312 (híbridos, Krakatau (Saccharum spontaneum L. e Chunnee (Saccharum barberi Jesw.; e quatro épocas de coleta: 90, 180, 360 e 540 dias após o plantio, com quatro repetições. Os parâmetros estudados foram: porcentual de nitrogênio, nitrato, N amino livre e o número mais provável de população das bactérias Gluconacetobacter diazotrophicus e Herbaspirillum spp. Os valores mais elevados de nitrogênio foram observados aos 90 dias após o plantio, nas folhas e colmo apical; as maiores concentrações N amino ocorreram nas raízes, colmo basal e folhas da variedade SP79-2312 e no colmo apical do genótipo Chunnee. O maior acúmulo de nitrato foi observado nos colmos basais e intermediários, sobretudo na variedade SP79-2312. O N protéico mostrou ser o maior componente do nitrogênio porcentual, com a mesma tendência nas diferentes partes da planta. O maior valor na população de G. diazotrophicus ocorreu nas raízes de SP70-1143, SP79-2312 e Krakatau, e nos quatro genótipos de Herbaspirillum spp.The objective of this work was to evaluate the relation between nitrogen distribution in plants of sugarcane, and the colonization by Gluconacetobacter diazotrophicus and Herbaspirillum spp. The experimental design was a split plot, with four genotypes of sugarcane: SP70-1143 and SP79-2312 (hybrids, Krakatau (Saccharum spontaneum L. and Chunnee (Saccharum barberi Jesw., and four times of harvest: 90, 180, 360, 540 days after planting, and four replications. The parameters evaluated were: nitrogen percentage, nitrate, free amino-N, and the most probable number of Gluconacetobacter diazotrophicus and Herbaspirillum spp. population. The percentage of nitrogen

  19. Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar Occurrence of diazotrophic bacteria in different sugar cane genotypes

    Directory of Open Access Journals (Sweden)

    FÁBIO BUENO DOS REIS JUNIOR

    2000-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a localização e o número de bactérias endofíticas em quatro genótipos de cana-de-açúcar e investigar sobre a possível existência de correlação com os resultados apresentados em trabalhos de quantificação da fixação biológica de nitrogênio (FBN. Fez-se um levantamento das bactérias diazotróficas presentes, e quantificou-se a população de Herbaspirillum spp. e Acetobacter diazotrophicus, em genótipos de cana-de-açúcar contrastantes quanto à capacidade de obter N da FBN. De acordo com o levantamento realizado neste trabalho, as bactérias estudadas (Azospirillum lipoferum, A. brasilense, A. amazonense, Herbaspirillum spp. e Acetobacter diazotrophicus estavam presentes nos quatro genótipos avaliados e em todas as partes da planta, exceto A. amazonense, que não foi isolado de amostras de folhas. A quantificação das bactérias Herbaspirillum spp. e A. diazotrophicus mostrou não haver diferenças significativas entre os genótipos, e que, geralmente, elas estão presentes em maior número nas raízes. Enquanto Herbaspirillum spp. mantém-se mais estável ao longo do ciclo da cultura, a população de A. diazotrophicus decresce com a aproximação do final do ciclo comercial. Pode-se sugerir que as diferenças entre as taxas de FBN encontradas nos diversos genótipos não é causada por diferenças na presença ou no número das bactérias aqui estudadas.The objective of this work was to find out the localization and number of endophytic bacteria in four sugar cane genotypes and investigate upon the possible existence of correlation to the results obtained in some studies about quantification of biological nitrogen fixation (BNF. A survey of the diazotrophic bacteria present in sugar cane genotypes differing in their capacity to obtain nitrogen through BNF was performed, and population of Herbaspirillum spp. and Acetobacter diazotrophicus was quantified. The bacteria tested in the

  20. Tyrosine-Coordinated P-Cluster in G. diazotrophicus Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer.

    Science.gov (United States)

    Owens, Cedric P; Katz, Faith E H; Carter, Cole H; Oswald, Victoria F; Tezcan, F Akif

    2016-08-17

    The P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established. Here, we present the crystal structures of reduced and oxidized MoFe-protein (MoFeP) from Gluconacetobacter diazotrophicus (Gd), which natively possesses an Ala residue in the position of the Ser ligand to the P-cluster. While reduced Gd-MoFeP is structurally identical to previously characterized counterparts around the FeMo-cofactor, oxidized Gd-MoFeP features an unusual Tyr coordination to its P-cluster along with ligation by a backbone amide nitrogen. EPR analysis of the oxidized Gd-MoFeP P-cluster confirmed that it is a 2-e(-) oxidized, integer-spin species. Importantly, we have found that the sequence positions corresponding to the Ser and Tyr ligands are almost completely covariant among Group I nitrogenases. These findings strongly support the possibility that the P(OX) state is functionally relevant in nitrogenase catalysis and that a hard, O-based anionic ligand serves to stabilize this state in a switchable fashion.

  1. Diversity of Nitrogenase Systems in Diazotrophs

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nitrogenase is a metalloprotein complex that catalyses the reaction of biological nitrogen fixation. At least three genetically distinct nitrogenase systems have been confirmed in diazotrophs, namely Nif, Vnf, and Anf, in which the active-site central metals are Mo, V, and Fe, respectively. The present review summarizes progress on the genetic, structural, and functional investigations into the three nitrogenases and discusses the possibility of the existence of other novel nitrogenases.

  2. Inoculation of sugarcane with diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Nivaldo Schultz

    2014-04-01

    Full Text Available The sugarcane industry, a strategic crop in Brazil, requires technological improvements in production efficiency to increase the crop energy balance. Among the various currently studied alternatives, inoculation with diazotrophic bacteria proved to be a technology with great potential. In this context, the efficiency of a mixture of bacterial inoculant was evaluated with regard to the agronomic performance and N nutrition of sugarcane. The experiment was carried out on an experimental field of Embrapa Agrobiologia, in Seropédica, Rio de Janeiro, using a randomized block, 2 × 3 factorial design (two varieties and three treatments with four replications, totaling 24 plots. The varieties RB867515 and RB72454 were tested in treatments consisting of: inoculation with diazotrophic bacteria, N-fertilized control with 120 kg ha-1 N and absolute control (no inoculation and no N fertilizer. The inoculum was composed of five strains of five diazotrophic species. The yield, dry matter accumulation, total N in the shoot dry matter and the contribution of N by biological fixation were evaluated, using the natural 15N abundance in non-inoculated sugarcane as reference. The bacterial inoculant increased the stalk yield of variety RB72454 similarly to fertilization with 120 kg ha-1 N in the harvests of plant-cane and first ratoon crops, however the contribution of biological N fixation was unchanged by inoculation, indicating that the benefits of the inoculant in sugarcane may have resulted from plant growth promotion.

  3. Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar).

    Science.gov (United States)

    Andrés-Barrao, Cristina; Falquet, Laurent; Calderon-Copete, Sandra P; Descombes, Patrick; Ortega Pérez, Ruben; Barja, François

    2011-05-01

    Bacteria of the genus Gluconacetobacter are usually involved in the industrial production of vinegars with high acetic acid concentrations. We describe here the genome sequence of three Gluconacetobacter europaeus strains, a very common bacterial species from industrial fermentors, as well as of a Gluconacetobacter oboediens strain.

  4. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus.

    Science.gov (United States)

    Keshk, Sherif M A S

    2014-01-01

    Influence of vitamin C (ascorbic acid) on bacterial cellulose (BC) production and crystal structure was studied using four strains of Gluconacetobacter xylinus (ATCC 10245, IFO 13693, 13772 and 13773). BC productivity of all strains was increased in presence of vitamin C (0.5% w/w), the average BC production reached 0.47 g/30 ml compared with 0.25 g/30 ml without vitamin C. Enhanced productivity is associated with a decrease in gluconic acid concentration that is produced from Gluconacetobacter xylinus during BC production. X-ray results showed that the crystallinity index of BC produced in presence of ascorbic acid was the lowest with remarkable change in d-spacing. These results were confirmed by using solid state (13)CNMR. The increase in BC yield in presence of vitamin C is due to its antioxidant behavior and confirms our past work on lignosulfonate influence on BC.

  5. Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand

    Directory of Open Access Journals (Sweden)

    Daungjai Ochaikul

    2013-02-01

    Full Text Available Two hundred and four strains of biocellulose (BC-producing Gluconacetobacter strains were isolated from 48 rotten tropical fruits collected in Thailand. Twenty-nine representative isolates were selected from each of the 16 isolation sources and identified by morphological, physiological and biochemical characteristics and 16S rRNA gene sequence analysis. The selected 29 isolates were divided into seven subgroups within the Gluconacetobacter xylinus group of the genus Gluconacetobacter and identified as Gluconacetobacter oboediens (subgroup I, five isolates, Gluconacetobacter rhaeticus (subgroup II, one isolate, Gluconacetobacter hansenii (subgroup III, seven isolates, Gluconacetobacter swingsii (subgroup IV, two isolates and Gluconacetobacter sucrofermentans (subgroup V, two isolates. The remaining isolates were grouped into subgroups VIa (three isolates and VIb (nine isolates. All the isolates were cultured in Hestrin-Schramm (HS medium statically at 30C for 7 days to determine cellulose production capability. Of the 29 isolates, isolate PAP1 (subgroup VIb, unidentified gave the highest yield (1.15 g/L of BC. However, the BC yield increased threefold (3.5 g/L when D-glucose in HS medium was replaced by D-mannitol.

  6. Genome Sequence of Gluconacetobacter sp. Strain SXCC-1, Isolated from Chinese Vinegar Fermentation Starter▿

    OpenAIRE

    Du, Xin-jun; Jia, Shi-Ru; Yang, Yue; Wang, Shuo

    2011-01-01

    Gluconacetobacter strains are prominent bacteria during traditional vinegar fermentation. Here, we report a draft genome sequence of Gluconacetobacter sp. strain SXCC-1. This strain was isolated from a fermentation starter (Daqu) used for commercial production of Shanxi vinegar, the best-known vinegar of China.

  7. Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic

    OpenAIRE

    Foster, Rachel A.; Subramaniam, Ajit; Jonathan P Zehr

    2009-01-01

    The gene abundance and gene expression of six diazotroph populations from the Eastern Equatorial Atlantic in June 2007 were examined using nifH gene quantitative polymerase chain reaction (q PCR) methods. Of all the diazotrophs, Trichodesmium spp. was the most abundant with the highest number of gene copies in the Gulf of Guinea. Trichodesmium also had the highest nitrogenase gene transcript abundance overall with the maximum in samples collected at the equator and in waters influenced by the...

  8. Binding of soluble glycoproteins from sugarcane juice to cells of Acetobacter diazotrophicus.

    Science.gov (United States)

    Legaz, M E; de Armas, R; Barriguete, E; Vicente, C

    2000-09-01

    Sugarcane produces two different pools of glycoproteins containing a heterofructan as glycidic moiety, tentatively defined as high-molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins. Both kinds of glycoproteins can be recovered in sugarcane juice. Fluorescein-labelled glycoproteins are able to bind to Acetobacter diazotrophicus cells, a natural endophyte of sugarcane. This property implies the aggregation of bacterial cells in liquid culture after addition of HMMG or MMMG. Anionic glycoproteins seem to be responsible for the binding activity whereas cationic fraction is not retained on the surface ofA. diazotrophicus. Bound HMMG is competitively desorbed by sucrose whereas MMMG is desorbed by glucosamine or fructose. On this basis, a hypothesis about the discriminatory ability of sugarcane to choose the compatible endophyte from several possible ones is proposed.

  9. Genetic Structure of Acetobacter diazotrophicus Populations and Identification of a New Genetically Distant Group

    OpenAIRE

    Caballero-Mellado, J.; Fuentes-Ramirez, L. E.; Reis, V. M.; Martinez-Romero, E.

    1995-01-01

    A total of 55 isolates of Acetobacter diazotrophicus recovered from diverse sucrose-rich host plants and from mealybugs associated with sugarcane plants were characterized by the electrophoretic mobilities of 12 metabolic enzymes. We identified seven different electrophoretic types (ETs), six of which are closely related within a genetic distance of 0.195 and exhibit high DNA-DNA homology. The seventh ET was largely divergent, separated at a genetic distance of 0.53, and had only 54% DNA homo...

  10. Use of cyanobacterial diazotrophic technology in rice agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, D.N.; Kumar, A.; Mishra, A.K. [Banaras Hindu Univ., Varanasi (India)

    1991-12-31

    Diazotrophic cyanobacteria are photoautotrophic organisms that require sunlight as a sole energy source for the fixation of carbon and nitrogen. Therefore, they have great potential as biofertilizers, and their use will decrease fuel demand for fertilizer production. The agronomic potential of heterocystous cyanobacteria, either free-living or in symbiotic association with water fern Azolla, has long been recognized. This has led to the development of small scale biotechnology involving the use of paddy soils with appropriate cyanobacterial strains as biofertilizers in rice culture, as has been reported from China, Egypt, Philippines, and India. Besides increasing soil fertility and sustaining rice yield, these forms are also reported to benefit rice seedlings by producing growth-promoting substances, the nature of which is said to resemble gibberellins. Whereas the incorporation of nif genes into the rice plants by using tissue culture and modern genetic tools remain one of the ambitious research goals, the use of cyanobacterial diazotrophic technology in rice agriculture offers an immediate or even long-term alternative to synthetic nitrogen fertilizers, particularly in developing countries and the world as a whole. However, one of the weaknesses in this technology is the heavy application of several toxic agrochemicals, especially herbicides, which are reported in most cases as inhibitors of cyanobacterial diazotrophic growth, and in some cases as mutagenic. Naturally, a successful biotechnology requires the selection of suitable diazotrophic strains, as biofertilizers, that could tolerate the field-dose concentrations of herbicides and secrete ammonia.

  11. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach.

    Science.gov (United States)

    Ullah, Abid; Mushtaq, Hafsa; Ali, Hazrat; Munis, Muhammad Farooq Hussain; Javed, Muhammad Tariq; Chaudhary, Hassan Javed

    2015-02-01

    Heavy metals, which have severe toxic effects on plants, animals, and human health, are serious pollutants of the modern world. Remediation of heavy metal pollution is utmost necessary. Among different approaches used for such remediation, phytoremediation is an emerging technology. Research is in progress to enhance the efficiency of this plant-based technology. In this regard, the role of rhizospheric and symbiotic microorganisms is important. It was assessed by enumeration of data from the current studies that efficiency of phytoremediation can be enhanced by assisting with diazotrophs. These bacteria are very beneficial because they bring metals to more bioavailable form by the processes of methylation, chelation, leaching, and redox reactions and the production of siderophores. Diazotrophs also posses growth-promoting traits including nitrogen fixation, phosphorous solubilization, phytohormones synthesis, siderophore production, and synthesis of ACC-deaminase which may facilitate plant growth and increase plant biomass, in turn facilitating phytoremediation technology. Thus, the aim of this review is to highlight the potential of diazotrophs in assisting phytoremediation of heavy metals in contaminated soils. The novel current assessment of literature suggests the winning combination of diazotroph with phytoremediation technology.

  12. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience.

    Science.gov (United States)

    Baldani, José I; Baldani, Vera L D

    2005-09-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of which was coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  13. Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar.

    Science.gov (United States)

    Iino, Takao; Suzuki, Rei; Tanaka, Naoto; Kosako, Yoshimasa; Ohkuma, Moriya; Komagata, Kazuo; Uchimura, Tai

    2012-07-01

    Two novel acetic acid bacteria, strains G5-1(T) and I5-1, were isolated from traditional kaki vinegar (produced from fruits of kaki, Diospyros kaki Thunb.), collected in Kumamoto Prefecture, Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains G5-1(T) and I5-1 formed a distinct subline in the genus Gluconacetobacter and were closely related to Gluconacetobacter swingsii DST GL01(T) (99.3% 16S rRNA gene sequence similarity). The isolates showed 96-100% DNA-DNA relatedness with each other, but <53% DNA-DNA relatedness with closely related members of the genus Gluconacetobacter. The isolates could be distinguished from closely related members of the genus Gluconacetobacter by not producing 2- and 5-ketogluconic acids from glucose, producing cellulose, growing without acetic acid and with 30% (w/v) d-glucose, and producing acid from sugars and alcohols. Furthermore, the genomic DNA G+C contents of strains G5-1(T) and I5-1 were a little higher than those of their closest phylogenetic neighbours. On the basis of the phenotypic characteristics and phylogenetic position, strains G5-1(T) and I5-1 are assigned to a novel species, for which the name Gluconacetobacter kakiaceti sp. nov. is proposed; the type strain is G5-1(T) (=JCM 25156(T)=NRIC 0798(T)=LMG 26206(T)).

  14. Across-habitat comparison of diazotroph activity in the subarctic.

    Science.gov (United States)

    Rousk, Kathrin; Sorensen, Pernille L; Lett, Signe; Michelsen, Anders

    2015-05-01

    Nitrogen (N) fixation by N2-fixing bacteria (diazotrophs) is the primary N input to pristine ecosystems like boreal forests and subarctic and arctic tundra. However, the contribution by the various diazotrophs to habitat N2 fixation remains unclear. We present results from in situ assessments of N2 fixation of five diazotroph associations (with a legume, lichen, feather moss, Sphagnum moss and free-living) incorporating the ground cover of the associations in five typical habitats in the subarctic (wet and dry heath, polygon-heath, birch forest, mire). Further, we assessed the importance of soil and air temperature, as well as moisture conditions for N2 fixation. Across the growing season, the legume had the highest total as well as the highest fraction of N2 fixation rates at habitat level in the heaths (>85 % of habitat N2 fixation), whereas the free-living diazotrophs had the highest N2 fixation rates in the polygon heath (56 %), the lichen in the birch forest (87 %) and Sphagnum in the mire (100 %). The feather moss did not contribute more than 15 % to habitat N2 fixation in any of the habitats despite its high ground cover. Moisture content seemed to be a major driver of N2 fixation in the lichen, feather moss and free-living diazotrophs. Our results show that the range of N2 fixers found in pristine habitats contribute differently to habitat N2 fixation and that ground cover of the associates does not necessarily mirror contribution.

  15. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium.

    Science.gov (United States)

    Slapšak, Nina; Cleenwerck, Ilse; De Vos, Paul; Trček, Janja

    2013-02-01

    Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529(T) and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Trček and Teuber [34] revealed the same but unique restriction profiles for LMG 1529(T) and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA-DNA hybridizations confirmed their novel species identity by 73% DNA-DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529(T) and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)(5)-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529(T) and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529(T) and SKU 1109 is C(18:1ω7c) (60.2-64.8%). The DNA G+C content of LMG 1529(T) and SKU 1109 is 62.5 and 63.3mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529(T) (=NBRC 14815(T)=NCIMB 8752(T)).

  16. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production.

    Science.gov (United States)

    Zhong, Cheng; Zhang, Gui-Cai; Liu, Miao; Zheng, Xin-Tong; Han, Pei-Pei; Jia, Shi-Ru

    2013-07-01

    Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.

  17. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    Science.gov (United States)

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry.

  18. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon

    OpenAIRE

    Fernandes Júnior,Paulo Ivan; Duarte Pereira, Gilmara Maria; Perin, Liamara; da Silva, Luana Mesquita; Cardoso Baraúna, Alexandre; Muniz Alves, Francilene; Ribeiro Passos, Samuel; Édson Zilli, Jerri

    2013-01-01

    The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepat...

  19. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  20. Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between Trichodesmium erythraeum, Crocosphaera watsonii and Cyanothece sp.

    Science.gov (United States)

    Berthelot, Hugo; Bonnet, Sophie; Grosso, Olivier; Cornet, Véronique; Barani, Aude

    2016-07-01

    Biological dinitrogen (N2) fixation is the major source of new nitrogen (N) for the open ocean, and thus promotes marine productivity, in particular in the vast N-depleted regions of the surface ocean. Yet, the fate of the diazotroph-derived N (DDN) in marine ecosystems is poorly understood, and its transfer to auto- and heterotrophic surrounding plankton communities is rarely measured due to technical limitations. Moreover, the different diazotrophs involved in N2 fixation (Trichodesmium spp. vs. UCYN) exhibit distinct patterns of N2 fixation and inhabit different ecological niches, thus having potentially different fates in the marine food webs that remain to be explored. Here we used nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling and flow cytometry cell sorting to examine the DDN transfer to specific groups of natural phytoplankton and bacteria during artificially induced diazotroph blooms in New Caledonia (southwestern Pacific). The fate of the DDN was compared according to the three diazotrophs: the filamentous and colony-forming Trichodesmium erythraeum (IMS101), and the unicellular strains Crocosphaera watsonii WH8501 and Cyanothece ATCC51142. After 48 h, 7-17 % of the N2 fixed during the experiment was transferred to the dissolved pool and 6-12 % was transferred to non-diazotrophic plankton. The transfer was twice as high in the T. erythraeum bloom than in the C. watsonii and Cyanothece blooms, which shows that filamentous diazotrophs blooms are more efficient at promoting non-diazotrophic production in N-depleted areas. The amount of DDN released in the dissolved pool did not appear to be a good indicator of the DDN transfer efficiency towards the non-diazotrophic plankton. In contrast, the 15N-enrichment of the extracellular ammonium (NH4+) pool was a good indicator of the DDN transfer efficiency: it was significantly higher in the T. erythraeum than in unicellular diazotroph blooms, leading to a DDN

  1. Evidence for polyploidy in the globally important diazotroph Trichodesmium

    OpenAIRE

    Sargent, Elizabeth C.; Hitchcock, Andrew; Johansson, Andreas; Langlois, Rebecca; Moore, Mark; LaRoche, Julie; Poulton, Alex; Bibby, Thomas S.

    2016-01-01

    Polyploidy is a well-described trait in some prokaryotic organisms; however, it is unusual in marine microbes from oligotrophic environments, which typically display a tendency towards genome streamlining. The biogeochemically significant diazotrophic cyanobacterium Trichodesmium is a potential exception. With a relatively large genome and a comparatively high proportion of non-protein-coding DNA, Trichodesmium appears to allocate relatively more resources to genetic material than closely rel...

  2. Construction of ammonium-tolerant strains of diazotroph associated with rice and its applications

    Institute of Scientific and Technical Information of China (English)

    CHENGQi; SONGWei; YOUChongbiao

    1992-01-01

    In rice field, especially in the fertilized field the combined nitrogen content is rather high. It is well known that the nitrogen compounds, particularly NH4+ inhibits the nitrogenase activity- of diazotrophs. So, the enhancement of nitrogen fixation ability of diazotrophs in the presence of ammonia by means of genetic manipulation will be of importance for agricultural use.

  3. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar.

    Science.gov (United States)

    Castro, Cristina; Cleenwerck, Ilse; Trcek, Janja; Zuluaga, Robin; De Vos, Paul; Caro, Gloria; Aguirre, Ricardo; Putaux, Jean-Luc; Gañán, Piedad

    2013-03-01

    The phylogenetic position of a cellulose-producing acetic acid bacterium, strain ID13488, isolated from commercially available Colombian homemade fruit vinegar, was investigated. Analyses using nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rRNA gene internal transcribed spacer (ITS) sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated the micro-organism to the genus Gluconacetobacter, and more precisely to the Gluconacetobacter xylinus group. Moreover, the data suggested that the micro-organism belongs to a novel species in this genus, together with LMG 1693(T), a non-cellulose-producing strain isolated from vinegar by Kondo and previously classified as a strain of Gluconacetobacter xylinus. DNA-DNA hybridizations confirmed this finding, revealing a DNA-DNA relatedness value of 81 % between strains ID13488 and LMG 1693(T), and values <70 % between strain LMG 1693(T) and the type strains of the closest phylogenetic neighbours. Additionally, the classification of strains ID13488 and LMG 1693(T) into a single novel species was supported by amplified fragment length polymorphism (AFLP) and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains ID13488 and LMG 1693(T) could be differentiated from closely related species of the genus Gluconacetobacter by their ability to produce 2- and 5-keto-d-gluconic acid from d-glucose, their ability to produce acid from sucrose, but not from 1-propanol, and their ability to grow on 3 % ethanol in the absence of acetic acid and on ethanol, d-ribose, d-xylose, sucrose, sorbitol, d-mannitol and d-gluconate as carbon sources. The DNA G+C content of strains ID13488 and LMG 1693(T) was 58.0 and 60.7 mol%, respectively. The major ubiquinone of LMG 1693(T) was Q-10. Taken together these data indicate that strains ID13488 and LMG 1693(T) represent a novel species of the genus Gluconacetobacter for which the name Gluconacetobacter

  4. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk

    OpenAIRE

    Rani, M. Usha; Appaiah, K. A. Anu

    2011-01-01

    The work is aimed to investigate the suitability of underutilized coffee cherry husk (CCH) for the production and optimization of bacterial cellulose (BC) by Gluconacetobacter hansenii UAC09 and to study the physico-mechanical properties of BC films. CCH extract was used as a carbon source in various concentrations along with other nutritional components such as nitrogen (corn steep liquor, urea) and additives (ethyl alcohol, acetic acid). Concentration of CCH extract at 1:1 (w/v) along with ...

  5. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    Directory of Open Access Journals (Sweden)

    Veronica Massena Reis

    1999-10-01

    Full Text Available Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram verificados nos canaviais de Campos, RJ, especialmente naqueles que não adotam a queima do palhiço. As espécies predominantes nas três localidades amostradas foram: Acaulospora sp., Scutellospora heterogama, Glomus etunicatum, Glomus occultum e Gigaspora margarita. A. diazotrophicus estava presente nas amostras de raízes colhidas em canaviais de Campos, com exceção de uma coleta de cana-de-açúcar plantada num solo usado como bacia de sedimentação de vinhaça. Não foi possível isolar essa bactéria a partir de esporos desinfestados dos FMAs nativos, apenas dos esporos lavados com água estéril.The occurrence and distribution of species of arbuscular mycorrhizae fungi and Acetobacter diazotrophicus in sugar cane (Saccharum officinarum grown in different regimes of crop management in the States of Rio de Janeiro and Pernambuco, Brazil, were studied. Thirty five samples of the rhizosphere soil and roots were collected from 14 varieties of sugar cane for the extraction of spores and isolation of the bacterium. The number of spores varied from 18 to 2,070 per 100 mL of soil, and the greatest diversity of fungal species was found in the sugarcane fields of Campos (Rio de Janeiro State, especially in those where the sugarcane trash was not burned at harvest. The predominant species found in the three localities sampled were: Scutellospora heterogama, Glomus etunicatum, Glomus occultum, Acaulospora sp. and Gigaspora margarita. A

  6. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing

    OpenAIRE

    2015-01-01

    Diazotrophs in the mangrove rhizosphere play a major role in providing new nitrogen to the mangrove ecosystem and their composition and activity are strongly influenced by anthropogenic activity and ecological conditions. In this study, the diversity of the diazotroph communities in the rhizosphere sediment of five tropical mangrove sites with different levels of pollution along the north and south coastline of Singapore were studied by pyrosequencing of the nifH gene. Bioinformatics analysis...

  7. Specificity of salt marsh diazotrophs for vegetation zones and plant hosts

    Directory of Open Access Journals (Sweden)

    Debra Aline Davis

    2012-03-01

    Full Text Available Salt marshes located on the east coast of temperate North America are highly productive, typically nitrogen-limited, and support diverse assemblages of nitrogen fixing (diazotrophic bacteria. The distributions of these diazotrophs are strongly influenced by plant host and abiotic environmental parameters. Crab Haul Creek Basin, North Inlet, SC, USA is a tidally dominated marsh that displays discrete plant zones distributed along an elevation gradient from the tidal creek bank to the terrestrial forest. These zones are defined by gradients of abiotic environmental variables, particularly salinity and sulfide. DGGE fingerprinting and phylogenetic analyses of recovered sequences demonstrated that the distributions of some diazotrophs indicate plant host specificity and that diazotroph assemblages across the marsh gradient are heavily influenced by edaphic conditions. Broadly distributed diazotrophs capable of maintaining populations in all environmental conditions across the gradient are also present in these assemblages. Parsimony test results confirm that diazotroph assemblages in different plant zones are significantly (p<0.01 different across the marsh landscape. Results also indicated that diazotroph assemblages associated with different plant hosts growing in the same area of the marsh were structurally similar confirming the influence of edaphic parameters on these assemblages. Principal Component Analysis of DGGE gel banding patterns confirmed these results. This article reviews and analyzes data from North Inlet Estuary, addressing diazotroph assemblage structure and the influence of plant host and environmental conditions. New data demonstrate the heterogeneity of salt marsh rhizosphere microenvironments, and corroborate previous findings from different plant hosts growing at several locations within this estuary. These data support the hypothesis that the biogeography of microorganisms is non-random and is partially driven by

  8. Diazotrophic bacteria and nitrogen fertilization on the growth of micropropagated pineapple plantlets during acclimatization

    OpenAIRE

    2016-01-01

    ABSTRACT: This study examines the effect of inoculation with diazotrophic bacteria and nitrogen fertilization on the growth of micropropagated pineapple cv. 'Vitória' plantlets during the acclimatization period. The experiment was carried out in a greenhouse in Campos dos Goytacazes, in randomized blocks, using a 2x5x5 factorial scheme, with the factors being two types of inocula (absence or presence of a mixture of diazotrophic bacteria that contained Burkholderia sp. UENF 114111, Burkholder...

  9. NCBI nr-aa BLAST: CBRC-PVAM-01-1081 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PVAM-01-1081 ref|YP_001603021.1| putative dehydrogenase [Gluconacetobacter dia...zotrophicus PAl 5] emb|CAP56727.1| putative dehydrogenase [Gluconacetobacter diazotrophicus PAl 5] YP_001603021.1 0.42 27% ...

  10. NCBI nr-aa BLAST: CBRC-MLUC-01-1006 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-1006 ref|YP_001603545.1| hypothetical protein GDI_3314 [Gluconacetobacter... diazotrophicus PAl 5] emb|CAP57257.1| putative membrane protein [Gluconacetobacter diazotrophicus PAl 5] YP_001603545.1 0.065 35% ...

  11. Diazotroph diversity in the sea ice, melt ponds and surface waters of the Eurasian Basin of the Central Arctic Ocean

    OpenAIRE

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Rapp, Josephine Z.; Buttigieg, Pier Luigi; Krumpen, Thomas; Jonathan P Zehr; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which ...

  12. The shifts of diazotrophic communities in spring and summer associated with coral Galaxea astreata, Pavona decussata and Porites lutea

    OpenAIRE

    Yanying Zhang; Qingsong Yang; Juan Ling; Joy Van Nostrand; Zhou Shi; Jizhong Zhou; Junde Dong

    2016-01-01

    The coral holobiont often resides in oligotrophic waters; both coral cells and their symbiotic dinoflagellates possess ammonium assimilation enzymes and potentially benefit from the nitrogen fixation of coral-associated diazotrophs. However, the seasonal dynamics of coral-associated diazotrophs are not well characterized. Here, the seasonal variations of diazotrophic communities associated with three corals, Galaxea astreata, Pavona decussata, and Porites lutea, were studied using nifH gene a...

  13. The shifts of diazotrophic communities in spring and summer associated with coral Galaxea astreata, Pavona decussata and Porites lutea

    OpenAIRE

    Yanying Zhang; Qingsong Yang; Juan Ling; Joy Van Nostrand; Zhou Shi; Jizhong Zhou; Junde Dong

    2016-01-01

    The coral holobiont often resides in oligotrophic waters; both coral cells and their symbiotic dinoflagellates possess ammonium assimilation enzymes and potentially benefit from the nitrogen fixation of coral-associated diazotrophs. However, the seasonal dynamics of coral-associated diazotrophs are not well characterized. Here, the seasonal variations of diazotrophic communities associated with three corals, Galaxea astreata, Pavona decussata and Porites lutea, were studied using nifH gene am...

  14. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis.

  15. Diazotroph community succession during the VAHINE mesocosms experiment (New Caledonia Lagoon

    Directory of Open Access Journals (Sweden)

    K. A. Turk-Kubo

    2015-06-01

    Full Text Available The VAHINE mesocosm experiment, conducted in the low-nutrient low-chlorophyll waters of the Noumea Lagoon (coastal New Caledonia was designed to trace the incorporation of nitrogen (N fixed by diazotrophs into the food web, using large volume (50 m3 mesocosms. This experiment provided a unique opportunity to study the succession of different N2-fixing microorganisms (diazotrophs and calculate in situ net growth and loss rates in response to fertilization with dissolved inorganic phosphate (DIP over a 23 day period, using quantitative polymerase chain reaction (qPCR assays. Inside the mesocosms, the diazotroph community assemblage was dominated by the heterocyst-forming Richelia associated with Rhizosolenia (Het-1 in the first half of the experiment, and unicellularcyanobacterial Group C (UCYN-C became the dominant diazotroph in the second half of the experiment. Decreasing DIP concentrations following the fertilization event and increasing temperatures were significantly correlated with increasing abundances of UCYN-C. Maximum net growth rates for UCYN-C were calculated to be between 1.23 ± 0.07 and 2.16 ± 0.07 d−1 which are among the highest growth rates reported for diazotrophs. Outside the mesocosms in the Noumea Lagoon, UCYN-C abundances remained low, despite increasing temperatures, suggesting that the microbial community response to the DIP fertilization created conditions favorable for UCYN-C growth inside the mesocosms. Maximum net growth and loss rates for nine diazotroph phylotypes throughout the 23 day experiment were variable between mesocosms, and repeated fluctuations between periods of net growth and loss were commonly observed. The field population of diazotrophs in the Noumea Lagoon, was dominated by Het-1 over the course of the study period. However, eight additional diazotroph phylotypes were present in the lagoon at lower abundances, indicating a diverse field population of diazotrophs. Two ecotypes of the Braarudosphaera

  16. Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweetpotato stem in Japan.

    Science.gov (United States)

    Asis, C A; Adachi, K

    2004-01-01

    To isolate and identify diazotrophic endophytes in the stem of Japanese sweetpotato cv. Koganesengan. Surface-sterilized and thinly sliced (1-2 mm) sweetpotato stem samples were incubated in test tubes with semi-solid modified Rennie (MR) medium. The test tubes were assayed for acetylene reduction activity (ARA) 5 days after incubation at 30 degrees C. Twelve isolates were obtained from MR plates inoculated with a loop of semi-solid MR medium from ARA+ tubes. However, ARA test showed that only nine isolates were diazotrophic and three were nondiazotrophic strains. Using the API 20E diagnostic kit, four diazotrophic isolates were identified as strains of Pantoea spp. and five isolates as Klebsiella spp. The nondiazotrophic bacteria were strains of Enterobacter spp. A diazotrophic isolate Pantoea sp. MY1 and nondiazotrophic isolate Enterobacter sp. MY2 were identified to the species level by full sequence analysis of 16S rRNA gene. The results showed that MY1 had 99.2% similarity to Pantoea agglomerans ATCC 27155 and MY2 had 99.5% similarity to Enterobacter asburiae ATCC 35953. The stem of sweetpotato cv. Koganesengan was colonized by diazotrophic endophyte P. agglomerans and nondiazotrophic endophyte E. asburiae. This study is an essential step toward understanding the ecology and interaction between endophytic bacteria and sweetpotato.

  17. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus.

    Science.gov (United States)

    Cibichakravarthy, B; Preetha, R; Sundaram, S P; Kumar, K; Balachandar, D

    2012-02-01

    This study is aimed at assessing culturable diazotrophic bacterial diversity in the rhizosphere of Prosopis juliflora and Parthenium hysterophorus, which grow profusely in nutritionally-poor soils and environmentally-stress conditions so as to identify some novel strains for bioinoculant technology. Diazotrophic isolates from Prosopis and Parthenium rhizosphere were characterized for nitrogenase activity by Acetylene Reduction Assay (ARA) and 16S rRNA gene sequencing. Further, the culture-independent quantitative PCR (qPCR) was performed to compare the abundance of diazotrophs in rhizosphere with bulk soils. The proportion of diazotrophs in total heterotrophs was higher in rhizosphere than bulk soils and 32 putative diazotrophs from rhizosphere of two plants were identified by nifH gene amplification. The ARA activity of the isolates ranged from 40 to 95 nmol ethylene h(-1) mg protein(-1). The 16S rRNA gene analysis identified the isolates to be members of alpha, beta and gamma Proteobacteria and firmicutes. The qPCR assay also confirmed that abundance of nif gene in rhizosphere of these two plants was 10-fold higher than bulk soil.

  18. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    Science.gov (United States)

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer.

  19. Sheep manure vermicompost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation.

    Science.gov (United States)

    Gutiérrez-Miceli, F A; Moguel-Zamudio, B; Abud-Archila, M; Gutiérrez-Oliva, V F; Dendooven, L

    2008-10-01

    An orthogonal experimental design L9 (3(4)) with 10 repetitions was used to investigate the effect of Glomus claroideum (0, 1 or 2g(-1) plant), G. fasciculatum (0, 1 or 2g plant(-1)), native diazotrophic bacteria (0, 10(3) and 10(5) UFC ml(-1)) and sheep manure vermicompost (0%, 5% and 10% v/v) on maize plant growth, N and P in leaves and mycorrhization percent. Vermicompost explained most of the variation found for leaf number, wet weight, stem height, and diameter. Both mycorrhizas increased the plant wet weight but G. fasciculatum the most. Mycorrhization increased the P content, but not the N content. Mycorrhizal colonization increased when diazotrophic bacteria and vermicompost were added. It was found that weight of maize plants cultivated in peat moss amended with vermicompost increased when supplemented with G. fasciculatum and diazotrophic bacteria.

  20. ESTUDIO DE LA ASOCIACIÓN Gluconacetobacter diazotrophicus-VIANDAS TROPICALES ESTABLECIDAS SOBRE SUELO FERRALÍTICO ROJO. II. DETERMINACIÓNDEL MÉTODO DE INOCULACIÓN MÁS EFICIENTE PARA LA INCORPORACIÓN DE G. diazotrophicus EN LOS CULTIVOS DE BONIATO, YUCA Y MALANGA Ministerio

    Directory of Open Access Journals (Sweden)

    Bernardo Dibut Álvarez

    2011-01-01

    Full Text Available El trabajo ofrece la estrategia de inoculación de labacteria en las viandas tropicales, aspecto este que, exceptoen boniato, constituye un primer reporte para la especialidad.Desde el punto de vista agrobiológico, abre nuevos caminosal diseño de inoculantes comerciales que hoy no existen en elmercado para el beneficio de estos cultivos, de ahí los impactoscientífico, tecnológico y medio ambiental de la investigación.Los experimentos se desarrollaron en áreas del INIFAT sobresuelo Ferralítico Rojo, empleando un diseño de Bloques alAzar y un tamaño de parcela de 50 m2 con cuatro réplicas portratamiento. La concentración final del bioproducto fue de3.5x1011 UFCxmL-1. Se aplicó utilizando una dosis de 0.2 mL/m2.El método de inoculación más efectivo (aplicación foliar y alsuelo permite obtener incrementos en el rendimiento de entre3 y 5 t/ha en plantaciones de yuca, boniato y malanga. Ellorepresenta un beneficio económico promedio de 720 pesospor cada hectárea bacterizada, con la presencia de raíces ytubérculos de mayor calidad comercial. Se formula además unnuevo medio de cultivo (objeto de patente que permite que elbioproducto se aplique a una dosis reducida por unidad desuperficie y que disminuye el tiempo de fermentación.

  1. Assimilation of diazotrophic nitrogen into pelagic food webs.

    Directory of Open Access Journals (Sweden)

    Ryan J Woodland

    Full Text Available The fate of diazotrophic nitrogen (N(D fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that N(D fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable N(D (exuded from viable cyanobacterial cells by palatable phytoplankton or microbial consortia. Alternatively, N(D can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable N(D (e.g., nitrate, ammonium by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom would be the primary pathway by which N(D was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of N(D by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of N(D from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of N(D to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-N(D pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that N(D can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes

  2. Arsenate resistance in the unicellular marine diazotroph Crocosphaera watsonii

    Directory of Open Access Journals (Sweden)

    Sonya eDyhrman

    2011-10-01

    Full Text Available The toxic arsenate ion can behave as a phosphate analog, and this can result in arsenate toxicity especially in areas with elevated arsenate to phosphate ratios like the surface waters of the ocean gyres. In these systems, cellular arsenate resistance strategies would allow phytoplankton to ameliorate the effects of arsenate transport into the cell. Despite the potential coupling between arsenate and phosphate cycling in oligotrophic marine waters, relatively little is known about arsenate resistance in the nitrogen-fixing marine cyanobacteria that are key components of the microbial community in low nutrient systems. The unicellular diazotroph, Crocosphaera watsonii WH8501, was able to grow at reduced rates with arsenate additions up to 30 nM, and estimated arsenate to phosphate ratios of 6:1. The genome of strain WH8501 contains homologs for arsA, arsH, arsB and arsC, allowing for the reduction of arsenate to arsenite and the pumping of arsenite out of the cell. The short-term addition of arsenate to the growth medium had no effect on nitrogen fixation. However, arsenate addition did result in the up-regulation of the arsB gene with increasing arsenate concentrations, indicating the induction of the arsenate detoxification response. The arsB gene was also up-regulated by phosphorus stress in concert with a gene encoding the high-affinity phosphate binding protein pstS. Both genes were down-regulated when phosphate was re-fed to phosphorus-stressed cells. A field survey of surface water from the low phosphate western North Atlantic detected expression of C. watsonii arsB, suggestive of the potential importance of arsenate resistance strategies in this and perhaps other systems.

  3. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus.

    Science.gov (United States)

    Castro, Cristina; Zuluaga, Robin; Álvarez, Catalina; Putaux, Jean-Luc; Caro, Gloria; Rojas, Orlando J; Mondragon, Iñaki; Gañán, Piedad

    2012-08-01

    A bacterial strain isolated from the fermentation of Colombian homemade vinegar, Gluconacetobacter medellensis, was investigated as a new source of bacterial cellulose (BC). The BC produced from substrate media consisting of various carbon sources at different pH and incubation times was quantified. Hestrin-Schramm (HS) medium modified with glucose led to the highest BC yields followed by sucrose and fructose. Interestingly, the microorganisms are highly tolerant to low pH: an optimum yield of 4.5 g/L was achieved at pH 3.5, which is generally too low for other bacterial species to function. The cellulose microfibrils produced by the new strain were characterized by scanning and transmission electron microscopy, infrared spectroscopy X-ray diffraction and elemental analysis. The morphological, structural and chemical characteristics of the cellulose produced are similar to those expected for BC.

  4. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose.

    Science.gov (United States)

    Ruka, Dianne R; Simon, George P; Dean, Katherine M

    2012-06-20

    An extensive matrix of different growth conditions including media, incubation time, inoculum volume, surface area and media volume were investigated in order to maximize the yield of bacterial cellulose produced by Gluconacetobacter xylinus, which will be used as reinforcement material to produce fully biodegradable composites. Crystallinity was shown to be controllable depending on the media and conditions employed. Samples with significant difference in crystallinity in a range from 50% to 95% were produced. Through experimental design, the yield of cellulose was maximized; primarily this involved reactor surface area design, optimized media and the use of mannitol being the highest cellulose-producing carbon source. Increasing the volume of the media did achieve a higher cellulose yield, however this increase was not found to be cost or time effective.

  5. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    Science.gov (United States)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  6. In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus.

    Science.gov (United States)

    Fang, Ju; Kawano, Shin; Tajima, Kenji; Kondo, Tetsuo

    2015-10-12

    Bacterial cellulose pellicle produced by Gluconacetobacter xylinus (G. xylinus) is one of the best biobased materials having a unique supernetwork structure with remarkable physiochemical properties for a wide range of medical and tissue-engineering applications. It is still necessary to modify them to obtain materials suitable for biomedical use with satisfactory mechanical strength, biodegradability, and bioactivity. The aim of this research was to develop a gene-transformation route for the production of bacterial cellulose/Curdlan (β-1,3-glucan) nanocomposites by separate but simultaneous in vivo synthesis of cellulose and Curdlan. Modification of the cellulose-nanofiber-producing system of G. xylinus enabled Curdlan to be synthesized simultaneously with cellulose nanofibers in vivo, resulting in biopreparation of nanocomposites. The obtained Curdlan/cellulose composites were characterized, and their properties were compared with those of normal bacterial cellulose pellicles, indicating that Curdlan mixed with the cellulose nanofibers at the nanoscale without disruption of the nanofiber network structure in the pellicle.

  7. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26.

    Science.gov (United States)

    Yang, Ying; Jia, Jingjing; Xing, Jianrong; Chen, Jianbing; Lu, Shengmin

    2013-02-15

    A strain producing bacterial cellulose (BC) screened from rotten mandarin fruit was identified as Gluconacetobacter intermedius CIs26 by the examination of general taxonomical characteristics and 16S rDNA sequence analysis. Furthermore, Fourier transform infrared (FT-IR) spectrum showed that pellicle produced by strain CIs26 was composed of glucan, and had the same functional group as a typical BC. X-ray diffractometry (XRD) analysis indicated that the BC was type I in structure with crystallinity index of 75%. BC yields of strain CIs26 in Hestrin-Schramn (HS), citrus waste modified HS (CMHS) and citrus waste solution (CWS) mediums were 2.1 g/L, 5.7 g/L, and 7.2 g/L, respectively. It was shown that citrus waste could stimulate BC production of strain CIs26 efficiently. Based on the ability of utilization of citrus waste, this strain appeared to have potential in BC manufacture on an industrial scale.

  8. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application.

  9. Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field

    Directory of Open Access Journals (Sweden)

    Fijałkowski Karol

    2017-06-01

    Full Text Available The aim of the present study was to evaluate the impact of a rotating magnetic field (RMF on cellular and biochemical properties of Gluconacetobacter xylinus during the process of cellulose synthesis by these bacteria. The application of the RMF during bacterial cellulose (BC production intensified the biochemical processes in G. xylinus as compared to the RMF-unexposed cultures. Moreover, the RMF had a positive impact on the growth of cellulose-producing bacteria. Furthermore, the application of RMF did not increase the number of mutants unable to produce cellulose. In terms of BC production efficacy, the most favorable properties were found in the setting where RMF generator was switched off for the first 72 h of cultivation and switched on for the further 72 h. The results obtained can be used in subsequent studies concerning the optimization of BC production using different types of magnetic fields including RMF, especially.

  10. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Fijałkowski Karol

    2016-12-01

    Full Text Available The aim of the study was to analyze the changes in the parameters of bacterial cultures and bacterial cellulose (BC synthesized by four reference strains of Gluconacetobacter xylinus during 31-day cultivation in stationary conditions. The study showed that the most visible changes in the analyzed parameters of BC, regardless of the bacterial strain used for their synthesis, were observed in the first 10–14 days of the experiment. It was also revealed, that among parameters showing dependence associated with the particular bacterial strain were the rate and period of BC synthesis, the growth rate of bacteria anchored to the cellulose fibrils, the capacity to absorb water and the water release rate. The results presented in this work may be useful in the selection of optimum culturing conditions and period from the point of view of good efficiency of the cellulose synthesis process.

  11. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Jyh-Ming; Liu, Ren-Han

    2012-09-01

    Thin stillage (TS), a wastewater from rice wine distillery can well sustain the growth of Gluconacetobacter xylinus for production of bacterial cellulose (BC). When used as a supplement to the traditional BC production medium (Hestrin and Schramm medium), the enhancement of BC production increased with the amount of TS supplemented in a static culture of G. xylinus. When TS was employed to replace distilled water for preparing HS medium (100%TS-HS medium), the BC production in this 100%TS-HS medium was enhanced 2.5-fold to a concentration of 10.38 g/l with sugar to BC conversion yield of 57% after 7 days cultivation. The cost-free TS as a supplement in BC production medium not only can greatly enhance the BC production, but also can effectively dispose the nuisance wastewater of rice wine distillery.

  12. Celulosa bacteriana en gluconacetobacter xylinum: biosíntesis y aplicaciones

    Directory of Open Access Journals (Sweden)

    Juan Luis Chávez- Pacheco

    2004-01-01

    Full Text Available La celulosa es la molécula orgánica más abundante en la naturaleza y posee gran importancia a nivel industrial; es sintetizada por una variedad de organismos, incluyendo plantas, algas, hongos, bacterias y animales. Gluconacetobacter xylinum es la bacteria con mayor capacidad productora de celulosa y es el organismo modelo en la investigación sobre los procesos que regulan la biosíntesis del polímero. El presente documento ofrece una revisión de los progresos en la comprensión del proceso de síntesis de celulosa, las características particulares de la celulosa bacteriana como fuente alterna a la celulosa vegetal y sus aplicaciones biotecnológicas

  13. Seasonal variations in the diversity and abundance of diazotrophic communities across soils

    NARCIS (Netherlands)

    Pereira e Silva, Michele C.; Semenov, Alexander V.; van Elsas, Jan Dirk; Salles, Joana Falcao

    2011-01-01

    The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based o

  14. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  15. Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations

    Science.gov (United States)

    Biological input of nitrogen (N) from the atmosphere either through free-living diazotrophs or legume-associated rhizobia can help alleviate fertilizer use in agricultural systems. In this study, we investigated the effect of N fertilizer and winter pea (Pisum sativum L.) crop on the diversity and a...

  16. Phylogenetic changes in soil microbial and diazotrophic diversity with application of butachlor.

    Science.gov (United States)

    Yen, Jui-Hung; Wang, Yei-Shung; Hsu, Wey-Shin; Chen, Wen-Ching

    2013-01-01

    We investigated changes in population and taxonomic distribution of cultivable bacteria and diazotrophs with butachlor application in rice paddy soils. Population changes were measured by the traditional plate-count method, and taxonomic distribution was studied by 16S rDNA sequencing, then maximum parsimony phylogenic analysis with bootstrapping (1,000 replications). The bacterial population was higher after 39 than 7 days of rice cultivation, which indicated the augmentation of soil microbes by rice root exudates. The application of butachlor increased the diazotrophic population in both upper (0-3 cm) and lower (3-15 cm) layers of soils. Especially at day 39, the population of diazotrophs was 1.8 and 1.6 times that of the control in upper and lower layer soils, respectively. We found several bacterial strains only with butachlor application; examples are strains closest to Bacillus arsenicus, B. marisflavi, B. luciferensis, B. pumilus, and Pseudomonas alvei. Among diazotrophs, three strains closely related to Streptomyces sp. or Rhrizobium sp. were found only with butachlor application. The population of cultivable bacteria and the species composition were both changed with butachlor application, which explains in part the contribution of butachlor to augmenting soil nitrogen-fixing ability.

  17. Diazotrophic microbial community of coastal microbial mats of the southern North Sea.

    NARCIS (Netherlands)

    Bauersachs, T.; Compaoré, J.; Severin, I.; Hopmans, E.C.; Schouten, S.; Stal, L.J.; Sinninghe Damsté, J.S.

    2011-01-01

    The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (δ13CTOC) and nitrogen (δ15N) isotopes as well as by constructing and analyzing 16S rRNA gene

  18. Diazotrophic microbial community of coastal microbial mats of the southern North Sea

    NARCIS (Netherlands)

    Bauersachs, T.; Compaoré, J.; Severin, I.; Hopmans, E.C.; Schouten, S.; Stal, L.J.; Sinninghe Damsté, J.S.

    2011-01-01

    The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (delta(13)C(TOC)) and nitrogen (delta(15)N) isotopes as well as by constructing and analyzing 16S rRNA

  19. Diazotrophic microbial community of coastal microbial mats of the southern North Sea

    NARCIS (Netherlands)

    Bauersachs, T.; Compaore, J.; Severin, I.; Hopmans, E.C.; Schouten, S.; Stal, L.J.; Sinninghe Damsté, J.S.

    2011-01-01

    The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (δ13CTOC) and nitrogen (δ15N) isotopes as well as by constructing and analyzing 16S rRNA gene

  20. Diazotrophic bacterial community variability in a subtropical deep reservoir is correlated with seasonal changes in nitrogen.

    Science.gov (United States)

    Wang, Lina; Yu, Zheng; Yang, Jun; Zhou, Jing

    2015-12-01

    Nitrogen-fixing microorganisms (diazotrophs) play important roles in aquatic biogeochemistry and ecosystem functioning. However, little is known about the spatiotemporal variation of diazotrophic microbial communities in deep subtropical reservoirs. In this study, denaturing gradient gel electrophoresis (DGGE), clone libraries, quantitative PCR, and quantitative reverse transcription (RT)-PCR were used together to examine the vertical and seasonal patterns of diazotrophic microbial communities based on nitrogenase (nifH) gene sequences in the Dongzhen Reservoir, China, across time (every 3 months for 1 year) and space (five different water depths). In general, the numbers of DGGE bands increased with water depth during the stratification seasons (spring, summer, and autumn), with the clone-library-based operational taxonomic unit (OTU) number and nifH gene diversity being highest in autumn (6 OTUs at depth 0 m; 15 OTUs at 33 m) and winter (12 OTUs at 0 m, 13 OTUs at 33 m) but decreasing drastically in spring (2 OTUs at 0 m, 3 OTUs at 33 m) and summer (3 OTUs at 0 m, 2 OTUs at 33 m). The nifH gene abundance was lowest in the water mixing season (winter average, 5.17 × 10(7) copies/L) but increased in the three other seasons (9.03 × 10(9) copies/L). Cyanobacteria (dominated by filamentous thermophilic cyanobacteria and Cylindrospermopsis raciborskii) were the most dominant diazotrophic group at all depths and seasons, while both alphaproteobacteria and gammaproteobacteria were co-dominant in the bottom waters in autumn and winter. The distinct seasonal and spatial patterns in diazotrophic communities were significantly related to total nitrogen (TN) and ammonium nitrogen (NH4-N) in the reservoir (P cyanobacteria blooms.

  1. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status.

    Science.gov (United States)

    Bednarz, Vanessa N; Grover, Renaud; Maguer, Jean-François; Fine, Maoz; Ferrier-Pagès, Christine

    2017-01-10

    Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of (15)N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals' metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals' N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater.

  2. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status

    Science.gov (United States)

    Grover, Renaud; Maguer, Jean-François; Fine, Maoz; Ferrier-Pagès, Christine

    2017-01-01

    ABSTRACT Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals’ metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals’ N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater. PMID:28074021

  3. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria.

    Science.gov (United States)

    Carvalho, T L G; Balsemão-Pires, E; Saraiva, R M; Ferreira, P C G; Hemerly, A S

    2014-10-01

    Some beneficial plant-interacting bacteria can biologically fix N2 to plant-available ammonium. Biological nitrogen fixation (BNF) is an important source of nitrogen (N) input in agriculture and represents a promising substitute for chemical N fertilizers. Diazotrophic bacteria have the ability to develop different types of root associations with different plant species. Among the highest rates of BNF are those measured in legumes nodulated by endosymbionts, an already very well documented model of plant-diazotrophic bacterial association. However, it has also been shown that economically important crops, especially monocots, can obtain a substantial part of their N needs from BNF by interacting with associative and endophytic diazotrophic bacteria, that either live near the root surface or endophytically colonize intercellular spaces and vascular tissues of host plants. One of the best reported outcomes of this association is the promotion of plant growth by direct and indirect mechanisms. Besides fixing N, these bacteria can also produce plant growth hormones, and some species are reported to improve nutrient uptake and increase plant tolerance against biotic and abiotic stresses. Thus, this particular type of plant-bacteria association consists of a natural beneficial system to be explored; however, the regulatory mechanisms involved are still not clear. Plant N status might act as a key signal, regulating and integrating various metabolic processes that occur during association with diazotrophic bacteria. This review will focus on the recent progress in understanding plant association with associative and endophytic diazotrophic bacteria, particularly on the knowledge of the N networks involved in BNF and in the promotion of plant growth. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    Institute of Scientific and Technical Information of China (English)

    KARTHIKEYAN B.; JALEEL C.A.; GOPI R.; DEIVEEKASUNDARAM M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters.There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs.

  5. Database of diazotrophs in global ocean: abundances, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-02-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6 Tg C from cell counts and to 89 (40–200 Tg C from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize

  6. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima

    OpenAIRE

    Fan eZhang; Jan eVicente; Russell T. Hill

    2014-01-01

    Sponges that harbor microalgal or cyanobacterial symbionts may benefit from photosynthetically derived carbohydrates, which are rich in carbon but devoid of nitrogen, and may therefore encounter nitrogen limitation. Diazotrophic communities associated with two Caribbean sponges, Ircinia strobilina and Mycale laxissima were studied in a time series during which three individuals of each sponge were collected in four time points (5:00 AM, 12:00 noon, 5:00 PM, 10:00 PM). nifH genes were succes...

  7. Incorporation of diazotrophic fixed N2 by mesozooplankton — Case studies in the southern Baltic Sea

    Science.gov (United States)

    Wannicke, Nicola; Korth, Frederike; Liskow, Iris; Voss, Maren

    2013-05-01

    During two simultaneous cruises in the Central Baltic Sea in July 2007 we applied a 15N tracer addition approach to assess the impact of cyanobacterial N2 fixation on mesozooplankton production in the Central Baltic Sea. We determined rates of diazotrophic 15N2 fixation, as well as uptake of diazotrophic derived 15N by mesozooplankton species. Diazotrophic 15N2 fixation rates were low representing pre-bloom situations. A first order estimate using a two source mixing model of natural δ15N-PON abundance revealed that diazotrophic fixed N contributed to 27 ± 8% to mesozooplankton biomass. Additionally, the application of stable isotope tracer showed that fixed 15N was detectable in the mesozooplankton fraction within 1 h after the onset of the incubation. On a daily basis, 5% up to 100% of newly fixed 15N and 14% of cyanobacteria standing stock were incorporated by mesozooplankton species in our experimental set-ups. By applying size fractionating experiments and the usage of different control treatments, we calculated that the majority of 15N transfer (67%) was mediated by the release of nitrogenous compounds and their channelling through the microbial loop towards the mesozooplankton community. Moreover, direct grazing on filamentous cyanobacteria accounted for 33% of gross 15N incorporation. Grazing in the experiments seemed to be largely influenced by cyanobacterial species dominating the community and by the abundance of Cladoceran species like Evadne. Overall, N2 fixing cyanobacteria are ecological more important as instantaneous sources of nitrogen for higher trophic levels of the Baltic Sea food web than previously assumed.

  8. Diazotrophic specific cytochrome c oxidase required to overcome light stress in the cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Bhargava, Santosh; Chouhan, Shweta

    2016-01-01

    Diazotrophic, filamentous and heterocystous cyanobacterium Nostoc muscorum perform photosynthesis in vegetative whereas nitrogen fixation occurs in heterocyst only. However, despite their metabolic plasticity, respiration takes place both in vegetative cells and heterocysts. The role of the respiratory electron transport system and terminal oxidases under light stress is not evident so far. As compared to the diazotrophically grown cultures, the non-diazotrophically grown cultures of the N. muscorum show a slight decrease in their growth, chlorophyll a contents and photosynthetic O2 evolution under light stress. Whereas respiratory O2 uptake under identical stress condition increases several fold. Likewise, nitrogen fixing enzyme i.e. nitrogenase over-expresses itself under light stress condition. The terminal enzyme of respiratory electron transport chain i.e. cytochrome c oxidase shows more activity under light stress, whilst light stress has no impact on Ca(++)-dependent ATPase activity. This leads to the conclusion that under light stress, cytochrome c oxidase plays a vital role in mitigating given light stress.

  9. "Cold" Fixation: Reconciliation of Nitrogen Fixation Rates and Diazotroph Assemblages in the Arctic Ocean

    Science.gov (United States)

    Fong, A. A.; Waite, A.; Rost, B.; Richter, K. U.

    2016-02-01

    Measurements of biological nitrogen fixation are typically conducted in oligotrophic subtropical and tropical marine environments where concentrations of fixed inorganic nitrogen are low. To date, only a handful of nitrogen fixation studies have been conducted in high latitude marine environments, but further investigation is needed to resolve the distribution of cold ocean diazotrophic assemblages. Nitrogen fixation rates and nifH gene distributions were measured at seven stations from 5°E to 20°E, north of 81°N in the Arctic Ocean at the onset of summer 2015. Discrete water samples in ice-covered regions were collected from the sea surface to 200 m for 15N2-tracer additions and targeted nifH gene and transcript analyses. Previous work suggests that heterotrophic bacteria dominate diazotrophic communities in the Arctic Ocean. Therefore, additional nifH gene surveys of sinking particles were conducted to test for enrichment on organic matter-rich microenvironments. Together, these measurements aim to reconcile diazotrophic activity with microbial community composition, further elucidating how nitrogen fixers could impact current concepts in polar carbon and nutrient cycling.

  10. Diazotrophic bacteria and nitrogen fertilization on the growth of micropropagated pineapple plantlets during acclimatization

    Directory of Open Access Journals (Sweden)

    Aurilena de Aviz Silva

    Full Text Available ABSTRACT: This study examines the effect of inoculation with diazotrophic bacteria and nitrogen fertilization on the growth of micropropagated pineapple cv. 'Vitória' plantlets during the acclimatization period. The experiment was carried out in a greenhouse in Campos dos Goytacazes, in randomized blocks, using a 2x5x5 factorial scheme, with the factors being two types of inocula (absence or presence of a mixture of diazotrophic bacteria that contained Burkholderia sp. UENF 114111, Burkholderia silvatlantica UENF 11711, and Herbaspirillum seropedicae HRC 54, five levels of urea (0, 2, 5, 7, and 10g L-1, and five evaluation periods (30, 60, 90, 120, and 150 days following the planting of plantlets in trays, and with four replications of each treatment. An increase in the dried weight of shoots and roots of micropropagated pineapple cv. 'Vitória' plants depended on inoculation with diazotrophic bacteria, and plantlets acclimatization could be reduced by up to 57 days, depending on the concentration of urea fertilizer.

  11. Efecto de la sacarosa en la producción de celulosa por Gluconacetobacter xylinus en cultivo estático

    OpenAIRE

    Rubén Jaramillo L; Wladimir Tobio J.; José Escamilla M.

    2012-01-01

    RESUMENObjetivo. Determinar el efecto de sacarosa en la productividad de BC por Gluconacetobacter xylinus IFO 13693 en condición estática. Materiales y métodos. La síntesis de celulosa bacteriana (BC) por Gluconacetobacter xylinus se llevo a cabo en un cultivo estático discontinuo a temperatura ambiente, en presencia de sacarosa como la principal fuente de carbono a concentraciones iniciales de 0.8 a 7.6 % (p/v). Las concentraciones remanentes de BC, sacarosa, glucosa y fructosa se determinar...

  12. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials

    Science.gov (United States)

    Smyslov, R. Yu; Ezdakova, K. V.; Kopitsa, G. P.; Khripunov, A. K.; Bugrov, A. N.; Tkachenko, A. A.; Angelov, B.; Pipich, V.; Szekely, N. K.; Baranchikov, A. E.; Latysheva, E.; Chetverikov, Yu O.; Haramus, V.

    2017-05-01

    Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus) and the composites based on this bacterial cellulose. The composites included ZrO2 nanoparticles, Tb3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl-o-aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO2 nanoparticles in composites resulting in increased Tb3+ luminescence.

  13. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2014-09-01

    In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l(-1) acetic acid, the optimal xylose concentration for BC production was 20 g l(-1). In the medium containing 20 g l(-1) xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l(-1)) was obtained in the medium containing 20 g l(-1) xylose and 3 g l(-1) acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l(-1)) in the medium only containing 20 g l(-1) xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.

  14. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Wang, Bo; Shi, Si-Lan; Chen, Xue-Fang; Lin, Xiao-Qing; Wang, Can; Luo, Jun; Chen, Xin-De

    2016-01-20

    In this study, lipid fermentation wastewater (fermentation broth after separation with yeast biomass) with high Chemical Oxygen Demand (COD) value of 25,591 mg/L was used as substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus for the first time. After 5 days of fermentation, the highest BC yield (0.659 g/L) was obtained. Both monosaccharide and polysaccharides present in lipid fermentation wastewater could be utilized by G. xylinus simultaneously during fermentation. By this bioconversion, 30.0% of COD could be removed after 10 days of fermentation and the remaining wastewater could be used for further BC fermentation. The crystallinity of BC samples in lipid fermentation wastewater increased gradually during fermentation but overall the environment of lipid fermentation wastewater showed small influence on BC structure by comparison with that in traditional HS medium by using FE-SEM, FTIR, and XRD. By this work, the possibility of using lipid fermentation wastewater containing low value carbohydrate polymer (extracellular polysaccharides) for high value carbohydrate polymer (BC) production was proven.

  15. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.

    Science.gov (United States)

    Mohite, Bhavna V; Salunke, Bipinchandra K; Patil, Satish V

    2013-03-01

    Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.

  16. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Huang, Chao; Yang, Xiao-Yan; Xiong, Lian; Guo, Hai-Jun; Luo, Jun; Wang, Bo; Zhang, Hai-Rong; Lin, Xiao-Qing; Chen, Xin-De

    2015-02-01

    In this study, corncob acid hydrolysate was used as a substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus. After 2 weeks' static fermentation, a BC yield of 4 g/L could be obtained. Both effects of medium composition and fermentation condition on the BC production were evaluated. Most extra substrates (carbon and nitrogen sources) except mannitol, butyric acid, and levulinic acid showed no effect on the improvement of BC yield. Fermentation condition including fermentation mode, inoculation concentration, and initial pH showed certain influence on the BC yield and thus should be well controlled. The analysis by field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) showed that the BC sample had obvious nano-network structure, clear functional groups that were found in cellulose, and relatively high crystallinity and crystallinity index value. Moreover, the BC sample had great water-holding capacity. Overall, corncob acid hydrolysate could be one promising substrate for BC production.

  17. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues.

    Science.gov (United States)

    Al-Abdallah, Wahib; Dahman, Yaser

    2013-11-01

    The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62-64 % that affected final BC production.

  18. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media.

    Science.gov (United States)

    Jozala, Angela Faustino; Pértile, Renata Aparecida Nedel; dos Santos, Carolina Alves; de Carvalho Santos-Ebinuma, Valéria; Seckler, Marcelo Martins; Gama, Francisco Miguel; Pessoa, Adalberto

    2015-02-01

    Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield-60 mg/mL-was achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.

  19. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean.

    Science.gov (United States)

    Bilgi, Eyup; Bayir, Ece; Sendemir-Urkmez, Aylin; Hames, E Esin

    2016-09-01

    Bacterial cellulose (BC) can be used in medical, biomedical, electronic, food, and paper industries because of its unique properties distinguishing it from plant cellulose. BC production was statistically optimized by Gluconacetobacter xylinus strain using carob and haricot bean (CHb) medium. Eight parameters were evaluated by Plackett-Burman Design and significant three parameters were optimized by Central Composite Design. Optimal conditions for production of BC in static culture were found as: 2.5g/L carbon source, 2.75g/L protein source, 9.3% inoculum ratio, 1.15g/L citric acid, 2.7g/L Na2HPO4, 30°C incubation temperature, 5.5 initial pH, and 9days of incubation. This study reveals that BC production can be carried out using carob and haricot bean extracts as carbon and nitrogen sources, and CHb medium has higher buffering capacity compared to Hestrin and Schramm media. Model obtained from this study is used to predict and optimize BC production yield using CHb medium.

  20. Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field.

    Science.gov (United States)

    Liu, Miao; Zhong, Cheng; Zhang, Yu Ming; Xu, Ze Ming; Qiao, Chang Sheng; Jia, Shi Ru

    2016-01-01

    The effects of a direct current (DC) electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC) production was promoted in 12 h but was inhibited in the last 12 h as compared to the control (without DC electric field). At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18-24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid, and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth.

  1. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk.

    Science.gov (United States)

    Rani, M Usha; Appaiah, K A Anu

    2013-08-01

    The work is aimed to investigate the suitability of underutilized coffee cherry husk (CCH) for the production and optimization of bacterial cellulose (BC) by Gluconacetobacter hansenii UAC09 and to study the physico-mechanical properties of BC films. CCH extract was used as a carbon source in various concentrations along with other nutritional components such as nitrogen (corn steep liquor, urea) and additives (ethyl alcohol, acetic acid). Concentration of CCH extract at 1:1 (w/v) along with 8% (v/v) corn steep liquor, 0.2% (w/v) urea, combination of 1.5% ethyl alcohol and 1.0% (v/v) acetic acid resulted in the production of 5.6-8.2 g/L of BC. BC had tensile strength varying between 28.5 and 42.4 MPa. BC produced with CCH and Hestrin and Schramm (HS) media did not differ in structure as analyzed by FT-IR. Scanning electron microscopic studies indicated BC to contain reticulated network of fine fibers. Under optimized condition, based on the other additives, CCH produced more than three folds yield of BC (5.6-8.2 g/L) than control medium (1.5 g/L). This is the first report on the use of CCH for the production of BC and paved way for the utilization of organic wastes with pectin and high polyphenol content.

  2. Diazotroph diversity in the sea ice, melt ponds and surface waters of the Eurasian Basin of the Central Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Mar Fernández-Méndez

    2016-11-01

    Full Text Available The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing towards a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77ºN. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  3. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean

    Science.gov (United States)

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Buttigieg, Pier L.; Rapp, Josephine Z.; Krumpen, Thomas; Zehr, Jonathan P.; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed. PMID:27933047

  4. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean.

    Science.gov (United States)

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  5. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand.

    Science.gov (United States)

    Rangjaroen, Chakrapong; Rerkasem, Benjavan; Teaumroong, Neung; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.

  6. Influence of nitrogen fertilization on diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.).

    Science.gov (United States)

    Meng, Xianfa; Wang, Lin; Long, Xiaohua; Liu, Zhaopu; Zhang, Zhenhua; Zed, Rengel

    2012-06-01

    Diazotrophs in the soil may be influenced by plant factors as well as nitrogen (N) fertilization. In this study, we investigated potential diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) supplied with differing amounts of N. The community structure of N(2)-fixing bacteria was profiled using the length heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) based on a variation in the nifH gene. Higher numbers of diazotrophs were detected by T-RFLP compared to LH-PCR. The lowest number of N(2)-fixing bacteria was observed in the rhizosphere soil with high N fertilization. T-RFLP was a better method than LH-PCR for profiling microbial diversity of diazotrophs using multidimensional scaling (MDS) and analysis of similarity (ANOSIM) of fingerprints as well as diversity measures. The supply of N fertilizer appeared to negatively influence the abundance of diazotrophs in the rhizophere of the Jerusalem artichoke.

  7. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Directory of Open Access Journals (Sweden)

    José I. Baldani

    2005-09-01

    Full Text Available This review covers the history on Biological Nitrogen Fixation (BNF in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali, associative (Azospirillum lipoferum, A. brasilense, A. amazonense and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica. The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus and GENOPAR (Herbaspirillum seropedicae reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.A presente revisão aborda a história da Fixação Biológica de Nitrogênio (FBN em Gramíneas no Brasil, procurando mostrar a evolução da pesquisa na área iniciada a mais de 40 anos sob a liderança da pesquisadora Johanna Döbereiner. Um aspecto marcante deste período foi a descoberta de diversas bactérias fixadoras de nitrogênio atmosf

  8. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis.

  9. Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius.

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-04-01

    A number of gram-negative bacteria regulate gene expression in a cell density-dependent manner by quorum sensing via N-acylhomoserine lactones (AHLs). Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, produces three different AHLs, N-decanoyl-l-homoserine lactone, N-dodecanoyl-L-homoserine lactone, and an N-dodecanoyl-L-homoserine lactone with a single unsaturated bond in its acyl chain, as determined by liquid chromatography-tandem mass spectrometry. Two genes encoding an AHL synthase and a cognate regulator were cloned from strain NCI1051 and designated ginI and ginR, respectively. Disruption of ginI or ginR abolished AHL production, indicating that NCI1051 contains a single set of quorum-sensing genes. Transcriptional analysis showed that ginI is activated by GinR, which is consistent with the finding that there is an inverted repeat whose nucleotide sequence is similar to the sequence bound by members of the LuxR family at position -45 with respect to the transcriptional start site of ginI. A single gene, designated ginA, located just downstream of ginI is transcribed by read-through from the GinR-inducible ginI promoter. A ginA mutant, as well as the ginI and ginR mutants, grew more rapidly in medium containing 2% (vol/vol) ethanol and accumulated acetic acid at a higher rate with a greater final yield than parental strain NCI1051. In addition, these mutants produced larger amounts of gluconic acid than the parental strain. These data demonstrate that the GinI/GinR quorum-sensing system in G. intermedius controls the expression of ginA, which in turn represses oxidative fermentation, including acetic acid and gluconic acid fermentation.

  10. Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii.

    Directory of Open Access Journals (Sweden)

    Hongjun Jin

    Full Text Available Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A result in 90-95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A participating in the coordination of FMN in the active site results in only modest (50% reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.

  11. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production.

    Science.gov (United States)

    Hutchens, S A; León, R V; O'neill, H M; Evans, B R

    2007-02-01

    The purpose of this study was to analyse the effects of different culture parameters on Gluconacetobacter hansenii (ATCC 10821) to determine which conditions provided optimum cellulose growth. Five culture factors were investigated: carbon source, addition of ethanol, inoculation ratio, pH and temperature. jmp Software (SAS, Cary, NC, USA) was used to design this experiment using a fractional factorial design. After 22 days of static culture, the cellulose produced by the bacteria was harvested, purified and dried to compare the cellulose yields. The results were analysed by fitting the data to a first-order model with two-factor interactions. The study confirmed that carbon source, addition of ethanol, and temperature were significant factors in the production of cellulose of this G. hansenii strain. While pH alone does not significantly affect average cellulose production, cellulose yields are affected by pH interaction with the carbon source. Culturing the bacteria on glucose at pH 6.5 produces more cellulose than at pH 5.5, while using mannitol at pH 5.5 produces more cellulose than at pH 6.5. The bacteria produced the most cellulose when cultured on mannitol, at pH 5.5, without ethanol, at 20 degrees C. Inoculation ratio was not found to be a significant factor or involved in any significant two-factor interaction. These findings give insight into the conditions necessary to maximize cellulose production from this G. hansenii strain. In addition, this work demonstrates how the fractional factorial design can be used to test a large number of factors using an abbreviated set of experiments. Fitting a statistical model determined the significant factors as well as the significant two-factor interactions.

  12. Metabolic investigation in Gluconacetobacter xylinus and its bacterial cellulose production under a direct current electric field

    Directory of Open Access Journals (Sweden)

    Miao eLiu

    2016-03-01

    Full Text Available The effects of a direct current (DC electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC production was promoted in 12 hours (h but was inhibited in the last 12 h as compared to the control (without DC electric field. At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18-24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth.

  13. Distribution of diazotrophic microorganisms and nifH gene expression in the Mekong River plume during intermonsoon

    DEFF Research Database (Denmark)

    Bombar, Deniz; Moisander, Pia H.; Dippner, Joachim W.

    2011-01-01

    N 2 fixation by marine pelagic prokaryotes plays a critical role in supplying new N to the ocean, and there is growing evidence that oceanic N 2 fixation is generally enhanced in tropical river plumes, where N 2 fixers (diazotrophs) benefit from riverine phosphorus and/or iron. Here we used nif......H gene quantitative polymerase chain reaction (QPCR) and reverse transcription (RT) QPCR to investigate the horizontal distribution and activity of 9 diazotroph phylotypes in the Mekong River plume, South China Sea (SCS), in April 2007 (intermonsoon, lowest annual discharge). The nifH gene diversity...... was investigated by cloning and sequencing. Hydrodynamic modeling of the surface water advection revealed that the same water masses were sampled during the entire study, and helped to elucidate the physical forcing on diazotroph abundances and distributions. According to our estimates of nifH abundances...

  14. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A.

    Science.gov (United States)

    Aydın, Yasar Andelib; Aksoy, Nuran Deveci

    2014-02-01

    In this study, typical niches of acetic acid bacteria were screened for isolation of cellulose producer strains. Hestrin Schramm broth was used as enrichment and production media. Only nine out of 329 isolates formed thick biofilms on liquid surface and were identified as potential cellulose producers. Physiological and biochemical tests proved that all cellulose producers belonged to Gluconacetobacter genus. Most productive and mutation-resistant strain was subjected to 16S rRNA sequence analysis and identified as Gluconacetobacter hansenii P2A due to 99.8 % sequence similarity. X-ray diffraction analysis proved that the biofilm conformed to Cellulose I crystal structure, rich in Iα mass fraction. Static cultivation of G. hansenii P2A in HS medium resulted with 1.89 ± 0.08 g/l of bacterial cellulose production corresponding to 12.0 ± 0.3 % yield in terms of substrate consumption. Shaking and agitation at 120 rpm aided in enhancement of the amount and yield of produced cellulose. Productivity and yield reached up to 3.25 ± 0.11 g/l and 17.20 ± 0.14 % in agitated culture while a slight decrease from 78.7 % to 77.3 % was observed in the crystallinity index.

  15. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-08-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1 Tg C from cell counts and to 89 (43–150 Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2

  16. A novel cohabitation between two diazotrophic cyanobacteria in the oligotrophic ocean.

    Science.gov (United States)

    Momper, Lily M; Reese, Brandi Kiel; Carvalho, Gustavo; Lee, Patrick; Webb, Eric A

    2015-04-01

    The cyanobacterial genus Trichodesmium is biogeochemically significant because of its dual role in nitrogen and carbon fixation in the oligotrophic ocean. Trichodesmium species form colonies that can be easily enriched from the water column and used for shipboard rate measurements to estimate their contribution to oceanic carbon and nitrogen budgets. During a July 2010 cruise near the Hawaiian Islands in the oligotrophic North Pacific Subtropical Gyre, a specific morphology of Trichodesmium puff-form colonies were examined under epifluorescent microscopy and found to harbor a colonial endobiont, morphologically identified as the heterocystous diazotrophic cyanobacterium Calothrix. Using unialgal enrichments obtained from this cruise, we show that these Calothrix-like heterocystous cyanobionts (hetDA for 'Trichodesmium-associated heterocystous diazotroph') fix nitrogen on a diurnal cycle (maximally in the middle of the light cycle with a detectable minimum in the dark). Gene sequencing of nifH from the enrichments revealed that this genus was likely not quantified using currently described quantitative PCR (qPCR) primers. Guided by the sequence from the isolate, new hetDA-specific primers were designed and subsequent qPCR of environmental samples detected this diazotroph from surface water to a depth of 150 m, reaching densities up to ∼ 9 × 10(3) l(-1). Based on phylogenetic relatedness of nifH and 16S rRNA gene sequences, it is predicted that the distribution of this cyanobiont is not limited to subtropical North Pacific but likely reaches to the South Pacific and Atlantic Oceans. Therefore, this previously unrecognized cohabitation, if it reaches beyond the oligotrophic North Pacific, could potentially influence Trichodesmium-derived nitrogen fixation budgets in the world ocean.

  17. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction

    Directory of Open Access Journals (Sweden)

    Gabriela eAlfaro-Espinoza

    2015-05-01

    Full Text Available Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that M. mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively

  18. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    Science.gov (United States)

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  19. Effects of long-term elevated CO2, warming, and prolonged drought on Pleurozium-associated diazotrophic activity and abundance

    Science.gov (United States)

    Dyrnum, Kristine; Priemé, Anders; Michelsen, Anders

    2014-05-01

    Nitrogen (N2) fixation is the primary natural influx of N to terrestrial ecosystems, and changes in N2 fixation may have consequences for primary productivity and thus ecosystem function. We studied the activity and abundance of diazotrophs associated with the feather moss Pleurozium schreberi in a temperate heathland, after seven years of global change manipulations, including elevated atmospheric CO2 (510 ppm), increased temperature (0.5-1.5 ° C), and prolonged pre-summer droughts (4-6 weeks /year). Acetylene reduction assay was carried out monthly to monitor N2 fixation rates throughout one year, while nif H copy abundance, serving as a diazotroph abundance estimate, was measured by quantitative polymerase chain reaction (q-PCR). Prolonged summer droughts significantly increased both N2 fixation and nif H copy abundance, contrasting previous studies that demonstrate a direct negative correlation between N2 fixation and water availability. A shift in the relative abundance of N2-fixing bacteria from the green, upper parts of the moss stem to the lower, brown parts was observed. This shift could make diazotrophs less sensitive to desiccation, enabling N2 fixation to be upheld for longer during drought and thus causing higher abundance. Increased temperature likewise had a positive effect on the diazotroph abundance, although this did not translate into increased activity. Possibly, warming protects diazotrophs during extreme cold events, while actual N2 fixation is limited by water, disregarding a rise in potential N2 fixation caused by higher abundance. Increased CO2 caused no significant diazotroph response. Our study showed that long-term increase in temperature and recurrent drought events cause higher diazotroph abundance in Pleurozium schreberi and thus enhance the potential N2 fixations rate. Furthermore, our results indicate that diazotrophs may alter colonization patterns and thereby actively remain in the moss fraction less likely affected by

  20. Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source.

    Science.gov (United States)

    García-Esquivel, Gabriela; Calva-Calva, Graciano; Ferrera-Cerrato, Ronald; Fernández-Linares, Luis Carlos; Vázquez, Refugio Rodríguez; Esparza-García, Fernando José

    2009-03-01

    Encystment of Azotobacter nigricans was induced by its diazotrophic cultivation on kerosene. Its growth and nitrogenase activity were affected by kerosene in comparison to cultures grown on sucrose. Electron microscopy of vegetative cells showed that when nitrogenase activity was higher and the poly-beta-hydroxybutyrate granules were not present to a significant extent, peripheral bodies were abundant. After 8 days of culture on kerosene, the presence of cysts with intracellular bunches of poly-beta-hydroxybutyrate granules was observed. Germination of cysts bears germinating multicelled yet unbroken capsule cysts with up to three cells inside. This is the first report of encystment induction of Azotobacter species grown on kerosene.

  1. Intriguing diversity among diazotrophic picoplankton along a Mediterranean transect: a dominance of rhizobia

    Science.gov (United States)

    Le Moal, M.; Collin, H.; Biegala, I. C.

    2011-03-01

    The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study, we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH genes phylogenies. These genetic analyses were possible owing to the development of a new PCR protocol adapted to scarce microorganisms that can detect as few as 1 cell ml-1 in cultures. Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized to the Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml-1 of Richelia were detected in the eastern basin, while small (0.7-1.5 μm) and large (2.5-3.2 μm) Nitro821-targeted cells were recovered at all stations with a mean concentration of 3.5 cell ml-1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. In the central and the eastern Mediterranean Sea no 16S rDNA and nifH sequence from UCYN was obtained as cells concentration were close to, or below PCR detection limit. Bradyrhizobium sequences dominated nifH clone libraries from picoplanktonic size fractions. A few sequences of γ-proteobacteria were also detected in the central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with

  2. Diversity and high nitrogenase activity of endophytic diazotrophs isolated from Oryza rufipogon Griff.

    Institute of Scientific and Technical Information of China (English)

    TAN ZhiYuan; PENG GuiXiang; XU PeiZhi; AI ShaoYing; TANG ShuanHu; ZHANG GuoXia; ZENG FengYun

    2009-01-01

    Diversity and nitrogenase activity of endophytic diazotrophs colonized in the wild rice Oryza rufipogon Griff grown in Boluo,Huilai County in Guangdong Province and Lingshui County in Hainan Province were studied.Thirty-seven isolates obtained from Oryza rufipogon were identified as putative endophytic nitrogen-fixing bacteria by ARA (acetylene reduction assay) test and further confirmed by PCR amplification of nifH gene fragments.All obtained strains have ARA activity and the same sized nifH gene fragments.Above the similarity level of 80%,the obtained isolates were assigned as Group Ⅰ to Ⅷ by the clustering of IS-PCR fingerprints.The SDS-PAGE whole-cell protein patterns were similar to those of IS-PCR fingerprints.Components and contents of fatty acid methyl esters (FAMEs) were used to differentiate the representative strains (Ls13,Ls8,BL1,BL12,HL6,Ls4) from Group Ⅰ to Group Ⅵ.The six representative strains showed significant difference in contents and components of cellular fatty acid methyl ester.16S rDNA sequencing analysis showed that strains of Group Ⅰ to Ⅶ were located in Enterobacteraceae (γ-proteobacteria).Strains of Group Ⅰ and Group Ⅱ were closely related to Klebsiella sp.;Strain Ls8 of Group Ⅱ was a little far away from the genus of Pantoea (homology level 96% with Pantoea agglomerans),which may represent a new species or genus in Enterobacteraceae;Strains of Groups Ⅳ and Ⅴ belonged to different Enterobacter sp.;Strain Ls4 and Ls 9 representing Group Ⅵ were close to Citrobacter amalonaticus with 98% sequence similarity;Strain Ls15 of Group Ⅶ showed 98% sequence identity with Pantoea sp.;Strains of Group Ⅷ were assigned to the genus Ideonella (β-proteobacteria).Based on the above results,endophytic diazotrophs isolated from O.rufipogon showed great diversity and some diazotrophs showed high nitrogenase activity with 42.52 μmol/mL·h C2H4.Inoculation to rice testa indicated that the isolated endophytic diazotrophs

  3. Draft Genome Sequence of Raoultella terrigena R1Gly, a Diazotrophic Endophyte.

    Science.gov (United States)

    Schicklberger, M; Shapiro, N; Loqué, D; Woyke, T; Chakraborty, R

    2015-06-11

    Raoultella terrigena R1Gly is a diazotrophic endophyte isolated from surface-sterilized roots of Nicotiana tabacum. The whole-genome sequence was obtained to investigate the endophytic characteristics of this organism at the genetic level, as well as to compare this strain with its close relatives. To our knowledge, this is the first genome obtained from the Raoultella terrigena species and only the third genome from the Raoultella genus, after Raoultella ornitholytic and Raoultella planticola. This genome will provide a foundation for further comparative genomic, metagenomic, and functional studies of this genus.

  4. Seeds inoculation with diazotrophic bacteria and nitrogen application in side-dressing and leaf in maize

    OpenAIRE

    Claudinei Kappes; Orivaldo Arf; Marcelo Valentini Arf; João Paulo Ferreira; Edjair Augusto Dal Bem; José Roberto Portugal; Rafael Gonçalves Vilela

    2013-01-01

    Considering the importance of nitrogen management and its biological fixation with diazotrophic bacteria, this study was carried out aiming to evaluate the agronomic performance of maize, in response to seed inoculation with Azospirillum brasilense and nitrogen application in side-dressing and leaf. The experiment was conducted in Selvíria, Mato Grosso of Sul State, Brazil, during the growing season 2010/2011, on a clayey Rhodic Haplustox (20º 20’ S and 51º 24’ W, with altitude of 340 m). Six...

  5. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 A Resolution.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and

  6. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    Science.gov (United States)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  7. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    Science.gov (United States)

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants.

  8. PHYTOLECTINS AND DIAZOTROPHS ARE THE POLYFUNCTIONAL COMPONENTS OF THE COMPLEX BIOLOGICAL COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    Kyrychenko E. V.

    2014-02-01

    Full Text Available The role of lectins and diazotrophic microorganisms as polyfunctional components for creation of new lectin-bacterial biological composition with a view to practical application of agro biotechnology were discussed on the base of literature data and personal author’s experimental results. Phytolectins characterized by varied biological activity such as bioeffector, adap togen, growth-regulatory, fungicide and com munication to the components of a system «plant–soil–microorganisms» in molecular, cellular, organism and systemic levels of organization and functioning of agrophytocenosis. Rhizobacteria have many positive effects on plants and soil, the most determinative among the effects are the ability to fix molecular nitrogen of atmosphere, synthesis of hormonal and antibiotical substances, mobilization of sparingly soluble soil phosphates and decomposition of hazardous chemical compounds. It was justified creation of a new class of lectin-bacterial compositions on a base of phytolectins and diazotrophic microorganisms for increasing of productive potential of symbioses and associations, adaptable plasticity and plants protection and soil ecology improvement as well.

  9. Possible association of diazotrophs with marine zooplankton in the Pacific Ocean.

    Science.gov (United States)

    Azimuddin, Kazi Md; Hirai, Junya; Suzuki, Shotaro; Haider, Md Nurul; Tachibana, Aiko; Watanabe, Keigo; Kitamura, Minoru; Hashihama, Fuminori; Takahashi, Kazutaka; Hamasaki, Koji

    2016-12-01

    Dinitrogen fixation, the biological reduction in N2 gas to ammonia contributes to the supply of new nitrogen in the surface ocean. To understand the diversity and abundance of potentially diazotrophic (N2 fixing) microorganisms associated with marine zooplankton, especially copepods, the nifH gene was studied using zooplankton samples collected in the Pacific Ocean. In total, 257 nifH sequences were recovered from 23 nifH-positive DNA extracts out of 90 copepod samples. The nifH genes derived from cyanobacteria related to Trichodesmium, α- and γ-subdivisions of proteobacteria, and anaerobic euryarchaeota related to Methanosaeta concilii were detected. Our results indicated that Pleuromamma, Pontella, and Euchaeta were the major copepod genera hosting dinitrogen fixers, though we found no species-specific association between copepods and dinitrogen fixers. Also, the digital PCR provided novel data on the number of copies of the nifH gene in individual copepods, which we report the range from 30 to 1666 copies per copepod. This study is the first systematic study of zooplankton-associated diazotrophs, covering a large area of the open ocean, which provide a clue to further study of a possible new hotspot of N2 fixation. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    Science.gov (United States)

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta.

  11. Ecological genomics of the newly discovered diazotrophic filamentous cyanobacterium ESFC-1

    Science.gov (United States)

    Everroad, C.; Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Lee, J.; Mayali, X.; Singer, S. W.; Stuart, R.; Weber, P. K.; Woebken, D.; Pett-Ridge, J.

    2014-12-01

    Cyanobacteria-dominated microbial mats played a key role in the evolution of the early Earth and provide a model for exploring the relationships between ecology, evolution and biogeochemistry. A recently described nonheterocystous filamentous cyanobacterium, strain ESFC-1, has been shown to be a major diazotroph year round in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16s RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence within the cyanobacteria. Consequently, the draft genome sequence of this strain has been determined. Here we report features of this genome, particularly as they relate to the ecological functions and capabilities of strain ESFC-1. One striking feature of this cyanobacterium is the apparent lack of a functional bi-directional hydrogenase typically expected to be found within a diazotroph; consortia- and culture-based experiments exploring the metabolic processes of ESFC-1 also indicate that this hydrogenase is absent. Co-culture studies with ESFC-1 and some of the dominant heterotrophic members within the microbial mat system, including the ubiquitous Flavobacterium Muricauda sp., which often is found associated with cyanobacteria in nature and in culture collections worldwide, have also been performed. We report on these species-species interactions, including materials exchange between the cyanobacterium and heterotrophic bacterium. The combination of genomics with culture- and consortia-based experimental research is a powerful tool for understanding microbial processes and interactions in complex ecosystems.

  12. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    Sergio de Oliveira Procópio

    2014-10-01

    Full Text Available The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], glyphosate, MSMA e 2,4-D were tested in their respective commercial doses regarding their impact on the growth of the bacteria in liquid medium DIGs. For this, we determined the duration of lag phase, generation time and maximum cell density of H. seropedicae, calculated from optical density data obtained at regular intervals during the incubation of cultures for 33 h at 32oC. We also evaluated the impact of herbicides on nitrogenase activity of H. seropedicae grown in semi-solid N-free JNFb medium. The effects of herbicides on the growth variables and the ARA were compared with the untreated control by Dunnett test. A completely randomized design was used. The herbicides paraquat, imazapyr, ametryne, glyphosate and oxyfluorfen inhibited the growth of H. seropedicae in vitro. Ametryne, oxyfluorfen and glyphosate caused a small reduction in the duration of the lag phase of diazotrophic bacteria H. seropedicae. Oxyfluorfen, ametryne and imazapyr resulted in increased the generation time by H. seropedicae. Glyphosate promoted drastic reduction in biological nitrogen fixation in vitro by H. seropedicae. The other tested herbicides did not affect the growth or the same BNF by H. seropedicae.

  13. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio.

    Science.gov (United States)

    Suarez, Christian; Ratering, Stefan; Kramer, Irina; Schnell, Sylvia

    2014-02-01

    Two Gram-reaction-negative, aerobic, nitrogen-fixing, rod-shaped bacteria, designated strains E20 and E50(T), were isolated from the rhizosphere of salt meadow plants Plantago winteri and Hordeum secalinum, respectively, near Münzenberg, Germany. Based on the 16S rRNA gene sequence analysis both strains E20 and E50(T) are affiliated with the genus Cellvibrio, sharing the highest similarity with Cellvibrio gandavensis LMG 18551(T) (96.4%) and (97.1%), respectively. Strains E20 and E50(T) were oxidase and catalase-positive, grew at a temperature range between 16 and 37 °C and in the presence of 0-5% NaCl (w/v). The DNA G+C contents were 52.1 mol% (E20) and 51.6 mol% (E50(T)). Major fatty acids of strains E20 and E50(T) were summed feature 3 (C16 : 1ω7c and/or iso-C(15 : 0) 2-OH), C(16 : 0), C(18 : 1)ω7c, C(12 : 0), C(18 : 0) and C(12 : 0) 3-OH. The DNA-DNA relatedness of the strains to Cellvibrio gandavensis LMG 18551(T) was 39% for strain E20 and 58% for strain E50(T). The nitrogen fixation capability of strains E20 and E50(T) was confirmed by the acetylene reduction assay. On the basis of our polyphasic taxonomic study, strains E20 and E50(T) represent a novel species of the genus Cellvibrio, for which the name Cellvibrio diazotrophicus is proposed. The type strain of Cellvibrio diazotrophicus is E50(T) ( = LMG 27267(T) = KACC 17069(T)). An emended description of the genus Cellvibrio is proposed based on the capability of fixing nitrogen and growth in presence of up to 5% NaCl (w/v).

  14. Complete Genome Sequence of Kosakonia sacchari Strain BO-1, an Endophytic Diazotroph Isolated from a Sweet Potato

    Science.gov (United States)

    Shinjo, Rina; Uesaka, Kazuma; Ihara, Kunio; Loshakova, Kseniia; Mizuno, Yuri; Yano, Katsuya

    2016-01-01

    The complete genome sequence of the endophytic diazotroph Kosakonia sacchari, isolated from a sweet potato, was analyzed. The 4,902,106-bp genome with 53.7% G+C content comprises 4,638 open reading frames, including nif genes, 84 tRNAs, and seven complete rRNAs in a circular chromosome. PMID:27609910

  15. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situ

  16. Isolation and Screening of Bacteria for Their Diazotrophic Potential and Their Influence on Growth Promotion of Maize Seedlings in Greenhouses.

    Science.gov (United States)

    Kifle, Medhin H; Laing, Mark D

    2015-01-01

    Poor soil fertility is one of the major constraints for crop production. Nitrogen is the most limiting nutrient for increasing crop productivity. Therefore, there is a need to identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable agriculture. In the current study, a number of free-living diazotrophic bacteria were isolated from soils collected from maize rhizosphere and from leaves and roots of maize within the KwaZulu-Natal Province, Republic of South Africa. Ninety-two isolates were selected for further screening because they were able to grow on N-free media containing different carbon sources. Isolates that were very slow to grow on N-free media were discarded. The isolates were screened in vitro for diazotrophic potential tests for ammonia production and acetylene reduction. Ethylene (C2H4) production was quantified and ranged from 4 to 73 nmoles of C2H4h(-1) culture(-1). The top 20 isolates were re-screened on maize seedlings, and eight isolates significantly (P = 0.001) enhanced some growth parameters of maize above the un-inoculated control. Isolates that showed significant effect on at least two growth parameters were identified at species or genera level. In conclusion, selected diazotrophic isolates may be potentially beneficial but they should be tested more in greenhouse and field conditions with maize to confirm their potential for application as biofertilizers.

  17. Isolation and screening of bacteria for their diazotrophic potential and their influence on growth promotion of maize seedlings in greenhouses

    Directory of Open Access Journals (Sweden)

    Medhin Hadish Kifle

    2016-01-01

    Full Text Available Poor soil fertility is one of the major constraints for crop production. Nitrogen is the most limiting nutrient for increasing crop productivity. Therefore, there is a need to identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable agriculture. In the current study, a number of free-living diazotrophic bacteria were isolated from soils collected from maize rhizosphere and from leaves and roots of maize within the KwaZulu-Natal Province, Republic of South Africa. Ninety two isolates were selected for further screening because they were able to grow on N-free media containing different carbon sources. Isolates that were very slow to grow on N-free media were discarded. The isolates were screened in vitro for diazotrophic potential tests for ammonia production and acetylene reduction. Ethylene (C2H4 production was quantified and ranged from 4 to 73 nmoles of C2H4 h-1 culture-1. The top twenty isolates were re-screened on maize seedlings, and eight isolates significantly (P=0.001 enhanced some growth parameters of maize above the un-inoculated control. Isolates that showed significant effect on at least two growth parameters were identified at species or genera level. In conclusion, selected diazotrophic isolates may be potentially beneficial but they should be tested more in greenhouse and field conditions with maize to confirm their potential for application as biofertilizers.

  18. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community ( transcript libraries) of three types of microbial mats situated

  19. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats

  20. Illustration of the development of bacterial cellulose bundles/ribbons by Gluconacetobacter xylinus via atomic force microscopy.

    Science.gov (United States)

    Zhang, Kai

    2013-05-01

    The development of bacterial cellulose (BC) fibrils biosynthesized by Gluconacetobacter xylinus was investigated using atomic force microscopy (AFM). After various incubation times at 30 °C, both the length of BC fibrils and their average diameters increased significantly. After the first 2-h incubation, not only single BC microfibrils with an average diameter of 5.8 ± 0.7 nm were biosynthesized but single microfibrils also began to bind with each other forming bundles. After longer incubation times of 6 h, 16 h, and 48 h, only BC bundles and ribbons or even only ribbons were detectable. The development of BC fibrils and the formation of BC bundles/ribbons along with the biosynthesis time were illustrated using AFM. Furthermore, single BC fibrils were twisted in a right-handed manner. The twisting of BC fibrils possibly promoted the formation of bigger ribbons.

  1. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    Science.gov (United States)

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.

  2. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    Science.gov (United States)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  3. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.

    Science.gov (United States)

    Lee, Christopher M; Gu, Jin; Kafle, Kabindra; Catchmark, Jeffrey; Kim, Seong H

    2015-11-20

    The pellicle formation, crystallinity, and bundling of cellulose microfibrils produced by bacterium Gluconacetobacter xylinus were studied. Cellulose pellicles were produced by two strains (ATCC 53524 and ATCC 23769) for 1 and 7 days; pellicles were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrational sum-frequency-generation (SFG) spectroscopy, and attenuated total reflectance infrared (ATR-IR) spectroscopy. The bacterial cell population was higher at the surface exposed to air, indicating that the newly synthesized cellulose is deposited at the top of the pellicle. XRD, ATR-IR, and SFG analyses found no significant changes in the cellulose crystallinity, crystal size or polymorphic distribution with the culture time. However, SEM and SFG analyses revealed cellulose macrofibrils produced for 7 days had a higher packing density at the top of the pellicle, compared to the bottom. These findings suggest that the physical properties of cellulose microfibrils are different locally within the bacterial pellicles.

  4. Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus.

    Science.gov (United States)

    Sajadi, Elaheh; Babaipour, Valiollah; Deldar, Ali Asghar; Yakhchali, Bagher; Fatemi, Seyed Safa-Ali

    2017-09-01

    To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001. The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD. The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.

  5. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Huang, C; Yang, X-Y; Xiong, L; Guo, H-J; Luo, J; Wang, B; Zhang, H-R; Lin, X-Q; Chen, X-D

    2015-05-01

    To reduce the cost of bacterial cellulose (BC) production, the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater with high COD value (18 050 mg l(-1) ) for BC production by Gluconacetobacter xylinus was evaluated. After 7 days of fermentation, the highest BC yield (1·34 g l(-1) ) was obtained. The carbon sources including sugars (glucose and xylose), organic acids (acetic acid and butyric acid) and alcohol compounds (ethanol and butanol) were utilized by G. xylinus simultaneously during fermentation. Although the COD decrease ratio (about 14·7%) was low, the highest BC yield on COD consumption (56·2%, g g(-1) ) was relatively high and the remaining wastewater could be used for further BC fermentation. Besides, the environment of ABE fermentation wastewater showed small influence on the BC structure by comparison with the BC products obtained in traditional HS medium using field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Overall, ABE fermentation wastewater is one promising substrate for BC production. The possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose (BC) production by Gluconacetobacter xylinus was evaluated in this study. This is the first time that ABE fermentation wastewater was used as substrate for BC fermentation. The results provide detail information of metabolism of G. xylinus in ABE fermentation wastewater and the influence of wastewater environment on the structure of BC samples. Overall, this bioconversion could reduce the cost of BC production greatly. © 2015 The Society for Applied Microbiology.

  6. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  7. The marine diatom and diazotroph under future climate: Role of Iron

    Science.gov (United States)

    Li, Xuefeng; Fonseca-batista, Debany; Brouwers, Julie; Roevros, Nathalie; Dehairs, Frank; Chou, Lei

    2016-04-01

    Diatoms constitute a major group of phytoplankton, accounting for one quarter of the world's net primary productivity. Diazotrophs provide the largest input of new nitrogen (N) to the ocean and control the marine N budgets. It has been shown that iron (Fe) can be the limiting factor for diatom growth, in particular, in the HNLC (High Nutrient Low Chlorophyll) regions. This trace element can also govern the development of marine diazotrophs due to the high Fe demand necessary for biological N2 fixation. Iron plays thus an essential role in governing the marine primary productivity and the efficiency of biological carbon pump. Ocean systems are undergoing continuous modifications at varying rates and magnitudes as a result of changing climate. The objectives of our research is to evaluate 1) how climate change (dust deposition, ocean warming and acidification) can affect Fe biogeochemistry and the growth of diatoms and diazotrophs, and 2) the role of Fe in the control of biological N2 fixation under future climate scenarios. Laboratory culture experiments using Chaetoceros socialis were examined at two temperatures (13°C and 18°C) and two CO2 conditions (400 μatm and 800 μatm). The present study demonstrates clearly the influence of ocean acidification on the release of Fe upon dust deposition. It also shows that dust particles could provide a readily utilizable source of Fe and other macronutrients (dissolved phosphate and silicate) for phytoplankton growth. Elevated pCO2 concentrations may have adverse impact on the diatom growth; seawater warming may cause poleward shifts in the biogeographic distribution of diatoms. The impact of Fe on the natural N2 fixation was tested via field incubation experiments using natureal phytoplankton assemblage in the Bay of Biscay and along the Iberian Margin. N2 fixation rates in oligotrophic waters were greatly stimulated through the addition of dissolved Fe compared to the control, demonstrating the limitation of N2 fixation

  8. Increased Biomass of Nursery-Grown Douglas-Fir Seedlings upon Inoculation with Diazotrophic Endophytic Consortia

    Directory of Open Access Journals (Sweden)

    Zareen Khan

    2015-10-01

    Full Text Available Douglas-fir (Pseudotsuga menziesii seedlings are periodically challenged by biotic and abiotic stresses. The ability of endophytes to colonize the interior of plants could confer benefits to host plants that may play an important role in plant adaptation to environmental changes. In this greenhouse study, nursery-grown Douglas-fir seedlings were inoculated with diazotrophic endophytes previously isolated from poplar and willow trees and grown for fifteen months in nutrient-poor conditions. Inoculated seedlings had significant increases in biomass (48%, root length (13% and shoot height (16% compared to the control seedlings. Characterization of these endophytes for symbiotic traits in addition to nitrogen fixation revealed that they can also solubilize phosphate and produce siderophores. Colonization was observed through fluorescent microscopy in seedlings inoculated with gfp- and mkate-tagged strains. Inoculation with beneficial endophytes could prove to be valuable for increasing the production of planting stocks in forest nurseries.

  9. Evaluation of the biological nitrogen fixation contribution in sugarcane plants originated from seeds and inoculated with nitrogen-fixing endophytes Avaliação da contribuição da fixação biológica de nitrogênio em cana-de-açúcar originada de sementes e inoculada com endófitos fixadores de nitrogênio

    Directory of Open Access Journals (Sweden)

    Erineudo de Lima Canuto

    2003-11-01

    Full Text Available The inoculation technique with endophytic diazotrophic bacteria in sugarcane has been shown as an alternative practice to plant growth promotion. The aim of this work was to evaluate the biological nitrogen fixation (BNF contribution by different strains of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus in sugarcane plant inoculated from seeds. The seeds were planted in pots filled with non-sterile soil, inoculated with the bacterial strains and grown 10 months outside of the greenhouse. The BNF contribution of the inoculated bacteria varied depending on the plant species used as a control. The highest BNF contribution as well as the highest populations of reisolated bacteria was observed with inoculation of H. seropedicae strains. The roots appeared to be the preferential tissues for the establishment of the inoculated species.A técnica de inoculação com bactérias diazotróficas endofíticas na cana-de-açúcar apresenta-se como uma prática alternativa para promover o crescimento vegetal menos dependente da adubação nitrogenada. Este trabalho teve como objetivo avaliar a contribuição da fixação biológica de nitrogênio (FBN por diferentes estirpes de Herbaspirillum seropedicae e Gluconacetobacter diazotrophicus inoculadas em plantas de cana-de-açúcar originadas de semente. As sementes foram plantadas em vasos com solo não estéril, inoculadas com as diferentes bactérias e mantidas por 10 meses ao ar livre. As maiores contribuições da FBN ocorreram com a inoculação de estirpes Herbaspirillum seropedicae, e dependeram da espécie vegetal utilizada como testemunha. As raízes apresentaram-se como o órgão vegetal preferencial para o estabelecimento das espécies inoculadas.

  10. Effect of diazotrophic bacteria as phosphate solubilizing and indolic compound producers on maize plants

    Directory of Open Access Journals (Sweden)

    Mónica Del Pilar López Ortega

    2013-12-01

    Full Text Available Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like Rock Phosphate has been proposed. However, direct use of Rock Phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO42 and rock phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compound was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg .L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL .h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg .mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrphic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.

  11. Diazotrophic bacterioplankton in a coral reef lagoon: phylogeny, diel nitrogenase expression and response to phosphate enrichment.

    Science.gov (United States)

    Hewson, Ian; Moisander, Pia H; Morrison, Amanda E; Zehr, Jonathan P

    2007-05-01

    We investigated diazotrophic bacterioplankton assemblage composition in the Heron Reef lagoon (Great Barrier Reef, Australia) using culture-independent techniques targeting the nifH fragment of the nitrogenase gene. Seawater was collected at 3 h intervals over a period of 72 h (i.e. over diel as well as tidal cycles). An incubation experiment was also conducted to assess the impact of phosphate (PO(4)3*) availability on nifH expression patterns. DNA-based nifH libraries contained primarily sequences that were most similar to nifH from sediment, microbial mat and surface-associated microorganisms, with a few sequences that clustered with typical open ocean phylotypes. In contrast to genomic DNA sequences, libraries prepared from gene transcripts (mRNA amplified by reverse transcription-polymerase chain reaction) were entirely cyanobacterial and contained phylotypes similar to those observed in open ocean plankton. The abundance of Trichodesmium and two uncultured cyanobacterial phylotypes from previous studies (group A and group B) were studied by quantitative-polymerase chain reaction in the lagoon samples. These were detected as transcripts, but were not detected in genomic DNA. The gene transcript abundance of these phylotypes demonstrated variability over several diel cycles. The PO(4)3* enrichment experiment had a clearer pattern of gene expression over diel cycles than the lagoon sampling, however PO(4)3* additions did not result in enhanced transcript abundance relative to control incubations. The results suggest that a number of diazotrophs in bacterioplankton of the reef lagoon may originate from sediment, coral or beachrock surfaces, sloughing into plankton with the flooding tide. The presence of typical open ocean phylotype transcripts in lagoon bacterioplankton may indicate that they are an important component of the N cycle of the coral reef.

  12. Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in VAHINE mesocosm experiments

    Directory of Open Access Journals (Sweden)

    A. N. Knapp

    2015-12-01

    Full Text Available In a shallow, coastal lagoon off the southwest coast of New Caledonia, large-volume (~ 50 m3 mesocosm experiments were undertaken to track the fate of newly fixed nitrogen (N. The mesocosms were intentionally fertilized with 0.8 μM dissolved inorganic phosphorus (DIP to stimulate diazotrophy. N isotopic evidence indicates that the dominant source of N fueling export production shifted from subsurface nitrate (NO3− assimilated prior to the start of the 23 day experiments to N2 fixation by the end of the experiments. While the δ15N of the sinking particulate N (PNsink flux changed during the experiments, the δ15N of the suspended PN (PNsusp and dissolved organic N (DON pools did not. This is consistent with previous observations that the δ15N of surface ocean N pools is less responsive than that of PNsink to changes in the dominant source of new N to surface waters. In spite of the absence of detectable NO3− in the mesocosms, the δ15N of PNsink indicated that NO3− continued to fuel a significant fraction of export production (20 to 60 % throughout the 23 day experiments, with N2 fixation dominating export after about two weeks. The low rates of primary productivity and export production during the first 14 days were primarily supported by NO3−, and phytoplankton abundance data suggest that export was driven by large diatoms sinking out of surface waters. Concurrent molecular and taxonomic studies indicate that the diazotroph community was dominated by diatom-diazotroph assemblages (DDAs at this time. However, these DDAs represented a minor fraction (2 fixation; they were thus not important for driving export production, either directly or indirectly. The unicellular cyanobacterial diazotroph, a Cyanothece-like UCYN-C, proliferated during the last phase of the experiments when N2 fixation, primary production, and the flux of PNsink increased significantly, and δ15N budgets reflected a predominantly diazotrophic source of N fueling

  13. Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants.

    Science.gov (United States)

    Al-Bader, Dhia; Kansour, Mayada K; Rayan, Rehab; Radwan, Samir S

    2013-05-01

    Biofilms harboring simultaneously anoxygenic and oxygenic phototrophic bacteria, diazotrophic bacteria, and hydrocarbon-utilizing bacteria were established on glass slides suspended in pristine and oily seawater. Via denaturing gradient gel electrophoresis analysis on PCR-amplified rRNA gene sequence fragments from the extracted DNA from biofilms, followed by band amplification, biofilm composition was determined. The biofilms contained anoxygenic phototrophs belonging to alphaproteobacteria; pico- and filamentous cyanobacteria (oxygenic phototrophs); two species of the diazotroph Azospirillum; and two hydrocarbon-utilizing gammaproteobacterial genera, Cycloclasticus and Oleibacter. The coexistence of all these microbial taxa with different physiologies in the biofilm makes the whole community nutritionally self-sufficient and adequately aerated, a condition quite suitable for the microbial biodegradation of aquatic pollutant hydrocarbons.

  14. GROWTH AND CARBON CONTENT OF THREE DIFFERENT-SIZED DIAZOTROPHIC CYANOBACTERIA OBSERVED IN THE SUBTROPICAL NORTH PACIFIC(1).

    Science.gov (United States)

    Goebel, Nicole L; Edwards, Christopher A; Carter, Brandon J; Achilles, Katherine M; Zehr, Jonathan P

    2008-10-01

    To develop tools for modeling diazotrophic growth in the open ocean, we determined the maximum growth rate and carbon content for three diazotrophic cyanobacteria commonly observed at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) in the subtropical North Pacific: filamentous nonheterocyst-forming Trichodesmium and unicellular Groups A and B. Growth-irradiance responses of Trichodesmium erythraeum Ehrenb. strain IMS101 and Crocosphaera watsonii J. Waterbury strain WH8501 were measured in the laboratory. No significant differences were detected between their fitted parameters (±CI) for maximum growth rate (0.51 ± 0.09 vs. 0.49 ± 0.17 d(-1) ), half-light saturation (73 ± 29 vs. 66 ± 37 μmol quanta · m(-2)  · s(-1) ), and photoinhibition (0 and 0.00043 ± 0.00087 [μmol quanta · m(-2)  · s(-1) ](-1) ). Maximum growth rates and carbon contents of Trichodesmium and Crocosphaera cultures conformed to published allometric relationships, demonstrating that these relationships apply to oceanic diazotrophic microorganisms. This agreement promoted the use of allometric models to approximate unknown parameters of maximum growth rate (0.77 d(-1) ) and carbon content (480 fg C · μm(-3) ) for the uncultivated, unicellular Group A cyanobacteria. The size of Group A was characterized from samples from the North Pacific Ocean using fluorescence-activated cell sorting and real-time quantitative PCR techniques. Knowledge of growth and carbon content properties of these organisms facilitates the incorporation of different types of cyanobacteria in modeling efforts aimed at assessing the relative importance of filamentous and unicellular diazotrophs to carbon and nitrogen cycling in the open ocean.

  15. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    OpenAIRE

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest i...

  16. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    OpenAIRE

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest i...

  17. Density and diversity of diazotrophic bacteria isolated from Amazonian soils using N-free semi-solid media

    Directory of Open Access Journals (Sweden)

    Krisle da Silva

    2011-10-01

    Full Text Available Non-symbiotic diazotrophic bacteria are amongst the most important functional groups of soil-dwelling microorganisms. These bacteria contribute to plant growth predominantly through biological N2 fixation. Here, we evaluated the density and diversity of non-symbiotic diazotrophic bacteria in soils taken from diverse land use systems (LUS in Amazonia using nitrogen-free media. A total of 30 soil samples were collected from the following LUS: pristine forest, young secondary forest, old secondary forest, agroforestry, agriculture and pasture. Bacterial density was evaluated by the most probable number (MPN method utilizing N-free semi-solid media with varied compositions (JNFb, NFb, LGI and Fam. Individual isolates were characterized by colony and cellular morphology as well as total protein profiles and nitrogenase activity. Isolate genotypes were determined by partial 16S rDNA sequences. No typical diazotrophic growth in the JNFb medium was observed. Bacterial densities in the NFb medium were higher in the agriculture and agroforestry soil samples. In LGI and Fam media, bacterial densities were highest in the pasture soil samples. Overall, 22 isolates with high phenotypic diversity were obtained. Eleven isolates exhibited nitrogenase activity. Sequences of 16S rDNA genes of 14 out of 19 isolates had similarities below 100 % with known nitrogen-fixing species. Isolates were identified as belonging to the Burkholderia, Enterobacter, Serratia, Klebsiella, and Bacillus genera. A higher number of isolates from pasture soil samples were isolated, with the majority of these belonging to the Burkholderia and Bacillus genera. Among the isolates, unknown sequences were obtained, possibly indicating new species. Taken together, these data demonstrate that Fam, NFb, and LGI semi-solid media allowed the growth of diazotrophic bacteria belonging to different phylogenetic lines.

  18. Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth

    OpenAIRE

    Mattos, Katherine A; Vania L.M. Pádua; Alexandre Romeiro; Hallack,Leticia F.; Bianca C. Neves; Tecia M.U. Ulisses; Claudia F. Barros; Adriane R Todeschini; Previato, José O.; Lucia Mendonça-Previato

    2008-01-01

    Burkholderia kururiensis is a diazotrophic bacterium originally isolated from a polluted aquifer environment and presents a high level of similarity with the rice endophyte "B. brasilensis" species. This work assessed the ability of B. kururiensis to endophytically colonize rice plantlets by monitoring different tissues of root-inoculated plants for the presence of bacterial growth in different media, electron microscopy and by 16S rDNA analysis. Observations of roots, stems and leaves of ino...

  19. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.

    Science.gov (United States)

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Motta, Mariana Romeiro; Vieira, Tauan; Regulski, Michael; Martienssen, Robert A; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2014-09-06

    Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.

  20. Screening and selection of most potent diazotrophic cyanobacterial isolate exhibiting natural tolerance to rice field herbicides for exploitation as biofertilizer.

    Science.gov (United States)

    Singh, Surendra; Datta, Pallavi

    2006-01-01

    Periodic applications of heavy dosages of herbicides in modern rice-agriculture are a necessary evil for obtaining high crop productivity. Such herbicides are not only detrimental to weeds but biofertilizer strains of diazotrophic cyanobacteria also. It is therefore, essential to screen and select such biofertilizer strains of diazotrophic cyanobacteria exhibiting natural tolerance to common rice-field herbicides that can be further improved by mutational techniques to make biofertilizer technology a viable one. Therefore, efforts have been made to screen five dominant diazotrophic cyanobacterial forms e.g. filamentous heterocystous Nostoc punctiforme , Nostoc calcicola , Anabaena variabilis and unicellular Gloeocapsa sp. and Aphanocapsa sp. along with standard laboratory strain Nostoc muscorum ISU against increasing concentrations (0-100 mg l(-1) of four commercial grade common rice-field herbicides i.e. Arozin, Butachlor, Alachlor and 2,4-D under diazotrophic growth conditions. The lethal and IGC(50) concentrations for all four herbicides tested were found highest for A. variabilis as compared to other test cyanobacteria. The lowest reduction in chlorophyll a content, photosynthetic oxygen evolution, and N(2)-fixation was found in A. variabilis as compared to other rice field isolates and standard laboratory strain N. muscorum ISU. On the basis of prolong survival potential and lowest reductions in vital metabolic activities tested at IGC(50) concentration of four herbicides, it is concluded that A. variabilis is the most potent and promising cyanobacterial isolate as compared with other forms. This could be further improved by mutational techniques for exploitation as most potential and viable biofertilizer strain.

  1. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    Science.gov (United States)

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity.

  2. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity

    Science.gov (United States)

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M.; El-Arabi, Tarek F.; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2015-01-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization–confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. PMID:26705571

  3. Characterization of plant-growth promoting diazotrophic bacteria isolated from field grown Chinese cabbage under different fertilization conditions.

    Science.gov (United States)

    Yim, Woo-Jong; Poonguzhali, Selvaraj; Madhaiyan, Munusamy; Palaniappan, Pitchai; Siddikee, M A; Sa, Tongmin

    2009-04-01

    Diazotrophic bacteria isolated from the rhizosphere of Chinese cabbage were assessed for other plant growth promoting characteristics viz., production of IAA, ethylene, ACC deaminase, phosphate solubilization, and gnotobiotic root elongation. Their effect on inoculation to Chinese cabbage was also observed under growth chamber conditions. A total of 19 strains that showed higher nitrogenase activity identified by 16S rRNA gene sequence analysis were found to be the members of the genera Pseudomonas and Agrobacterium belonging to alpha- and gamma-Proteobacteria groups. These strains were also efficient in producing IAA and ACC deaminase though they produced low levels of ethylene and no phosphate solubilization. In addition, inoculation of selected diazotrophic bacterial strains significantly increased seedling length, dry weight, and total nitrogen when compared to uninoculated control. The colonization of crop plants by diazotrophic bacteria can be affected by many biotic and abiotic factors, and further studies are oriented towards investigating the factors that could influence the establishment of a selected bacterial community.

  4. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Fátima M.S. Moreira

    2008-12-01

    Full Text Available This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles and genotypically (16S rDNA sequencing, as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22, some (1R, S34 and S22 were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos, e genotípica (seqüenciamento de 16S rDNA, comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades

  5. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.

    Science.gov (United States)

    Ge, Han-Jing; Du, Shuang-Kui; Lin, De-Hui; Zhang, Jun-Na; Xiang, Jin-Le; Li, Zhi-Xi

    2011-12-01

    Strain M(438), deposited as CGMCC3917 and isolated from inoculums of bacterial cellulose (BC) producing strain screened in homemade vinegar and then induced by high hydrostatic pressure treatment (HHP), has strong ability to produce BC more than three times as that of its initial strain. It is the highest yield BC-producing strain ever reported. In this paper, M(438) was identidied as Gluconacetobacter hansenii subsp. nov. on the basis of the results obtained by examining it phylogenetically, phenotypically, and physiologically-biochemically. Furthermore, the genetic diversity of strain M(438) and its initial strain was examined by amplified fragment length polymorphism. The results indicated that strain M(438) was a deletion mutant induced by HHP, and the only deleted sequence showed 99% identity with 24,917-24,723 bp in the genome sequence of Ga. hansenii ATCC23769, and the complement gene sequence was at 24,699-25,019 bp with local tag GXY_15142, which codes small multidrug resistance (SMR) protein. It can be inferred that SMR might be related to inhibiting BC production to a certain extent.

  6. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source.

    Science.gov (United States)

    Lin, Dehui; Lopez-Sanchez, Patricia; Li, Rui; Li, Zhixi

    2014-01-01

    In order to improve the use of waste beer yeast (WBY) for bacterial cellulose production by Gluconacetobacter hansenii CGMCC 3917, a two-step pre-treatment was designed. First WBY was treated by 4 methods: 0.1M NaOH treatment, high speed homogenizer, ultrasonication and microwave treatment followed by hydrolysis (121°C, 20 min) under mild acid condition (pH 2). The optimal pre-treatment conditions were evaluated by the reducing sugar yield after hydrolysis. 15% WBY treated by ultrasonication for 40 min had the highest reducing sugar yield (29.19%), followed by NaOH treatment (28.98%), high speed homogenizer (13.33%) and microwaves (13.01%). Treated WBY hydrolysates were directly supplied as only nutrient source for BC production. A sugar concentration of 3% WBY hydrolysates treated by ultrasonication gave the highest BC yield (7.02 g/L), almost 6 times as that from untreated WBY (1.21 g/L). Furthermore, the properties of the BC were as good as those obtained from the conventional chemical media.

  7. INOCULATION OF DIAZOTROPHIC BACTERIA AND NITROGEN FERTILIZATION IN TOPDRESSING IN IRRIGATED CORN

    Directory of Open Access Journals (Sweden)

    VANESSA ZIRONDI LONGHINI

    2016-01-01

    Full Text Available Corn is a nitrogen-intensive crop, and the use of management practices such as inoculation of the seed with diazotrophic bacteria, which can maximize crop productivity and reduce the need of nitrogen fertilizers, may result in lower production costs. The present study aimed to evaluate the effect of inoculation of corn seed with Azospirillum brasilense and controlled addition of nitrogen to topdressing on the nutrition, production components, and productivity of crop grain. The experimental design was a randomized block design, with four replications in a 2 × 5 factorial scheme. The treatments consisted of inoculation or not of corn seed with A. brasilense (at 100 mL per 25 kg of seed and five nitrogen (N levels in topdressing (0, 30, 60, 90, and 120 kg N ha-1 from urea [45% N] were applied when the corn was in the phenological growth stage V6. Foliar macronutrients, foliar chlorophyll index (FCI, production components, and yield of corn grain were valuated. Inoculation of corn seeds with A. brasilense increased plant height and grain yield. Fertilization in topdressing, with N levels up to 120 kg ha-1, linearly increased the foliar nutrients and productivity of corn cultivated in the spring/summer in the low-altitude Cerrado region of Brazil.

  8. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.

    Directory of Open Access Journals (Sweden)

    Fábio O Pedrosa

    2011-05-01

    Full Text Available The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.

  9. Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae.

    Science.gov (United States)

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Dublan, Maria de Los Angeles; Curatti, Leonardo

    2012-04-01

    Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts.

  10. The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2

    Directory of Open Access Journals (Sweden)

    N. Ohkouchi

    2006-01-01

    Full Text Available In Livello Bonarelli black shale deposited during Cretaceous Oceanic Anoxic Event 2 (OAE-2, ca. 94 Ma, nitrogen isotopic compositions of bulk sediments are mostly in a narrow range from –2.7 to –0.7‰. We also determined molecular distribution and nitrogen isotopic compositions of geoporphyrins extracted from the black shale. The nitrogen isotopic compositions of C32 Ni deoxophylloerythroetioporphyrin (DPEP and total Ni porphyrins are –3.5 and –3.3‰, respectively, leading us to the estimation that the mean nitrogen isotopic composition of photoautotrophic cells were around +1‰ during the formation of Bonarelli black shale. This value is suggestive of N2-fixation, a dominant process for these photoautotrophs when assimilating nitrogen. Furthermore, Ni-chelated C32 DPEP, derived mainly from chlorophyll a had the highest concentration. Based on this evidence, we conclude that diazotrophic cyanobacteria were major primary producers during that time. Cyanobacteria may be key photoautotrophs during the formation of black shale type sediments intermittently observed throughout the later half of the Earth's history, and hence may have played a crucial role in the evolution of geochemical cycles even in the later half of the Earth's history.

  11. An importance of diazotrophic cyanobacteria as a primary producer during Cretaceous Oceanic Anoxic Event 2

    Directory of Open Access Journals (Sweden)

    N. Ohkouchi

    2006-06-01

    Full Text Available In Livello Bonarelli black shale deposited during Cretaceous Oceanic Anoxic Event 2 (OAE-2, ca. 94 Ma, nitrogen isotopic compositions of bulk sediments are in a narrow range from −2.7 to −0.7. We also determined molecular distribution and nitrogen isotopic compositions of geoporphyrins extracted from the black shale. The nitrogen isotopic compositions of C32 Ni deoxophylloerythroetioporphyrin (DPEP and total Ni porphyrins are −3.5 and −3.3, respectively, leading us to the estimation that the mean nitrogen isotopic composition of photoautotrophic cell was around +1 during the formation of Bonarelli black shale. This value is suggestive of N2-fixation a dominant process for these photoautotrophs when assimilating nitrogen. Furthermore, Ni-chelated C32 DPEP, derived mainly from chlorophyll a was the highest concentration. Based on these evidence, we conclude that diazotrophic cyanobacteria were major primary producers during that time. The cyanobacteria may be key photoautotrophs during the formation of black shale type sediments intermittently observed throughout the later half of the Earth's history, and hence may have played a crucial role in the evolution of geochemical cycles.

  12. Association with an Ammonium-Excreting Bacterium Allows Diazotrophic Culture of Oil-Rich Eukaryotic Microalgae

    Science.gov (United States)

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Dublan, Maria de los Angeles

    2012-01-01

    Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts. PMID:22267660

  13. Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in the VAHINE mesocosm experiments

    Science.gov (United States)

    Knapp, Angela N.; Fawcett, Sarah E.; Martínez-Garcia, Alfredo; Leblond, Nathalie; Moutin, Thierry; Bonnet, Sophie

    2016-08-01

    In a coastal lagoon with a shallow, 25 m water column off the southwest coast of New Caledonia, large-volume ( ˜ 50 m3) mesocosm experiments were undertaken to track the fate of newly fixed nitrogen (N). The mesocosms were intentionally fertilized with 0.8 µM dissolved inorganic phosphorus to stimulate diazotrophy. N isotopic evidence indicates that the dominant source of N fueling export production shifted from subsurface nitrate (NO3-) assimilated prior to the start of the 23-day experiments to N2 fixation by the end of the experiments. While the δ15N of the sinking particulate N (PNsink) flux changed during the experiments, the δ15N of the suspended PN (PNsusp) and dissolved organic N (DON) pools did not. This is consistent with previous observations that the δ15N of surface ocean N pools is less responsive than that of PNsink to changes in the dominant source of new N to surface waters. In spite of the absence of detectable NO3- in the mesocosms, the δ15N of PNsink indicated that NO3- continued to fuel a significant fraction of export production (20 to 60 %) throughout the 23-day experiments, with N2 fixation dominating export after about 2 weeks. The low rates of organic N export during the first 14 days were largely supported by NO3-, and phytoplankton abundance data suggest that sinking material primarily comprised large diatoms. Concurrent molecular and taxonomic studies indicate that the diazotroph community was dominated by diatom-diazotroph assemblages (DDAs) at this time. However, these DDAs represented a minor fraction (< 5 %) of the total diatom community and contributed very little new N via N2 fixation; they were thus not important for driving export production, either directly or indirectly. The unicellular cyanobacterial diazotroph, a Cyanothece-like UCYN-C, proliferated during the last phase of the experiments when N2 fixation, primary production, and the flux of PNsink increased significantly, and δ15N budgets reflected a predominantly

  14. Biogeochemical fluxes and fate of diazotroph-derived nitrogen in the food web after a phosphate enrichment: modeling of the VAHINE mesocosms experiment

    Science.gov (United States)

    Gimenez, Audrey; Baklouti, Melika; Bonnet, Sophie; Moutin, Thierry

    2016-09-01

    The VAHINE mesocosm experiment in the oligotrophic waters of the Nouméa lagoon (New Caledonia), where high N2 fixation rates and abundant diazotroph organisms were observed, aimed to assess the role of the nitrogen input through N2 fixation in carbon production and export and to study the fate of diazotroph-derived nitrogen (DDN) throughout the planktonic food web. A 1-D vertical biogeochemical mechanistic model was used in addition to the in situ experiment to enrich our understanding of the dynamics of the planktonic ecosystem and the main biogeochemical carbon (C), nitrogen (N) and phosphate (P) fluxes. The mesocosms were intentionally enriched with ˜ 0.8 µmol L-1 of inorganic P to trigger the development of diazotrophs and amplify biogeochemical fluxes. Two simulations were run, one with and the other without the phosphate enrichment. In the P-enriched simulation, N2 fixation, primary production (PP) and C export increased by 201, 208 and 87 %, respectively, consistent with the trends observed in the mesocosms (+124, +141 and +261 % for N2 fixation, PP and C export, respectively). In total, 5-10 days were necessary to obtain an increase in primary and export productions after the dissolved inorganic phosphate (DIP) enrichment, thereby suggesting that classical methods (short-term microcosms experiments) used to quantify nutrient limitations of primary production may not be relevant. The model enabled us to monitor the fate of fixed N2 by providing the proportion of DDN in each compartment (inorganic and organic) of the model over time. At the end of the simulation (25 days), 43 % of the DDN was found in the non-diazotroph organisms, 33 % in diazotrophs, 16 % in the dissolved organic nitrogen pool, 3 % in the particulate detrital organic pool and 5 % in traps, indicating that N2 fixation was of benefit to non-diazotrophic organisms and contributed to C export.

  15. The Green Berry Consortia of the Sippewissett Salt Marsh: Millimeter-Sized Aggregates of Diazotrophic Unicellular Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Wilbanks

    2017-09-01

    Full Text Available Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the “green berry” consortia of the Sippewissett salt marsh (Falmouth, MA, United States: millimeter-sized aggregates dominated by an uncultured, diazotrophic unicellular cyanobacterium of the order Chroococcales (termed GB-CYN1. We show that GB-CYN1 is closely related to Crocosphaera watsonii (UCYN-B and “Candidatus Atelocyanobacterium thalassa” (UCYN-A, two groups of unicellular diazotrophic cyanobacteria that play an important role in marine primary production. Other green berry consortium members include pennate diatoms and putative heterotrophic bacteria from the Alphaproteobacteria and Bacteroidetes. Tight coupling was observed between photosynthetic oxygen production and heterotrophic respiration. When illuminated, the green berries became supersaturated with oxygen. From the metagenome, we observed that GB-CYN1 encodes photosystem II genes and thus has the metabolic potential for oxygen production unlike UCYN-A. In darkness, respiratory activity rapidly depleted oxygen creating anoxia within the aggregates. Metagenomic data revealed a suite of nitrogen fixation genes encoded by GB-CYN1, and nitrogenase activity was confirmed at the whole-aggregate level by acetylene reduction assays. Metagenome reads homologous to marker genes for denitrification were observed and suggest that heterotrophic denitrifiers might co-occur in the green berries, although the physiology and activity of facultative anaerobes in these aggregates remains uncharacterized. Nitrogen fixation in the surface ocean was long thought to be driven by filamentous cyanobacterial aggregates, though recent work has demonstrated the importance of unicellular diazotrophic cyanobacteria (UCYN from the order Chroococcales. The green berries serve as a useful contrast to studies of open ocean UCYN and may

  16. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    Science.gov (United States)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  17. Single and mixed formulations of inoculants with diazotrophic bacteria, under different nitrogen rates and on the paddy rice crop

    Directory of Open Access Journals (Sweden)

    Paula Bianchet

    2013-12-01

    Full Text Available The use of diazotrophic bacteria as a biological input for the production of paddy rice can reduce nitrogen fertilizer applications and contribute to plant development. The use of mixed inoculants’ formulations can increase the efficiency of nitrogen fixation biological process. The objective of this study was to evaluate the effect of single and mixed formulations of inoculants with diazotrophic bacteria on the initial growth of paddy rice plants under different levels of N. The experiment was set in a greenhouse. Treatments consisted of four types of inoculation (no inoculation, inoculation with the isolated AI UDESC 27, inoculation with the isolated FE UDESC 22, and inoculation with the mixed formulation of isolated AI UDESC UDESC 27 and FE UDESC 22; and two levels of mineral nitrogen (30 and 60 mg kg-1 of N. The cultivar used was Epagri 109, which presents late maturity (over 140 days and high yield potential. Treatments were arranged in a factorial design (4 x 2 with five replicates. The experimental design was completely randomized. Inoculation with diazotrophic bacteria reduced by 18% and 26% shoot and root dry matter of rice plants, respectively. Plants also presented lower root area and volume when they were inoculated. There was no significant effect of inoculation and nitrogen rates on the number of leaves and tillers produced per plant or shoot nitrogen accumulation. The results showed that the isolated used in this work were not effective to stimulate shoot and root growth of cv Epagri 109, regardless of formulation type and rate of N.

  18. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum).

    Science.gov (United States)

    Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli

    2015-01-01

    The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site.

  19. Estimation of Nitrogenase Enzyme Activities and Plant Growth of Legume and Non-legume Inoculated with Diazotrophic Bacteria

    Directory of Open Access Journals (Sweden)

    Salwani S.

    2012-06-01

    Full Text Available Biological Nitrogen Fixation (BNF process benefits the agriculture sector especially for reducing cost of nitrogenfertilizer. In the process, the diazotrophs convert N2 into ammonia (NH3 which is useable by plants. The BNF process iscatalysed by nitrogenase enzyme that involved protons and electrons together with evolution of H2 therefore, theassessment of N2 fixation is also available via H2 production and electron allocation analysis. Thus, the aims of thisexperiment were to estimate the nitrogenase enzyme activities and observe the influence of diazothrophs on growth oflegume (soybean and non legume (rice plants. Host plants were inoculated with respective inocula; Bradyrhizobiumjaponicum (strain 532C for soybean while Azospirillum brasilense (Sp7 and locally isolated diazotroph (isolate 5 forrice. At harvest, the plants were observed for plant growth parameters, H2 evolution, N2 fixation and electron allocationcoefficient (EAC values. The experiment recorded N2 fixation activities of inoculated soybean plants at 141.2 μmol N2 h-1g-1 dry weight nodule, and the evolution of H2 at 144.4 μmol H2 h-1 g-1 dry weight nodule. The electron allocationcoefficient (EAC of soybean was recorded at 0.982. For inoculated rice plants, none of the observations was successfully recorded. However, results for chlorophyll contents and plant dry weight of both plants inoculated with respective inocula were similar to the control treatments supplied with full nitrogen fertilization (+N. The experiment clearly showed that inoculation of diazotrophic bacteria could enhance growth of the host plants similar to plants treated with nitrogenous fertilizer due to efficient N2 fixation process

  20. Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone

    Directory of Open Access Journals (Sweden)

    Lidia Stasiak-Różańska

    2011-03-01

    Full Text Available Introduction. Dihydroxyacetone (DHA, being a product of glycerol oxidation by acetic acid bacteria, is an important compound widely applied in the cosmetic, food, and pharmaceutical industry, as well as in medicine. Biotransformation of glycerol to DHA is catalyzed by glycerol dehydrogenase (GlyDH, EC 1.1.1.6 bound with the cytoplasmic membrane of bacteria. An attempt was undertaken in this study to conduct glycerol biotransformation with immobilized fractions of a cell preparation with GlyDH activity. The content of dihydroxyacetone obtained with the cell preparation was compared with its content achieved in the reaction with immobilized viable cells of G. xylinus. Material and methods. Cell walls of Gluconacetobacter xylinus bacteria were disintegrated enzymatically. The resultant preparation was immobilized on calcium alginate or first separated into two fractions (precipitate and supernatant by centrifugation and then immobilized. DHA content was determined colorimetrically after the reaction with 3,5-dinitrosalicilic acid. Glycerol content was assayed with the refractometric method. Results. After 20 days of the process, the concentration of DHA obtained with immobilized whole cells reached 25 g/l. In turn, the content of DHA obtained in the same period with immobilized fractions of the cell preparation accounted for 16.9 g/l and 8.95 g/l (depending on the fraction applied. Conclusions. DHA may be obtained in the process independent of G. xylinus metabolic activity using a preparation which displays the catalytic activity of glycerol dehydrogenase and obtained as a result of disintegration of live bacterial cells. The application of such a preparation may in the future eliminate technological problems posed by the presence of bacterial cells and their metabolites in the culture medium.

  1. Control of Acetic Acid Fermentation by Quorum Sensing via N-Acylhomoserine Lactones in Gluconacetobacter intermedius▿ †

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-01-01

    A number of gram-negative bacteria regulate gene expression in a cell density-dependent manner by quorum sensing via N-acylhomoserine lactones (AHLs). Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, produces three different AHLs, N-decanoyl-l-homoserine lactone, N-dodecanoyl-l-homoserine lactone, and an N-dodecanoyl-l-homoserine lactone with a single unsaturated bond in its acyl chain, as determined by liquid chromatography-tandem mass spectrometry. Two genes encoding an AHL synthase and a cognate regulator were cloned from strain NCI1051 and designated ginI and ginR, respectively. Disruption of ginI or ginR abolished AHL production, indicating that NCI1051 contains a single set of quorum-sensing genes. Transcriptional analysis showed that ginI is activated by GinR, which is consistent with the finding that there is an inverted repeat whose nucleotide sequence is similar to the sequence bound by members of the LuxR family at position −45 with respect to the transcriptional start site of ginI. A single gene, designated ginA, located just downstream of ginI is transcribed by read-through from the GinR-inducible ginI promoter. A ginA mutant, as well as the ginI and ginR mutants, grew more rapidly in medium containing 2% (vol/vol) ethanol and accumulated acetic acid at a higher rate with a greater final yield than parental strain NCI1051. In addition, these mutants produced larger amounts of gluconic acid than the parental strain. These data demonstrate that the GinI/GinR quorum-sensing system in G. intermedius controls the expression of ginA, which in turn represses oxidative fermentation, including acetic acid and gluconic acid fermentation. PMID:18245283

  2. Mutations in FMN Binding Pocket Diminish Chromate Reduction Rates for Gh-ChrR Isolated from Gluconacetobacter hansenii

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Janin A.; Gong, Chunhong; Zhang, Yanfeng; Tan, Ruimin; Squier, Thomas C.; Jin, Hongjun

    2013-06-01

    A putative chromate ion binding site was identified proximal to a rigidly bound FMN from electron densities in the crystal structure of the quinone reductase from Gluconacetobacter hansenii (Gh-ChrR) (3s2y.pdb). To clarify the location of the chromate binding site, and to understand the role of FMN in the NADPH-dependent reduction of chromate, we have expressed and purified four mutant enzymes involving the site-specific substitution of individual side chains within the FMN binding pocket that form non-covalent bonds with the ribityl phosphate (i.e., S15A and R17A in loop 1 between β1 sheet and α1 helix) or the isoalloxanzine ring (E83A or Y84A in loop 4 between the β3 sheet and α4 helix). Mutations that selectively disrupt hydrogen bonds between either the N3 nitrogen on the isoalloxanzine ring (i.e., E83) or the ribitylphos- phoate (i.e., S15) respectively result in 50% or 70% reductions in catalytic rates of chromate reduction. In comparison, mutations that disrupt π-π ring stacking interactions with the isoal-loxanzine ring (i.e., Y84) or a salt bridge with the ribityl phosphate result in 87% and 97% inhibittion. In all cases there are minimal alterations in chromate binding affinities. Collectively, these results support the hypothesis that chromate binds proximal to FMN, and implicate a structural role for FMN positioning for optimal chromate reduction rates. As side chains proximal to the β3/α4 FMN binding loop 4 contribute to both NADH and metal ion binding, we propose a model in which structural changes around the FMN binding pocket couples to both chromate and NADH binding sites.

  3. Characterization of pellicle inhibition in Gluconacetobacter xylinus 53582 by a small molecule, pellicin, identified by a chemical genetics screen.

    Directory of Open Access Journals (Sweden)

    Janice L Strap

    Full Text Available Pellicin ([2E]-3-phenyl-1-[2,3,4,5-tetrahydro-1,6-benzodioxocin-8-yl]prop-2-en-1-one was identified in a chemical genetics screen of 10,000 small molecules for its ability to completely abolish pellicle production in Gluconacetobacter xylinus. Cells grown in the presence of pellicin grew 1.5 times faster than untreated cells. Interestingly, growth in pellicin also caused G. xylinus cells to elongate. Measurement of cellulose synthesis in vitro showed that cellulose synthase activity was not directly inhibited by pellicin. Rather, when cellulose synthase activity was measured in cells that were pre-treated with the compound, the rate of cellulose synthesis increased eight-fold over that observed for untreated cells. This phenomenon was also apparent in the rapid production of cellulose when cells grown in the presence of pellicin were washed and transferred to media lacking the inhibitor. The rate at which cellulose was produced could not be accounted for by growth of the organism. Pellicin was not detected when intracellular contents were analyzed. Furthermore, it was found that pellicin exerts its effect extracellularly by interfering with the crystallization of pre-cellulosic tactoidal aggregates. This interference of the crystallization process resulted in enhanced production of cellulose II as evidenced by the ratio of acid insoluble to acid soluble product in in vitro assays and confirmed in vivo by scanning electron microscopy and powder X-ray diffraction. The relative crystallinity index, RCI, of pellicle produced by untreated G. xylinus cultures was 70% while pellicin-grown cultures had RCI of 38%. Mercerized pellicle of untreated cells had RCI of 42%, which further confirms the mechanism of action of pellicin as an inhibitor of the cellulose I crystallization process. Pellicin is a useful tool for the study of cellulose biosynthesis in G. xylinus.

  4. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Hyun, Jo Yi; Mahanty, Biswanath; Kim, Chang Gyun

    2014-04-01

    Search for efficient low-cost substrate/additives are gaining significant impetus in bacterial cellulose (BC) production. Makgeolli sludge (a traditional Korean wine distillery waste) is enriched with organic acid, alcohol, and sugar. Using makgeolli sludge filtrate (MSF) and Hestrin-Schramm (HS) medium (g/l of distilled water: glucose, 10.0; peptone, 5.0; yeast extract, 5.0; disodium phosphate, 2.7; citric acid, 1.15; pH 5.0), two different media-namely the modified HS media (ingredients of HS media except glucose dissolved in MSF) and mixed modified HS media (equal volume mixture of original and modified HS media)-were formulated. BC production with Gluconacetobacter xylinus was studied using the two above referred medium. Keeping HS medium as reference, effect of initial pH, glucose, ethanol, and organic acid concentration on BC production was also studied. It suggests that increasing initial glucose (up to 25 g/l) though improves BC production but results in poor BC yield above 15 g/l of glucose. However, addition of alcohol (up to 1%v/v) or citric acid (up to 20 mM) escalate productivity up to four and two times, respectively. In both modified HS media and mixed modified HS medium, BC production was four to five times higher than that of original HS medium. Even MSF alone surpassed HS medium in BC production. Scanning electron microscopy showed that BC microfibrils from MSF based media were several micrometers long and about 25-60 nm widths. X-ray diffraction patterns suggested the produced BC were of cellulose I polymorph.

  5. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  6. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    Science.gov (United States)

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  7. Revealing differences in metabolic flux distributions between a mutant strain and its parent strain Gluconacetobacter xylinus CGMCC 2955.

    Directory of Open Access Journals (Sweden)

    Cheng Zhong

    Full Text Available A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955 using DEC (diethyl sulfate and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA cycle was obtained in mutant strain (57.0% compared with parent strain (17.0%. It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH, which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53-6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain.

  8. Intriguing diversity among diazotrophic picoplankton along a Mediterranean transect: from the origin of plastids to the dominance of rhizobia

    Science.gov (United States)

    Le Moal, M.; Collin, H.; Biegala, I. C.

    2010-12-01

    The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has been formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH phylogenies. These genetic analyses were possible owning to the development of a new PCR protocol adapted for scarce microorganisms (0.2 cell ml-1). Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized with Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml-1 of Richelia were detected in the eastern basin, while small (0.7-1.5 μm) and large (2.5-3.2 μm) Nitro821-targeted cells were recovered at all stations and averaged 3.5 cell ml-1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. Surprisingly, the larger hybridized cells were not belonging to UCYN-B and C but to plastids of picoeukaryote. NifH gene was not recovered among picoeukaryotes, when rhizobia sequences, including the ones of Bradyrhizobia, were dominating nifH clone libraries from picoplanktonic size fractions. Few sequences of γ-proteobacteria were also detected in central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles

  9. Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the Western Tropical South Pacific

    OpenAIRE

    Stenegren, Marcus; Caputo, Andrea; Berg, Carlo; Bonnet, Sophie; Foster, Rachel A.

    2017-01-01

    The abundance and distribution of cyanobacterial diazotrophs were quantified in two regions (Melanesian archipelago, MA and subtropical gyre, SG) of the Western Tropical South Pacific using nifH qPCR assays. UCYN-A1 and A2 host populations were quantified using 18S rRNA qPCR assays including one newly developed assay. All phylotypes were detected in the upper photic zone (0–50 m), with higher abundances in the MA region. Trichodesmium and UCYN-B dominated, composing 81–100&...

  10. Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822

    Energy Technology Data Exchange (ETDEWEB)

    Welkie, David G. [Purdue Univ., West Lafayette, IN (United States); Sherman, Debra M. [Purdue Univ., West Lafayette, IN (United States); Chrisler, William B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orr, Galya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sherman, Louis A. [Purdue Univ., West Lafayette, IN (United States)

    2013-10-19

    The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H2 production when grown under 12h light-12h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culture synchronicity, and intracellular storage content. Reduction in NaNO3 and K2HPO4 concentrations from 17.6 and 0.23 mM to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and Cyanothece PCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria.

  11. DRIVERS OF THE DYNAMICS OF DIAZOTROPHS AND DENITRIFIERS IN NORTH SEA BOTTOM WATERS AND SEDIMENTS

    Directory of Open Access Journals (Sweden)

    Lucas eStal

    2015-07-01

    Full Text Available The fixation of dinitrogen (N2 and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L-1 d-1 and from undetectable to 8.2 nmol N g-1 d-1 in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 µmol m-2 d-1 and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and

  12. Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability

    Science.gov (United States)

    Coloma, Sebastián; Sivonen, Kaarina

    2016-01-01

    Interactions between nitrogen-fixing (i.e. diazotrophic) cyanobacteria and their viruses, cyanophages, can have large-scale ecosystem effects. These effects are mediated by temporal alterations in nutrient availability in aquatic systems owing to the release of nitrogen and carbon sources from cells lysed by phages, as well as by ecologically important changes in the diversity and fitness of cyanobacterial populations that evolve in the presence of phages. However, ecological and evolutionary feedbacks between phages and nitrogen-fixing cyanobacteria are still relative poorly understood. Here, we used an experimental evolution approach to test the effect of interactions between a common filamentous, nitrogen-fixing cyanobacterium (Nodularia sp.) and its phage on cellular nitrogen release and host properties. Ecological, community-level effects of phage-mediated nitrogen release were tested with a phytoplankton bioassay. We found that cyanobacterial nitrogen release increased significantly as a result of viral lysis, which was associated with enhanced growth of phytoplankton species in cell-free filtrates compared with phage-resistant host controls in which lysis and subsequent nutrient release did not occur after phage exposure. We also observed an ecologically important change among phage-evolved cyanobacteria with phage-resistant phenotypes, a short-filamentous morphotype with reduced buoyancy compared with the ancestral long-filamentous morphotype. Reduced buoyancy might decrease the ability of these morphotypes to compete for light compared with longer, more buoyant filaments. Together, these findings demonstrate the potential of cyanobacteria–phage interactions to affect ecosystem biogeochemical cycles and planktonic community dynamics. PMID:28083116

  13. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae.

    Science.gov (United States)

    Ambrosio, Rafael; Ortiz-Marquez, Juan Cesar Federico; Curatti, Leonardo

    2017-03-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N2 and CO2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N2 from the air into crops. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All

  14. Permanent draft genome of strain ESFC-1: ecological genomics of a newly discovered lineage of filamentous diazotrophic cyanobacteria.

    Science.gov (United States)

    Everroad, R Craig; Stuart, Rhona K; Bebout, Brad M; Detweiler, Angela M; Lee, Jackson Z; Woebken, Dagmar; Prufert-Bebout, Leslie; Pett-Ridge, Jennifer

    2016-01-01

    The nonheterocystous filamentous cyanobacterium, strain ESFC-1, is a recently described member of the order Oscillatoriales within the Cyanobacteria. ESFC-1 has been shown to be a major diazotroph in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16S RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence; the draft genome sequence of this strain has now been determined. Here we report features of this genome as they relate to the ecological functions and capabilities of strain ESFC-1. The 5,632,035 bp genome sequence encodes 4914 protein-coding genes and 92 RNA genes. One striking feature of this cyanobacterium is the apparent lack of either uptake or bi-directional hydrogenases typically expected within a diazotroph. Additionally, a large genomic island is found that contains numerous low GC-content genes and genes related to extracellular polysaccharide production and cell wall synthesis and maintenance.

  15. Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt

    Directory of Open Access Journals (Sweden)

    Amira L. Hanna

    2013-01-01

    Full Text Available North Sinai deserts were surveyed for the predominant plant cover and for the culturable bacteria nesting their roots and shoots. Among 43 plant species reported, 13 are perennial (e.g. Fagonia spp., Pancratium spp. and 30 annuals (e.g. Bromus spp., Erodium spp.. Eleven species possessed rhizo-sheath, e.g. Cyperus capitatus, Panicum turgidum and Trisetaria koelerioides. Microbiological analyses demonstrated: the great diversity and richness of associated culturable bacteria, in particular nitrogen-fixing bacteria (diazotrophs; the majority of bacterial residents were of true and/or putative diazotrophic nature; the bacterial populations followed an increasing density gradient towards the root surfaces; sizeable populations were able to reside inside the root (endorhizosphere and shoot (endophyllosphere tissues. Three hundred bacterial isolates were secured from studied spheres. The majority of nitrogen-fixing bacilli isolates belonged to Bacillus megaterium, Bacillus pumilus, Bacillus polymexa, Bacillus macerans, Bacillus circulans and Bacillus licheniformis. The family Enterobacteriaceae represented by Enterobacter agglomerans, Enterobacter sackazakii, Enterobacter cloacae, Serratia adorifera, Serratia liquefaciens and Klebsiella oxytoca. The non-Enterobacteriaceae population was rich in Pantoae spp., Agrobacterium rdiobacter, Pseudomonas vesicularis, Pseudomonas putida, Stenotrophomonas maltophilia, Ochrobactrum anthropi, Sphingomonas paucimobilis and Chrysemonas luteola. Gluconacetobacter diazotrophicus were reported inside root and shoot tissues of a number of tested plants. The dense bacterial populations reported speak well to the very possible significant role played by the endophytic bacterial populations in the survival, in respect of nutrition and health, of existing plants. Such groups of diazotrophs are good candidates, as bio-preparates, to support the growth of future field crops grown in deserts of north Sinai and irrigated by the

  16. Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt.

    Science.gov (United States)

    Hanna, Amira L; Youssef, Hanan H; Amer, Wafaa M; Monib, Mohammed; Fayez, Mohammed; Hegazi, Nabil A

    2013-01-01

    North Sinai deserts were surveyed for the predominant plant cover and for the culturable bacteria nesting their roots and shoots. Among 43 plant species reported, 13 are perennial (e.g. Fagonia spp., Pancratium spp.) and 30 annuals (e.g. Bromus spp., Erodium spp.). Eleven species possessed rhizo-sheath, e.g. Cyperus capitatus, Panicum turgidum and Trisetaria koelerioides. Microbiological analyses demonstrated: the great diversity and richness of associated culturable bacteria, in particular nitrogen-fixing bacteria (diazotrophs); the majority of bacterial residents were of true and/or putative diazotrophic nature; the bacterial populations followed an increasing density gradient towards the root surfaces; sizeable populations were able to reside inside the root (endorhizosphere) and shoot (endophyllosphere) tissues. Three hundred bacterial isolates were secured from studied spheres. The majority of nitrogen-fixing bacilli isolates belonged to Bacillus megaterium, Bacillus pumilus, Bacillus polymexa, Bacillus macerans, Bacillus circulans and Bacillus licheniformis. The family Enterobacteriaceae represented by Enterobacter agglomerans, Enterobacter sackazakii, Enterobacter cloacae, Serratia adorifera, Serratia liquefaciens and Klebsiella oxytoca. The non-Enterobacteriaceae population was rich in Pantoae spp., Agrobacterium rdiobacter, Pseudomonas vesicularis, Pseudomonas putida, Stenotrophomonas maltophilia, Ochrobactrum anthropi, Sphingomonas paucimobilis and Chrysemonas luteola. Gluconacetobacter diazotrophicus were reported inside root and shoot tissues of a number of tested plants. The dense bacterial populations reported speak well to the very possible significant role played by the endophytic bacterial populations in the survival, in respect of nutrition and health, of existing plants. Such groups of diazotrophs are good candidates, as bio-preparates, to support the growth of future field crops grown in deserts of north Sinai and irrigated by the water of El

  17. Investigating Microbial Activity in Diazotrophic Methane Seep Sediment via Transcript Analysis and Single-Cell FISH-NanoSIMS

    Science.gov (United States)

    Dekas, A. E.; Connon, S. A.; Chadwick, G.; Orphan, V. J.

    2012-12-01

    Methane seep microbial ecosystems are phylogenetically diverse and physiologically complex, and require culture-independent techniques to accurately investigate metabolic activity. In the present study we combine an RNA analysis of four key microbial genes with FISH-NanoSIMS analysis of single cells to determine the diversity of nitrogen fixing microorganisms (diazotrophs) present at a deep-sea methane-seeping site, as well as investigate the methane-dependency of a variety of community members. Recently, methane-dependent nitrogen fixation was observed in Mound 12 Costa Rica sediments, and was spatially correlated with the abundance of aggregates of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacterial symbionts (SRB). Combined with the detection of 15N uptake from 15N2 in these aggregates, this suggested that the ANME-SRB aggregates are the primary diazotrophs in seep sediment. However, the diversity of dinitrogenase reductase (nifH) sequences recovered from several deep-sea locales, including Mound 12, suggests a greater diversity of diazotrophs in marine sediment. To investigate the activity of these potential diazotrophs in Mound 12 sediment, we investigated a suite of RNA transcripts in 15N2 incubations in both the presence and absence of methane: nifH, bacterial 16S rRNA, methyl coenzyme M reductase A (mcrA), and adenosine-5'-phosposulfate reductase alpha subunit (aprA). No nifH transcripts were recovered in incubations without methane, consistent with previous measurements lacking 15N2 uptake in the same sediments. The activity of the bacterial community in general, assessed by variable transcription, was also greatly affected by the presence or absence of methane. Single-cell fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) was employed to confirm diazotrophic activity (15N2 uptake) and protein synthesis (15NH4+ uptake) of particular species implicated as ecologically important by the

  18. Contribution and pathways of diazotroph-derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon

    Science.gov (United States)

    Hunt, Brian P. V.; Bonnet, Sophie; Berthelot, Hugo; Conroy, Brandon J.; Foster, Rachel A.; Pagano, Marc

    2016-05-01

    In oligotrophic tropical and subtropical oceans, where strong stratification can limit the replenishment of surface nitrate, dinitrogen (N2) fixation by diazotrophs can represent a significant source of nitrogen (N) for primary production. The VAHINE (VAriability of vertical and tropHIc transfer of fixed N2 in the south-wEst Pacific) experiment was designed to examine the fate of diazotroph-derived nitrogen (DDN) in such ecosystems. In austral summer 2013, three large ( ˜ 50 m3) in situ mesocosms were deployed for 23 days in the New Caledonia lagoon, an ecosystem that typifies the low-nutrient, low-chlorophyll environment, to stimulate diazotroph production. The zooplankton component of the study aimed to measure the incorporation of DDN into zooplankton biomass, and assess the role of direct diazotroph grazing by zooplankton as a DDN uptake pathway. Inside the mesocosms, the diatom-diazotroph association (DDA) het-1 predominated during days 5-15 while the unicellular diazotrophic cyanobacteria UCYN-C predominated during days 15-23. A Trichodesmium bloom was observed in the lagoon (outside the mesocosms) towards the end of the experiment. The zooplankton community was dominated by copepods (63 % of total abundance) for the duration of the experiment. Using two-source N isotope mixing models we estimated a mean ˜ 28 % contribution of DDN to zooplankton nitrogen biomass at the start of the experiment, indicating that the natural summer peak of N2 fixation in the lagoon was already contributing significantly to the zooplankton. Stimulation of N2 fixation in the mesocosms corresponded with a generally low-level enhancement of DDN contribution to zooplankton nitrogen biomass, but with a peak of ˜ 73 % in mesocosm 1 following the UCYN-C bloom. qPCR analysis targeting four of the common diazotroph groups present in the mesocosms (Trichodesmium, het-1, het-2, UCYN-C) demonstrated that all four were ingested by copepod grazers, and that their abundance in copepod

  19. Visualizing Single Cell Biology: Nanosims Studies of Carbon and Nitrogen Metabolism in Diazotrophic Cyanobacteria

    Science.gov (United States)

    Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.

    2007-12-01

    Filamentous nitrogen fixing (diazotrophic) cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. These bacteria are faced with the challenge of isolating regions of N-fixation (O2 inhibited) and photosynthetic (O2 producing) activity. We used isotope labeling in conjunction with a high-resolution isotope and elemental mapping technique (NanoSIMS) to quantitatively describe 13C and 15N uptake and transport in two aquatic cyanobacteria grown on NaH13CO3 and 15N2. The technical challenges of tracing isotopes within individual bacteria can be overcome with high resolution Secondary Ion Mass Spectrometry (NanoSIMS). In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio 'map' can then be generated for the analyzed area. Using sequentially harvested cyanobacteria in conjunction with enriched H13CO3 and 15N2 incubations, we measured temporal enrichment patterns that evolve over the course of a day's growth and suggest tightly regulated changes in fixation kinetics. With a combination of TEM, SEM and NanoSIMS analyses, we also mapped the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. Our results suggest that NanoSIMS mapping of metal enzyme co-factors may be a powerful method of identifying physiological and morphological characteristics within individual bacterial cells, and could be used to provide a 3-dimensional context for more traditional analyses such as immunogold labeling. Finally, we resolved patterns of isotope enrichment at multiple spatial scales: sub-cellular variation, cell-cell differences along filaments

  20. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  1. The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions.

    Directory of Open Access Journals (Sweden)

    Anastasia Venieraki

    Full Text Available The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS and glutathione peroxidise (gshP. The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

  2. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N₂ fixation in the tropical Atlantic Ocean.

    Science.gov (United States)

    Goebel, Nicole L; Turk, Kendra A; Achilles, Katherine M; Paerl, Ryan; Hewson, Ian; Morrison, Amanda E; Montoya, Joseph P; Edwards, Christopher A; Zehr, Jonathan P

    2010-12-01

    The abundances of six N₂-fixing cyanobacterial phylotypes were profiled at 22 stations across the tropical Atlantic Ocean during June 2006, and used to model the contribution of the diazotrophs to N₂ fixation. Diazotroph abundances were measured by targeting the nifH gene of Trichodesmium, unicellular groups A, B, C (UCYN-A, UCYN-B and UCYN-C), and diatom-cyanobiont symbioses Hemiaulus-Richelia, Rhizosolenia-Richelia and Chaetoceros-Calothrix. West to east gradients in temperature, salinity and nutrients [NO₃⁻ + NO₂⁻, PO₄³⁻, Si(OH)₄] showed the influence of the Amazon River plume and its effect on the distributions of the diazotrophs. Trichodesmium accounted for more than 93% of all nifH genes detected, dominated the warmer waters of the western Atlantic, and was the only diazotroph detected at the equatorial upwelling station. UCYN-A was the next most abundant (> 5% of all nifH genes) and dominated the cooler waters of the eastern Atlantic near the Cape Verde Islands. UCYN-C was found at a single depth (200 m) of high salinity and low temperature and nutrients, whereas UCYN-B cells were widespread but in very low abundance (6.1 × 10¹ ± 4.6 × 10² gene copies l⁻¹). The diatom-cyanobionts were observed primarily in the western Atlantic within or near the high Si(OH)₄ input of the Amazon River plume. Overall, highest diazotroph abundances were observed at the surface and declined with depth, except for some subsurface peaks in Trichodesmium, UCYN-B and UCYN-A. Modelled contributions of Trichodesmium, UCYN-B and UCYN-A to total N₂ fixation suggested that Trichodesmium had the largest input, except for the potential of UCYN-A at the Cape Verde Islands.

  3. The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions.

    Science.gov (United States)

    Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis

    2014-01-01

    The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

  4. An OmpA Family Protein, a Target of the GinI/GinR Quorum-Sensing System in Gluconacetobacter intermedius, Controls Acetic Acid Fermentation▿ †

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-01-01

    Via N-acylhomoserine lactones, the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, represses acetic acid and gluconic acid fermentation. Two-dimensional polyacrylamide gel electrophoretic analysis of protein profiles of strain NCI1051 and ginI and ginR mutants identified a protein that was produced in response to the GinI/GinR regulatory system. Cloning and nucleotide sequencing of the gene encoding this protein revealed that it encoded an OmpA family protein, named GmpA. gmpA was a member of the gene cluster containing three adjacent homologous genes, gmpA to gmpC, the organization of which appeared to be unique to vinegar producers, including “Gluconacetobacter polyoxogenes.” In addition, GmpA was unique among the OmpA family proteins in that its N-terminal membrane domain forming eight antiparallel transmembrane β-strands contained an extra sequence in one of the surface-exposed loops. Transcriptional analysis showed that only gmpA of the three adjacent gmp genes was activated by the GinI/GinR quorum-sensing system. However, gmpA was not controlled directly by GinR but was controlled by an 89-amino-acid protein, GinA, a target of this quorum-sensing system. A gmpA mutant grew more rapidly in the presence of 2% (vol/vol) ethanol and accumulated acetic acid and gluconic acid in greater final yields than strain NCI1051. Thus, GmpA plays a role in repressing oxidative fermentation, including acetic acid fermentation, which is unique to acetic acid bacteria and allows ATP synthesis via ethanol oxidation. Consistent with the involvement of gmpA in oxidative fermentation, its transcription was also enhanced by ethanol and acetic acid. PMID:18487322

  5. An OmpA family protein, a target of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius, controls acetic acid fermentation.

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-07-01

    Via N-acylhomoserine lactones, the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, represses acetic acid and gluconic acid fermentation. Two-dimensional polyacrylamide gel electrophoretic analysis of protein profiles of strain NCI1051 and ginI and ginR mutants identified a protein that was produced in response to the GinI/GinR regulatory system. Cloning and nucleotide sequencing of the gene encoding this protein revealed that it encoded an OmpA family protein, named GmpA. gmpA was a member of the gene cluster containing three adjacent homologous genes, gmpA to gmpC, the organization of which appeared to be unique to vinegar producers, including "Gluconacetobacter polyoxogenes." In addition, GmpA was unique among the OmpA family proteins in that its N-terminal membrane domain forming eight antiparallel transmembrane beta-strands contained an extra sequence in one of the surface-exposed loops. Transcriptional analysis showed that only gmpA of the three adjacent gmp genes was activated by the GinI/GinR quorum-sensing system. However, gmpA was not controlled directly by GinR but was controlled by an 89-amino-acid protein, GinA, a target of this quorum-sensing system. A gmpA mutant grew more rapidly in the presence of 2% (vol/vol) ethanol and accumulated acetic acid and gluconic acid in greater final yields than strain NCI1051. Thus, GmpA plays a role in repressing oxidative fermentation, including acetic acid fermentation, which is unique to acetic acid bacteria and allows ATP synthesis via ethanol oxidation. Consistent with the involvement of gmpA in oxidative fermentation, its transcription was also enhanced by ethanol and acetic acid.

  6. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia.

    Science.gov (United States)

    Knoth, Jenny L; Kim, Soo-Hyung; Ettl, Gregory J; Doty, Sharon L

    2014-01-01

    Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through (15)N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs.

  7. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry

    Directory of Open Access Journals (Sweden)

    L.P.S. Alves

    Full Text Available The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i cell permeabilization, ii Nile red staining, and iii analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99 compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots.

  8. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    Science.gov (United States)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    We used 15N2 gas to trace nitrogen (N) from biological N2-fixation to vascular plant uptake in an Alberta bog in order to determine if neighboring bog plants acquire recently fixed N from diazotrophs associating with Sphagnum mosses. Recent evidence indicates high rates of N2-fixation in Sphagnum mosses of Alberta bogs (Vile et al. 2013). Our previous work has shown that mosses can assimilate fixed N from associated diazotrophs as evidenced by the high N content of mosses despite minimal inputs from atmospheric deposition, retranslocation, and N mineralization. Therefore, the potential exists for vascular plants to obtain N from ';leaky' tissues of live mosses, however, this phenomenon has not been tested previously. Here we document the potential for relatively rapid transfer to vascular plants of N fixed by Sphagnum moss-associated diazotrophs. We utilized the novel approach of incubating mosses in 15N2 to allow the process of diazotrophic N2-fixation to mechanistically provide the 15N label, which is subsequently transferred to Sphagnum mosses. The potential for vascular bog natives to tap this N was assessed by planting the vascular plants in the labeled moss. Sphagnum mosses (upper 3 cm of live plants) were incubated in the presence of 98 atom % 15N2 gas for 48 hours. Two vascular plants common to Alberta bogs; Picea mariana and Vaccinium oxycoccus were then placed in the labeled mosses, where the mosses served as the substrate. Tissue samples from these plants were collected at three time points during the incubation; prior to 15N2 exposure (to determine natural abundance 15N), and at one and two months after 15N2 exposure. Roots and leaves were separated and run separately on a mass spectrometer to determine 15N concentrations. Sphagnum moss capitula obtained N from N2-fixation (δ15N of -2.43 × 0.40, 122.76 × 23.78, 224.92 × 68.37, 143.74 × 54.38 prior to, immediately after, and at 1 and 2 months after exposure to 15N2, respectively). Nitrogen was

  9. Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria.

    Science.gov (United States)

    Tsujimoto, Ryoma; Kamiya, Narumi; Fujita, Yuichi

    2014-05-06

    Leptolyngbya boryana (Plectonema boryanum) is a diazotrophic cyanobacterium lacking heterocysts. How nitrogen fixation is regulated in filamentous nonheterocystous cyanobacteria remains unclear. Here we describe a large 50-kb nitrogen fixation (nif) gene cluster in L. boryana containing 50 genes. This gene cluster contains 14 nif genes (nifBSUHDKVZT and nifPENXW), two genes encoding transcriptional regulators showing high similarity to ChlR (chlorophyll regulator) and PatB, three genes encoding ferredoxin, three genes encoding cytochrome oxidase subunits, and 28 genes encoding nif-related proteins and proteins with putative or unknown functions. Eleven mutants lacking one gene or a subset of genes were isolated. Five of them did not grow under diazotrophic conditions, including two mutants lacking the transcriptional regulators. Although the chlR homolog-lacking mutant showed a normal level of nitrogenase activity, various intermediates of chlorophyll biosynthesis were accumulated under micro-oxic conditions. The phenotype suggested that ChlR activates the expression of the genes responsible for anaerobic chlorophyll biosynthesis to support energy supply for nitrogen fixation. In another mutant lacking the patB homolog, no transcripts of any nif genes were detected under nitrogen fixation conditions, which was consistent with no activity. Constitutive expression of patB in a shuttle vector resulted in low but significant nitrogenase activity even under nitrate-replete conditions, suggesting that the PatB homolog is the master regulator of nitrogen fixation. We propose to rename the patB homolog as cnfR, after cyanobacterial nitrogen fixation regulator.

  10. Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka).

    Science.gov (United States)

    Rameshkumar, N; Gomez-Gil, B; Spröer, Cathrin; Lang, Elke; Dinesh Kumar, N; Krishnamurthi, S; Nair, Sudha; Roque, A

    2011-11-01

    Two Gram negative, facultatively anaerobic, halophilic, motile, slightly curved rod-shaped bacterial strains MSSRF60(T) and MSSRF64 were isolated from the roots of a mangrove-associated wild rice collected in the Pichavaram mangroves, India. These strains possess the key functional nitrogenase gene nifH. Phylogenetic analysis based on the 16S rRNA, recA, gapA, mreB, gyrB and pyrH, gene sequences revealed that strains MSSRF60(T) and MSSRF64 belong to the genus Vibrio, and had the highest sequence similarity with the type strains of Vibrio diazotrophicus LMG 7893(T) (99.7, 94.8, 98.5, 97.9, 94.0 and 90.7%, respectively), Vibrio areninigrae J74(T) (98.2, 87.5, 91.5, 88.9, 86.5 and 84.6% respectively) and Vibrio hispanicus LMG 13240(T) (97.8, 87.1, 91.7, 89.8, 84.1 and 81.9%, respectively). The fatty acid composition too confirmed the affiliation of strains MSSRF60(T) and MSSRF64 to the genus Vibrio. These strains can be differentiated from the most closely related Vibrio species by several phenotypic traits. The DNA G+C content of strain MSSRF60(T) was 41.8mol%. Based on phenotypic, chemotaxonomic, genotypic (multilocus sequence analysis using five genes and genomic fingerprinting using BOX-PCR) and DNA-DNA hybridization analyses, strains MSSRF60(T) and MSSRF64 represent a novel species of the genus Vibrio, for which the name Vibrio plantipsonsor sp. nov. is proposed. The type strain is MSSRF60(T) (=DSM 21026(T)=LMG 24470(T)=CAIM 1392(T)).

  11. Response of biological soil crust diazotrophs to season, altered summer precipitation and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Directory of Open Access Journals (Sweden)

    Chris M Yeager

    2012-10-01

    Full Text Available Biological soil crusts (biocrusts, which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33 Tg y-1, are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring, as well as field manipulations that increased the frequency of small-volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3x106 – 1x108 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised > 98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low and spring (high. A year-round increase of soil temperature (2 − 3 °C had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6 fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small-volume precipitation events.

  12. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Science.gov (United States)

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; Johnson, Shannon L.; Ticknor, Lawrence O.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33Tg y-1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3×106 to 1×8 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  13. Carotenoid Biosynthesis in Calothrix sp. 336/3: Composition of Carotenoids on Full Medium, During Diazotrophic Growth and After Long-Term H2 Photoproduction.

    Science.gov (United States)

    Kosourov, Sergey; Murukesan, Gayathri; Jokela, Jouni; Allahverdiyeva, Yagut

    2016-11-01

    The carotenoid composition of the filamentous heterocystous N2-fixing cyanobacterium Calothrix sp. 336/3 was investigated under three conditions: in full medium (non-diazotrophic growth); in the absence of combined nitrogen (diazotrophic growth); and after long-term H2 photoproduction (diazotrophic medium and absence of nitrogen in the atmosphere). Anabaena sp. PCC 7120 and its ΔhupL mutant with disrupted uptake hydrogenase were used as reference strains. Analysis of identified carotenoids and enzymes involved in carotenogenesis showed the presence of three distinct biosynthetic pathways in Calothrix sp. 336/3. The first one is directed towards biosynthesis of myxoxanthophylls, such as myxol 2'-methylpentoside and 2-hydroxymyxol 2'-methylpentoside. The second pathway results in production of hydroxylated carotenoids, such as zeaxanthin, caloxanthin and nostoxanthin, and the last pathway is responsible for biosynthesis of echinenone and hydroxylated forms of ketocarotenoids, such as 3'-hydroxyechinenone and adonixanthin. We found that carotenogenesis in filamentous heterocystous cyanobacteria varies depending on the nitrogen status of the cultures, with significant accumulation of echinenone during diazotrophic growth at the expense of β-carotene. Under the severe N deficiency and high CO2 supply, which leads to efficient H2 photoproduction, cyanobacteria degrade echinenone and β-carotene, and accumulate glycosylated and hydroxylated carotenoids, such as myxol (or ketomyxol) 2'-methylpentosides, 3'-hydroxyechinenone and zeaxanthin. We suggest that the stability of the photosynthetic apparatus in Calothrix sp. 336/3 cells under N deficiency and high carbon conditions, which also appeared as the partial recovery of the pigment composition by the end of the long-term (∼1 month) H2 photoproduction process, might be mediated by a high content of hydroxycarotenoids.

  14. Introduction to the project VAHINE: VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific

    Science.gov (United States)

    Bonnet, Sophie; Moutin, Thierry; Rodier, Martine; Grisoni, Jean-Michel; Louis, Francis; Folcher, Eric; Bourgeois, Bertrand; Boré, Jean-Michel; Renaud, Armelle

    2016-05-01

    On the global scale, N2 fixation provides the major external source of reactive nitrogen to the surface ocean, surpassing atmospheric and riverine inputs, and sustains ˜ 50 % of new primary production in oligotrophic environments. The main goal of the VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific (VAHINE) project was to study the fate of nitrogen newly fixed by diazotrophs (or diazotroph-derived nitrogen) in oceanic food webs, and how it impacts heterotrophic bacteria, phytoplankton and zooplankton dynamics, stocks and fluxes of biogenic elements and particle export. Three large-volume ( ˜ 50 m3) mesocosms were deployed in a tropical oligotrophic ecosystem (the New Caledonia lagoon, south-eastern Pacific) and intentionally fertilized with ˜ 0.8 µM of dissolved inorganic phosphorus (DIP) to stimulate diazotrophy and follow subsequent ecosystem changes. VAHINE was a multidisciplinary project involving close collaborations between biogeochemists, molecular ecologist, chemists, marine opticians and modellers. This introductory paper describes in detail the scientific objectives of the project as well as the implementation plan: the mesocosm description and deployment, the selection of the study site (New Caledonian lagoon), and the logistical and sampling strategy. The main hydrological and biogeochemical conditions of the study site before the mesocosm deployment and during the experiment itself are described, and a general overview of the papers published in this special issue is presented.

  15. Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture.

    Science.gov (United States)

    Reis, Veronica Massena; Teixeira, Kátia Regina dos Santos

    2015-08-01

    For centuries, the Acetobacteraceae is known as a family that harbors many species of organisms of biotechnological importance for industry. Nonetheless, since 1988 representatives of this family have also been described as nitrogen fixing bacteria able to plant growth promotion by a variety of mechanisms. Nitrogen fixation is a biological process that guarantees that the atmospheric N2 is incorporated into organic matter by several bacterial groups. Most representatives of this group, also known as diazotrophic, are generally associated with soil rhizosphere of many plants and also establishing a more specific association living inside roots, leaves, and others plants tissues as endophyte. Their roles as plant growth-promoting microorganisms are generally related to increase in plant biomass, phosphate and other mineral solubilization, and plant pathogen control. Here, we report many of these plant growth-promoting processes related to nitrogen fixing species already described in Acetobacteraceae family, especially Gluconacetobacter diazotrophicus and their importance to agriculture. In addition, a brief review of the state of art of the phylogenetics, main physiological and biochemical characteristics, molecular and functional genomic data of this group of Acetobacteraceae is presented.

  16. Biogeochemical and biological impacts of diazotroph blooms in a low-nutrient, low-chlorophyll ecosystem: synthesis from the VAHINE mesocosm experiment (New Caledonia)

    Science.gov (United States)

    Bonnet, Sophie; Baklouti, Melika; Gimenez, Audrey; Berthelot, Hugo; Berman-Frank, Ilana

    2016-08-01

    In marine ecosystems, biological N2 fixation provides the predominant external source of nitrogen (N; 140 ± 50 Tg N yr-1), contributing more than atmospheric and riverine inputs to the N supply. Yet the fate and magnitude of the newly fixed N, or diazotroph-derived N (hereafter named DDN) in marine ecosystems is poorly understood. Moreover, whether the DDN is preferentially and directly exported out of the photic zone, recycled by the microbial loop and/or transferred into larger organisms remains unclear. These questions were investigated in the framework of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) project. Triplicate large volume ( ˜ 50 m3) mesocosms were deployed in the tropical south-west Pacific coastal ocean (New Caledonia). The mesocosms were intentionally fertilized with ˜ 0.8 µM dissolved inorganic phosphorus (DIP) at the start of the experiment to stimulate diazotrophy. A total of 47 stocks, fluxes, enzymatic activities and diversity parameters were measured daily inside and outside the mesocosms by the 40 scientists involved in the project. The experiment lasted for 23 days and was characterized by two distinct and successive diazotroph blooms: a dominance of diatom-diazotroph associations (DDAs) during the first half of the experiment (days 2-14) followed by a bloom of unicellular cyanobacterial lineage C (UCYN-C during the second half of the experiment (days 15-23). These conditions provided a unique opportunity to compare the DDN transfer and export efficiency associated with different diazotrophs. Here we summarize the major experimental and modelling results obtained during the project and described in the VAHINE special issue, in particular those regarding the evolution of the main standing stocks, fluxes and biological characteristics over the 23-day experiment, the contribution of N2 fixation to export fluxes, the DDN released to dissolved pool and its transfer to the

  17. Efecto de la sacarosa en la producción de celulosa por Gluconacetobacter xylinus en cultivo estático

    Directory of Open Access Journals (Sweden)

    Rubén Jaramillo L.

    2012-08-01

    Full Text Available Objetivo. Determinar el efecto de sacarosa en la productividad de BC por Gluconacetobacter xylinus IFO 13693 en condición estática. Materiales y métodos. La síntesis de celulosa bacteriana (BC por Gluconacetobacter xylinus se llevo a cabo en un cultivo estático discontinuo a temperatura ambiente, en presencia de sacarosa como la principal fuente de carbono a concentraciones iniciales de 0.8 a 7.6 % (p/v. Las concentraciones remanentes de BC, sacarosa, glucosa y fructosa se determinaron cada semana. Para la cinética de la hidrólisis de la sacarosa y formación de celulosa y el coeficiente de rendimiento del producto se utilizo el software Microcal Origin 6.0®. Resultados. En la cuarta semana los valores de BC se encontraron entre 32.5 a 39.5 g/L para las diferentes concentraciones de sacarosa. La cinética para la hidrólisis de sacarosa se ajusta al modelo de Michaelis-Menten, con una Vmax de 0.0002 mol L-1 h-1 y Km de 0.018 M. La producción de BC se ajusta al modelo propuesto por Marx-Figini y Pion, con un valor de la pendiente (kc, entre 0.0018 y 0.0024 h-1 para las diferentes concentraciones iniciales de sacarosa. Los coeficientes de rendimiento tienen valores de 0.8 a 2.4 g de BC producida/g de sacarosa consumida. Conclusiones. La hidrólisis de sacarosa, el consumo de glucosa y fructosa se refleja en la síntesis de celulosa. La hidrólisis de sacarosa y la producción de BC se ajustan a los modelos de Michaelis-Menten y al propuesto por Marx-Figini y Pion, respectivamente. Finalmente, el rendimiento depende de la concentración de sacarosa.

  18. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L.

    Science.gov (United States)

    Praburaman, Loganathan; Park, Sung-Hee; Cho, Min; Lee, Kui-Jae; Ko, Jeong-Ae; Han, Sang-Sub; Lee, Sang-Hyun; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2017-01-01

    Microbe-assisted phytoremediation has been considered a promising measure for the remediation of heavy metal-polluted soil. The aim of this study was to assess the effect of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on growth and lead (Pb) and zinc (Zn) accumulation in Zea mays L. The strain GW103 exhibited plant growth-promoting traits such as indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic deaminase. Treatment of Z. mays L. plants with GW103 significantly increased 19, 31, and 52% of plant biomass and 10, 50, and 126% of chlorophyll a contents in Pb, Zn, and Pb + Zn-amended soils, respectively. Similarly, the strain GW103 significantly increased Pb and Zn accumulation in shoots and roots of Z. mays L., which were 77 and 25% in Pb-amended soil, 42 and 73% in Zn-amended soil, and 27 and 84% in Pb + Zn-amended soil. Furthermore, addition of GW103 increased 8, 12, and 7% of total protein content, catalase, and superoxide dismutase levels, respectively, in Z. mays L. plants. The results pointed out that isolate GW103 could potentially reduce the phytotoxicity of metals and increase Pb and Zn accumulation in Z. mays L. plant.

  19. Evidence for the endophytic colonization of Phaseolus vulgaris(common bean roots by the diazotroph Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    M.A. Schmidt

    2011-03-01

    Full Text Available Herbaspirillum seropedicae is an endophytic diazotrophic bacterium, which associates with important agricultural plants. In the present study, we have investigated the attachment to and internal colonization of Phaseolus vulgaris roots by the H. seropedicae wild-type strain SMR1 and by a strain of H. seropedicae expressing a red fluorescent protein (DsRed to track the bacterium in the plant tissues. Two-day-old P. vulgaris roots were incubated at 30°C for 15 min with 6 x 10(8 CFU/mL H. seropedicae SMR1 or RAM4. Three days after inoculation, 4 x 10(4 cells of endophytic H. seropedicae SMR1 were recovered per gram of fresh root, and 9 days after inoculation the number of endophytes increased to 4 x 10(6 CFU/g. The identity of the recovered bacteria was confirmed by amplification and sequencing of the 16SrRNA gene. Furthermore, confocal microscopy of P. vulgaris roots inoculated with H. seropedicae RAM4 showed that the bacterial cells were attached to the root surface 15 min after inoculation; fluorescent bacteria were visible in the internal tissues after 24 h and were found in the central cylinder after 72 h, showing that H. seropedicae RAM4 is capable of colonizing the roots of the dicotyledon P. vulgaris. Determination of dry weight of common bean inoculated with H. seropedicae SMR1 suggested that this bacterium has a negative effect on the growth of P. vulgaris.

  20. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings.

    Science.gov (United States)

    Zelaya-Molina, Lily X; Hernández-Soto, Luis M; Guerra-Camacho, Jairo E; Monterrubio-López, Ricardo; Patiño-Siciliano, Alfredo; Villa-Tanaca, Lourdes; Hernández-Rodríguez, César

    2016-08-01

    Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.

  1. Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets 'Vitória'

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2011-03-01

    Full Text Available The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets 'Vitória' were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae.

  2. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract--an agro-industry waste.

    Science.gov (United States)

    Rani, Mahadevaswamy Usha; Rastogi, Navin K; Appaiah, K A Anu

    2011-07-01

    During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5- 8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5- 2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

  3. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    Science.gov (United States)

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium.

  4. Occurrence of diazotrophic bacteria in Araucaria angustifolia Ocorrência de bactérias diazotróficas em Araucaria angustifolia

    Directory of Open Access Journals (Sweden)

    Rafaela de Fátima Neroni

    2007-06-01

    Full Text Available Araucaria angustifolia is an environmentally threatened tree and the whole biota of the Araucaria Forest should be investigated with the aim of its preservation. Diazotrophic bacteria are extremely important for the maintenance of ecosystems, but they have never been studied in Araucaria Forests. In this study, diazotrophic bacteria were isolated from Araucaria roots and soil, when grown in semi-specific, semi-solid media. The diazotrophic character of some recovered isolates could be confirmed using the acetylene reduction assay. According to their 16S rRNA sequences, most of these isolates belong to the genus Burkholderia.Araucaria angustifolia é uma espécie arbórea ameaçada de extinção e toda a comunidade viva das Florestas de Araucária deve ser estudada com a finalidade de sua preservação. Bactérias diazotróficas apresentam grande importância para a manutenção de ecossistemas, mas sua ocorrência nunca foi pesquisada em araucária. Neste estudo foi demonstrada a associação de bactérias fixadoras de nitrogênio com A. angustifolia. Amostras de solo e raízes de araucária apresentaram a ocorrência de bactérias diazotróficas, quando inoculadas em meios semi-sólidos semi-específícos. O caráter diazotrófico de alguns isolados recuperados foi confirmado através da análise de redução do acetileno. De acordo com a análise das seqüências do 16S rRNA, estes isolados são na sua maioria pertencentes ao gênero Burkholderia.

  5. Ocorrência de bactérias diazotróficas associadas a cultivares de sorgo forrageiro Occurrence of diazotrophic bacteria associated with forage sorghum cultivars

    Directory of Open Access Journals (Sweden)

    Clarissa Bergamaschi

    2007-06-01

    Full Text Available O presente estudo objetivou avaliar a ocorrência de bactérias diazotróficas associadas ao sorgo, selecionar cultivares eficientes na associação com bactérias diazotróficas e identificar os isolados mais eficientes em fixar nitrogênio atmosférico (N² e produzir ácido indol-acético (AIA. Utilizaram-se 14 cultivares de sorgo forrageiro em vasos, com dois níveis de N: 0 e 130kg ha-1 de N. A seleção de cultivares foi baseada na associação com bactérias diazotróficas e na eficiência de absorção de nitrogênio das cultivares. Para o isolamento das bactérias, foram utilizados diferentes meios de enriquecimento semi-sólido e, após o isolamento, foram quantificadas a produção de AIA e a quantidade de N² fixada pelos isolados. A ocorrência de bactérias diazotróficas foi constatada em todas as cultivares avaliados sendo que a distribuição das bactérias isoladas foi influenciada pelo genótipo da planta. Todos os isolados foram aptos em fixar N² e produzir AIA in vitro.The present study aimed to evaluate the occurrence of diazotrophic bacterial associated with sorghum plants, to select efficient sorghum cultivars associated with diazotrophic bacterial, as well as to identify isolates efficient on nitrogen fixation (N² and indole acetic acid (IAA production. Fourteen forage sorghum cultivars were cropped in jars under two levels of nitrogen fertilization: 0 and 130kg ha-1 of N. The selection of sorghum cultivars was based on the association with diazothophic bacterial and on the efficiency of nitrogen absorption. Semi-solid enrichment medium was used for the isolation of the diazotrophic bacterial. The occurrence of diazotrophics was verified in all cultivars of sorghum evaluated and, the distribution of the isolates was affected by the plant genotype. All the isolates were able to fix N² and to produce IAA in vitro.

  6. Growth Kinetics of Diazotrophic Bacillus sphaericus UPMB10 Cultured Using Different Types and Concentrations of Carbon and Nitrogen Sources

    Directory of Open Access Journals (Sweden)

    Ooi, T. C.

    2008-01-01

    Full Text Available Growth kinetics of newly isolated diazotrophic Bacillus sphaericus UPMB10 grown in various carbon (lactate, acetate, glycerol, malate, fructose, xylose and sucrose and nitrogen (glutamate, yeast extract, arginine, hystadine, glycine, polypeptone, tryptophan, lysine, NH4Cl and urea sources was investigated using 2 L stirred tank fermenter. The highest growth was obtained in a medium containing lactate as a carbon source, which gave the highest maximum cell concentration of 2.30 g/L, which is corresponding to maximum viable cell count of 4.60 x 10^9 cfu/mL. However, the highest cell yield (1.06 g cell/g carbon consumed was obtained in cultivation using glycerol though slightly lower maximum viable cell count was obtained (3.22 x 10^9 cfu/mL. In addition, cost for the production of live cell using glycerol was about 15 times lower than the cost using lactate. Growth performance of this bacterium when yeast extract was used as a nitrogen source was comparable to the use of pure amino acid. The medium containing 1.8 g/L glycerol and 2 g/L yeast extract was suggested as optimal for growth of this bacterium, which gave carbon to nitrogen ratio (C/N of 10:1. The maximum viable cell count obtained in cultivation using optimised medium in 2 L stirred tank fermenter was 3.34 x 10^9 cfu/mL and the cells maintained its capacity for N2 fixation at 18 nmol C2H2/h.mL.

  7. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles

    Energy Technology Data Exchange (ETDEWEB)

    Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

  8. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582.

    Science.gov (United States)

    Augimeri, Richard V; Strap, Janice L

    2015-01-01

    Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature.

  9. The phytohormone ethylene enhances bacterial cellulose production, regulates CRP/FNRKx transcription and causes differential gene expression within the cellulose synthesis operon of Komagataeibacter (Gluconacetobacter xylinus ATCC 53582

    Directory of Open Access Journals (Sweden)

    Richard Vincent Augimeri

    2015-12-01

    Full Text Available Komagataeibacter (formerly Gluconacetobacter xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx. Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR, we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA induced differential expression of genes within the bacterial cellulose synthesis (bcs operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature.

  10. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants.

    Science.gov (United States)

    Carvalho, T L G; Ballesteros, H G F; Thiebaut, F; Ferreira, P C G; Hemerly, A S

    2016-04-01

    A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.

  11. Involvement of thioredoxin on the scaffold activity of NifU in heterocyst cells of the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Nomata, Jiro; Maeda, Maki; Isu, Atsuko; Inoue, Kazuhito; Hisabori, Toru

    2015-09-01

    The diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 (A.7120) differentiates into specialized heterocyst cells that fix nitrogen under nitrogen starvation conditions. Although reducing equivalents are essential for nitrogen fixation, little is known about redox systems in heterocyst cells. In this study, we investigated thioredoxin (Trx) networks in Anabaena using TrxM, and identified 16 and 38 candidate target proteins in heterocysts and vegetative cells, respectively, by Trx affinity chromatography (Motohashi et al. (Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA, 2001; 98: , 11224-11229)). Among these, the Fe-S cluster scaffold protein NifU that facilitates functional expression of nitrogenase in heterocysts was found to be a potential TrxM target. Subsequently, we observed that the scaffold activity of N-terminal catalytic domain of NifU is enhanced in the presence of Trx-system, suggesting that TrxM is involved in the Fe-S cluster biogenesis.

  12. Endophytic colonization of rice (Oryza sativa L. by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth

    Directory of Open Access Journals (Sweden)

    Katherine A. Mattos

    2008-09-01

    Full Text Available Burkholderia kururiensis is a diazotrophic bacterium originally isolated from a polluted aquifer environment and presents a high level of similarity with the rice endophyte "B. brasilensis" species. This work assessed the ability of B. kururiensis to endophytically colonize rice plantlets by monitoring different tissues of root-inoculated plants for the presence of bacterial growth in different media, electron microscopy and by 16S rDNA analysis. Observations of roots, stems and leaves of inoculated rice plantlets by electron microscopy revealed B. kururiensis colonization predominantly on root hair zones, demonstrating endophytic colonization primarily through the endodermis, followed by spreading into xylem vessels, a possible pathway leading to aerial parts. Although indifferent for the bacterial growth itself, addition of a nitrogen source was a limiting factor for endophytic colonization. As endophytic colonization was directly associated to an enhanced plant development, production of phytohormone auxin/indole-3-acetic acid by B. kururiensis was assayed with transgenic rice plantlets containing an auxin-responsive reporter (DR5-GUS. Our findings suggest the ability of auxin production by plant-associated B. kururiensis which may have a stimulatory effect on plant development, as evidenced by activation of DR5-GUS. We hereby demonstrate, for the first time, the ability of B. kururiensis to endophytically colonize rice, promoting both plant growth and rice grain yield.Burkholderia kururiensis é uma bactéria diazotrófica, originalmente isolada de um ambiente aquático poluído e apresenta alto nível de similaridade com a espécie endofítica "B. brasilensis" encontrada na planta de arroz. Este artigo demonstrou a habilidade de B. kururiensis colonizar endofiticamente plântulas de arroz, após esta bactéria ter sido inoculada na raiz das plantas. Esta capacidade foi confirmada pelo crescimento bacteriano em diferentes tecidos da planta

  13. Assessment of the dinitrogen released as ammonium and dissolved organic nitrogen by unicellular and filamentous marine diazotrophic cyanobacteria grown in culture

    Directory of Open Access Journals (Sweden)

    Hugo eBerthelot

    2015-10-01

    Full Text Available The dinitrogen (N2 released as dissolved nitrogen (DN has been compared in batch cultures of four marine diazotrophic cyanobacteria: the colony forming Trichodesmium IMS101 and the unicellular strains Cyanothece ATCC51142, Crocosphaera watsonii WH8501 and WH0003. Two approaches were conducted for this purpose. The first approach consisted in the comparison of the total accumulation of fixed N2 in the culture (both in dissolved and particulate pools with the net N2 fixation rates (i. e. the fixed N2 incorporated only in the particulate fraction after 15N2 incubation. The difference between the two measures accounted for the fixed N2 released as DN. The second approach consisted in the direct measure of the 15N-enrichment of ammonium (NH4+ and dissolved organic N (DON following the 15N2 incubations. The N2 released as DN accounted for ~0 - 20 % and ~1 % of the N2 fixed after 24 h in the first and second approach, respectively. We show that the recent methodological improvements in the net N2 fixation determination applied in this study tend to reconcile the two approaches that formerly led to contrasted values. However, the large analytical uncertainties of the first approach limit its reliability. Thus, the direct determination of the 15N-enrichment of the dissolved pool remains the best tool to assess the fixed N2 released in the DN pool, in particular as it allows shorter incubation times. There were no clear patterns detected between the filamentous Trichodesmium and unicellular strains, neither in terms of the amount of N2 released as DN nor in terms of the proportion of NH4+ relative to DON. This suggests that N2 release processes are shared among the filamentous and free living diazotrophs.

  14. Importance of N2-Fixation on the Productivity at the North-Western Azores Current/Front System, and the Abundance of Diazotrophic Unicellular Cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Virginie Riou

    Full Text Available To understand the impact of the northwestern Azores Current Front (NW-AzC/AzF system on HCO3--and N2-fixation activities and unicellular diazotrophic cyanobacteria (UCYN distribution, we combined geochemical and biological approaches from the oligotrophic surface to upper mesopelagic waters. N2-fixation was observed to sustain 45-85% of the HCO3--fixation in the picoplanktonic fraction performing 47% of the total C-fixation at the deep chlorophyll maximum north and south of the AzF. N2-fixation rates as high as 10.9 μmol N m-3 d-1 and surface nitrate δ15N as low as 2.7‰ were found in the warm (18-24°C, most saline (36.5-37.0 and least productive waters south of the AzF, where UCYN were the least abundant. However, picoplanktonic UCYN abundances up to 55 cells mL-1 were found at 45-200m depths in the coolest nutrient-rich waters north of the AzF. In this area, N2-fixation rates up to 4.5 μmol N m-3 d-1 were detected, associated with depth-integrated H13CO3--fixation rates at least 50% higher than observed south of the AzF. The numerous eddies generated at the NW-AzC/AzF seem to enhance exchanges of plankton between water masses, as well as vertical and horizontal diapycnal diffusion of nutrients, whose increase probably enhances the growth of diazotrophs and the productivity of C-fixers.

  15. Diazotrophic microbial mats

    NARCIS (Netherlands)

    Severin, I.; Stal, L.J.; Seckbach, J.; Oren, A.

    2010-01-01

    Microbial mats have been the focus of scientific research for a few decades. These small-scale ecosystems are examples of versatile benthic communities of microorganisms, usually dominated by phototrophic bacteria (e.g., Krumbein et al., 1977; Jørgensen et al., 1983). They develop as vertically stra

  16. 细菌纤维素高产菌株的诱变选育和发酵条件研究%Screening and Fermentation Conditions of Strains from Gluconacetobacter oboediens for High-yield Bacterial Cellulose Production

    Institute of Scientific and Technical Information of China (English)

    汤卫华; 李飞; 贾原媛; 贾士儒

    2009-01-01

    为了选育高产细菌纤维素的木葡糖酸醋杆菌((Gluconacetobacter oboediens)突变菌株,通过硫酸二乙酯和氯化锂复合诱变,得到-株产细菌纤维素能力最高的突变菌株GO2,其细菌纤维素产量为9.91 g/L,比出发菌株提高36.5%.同时确定突变菌株GO2的静置培养条件为发酵时间为6 d,接种量为80(v/v),面积/体积比为1.58~2.08 cm-1.

  17. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments.

    Science.gov (United States)

    Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin

    2014-12-04

    In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments

  18. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142.

    Directory of Open Access Journals (Sweden)

    Trang T Vu

    Full Text Available Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values.

  19. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142.

    Science.gov (United States)

    Vu, Trang T; Stolyar, Sergey M; Pinchuk, Grigoriy E; Hill, Eric A; Kucek, Leo A; Brown, Roslyn N; Lipton, Mary S; Osterman, Andrei; Fredrickson, Jim K; Konopka, Allan E; Beliaev, Alexander S; Reed, Jennifer L

    2012-01-01

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values.

  20. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock.

    Science.gov (United States)

    Lee, Na Kyeong; Oh, Hee-Mock; Kim, Hee-Sik; Ahn, Chi-Yong

    2017-03-01

    Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Multiple Functions of Common Microbial Carbon Polymers, Glycogen and PHB, during Stress Responses in the Non-Diazotrophic Cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Damrow, Ramon; Maldener, Iris; Zilliges, Yvonne

    2016-01-01

    Classical microbial carbon polymers such as glycogen and polyhydroxybutyrate (PHB) have a crucial impact as both a sink and a reserve under macronutrient stress conditions. Most microbial species exclusively synthesize and degrade either glycogen or PHB. A few bacteria such as the phototrophic model organism Synechocystis sp. PCC 6803 surprisingly produce both physico-chemically different polymers under conditions of high C to N ratios. For the first time, the function and interrelation of both carbon polymers in non-diazotrophic cyanobacteria are analyzed in a comparative physiological study of single- and double-knockout mutants (ΔglgC; ΔphaC; ΔglgC/ΔphaC), respectively. Most of the observed phenotypes are explicitly related to the knockout of glycogen synthesis, highlighting the metabolic, energetic, and structural impact of this process whenever cells switch from an active, photosynthetic 'protein status' to a dormant 'glycogen status'. The carbon flux regulation into glycogen granules is apparently crucial for both phycobilisome degradation and thylakoid layer disassembly in the presence of light. In contrast, PHB synthesis is definitely not involved in this primary acclimation response. Moreover, the very weak interrelations between the two carbon-polymer syntheses indicate that the regulation and role of PHB synthesis in Synechocystis sp. PCC 6803 is different from glycogen synthesis.

  2. Organic matter inoculated with diazotrophic bacterium Beijerinckia indica and Cunninghamella elegans fungus containing chitosan on banana “Williams” in field

    Directory of Open Access Journals (Sweden)

    Newton Pereira Stamford

    2017-01-01

    Full Text Available The production of biofertilizers from rocks increases nutrients for plant nutrition without environmental pollution. The aim of this study was to evaluate the effectiveness of biofertilizers from phosphate and potassium rocks mixed with organic matter (earthworm compound inoculated with free living diazotrophic bacteria (NFB 10001 and Cunninghamella elegans (fungus with chitosan on yield, characteristics, and nutrient uptake of banana (cv. Williams, and attributes of a Red Yellow Argisoil of the rainforest Zone of Pernambuco, Brazil. The experimental design included two biofertilizers: (a PK rock biofertilizers plus organic matter (NPKB and (b bioprotector (NPKP applied at 50, 100 and 150% of the recommended rate for banana, which were compared with soluble mineral fertilizers (NPKF applied at the recommended rate, and earthworm compound (20 ton ha-1. The best results of the plant parameters were obtained with NPKB and NPKP applied at the highest rates (150% RR. A normal yield was produced when NPKB and NPKP were applied at the highest rates and NPKF at the recommended rate. The available P and K in the soil showed a significant fertilization effect, especially when NPKB and NPKP were applied at the highest rates. The biofertilizer and bioprotector may be alternatives to mineral soluble fertilizers.

  3. 产细菌纤维素菌株中间葡糖醋杆菌的分离与发酵条件优化%Isolation and Culture Optimization of Bacterial Cellulose Producing Strain Gluconacetobacter intermedius

    Institute of Scientific and Technical Information of China (English)

    苏俊霞; 陆震鸣; 王宗敏; 史劲松; 陆茂林; 许正宏

    2015-01-01

    Five bacterial cellulose (BC) producing strains were isolated from solid -state fermentation cultures of traditional Chinese vinegar,and identified as Gluconacetobacter intermedius based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Strain 1-17 could produce more BC then the others. Furthermore,surface features and chemical structure of BC were analyzed by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy,respectively. Effects of temperature,time,carbon sources and initial pH on BC production were tested. The optimal temperature for strain 1-17 was 35 ℃, and the fermentation time was 7 d. Glucose and glycerol were the optimal carbon sources,and the optimal initial pH was 6.0. Both lactate and calcium could promote the synthesis of BC. The yield of BC was improved from (3.90±0.08) g/L to (7.90±0.19) g/L under the optimal conditions.%从中国传统固态发酵食醋醋醅中分离出5株产细菌纤维素(BC)的菌株,经生理生化特征及16S rDNA序列分析,它们均属于中间葡糖醋杆菌(Gluconacetobacter intermedius),其中编号为1-17的菌株初始产量较高。应用扫描电镜技术(SEM)和傅里叶红外光谱技术(FT-IR)分析了BC结构特征。采用单因素研究了温度、培养时间、碳源、初始pH对BC合成的影响。确定菌株1-17最适温度为35℃,发酵时间为7 d,甘油和葡萄糖为最适碳源,最适初始pH为6.0,乳酸根离子和钙离子能够促进BC的合成。通过培养条件优化使得细菌纤维素产量从初始的(3.90±0.08) g/L增加到(7.90±0.19) g/L。

  4. 细菌纤维素膜对木醋杆菌发酵生产广式米醋的影响%Effect of Bacterial Cellulose Pellicle on Gluconacetobacter xylinus Fermentation Producing Guangdong Rice Vinegar

    Institute of Scientific and Technical Information of China (English)

    傅亮; 陈思谦; 易九龙; 吴炳鸿

    2012-01-01

    Isolated from a Guangdong rice vinegar factory, the RF4 Gluconacetobacter xylinus is used to produce rice vinegar by surface fermentation. The effect of intact bacterial cellulose peUicle on total acidity in fermentation, the comparison of ADH enzyme activity in the pellicle and liquor, and the influence of inoculation methods on acidity, viscosity and turbidity are researched. The results show that the morphology of bacterial cellulose pellicle is very im- portant to total acidity produced, and the ADH enzyme activity in the bacterial cellulose pellicle is 2.26 x 10-2U/g, 8 times of that in the liquor. The highest acidity achieved when bacterial cellulose pellicle was inoculated with Glu- conacetobacter xylinus, 12 days accompanying and was taken out during the fermentation, resulting in a high yielding of 4.86g/100mL after by low viscosity and turbidity.%以分离自广式米醋生产车间的木醋杆菌RF4(Gluconacetobacter xylinus)为菌种进行表面发酵。研究了发酵过程中细菌纤维素膜对总酸度的影响,纤维素膜内与发酵液中乙醇脱氢酶活性差异,讨论了3种不同接种培养方式对总酸度、黏度及浑浊度的影响。结果表明,纤维素膜完整性对发酵总酸度有重要影响,纤维素膜内乙醇脱氢酶活性是发酵液中的8倍,达2.26×10-2U/g。含木醋杆菌纤维素膜接种并中途取出的接种培养方式总酸度最高,发酵12天后可达4.86 g/100 mL,且黏度及浑浊度都较低。

  5. Effect of bacterial cellulose pellicle on apple vinegar fermentation by Gluconacetobacter xylinus%细菌纤维素膜对木醋杆菌发酵制备苹果醋的影响研究

    Institute of Scientific and Technical Information of China (English)

    傅亮; 彭英; 陈宇哲

    2014-01-01

    以木醋杆菌(Gluconacetobacter xylinus)RF4为菌种发酵苹果酒酿制苹果醋,探讨了发酵过程中形成的细菌纤维素膜以及两种不同接种方式对产酸的影响,比较了纤维素膜与发酵液中乙醇脱氢酶活力的差异,分析了发酵中期成膜并被分离后32h内发酵液的产酸速率、耗氧和乙醇脱氢酶活力之间的关系.结果表明,乙醇脱氢酶在纤维素膜内的活力是发酵液中的56倍;在苹果酒中分别接入含菌纤维素膜和液态菌种,最高酸度均可达4.32g/100mL,但接入含菌纤维素膜达到最高酸度所需时间比接入液态菌种快;细菌纤维素膜是醋酸发酵的主要场所,其形成并保持完整对发酵产酸起关键作用.

  6. CARACTERIZACIÓN DE BACTERIAS DIAZOTRÓFICAS ASIMBIÓTICAS ASOCIADAS AL EUCALIPTO (Eucalyptussp. EN CODAZZI, CESAR (COLOMBIA Characterization of Diazotrophic Bacteria Non-Symbiotic Associated with Eucalyptus (Eucalyptussp. in Codazzi, Cesar (Colombia

    Directory of Open Access Journals (Sweden)

    DOLLY MELISSA OBANDO CASTELLANOS

    Full Text Available Se evaluó el efecto de las épocas climáticas (lluvia y sequía y del estrato de la muestra (suelo rizosférico, raíces y hojas sobre la población de los géneros Azotobacter, Beijerinckia, Derxia, Azospirillum, Herbaspirillum, Gluconacetobacter y Burkholderia en el Eucalipto (Eucalyptus sp.. Así mismo, se evalúo su capacidad en la producción de compuestos indólicos como promotores del crecimiento vegetal y su actividad de reducción de acetileno como indicador de la fijación biológica de nitrógeno. Los resultados no registraron diferencias estadísticas significativas en el test de Tukey (P ≤ 0.05 en la población con respecto a la época climática. Con respecto al estrato de muestra, los aislamientos tentativos de Herbaspirillum sp. y Azospirillum sp. presentaron diferencias significativas en suelo rizosférico y raíces. Se obtuvieron 44 aislamientos de los cuales se agruparon por caracterización fenotípica como: 14 presuntivos de Beijerinckia sp., 12 de Azotobacter sp., ocho de Derxia sp., cuatro de Herbarpirillum sp., cinco de Azospirillum sp., uno de Gluconacetobacter sp. y uno de Burkholderia sp. Por su alto potencial fueron seleccionados y criopreservados los aislamientos C27, C26 y C25, las cuales presentaron los mejores valores de eficiencia in vitro, superando valores de producción de las cepas de referencia utilizadas (A. chroococcum (AC1 y A. brasilense (SP7.The effect of climatic seasons (rainy and dry and the stratum sample (rhizospheric soil, roots and leaves the population of the genera Azotobacter, Beijerinckia, Derxia, Azospirillum, Herbaspirillum, Gluconacetobacter and Burkholderia in soil rhizosphere, roots and leaves of Eucalyptus (Eucalyptus sp.. It also assesses their ability to produce indoles compounds as plant growth promoters and their acetylene reduction activity as an indicator of biological fixation of nitrogen. The results showed no statistically significant differences in the Duncan test (P ≤ 0

  7. Interação entre fungos micorrízicos arbusculares e bactérias diazotróficas em trigo Interaction between arbuscular mycorrhizal fungi and diazotrophic bacteria in wheat plants

    Directory of Open Access Journals (Sweden)

    Valéria Marino Rodrigues Sala

    2007-11-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da inoculação de dois novos isolados de bactérias diazotróficas endofíticas e da interação destas bactérias com fungos micorrízicos arbusculares (FMAs, na cultura do trigo. Foi realizado um experimento em casa de vegetação, com dois isolados de bactérias diazotróficas endofíticas, IAC11HT (Achromobacter insolitus e IAC12HT (Zoogloea ramigera, e dois FMAs (Glomus sp. e Acaulospora sp.. Houve efeito sinérgico da co-inoculação na colonização das raízes por bactérias diazotróficas, com o emprego do FMA do gênero Acaulospora. As plantas associadas a Glomus, na presença dos isolados bacterianos, apresentaram maior crescimento, acúmulo e aproveitamento dos nutrientes do que as plantas colonizadas por Acaulospora sp., entretanto, não superaram os tratamentos em que as bactérias e os fungos foram inoculados isoladamente. Apesar de não ter havido efeito benéfico da co-inoculação FMA-bactéria diazotrófica sobre a maioria dos parâmetros avaliados, essas novas bactérias propiciaram o dobro de crescimento, acúmulo e aproveitamento do N e P em plantas de trigo.The aim of this work was to evaluate the inoculation effect of two new endophytic diazotrophic bacteria and the interaction between arbuscular mycorrhizal fungi (AMF and these bacteria on wheat plants. The experiment was carried out in a greenhouse with the two strains of diazotrophic bacteria, IAC11HT (Achromobacter insolitus and IAC12HT (Zoogloea ramigera, and two AMF (Glomus sp. and Acaulospora sp.. There was synergistic effect of the co-inoculation on root colonization by diazotrophic bacteria with the AMF of the genus Acaulospora. The plants colonized by Glomus associated to bacterial strains showed higher growth, accumulation and exploitation of the nutrients than plants colonized by Acaulospora sp., however, this effect did not surpass the treatments in which bacteria and fungi were inoculated separately. Although

  8. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    Science.gov (United States)

    Bonnet, Sophie; Berthelot, Hugo; Turk-Kubo, Kendra; Fawcett, Sarah; Rahav, Eyal; L'Helguen, Stéphane; Berman-Frank, Ilana

    2016-05-01

    N2 fixation rates were measured daily in large (˜ 50 m3) mesocosms deployed in the tropical southwest Pacific coastal ocean (New Caledonia) to investigate the temporal variability in N2 fixation rates in relation with environmental parameters and study the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. The mesocosms were fertilized with ˜ 0.8 µM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of 2 during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These later rates measured after the DIP fertilization are higher than the upper range reported for the global ocean. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP), and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during a bloom of the unicellular diazotroph UCYN-C that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ˜ 10 % of UCYN-C from the water column was exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 µm) UCYN-C cells into large (100-500 µm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer-scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labeling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4

  9. Growth conditions of endophytic diazotroph isolated from Cynodon dactylon%狗牙根内生固氮菌生长条件

    Institute of Scientific and Technical Information of China (English)

    刘天增; 毛中伟; 张巨明

    2016-01-01

    从已分离的多个狗牙根(Cynodon dactylon)内生固氮菌株中筛选到两株固氮酶活性较高的菌株7 D和 BM13,为明确固氮菌株对环境因子的适应性,研究了在不同的生长环境条件下菌株的生长量.采用 Ashby无氮培养基,测定了温度、pH、渗透压以及不同氮源和碳源等环境条件对固氮菌生长的影响.结果表明,在10~40℃的温度范围内、pH 值3.92~9.64的酸碱环境和30 g.L-1 NaCl 的高渗透压下,固氮菌7D 和 BM13均能正常生长;菌株能耐受0~10 mmol.L-1的 NH4+和 NO3-,而且能利用蔗糖、甘油、麦芽糖、甘露醇和葡萄糖等多种碳源生长.说明狗牙根内生固氮菌株7 D和BM13对环境因子有很强的抗逆性和适应性,但两菌株之间存在一定差异,可望进一步研发成为优良的固氮微生物肥料生产菌种.%Effects of environmental factors on the growth of endophytic diazotroph strains 7D and BM13 isolated from Cynodon dactylon were investigated in our experiment.In this study,strains 7D and BM13 were exam-ined for their adaptability to the stress of temperature,pH,NaCl,NH4 +,NO3 - and carbon sources by Ashby media.The results showed that the two strains could grow under wide range of temperature of 10~40 ℃ and pH from 3.92~9.64.The strains could also tolerate NaCl concentrations of 30 g.L-1 ,NH4 + and NO3 - con-centrations of 0~10 mmol.L-1 ,respectively.The strains were capable of using various carbon sources.It was suggested that the strains 7D and BM13 had superior tolerance to stress of diverse environment factors,but their tolerance abilities differed partly.Endophytic diazotroph strain is a candidate to be further developed for microbial fertilizer production.

  10. Tolerância de bactérias diazotróficas simbióticas à salinidade in vitro Tolerance of diazotrophic symbiotic bacteria to salinity

    Directory of Open Access Journals (Sweden)

    Rafaela Simão Abrahão Nóbrega

    2004-08-01

    Full Text Available A busca de estirpes de bactérias diazotróficas simbióticas tolerantes à salinidade, em conjunto com a seleção de hospedeiros, tem por objetivo aumentar o desempenho da simbiose e manter a produtividade vegetal de forma sustentada em condições de estresse salino. Doze estirpes de bactérias diazotróficas de diferentes procedências foram estudadas quanto à tolerância a diferentes concentrações de NaCl em meios de cultura 79 e LB. As estirpes que apresentaram maior tolerância à salinidade (30 g L-1 em meio 79 foram: BR 6806 e BR 4007, ambas de crescimento rápido isoladas de solos do nordeste brasileiro, UFLA 03-51 e UFLA 03-65, de crescimento rápido e UFLA 03-84, de crescimento lento, sendo as três últimas oriundas da região Amazônica. Essas também estiveram entre as mais tolerantes em meio de cultura LB. A estirpe UFLA 03-84, selecionada em trabalhos prévios por sua alta eficiência para caupi (Vigna unguiculata, pode ser indicada para estudos de inoculação, visando a aumentar o rendimento dessa cultura em solos salinos. Os meios de cultura 79 e LB foram eficientes para avaliar a tolerância relativa de rizóbio a NaCl, mas o meio 79 é mais indicado, pois permite o crescimento de todas as estirpes. Pelos resultados, infere-se haver relação entre tolerância in vitro à salinidade e origem dos microssimbiontes, pois as estirpes BR 4007 e BR 6806, oriundas do Ceará, estiveram entre as mais tolerantes.Tolerance to salinity of diazotrophic bacteriaand their host species could increase plant growth and sustainability in salt stressed soils. Twelve diazotrophic bacteria strains were studied regarding their tolerance to different NaCl concentrations in 79 and LB media. More tolerant (30 g L-1 strains in 79 medium were: the fast growers BR 6806 and BR 4007, isolated from northeast Brazil, UFLA 03-51 and UFLA 03-65, and slow growing strain UFLA03-84, being these last three isolated from Amazon region. These strains were among

  11. Proteome Analyses of Strains ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp under Culture Conditions Resulting in Enhanced H-2 Production

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Callister, Stephen J.; Mishra, Sujata; Zhang, Xiaohui; Shutthanandan, Janani I.; Angel, Thomas E.; Shukla, Anil K.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Sherman, Louis

    2013-02-01

    Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes and we performed quantitative proteome analysis of Cyanothece ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose-phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H2 producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822, and allows an in-depth comparative analysis of major physiological and biochemical processes that influence H2-production in both the strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large scale H2 production.

  12. Proteome Analyses of Strains ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp. under Culture Conditions Resulting in Enhanced H2 Production

    Science.gov (United States)

    Aryal, Uma K.; Callister, Stephen J.; Mishra, Sujata; Zhang, Xiaohui; Shutthanandan, Janani I.; Angel, Thomas E.; Shukla, Anil K.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.

    2013-01-01

    Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothece sp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H2-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H2 production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H2 production. PMID:23204418

  13. Physiological characterization of sugarcane's endophytic microbial community

    Directory of Open Access Journals (Sweden)

    Anar Janet Rodríguez Cheang

    2007-02-01

    Full Text Available Excessive application of chemical nitrogen fertilisers and pesticides has badly affected the environment. This has led to great interest being shown in studying a crop's native microbial community and its benefit for plants. This paper was thus aimed at characterising sugarcane's endophytic microbial community. 5 sugar cane strains and 50 isolates were used. Gas chromatography was used for measuring nitrogenase activity and the influence of carbon and nitrogen sources and pH on cultures. Indol acetic (IAA production was detected by Dot-Immunobinding and Salkowski's method. These results show that 19 strains and isolates had nitrogenase activity, values ranging from 100 to SOOO/zg/mL; 6 of them produced IAA (values ranging from 1,7 to 2,5 //g/mL: Gluconacetobacter diazotrophicus PAl-5, Gluconacetobacter diazotrophicus 1-05, Gluconacetobacter diazotrophicus 4-02,17,30 and 305. It was demonstrated that culture medium nutrient sources and pH affected the nitrogenase activity of the strains representing the endophytic community. Key words: endophytic community, sugarcane, nitrogenase activity, indolacetic acid.

  14. Isolation of Wheat Endophytic Diazotrophs and Determination of 1-Aminocyclopropane-1-Carboxylate Deaminase%小麦内生固氮菌分离及其ACC脱氨酶测定

    Institute of Scientific and Technical Information of China (English)

    秦宝军; 罗琼; 高淼; 胡海燕; 徐晶; 周义清; 孙建光

    2012-01-01

    [Objective ] The objective of this study is to determine the ammount of wheat endophytic diazotrophs and screen for ACC (1-aminocyclopropane-l-carboxylate) deaminase activity from the diazotrophs, determine the phylogenetic and classiflc position of selected strains and prepare strains for microbial fertilizer production. [ Method] Surface sterilization and nitrogen-free medium were used to isolate diazotroph and ACC was used as sole nitrogen source to screen strains with ACC deaminase activity. Nitrogenase activity was determined with acetylene reduction assay. 16S rDNA was amplified with PCR and analysed with MEGA software. Strain identification was carried out based on the morphology, physiology, biochemical test results and 16S rDNA analysis. [Result] The ammount of endophytic diazotrophs at jointing stage of wheat was (O.2-17.8)xlO* cfu-g"1 fresh weight Sixty endophytic diazotrophs with nitrogenase activity ranging 1-36 nmol QHt/h-mg protein were isolated from wheat. Nine of the 60 endophytic diazotrophs were ACC deaminase positive, the range of enzyme activity is 0.87-9.32 nmol a-ketobutryric acid/hmg protein. New isolate 9136 with nitrogenase activity 1.82 nmol C2Ei/h-mg protein and ACC deaminase activity 9.32 umol a-ketobutryric acid/h-mg protein was identified as Pseudomonas sp.. [Conclusion] About 10s cfu-g'1 (fresh weight) endophytic diazotrophs naturally colonized field grown wheat, some of these endophytic diazotrophs could produce ACC deaminase. A few strains showed relatively high ACC deaminase activity, and they might play a role in crop resistance to enviromental stress.%[目的]了解小麦内生固氮菌数量,筛选具有ACC(1-aminocyclopropane-1-carboxylate,1-氨基环丙烷-1-羧酸)脱氨酶活性的小麦内生固氮菌,确定筛选菌株的系统发育地位与分类地位,为微生物肥料生产收集菌种资源.[方法]样品表面灭菌后采用无氮培养法筛选内生固氮菌,乙炔还原法测定菌株固氮酶活性;采用ACC

  15. Optimization of Gluconacetobacter Fermentation for Bacterial Cellulose Production by Response Surface Method%响应面法优化葡糖醋杆菌产细菌纤维素的发酵工艺

    Institute of Scientific and Technical Information of China (English)

    王银存; 王卫卫; 李利军; 马英辉; 王小娟; 卢美欢

    2012-01-01

    In order to increase bacterial cellulose production yielded by Gluconacetobacter, the factors including sweet potato hydrolyzate, initial pH, liquid volume in flask and so on by using Plackett-Burman Design and Box-Benhnken Design combination were studied, and the fermentation of bacterial cellulose production was optimized. The results showed that the best conditions for bacterial cellulose production were as follows: sweet potato hydrolyzate of 50 g/L, initial pH 6.0, liquid volume in flask of 50 ml/ (250 mL). Under these conditions, the dry weight of the bacterial cellulose reached to 4.80 g/L and increased by 118% compared with 2.20 g/L before optimization.%为提高葡糖醋杆菌生产细菌纤维素的产量,采用Plackett-Burman实验设计和Box-Benhnken Design相结合,对红薯酶解液、起始pH值、装液量等因素进行了研究,优化了产细菌纤维素的发酵工艺.实验结果表明,产细菌纤维素的最佳工艺为:红薯酶解液质量浓度50 g/L、起始pH值6.0、装液量50 mL/(250mL).该工艺条件下得到的细菌纤维素绝干质量(折算成质量浓度)达到4.80g/L,比优化前产量2.20 g/L提高了118%.

  16. Differential responses of dinitrogen fixation, diazotrophic cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-cycle in biological soil crusts

    Science.gov (United States)

    Zhou, Xiaobing; Smith, Hilda J.; Giraldo Silva, Ana; Belnap, Jayne; Garcia-Pichel, Ferran

    2017-01-01

    N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.

  17. Diversidade de bactérias diazotróficas endofíticas associadas a plantas de milho Diversity of diazotrophic endophytic bacteria associated with maize plants

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Wurdig Roesch

    2007-12-01

    capazes de colonizar o interior de plantas de milho e que as diferentes condições edafoclimáticas estão correlacionadas com a diversidade dos genes nifH.Endophytic diazotrophic bacteria are capable of promoting maize growth through biological nitrogen fixation (BNF or by the production of plant hormones. The aim of this study was to characterize diversity of endophytic bacteria in maize at sites with different climate and soil conditions in Rio Grande do Sul, Brazil. A PCR-RFLP approach and sequence analysis of nifH Cluster I clone libraries were used to assess diversity in maize plants. The Shannon-Weaver and Equitability indices were calculated to estimate the diazotroph diversity as well as the nucleotide diversity and the average sequence divergence to estimate genetic diversity. To evaluate the variability in populations we performed the F ST test. A greater variation in bacterial communities was detected between rather than within regions, particularly among communities of different soil types and varying water regimes and geographical regions. The Shannon-Weaver index indicated a high difference in terms of diversity of taxonomic units among the communities. The diversity of the communities in the northern region, with higher precipitation and clay content, tended to be higher than that in the south. The Equitability index indicated that there was a dominant taxonomic unit within each community. All clones grouped into nifH gene cluster I. The nifH sequence types from Alpha, Beta and Gammaproteobacteria were recovered. These results demonstrate that there is a large diversity of endophytic nitrogen-fixing bacteria able to colonize maize tissue and that nifH diversity is correlated with the different environmental conditions.

  18. Resposta de plantas micropropagadas de abacaxizeiro à inoculação de bactérias diazotróficas em casa de vegetação Response of pineapple plantlets to inoculation with diazotrophic bacteria in greenhouse

    Directory of Open Access Journals (Sweden)

    Olmar Baller Weber

    2003-12-01

    Full Text Available O objetivo deste trabalho foi selecionar e avaliar bactérias diazotróficas isoladas de abacaxizeiro (Ananas comosus (L. Merril no desenvolvimento de cultivares micropropagadas da mesma espécie em casa de vegetação. Plantas da cultivar Perolera foram submetidas à inoculação com Asaia bogorensis (AB219 e cultivadas em tubetes, durante 145 dias, com as misturas: casca de arroz carbonizada, folha de carnaubeira triturada e vermicomposto; casca de arroz carbonizada, pó da casca do coco maduro e vermicomposto; casca de arroz carbonizada, vermiculita e vermicomposto. Plantas da cultivar Primavera receberam inóculos com o AB219 e bactérias relacionadas a Burkholderia cepacia (AB202 e AB213, enquanto plantas das cultivares Pérola e Smooth Cayenne receberam AB219 e AB213, sendo cultivadas, por 140 dias, em tubetes com a mistura de vermicomposto e vermiculita. A colonização dos abacaxizeiros pelas bactérias diazotróficas foi confirmada. As plantas da cultivar Perolera cresceram melhor em casca de arroz carbonizada, vermiculita e vermicomposto e responderam positivamente ao AB219. Já as plantas da cultivar Primavera não apresentaram resposta significativa à inoculação com AB219, AB202 e AB213. Houve incremento de 23,1% a 38,5% na matéria seca de raízes das plantas da cultivar Pérola na presença de AB213 e AB219, respectivamente. A presença de AB213 incrementou em 15,2% a matéria seca da parte aérea das plantas da cultivar Smooth Cayenne. Os resultados revelam a eficiência de bactérias diazotróficas na promoção do crescimento de abacaxizeiros.The objective of this work was to select and to evaluate isolates of diazotrophic bacteria associated to pineapple (Ananas comosus (L. Merril plants in the development of micropropagated plantlets of cultivars pineapple in greenhouse. Plantlets from the Perolera cultivar have been submitted to inoculation with Asaia bogorensis (AB219 and were cultivated during 145 days on the following

  19. Ocorrência e efeito de bactérias diazotróficas em genótipos de trigo Occurrence and effect of diazotrophic bacteria in wheat genotypes

    Directory of Open Access Journals (Sweden)

    Valéria Marino Rodrigues Sala

    2005-06-01

    Full Text Available A pesquisa sobre bactérias diazotróficas na cultura do trigo tem demonstrado a necessidade de associar bactérias eficientes a genótipos promissores, os quais se beneficiariam dessa associação. Em um experimento com parcelas subdivididas, instalado em condições de campo, em Mococa (SP, empregando os tratamentos: três doses de N (0, 60 e 120 kg ha-1 e três genótipos de trigo (IAC-24, ITD-19 e IAC-355, foi avaliada a ocorrência de microrganismos diazotróficos endofíticos em raízes desinfestadas superficialmente, utilizando-se três meios de cultivo distintos, NFb, JNFb e LGI-P. Somente para o genótipo IAC-355, houve um ajuste linear ascendente da quantidade de bactérias diazotróficas com o aumento na quantidade de N adicionada, apesar de o mesmo genótipo apresentar o menor número de bactérias diazotróficas endofíticas nos três meios de cultivo utilizados para quantificação. Foram obtidos oito isolados bacterianos do meio NFb com as características de Azospirillum e doze do meio JNFb com as características de Herbaspirillum. Esses isolados foram testados "in vitro", nos genótipos dos quais foram originalmente isolados, ou seja, ITD-19 e IAC-24. Todos os isolados testados no genótipo ITD-19 causaram maior crescimento radicular que a testemunha e apenas um isolado do meio JNFb propiciou aumento significativo do N acumulado na parte aérea. A interação planta-bactéria diazotrófica associativa indicou que é possível obter benefícios desta associação.Research on wheat root diazotrophic bacteria has demonstrated the need to associate effective bacteria to promising genotypes, which would benefit from this association. A field experiment was carried out in Mococa County, State of São Paulo, Brazil, using a split-plot design. Treatments consisted of 3 wheat genotypes (IAC-24, ITD-19 and IAC-355 under 3 nitrogen doses (0, 60 and 120 kg ha-1. The occurrence of diazotrophic bacteria was evaluated in three growth media

  20. Recobrimento de sementes de milho com ácidos húmicos e bactérias diazotróficas endofíticas Corn seed coating with humic acids and endophytic diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Patrícia Marluci da Conceição

    2008-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do recobrimento de sementes de milho com ácidos húmicos (AH, bactérias diazotróficas endofíticas e o uso em conjunto de AH e bactérias diazotróficas endofíticas, na estimulação do crescimento vegetal e na população de bactérias estabelecidas na planta hospedeira. A adição de AH, bactérias e o uso em conjunto estimularam o crescimento vegetal. Os AH utilizados no recobrimento de sementes de milho têm menor capacidade de estimular o crescimento radicular, em comparação ao uso em solução. O recobrimento de sementes é uma opção de inoculação de bactérias diazotróficas endofíticas da espécie Herbaspirillum seropedicae (Z67.The objective of this work was to evaluate the effect of seed coating of maize with humic acid (HA, endophytic diazotrophic bacteria, and the combination of both, on plant growth stimulation and bacteria population establishment in roots of inoculated plant host. The addition of HA, bacteria, and the combined use of bacteria and HA stimulated plant growth. Humic acids used in the coated seed formulation show diminished capacity for stimulation of root growth compared with its use in solution. Seed coat is an option for inoculation of endophytic diazotrophic bacteria like Herbaspirillum seropedicae (Z67.

  1. 木醋杆菌分批补料发酵法生产广式米醋%Fed-batch fermentation by Gluconacetobacter xylinus to produce Guangdong rice vinegar

    Institute of Scientific and Technical Information of China (English)

    傅亮; 易九龙; 陈思谦; 吴炳鸿

    2013-01-01

    The feasibility of fed-batch fermentation to improve the total acidity of Guangdong rice vinegar was investigated. The main contents include the distribution of Gluconacetobacter xylinus in fermented liquid and bacterial cellulose membrane, the variation of total acidity by single-batch fermentation and fed-batch fermentation, the optimal alcohol content of raw and the effect on total acidity by fed-batch fermentation. The result shows that the cell number of Bacterial cellulose membrane is 300 times than in the fermented liquid and the optimal alcohol content of raw is 5% (V/V). And fed-batch fermentation is advantageous in improving total acidity. The result of orthogonal test shows that the optimal conditions were: the sixth day began to add, add every 2 days one time, every time add 2%(volume of alcohol / volume of fermented liquid) and 3 times. Under this con-dition, the total acidity was at 7. 29 g/100 mL, 73. 6% higher than 4. 2 g/100 mL by single-batch fermentation.%研究分批补料发酵法提高广式米醋总酸度的可行性.主要内容包括发酵过程中木醋杆菌RF4在发酵液及细菌纤维素膜内的菌体数分布比较、单批和分批补料发酵法总酸的变化规律、原料最适酒精度及分批补料发酵法对总酸的影响.结果表明:细菌纤维素膜内的菌体数是发酵液中的300倍左右,最适原料初始酒精度为5% (V/V),分批补料发酵法有利于显著提高总酸度.通过正交优化,分批补料发酵最优工艺为发酵第6天每隔2d补加2%(酒精体积/发酵液体积)的酒精,补加3次,最终酸度可达7.29 g/l00 mL,较单批发酵的4.2 g/l00mL提高73.6%.

  2. Isolation,Identification and Phylogenetic Analysis of Endophytic Diazotrophs in Tengxian Medical-useOryza officinalis%藤县药用野生稻内生固氮菌分离鉴定及系统发育分析

    Institute of Scientific and Technical Information of China (English)

    胡文哲; 谭泽文; 王勇; 徐羡微; 谭志远

    2016-01-01

    This research aims to select the endophytic diazotrophs from wild medical-use Oryza officinalis growing on Teng County of Guangxi for collecting the strain resources contributing to the production of microbial fertilizer. Endophytic diazotrophs were isolated from O. officinalis using three selective mediums of free nitrogen and plate streaking method. Acetylene reduction assay was used to determine the activity of nitrogenase in the endophytic diazotrophs. The SDS-PAGE(dodecyl sulfate sodium salt-polyacrylamide gel electrophoresis) patterns of whole-cell proteins and IS-PCR DNA fingerprinting patterns were employed for the clustering analysis of the isolated endophytic diazotrophs. The 16S rRNA gene sequences of the representative strains of each group were analyzed to construct the phylogenetic tree. The abilities of producing auxin,producing siderophores,dissolving phosphorus and the activity of ACC deaminase were tested by colorimetry of spectrophotometer method. Thirty-four strains of endophytic diazotrophs were isolated from O. officinalis and assigned to 5 groups and their nitrogenase activity was between 5.0 to 1 036.7 nmol/(mL·h). Group I and II each had 8 strains. Group III,IV,V had 2,5,11 strains respectively. The homology of 16S rRNA gene was 97.13% between Group I and Azospirillum amazonenseATCC 35119T,99.71% between Group II and Klebsiella variicola DSM 15968T,99.86% between Group III and Pseudomonas monteilii ATCC 700476T,100% between Group IV and Xanthobacter flavus ATCC 35867T,and 99.86% between Group V and Burkholderia vietnamiensis LMG 10929T. In conclusion,some strains have the ability of producing auxin,producing siderophores,ACC deaminase activity,and dissolving phosphorus. The results suggest that endophytic diazotrophs in medical-use Oryza officinalis present genetic diversity and potential applications in agricultural practices;and group I probably is new.%从广西梧州市藤县药用野生稻中筛选内生固氮菌,为微生物肥料

  3. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae in the Brazilian Amazon Bacterias diazotróficas aisladas de arroz silvestre Oryza glumaepatula (Poaceae en la Amazonia brasileña

    Directory of Open Access Journals (Sweden)

    Paulo Ivan Fernandes Júnior

    2013-06-01

    Full Text Available The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepatula plants were collected at five sampling sites at Forest and seven at Cerrado, respectively. The plants were collected at the Cerrado areas in September 2008 while the Forest plants were collected in June/2008 and April/2009. The plants and the soil adhering to the roots were transferred to pots and grown for 35 days in greenhouse conditions. During the harvest, the shoots and the roots were crushed separately in a saline solution; the suspension was diluted serially and inoculated in Petri dishes containing Dyg’s medium. All distinct bacterial colonies were purified in the same medium. The diazotrophic capacity of each bacterium in microaerophilic conditions was assessed in semisolid BMGM medium. In addition, the pellicles forming bacterial isolates were also evaluated by PCR amplification for nifH gene. The diversity of nifH+ bacteria was analyzed by Box-PCR fingerprinting. For selected strains, the growth promoting capacity of O. sativa as a model plant was also evaluated. A total of 992 bacterial isolates were obtained. Fifty- one bacteria were able to form pellicles in the semisolid medium and 38 also positively amplified the 360bp nifH gene fragment. Among the 38 nifH+ isolates, 24 were obtained from the shoots, while 14 originated from the roots. The Box-PCR profiles showed that the bacterial isolates obtained in this study presented a low similarity with the reference strains belonging to the Herbaspirillum, Azospirillum and Burkholderia genus

  4. Bactérias diazotróficas associadas a coqueiros na região de baixada litorânea em Sergipe Diazotroph bacteria associated to coconut palms in a coastal lowland region in Sergipe State, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Ferreira Fernandes

    2001-12-01

    Full Text Available Objetivou-se neste trabalho, isolar, identificar e quantificar bactérias diazotróficas existentes nas raízes e folhas de coqueiro (híbrido PB121 cultivados na baixada litorânea de Sergipe. As populações de bactérias diazotróficas nesses órgãos foram quantificadas pela técnica do número mais provável (NMP em meios semi-sólidos JNFb e NFb, e identificadas por meio de avaliações microscópicas, culturais e de testes bioquímicos dos sistemas API 20 - E e API 20 - NE. O conteúdo de N em meios semi-sólidos NFb e JNFb foi determinado colorimetricamente, após oito dias de incubação das bactérias, a 32ºC, para estimar a capacidade de fixação biológica dos isolados. Enterobactérias pertencentes ao gênero Enterobacter e bactérias com características semelhantes às do gênero Pseudomonas (pseudomonadas foram predominantes entre os isolados obtidos. As enterobactérias e pseudomonadas isoladas de folhas foram predominantemente endofíticas. Quanto às diazotróficas isoladas de raízes, observou-se predominância de enterobactérias na sua superfície, ao passo que as pseudomonadas ocorreram em proporções semelhantes na superfície e no interior desse órgão. Após oito dias de incubação, os conteúdos de N nos meios com inoculação das bactérias pseudomonadas foram maiores do que nos meios com inoculação das enterobactérias.The aim of this work was to isolate, identify and quantify diazotrophic bacteria existing in roots and leaves of coconut palms (hybrid PB121 grown in a coastal lowland of Sergipe, in Brazil. Diazotrophic populations in these organs were quantified by the most probable number (MNP technique on NFb and JNFb semi-solid media and identified by the evaluation of microscopic, cultural and biochemical characteristics of the isolates. Biochemical characteristics were evaluated using the API 20 - E and API 20 - NE galleries. Nitrogen content in NFb and JNFb semi-solid media inoculated with each of the

  5. Germinação e vigor de sementes de arroz inoculadas com bactérias diazotróficas Rice seed germination and vigour as affected by the inoculation with diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Antonio Edilson da Silva Araújo

    2010-08-01

    Full Text Available Objetivou-se, neste trabalho, avaliar a germinação e o vigor das sementes de arroz inoculadas com bactérias diazotróficas. Foram instalados dois experimentos, sendo que no primeiro o delineamento experimental adotado foi o inteiramente casualizado em esquema fatorial, com dois lotes de sementes arroz da cultivar IC4440 x 10 tratamentos, com quatro repetições. Os tratamentos foram representados pela inoculação com oito estirpes de bactérias diazotróficas (AR1122, M130, BF1358, ZAE94, AR3122, AR2112, CD e BR2113, bem como pelo recobrimento das sementes com a turfa umedecida com o meio de cultivo esterilizado e pelas sementes não inoculadas. No segundo experimento, o delineamento experimental adotado foi o inteiramente casualizado, em esquema fatorial, com dois lotes de sementes recém-colhidas das cultivares IR42 e Zebu Branco x oito tratamentos, com quatro repetições. Os tratamentos foram representados pela inoculação das sementes com seis estirpes de bactérias diazotróficas (BF1358, AR3122, AR1122, ZAE94, M130 e AR2112, bem como pelo recobrimento das sementes com a turfa umedecida com o meio de cultivo esterilizado e pela não realização do procedimento de inoculação. As bactérias AR1122, M130, BF1358, ZAE94 e AR3112 podem ser selecionadas para formular inoculante para sementes de arroz. A inoculação com as bactérias diazotróficas aumenta a velocidade de germinação das sementes das cultivares IR42 e Zebu Branco, com menor contaminação por fungos.The objective of this work was to evaluate the germination and vigour of rice seeds affected by inoculation with diazotrophic bacteria. Two experiments were conduced. In the first one, a completely randomized design with four replications arranged in a factorial scheme (2 lots x 10 treatments was used. For this, rice seeds of cultivar IC4440 were inoculated with eight strains of diazotrophic (AR1122, M130, BF1358, ZAE94, AR3122, AR2112, CD e BR2113, submitted to coating with

  6. CARACTERIZAÇÃO FENOTÍPICA DE BACTÉRIAS DIAZOTRÓFICAS ENDOFÍTICAS ISOLADAS DE CANA DE AÇÚCAR PHENOTYPIC CHARACTERIZATION OF ENDOPHYTIC DIAZOTROPHIC BACTERIAS ISOLATED OF SUGARCANE

    Directory of Open Access Journals (Sweden)

    Robson Cavalcante de Lima

    2011-06-01

    Full Text Available A utilização de inoculantes contendo microrganismos diazotróficos na cana-de-açúcar pode contribuir para a promoção do crescimento destas plantas e promover ganhos significativos na produtividade. Objetivou-se no presente trabalho caracterizar bactérias diazotróficas isoladas de colmos cana-de-açúcar. Foram utilizados os meios de cultivo semi-sólidos NFb e JNFb sem adição de nitrogênio. Foram isoladas cinco estirpes nativas de bactérias diazotróficas as quais foram avaliadas microscopicamente pela coloração de Gram e em relação à resistência intrínseca aos antibióticos; fungicida furadan (i.a. carbofuran e inseticida regente (i.a. fipronil, e à capacidade de fixar o nitrogênio em condições de casa-de-vegetação e campo. Os resultados obtidos permitiram observar que todos os isolados apresentaram características de bacilos Gram-negativos, e ampla resistência aos antibióticos. A estirpe nativa UCCBc5 apresentou resistência ao fungicida furadan e ao inseticida regente. As bactérias isoladas UCCBc1 e UCCBc5 apresentam capacidade e eficiência de fixar o nitrogênio atmosférico em condições de casa-de-vegetação. Verificou-se que a estirpe UCCBc5, resistente ao furadan e ao regente apresentou capacidade fixadora do nitrogênio atmosférico, em condições de campo. Na avaliação de doses de inoculante observou-se que existe relação dose de inoculante/ eficiência de fixação de nitrogênio. Estes resultados permitiram afirmar que as bactérias diazotróficas endofíticas podem ser utilizadas, em alguns casos, como substituto da adubação nitrogenada, na cultura de cana-de- açúcar.The use of inoculants containing diazotrophic microorganism in sugarcane can contribute to promoting the growth of these plants and tp promote significant gains in productivity. The objective of this study was to characterize diazotrophic bacteria isolated from stalks of sugarcane. We used the means of a semi-solid NFB and JNFb

  7. Ocorrência de bactérias diazotróficas e fungos micorrízicos arbusculares na cultura da mandioca Occurrence of diazotrophic bacteria and arbuscular mycorrhizal fungi on the cassava crop

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    1999-07-01

    Full Text Available Este trabalho teve como objetivo avaliar a ocorrência, isolar e identificar fungos micorrízicos arbusculares associados à cultura da mandioca (Manihot esculenta. Amostras de solo rizosférico e de várias partes da planta (raízes, tubérculos, manivas e folhas de locais nos Estados do Rio de Janeiro, São Paulo e Paraná, foram inoculadas nos meios LGI-P, NFb-malato e NFb-GOC, avaliando-se o número mais provável de células e a atividade de redução de acetileno. Bactérias diazotróficas foram isoladas de todas as partes da planta, com exceção das folhas, sendo identificadas como Klebsiella sp., Azospirillum lipoferum e uma bactéria denominada "E", provavelmente pertencente ao gênero Burkholderia. A Bactéria E acumulou de 7,63 mg a 14,84 mg de N/g de C em meio semi-sólido, isento de N, e conseguiu manter a capacidade de fixação biológica de N, mesmo após uma dezena de repicagens consecutivas. A colonização micorrízica variou de 31% a 69%, e a densidade de esporos de 10 a 384 esporos/100 mL de solo, predominando as espécies Entrophospora colombiana e Acaulospora scrobiculata no Rio de Janeiro, A. scrobiculata e Scutellospora heterogama no Paraná e em Piracicaba (São Paulo e A. appendicula e S. pellucida em Campinas (São Paulo.This study was performed to evaluate the occurrence and to isolate and identify diazotrophic bacteria and arbuscular mycorrhizal fungi associated with the cassava (Manihot esculenta crop. Samples from rhizospherical soil, roots, tubers, stems and leaves from several localities of the States of Rio de Janeiro, São Paulo and Paraná, in Brazil, were inoculated in three media specific for diazotrophic associative bacteria, LGI-P, NFb-malate and NFb-GOC, evaluating the most probable number of cells and the acetylene-reducing activity. Diazotrophic bacteria were detected in all plant parts except for the leaves, and were identified as Klebsiella sp., Azospirillum lipoferum and a bacterium called "E

  8. Recent advances in nitrogen-fixing acetic acid bacteria.

    Science.gov (United States)

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  9. Interactions between diazotrophic bacteria and mycorrhizal fungus in maize genotypes Interações entre bactérias diazotróficas e fungo micorrízico em genótipos de milho

    Directory of Open Access Journals (Sweden)

    Marina Yumi Horta Miyauchi

    2008-01-01

    Full Text Available Some diazotrophic bacteria can fix nitrogen biologically in gramineous host plants. Generally, gramineous plants are also associated with mycorrhizal fungi, that can improve mainly plant P uptake. Among the factors affecting plant-microbe interactions, the plant genotype plays an important role. This study evaluates the effect of diazotrophic bacteria and an arbuscular mycorrhizal fungus (AMF, on five genotypes of maize (Zea mays L., in relation to plant biomass, shoot N and P concentrations, and fine root morphological traits. The experimental design was entirely randomized in a factorial 5 × 4 × 2 arrangement, i.e., five maize genotypes (hybrids C333B, AS3466, and PREMIUM, and the inbreed lines lg40897-1 and lg40505-1, three diazotrophic bacteria (Azospirillum lipoferum, A. amazonense, and Burkholderia sp. in addition to a control without bacterial inoculation, co-inoculated or not with the AMF Glomus clarum. The non-mycorrhizal plants inoculated with Azospirillum exhibited the highest N concentrations. The lines lg40897-1 and lg40505-1 showed higher P concentrations as compared to the hybrids, mainly when colonized by AMF. The higher levels of mycorrhizal colonization (90% occurred in the C333B and lg40897-1 genotypes, which also exhibited a greater root diameter. Mycorrhiza increased shoot and root biomass, besides root traits as total length, specific length, total surface, and incidence of root hairs in all genotypes. In addition, mycorrhiza also stimulated the root colonization by diazotrophic bacteria. The bacteria did not affect root morphological traits and mycorrhizal colonization.Algumas bactérias diazotróficas podem fixar N biologicamente em gramíneas, as quais se associam a fungos micorrízicos, o que pode levar a um aumento principalmente da absorção de P. Dentre os fatores que afetam as interações planta-microrganismos, o genótipo da planta tem importante papel. Esse trabalho avalia o efeito de bactérias diazotr

  10. 玉米内生固氮菌的分离鉴定及对小麦幼苗的促生效应%Isolation and Identification of Endophytic Diazotrophic Bacteria from Maize and Their Effect on Wheat Seedling Growth

    Institute of Scientific and Technical Information of China (English)

    傅晓方; 韩红江; 郝勇锋; 李维平

    2012-01-01

    应用研磨法从健康玉米植株的根茎叶中分离到4株具有高固氮酶活性的内生菌,根据它们在植物组织来源和分离时稀释度的不同将其分别命名为L1A1、L1A4、L1B9和L2A2(L代表来源于叶片,A代表10倍稀释,B代表100倍稀释).经形态学、生理生化特性及16S rDNA序列分析,对4株菌鉴定结果表明,L1A1为约氏不动杆菌(Acinetobacter johnsonii)、L1A4为Sphingomonas panni、L1B9为Sphingomonas yabuuchiae、L2A2为巴氏葡萄球菌(Staphylococcus pasteuri).这4株菌均具有不同程度的固氮酶活性和产IAA(吲哚乙酸)能力,其中L1A1、L2A2具有降解有机磷能力,L1A4具有体外拮抗小麦赤霉病菌的能力.接种这4株菌的小麦苗高、根长、鲜质量、干质量和叶绿素含量均比未接菌小麦高(P<0.05),说明其具有促进小麦幼苗生长的作用.%Four strains of endophytic diazotrophic bacteria were isolated from root, stalk and leaf of maize using the grinding method. According to the isolated plant tissues and dilution multiples, the four strains were named as L1A1 ,L1A4,L1B9 and L2A2. They were identified as Acinetobacter john-sonii, Sphingomonas panni, Sphingomonas yabuuchiae and Staphylococcus pasteuri respectively by way of morphological, physiological-biochemical properties and 16S rDNA sequence analysis. All the strains possessed nitrogenase activity and could produce IAA more or less. Isolates L1A1 and L2A2 had phosphate solubilization ability. L1A4 showed antagonism against Fusarium graminearum. When inoculated the endophytic diazotrophic bacteria on wheat, they showed a statistically significant increase (P<0. 05) in seedling height, root length, fresh weight, dry weight and Chlorophyll content .

  11. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov.

    Science.gov (United States)

    Reinhold-Hurek, B; Hurek, T

    2000-03-01

    The taxonomic structure of members of the genus Azoarcus sensu lato was reassessed in a polyphasic approach. Two species, Azoarcus communis and Azoarcus indigens, three unnamed species containing diazotrophs associated with Kallar grass roots (groups C, D) and a group of strains (E) isolated from fungi were analysed. They were compared by PAGE analyses of cellular proteins, genomic fingerprints, morphological and nutritional features to new isolates from rice roots. All strains within groups C, D and E containing 5-12 isolates showed group-specific cell and colony morphology and carbon source utilization patterns, with exception of the obligately microaerobic strain BS20-3, a member of group C. All strains, with this exception, also had almost indistinguishable electrophoretic protein patterns and genomic fingerprints generated with tDNA-directed primers, suggesting they belong to the same species. Phylogenetic analyses of almost complete 16S rDNA sequences carried out with three different algorithms (neighbour-joining, maximum-likelihood, parsimony) revealed that Azoarcus sensu lato is not monophyletic. Groups C, D and E formed three distinct lineages located between the Azoarcus/Thauera and the Rhodocyclus clusters. Phylogenetic distances between groups C, D and E were as large as between other genera (93-94% sequence similarity). This suggested they have the rank of three different genera. Since it was possible to differentiate them from each other and other related bacteria by phenotypic features, three new genera with one type species each are proposed: Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov.

  12. Klebsiella pneumoniae inoculants for enhancing plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Eric W. (Middleton, WI); Kaeppler, Shawn M. (Oregon, WI); Chelius, Marisa K. (Greeley, CO)

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  13. GenBank blastx search result: AK243269 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243269 J100049H19 L41732.4 ABCLSDA Gluconacetobacter diazotrophicus levansucrase precursor (lsd...A), levanase precursor (lsdB), pseudopilin G precursor (lsdG), prepilin peptidase and N-methyl...transferase O (gspO), kinase E (lsdE), LsdF (lsdF), pseudopilin H precursor (lsdH), pseudopilin I precursor (lsd...I), pseudopilin J precursor (lsdJ), LsdL (lsdL), LsdM (lsdM), and LsdN (lsdN)... genes, complete cds; secretin D (lsdD) gene, partial cds; and unknown gene. BCT 6e-26 1 ...

  14. Klebsiella pneumoniae inoculants for enhancing plant growth

    Science.gov (United States)

    Triplett, Eric W [Middleton, WI; Kaeppler, Shawn M [Oregon, WI; Chelius, Marisa K [Greeley, CO

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  15. Novas bactérias diazotróficas endofíticas na cultura do trigo em interação com a adubação nitrogenada, no campo Interaction of new diazotrophic endophytic bacteria and nitrogen fertilization on wheat crop under field conditions

    Directory of Open Access Journals (Sweden)

    Valeria Marino Rodrigues Sala

    2008-06-01

    Full Text Available Bactérias diazotróficas pertencentes a diferentes espécies podem estar associadas a gramíneas, como o trigo, promovendo incrementos no crescimento e na produtividade de grãos. Foi realizado um experimento, em condições de campo, com o objetivo de avaliar os benefícios e a viabilidade econômica da inoculação de novos isolados homólogos de bactérias diazotróficas endofíticas em genótipos de trigo sob diferentes doses de N. Foram empregados três isolados de bactérias diazotróficas endofíticas (IAC-AT-8-Azospirillum brasiliense, IAC-HT-11-Achromobacter insolitus e IAC-HT-12-Zoogloea ramigera, dois genótipos de trigo (ITD- 19-Triticum durum L. e IAC-370-Triticum aestivum hard L. e três doses de N (0, 60 e 120 kg ha-1. Foram avaliados, no estádio de perfilhamento e de maturidade fisiológica, a matéria seca, o N acumulado e o índice de eficiência de utilização do N na parte aérea e na colheita; a produtividade de grãos, os componentes de rendimento e os índices de colheita para biomassa e N. No estádio de perfilhamento, somente houve aumento na produção de biomassa com a inoculação de Azospirillum brasiliense e Achromobacter insolitus no genótipo IAC-370, com a adição de N. Entretanto, não houve especificidade dos genótipos de trigo empregados e essas novas bactérias diazotróficas endofíticas para as demais caracaterísticas avaliadas. Houve aumento no acumulado de N na espiga com a inoculação de Azospirillum brasiliense. A inoculação de Achromobacter insolitus propiciou aumento da produtividade de grãos, na maior dose de N utilizada (120 kg ha-1. A inoculação, embora não tenha substituído a adubação nitrogenada, reverteu-se em lucro para o agricultor.Diazotrophic bacteria belonging to different species may be associated with grasses, such as wheat, promoting increases in plant growth and grain yield. A field experiment was carried out to evaluate the benefits and economic viability of inoculation

  16. Toxicidade de herbicidas utilizados na cultura da cana-de-açúcar à bactéria diazotrófica Azospirillum brasilense Toxicity of herbicides applied on sugarcane to the diazotrophic bacterium Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    S.O Procópio

    2011-01-01

    Full Text Available Objetivou-se neste trabalho identificar herbicidas utilizados na cultura da cana-de-açúcar que não alteram o crescimento ou a capacidade de fixação biológica de nitrogênio (FBN da bactéria diazotrófica Azospirillum brasi lense. Dezoito herbicidas - paraquat, ametryn, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron-sodium + ametryn], S-metolachlor, glyphosate, MSMA e 2,4-D - foram testados em suas doses comerciais quanto ao impacto sobre o crescimento da bactéria em meio líquido DIGs. As variáveis capacidade de suporte de crescimento (carrying capacity do meio de cultura, duração da fase lag e tempo de geração de A. brasilense foram calculadas a partir de dados de densidade ótica obtidos, em intervalos regulares, durante a incubação de culturas por 55 h. O impacto dos herbicidas na atividade da nitrogenase de A. brasilense foi avaliado em meio semissólido NFb, sem N, pela técnica da atividade de redução do acetileno (ARA. Os efeitos dos herbicidas sobre as variáveis de crescimento e ARA foram comparados ao controle pelo teste de Dunnett. Paraquat, oxyfluorfen, [trifloxysulfuron-sodium + ametryn] e glyphosate reduziram a capacidade do meio DIGs em suportar o crescimento de A. brasilense. Esse efeito foi associado ao aumento da duração da fase lag e do tempo de geração para [trifloxysulfuron-sodium + ametryn] e ao aumento no tempo de geração para glyphosate. MSMA, paraquat e amicarbazone reduzem a FBN in vitro de A. brasilense, porém essa redução é mais severa na presença do paraquat. Os demais herbicidas não alteram o crescimento e a FBN de A. brasilense.The objective of this work was to identify the herbicides applied on sugarcane that do not affect the growth nor the process of biological nitrogen fixation (BNF of the diazotrophic bacterium Azospirillum brasilense. Commercial doses of

  17. Seleção de inoculantes à base de turfa contendo bactérias diazotróficas em duas variedades de arroz = Selection of peats inoculants with diazotrophic bacteria in two rice varieties

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Divan Baldani

    2010-01-01

    inoculants, grown in pots containing soil and maintained outside a greenhouse. The dry mass accumulation, Npercent, N-total and yield were determined during the plant cycle. The humidity content varied with storage period. The survival measurement showed that only Burkholderia sp. M130 maintained the number of viable cells around 108 g-1 of peat, while there was a reduction in population of other strains. An increase of yield and total N of 13 and 19.4%, respectively in comparison to treatment fertilized with 40 kg N ha-1 was observed for variety IAC4440,inoculated with strain ZAE94. There was no difference in yield of the IR42 inoculated with either ZAE94 or M130, as compared to N control treatment. No significant difference in development of both rice varieties was observed for both peat used. The results suggest that peat can be used as a carrier for production of an inoculant based on diazotrophic bacteria, since it allowed maintenance of a bacterial population up to 108 cells g-1 peat during the storage period of up to100 days. The results obtained encourage the practice of inoculation of non-leguminous plants.

  18. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  19. Search for endophytic diazotrophs in barley seeds.

    Science.gov (United States)

    Zawoznik, Myriam S; Vázquez, Susana C; Díaz Herrera, Silvana M; Groppa, María D

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  20. 不同培养基的酵母发酵液对细菌纤维素产量的影响%Effects of Yeast Fermentation in Different Kinds of Media on Production of Bacterial Cellulose by Gluconacetobacter europaeus Y9

    Institute of Scientific and Technical Information of China (English)

    何晓磊; 刘四新; 邓健; 杨一冲; 毕继才; 刘龙祥; 郝婧; 李从发

    2016-01-01

    为了提高细菌纤维素(BC)产量,研究4种酵母菌在NCW、PDB、YPD和BS等4种不同培养基中的发酵液对Gluconacetobacter europaeus Y9 BC产量的影响,并与新鲜椰子水和自然发酵椰子水发酵生产BC的产量进行对比.结果表明:在YPD培养基制成的4种酵母菌发酵液中BC产量都是最高的,其中活性干酵母贝酵母、面包酵母和自行分离筛选的野生酵母威克克鲁维酵母、热带假丝酵母生产的BC产量分别为6.91、5.53、6.15、4.67g/L,都显著高于以新鲜椰子水发酵合成的BC产量,贝酵母和威克克鲁维酵母在不同培养基中对BC产量影响不同,可能高于或者是接近自然发酵椰子水中的BC产量.推测酵母菌发酵液促进BC合成的原因不仅由于产生了合适浓度的乙醇,应该还与酵母菌产生了其他代谢产物,并且提供了良好的缓冲能力等有关.另一方面,筛自自然发酵椰子水的、野生的威克克鲁维酵母在任何培养基中培养后BC产量都较高,推测该菌株可能是新鲜椰子水经自然发酵后能使BC产量大幅度提高的重要贡献菌种之一.

  1. Resposta do dendezeiro à adição de nitrogênio e sua influência na população de bactérias diazotróficas Response of African oil palm to nitrogen addition and its influence on the diazotrophic bacteria population

    Directory of Open Access Journals (Sweden)

    André Vieira de Carvalho

    2006-02-01

    Full Text Available O dendê (Elaeis guineensis, Jaquim pode produzir até sete toneladas de óleo por hectare por ano. O óleo vegetal é muito versátil e pode ser usado desde a indústria alimentícia até a produção de biocombustíveis. A planta é capaz de se associar com bactérias diazotróficas que colonizam raízes e caules. O objetivo deste trabalho foi avaliar a resposta à adubação nitrogenada de 17 genótipos de dendê no primeiro ano de cultivo e avaliar a influência da adição do N mineral sobre a população de bactérias diazotróficas, naturalmente presentes nas plântulas de dendezeiro. Foram utilizados potes de plástico completados com 50% de areia quartzoza e 50% de horizonte B de um Argissolo Vermelho-Amarelo, série Itaguaí, não esterilizado e extremamente pobre em nitrogênio. A uréia foi aplicada na dosagem de 33,68 kg ha-1 de N. Na presença do N, todos os genótipos melhoram os parâmetros biométricos, e houve aumento tanto do N total quanto do N acumulado. As populações de bactérias diazotróficas não foram influenciadas pela adição desse elemento. Dois genótipos foram selecionados, na presença e ausência de N, respectivamente, C-2001 e La Mé.African oil palm (Elaeis guineensis, Jaquim can produce up to 7 tons of oil per hectare per year. The vegetable oil is greatly versatile in its use, since food industry up to the production of fuels favorable to environmental protection. The plant has the potential to be associative with diazotrophic bacteria which colonize the roots and stem. The objective of this work was to evaluate 17 genotypes of E. guineensis in response to nitrogen addition and to verify the influence of this nitrogen on the diazotrophic population in an experiment using plastic pots filled with 50% quartz sand and 50% of non sterilized Horizon B; Red-Yellow Podzolic Soil series Itaguaí, extremely poor in nitrogen. Urea was used at a dose of 33.68 kg ha-1 de N. In the presence of the nitrogen, all

  2. Ocorrência e diversidade de bactérias diazotróficas associadas a gramíneas forrageiras do Pantanal Sul Matogrossense Occurrence and diversity of diazotrophic bacteria associated to forage grasses of the Pantanal in the state of Mato Grosso do Sul

    Directory of Open Access Journals (Sweden)

    Marivaine da Silva Brasil

    2005-04-01

    Full Text Available Este trabalho teve por objetivo avaliar a ocorrência e a diversidade genética de bactérias fixadoras de N2 associadas às gramíneas nativas Elyonurus muticus (capim carona e Axonopus purpusii (capim mimoso e à gramínea exótica Brachiaria humidicola (braquiária que formam as pastagens na região da Nhecolândia. As coletas das plantas e solo foram feitas nos períodos de seca e de cheia para determinar a população de bactérias diazotróficas. Identificaram-se Azospirillum brasilense, A. lipoferum, A. amazonense, Herbaspirillum spp., Burkholderia spp. em amostras de solo, raízes e folhas das três espécies forrageiras. As populações dessas bactérias foram menores na época da cheia em comparação com a época da seca. A diversidade genética das bactérias isoladas foi avaliada por meio da técnica de análise de restrição do DNA ribossomal amplificado (ARDRA. Os isolados foram divididos em cinco grupos genotípicos distintos. Os isolados de A. brasilense e A. lipoferum apresentaram cerca de 50 % de similaridade, enquanto A. amazonense formou um grupo a parte, com apenas 25 % de similaridade em relação ao grupo das espécies do gênero. As bactérias do gênero Herbaspirillum formaram um grupo isolado com apenas 25 % de similaridade em relação ao gênero Azospirillum. O quinto grupo foi formado por apenas um isolado com 25 % de similaridade em relação aos demais.This study was carried out to verify the occurrence and genetic diversity of diazotrophic bacteria associated to the native graminaceus plants Elyonurus muticus (Carona grass and Axonopus purpusii (Mimoso grass and the exotic Brachiaria humidicola (Brachiaria that form the pastures in the Nhecolândia region of the Pantanal in the state of Mato Grosso do Sul, Brazil. The plants were harvested in the dry and rainy seasons and the diazotrophic bacteria populations in the soil and on roots and leaves of the three grasses were determined. Strains belonging to the

  3. Effects of high hydrostatic pressure treated on the character of Gluconacetobacter and its BC yield%高静水压对纤维素产生菌葡糖醋杆菌性质及其产纤维能力的影响

    Institute of Scientific and Technical Information of China (English)

    林德慧; 杜双奎; 李志西; 葛含静; 向进乐

    2011-01-01

    [目的]研究高静水压处理对纤维素产生菌葡糖醋杆菌(Gluconacetobacter J2)致死率、形态特征、生理生化特性、纤维素产量以及菌体生长速率的影响,为细菌纤维素高产菌株的诱变育种提供参考.[方法]将制备好的菌悬液,分装到无菌聚丙烯袋中,用真空封口机封口,然后用高静水压设备在处理压力为200 MPa时,分别处理10,15,20 min;在处理时间为15 min时,处理压力分别为150,200,250 MPa,进行高压处理.[结果]高静水压对菌株J2有显著的作用.处理时间在30 min内时,菌株J2的致死率随着处理时间的延长而增大,至30 min时全部死亡;处理压力在300 MPa内时,菌株J2的致死率随着处理压力的增加而增大,至300 MPa时全部死亡.处理压力与处理时间呈现出极显著的交互作用.显微镜下观察到,高静水压处理后菌株呈现的杆菌有所变短,且高静水压处理后的菌株在液体培养基中呈现的球状菌群大小是高静水压处理前的3~4倍,但其生理生化特性没有发生明显变化.高静水压处理前、后菌株对碳源和氮源的利用程度有明显差异.高静水压处理后菌株发酵生产细菌纤维素的能力明显提高,其中产量最高的1株纤维素产量是高静水压处理前的1.485倍,且菌株的生长速率明显加快.[结论]高静水压.处理对细菌纤维素产生菌的生理代谢和产纤维素能力有明显影响,在高产菌株诱变选育方面有一定的应用前景.

  4. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus.

    Science.gov (United States)

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Lin, Xiao-Qing; Chen, Xue-Fang; Chen, Xin-De

    2016-01-01

    Although litchi has both nutrient and edible value, the extremely short preservation time limited its further market promotion. To explore processed litchi products with longer preservation time, litchi extract was selected as an alternative feedstock for production of bacterial cellulose (BC). After 2 weeks of static fermentation, 2.53 g/L of the BC membrane was obtained. The trace elements including magnesium (Mg) and sodium (Na) in the litchi extract were partly absorbed in the BC membrane, but no potassium (K) element was detected in it, curiously. Scanning electron microscope (SEM) photographs exhibited an ultrafine network nanostructure for the BC produced in the litchi extract. Analysis of the fourier-transform infrared spectroscopy (FTIR) confirmed the pellicles to be a cellulosic material. Interestingly, X-ray diffraction (XRD) results showed the BC membrane obtained from litchi extract had higher crystallinity of 94.0% than that from HS medium. Overall, the work showed the potential of producing high value-added polymer from litchi resources.

  5. Strain improvement of Gluconacetobacter xylinus NCIM 2526 for ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... wild strain. The mutant GHUV4 gave cellulose yield of 3.92 g/l which was 30% more than the wild strain ... One of the. BC application problems in industry is its low productivity. One approach to combat BC productivity is strain.

  6. Effect of inoculation with endophytic diazotrophic bacteria on physiological characters of Tamarix ramosissima Ledeb. seedlings under salt-drought stress%干旱及盐双胁迫下内生固氮菌接种对多枝柽柳实生苗生理特性的影响

    Institute of Scientific and Technical Information of China (English)

    罗达; 潘存德; 周俊; 罗明; 季华; 李硕

    2012-01-01

    dition,the activities of SOD can maintain in 275.82 - 561.49 U · g-1 with prolong the period and intensive of stress. When salt-drought stress lasting 60 days, the activities of SOD can maintain high level under 0 g/L and 4 g/ L salt in 60% water treatment. The activities of peroxidase (POD) showed increase firstly, then decrease and in- crease rapidly again, which mainly enhanced in middle and late stage of salt-drought stress and showed a greater difference in growth period, through the stress period, the activities of peroxidase (POD) can maintain high level under 0 g/L and 8 g,/L salt concention in 60% water treatment at 60 days, moreover, various protective enzyme may play different role at different stages of stress. At the same time, inoculation endophytic diazotrophic bacteria also can efficiently reduce the cell membrane permeability and slow down the root activity dropping, so to keep normal physiological activities. After 20 and 40 days salt-drought stress, the cell membrane permeability of all treatment maintained low level, while the root maintained vitality steadily at 20 days stress. In eonclution, under salt-drought stress,inoculation endophytic diazotrophic bacteria can enhance the host's ability to adapt to stress environment, ef- fectively heighten the root vitality, protect structure and weaken injury of plant cell membrane, therefore increase plant adversity resistance.%采用盆栽试验法研究了在干旱及盐双胁迫下内生固氮菌接种对多枝柽柳实生苗生理特性的影响。结果表明:接菌植株较未接菌植株SOD酶活性在水盐胁迫条件下平均提高68.3%,在非胁迫条件下平均提高52.0%,随着胁迫时间延长和胁迫强度增加,SOD酶活性维持在275.82~561.49u/g。POD酶活性在水盐胁迫条件下呈现先上升后下降再急剧升高的波动特点,活性提高主要发生在胁迫的中期和后期。内生固氮菌接种还能有效降低水盐胁迫条

  7. Adição de molibdênio ao inoculante turfoso com bactérias diazotróficas usado em duas cultivares de arroz irrigado Addition of molybdenum in peat innoculum with diazotrophic bacteria used in two rice cultivars

    Directory of Open Access Journals (Sweden)

    Salomão Lima Guimarães

    2007-03-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da utilização de bactérias diazotróficas com ou sem molibdênio em duas cultivares de arroz com diferentes potenciais de fixação biológica de nitrogênio. Dois experimentos foram montados: o primeiro foi conduzido em condições gnotobióticas, com utilização das estirpes BR 11417 (ZAE94 - Herbaspirillum seropedicae e BR 11340 (M130 - Burkholderia sp., duas doses de molibdênio, 1,12 e 2,25 g, e duas fontes, molibdato de sódio e molibdato de amônio. As sementes foram peletizadas com inoculante turfoso com bactérias diazotróficas e o molibdênio. Em seguida as cultivares foram plantadas em tubos de ensaio com capacidade para 120 mL com 60 mL da solução de Hoagland sem nitrogênio por 30 dias. Foi avaliada a matéria seca das plantas. O segundo experimento foi conduzido em vasos em casa de vegetação, com as mesmas estirpes e dosagens de molibdênio. Foram avaliados a produção e o N total dos grãos. O delineamento estatístico foi inteiramente casualizado com quatro repetições e quatro plantas por vaso. Foram observados aumentos na produção de grãos nas cultivares IR42 e IAC4440 de 88 e 57%, respectivamente, com a adição ao inoculante turfoso, das estirpes ZAE94 e M130 com molibdênio.The objective of this work was to evaluate the effect of the inoculation of diazotrophic bacteria associated with the molybdenum in two rice cultivars. Two experiments were performed: the first one was lead under gnotobiotics conditions, using Herbaspirillum seropedicae, strain BR 11417 and Burkholderia sp., strain BR 11340, two doses of molybdenum (1.12 and 2.25 g and two different sources of Mo - sodium molybdate and ammonium molybdate. The seeds were pelleted with peat containing diazotrophic bacteria and molybdenum. After inoculations were seeds planted in to test tubes with capacity for 120 mL content 60 mL Hoagland solution without nitrogen. Seedlings were harvested after 30 days and plant

  8. Resposta de genótipos de trigo à inoculação de bactérias diazotróficas em condições de campo Wheat genotypes response to inoculation of diazotrophic bacteria in field conditions

    Directory of Open Access Journals (Sweden)

    Valéria Marino Rodrigues Sala

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar, em condições de campo, o efeito e a viabilidade econômica da inoculação de novos isolados homólogos de bactérias diazotróficas endofíticas, sob diferentes doses de nitrogênio, em dois genótipos de trigo, em duas localidades. Foram utilizados: três isolados de bactérias diazotróficas endofíticas (IAC-AT-8, Azospirillum brasilense; IAC-HT-11, Achromobacter insolitus; IAC-HT-12, Zoogloea ramigera, dois genótipos de trigo (ITD-19 e IAC-370 e três doses de N, na forma de uréia (0, 60 e 120 kg ha-1. No estádio de quatro folhas e no perfilhamento, foram avaliados a massa de matéria seca e o N acumulado na parte aérea. Na colheita, foram avaliados o teor de N, a massa de 1.000 sementes e a produtividade de grãos. A inoculação promoveu maior massa de matéria seca e N acumulado e aumentou a produtividade de grãos, principalmente na presença de adubo nitrogenado, com lucro para o agricultor. Entretanto, o maior aumento na produtividade de grãos foi obtido nas plantas do genótipo IAC-370, com o emprego do isolado IAC-HT-12, na ausência de N, que superou em 45% o tratamento testemunha. As respostas variaram em relação ao local de cultivo, o que sugere expressiva interação planta-bactéria-ambiente.The aim of this work was to evaluate, in field conditions, the effect and the economic viability of inoculation of new homologous strains endophytic diazotrophic bacteria, under different nitrogen doses on two wheat genotypes. Three strains of diazotrophic bacteria (IAC-AT-8, Azospirillum brasilense; IAC-HT-11, Achromobacter insolitus; IAC-HT-12, Zoogloea ramigera, two wheat genotypes (ITD-19 and IAC-370, and three levels of nitrogen fertilizer as urea (0, 60 e 120 kg ha-1 were tested. Shoot dry matter and total shoot nitrogen were evaluated, at four leaves and at tillering stages. Nitrogen concentration in the grain, 1,000 grains weight and yield were evaluated at harvest. Plants with

  9. Efeito de bactérias diazotróficas na produção de abacaxizeiro 'Cayenne Champac', sob irrigação, em dois níveis de adubação nitrogenada Contribution of diazotrophic bacteria on yield of pineapple 'Cayenne Champac', under irrigation, with two levels of nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Olmar Baller Weber

    2004-08-01

    Full Text Available Avaliou-se o efeito de bactérias diazotróficas na produção de abacaxizeiro cv. Cayenne Champac (Champaka, sob irrigação, em dois níveis de adubação nitrogenada. Os tratamentos constaram dos níveis de N de 180 kg ha-1 ano-1 e 300 kg ha-1 ano-1, nas parcelas e subparcelas de mudas micropropagadas inoculadas com bactéria relacionada a Burkholderia cepacia AB213, de bactéria Asaia bogorensis AB219 e controles sem inoculação bacteriana, utilizando-se de três repetições. A inoculação bacteriana foi realizada no laboratório (10(8 células planta-1 e a aclimatação das mudas, em casa de vegetação. Após 5 meses, as mudas foram transplantadas no campo, utilizando-se de 0,9 m entre as linhas e 0,3 m entre as plantas. A cultivar apresentou bom desempenho sob irrigação no solo arenoso de Pacajus, Estado do Ceará, quando adubado com o maior nível de N. Para cada quilograma do elemento fornecido, houve incremento de 124,3 kg ha-1 na massa fresca dos frutos com coroa, entre os níveis da adubação nitrogenada. Na dose maior de N, plantas inoculadas do AB219 produziram frutos maiores e massas frescas 19,4% e 17,3% superiores aos controles, respectivamente, para frutos sem e com coroa. O efeito do AB213 na produção foi menor (9,9% no nível mais baixo de N. A evidência do efeito de bactérias diazotróficas na cultivar Cayenne Champac foi demonstrada.The objective of this work was to evaluate the effect of diazotrophic bacteria on yield of pineapple cv. Cayenne Champac (Champaka, under irrigation, with two levels of N fertilization. Treatments consisted of two N levels (180 kg and 300 kg ha-1 year-1, on the plots, and micropropagated plantlets inoculated with bacteria related to Burkholderia cepacia AB213, with Asaia bogorensis AB219 and without bacterial inoculation, on the subplots, using three replications. The bacterial inoculation was performed in a laboratory (with 10(8 bacterial cells plant-1 and the plant acclimatization in

  10. Nitrogen compounds in the apoplastic sap of sugarcane stem: some implications in the association with endophytes.

    Science.gov (United States)

    Tejera, Noel; Ortega, Eduardo; Rodes, Rosa; Lluch, Carmen

    2006-01-01

    Several nitrogen compounds were identified and quantified in the apoplastic and symplastic sap of sugarcane stems. The sap of stems was composed mainly of soluble sugars, which constituted 95% of the total organic compounds detected. Sap also contained nitrogen compounds, with amino acids (50-70% of N) and proteins (20-30% of N), being the main nitrogenous substances, as well as inorganic forms as ammonium, nitrite and nitrate, in low concentrations (Gluconacetobacter diazotrophicus. The total amino acid content of apoplastic sap was six to nine times lower in non-nitrogen fertilized plants than in fertilized ones. The possible roles of these substances to regulate endophytic associations with sugarcane are also discussed.

  11. Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium.

    Science.gov (United States)

    Homann, Arne; Biedendieck, Rebekka; Götze, Sven; Jahn, Dieter; Seibel, Jürgen

    2007-10-15

    A novel levansucrase was identified in the supernatant of a cell culture of Bacillus megaterium DSM319. In order to test for the contribution of specific amino acid residues to levansucrase catalysis, the wild-type enzyme along with 16 variants based on sequence alignments and structural information were heterologously produced in Escherichia coli. The purified enzymes were characterized kinetically and the product spectrum of each variant was determined. Comparison of the X-ray structures of the levansucrases from Gram-positive Bacillus subtilis and Gram-negative Gluconacetobacter diazotrophicus in conjunction with the corresponding product spectra identified crucial amino acid residues responsible for product specificity and catalysis. Highly conserved regions such as the previously described RDP and DXXER motifs were identified as being important. Two crucial structural differences localized at amino acid residues Arg370 and Asn252 were of high relevance in polymer compared with oligosaccharide synthesis.

  12. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    Science.gov (United States)

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-12-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.

  13. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers

    Institute of Scientific and Technical Information of China (English)

    Edward C. Cocking; Philip J. Stone; Michael R. Davey

    2005-01-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems,and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intraceliularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers,we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus,with minimal or zero inputs.

  14. Promoção de enraizamento de microtoletes de cana-de-açúcar pelo uso conjunto de substâncias húmicas e bactérias diazotróficas endofíticas Rooting of micro seed pieces by combined use of humic substances and endophytic diazotrophic bacteria in sugar cane

    Directory of Open Access Journals (Sweden)

    Roberto Batista Marques Júnior

    2008-06-01

    éficos da inoculação de estirpes selecionadas de H. seropedicae, já para ácidos húmicos, as respostas positivas independem da termoterapia. A promoção do crescimento radicular por AH e a fixação biológica de N2 podem representar uma estratégia inovadora para produção sustentada em sistemas agrícolas.Besides the direct nutritional effect of mineralization of organic matter or by biological nitrogen fixation activity, the humic substances and endophytic diazotrophic bacteria can directly influence plant metabolism, modifying plant growth and development patterns. The purpose of this study was to evaluate the effect of the combined use of humic acid (HA and Herbaspirillum seropedicae, an endophytic nitrogen-fixing bacteria, on the root growth of seed pieces - heat-treated or not - of the sugarcane variety RB 72 454. After hot water treatment, the cane cuttings were immersed for 12 hours as follows: in water (control plant, in HA solution (20 mg L-1 of C from vermicompost, in bacterial inoculant of H. seropedicae, strain HRC54 (10(8 cells mL-1, and in a combination of bacteria and HA. Root growth was improved by 60 to 118 % in length and from 33 % to 233 % in surface area on sugarcane plant treatments compared to control, with more pronounced effect in plants under heat treatment. Likewise, the positive effect of the combinded treatment (bacteria inoculation and humic acid on shoot and root biomass was significant compared to the control with heat-treated cuts. For non-heated seed pieces, bacteria inoculation did not result in a positive plant growth effect, but only in the presence of humic acid. The combined or isolated use of both HA and bacteria did not significantly modify the bacteria population in the root tissue of heat-untreated sugarcane. For heat-treated cuts, bacteria inoculation, combined or not with HA, increased the size of diazotrophic bacteria population on roots. The results highlight the importance of thermotherapy to increase the positive

  15. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-12-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth.

  16. Seeds inoculation with diazotrophic bacteria and nitrogen application in side-dressing and leaf in maizeInoculação de sementes com bactéria diazotrófica e aplicação de nitrogênio em cobertura e foliar em milho

    Directory of Open Access Journals (Sweden)

    Claudinei Kappes

    2013-05-01

    Full Text Available Considering the importance of nitrogen management and its biological fixation with diazotrophic bacteria, this study was carried out aiming to evaluate the agronomic performance of maize, in response to seed inoculation with Azospirillum brasilense and nitrogen application in side-dressing and leaf. The experiment was conducted in Selvíria, Mato Grosso of Sul State, Brazil, during the growing season 2010/2011, on a clayey Rhodic Haplustox (20º 20’ S and 51º 24’ W, with altitude of 340 m. Sixteen treatments were established with four replications, in randomized blocks with the combination of the factors A. brasilense (with and without inoculante, nitrogen rate (0 and 90 kg ha-1, in V5 growth stage and urea leaf application (0, 4, 8 and 12%: application in V5 and V8 growth stage. The maize hybrid used was the DKB 390 YG®, sowed in the row spacing of 0.9 m. Parameters measured were productive and morphological components of culture and crop yield. Increase in maize yield by seed inoculation with A. brasilense was observed. The application of 90 kg ha-1 of nitrogen in side-dressing provided higher chlorophyll leaf index, stalk diameter and prolificacy, however, the yield not was increased. The application of urea leaf did not agronomic efficiency and, therefore, should not be used as the unique form of supply and alternative to nitrogen addition to crop. Considerando a importância do manejo do nitrogênio e da sua fixação biológica através de bactérias diazotróficas, conduziu-se este trabalho com o objetivo de avaliar o desempenho agronômico do milho, em função da inoculação das sementes com Azospirillum brasilense e da aplicação de nitrogênio em cobertura e foliar. O experimento foi conduzido no município de Selvíria – MS, durante o ano agrícola 2010/2011, sob Latossolo Vermelho distrófico típico argiloso (20º 20’ S e 51º 24’ W, com altitude de 340 m. Foram estabelecidos dezesseis tratamentos com quatro repeti

  17. 3种旱生禾草内生固氮菌的分离及促生性能测定%Isolating Endophytic Diazotrophic Bacteria from Three Xerophil Gramineae Grasses to Determine Their Nitrogen Fixation and Plant Growth-Promoting

    Institute of Scientific and Technical Information of China (English)

    刘小龙; 芦云; 罗明; 吴昊; 王聪聪

    2012-01-01

    Endophytic diazotrophic bacteria may contribute to the nitrogen nutrition and stress tolerance of host plants. In this paper, endophytic diazotrophtes were isolated from the leaf and root tissues of three typical xerophil gramineae grasses, Cynodon dactylon 'Xinnong No. 1', Agropyron desertorum (Fisch. ) Schult. , Elytrigria repens (L. ) Nevski, and the characteristics of nitrogenase activity, phosphate-solubi-lizing power and auxin (IAA) producing were investigated to screen strains for developing plant growth-promoting inocula. Results indicated that fifty eight isolates had been obtained using N-free medium and acetylene reduction assays (ARA). Nitrogenase activities differed significantly from different strains, ranging from 464 to 2338 nmol C2H4 · d-1 · mL-1. Nitrogenase from the strains of A. desertorum had higher activity than that from C. dactylon and E. repens. Seventeen strains out of all isolated strains showed inorganic phosphate solubilizing capacity varying from 49. 93 mg · L-1 to 225. 48 mg · L-1 based on the measurement of phosphate-solubilizing circle and plasma atomic emission spectrometry. Twenty-four strains had an ability to produce auxin IAA with levels of 0. 61 -18. 54 μg · mL-1 detected. Thirty-two strains (55. 2% of total tested strains) , have beneficial effects on plant growth including nitrogen fixation, solubilizing phosphate and indole acetic acid production. XGEB4, XGEB26, XGEB30, XGEB64 and XGEB65 have greater potential as bio-fertilizer inocula.%以3种多年生典型旱生禾草新农一号狗牙根(Cynodon dactylon‘ Xinnong No.1’)、沙生冰草(Agropyron de-sertorum)、偃麦草(Elytrigria repens)为材料,从根、叶组织中分离内生固氮菌株,测定其固氮酶活性、溶磷性及分泌生长素的能力,为禾草多功能促生菌剂的菌种筛选奠定基础.结果表明:通过无氮培养基分离结合乙炔还原法,获得了58个内生固氮菌株,其固氮酶活性在464~2338 nmol C2H4·d-1·mL-1之

  18. Efeito dos ácidos húmicos na inoculação de bactérias diazotróficas endofíticas em sementes de milho Effect of the humic acids in endophytic diazotrophic bacteria inoculation in corn seeds

    Directory of Open Access Journals (Sweden)

    Patrícia Marluci da Conceição

    2009-09-01

    Full Text Available Os ácidos húmicos podem atuar no aumento da população de bactérias diazotróficas introduzidas no interior da planta e, consequentemente, no incremento dos efeitos benéficos sobre a planta hospedeira. Com este trabalho, objetivou-se avaliar o efeito dos ácidos húmicos na inoculação de bactérias diazotróficas endofíticas, em sementes de milho. Foi utilizada a estirpe Herbaspirillum seropedicae Z67 BR 11175. A inoculação das sementes com as bactérias e a adição de ácidos húmicos foram realizadas pelo recobrimento das sementes de milho UENF 506-8, com a mistura de calcário, meio de cultura semisólido, água e cimentante. As sementes recobertas foram semeadas em vasos Leonard. Aos 40 dias após a semeadura, as plântulas foram coletadas, e foi realizada a contagem de bactérias nas raízes pela técnica do Número Mais Provável. Os resultados deste trabalho mostram que os ácidos húmicos não interferem negativamente no crescimento das bactérias e estimulam a colonização da microbiota nativa. No entanto, nas condições avaliadas, a aplicação conjunta de bactérias + ácidos húmicos não estimulou o crescimento da população de bactérias inoculadas nas plântulas de milho.The objective of this research was to evaluate the effect of the humic acids in the inoculation of endophytic diazotrophic bacteria in corn seeds. It was used the bacteria Herbaspirillum seropedicae Z67 BR 11175. The inoculation of the seeds with the bacteria and the addition of humic acids were accomplished by the coating of the corn seeds UENF 506-8. The coating was accomplished with a mixture of lime, semi-solid middle culture, water and cement. The seeds covered were sown in Leonard vases. Forty days after sowing the plants were collected and the bacteria couting was accomplished in the roots by the Most probable Number technique. The results showed that the humic acids doesn't interfere negatively in the bacteria growth of and they stimulate the

  19. Fixação de nitrogênio e produção de ácido indolacético in vitro por bactérias diazotróficas endofíticas Nitrogen fixation and in vitro production of indolacetic acid by endophytic diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Anelise Vicentini Kuss

    2007-10-01

    Full Text Available O objetivo deste trabalho foi isolar e quantificar bactérias diazotróficas associadas a raízes de arroz, e avaliar a produção de ácido indolacético e o potencial de fixação biológica de nitrogênio dessas bactérias, a fim de selecionar isolados promissores para inoculação em plantas. Bactérias fixadoras de nitrogênio, habitantes do interior das raízes de cultivares de arroz do Rio Grande do Sul, foram isoladas e quantificadas em nove cultivares. Raízes de arroz superficialmente esterilizadas foram maceradas e introduzidas em meios de crescimento, elaborados sem fonte de nitrogênio e em condições semi-sólidas. Entre os 58 isolados nos meios NFb, LGI e LGI-P, foram escolhidos UFSM-BD-02-06, UFSM-BD-08-06, UFSM-BD-14-06, UFSM-BD-20-06, UFSM-BD-26-06, UFSM-BD-31-06, UFSM-BD-36-06, UFSM-BD-42-06, UFSM-BD-48-06, UFSM-BD-54-06. Avaliaram-se a fixação biológica de nitrogênio e a produção de ácido indolacético in vitro, pelos métodos Kjeldahl e colorimétrico, respectivamente. Azospirillum brasilense e A. lipoferum apresentam maiores valores para N total, 41,08 e 46,82 µg mL-1, respectivamente. A. brasilense e UFSM-BD-31-06 são os maiores produtores de ácido indolacético, 41,09 mg mL-1 e 13,47 µg mL-1, respectivamente.The aim of this work was to isolate and to quantify diazotrophic bacteria associated with rice root, and evaluate their acid indolacetic production and their potential for biological nitrogen fixation, with the purpose of selecion promissing isolates for plant inoculation. N-fixing bactéria, settlers of the root interior of rice cultivars used in Rio Grande do Sul, Brazil, were isolated and quantified in nine cultivars. Rice root superficialy sterilized were macerated and introduced in specific culture media. Among 58 isolates obtained in the culture media NFB, LGI and LGI-P, the following were selected: UFSM-BD-02-06, UFSM-BD-08-06, UFSM-BD-14-06, UFSM-BD-20-06, UFSM-BD-26-06, UFSM-BD-31-06, UFSM-BD-36

  20. GERMINATION OF GRASSES DUE TO INOCULATION DIAZOTROPHIC BACTERIA

    Directory of Open Access Journals (Sweden)

    C. D. A. Moreira

    2014-07-01

    Full Text Available The germination of forage grasses suffers from numbness and a natural tendency to low quality. The use of microorganisms inoculated in seeds with the purpose of increasing and meet the demand of some nutrient has been shown to be efficient, but the role of the microorganism in germination and rate of force is still unknown. Therefore the goal as study was to evaluate the germination rate of seeds of three cultivars of Brachiaria brizantha CV. Marandu, b., b. brizantha CV. Xaraés and b. humidícola cv Tupi and a cultivar of millet, P. hybrid cv Massai depending on the bacterium Azospirillum brasilense diazotrofic inoculation (nitrogen-fixing. Germination test was used in seed dispersal to assess the effect of first count (VPC in the treatments with and without inoculation. It was done also conducted further tests of electrical conductivity, weight of thousand seeds and water content. The delineation used was randomized entirely (DIC and the statistical analysis carried out through the analysis of variance and comparison of means using the Tukey test, the 5% probability. Massai grass seeds have the highest rate of force of first count in both treatments. Inoculation of bacterium Azospirillum brasilense did not affect the values of force of first count on seeds of the cultivars Marandu, Xaraés, Tupi and Massai. The seeds of the massai have higher germination speed relative the other cultivars evaluated when inoculated.

  1. PHYSIOLOGICAL QUALITY OF CORN SEEDS REINOCULATED WITH DIAZOTROPHIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Ricardo Felipe Braga de Sousa

    2015-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a qualidade fisiológica de sementes de milho provenientes do cultivo associado com Azospirillum brasilense e Herbaspirillum seropedicae e reinoculadas com A. brasilense. As sementes utilizadas foram provenientes de cultivo em condições de campo, sendo os tratamentos: T1 - testemunha; T2 - 60 kg hectare-1 de N; T3 – inoculação (Azospirillum brasilense - AbV5; T4 - inoculação (Azospirillum brasilense + 60 kg hectare-1 de N; T5 - inoculação (Herbaspirillum seropedicae - SmR1 e T6 - inoculação (Herbaspirillum seropedicae + 60 kg hectare-1 de N. Foram separados dois lotes dos tratamentos, sendo um reinoculado com A. brasilense (AbV5. O delineamento foi inteiramente ao acaso com esquema fatorial (6x2, sendo seis tratamentos; com inoculação e reinoculadas. As sementes reinoculadas apresentaram maiores comprimentos, volumes e matéria seca de raízes e parte aérea, concluindo que a reinoculação com sementes promove um incremento no desenvolvimento inicial das plântulas.

  2. Characterization of nitrogen-fixing bacteria from a temperate saltmarsh lagoon, including isolates that produce ethane from acetylene.

    Science.gov (United States)

    Tibbles, B J; Rawlings, D E

    1994-01-01

    Nitrogen-fixing bacteria were isolated from sediments and water of a saltmarsh lagoon on the west coast of South Africa, and characterized according to factors that regulate nitrogen fixation in the marine environment. The majority of isolates were assigned to the Photobacterium or Vibrio genera on the basis of physiological and biochemical characteristics. One isolate was further assigned to the species Vibrio diazotrophicus. Carbohydrate utilization by each diazotrophic isolate was examined. Abilities of the isolates to utilize a range of mono-, di-, and polysaccharides largely reflected the predicted availability of organic carbon and energy in the lagoon, except that chitin was not utilized. Biochemical tests on the utilization of combined nitrogen showed that one isolate could utilize nitrate, and that this strain was susceptible to full repression of nitrogenase activity by 10mM nitrate. Urease activity was not detected in any of the isolates. In the absence of molybdenum two of the isolates, a Photobacterium spp. and V. diazotrophicus, reduced acetylene to ethylene and ethane, a property frequently associated with the activity of alternative nitrogenases. Addition of 25µM molybdenum inhibited ethane production by V. diazotrophicus, but stimulated ethylene and ethane production by the Photobacterium isolate. Addition of 28µM vanadium did not appear to regulate ethane production by either strain. Assays of nitrogenase activity in sediments from which some isolates were obtained indicated that molybdenum was not limiting nitrogenase activity at naturally-occurring concentrations. Southern hybridizations of the chromosomes of these strains with the anfH and vnfH genes of Azotobacter vinelandii and the nifH gene of Klebsiella pneumoniae indicated the presence of only one nitrogenase in these isolates.

  3. Caracterização fenotípica e diversidade de bactérias diazotróficas associativas isoladas de solos em reabilitação após a mineração de bauxita Phenotypic characterization and diversity of diazotrophic associative bacteria isolated from soils rehabilitated after bauxite mining

    Directory of Open Access Journals (Sweden)

    R. S. A. Nóbrega

    2004-04-01

    eles.Grass species, which are frequently used for rehabilitation of degraded areas, can establish root associations with nitrogen fixing bacteria thus contributing to the ecosystem's sustainability. On the other hand, microbial diversity plays an important role in the resilience of biological processes, including N2 fixation. This study aimed at the phenotypic characterization of 72 diazotrophic Gram-negative bacteria. Samples were isolated from areas under different rehabilitation strategies after bauxite mining in Poços de Caldas, Minas Gerais, Brazil, and inoculated in NFb, Fam, and JNFb media. Type and reference strains of Herbaspirillum, Azospirillum and Burkholderia species were used for comparison as they are able to grow in such media. The similarity dendrogram based on seven cultural characteristics of the isolates in GNA medium presented a great diversity, as 50 groups were formed with 81 % similarity. NaCl tolerance in the potato/sucrose/acid malic medium varied from 0 to 50 g L-1 and allowed a separation of isolates and type strains into five groups. Cell diameters varied from 0.61 to 1.21 µm, and 13 isolates were not similar to the type strains. Fifteen groups with 75 % similarity were formed based on total proteins patterns obtained by polyacrylamide gel electrophoresis (SDS-PAGE. Neither was there any relationship among groups based on the different characteristics, nor between these and the areas of bacteria isolation. Fam and JNFb media detected the target species as well as other unidentified ones. The high phenotypic dissimilarity among isolates and type strains, mainly regarding total protein eletrophoresis profiles suggests that new species could be present within these populations.

  4. In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum.

    Science.gov (United States)

    Botta, Anna Lucia; Santacecilia, Alessandra; Ercole, Claudia; Cacchio, Paola; Del Gallo, Maddalena

    2013-09-25

    Four bacteria selected on the basis of their capability of fixing atmospheric nitrogen, stimulating plant-growth, and protecting the host plant from pathogens - Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, Burkholderia ambifaria - were inoculated on tomato seeds either singularly, in couple and in a four bacteria mixer. Aim of this research was to evaluate: (1) effect of single and mixed cultures on the inoculated plant - plant growth, dry weight, root length and surface, number of leaves, among others; (2) colonization and interactions of the bacteria inside the host plant; (3) localization inside the host of single bacterial strains marked with the gusA reporter gene. The results obtained indicate that all selected microbial strains have colonized Lycopersicon esculentum but in a different way, depending on the single species. A. brasilense, G. diazotrophicus inoculated in vitro singularly and together were the best plant colonizers. In vivo essays, instead, B. ambifaria and the four-bacteria mixer gave the best results. It was possible to localize both A. brasilense and H. seropedicae inside the plant by the gusA reporter gene. The bacterial strains occur along the root axis from the apical zone until to the basal stem, on the shoot from the base up to the leaves. The four bacteria actively colonize tomato seeds and establish an endophytic community inside the plant. This review gives new information about colonization processes, in particular how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilizers or biocontrol agents.

  5. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media

    OpenAIRE

    Jozala,Angela Faustino; Pértile, Renata Aparecida Nedel; Santos, Carolina Alves dos; Ebinuma, Valéria de Carvalho Santos; Seckler, Marcelo Martins; Gama, F. M.; Pessoa Júnior, Adalberto

    2015-01-01

    Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainabi...

  6. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille; Tien, Ming

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  7. Mining of Microbial Genomes for the Novel Sources of Nitrilases

    Directory of Open Access Journals (Sweden)

    Nikhil Sharma

    2017-01-01

    Full Text Available Next-generation DNA sequencing (NGS has made it feasible to sequence large number of microbial genomes and advancements in computational biology have opened enormous opportunities to mine genome sequence data for novel genes and enzymes or their sources. In the present communication in silico mining of microbial genomes has been carried out to find novel sources of nitrilases. The sequences selected were analyzed for homology and considered for designing motifs. The manually designed motifs based on amino acid sequences of nitrilases were used to screen 2000 microbial genomes (translated to proteomes. This resulted in identification of one hundred thirty-eight putative/hypothetical sequences which could potentially code for nitrilase activity. In vitro validation of nine predicted sources of nitrilases was done for nitrile/cyanide hydrolyzing activity. Out of nine predicted nitrilases, Gluconacetobacter diazotrophicus, Sphingopyxis alaskensis, Saccharomonospora viridis, and Shimwellia blattae were specific for aliphatic nitriles, whereas nitrilases from Geodermatophilus obscurus, Nocardiopsis dassonvillei, Runella slithyformis, and Streptomyces albus possessed activity for aromatic nitriles. Flavobacterium indicum was specific towards potassium cyanide (KCN which revealed the presence of nitrilase homolog, that is, cyanide dihydratase with no activity for either aliphatic, aromatic, or aryl nitriles. The present study reports the novel sources of nitrilases and cyanide dihydratase which were not reported hitherto by in silico or in vitro studies.

  8. Crystal structure of a lactosucrose-producing enzyme, Arthrobacter sp. K-1 β-fructofuranosidase.

    Science.gov (United States)

    Tonozuka, Takashi; Tamaki, Akiko; Yokoi, Gaku; Miyazaki, Takatsugu; Ichikawa, Megumi; Nishikawa, Atsushi; Ohta, Yukari; Hidaka, Yuko; Katayama, Kinya; Hatada, Yuji; Ito, Tetsuya; Fujita, Koki

    2012-12-10

    Arthrobacter sp. K-1 β-fructofuranosidase (ArFFase), a glycoside hydrolase family 68 enzyme, catalyzes the hydrolysis and transfructosylation of sucrose. ArFFase is useful for producing a sweetener, lactosucrose (4(G)-β-D-galactosylsucrose). The primary structure of ArFFase is homologous to those of levansucrases, although ArFFase catalyzes mostly hydrolysis when incubated with sucrose alone, even at high concentration. Here, we determined the crystal structure of ArFFase in unliganded form and complexed with fructose. ArFFase consisted of a five-bladed β-propeller fold as observed in levansucrases. The structure of ArFFase was most similar to that of Gluconacetobacter diazotrophicus levansucrase (GdLev). The structure of the catalytic cleft of ArFFase was also highly homologous to that of GdLev. However, two amino acid residues, Tyr232 and Pro442 in ArFFase, were not conserved between them. A tunnel observed at the bottom of the catalytic cleft of ArFFase may serve as a water drain or its reservoir.

  9. The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site.

    Science.gov (United States)

    Wuerges, Jochen; Caputi, Lorenzo; Cianci, Michele; Boivin, Stephane; Meijers, Rob; Benini, Stefano

    2015-09-01

    Levansucrases are members of the glycoside hydrolase family and catalyse both the hydrolysis of the substrate sucrose and the transfer of fructosyl units to acceptor molecules. In the presence of sufficient sucrose, this may either lead to the production of fructooligosaccharides or fructose polymers. Aim of this study is to rationalise the differences in the polymerisation properties of bacterial levansucrases and in particular to identify structural features that determine different product spectrum in the levansucrase of the Gram-negative bacterium Erwinia amylovora (Ea Lsc, EC 2.4.1.10) as compared to Gram-positive bacteria such as Bacillus subtilis levansucrase. Ea is an enterobacterial pathogen responsible for the Fire Blight disease in rosaceous plants (e.g., apple and pear) with considerable interest for the agricultural industry. The crystal structure of Ea Lsc was solved at 2.77 Å resolution and compared to those of other fructosyltransferases from Gram-positive and Gram-negative bacteria. We propose the structural features, determining the different reaction products, to reside in just a few loops at the rim of the active site funnel. Moreover we propose that loop 8 may have a role in product length determination in Gluconacetobacter diazotrophicus LsdA and Microbacterium saccharophilum FFase. The Ea Lsc structure shows for the first time the products of sucrose hydrolysis still bound in the active site.

  10. citohistochemistry, Biocatalytic Effectors (EBc©, source of infection, biological control, agrosystems

    Directory of Open Access Journals (Sweden)

    Marcia M. Rojas

    2015-11-01

    Full Text Available Among the efforts done in Cuba to the sustainability in the agricultural system, one of them is the use of bioproducts, which have a relevant economic, ecological and social impact. The sugarcane is one of main crops in our country and it has a great importance at world level. In the present work is demonstrated the effect of different carbon and nitrogen sources in the growth of 5 entophytic bacteria (three of Gluconacetobacter diazotrophicus, one of Bacillus licheniformis and one of Enterobacter agglomerans were demonstrated. As the same form are studied the influence of juices from five varieties, as well as, different concentrations of fitohormones indole3acetic acid and giberelic acid on the growth. Was demonstrated that asparagine and ammonium sulfate as nitrogen sources added to LGI medium enhance the growth a major growth of the studied endophytic bacteria. The LGI medium supplied with juices of sugarcane enhance the growth of microorganisms (p≤0,05 and don't exist any relationships among the origin of the juice and the strains. On the other hand, the fitohormones at low concentrations don't affect the growth but at high levels of these hormones inhibit the growth. It's necessary to study the factors that have influence on the interaction between the plant and endophytes to use their potentialities as plant growth promoters.

  11. Impact of Nitrogen Sources on Gene Expression and Toxin Production in the Diazotroph Cylindrospermopsis raciborskii CS-505 and Non-Diazotroph Raphidiopsis brookii D9

    Science.gov (United States)

    Stucken, Karina; John, Uwe; Cembella, Allan; Soto-Liebe, Katia; Vásquez, Mónica

    2014-01-01

    Different environmental nitrogen sources play selective roles in the development of cyanobacterial blooms and noxious effects are often exacerbated when toxic cyanobacteria are dominant. Cylindrospermopsis raciborskii CS-505 (heterocystous, nitrogen fixing) and Raphidiopsis brookii D9 (non-N2 fixing) produce the nitrogenous toxins cylindrospermopsin (CYN) and paralytic shellfish toxins (PSTs), respectively. These toxin groups are biosynthesized constitutively by two independent putative gene clusters, whose flanking genes are target for nitrogen (N) regulation. It is not yet known how or if toxin biosynthetic genes are regulated, particularly by N-source dependency. Here we show that binding boxes for NtcA, the master regulator of N metabolism, are located within both gene clusters as potential regulators of toxin biosynthesis. Quantification of intra- and extracellular toxin content in cultures at early stages of growth under nitrate, ammonium, urea and N-free media showed that N-sources influence neither CYN nor PST production. However, CYN and PST profiles were altered under N-free medium resulting in a decrease in the predicted precursor toxins (doCYN and STX, respectively). Reduced STX amounts were also observed under growth in ammonium. Quantification of toxin biosynthesis and transport gene transcripts revealed a constitutive transcription under all tested N-sources. Our data support the hypothesis that PSTs and CYN are constitutive metabolites whose biosynthesis is correlated to cyanobacterial growth rather than directly to specific environmental conditions. Overall, the constant biosynthesis of toxins and expression of the putative toxin-biosynthesis genes supports the usage of qPCR probes in water quality monitoring of toxic cyanobacteria. PMID:24956074

  12. Impact of Nitrogen Sources on Gene Expression and Toxin Production in the Diazotroph Cylindrospermopsis raciborskii CS-505 and Non-Diazotroph Raphidiopsis brookii D9

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2014-06-01

    Full Text Available Different environmental nitrogen sources play selective roles in the development of cyanobacterial blooms and noxious effects are often exacerbated when toxic cyanobacteria are dominant. Cylindrospermopsis raciborskii CS-505 (heterocystous, nitrogen fixing and Raphidiopsis brookii D9 (non-N2 fixing produce the nitrogenous toxins cylindrospermopsin (CYN and paralytic shellfish toxins (PSTs, respectively. These toxin groups are biosynthesized constitutively by two independent putative gene clusters, whose flanking genes are target for nitrogen (N regulation. It is not yet known how or if toxin biosynthetic genes are regulated, particularly by N-source dependency. Here we show that binding boxes for NtcA, the master regulator of N metabolism, are located within both gene clusters as potential regulators of toxin biosynthesis. Quantification of intra- and extracellular toxin content in cultures at early stages of growth under nitrate, ammonium, urea and N-free media showed that N-sources influence neither CYN nor PST production. However, CYN and PST profiles were altered under N-free medium resulting in a decrease in the predicted precursor toxins (doCYN and STX, respectively. Reduced STX amounts were also observed under growth in ammonium. Quantification of toxin biosynthesis and transport gene transcripts revealed a constitutive transcription under all tested N-sources. Our data support the hypothesis that PSTs and CYN are constitutive metabolites whose biosynthesis is correlated to cyanobacterial growth rather than directly to specific environmental conditions. Overall, the constant biosynthesis of toxins and expression of the putative toxin-biosynthesis genes supports the usage of qPCR probes in water quality monitoring of toxic cyanobacteria.

  13. Isolation and Characterisation of Diazotrophic Bacteria from Rhizosphere of Different Rice Cultivars of South Assam, India

    Directory of Open Access Journals (Sweden)

    FOLGUNI LASKAR

    2013-04-01

    Full Text Available Free living heterotrophic bacteria were isolated from the rhizosphere of 10 local and cultivated varieties of rice grown in Karimganj district of South Assam. Among the 25 isolates, 11 isolates withplant growth promoting activity were identified based on phenotypic and 16S rDNA sequence analysis. The strains were identified as Shingomonasazotifigens, Pseudomonas putida, Stenotrophomonasmaltophila,Acinetobacterradioresistance, Alkaligenesfaecalis, Enterobactercloaceae subsp. dissolvens, Pantoeaagglomerans, Klebsiellapneumoneae, Achromobacterxyloxidans, Herbispirillumrubrisubalbicans and Herbispirillum sp . The efficient strains are isolated from the local varieties of rice plant. The isolate KR-23 ( Sphingomonasazotifigens was a novel bacteria reported for the first time as nitrogen fixing bacteria from India. The nitrogen fixing ability along with IAA production, ACC deaminase activity and P-solubilisation by the bacteria has shown their potential for plant-growth-promoting rhizobacteria. KR-6( Stenotrophomonasmaltophila and KR-7( Herbispirillumrubrisubalbicans have been reported earlier as plant pathogensbut theyhave shown a high potential for nitrogen fixing and auxin producing activity in the present study

  14. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales

    Directory of Open Access Journals (Sweden)

    Vasconcelos Ana

    2010-02-01

    Full Text Available Abstract Background Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Results Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. Conclusions The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.

  15. Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats

    NARCIS (Netherlands)

    Sorokin, I.D.; Zadorina, E.V.; Kravchenko, I.K.; Boulygina, E.S.; Tourova, T.P.; Sorokin, D.Y.

    2009-01-01

    Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda Step

  16. Nitrate Assimilation Genes of the Marine Diazotrophic, Filamentous Cyanobacterium Trichodesmium sp. Strain WH9601

    OpenAIRE

    Wang, Qingfeng; Li, Hong; Post, Anton F.

    2000-01-01

    A 4.0-kb DNA fragment of Trichodesmium sp. strain WH9601 contained gene sequences encoding the nitrate reduction enzymes, nirA and narB. A third gene positioned between nirA and narB encodes a putative membrane protein with similarity to the nitrate permeases of Bacillus subtilis (NasA) and Emericella nidulans (CrnA). The gene was shown to functionally complement a ΔnasA mutant of B. subtilis and was assigned the name napA (nitrate permease). NapA was involved in both nitrate and nitrite upta...

  17. Energetics of cyanophage N-1 multiplication in the diazotrophic cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Singh, S; Bhatnagar, A; Kashyap, A K

    1994-01-01

    Cyanophage N-1 multiplication was investigated during the latent period of the virus, when 14CO2 fixation was inhibited whereas respiratory O2 uptake increased approximately 67% at 4 h after infection. A simultaneous decrease (70%) in the glycogen content of infected cells indicated its catabolic involvement. A chloramphenicol-sensitive rise in glucose-6-phosphate dehydrogenase activity as a result of N-1 infection partly explained the increase in aerobic respiration. The total ATP pool declined to 53% of the control while Ca(2+)-dependent ATPase activity also declined (25%). In contrast, Mg(2+)-dependent ATPase activity increased (80%) in comparison with uninfected cells. Results suggest that oxidative phosphorylation was more crucial in the control of cyanophage N-1 development than photophosphorylation under photoautotrophic growth conditions.

  18. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    OpenAIRE

    Christopher Ryan Penton; Derek eSt. Louis; Amanda ePham; James R Cole; Liyou eWu; Yiqi eLuo; E.A.G. eSchuur; Jizhong eZhou; Tiedje, James M.

    2015-01-01

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-...

  19. Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments

    NARCIS (Netherlands)

    Fan, H.; Bolhuis, H.; Stal, L.J.

    2015-01-01

    The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these

  20. Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments

    OpenAIRE

    Lucas eStal; Haoxin eFan; Henk eBolhuis

    2015-01-01

    The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pel...

  1. Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean.

    Science.gov (United States)

    Hewson, Ian; Poretsky, Rachel S; Dyhrman, Sonya T; Zielinski, Brian; White, Angelicque E; Tripp, H James; Montoya, Joseph P; Zehr, Jonathan P

    2009-11-01

    Trichodesmium are responsible for a large fraction of open ocean nitrogen fixation, and are often found in complex consortia of other microorganisms, including viruses, prokaryotes, microbial eukaryotes and metazoa. We applied a community gene expression (metatranscriptomic) approach to study the patterns of microbial gene utilization within colonies of Trichodesmium collected during a bloom in the Southwest Pacific Ocean in April 2007. The survey generated 5711-day and 5385-night putative mRNA reads. The majority of mRNAs were from the co-occurring microorganisms and not Trichodesmium, including other cyanobacteria, heterotrophic bacteria, eukaryotes and phage. Most transcripts did not share homology with proteins from cultivated microorganisms, but were similar to shotgun sequences and unannotated proteins from open ocean metagenomic surveys. Trichodesmium transcripts were mostly expressed photosynthesis, N(2) fixation and S-metabolism genes, whereas those in the co-occurring microorganisms were mostly involved in genetic information storage and processing. Detection of Trichodesmium genes involved in P uptake and As detoxification suggest that local enrichment of N through N(2) fixation may lead to a P-stress response. Although containing similar dominant transcripts to open ocean metatranscriptomes, the overall pattern of gene expression in Trichodesmium colonies was distinct from free-living pelagic assemblages. The identifiable genes expressed by Trichodesmium and closely associated microorganisms reflect the constraints of life in well-lit and nutrient-poor waters, with biosynthetic investment in nutrient acquisition and cell maintenance, which is in contrast to gene transcription by soil and coastal seawater microbial assemblages. The results provide insight into aggregate microbial communities in contrast to planktonic free-living assemblages that are the focus of other studies.

  2. Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm

    NARCIS (Netherlands)

    Taketani, R.G.; dos Santos, H.F.; van Elsas, J.D.; Rosado, A.S.

    2009-01-01

    An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N(2) fixers and hydrocarbon degradation was assessed using quantitative

  3. Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm.

    Science.gov (United States)

    Taketani, Rodrigo Gouvêa; dos Santos, Henrique Fragoso; van Elsas, Jan Dirk; Rosado, Alexandre Soares

    2009-10-01

    An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N(2) fixers and hydrocarbon degradation was assessed using quantitative PCR (qPCR) for the genes rrs and nifH, nifH clone library sequencing and total petroleum hydrocarbon (TPH) quantification using gas chromatography. TPH showed that the microbial communities of both mangroves were able to degrade the hydrocarbons added; however, whereas the majority of oil added to the mesocosm derived from the polluted mangrove was degraded in the 75 days of the experiment, there was only partially degradation in the mesocosm derived from the pristine mangrove. qPCR showed that the addition of oil led to an increase in rrs gene copy numbers in both mesocosms, having almost no effect on the nifH copy numbers in the pristine mangrove. Sequencing of nifH clones indicated that the changes promoted by the oil in the polluted mangrove were greater than those observed in the pristine mesocosm. The main effect observed in the polluted mesocosm was the selection of a single phylotype which is probably adapted to the presence of petroleum. These results, together with previous reports, give hints about the relationship between N(2) fixation and hydrocarbon degradation in natural ecosystems.

  4. Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm

    OpenAIRE

    Taketani,Rodrigo Gouvêa; dos Santos, Henrique Fragoso; van Elsas, Jan Dirk; Rosado,Alexandre Soares

    2009-01-01

    An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N2 fixers and hydrocarbon degradation was assessed using quantitative PCR (qPCR) for the genes rrs and nifH, nifH clone library sequencing and total petroleum hydrocarbon (TPH) quantification using gas chromatography. TPH showed that the microbial communities of both man...

  5. Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing

    Directory of Open Access Journals (Sweden)

    Glauber Monçon Fipke

    Full Text Available ABSTRACT Increased grain yield can be obtained via an interaction between plants and growth-promoting microorganisms. The Bradyrhizobium spp. are capable of fixing atmospheric nitrogen in soybeans [Glycine max (L. Merril], and Azospirillum spp. induce the synthesis of phytohormones. The aim of this study was to evaluate inoculation with Bradyrhizobium and co-inoculation with Bradyrhizobium + Azospirillum brasilense in soybeans in combination with the application a topdressing of 0, 75 or 150 kg of N ha-1 of urea during the reproductive stage. Three soybean cultivars (BMX Ativa, TEC 6029 and BMX Potência, were tested in field experiments in Santa Maria, RS, Brazil, during two agricultural years (2013/2014 and 2014/2015 and two sowing times. Morphological, nodulation and yield components were evaluated. Co-inoculation increased the grain yield by 240 kg ha-1 compared with conventional inoculation. When co-inoculated, cultivars BMX Ativa, TEC 6029 and BMX Potência showed increased grain yields of 6, 4 and 12%, respectively. The application of 150 kg ha-1 of N as a topdressing increased the grain yield by 300 kg ha-1 in the co-inoculated cultivars TEC 6029 and BMX Potência, but without a financial return. When inoculated only with Bradyrhizobium, the cultivars did not respond positively to the application of urea.

  6. The primary transcriptome of the marine diazotroph Trichodesmium erythraeum IMS101

    Science.gov (United States)

    Pfreundt, Ulrike; Kopf, Matthias; Belkin, Natalia; Berman-Frank, Ilana; Hess, Wolfgang R.

    2014-08-01

    Blooms of the dinitrogen-fixing marine cyanobacterium Trichodesmium considerably contribute to new nitrogen inputs into tropical oceans. Intriguingly, only 60% of the Trichodesmium erythraeum IMS101 genome sequence codes for protein, compared with ~85% in other sequenced cyanobacterial genomes. The extensive non-coding genome fraction suggests space for an unusually high number of unidentified, potentially regulatory non-protein-coding RNAs (ncRNAs). To identify the transcribed fraction of the genome, here we present a genome-wide map of transcriptional start sites (TSS) at single nucleotide resolution, revealing the activity of 6,080 promoters. We demonstrate that T. erythraeum has the highest number of actively splicing group II introns and the highest percentage of TSS yielding ncRNAs of any bacterium examined to date. We identified a highly transcribed retroelement that serves as template repeat for the targeted mutation of at least 12 different genes by mutagenic homing. Our findings explain the non-coding portion of the T. erythraeum genome by the transcription of an unusually high number of non-coding transcripts in addition to the known high incidence of transposable elements. We conclude that riboregulation and RNA maturation-dependent processes constitute a major part of the Trichodesmium regulatory apparatus.

  7. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils.

    Science.gov (United States)

    Penton, Christopher R; St Louis, Derek; Pham, Amanda; Cole, James R; Wu, Liyou; Luo, Yiqi; Schuur, E A G; Zhou, Jizhong; Tiedje, James M

    2015-01-01

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

  8. The Co-Distribution of Nitrifying Archaea and Diazotrophic Bacteria in Geothermal Springs

    Science.gov (United States)

    Hamilton, T. L.; Jewell, T. N. M.; de la Torre, J. R.; Boyd, E. S.

    2014-12-01

    Microbial processes that regulate availability of nutrients play key roles in shaping community composition. All life requires fixed nitrogen (N), and its bioavailability is what often limits ecosystem productivity. Biological nitrogen fixation, or the reduction of dinitrogen (N2) to ammonia (NH3), is a keystone process in N limited ecosystems, providing nitrogen for members of the community. N2 fixing organisms likely represent a 'bottom up control' on the structure of communities that develop in N limited environments. N2 fixation is catalyzed by a limited number of metabolically diverse bacteria and some methanogenic archaea and occurs in a variety of physically and geochemically diverse environments. Nitrification, or the sequential oxidation of NH4+ to nitrite (NO2-) and ultimately nitrate (NO3-), is catalyzed by several lineages of Proteobacteria at temperatures of nitrogen fixing aquificae (NFA) in nitrogen-limited geothermal hot springs over large environmental gradients. Based on the physiology of AOA and NFA, we propose that the strong co-distributional pattern results from interspecies interactions, namely competition for bioavailable ammonia. Our recent work has shown that in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter; pH 7.1, 86.4°C), the dissimilar affinities for NH4 result in AOA metabolism maintaining a low NH4(T) pool and selecting for inclusion of NFA during the assembly of these communities. Here, we examine in situ physiological interactions of AOA and NFA, tracking changes in transcript levels of key genes involved in nitrogen metabolism and carbon fixation of these organisms in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter). These data suggest affinity for substrate and electron donor use play key roles in structuring the biodiversity of this hydrothermal community, and likely influences the structure of other N limited hydrothermal and non-hydrothermal ecosystems.

  9. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  10. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice.

    Science.gov (United States)

    Verma, S C; Ladha, J K; Tripathi, A K

    2001-10-04

    A study of the diversity of endophytic bacteria present in seeds of a deepwater rice variety revealed the presence of seven types of BOX-PCR fingerprints. In order to evaluate the plant growth promoting potential the presence of nitrogenase, indole acetic acid production and mineral phosphate solubilization were estimated in the representative BOX-PCR types. The seven representatives of BOX-PCR types produced indole acetic acid, reduced acetylene and showed specific immunological cross-reaction with anti-dinitrogenase reductase antibody. Only four types showed mineral phosphate solubilizing ability. Comparison of cellulase and pectinase activities showed differences among different BOX-PCR types. PCR fingerprinting data showed that one strain isolated from the surface sterilized seeds as well as the aerial parts of the seedlings of rice variety showed low cellulase and pectinase but relatively high ARA. On the basis of 16S rDNA nucleotide sequence and BIOLOG system of bacterial identification, this strain was identified as Pantoea agglomerans. For studying the endophytic colonization this strain was genetically tagged with the reporter gene, gusA. Histochemical analysis of the seedling grown in hydroponics showed that the tagged strain colonized the root surface, root hairs, root cap, points of lateral root emergence, root cortex and the stelar region. Treatment of the roots with 2,4-D produced short thickened lateral roots which showed better colonization by P. agglomerans.

  11. Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413.

    Science.gov (United States)

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Karim, Khairiah Abd; Mohamed, Abdul Rahman

    2016-03-01

    This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.

  12. PRESENCIA Y USO DE MICROORGANISMOS ENDÓFITOS EN PLANTAS COMO PERSPECTIVA PARA EL MEJORAMIENTO DE LA PRODUCCIÓN VEGETAL

    Directory of Open Access Journals (Sweden)

    B. Dibut

    2004-01-01

    Full Text Available Se ofrece una nueva perspectiva del estudio de microorganismos endófitos asociados con especies cultivables de importancia económica, que por su actividad permitan aumentar las ganancias en nitrógeno mediante la diazotofijación o estimular el crecimiento y desarrollo vegetal debido a la producción de sustancias fisiológicamente activas producto de la ventaja que presentan por estar integrados al sistema planta. Se efectuaron aislamientos de Gluconacetobacter diazotrophicus, Azospirillum sp y Herbaspirillum sp a partir de malanga, yuca, boniato, maíz, papa y caña de azúcar, solo estudiando en este trabajo la primera, por su perspectiva, empleándola en la bacterizaciòn mediante ensayos con plantas y conservando el resto de los aislados de las otras dos especies en la colección de microorganismos BFN del INIFAT. Experimentos conducidos en melón en condiciones de screening mostraron un marcado efecto estimulador sobre el cultivo con aumentos en la altura de la planta, largo del tallo y biomasa de 41, 67 y 69 %, respectivamente. Los ensayos con tres clones de yuca y en papa, ambos en condiciones de campo, igualmente mostraron el doble efecto de G. diazotrophicus; así, la altura, el número de hojas y rendimiento por planta en papa se incrementaron en 32, 39 y 25 %, por su orden, al inocular la bacteria con la obtención de tubérculos de mayor calidad; en el caso de los clones de yuca (CMC-40,CEMSA-785 e INIFAT-2, el efecto también fue significativo en todos los parámetros evaluados con un incremento en el rendimiento agrícola de hasta 54 % con la bacterización. Todos los datos expuestos fueron procesados por ANOVA con prueba de Duncan y en algunos casos de Newman Kleus, ambos al 5 % de significación.

  13. N-acetylglucosamine 6-phosphate deacetylase (nagA is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus.

    Directory of Open Access Journals (Sweden)

    Vikas Yadav

    Full Text Available Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum. For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r; named as ΔnagA via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.

  14. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.

    Science.gov (United States)

    Steenhoudt, O; Vanderleyden, J

    2000-10-01

    Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Other free-living diazotrophs repeatedly detected in association with plant roots, include Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus spp. and Azotobacter. Four aspects of the Azospirillum-plant root interaction are highlighted: natural habitat, plant root interaction, nitrogen fixation and biosynthesis of plant growth hormones. Each of these aspects is dealt with in a comparative way. Azospirilla are predominantly surface-colonizing bacteria, whereas A. diazotrophicus, H. seropedicae and Azoarcus sp. are endophytic diazotrophs. The attachment of Azospirillum cells to plant roots occurs in two steps. The polar flagellum, of which the flagellin was shown to be a glycoprotein, mediates the adsorption step. An as yet unidentified surface polysaccharide is believed to be essential in the subsequent anchoring phase. In Azoarcus sp. the attachment process is mediated by type IV pili. Nitrogen fixation structural genes (nif) are highly conserved among all nitrogen-fixing bacteria, and in all diazotrophic species of the class of proteobacteria examined, the transcriptional activator NifA is required for expression of other nif genes in response to two major environmental signals (oxygen and fixed N). However, the mechanisms involved in this control can vary in different organisms. In Azospirillum brasilense and H. seropedicae (alpha- and beta-subgroup, respectively), NifA is inactive in conditions of excess nitrogen. Activation of NifA upon removal of fixed N seems to involve, either directly or indirectly, the signal transduction protein P(II). The presence of four conserved cysteine residues in the NifA protein might be an indication that NifA is directly sensitive to oxygen. In Azotobacter vinelandii (gamma-subgroup) nifA is cotranscribed with a second gene nifL. The nifL gene product inactivates NifA in response to high oxygen tension and cellular

  15. Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Alyssa Ann Carrell

    2014-07-01

    Full Text Available Conifers predominantly occur on soils or in climates that are suboptimal for plant growth. This is generally attributed to symbioses with mycorrhizal fungi and to conifer adaptations, but recent experiments suggest that aboveground endophytic bacteria in conifers fix nitrogen (N and affect host shoot tissue growth. Because most bacteria cannot be grown in the laboratory very little is known about conifer-endophyte associations in the wild. Pinus flexilis (limber pine and Picea engelmannii (Engelmann spruce growing in a subalpine, nutrient-limited environment are potential candidates for hosting endophytes with roles in N2 fixation and abiotic stress tolerance. We used 16S rRNA pyrosequencing to ask whether these conifers host a core of bacterial species that are consistently associated with conifer individuals and therefore potential mutualists. We found that while overall the endophyte communities clustered according to host species, both conifers were consistently dominated by the same phylotype, which made up 19-53% and 14-39% of the sequences in P. flexilis and P. engelmannii respectively. This phylotype is related to Gluconacetobacter diazotrophicus and other N2 fixing acetic acid bacterial endophytes. The pattern observed for the P. flexilis and P. engelmannii needle microbiota—a small number of major species that are consistently associated with the host across individuals and species—is unprecedented for an endophyte community, and suggests a specialized beneficial endophyte function. One possibility is endophytic N fixation, which could help explain how conifers can grow in severely nitrogen-limited soil, and why some forest ecosystems accumulate more N than can be accounted for by known nitrogen input pathways.

  16. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation.

    Science.gov (United States)

    Carrell, Alyssa A; Frank, Anna C

    2014-01-01

    Conifers predominantly occur on soils or in climates that are suboptimal for plant growth. This is generally attributed to symbioses with mycorrhizal fungi and to conifer adaptations, but recent experiments suggest that aboveground endophytic bacteria in conifers fix nitrogen (N) and affect host shoot tissue growth. Because most bacteria cannot be grown in the laboratory very little is known about conifer-endophyte associations in the wild. Pinus flexilis (limber pine) and Picea engelmannii (Engelmann spruce) growing in a subalpine, nutrient-limited environment are potential candidates for hosting endophytes with roles in N2 fixation and abiotic stress tolerance. We used 16S rRNA pyrosequencing to ask whether these conifers host a core of bacterial species that are consistently associated with conifer individuals and therefore potential mutualists. We found that while overall the endophyte communities clustered according to host species, both conifers were consistently dominated by the same phylotype, which made up 19-53% and 14-39% of the sequences in P. flexilis and P. engelmannii, respectively. This phylotype is related to Gluconacetobacter diazotrophicus and other N2 fixing acetic acid bacterial endophytes. The pattern observed for the P. flexilis and P. engelmannii needle microbiota-a small number of major species that are consistently associated with the host across individuals and species-is unprecedented for an endophyte community, and suggests a specialized beneficial endophyte function. One possibility is endophytic N fixation, which could help explain how conifers can grow in severely nitrogen-limited soil, and why some forest ecosystems accumulate more N than can be accounted for by known nitrogen input pathways.

  17. Migration of endophytic diazotroph Azorhizobium caulinodans ORS571 inside wheat (Triticum aestivum L) and its effect on microRNAs.

    Science.gov (United States)

    Qiu, Li; Li, Qiang; Zhang, Junbiao; Chen, Yongchao; Lin, Xiaojun; Sun, Chao; Wang, Weiling; Liu, Huawei; Zhang, Baohong

    2017-05-01

    Azorhizobium caulinodans ORS571, a novel rhizobium, forms endosymbionts with its nature host Sesbania rostrata, a semi-aquatic leguminous tree. Recent studies showed that A. caulinodans ORS571, as endophytic rhizobium, disseminated and colonized inside of cereal plants. However, how this rhizobium infects monocot plants and the regulatory mechanism remains unknown. MicroRNAs (miRNAs) are small, endogenous RNAs that regulate gene expression at the post-transcriptional levels. In this study, we employed laser scanning confocal microscope to monitor the pathway that rhizobium invade wheat; we also investigated the potential role of miRNAs during A. caulinodans ORS571 infecting wheat. Our results showed that gfp-labeled A. caulinodans ORS571 infected wheat root hairs and emerged lateral roots, then disseminated and colonized within roots and migrated to other plant tissues, such as stems and leaves. Endophytic rhizobium induced the aberrant expression of miRNAs in wheat with a tissue- and time-dependent manner with a peak at 12-24 h after rhizobium infection. Some miRNAs, such as miR167 and miR393 responded more in roots than that in shoots. In contrast, miR171 responded higher in shoots than that in roots. These results suggested that miRNAs could be responsive to A. caulinodans ORS571 infection and played important role in plant growth, nutrient metabolisms, and wheat-rhizobium interactions.

  18. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria.

    Science.gov (United States)

    Busato, Jader G; Lima, Lívia S; Aguiar, Natália O; Canellas, Luciano P; Olivares, Fábio L

    2012-04-01

    The aim of this study was to assess the effect of N(2)-fixing and P-solubilizing bacteria during maturation of vermicompost on phosphorus availability. A bacterial suspension containing Burkholderia silvatlantica, Burkholderia spp. and Herbaspirillum seropedicae was applied at the initial stage of vermicomposting. At the end of the incubation time (120days), the nitrogen content had increased by18% compared to uninoculated vermicompost. Water-soluble P was 106% higher in inoculated vermicompost while resin-extractable P increased during the initial vermicomposting stage and was 21% higher at 60days, but was the same in inoculated and uninoculated mature compost. The activity of acid phosphatase was 43% higher in inoculated than uninoculated vermicompost. These data suggest that the introduction of the mixed culture had beneficial effects on vermicompost maturation.

  19. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle

    DEFF Research Database (Denmark)

    Martínez-Pérez, Clara; Mohr, Wiebke; Löscher, Carolin R

    2016-01-01

    to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ∼20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than...

  20. Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka)

    Digital Repository Service at National Institute of Oceanography (India)

    Rameshkumar, N.; Gomez-Gil, B.; Sproer, C.; Lang, E.; Kumar, N.D.; Krishnamurthi, S.; Nair, S.; Roque, A.

    , strains MSSRF60 sup(T) and MSSRF64 represent a novel species of the genus Vibrio, for which the name Vibrio plantipsonsor sp. nov. is proposed. The type strain is MSSRF60 sup(T) (=DSM 21026 sup(T) = LMG 24470 sup(T) = CAIM 1392 sup(T))....

  1. Identification of novel spp. of rice and wheat endophytic diazotrophs by 16S rDNA gene and FTIR analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Mehdipour Moghaddam

    2012-06-01

    Full Text Available In this research, six isolates, including three from three rice roots (PxR1, PxR2 and StR1 and three from three wheat roots (PxW1, PxW2 and PxW3 were isolated as endophytic bacteria and except for StR1, all the isolates were identified as Pseudoxanthomonas based on phenotypic analysis including FTIR and PCR amplification of 16S rDNA. The results showed that PxR1, PxR2, PxW1 and PxW2 were all similar and belonged to a novel species of Pseudoxanthomonas, but PxW3 was from different species. StR1 belonged to a novel species of Stenotrophomonas. Two strains including Azospirillum brasiliense Sp7 (S1 and Azospirillum lipoferum (S2 were selected as standard strains and compared with those isolates however, phenotypic and genotypic analysis verified that those isolates were not Azospirillum. For the first time, it was indicated that Pseudoxanthomonas existed as an endophytic bacterium in rice root.

  2. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts.

  3. Efecto de la melaza de caña tratada con ácido sulfúrico en la produccion de celulosa por Gluconacetobacter xylinus IFO 13693

    Directory of Open Access Journals (Sweden)

    Rubén D Jaramillo

    2014-05-01

    Full Text Available En este estudio se evaluó el efecto de la melaza tratada con ácido sulfúrico (MZA-TR y de las condiciones del cultivo (estático sobre la síntesis de celulosa por Gluconacetobacterxylinus IFO 13693, para ello, se uso un reactor con 0,2 litros de medio de cultivo, con concentraciones iniciales de 13,3 % y 26,6 % de MZA-TR en el medio de cultivo a pH 5,6. El volumen del inóculo fue del 10 % del volumen total del medio; el proceso se realizó a temperatura ambiente (30 °C, con tiempos de incubación de 3, 7, 14, 21 y 28 días. Además, se evaluaron distintos parámetros fisicoquímicos y mecánicos de la celulosa. El grosor de la película de celulosa presentó un máximo de 2,5 cm, siendo el mejor resultado obtenido, en comparación con anteriores reportes en la literatura. También se encontró que al usar MZA-TR en el medio de cultivo hay un incremento considerable de la producción de celulosa en estático a los 28 días de incubación. Finalmente se observó que el consumo de glucosa y de fructosa disminuye durante la síntesis de celulosa bacteriana (CB; durante los 3 primeros días de incubación se observó el máximo descenso, lo que permite correlacionar la producción de CB con el consumo de medio. La concentración de 13,3 %, presenta los mejores resultados en los parámetros de velocidad de crecimiento microbiano, cantidad y calidad de la celulosa producida.

  4. Efecto de la melaza de caña tratada con ácido sulfúrico en la produccion de celulosa por Gluconacetobacter xylinus IFO 13693

    National Research Council Canada - National Science Library

    Jaramillo, Rubén D; Perna, Olga; Ríos, Linda E; Escobar, Jeindy

    ... (estático) sobre la síntesis de celulosa por Gluconacetobacterxylinus IFO 13693, para ello, se uso un reactor con 0,2 litros de medio de cultivo, con concentraciones iniciales de 13,3 % y 26,6...

  5. Desenvolvimento Inicial de Duas Variedades de Cana-de-açúcar Inoculadas com Bactérias Diazotróficas

    Directory of Open Access Journals (Sweden)

    Valfredo Almeida Chaves

    2015-12-01

    Full Text Available RESUMO A cana-de-açúcar é uma cultura de grande destaque na economia, em razão da produção de açúcar, etanol e energia. Tecnologias que possam contribuir para o aumento da produtividade e qualidade da cultura com mínimos danos ao meio ambiente são necessárias. Objetivou-se avaliar a produção de ácido indol acético de cinco estirpes de bactérias diazotróficas e o efeito da inoculação delas na brotação de duas variedades de cana-de-açúcar, RB867515 e IACSP95-5000. A produção de auxina foi determinada pelo teste colorimétrico, usando o reagente de Salkowski. Para avaliar a germinação, foi conduzido um experimento em casa de vegetação, utilizando-se delineamento experimental em blocos ao acaso com quatro repetições e sete tratamentos: controle não inoculado; inoculação mista com as cinco estirpes e inoculação individual com Gluconacetobacter diazotrophicus (Gd estirpe BR11281T(PAL-5T, Herbaspirillum seropedicae (Hs - BR11335 = HRC54, Herbaspirillum rubrisubalbicans (Hr - BR11504 = HCC103, Burkholderia tropica (Bt - BR11366T = PPe 8 T e Azospirillum amazonense (Aa - BR11145 = CBAMc. As bactérias mais eficientes na produção de auxina foram Hs e Hr, declinando 48 h após o crescimento. Hr, Aa e Bt aumentaram o índice de velocidade de germinação e o número de brotações nas duas variedades. Na var. RB867515, a velocidade de germinação ainda foi positivamente influenciada pela inoculação mista, sendo o mesmo observado pela inoculação de Gd na var. IACSP95-5000.

  6. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes – a genome comparison

    Science.gov (United States)

    Jones, Frances Patricia; Clark, Ian M.; King, Robert; Shaw, Liz J.; Woodward, Martin J.; Hirsch, Penny R.

    2016-05-01

    The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.

  7. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture.

    Science.gov (United States)

    Driscoll, Connor B; Otten, Timothy G; Brown, Nathan M; Dreher, Theo W

    2017-01-01

    Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality. Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

  8. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes.

    Science.gov (United States)

    Katoh, Hiroshi; Furukawa, Jun; Tomita-Yokotani, Kaori; Nishi, Yasuaki

    2012-08-01

    Nitrogen fixation and drought tolerance confer the ability to grow on dry land, and some terrestrial cyanobacteria exhibit these properties. These cyanobacteria were isolated in an axenic form from Nostoc commune clusters and other sources by modifying the method used to isolate the nitrogen-fixing and drought-tolerant cyanobacterium Nostoc sp. HK-01. Of these cyanobacteria, N. commune, which is difficult to isolate and purify, uses polysaccharides to maintain water, nitrogen fertilizers for nitrogen fixation, and can live in extreme environments because of desiccation tolerance. In this study, we examined the use of N. commune as biosoil for space agriculture and possible absorption of radioisotopes ((134)Cs, (137)Cs). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  9. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Singh, Arvind Kumar; Syiem, Mayashree B; Singh, Rajkumar S; Adhikari, Samrat; Rai, Amar Nath

    2008-05-01

    We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues L-methionine-DL-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.

  10. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72.

    Directory of Open Access Journals (Sweden)

    Abhijit Sarkar

    Full Text Available BACKGROUND: The model endophyte Azoarcus sp. strain BH72 is known to contribute fixed nitrogen to its host Kallar grass and also expresses nitrogenase genes endophytically in rice seedlings. Availability of nitrogen is a signal regulating the transcription of nitrogenase genes. Therefore, we analysed global transcription in response to differences in the nitrogen source. METHODOLOGY/PRINCIPAL FINDINGS: A DNA microarray, comprising 70-mer oligonucleotides representing 3989 open reading frames of the genome of strain BH72, was used for transcriptome studies. Transcription profiles of cells grown microaerobically on N2 versus ammonium were compared. Expression of 7.2% of the genes was significantly up-regulated, and 5.8% down-regulated upon N2 fixation, respectively. A parallel genome-wide prediction of σ(54-type promoter elements mapped to the upstream region of 38 sequences of which 36 were modulated under the N2 response. In addition to modulation of genes related to N2 fixation, the expressions of gene clusters that might be related to plant-microbe interaction and of several transcription factors were significantly enhanced. While comparing under N2-fixation conditions the transcriptome of wild type with a nifLA(- insertion mutant, NifA being the essential transcriptional activator for nif genes, 24.5% of the genome was found to be affected in expression. A genome-wide prediction of 29 NifA binding sequences matched to 25 of the target genes whose expression was differential during microarray analysis, some of which were putatively negatively regulated by NifA. For selected genes, differential expression was corroborated by real time RT-PCR studies. CONCLUSION/SIGNIFICANCE: Our data suggest that life under conditions of nitrogen fixation is an important part of the lifestyle of strain BH72 in roots, as a wide range of genes far beyond the nif regulon is modulated. Moreover, the NifA regulon in strain BH72 appears to encompass a wider range of cellular functions beyond the regulation of nif genes.

  11. Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins.

    Science.gov (United States)

    Singh, Prashant Kumar; Shrivastava, Alok Kumar; Chatterjee, Antra; Pandey, Sarita; Rai, Snigdha; Singh, Shilpi; Rai, L C

    2015-09-01

    Present study demonstrates interspecies variation in proteome and survival strategy of three Anabaena species i.e., Anabaena L31, Anabaena sp. PCC 7120 and Anabaena doliolum subjected to respective LC50 doses of Cd at 0, 1, 3, 5 and 7day intervals. The proteome coverage with 452 differentially accumulated proteins unveiled species and time specific expression and interaction network of proteins involved in important cellular functions. Statistical analysis of protein abundance across Cd-treated proteomes clustered their co-expression pattern into four groups viz., (i) early (days 1 and 3) accumulated proteins, (ii) proteins up-accumulated for longer duration, (iii) late (days 5 and 7) accumulated proteins, and (iv) mostly down-accumulated proteins. Appreciable growth of Cd treated A L31 over other two species may be ascribed to proteins contained in the first and second groups (belonging to energy and carbohydrate metabolism (TK, G6-PI, PGD, FBA, PPA, ATP synthase)), sulfur metabolism (GR, GST, PGDH, PAPS reductase, GDC-P, and SAM synthetase), fatty acid metabolism (AspD, PspA, SQD-1), phosphorous metabolism (PhoD, PstB and SQD1), molecular chaperones (Gro-EL, FKBP-type peptidylprolyl isomerase), and antioxidative defense enzymes (SOD-A, catalase). Anabaena sp. PCC 7120 harboring proteins largely from the third group qualified as a late accumulator and A. doliolum housing majority of proteins from the fourth group emerged as the most sensitive species. Thus early up-accumulation of transporter and signaling category proteins and drastic reduction of nitrogen assimilation proteins could be taken as a vital indicator of cadmium toxicity in Anabaena spp. This article is part of a Special Issue entitled: Proteomics in India.

  12. Molecular characterization of Alr1105 a novel arsenate reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli.

    Science.gov (United States)

    Pandey, Sarita; Shrivastava, Alok K; Rai, Rashmi; Rai, Lal Chand

    2013-11-01

    This paper constitutes the first report on the Alr1105 of Anabaena sp. PCC7120 which functions as arsenate reductase and phosphatase and offers tolerance against oxidative and other abiotic stresses in the alr1105 transformed Escherichia coli. The bonafide of 40.8 kDa recombinant GST+Alr1105 fusion protein was confirmed by immunoblotting. The purified Alr1105 protein (mw 14.8 kDa) possessed strong arsenate reductase (Km 16.0 ± 1.2 mM and Vmax 5.6 ± 0.31 μmol min⁻¹ mg protein⁻¹) and phosphatase activity (Km 27.38 ± 3.1 mM and Vmax 0.077 ± 0.005 μmol min⁻¹ mg protein⁻¹) at an optimum temperature 37 °C and 6.5 pH. Native Alr1105 was found as a monomeric protein in contrast to its homologous Synechocystis ArsC protein. Expression of Alr1105 enhanced the arsenic tolerance in the arsenate reductase mutant E. coli WC3110 (∆arsC) and rendered better growth than the wild type W3110 up to 40 mM As (V). Notwithstanding above, the recombinant E. coli strain when exposed to CdCl₂, ZnSO₄, NiCl₂, CoCl₂, CuCl₂, heat, UV-B and carbofuron showed increase in growth over the wild type and mutant E. coli transformed with the empty vector. Furthermore, an enhanced growth of the recombinant E. coli in the presence of oxidative stress producing chemicals (MV, PMS and H₂O₂), suggested its protective role against these stresses. Appreciable expression of alr1105 gene as measured by qRT-PCR at different time points under selected stresses reconfirmed its role in stress tolerance. Thus the Alr1105 of Anabaena sp. PCC7120 functions as an arsenate reductase and possess novel properties different from the arsenate reductases known so far.

  13. Chemical characterization of the gels produced by the diazotrophic bacteria Rhizobium tropici and Mesorhizobium sp; Caracterizacao quimica dos geis produzidos pelas bacterias diazotroficas Rhizobium tropici e Mesorhizobium sp.

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Nilson Kobori [Departamento de Engenharia e Tecnologia de Alimentos, Instituto de Biociencias, Letras e Ciencias Exatas, Universidade Estadual Paulista, Sao Jose do Rio Preto - SP (Brazil); Aranda-Selverio, Gabriel; Exposti, Diego Tadeu Degli; Silva, Maria de Lourdes Corradi da [Departamento de Fisica, Quimica e Biologia, Faculdade de Ciencias e Tecnologia, Universidade Estadual Paulista, Presidente Prudente - SP (Brazil); Lemos, Eliana Gertrudes Macedo; Campanharo, Joao Carlos [Departamento de Tecnologia, Faculdade de Ciencias Agrarias e Veterinaria, Universidade Estadual Paulista, Jaboticabal - SP (Brazil); Silveira, Joana Lea Meira [Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Parana, Curitiba - PR (Brazil)

    2012-07-01

    The exopolysaccharides with characteristics of gel produced by Rhizobium tropici (EPSRT) and Mesorhizobium sp (EPSMR) are acidic heteropolysaccharide composed mainly of glucose and galactose in a molar ratio of 4:1 and 5:1 respectively, with traces of mannose ({approx} 1%). Chemical analysis showed the presence of uronic acid, pyruvate and acetyl-substituents in the structures of both polymers. Experiments of gel permeation chromatography and polyacrylamide gel electrophoresis showed that EPSRT and EPSMR are homogeneous molecules with low grade of polydispersity. The EPS were characterized using spectroscopic techniques of FT-IR, {sup 1}H and {sup 13}C-NMR. (author)

  14. 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated diazotrophs.

    Science.gov (United States)

    Hurek, T; Burggraf, S; Woese, C R; Reinhold-Hurek, B

    1993-11-01

    Phylogenetic analyses after reverse transcriptase sequencing of 16S rRNA of nitrogen-fixing, grass-associated Azoarcus strains confirmed their affiliation to the beta subdivision of the Proteobacteria. Strains representing three different species formed a phylogenetically coherent unit related to Rhodocyclus purpureus, with actual percent similarities among the three sequences ranging from 93.1 to 97.3%. Within variable regions V2 and V5, we found stretches of sequences considerably conserved within the genus Azoarcus but differing from most other gram-negative bacteria, with the specificity being enhanced when different regions were combined. Genus-specific primers selected from both regions amplified fragments from all but one Azoarcus species in polymerase chain reactions (PCR) but not from any reference strain tested. Primers of lesser specificity generated fragments from members of all five Azoarcus species as well as from some reference strains. Those unspecific amplifications could be differentiated by oligonucleotide hybridization, detecting only fragments generated from Azoarcus strains except strain 6a3, which represents the same group which could not be detected by genus-specific PCR. Thus we propose the application of PCR amplification with 16S rRNA-targeted, genus-specific primers in combination with hybridization of a 16S rRNA-targeted oligonucleotide to PCR-generated fragments as diagnostic tests; this allows an initial screening for presence of members of the genus Azoarcus.

  15. 剪切力对木葡糖醋杆菌及细菌纤维素合成的影响%The Effect of Shear Force on Gluconacetobacter xylinus and Bacterial Cellulose Production

    Institute of Scientific and Technical Information of China (English)

    杨雪霞; 董超; 陈琳; 洪枫

    2013-01-01

    以摇瓶和发酵罐两种培养体系为对象,考察了剪切力对木葡糖醋杆菌生长和细菌纤维素合成的影响.结果表明,剪切力的存在对细菌纤维素的合成不利,在添加玻璃珠的三角瓶中经9轮震荡培养后,细菌纤维素的产量降至原始菌株的23.6%;在机械搅拌罐中培养时,用剪切力大的六叶平桨进行发酵,细菌纤维素的产量最低,而用转速降低的框式桨进行发酵,细菌纤维素的产量较高.剪切力也影响木葡糖醋杆菌的形态和生长周期,剪切力的存在使细菌菌体变小,单位体积发酵液菌浓降低,菌落形态改变,菌株进入对数生长期的时间延后.实验结果为今后改进提高细菌纤维素动态培养产量提供了理论依据.

  16. 以腐烂水果为营养源高效制备细菌纤维素%Cost-efficient Production of Bacterial Cellulose by Gluconacetobacter xylinus using Rotten Fruits as the Culture Medium

    Institute of Scientific and Technical Information of China (English)

    杨光; 王彩霞

    2015-01-01

    细菌纤维素(Bacterial Cellulose,简称BC)是一种由微生物合成的天然纤维素材料.本文选取腐烂水果,如苹果、西瓜、桃子、梨为廉价营养源高效制备细菌纤维素.研究了培养基灭菌方法以及添加氮源等因素对糖转化率、BC干重以及产量的影响.结果表明,单独以腐烂水果汁为营养源所得BC产量高于目前普遍使用的葡萄糖培养基.另外,过滤灭菌和添加氮源有助于获得较高的BC产量.

  17. 产细菌纤维素菌株Gluconacetobacter intermedius的分离与发酵条件优化%Construction and Optimization of Two-Dimensional Electrophoresis for Proteome Analysis of Rhizopus chinensis

    Institute of Scientific and Technical Information of China (English)

    郑礼月; 王栋; 徐岩

    2015-01-01

    华根霉(Rhizopus chinensis CCTCC M201021)是从我国传统微生物载体——大曲中分离筛选得到的一株丝状真菌,具有重要的工业应用前景.为建立一种适于华根霉胞内蛋白质的双向电泳体系以进行蛋白质组学研究,作者对华根霉胞内蛋白质的提取方法及双向电泳流程相关参数进行了考察和优化.确定采用液氮研磨与高速珠磨相结合的方法对华根霉进行细胞破碎,用TCA/丙酮对提取的蛋白质进行纯化,采用被动水化的上样方式上样,24 cm、pH 4~7的线性IPG胶条,上样量为1 200 μg蛋白质,考马斯亮蓝G-250胶体染色法,最终得到了背景清晰、分辨率高的双向电泳图谱.

  18. 剑麻根际联合固氮菌的分离及固氮活性测定%Isolation of Endophytic Diazotrophic Bacteria from Sisal and Determination of Their Nitrogenase Activity

    Institute of Scientific and Technical Information of China (English)

    陈河龙; 李庆洋; 易克贤; 高建明; 郑金龙; 刘巧莲; 张世清

    2011-01-01

    通过选用NFM、CCM、Ashby及改良的Dobereiner培养基,利用气相色谱仪(GC)对海南省昌江县、广西扶绥县和广东雷州市三地剑麻种植基地的剑麻根际联合固氮菌进行分离、纯化及利用乙炔还原法进行固氮活性测定,获得50株具有固氮活性的菌株,其固氮酶活性最高的菌株是ASN004,固氮酶活性为1 765.659 0 nmol/(mL·h),具有开发利用的潜力.%The associative nitrogen fixation bacteria in sisal rhizosphere, sampled from Changjiang County in Hainan Province, Fusui County in Guangxi Zhuang Autonomous Region and Leizhou City in Guangdong Province, were isolated and purified by Gas Chromatography on the NFM, CCM, Ashby and modified Dobereiner medium. And their nitrogen -fixing activity was measured by acetylene reduction method. The result indicated that, 50 bacterial strains had nitrogen -fixing activity. And a bacterial strain No. ASN004 with the highest nitrogenase activity of 1765.6590 nmol/(mL·h) was found and it had good exploitation potential.

  19. Selection and evaluation of reference genes for RT-qPCR expression studies on Burkholderia tropica strain Ppe8, a sugarcane-associated diazotrophic bacterium grown with different carbon sources or sugarcane juice.

    Science.gov (United States)

    da Silva, Paula Renata Alves; Vidal, Marcia Soares; de Paula Soares, Cleiton; Polese, Valéria; Simões-Araújo, Jean Luís; Baldani, José Ivo

    2016-11-01

    Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.

  20. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  1. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Science.gov (United States)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  2. NifH expression by five groups of phototrophs compared with nitrogenase activity in coastal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Stal, L.J.

    2010-01-01

    Diazotrophic (nitrogen-fixing) Cyanobacteria are often structurally dominant in coastal microbial mats but diazotrophs from other bacterial lineages are also present and active. The expression of nifH by four nonheterocystous Cyanobacteria and one member of the Gammaproteobacteria was followed over

  3. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; Werf, van der Adrie; Schlüter, Urte; Reichart, Gert Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  4. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by nostoc azollae sustain the astonishing productivity of azolla ferns without nitrogen fertilizer

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan|info:eu-repo/dai/nl/165599081; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette|info:eu-repo/dai/nl/304827819

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  5. Climate change affects key nitrogen-fixing b