WorldWideScience

Sample records for diatomic molecules effect

  1. Diatomic Molecules Effective Potential for an Harmonic Oscillator ...

    African Journals Online (AJOL)

    A model anharmonic potential was considered and was used in the Schrödinger time independent wave equation to describe a carbon monoxide molecule. Central difference scheme was used in approximating the derivative term in the Schrödinger equation leading to a tri-diagonal band system of equation. The method of ...

  2. Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules

    International Nuclear Information System (INIS)

    Glushkov, A V; Malinovskaya, S V; Loboda, A V; Shpinareva, I M; Prepelitsa, G P

    2006-01-01

    We present a consistent, quantum approach to the calculation of electron-nuclear γ. spectra (set of vibrational and rotational satellites) for nuclei in diatomic molecules. The approach generelizes the well known Letokhov-Minogin model and is based on the Dunham model potential approximation for potential curves of diatomic molecules. The method is applied to the calculation of probabilities of the vibration-rotation-nuclear transitions in a case of emission and absorption spectrum for the nucleus 127 I (E γ (0) = 203 keV) linked with the molecule H 127 I

  3. The effect of the charge density on the dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.; Germano, J.S.E.

    1986-01-01

    The results of the calculation, using the Variational Cellular Method (VCM), of the electric dipole moment of several diatomic molecules are improved. In previous calculations, the electronic charge density was treated like a spherically symmetric function in the inscribed sphere within each cell and as being the same constant value for all intercellular regions. Since the results obtained with such an approximation have not been satisfactory, an improved approximation for the charge density in the intercellular regions is needed. It is considered that the charge density is still constant outside the inscribed sphere but with different values in each intercellular region. A new expression for the dipole moment is obtained, and applied to the diatomic molecules HF, CO, BF and CS. In addition, the corresponding dipole moment curves, potential energy curves and spectroscopic constants are calculated taking into consideration our approximation and the traditional approximation for the charge density. The results of the two models are compared with each other and with experimental results for all the molecules considered. (Author) [pt

  4. Analytic vibrational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.; Ogilvie, J.F.; Tipping, R.H.

    1986-01-01

    The vibrational matrix elements and expectation values for a diatomic molecule, including the rotational dependence, are calculated for powers of the reduced displacement in terms of the parameters of the Dunham potential-energy function. (orig.)

  5. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  6. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  7. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... barriers, an ability classical particles do not possess. Tunnelling is a fundamental quantum mechanical process, a process that is distinctly non-classical, so solving this tunnelling problem is not only relevant for molecular physics, but also for quantum theory in general. In this dissertation the theory...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  8. Electron transport through a diatomic molecule

    International Nuclear Information System (INIS)

    Imran, Muhammad

    2014-01-01

    Electron transport through a diatomic molecular tunnel junction shows wave like interference phenomenon. By using Keldysh non-equilibrium Green's function (NEGF) theory, we have explicitly presented current and differential conductance calculation for a diatomic molecular and two isolated atoms (two atoms having zero hybridization between their energy orbitals) tunnel junctions. In case of a diatomic molecular tunnel junction, Green's function propagators entering into current and differential conductance formula interfere constructively for a molecular anti-bonding state and destructively for bonding state. Consequently, conductance through a molecular bonding state is suppressed, and to conserve current, conductance through anti-bonding state is enhanced. Therefore, current steps and differential conductance peaks amplitude show asymmetric correspondence between molecular bonding and anti-bonding states. Interestingly, for a diatomic molecule, comprising of two atoms of same energy level, these propagators interfere completely destructively for molecular bonding state and constructively for molecular anti-bonding state. Hence under such condition, a single step or a single peak is shown up in current versus voltage or differential conductance versus voltage studies.

  9. Dissociation Energies of Diatomic Molecules

    International Nuclear Information System (INIS)

    Qun-Chao, Fan; Wei-Guo, Sun

    2008-01-01

    Molecular dissociation energies of 10 electronic states of alkali molecules of KH, 7 LiD, 7 LiH, 6 LiH, NaK, NaLi and NaRb are studied using the highest three accurate vibrational energies of each electronic state, and an improved parameter-free analytical formula which is obtained starting from the LeRoy–Bernstein vibrational energy expression near the dissociation limit. The results show that as long as the highest three vibrational energies are accurate, the current analytical formula will give accurate theoretical dissociation energies D e theory , which are in excellent agreement with the experimental dissociation energies D e expt . (atomic and molecular physics)

  10. Diatomic molecule vibrational potentials: Accuracy of representations

    International Nuclear Information System (INIS)

    Engelke, R.

    1978-01-01

    A method is presented for increasing the radius of convergence of certain representations of diatomic molecule vibrational potentials. The method relies on using knowledge of the analytic structure of such potentials to the maximum when attempting to approximate them. The known singular point (due to the centrifugal and/or Coulomb potentials) at zero internuclear separation should be included in its exact form in an approximate representation. The efficacy of this idea is tested [using Peek's ''exact'' numerical Born-Oppenheimer potential for the (1ssigma/sub g/) 2 Σ + /sub g/ state of H + 2 as a test problem] when the representational form is the series of (1) Dunham, (2) Simons, Parr, and Finlan, (3) Thakkar, and (4) Ogilvie-Tipping, and also (5) when the form is a [2, 2] or a [3, 3] Pade approximant. Significant improvements in accuracy are obtained in some of these cases, particularly on the inner wall of the potential. A comparison of the effectiveness of the five methods is made both with and without the origin behavior being included exactly. This is useful in itself as no comprehensive accuracy comparison of the standard representations seems to have appeared in the literature. The Ogilvie-Tipping series, corrected at the origin for singular behavior, is the best representation presently available for states analogous to the (1ssigma/sub g/) 2 Σ + /sub g/ state of H + 2

  11. A Zeeman slower for diatomic molecules

    Science.gov (United States)

    Petzold, M.; Kaebert, P.; Gersema, P.; Siercke, M.; Ospelkaus, S.

    2018-04-01

    We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the one-dimensional velocity distribution to velocities trappable by magnetic or magneto-optical traps. We experimentally demonstrate our method in an atomic testbed and show an enhancement of flux below v = 35 m s‑1 by a factor of ≈20 compared to white light slowing. 3D Monte Carlo simulations performed to model the experiment show excellent agreement. We apply the same simulations to the prototype molecule 88Sr19F and expect 15% of the initial flux to be continuously compressed in a narrow velocity window at around 10 m s‑1. This is the first experimentally shown continuous and dissipative slowing technique in molecule-like level structures, promising to provide the missing link for the preparation of large ultracold molecular ensembles.

  12. A Simplified Quantum Mechanical Model of Diatomic Molecules

    Science.gov (United States)

    Nielsen, Lars Drud

    1978-01-01

    Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)

  13. Theoretical study of quantum molecular reaction dynamics and of the effects of intense laser radiation on a diatomic molecule

    International Nuclear Information System (INIS)

    Dardi, P.S.

    1984-11-01

    Within the very broad field of molecular dynamics, we have concentrated on two simple yet important systems. The systems are simple enough so that they are adequately described with a single Born-Oppenheimer potential energy surface and that the dynamics can be calculated accurately. They are important because they give insight into solving more complicated systems. First we discuss H + H 2 reactive scattering. We present an exact formalism for atom-diatom reactive scattering which avoids the problem of finding a coordinate system appropriate for both reactants and products. We present computational results for collinear H + H 2 reactive scattering which agree very well with previous calculations. We also present a coupled channel distorted wave Born approximation for atom-diatom reactive scattering which we show is a first order approximation to our exact formalism. We present coupled channel DWBA results for three dimensional H + H 2 reactive scattering. The second system is an isolated HF molecule in an intense laser field. Using classical trajectories and quantum dynamics, we look at energy absorbed and transition probabilities as a function of the laser pulse time and also averaged over the pulse time. Calculations are performed for both rotating and nonrotating HF. We examine one and two photon absorption about the fundamental frequency, multiphoton absorption, and overtone absorption. 127 references, 31 figures, 12 tables

  14. Theoretical study of quantum molecular reaction dynamics and of the effects of intense laser radiation on a diatomic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Dardi, P.S.

    1984-11-01

    Within the very broad field of molecular dynamics, we have concentrated on two simple yet important systems. The systems are simple enough so that they are adequately described with a single Born-Oppenheimer potential energy surface and that the dynamics can be calculated accurately. They are important because they give insight into solving more complicated systems. First we discuss H + H/sub 2/ reactive scattering. We present an exact formalism for atom-diatom reactive scattering which avoids the problem of finding a coordinate system appropriate for both reactants and products. We present computational results for collinear H + H/sub 2/ reactive scattering which agree very well with previous calculations. We also present a coupled channel distorted wave Born approximation for atom-diatom reactive scattering which we show is a first order approximation to our exact formalism. We present coupled channel DWBA results for three dimensional H + H/sub 2/ reactive scattering. The second system is an isolated HF molecule in an intense laser field. Using classical trajectories and quantum dynamics, we look at energy absorbed and transition probabilities as a function of the laser pulse time and also averaged over the pulse time. Calculations are performed for both rotating and nonrotating HF. We examine one and two photon absorption about the fundamental frequency, multiphoton absorption, and overtone absorption. 127 references, 31 figures, 12 tables.

  15. Effect of α variation on a prospective experiment to detect variation of me/mp in diatomic molecules

    International Nuclear Information System (INIS)

    Beloy, K.; Borschevsky, A.; Schwerdtfeger, P.; Flambaum, V. V.

    2011-01-01

    We consider the influence of variation in the fine structure constant α on a promising experiment proposed by DeMille et al. to search for variation in the electron-to-proton mass ratio μ using diatomic molecules [DeMille et al., Phys. Rev. Lett. 100, 043202 (2008)]. The proposed experiment involves spectroscopically probing the splitting between two nearly degenerate vibrational levels supported by different electronic potentials. Here we demonstrate that this splitting may be equally or more sensitive to variation in α as to variation in μ. For the anticipated experimental precision, this implies that the α variation may not be negligible, as previously assumed, and further suggests that the method could serve as a competitive means to search for α variation as well.

  16. Analytic vibration-rotational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.

    1987-01-01

    The vibration-rotational matrix elements for infrared or Raman transitions vJ → v'J' of diatomic molecules are calculated for powers of the reduced displacement X from parameters of the Dunham potential-energy function. (orig.)

  17. Resonant inelastic collisions of electrons with diatomic molecules

    International Nuclear Information System (INIS)

    Houfek, Karel

    2012-01-01

    In this contribution we give a review of applications of the nonlocal resonance theory which has been successfully used for treating the nuclear dynamics of low-energy electron collisions with diatomic molecules over several decades. We give examples and brief explanations of various structures observed in the cross sections of vibrational excitation and dissociative electron attachment to diatomic molecules such as threshold peaks, boomerang oscillations below the dissociative attachment threshold, or outer-well resonances.

  18. Resonant inelastic collisions of electrons with diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Houfek, Karel, E-mail: karel.houfek@gmail.com [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)

    2012-05-15

    In this contribution we give a review of applications of the nonlocal resonance theory which has been successfully used for treating the nuclear dynamics of low-energy electron collisions with diatomic molecules over several decades. We give examples and brief explanations of various structures observed in the cross sections of vibrational excitation and dissociative electron attachment to diatomic molecules such as threshold peaks, boomerang oscillations below the dissociative attachment threshold, or outer-well resonances.

  19. Radiational and energetic characteristics of diatomic molecules (data base)

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Pazyuk, E.A.; Stolyarov, A.V.

    1993-01-01

    Data base on radiational and energetic characteristics of diatomic molecules was created. The base consists of two parts: reference system and recommended data system. The reference system contains the information about studies of radiational and energetic parameters of more than 1500 electronic states and 1700 electron transfers for ∼ 350 diatomic molecules and their ions. The base bibliography includes ∼ 3000 publications. 11 refs., 1 figs

  20. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  1. Recombinational laser employing electron transitions of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Biriukov, A S; Prokhorov, A M; Shelepin, L A; Shirokov, N N

    1974-12-01

    Conditions are established for obtaining laser action in the visible and uv regions of the spectrum, using transitions between electronic states of diatomic molecules during recombination of a dissociated gas. The mechanism of population inversion was studied for the oxygen molecule, and gain estimates were obtained for laser action at a wavelength of 4881 A. The feasibility of laser action at other wavelengths was examined.

  2. The effect of antibiotics on diatom communities

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    Effect of antibiotics (penicillin (P), streptomycin (S) and chloramphenicol (C)) on benthic diatom communities was evaluated using a modified extinction–dilution method. The high antibiotic combinations (2PSC and PSC) reduced diatoms by 99...

  3. Dissociation of Vertical Semiconductor Diatomic Artificial Molecules

    International Nuclear Information System (INIS)

    Pi, M.; Emperador, A.; Barranco, M.; Garcias, F.; Muraki, K.; Tarucha, S.; Austing, D. G.

    2001-01-01

    We investigate the dissociation of few-electron circular vertical semiconductor double quantum dot artificial molecules at 0T as a function of interdot distance. A slight mismatch introduced in the fabrication of the artificial molecules from nominally identical constituent quantum wells induces localization by offsetting the energy levels in the quantum dots by up to 2meV, and this plays a crucial role in the appearance of the addition energy spectra as a function of coupling strength particularly in the weak coupling limit

  4. Models for calculation of dissociation energies of homonuclear diatomic molecules

    International Nuclear Information System (INIS)

    Brewer, L.; Winn, J.S.

    1979-08-01

    The variation of known dissociation energies of the transition metal diatomics across the Periodic Table is rather irregular like the bulk sublimation enthalpy, suggesting that the valence-bond model for bulk metallic systems might be applicable to the gaseous diatomic molecules and the various intermediate clusters. Available dissociation energies were converted to valence-state bonding energies considering various degrees of promotion to optimize the bonding. The degree of promotion of electrons to increase the number of bonding electrons is smaller than for the bulk, but the trends in bonding energy parallel the behavior found for the bulk metals. Thus using the established trends in bonding energies for the bulk elements, it was possible to calculate all unknown dissociation energies to provide a complete table of dissociation energies for all M 2 molecules from H 2 to Lr 2 . For solids such as Mg, Al, Si and most of the transition metals, large promotion energies are offset by strong bonding between the valence state atoms. The main question is whether bonding in the diatomics is adequate to sustain extensive promotion. The most extreme example for which a considerable difference would be expected between the bulk and the diatomics would be that of the Group IIA and IIB metals. The first section of this paper which deals with the alkaline earths Mg and Ca demonstrates a significant influence of the excited valence state even for these elements. The next section then expands the treatment to transition metals

  5. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analysed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering, and the effect of zero-point motion on the Coulomb image of a molecule. (orig.)

  6. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1991-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analyzed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering and the effect of zero-point motion on the Coulomb image of a molecule. 14 refs., 5 figs

  7. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  8. Matter-Wave Optics of Diatomic Molecules

    Science.gov (United States)

    2012-10-23

    81.013802 10/11/2012 32.00 Swati Singh , Pierre Meystre. Atomic probe Wigner tomography of a nanomechanical system, Physical Review A, (04 2010): 41804...PhysRevA.78.041801 10/11/2012 3.00 S. Singh , M. Bhattacharya, O. Dutta, P. Meystre. Coupling Nanomechanical Cantilevers to Dipolar Molecules...degenerate matter waves, Physical Review A, (02 2009): 0. doi: 10.1103/PhysRevA.79.023622 10/11/2012 10.00 M. Bhattacharya, S. Singh , P. -L. Giscard

  9. Single ionization of diatomic molecules by bare ion impact

    International Nuclear Information System (INIS)

    Purkait, M; Mandal, C R

    2014-01-01

    The molecular three-Coulomb wave model (M3CW) has been extensively used to study the double-differential ionization cross sections (DDCS) of diatomic molecules by the impact of bare ions at intermediate and high energies. In this model, the distortion of the initial channel by the incoming projectile is also included. The present DDCS results are found to be in good accord both with the experiment of Baran et al 2008 as well as with other theory

  10. Complex dynamics in diatomic molecules. Part II: Quantum trajectories

    International Nuclear Information System (INIS)

    Yang, C.-D.; Weng, H.-J.

    2008-01-01

    The second part of this paper deals with quantum trajectories in diatomic molecules, which has not been considered before in the literature. Morse potential serves as a more accurate function than a simple harmonic oscillator for illustrating a realistic picture about the vibration of diatomic molecules. However, if we determine molecular dynamics by integrating the classical force equations derived from a Morse potential, we will find that the resulting trajectories do not consist with the probabilistic prediction of quantum mechanics. On the other hand, the quantum trajectory determined by Bohmian mechanics [Bohm D. A suggested interpretation of the quantum theory in terms of hidden variable. Phys. Rev. 1952;85:166-179] leads to the conclusion that a diatomic molecule is motionless in all its vibrational eigen-states, which also contradicts probabilistic prediction of quantum mechanics. In this paper, we point out that the quantum trajectory of a diatomic molecule completely consistent with quantum mechanics does exist and can be solved from the quantum Hamilton equations of motion derived in Part I, which is based on a complex-space formulation of fractal spacetime [El Naschie MS. A review of E-Infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. E-Infinity theory - some recent results and new interpretations. Chaos, Solitons and Fractals 2006;29:845-853; El Naschie MS. The concepts of E-infinity. An elementary introduction to the cantorian-fractal theory of quantum physics. Chaos, Solitons and Fractals 2004;22:495-511; El Naschie MS. SU(5) grand unification in a transfinite form. Chaos, Solitons and Fractals 2007;32:370-374; Nottale L. Fractal space-time and microphysics: towards a theory of scale relativity. Singapore: World Scientific; 1993; Ord G. Fractal space time and the statistical mechanics of random works. Chaos, Soiltons and Fractals 1996;7:821-843] approach to quantum

  11. Study on the excited diatomic molecules of rare gas

    International Nuclear Information System (INIS)

    Kasama, Kunihiko; Arai, Shigeyoshi

    1981-01-01

    The study on the excited diatomic molecules of rare gas is presented. The absorption spectra, the mechanism of formation and attenuation and the reactions with other molecules are described. The excitation of rare gas was made by using a pulsed electron beam generator. The absorption of excited diatomic molecules was measured as the functions of time. Two absorption peaks were observed. The electron states of rare gases were estimated. The observed and calculated transition values were given for each peak. The absorption spectra of Ne change with time. The spectra of Ar do not change with time. Four and eleven absorption maxima were seen in the spectra of Kr and Xe, respectively. In the case of Ar, the thermal equilibrium existed. The constants of the production and attenuation rates were obtained as the functions of Ar gas pressure. In the case of Ne, there wad definitely the time dependence of absorption spectra. The attenuation constant was obtained for each transition between various vibration levels. It is necessary to consider the relaxation from high vibrational levels. The energy transfer between vibrational levels hardly occurred in Ne because the intervals are large. When there are other molecules, the attnuation was accelerated. (Kato, T.)

  12. Deceleration and Trapping of Heavy Diatomic Molecules for Precision Measurements

    Science.gov (United States)

    Berg, J. E. Van Den; Turkesteen, S. N. Hoekman; Prinsen, E. B.; Hoekstra, S.

    2011-06-01

    We are setting up a novel type of Stark-decelerator optimized for the deceleration and trapping of heavy diatomic molecules. Aim of these experiments is to prepare a trapped sample of ultracold molecules for precision studies of fundamental symmetries. The decelerator uses ring-shaped electrodes to create a moving trapping potential, a prototype of which has been shown to work for CO molecules. Molecules can be decelerated and trapped in the weak-field seeking part of excited rotational states. The alkaline-earth monohalide molecules (currently we focus on the SrF molecule) are prime candidates for next generation parity violation and electron-EDM studies. We plan to combine the Stark deceleration with molecular laser cooling to create a trapped sample of molecules at a final temperature of ˜ 200 μK. A. Osterwalder, S. A. Meek, G. Hammer, H. Haak and G. Meijer Phys. Rev. A 81 (51401), 2010. T. A. Isaev, S. Hoekstra, R. Berger Phys. Rev. A 82 (52521), 2010

  13. Symmetries and rotational line intensities in diatomic molecules

    International Nuclear Information System (INIS)

    Veseth, L.

    1986-02-01

    The general theory of angular momenta and the full rotation group is used to reconsider the theory of the intensity factors of rotational lines in the spectra of diatomic molecules (Hoenl-London factors). It is shown that the use of the rotational symmetry (rotation matrices) leads to compact derivations of the symmetry properties of the molecular wave functions, as well as the matrix elements of the transitions operator. The present work is restricted to spin-allowed electric dipole transitions, and the general sum rule characteristic of this type of transitions is rederived by use of the general angular momentum theory. A main purpose of the present work has been to provide a unified theoretical basis for exact numerical computations of Hoenl-London factors for all types of spin-allowed electric dipole transitions in diatomic molecules. The computed Hoenl-London factors are then in the next step intended to be the basis for construction of synthetic molecular band spectra, with particular applications to upper atmosperic emissions (aurora)

  14. Gauge symmetry, chirality and parity effects in four-particle systems: Coulomb's law as a universal function for diatomic molecules.

    Science.gov (United States)

    Van Hooydonk, G

    2000-11-01

    Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric +/- a(n)Rn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/R-potentials results in generic left right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1 - Re/R)2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1 - Re/R) scale attractive and repulsive branches of PECs for 13 bonds H2, HF, LiH, KH, AuH, Li2, LiF, KLi, NaCs, Rb2, RbCs, Cs2 and I2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 A at both branches. For 230 points at the repulsive side, the deviation is 0.003 A. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably produce

  15. Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions

    CERN Document Server

    Rowe, D J

    1998-01-01

    Complete rotation-vibrational spectra and electromagnetic transition rates are obtained for Hamiltonians of diatomic molecules and nuclei with Davidson interactions. Analytical results are derived by dynamical symmetry methods for diatomic molecules and a liquid-drop model of the nucleus. Numerical solutions are obtained for a many-particle nucleus with quadrupole Davidson interactions within the framework of the microscopic symplectic model. (author)

  16. Quantum work distribution for a driven diatomic molecule

    International Nuclear Information System (INIS)

    Leonard, Alison; Deffner, Sebastian

    2015-01-01

    Highlights: • A method for calculating the time-dependent solution for a driven system is proposed. • These solutions are used to compute the quantum work distribution. • This distribution is calculated for the Morse potential mimicking a diatomic molecule. • Due to bound and scattering states distribution exhibits continuous and discrete part. • Result is compared with that of a harmonic approximation. - Abstract: We compute the quantum work distribution for a driven Morse oscillator. To this end, we solve the time-dependent dynamics for a scale-invariant process, from which the exact expressions for the transition probabilities are found. Special emphasis is put on the contributions to the work distribution from discrete (bound) and continuous (scattering) parts of the spectrum. The analysis is concluded by comparing the work distribution for the exact Morse potential and the one resulting from a harmonic approximation

  17. Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin

    International Nuclear Information System (INIS)

    Yang, Ciann-Dong; Weng, Hung-Jen

    2012-01-01

    Highlights: ► This paper reveals the internal nonlinear dynamics embedded in a molecular quantum state. ► Analyze quantum molecular dynamics in a deterministic way, while preserving the consistency with probability interpretation. ► Molecular vibration–rotation interaction and spin–orbital coupling are considered simultaneously. ► Spin is just the remnant angular motion when orbital angular momentum is zero. ► Spin is the “zero dynamics” of nonlinear quantum dynamics. - Abstract: For a given molecular wavefunction Ψ, the probability density function Ψ ∗ Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ ∗ Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.

  18. The iodine molecule insights into intra- and intermolecular perturbation in diatomic molecules

    CERN Document Server

    Lukashov, Sergey; Pravilov, Anatoly

    2018-01-01

    This book presents experimental and theoretical spectroscopic studies performed over the last 25 years on the iodine molecule’s excited states and their perturbations. It is going to be of interest to researchers who study intra- and intermolecular perturbations in diatomic molecules and more complex systems. The book offers a detailed treatment of the nonadiabatic perturbations of valence, ion pair and Rydberg states induced by intramolecular as well as intermolecular interactions in collisions or in weakly-bound complexes. It also provides an overview of current instrumentation and techniques as well as theoretical approaches describing intra- and intermolecular perturbations. The authors are experts in the use of spectroscopy for the study of intrinsic and collision-induced perturbations in diatomic iodine. They introduced new methods of two- and three-step optical population of the iodine ion-pair states. The iodine molecule has 23 valence states correlating with three dissociation limits, 20 so-called ...

  19. Probing physics beyond the standard model in diatomic molecules

    International Nuclear Information System (INIS)

    Denis, M.

    2017-01-01

    Nowadays, the incompleteness of the Standard Model of particles (SM) is largely acknowledged. One of its most obvious shortcomings is the lack of explanation for the huge surplus of matter over antimatter in the universe, the so-called baryon asymmetry of the universe. New CP (charge conjugation and spatial parity) violations absent in the SM are assumed to be responsible for this asymmetry. Such a violation could be observed, in ordinary matter through a set of interactions violating both parity and time-reversal symmetries (P, T -odd) among which the preponderant ones are the electron Electric Dipole Moment (eEDM), the electron-nucleon scalar-pseudoscalar (enSPS) and the nuclear magnetic quadrupole moment (nMQM) interactions. Hence, an experimental evidence of a non-zero P, T -odd interaction constant would be a probe of this New Physics beyond the Standard Model. The calculation of the corresponding molecular parameters is performed by making use of an elaborate four-component relativistic configuration interaction approach in polar diatomic molecules containing an actinide, that are particularly adequate systems for eEDM experiments, such as ThO that allowed for assigning the most constraining upper bound on the eEDM and ThF"+ that will be used in a forthcoming experiment. Those results will be of crucial importance in the interpretation of the measurements since the fundamental constants can only be evaluated if one combines both experimental energy shift measurements and theoretical molecular parameters. This manuscript proceeds as follows, after an introduction to the general background of the search of CP-violations and its consequences for the understanding of the Universe (Chapter 1), a presentation of the underlying theory of the evidence of such violation in ordinary matter, namely the P, T -odd sources of the Electric Dipole Moment of a many-electron system, as well as the relevant molecular parameters is given in Chapter 2. A similar introduction to

  20. Quantum entanglement and the dissociation process of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, Rodolfo O; Molina-Espiritu, Moyocoyani [Departamento de Quimica, Universidad Autonoma Metropolitana, 09340-Mexico DF (Mexico); Flores-Gallegos, Nelson [Unidad Profesional Interdisciplinaria de IngenierIa, Campus Guanajuato del Instituto Politecnico Nacional, 36275-Guanajuato (Mexico); Plastino, A R; Angulo, Juan Carlos; Dehesa, Jesus S [Instituto Carlos I de Fisica Teorica y Computacional, and Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, 18071-Granada (Spain); Antolin, Juan, E-mail: esquivel@xanum.uam.mx, E-mail: arplastino@ugr.es [Departamento de Fisica Aplicada, EUITIZ, Universidad de Zaragoza, 50018-Zaragoza (Spain)

    2011-09-14

    In this work, we investigate quantum entanglement-related aspects of the dissociation process of some selected, representative homo- and heteronuclear diatomic molecules. This study is based upon high-quality ab initio calculations of the (correlated) molecular wavefunctions involved in the dissociation processes. The values of the electronic entanglement characterizing the system in the limit cases corresponding to (i) the united-atom representation and (ii) the asymptotic region when atoms dissociate are discussed in detail. It is also shown that the behaviour of the electronic entanglement as a function of the reaction coordinate R exhibits remarkable correspondences with the phenomenological description of the physically meaningful regimes comprising the processes under study. In particular, the extrema of the total energies and the electronic entanglement are shown to be associated with the main physical changes experienced by the molecular spatial electronic density, such as charge depletion and accumulation or bond cleavage regions. These structural changes are characterized by several selected descriptors of the density, such as the Laplacian of the electronic molecular distributions (LAP), the molecular electrostatic potential (MEP) and the atomic electric potentials fitted to the MEP.

  1. Diatomic-molecule vibrational potentials. II. New representationsa)

    International Nuclear Information System (INIS)

    Engelke, R.

    1979-01-01

    Two new representations of diatomic-molecule vibrational potentials are presented. One of these includes most of the previously employed series approximations as special cases. The new representations are tested against older ones by using Peek's ''exact'' numerical Born--Oppenheimer potentials for the 1ssigma/sub g/, 2pπ/sub u/, and 3dsigma/sub g/ states of H 2 + as test problems. Accuracy comparisons are made with Dunham, Thakkar, Ogilvie--Tipping, Coulomb-subtracted Ogilvie--Tipping, and Pade representations. A central idea of the new treatment is that it is not necessary to use a global representation of the potential over the region 0 or =1 and then match them smoothly to each other and to the Dunham expansion at R/R/sub e/=1. Attention is focused on finding improved approximations for R/R/sub e/>1, since this region exerts strong control on the vibrational eigenvalue spectrum and it is here, perhaps, where the older techniques are at their weakest. Known properties of the exact potential such as the R→infinity behavior and the dissociation energy can be built into the new forms a priori. If the dissociation energy is not known, the new methods allow it to be estimated with better accuracy then could be done previously. If one knows only Dunham coefficients, the Coulomb-subtracted Ogilvie--Tipping series is the superior representation. If one knows, in addition, the dissociation energy, the new representations are superior and give more accurate results on the interval R/R/sub e/> or =1

  2. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    Science.gov (United States)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  3. Relationship of the Williams-Poulios and Manning-Rosen Potential Energy Models for Diatomic Molecules

    Science.gov (United States)

    Jia, Chun-Sheng; Liang, Guang-Chuan; Peng, Xiao-Long; Tang, Hong-Ming; Zhang, Lie-Hui

    2014-06-01

    By employing the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate an improved form of the Williams-Poulios potential energy model. It is found that the negative Williams-Poulios potential model is equivalent to the Manning-Rosen potential model for diatomic molecules. We observe that the Manning-Rosen potential is superior to the Morse potential in reproducing the interaction potential energy curves for the {{a}3 Σu+} state of the 6Li2 molecule and the {{X}1 sum+} state of the SiF+ molecule.

  4. Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach

    International Nuclear Information System (INIS)

    Telnov, Dmitry A.; Chu, S.-I

    2009-01-01

    We present a time-dependent density-functional theory approach with proper long-range potential for an ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) and high-order harmonic generation (HHG) of diatomic molecules N 2 and F 2 in intense short laser pulse fields with arbitrary molecular orientation. We show that the contributions of inner molecular orbitals to the total MPI probability can be sufficiently large or even dominant over the highest-occupied molecular orbital, depending on detailed electronic structure and symmetry, laser field intensity, and orientation angle. The multielectron effects in HHG are also very important. They are responsible for enhanced HHG at some orientations of the molecular axis. Even strongly bound electrons may have a significant influence on the HHG process.

  5. Spectral simulations of polar diatomic molecules immersed in He clusters: application to the ICl (X) molecule

    International Nuclear Information System (INIS)

    Villarreal, P; Lara-Castells, M P de; Prosmiti, R; Delgado-Barrio, G; Lopez-Duran, D; Gianturco, F A; Jellinek, J

    2007-01-01

    A recently developed quantum-chemistry-like methodology to study molecules solvated in atomic clusters is applied to the ICl (iodine chloride) polar diatomic molecule immersed in clusters of He atoms. The atoms of the solvent clusters are treated as the 'electrons' and the solvated molecule as a structured 'nucleus' of the combined solvent-solute system. The helium-helium and helium-dopant interactions are represented by parametrized two-body and ab initio three-body potentials, respectively. The ground-state wavefunctions are used to compute the infrared (IR) spectra of the solvated molecule. In agreement with the experimental observations, the computed spectra exhibit considerable differences depending on whether the solvent cluster is comprised of bosonic ( 4 He) or fermionic ( 3 He) atoms. The source of these differences is attributed to the different spin-statistics of the solvent clusters. The bosonic versus fermionic nature of the solvent is reflected in the IR absorption selection rules. Only P and R branches with single state transitions appear in the spectrum when the molecule is solvated in a bosonic cluster. On the other hand, when the solvent represents a fermionic environment, quasi-degenerate multiplets of spin states contribute to each branch and, in addition, the Q-branch becomes also allowed. Combined, these two factors explain the more congested nature of the spectrum in the fermionic case

  6. Asymptotically-correct description of vibration-rotation spectrum of diatomic molecule with hydrogen iodide molecule as example

    International Nuclear Information System (INIS)

    Burenin, A.V.; Ryabikin, M.Yu.

    1990-01-01

    Asymptotically correct series of perturbation theory was constructed analytically to describe the vibration-rotational spectrum of diatomic molecule in Born-Oppenheimer approximation. The series was used for processing of precision experimental data on frequencies of absorption of hydrogen iodide molecule. Advantage of this approach over Dunham approach is shown. Isotope ratios for spectroscopic constants of asymptotically correct series are considered

  7. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    International Nuclear Information System (INIS)

    Larriba-Andaluz, Carlos; Hogan, Christopher J.

    2014-01-01

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements

  8. Electron distributions of the first-row homonuclear diatomic molecules, A2

    International Nuclear Information System (INIS)

    Ramirez, B.I.; Bielefeld Univ.

    1982-08-01

    Electron momentum density contour maps of the first-row homonuclear diatomic molecules, A 2 , are obtained from near Hartree-Fock wave functions. Both the total momentum density and momentum density difference (molecule - isolated atoms) maps present trends that may be related to the binding in the molecules. These results are compared with the corresponding charge density maps in position space (Bader, Henneker and Cade 1967). (author)

  9. Adatom Bond Dissociation in the Collision Between an Adsorbed Atom and Incident Diatomic Molecule: A Classical Trajectory Study

    International Nuclear Information System (INIS)

    Bayhan, U.

    2004-01-01

    The collisional dissociation of the Atom-Surface bond in the diatomic molecule (gas) / atom (ads) collision taking place on a bcc-structure surface have been studied by classical trajectory methods over the collision energy ranges and the attractive well depth of the diatomic molecule (gas) / atom (ads) interactions

  10. Diatomic molecules in ultracold Fermi gases - Novel composite bosons

    OpenAIRE

    Petrov, D. S.; Salomon, C.; Shlyapnikov, G. V.

    2005-01-01

    We give a brief overview of recent studies of weakly bound homonuclear molecules in ultracold two-component Fermi gases. It is emphasized that they represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. In particular, Pauli exclusion principle for identical fermionic atoms provides a strong suppression of collisional relaxation of such molecules into deep bound states. We then analyze heteronuclear molecules which are expected to be for...

  11. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    Science.gov (United States)

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  12. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.)

    International Nuclear Information System (INIS)

    Yang, Cuiyun; Fang, Shengtao; Chen, Dehui; Wang, Jianhua; Liu, Fanghua; Xia, Chuanhai

    2016-01-01

    Bacterial quorum sensing signal molecules N-acyl homoserine lactones (AHLs) (C10-HSL, 3-OXO-C10-HSL and 3-OH-C10-HSL) as possible chemical cues were employed to investigate the role in the formation of fouling diatom-biofilm (Cylindrotheca sp.). Results showed that AHLs promoted Chlorophyll a (Chl.a) and extracellular polymeric substance (EPS) contents in the diatom-biofilm. In the presence of AHLs-inhibitor 3, 4-Dibromo-2(5)H-furanone, which was used to avoid the possible interference of AHLs from bacteria, AHLs also increased the Chl.a and EPS contents. Scanning electron microscope and confocal laser scanning microscope analysis further demonstrated that AHLs promoted the formation of the diatom-biofilm. Non-invasive micro-test technique showed that AHLs promoted Ca 2+ efflux in Cylindrotheca sp., which implied that Ca 2+ might be correlated with AHLs-induced positive effect on the formation of diatom-biofilm. This study provides direct evidences that AHLs play an important role in developing the diatom-biofilm and AHLs-inhibitors might be promising active agents in marine antifouling. - Highlights: •AHLs effectively increase Chl.a and EPS contents in diatom-biofilm. •SEM and CLSM further demonstrate that AHLs promote the formation of diatom-biofilm. •AHLs trigger algal cellular Ca 2+ efflux. •AHLs-inhibitors might be promising active agents in marine antifouling.

  13. A molecular beam machine for the measurement of the scattering of polar diatomic molecules

    International Nuclear Information System (INIS)

    Everdij, J.J.

    1976-01-01

    This thesis describes an experimental method to determine the long range, angular dependent part of the intermolecular potential between a polar diatomic molecule and a spherical symmetric partner. The method contains the study of the scattering behaviour of the molecules in a crossed beam experiment. The primary beam consisting of polar diatomic molecules at thermal velocities (approximately 0.1 eV), is selected in a specified rotational state by means of an electrostatic, inhomogeneous field before the scattering center, where it crosses the (supersonic) secondary beam under an angle of 90 0 . By means of a second state selector, followed by a velocity selector and a particle detector, the consequences are studied of the scattering process on the primary beam, i.e. the behaviour of the total and differential elastic cross sections plus the transition probability of a collision induced transition to another rotational state. (Auth.)

  14. A simplified quantum mechanical model of diatomic molecules

    DEFF Research Database (Denmark)

    Nielsen, Lars Drud

    1978-01-01

    A one-dimensional molecule model with Coulomb potentials replaced by delta functions is introduced. The mathematical simplicity of the model facilitates the quantum mechanical treatment and offers a straightforward demonstration of the essentials of two-particle problems. In spite of the crudeness...

  15. Experimental determination of vibrational cross sections for diatomic molecules

    International Nuclear Information System (INIS)

    Noqueira, J.C.; Iga, I.; Lee Mu Tao; Lopes, M.C.A.; Almeida, D.P. de

    1988-01-01

    To obtain inelastic differential cross sections from electronic and vibrational molecular excitations by electron impact, it was constructed a new spectrometer to operate in the energy range from 100 to 500 eV. The deceleration lenses as well as the analyser were tested for nitrogen molecule and 350 eV electrons. (A.C.A.S.) [pt

  16. Influence of vibrations and rotations of diatomic molecules on their physical properties: II. Refractive index, reactivity and diffusion coefficients

    International Nuclear Information System (INIS)

    Sharipov, Alexander S; Loukhovitski, Boris I; Starik, Alexander M

    2016-01-01

    The influence of the excitation of vibrational and rotational states of diatomic molecules (H 2 , N 2 , O 2 , NO, OH, CO, CH, HF and HCl) on refractive index, reactivity and transport coefficients was analyzed by using ab initio calculated data on the effective state-specific dipole moment and static polarizability obtained in the preceding paper of the present series. It has been revealed that, for non-polar molecules, the excitation both of vibrational and rotational degrees of freedom increases the averaged polarizability and, as a consequence, the refractive index. Meanwhile, for polar molecules, the effect of molecule excitation is more complex: it can either increase or decrease the refractive index. It was also shown that the excitation of molecules slightly influences the rate constants of barrierless chemical reactions between neutral particles; whereas, for ion–molecule reactions, this effect can be more pronounced. Analysis of the variation of diffusion coefficients, taking into account the effect of molecule excitation both on the collision diameter and on the well depth of intermolecular potential, exhibited that, for non-polar molecules, the effect associated with the change of collision diameter prevails. However, for polar molecules, the effect of the excitation of vibrational states on the well depth of intermolecular potential can compensate or even exceed the decrease of diffusion coefficient due to the averaged collision diameter rise. (paper)

  17. The modified connection formulae for the rotational transition cross sections in diatomic molecules for slow collisions

    International Nuclear Information System (INIS)

    Ostrovsky, V.N.; Ustimov, V.I.

    1984-01-01

    The formulae connecting the cross sections for various rotational transitions in diatomic molecules colliding with atomic particles are valid in the framework of the sudden approximation. In order to extend the applicability domain of these formulae to the slow-collision region a semi-empirical correction factor is introduced with an exponential dependence on the translation rotation energy transfer and on the inverse collision velocity. The modified connection formulae are applied to the rotational transitions in an HD molecule colliding with an H 2 molecule. (author)

  18. A semi-empirical formula for total cross sections of electron scattering from diatomic molecules

    International Nuclear Information System (INIS)

    Liu Yufang; Sun Jinfeng; Henan Normal Univ., Xinxiang

    1996-01-01

    A fitting formula based on the Born approximation is used to fit the total cross sections for electron scattering by diatomic molecules (CO, N 2 , NO, O 2 and HCl) in the intermediate- and high-energy range. By analyzing the fitted parameters and the total cross sections, we found that the internuclear distance of the constituent atoms plays an important role in the e-diatomic molecule collision process. Thus a new semi-empirical formula has been obtained. There is no free parameter in the formula, and the dependence of the total cross sections on the internuclear distance has been reflected clearly. The total cross sections for electron scattering by CO, N 2 , NO, O 2 and HCl have been calculated over an incident energy range of 10-4000 eV. The results agree well with other available experimental and calculation data. (orig.)

  19. Laser Cooling and Slowing of a Diatomic Molecule

    Science.gov (United States)

    2013-12-01

    124]. For this example, we assume Mik = 0. The population fractions obey nj + Ng∑ i=1 ni = 1, (3.17) 11i.e. no π pulses, stimulated raman adiabatic...expensive for transitions requiring a CW dye laser (∼ $200k) or frequency doubled Raman fiber laser (∼ $120k) since generating light with the ∼ 15 GHz...lower than the mean thermal velocities of He, N2 or H20 at 293 K, which are ≈ 1250, 590 and 470 m/s respectively. Conceptually, the slow SrF molecules

  20. Relaxed geometries and dipole moments of positron complexes with diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R, E-mail: rachid@fisica.ufmg.b [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2010-01-01

    Relaxed geometries and dipole moments of diatomic molecules interacting with a slow positron are reported as functions of the positron distance to the more electronegative atom. A molecular model for the complex that allows applications to large systems is used. The electron population on the positron is proposed as a weighting function to calculate the average quantities. Results show Self-Consistent-Field quality or better.

  1. Commutator perturbation method in the study of vibrational-rotational spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Matamala-Vasquez, A.; Karwowski, J.

    2000-01-01

    The commutator perturbation method, an algebraic version of the Van Vleck-Primas perturbation method, expressed in terms of ladder operators, has been applied to solving the eigenvalue problem of the Hamiltonian describing the vibrational-rotational motion of a diatomic molecule. The physical model used in this work is based on Dunham's approach. The method facilitates obtaining both energies and eigenvectors in an algebraic way

  2. Analytic description of highly excited vibrational-rotational states of diatomic molecules: II. Application to the hydrogen chloride molecule

    International Nuclear Information System (INIS)

    Burenin, A.V.; Ryabikin, M.Y.

    1995-01-01

    Processing of the precise experimental data on transition frequencies and energy levels in the ground electronic state of the H 35 Cl molecule was carried out on the basis of the asymptotically correct perturbation series analytically constructed to describe the discrete vibrational-rotational spectrum of a diatomic molecule. The perturbation series was shown to converge rapidly up to the dissociation energy E D , whereas the conventional Dunham series has a distinct limit of applicability equal to 0.39E D . 12 refs., 2 figs

  3. Spectroscopy of selected metal-containing diatomic molecules

    Science.gov (United States)

    Gordon, Iouli E.

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Sigma+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH, and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant oe for MnH was found to be 1546.84518(65) cm-1, the equilibrium rotational constant Be was found to be 5.6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1.7308601(47) A. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3.5 mum region using a Fourier transform spectrometer. Many bands were observed for the A'3phi- X3phi electronic transition of CoH and CoD. In addition, a new [13.3]4 electronic state was found by observing the [13.3]4-X3phi3 and [13.3]4- X3phi4 transitions in the spectrum of CoD. Analysis of the transitions with DeltaO = 0, +/-1 provided more accurate values of spin-orbit splittings between O = 4 and O = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800--11 300 cm-1 were recorded at a resolution of 0.04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1Sigma+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and Eu

  4. Toward precise potential energy curves for diatomic molecules, derived from experimental line positions

    International Nuclear Information System (INIS)

    Helm, H.

    1984-01-01

    An inverted, first-order perturbation approach is used to derive potential energy curves for diatomic molecules from experimental line positions of molecular bands. The concept adopted here is based on the inverted perturbation analysis (IPA) proposed by Kozman and Hinze, but uses radial eigenfunctions of the trial potential energy curves as basis sets for the perturbation correction. Using molecular linepositions rather than molecular energy levels we circumvent the necessity of defining molecular constants for the molecule prior to the derivation of the potential energy curves. (Author)

  5. Antibonding intermediate state in the theory of vibrational excitation of diatomic molecules by slow electrons

    International Nuclear Information System (INIS)

    Kazanskii, A.K.

    1982-01-01

    An exactly solvable model is constructed for the description of the processes that take place when a slow electron collides with a diatomic molecule (vibrational excitation, associative detachment, and dissociative attachment). As a particular model of the variant, the case of an antibonding (virtual) state of an intermediate state is considered, and a term of this state is parametrized in a very simple manner. The vibrational excitation and dissociative attachment are calculated for a system corresponding to the HCl molecule. The results are in good qualitative agreement with experiment

  6. Simple method of obtaining the band strengths in the electronic spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Gowda, L.S.; Balaji, V.N.

    1977-01-01

    It is shown that relative band strengths of diatomic molecules for which the product of Franck-Condon factor and r-centroid is approximately equal to 1 for (0,0) band can be determined by a simple method which is in good agreement with the smoothed array of experimental values. Such values for the Swan bands of the C 2 molecule are compared with the band strengths of the simple method. It is noted that the Swan bands are one of the outstanding features of R- and N-type stars and of the heads of comets

  7. Laser Spectroscopy of Ruthenium Containing Diatomic Molecules: RuH/D and RuP.

    Science.gov (United States)

    Adam, Allan G.; Konder, Ricarda M.; Nickerson, Nicole M.; Linton, Colan; Tokaryk, D. W.

    2015-06-01

    In the last few years, the Cheung group in Hong Kong and the Steimle group in Arizona have successfully studied several ruthenium containing diatomic molecules, RuX (X =C, O, N, B, using the laser-ablation molecular jet technique. Based on this success, the UNB spectroscopy group decided to try and find the optical signatures of other RuX molecules. Using CH_3OH and PH_3 as reactant gases, the RuH and RuP diatomic molecules have been detected in surveys of the 420 - 675 nm spectral region. RuD has also been made using fully deuterated methanol as a reactant. Dispersed fluorescence experiments have been performed to determine ground state vibrational frequencies and the presence of any low-lying electronic states. Rotationally resolved spectra for these molecules have also been taken and the analysis is proceeding. The most recent results will be presented. F. Wang et al., Journal of Chemical Physics 139, 174318 (2013). N. Wang et al., Journal of Physical Chemistry A 117, 13279 (2013). T. Steimle et al., Journal of Chemical Physics 119, 12965 (2003). N. Wang et al., Chemical Physics Letters 547, 21 (2012).

  8. Effect of the Silica Content of Diatoms on Protozoan Grazing

    Directory of Open Access Journals (Sweden)

    Shuwen Zhang

    2017-06-01

    Full Text Available This study examined the effect that silica content in diatom cells has on the behavior of protists. The diatoms Thalassiosira weissflogii and T. pseudonana were cultured in high or low light conditions to achieve low and high silica contents, respectively. These cells were then fed to a heterotrophic dinoflagellate Noctiluca scintillans and a ciliate Euplotes sp. in single and mixed diet experiments. Our results showed that in general, N. scintillans and Euplotes sp. both preferentially ingested the diatoms with a low silica content rather than those with a high silica content. However, Euplotes sp. seemed to be less influenced by the silica content than was N. scintillans. In the latter case, the clearance and ingestion rate of the low silica diatoms were significantly higher, both in the short (6-h and long (1-d duration grazing experiments. Our results also showed that N. scintillans required more time to digest the high silica-containing cells. As the high silica diatoms are harder to digest, this might explain why N. scintillans exhibits a strong preference for the low silica prey. Thus, the presence of high silica diatoms might limit the ability of the dinoflagellate to feed. Our findings suggest that the silica content of diatoms affects their palatability and digestibility and, consequently, the grazing activity and selectivity of protozoan grazers.

  9. Classical study of the rovibrational dynamics of a polar diatomic molecule in static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel, E-mail: manuel.inarrea@unirioja.e [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Salas, J. Pablo [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Gonzalez-Ferez, Rosario [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Schmelcher, Peter [Theoretische Chemie, Physikalisch-Chemisches Institut, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

    2010-01-04

    We study the classical dynamics of a polar diatomic molecule in the presence of a strong static homogeneous electric field. Our full rovibrational investigation includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the field strength is increased. The phase space structure and its dependence on the energy and field strength are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase space is characterized either by regular features or by small stochastic layers of chaotic motion.

  10. Short-Lived Electronically-Excited Diatomic Molecules Cooled via Supersonic Expansion from a Plasma Microjet

    Science.gov (United States)

    Houlahan, Thomas J., Jr.; Su, Rui; Eden, Gary

    2014-06-01

    Using a pulsed plasma microjet to generate short-lived, electronically-excited diatomic molecules, and subsequently ejecting them into vacuum to cool via supersonic expansion, we are able to monitor the cooling of molecules having radiative lifetimes as low as 16 ns. Specifically, we report on the rotational cooling of He_2 molecules in the d^3Σ_u^+, e^3Π_g, and f^3Σ_u^+ states, which have lifetimes of 25 ns, 67 ns, and 16 ns, respectively. The plasma microjet is driven with a 2.6 kV, 140 ns high-voltage pulse (risetime of 20 ns) which, when combined with a high-speed optical imaging system, allows the nonequilibrium rotational distribution for these molecular states to be monitored as they cool from 1200 K to below 250 K with spatial and temporal resolutions of below 10 μm and 10 ns, respectively. The spatial and temporal resolution afforded by this system also allows the observation of excitation transfer between the f^3Σ_u^+ state and the lower lying d^3Σ_u^+ and e^3Π_g states. The extension of this method to other electronically excited diatomics with excitation energies >5 eV will also be discussed.

  11. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  12. Dissociative multiple ionization of diatomic molecules by extreme-ultraviolet free-electron-laser pulses

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Leth, Henriette Astrup

    2011-01-01

    Nuclear dynamics in dissociative multiple ionization processes of diatomic molecules exposed to extreme-ultraviolet free-electron-laser pulses is studied theoretically using the Monte Carlo wave packet approach. By simulated detection of the emitted electrons, the model reduces a full propagation...... of the system to propagations of the nuclear wave packet in one specific electronic charge state at a time. Suggested ionization channels can be examined, and kinetic energy release spectra for the nuclei can be calculated and compared with experiments. Double ionization of O2 is studied as an example, and good...

  13. Acidification counteracts negative effects of warming on diatom silicification

    KAUST Repository

    Coello-Camba, Alexandra

    2016-10-24

    Diatoms are a significant group contributing up to 40 % of annual primary production in the oceans. They have a special siliceous cell wall that, acting as a ballast, plays a key role in the sequestration of global carbon and silica. Diatoms dominate primary production in the Arctic Ocean, where global climate change is causing increases in water temperature and in the partial pressure of CO2 (pCO2). Here we show that as water temperature increases diatoms become stressed, grow to smaller sizes, and decrease their silicification rates. But at higher pCO2, as the pH of seawater decreases, silica incorporation rates are increased. In a future warmer Arctic ocean diatoms may have a competitive advantage under increased ocean acidification, as increased pCO2 counteracts the adverse effects of increasing temperature on silicification and buffers its consequences in the biogeochemical cycles of carbon and silica.

  14. Acidification counteracts negative effects of warming on diatom silicification

    KAUST Repository

    Coello-Camba, Alexandra; Agusti, Susana

    2016-01-01

    Diatoms are a significant group contributing up to 40 % of annual primary production in the oceans. They have a special siliceous cell wall that, acting as a ballast, plays a key role in the sequestration of global carbon and silica. Diatoms dominate primary production in the Arctic Ocean, where global climate change is causing increases in water temperature and in the partial pressure of CO2 (pCO2). Here we show that as water temperature increases diatoms become stressed, grow to smaller sizes, and decrease their silicification rates. But at higher pCO2, as the pH of seawater decreases, silica incorporation rates are increased. In a future warmer Arctic ocean diatoms may have a competitive advantage under increased ocean acidification, as increased pCO2 counteracts the adverse effects of increasing temperature on silicification and buffers its consequences in the biogeochemical cycles of carbon and silica.

  15. Structure of deformable diatomic molecules: a modified n-butane liquid

    International Nuclear Information System (INIS)

    Jang, Seanea; Kim, Soonchul; Lee, Songhi

    2005-01-01

    The density functional approximation for polyatomic molecules, which is based on the bridge function of the intermolecular interaction, was developed and applied to investigate the thermodynamic and the structural properties of deformable diatomic molecules. The Percus trick was employed to calculate the uniform structure of modified n-butane. The calculated static correlation functions were used to predict the density behaviors of a modified n-butane liquid at liquid-solid interfaces. The theoretical results show that (i) at low densities, the hypernetted-chain (HNC) equation compares with the density functional approximation based on the bridge function and that (ii) the relative population between the gauche and the trans states strongly affects the liquid structure at liquid-solid interfaces.

  16. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    International Nuclear Information System (INIS)

    Farley, David R.

    2010-01-01

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N (ge) 3, with a rotational temperature between the wall and feed gas temperatures. The N = 0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  17. Hartree-Fock limit values of multipole moments, polarizabilities, and hyperpolarizabilities for atoms and diatomic molecules

    Science.gov (United States)

    Kobus, Jacek

    2015-02-01

    Recently it has been demonstrated that the finite difference Hartree-Fock method can be used to deliver highly accurate values of electric multipole moments together with polarizabilities αz z,Az ,z z , and hyperpolarizabilities βz z z, γz z z,Bz z ,z z , for the ground states of various atomic and diatomic systems. Since these results can be regarded as de facto Hartree-Fock limit values their quality is of the utmost importance. This paper reexamines the use of the finite field method to calculate these electric properties, discusses its accuracy, and presents an updated list of the properties for the following atoms and diatomic molecules: H-, He, Li, Li+,Li2 +,Li-,Be2 + , Be, B+,C2 + , Ne, Mg2 +, Mg, Al+,Si2 + , Ar, K+,Ca2 +,Rb+,Sr2 +,Zr4 +,He2 , Be2,N2,F2,O2 , HeNe, LiH2 +, LiCl, LiBr, BH, CO, FH, NaCl, and KF. The potential energy curves and the dependence of the electric properties on the internuclear distance is also studied for He2,LiH+,Be2 , and HeNe systems.

  18. Modeling of diatomic molecule using the Morse potential and the Verlet algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Fidiani, Elok [Department of Physics, Parahyangan Catholic University, Bandung-Jawa Barat (Indonesia)

    2016-03-11

    Performing molecular modeling usually uses special software for Molecular Dynamics (MD) such as: GROMACS, NAMD, JMOL etc. Molecular dynamics is a computational method to calculate the time dependent behavior of a molecular system. In this work, MATLAB was used as numerical method for a simple modeling of some diatomic molecules: HCl, H{sub 2} and O{sub 2}. MATLAB is a matrix based numerical software, in order to do numerical analysis, all the functions and equations describing properties of atoms and molecules must be developed manually in MATLAB. In this work, a Morse potential was generated to describe the bond interaction between the two atoms. In order to analyze the simultaneous motion of molecules, the Verlet Algorithm derived from Newton’s Equations of Motion (classical mechanics) was operated. Both the Morse potential and the Verlet algorithm were integrated using MATLAB to derive physical properties and the trajectory of the molecules. The data computed by MATLAB is always in the form of a matrix. To visualize it, Visualized Molecular Dynamics (VMD) was performed. Such method is useful for development and testing some types of interaction on a molecular scale. Besides, this can be very helpful for describing some basic principles of molecular interaction for educational purposes.

  19. Structure and intensities of microwave lines in the spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Tatum, J.B.

    1986-01-01

    The structure of the rotational levels in a diatomic molecule, and the intensities of microwave transitions between them, are reviewed. Attention is given to the statistical weights of levels that may have hyperfine structure on account of one or two nuclear spins, in the case of heteronuclear molecules and of homonuclear molecules. A new treatment is given, involving the concept of energy surfaces in a ternary diagram in the form of a triangular prism, in which the three vertices represent three limiting cases, while the interior of the prism displays energy levels where all three intermediate coupling parameters are of comparable magnitude. An example is given of a simple J = 2 to J = 1 transition in a molecule with nuclear spins 3/2 and 1, showing the 56 hyperhyperfine components into which the rotational line is split, and a movie film is described which shows how the resulting ''fingerprint'' varies with the relative strengths of the interactions between the nuclear and electronic angular momenta

  20. Modeling of diatomic molecule using the Morse potential and the Verlet algorithm

    International Nuclear Information System (INIS)

    Fidiani, Elok

    2016-01-01

    Performing molecular modeling usually uses special software for Molecular Dynamics (MD) such as: GROMACS, NAMD, JMOL etc. Molecular dynamics is a computational method to calculate the time dependent behavior of a molecular system. In this work, MATLAB was used as numerical method for a simple modeling of some diatomic molecules: HCl, H_2 and O_2. MATLAB is a matrix based numerical software, in order to do numerical analysis, all the functions and equations describing properties of atoms and molecules must be developed manually in MATLAB. In this work, a Morse potential was generated to describe the bond interaction between the two atoms. In order to analyze the simultaneous motion of molecules, the Verlet Algorithm derived from Newton’s Equations of Motion (classical mechanics) was operated. Both the Morse potential and the Verlet algorithm were integrated using MATLAB to derive physical properties and the trajectory of the molecules. The data computed by MATLAB is always in the form of a matrix. To visualize it, Visualized Molecular Dynamics (VMD) was performed. Such method is useful for development and testing some types of interaction on a molecular scale. Besides, this can be very helpful for describing some basic principles of molecular interaction for educational purposes.

  1. Ellipticity and the offset angle of high harmonics generated by homonuclear diatomic molecules

    International Nuclear Information System (INIS)

    Odzak, S; Milosevic, D B

    2011-01-01

    In our recent paper (2010 Phys. Rev. A 82 023412) we introduced a theory of high-order harmonic generation by diatomic molecules exposed to an elliptically polarized laser field and have shown that the nth harmonic emission rate has contributions of the components of the T-matrix element in the direction of the laser-field polarization and in the direction perpendicular to it. Using both components of the T-matrix element we now develop a theoretical approach for calculating ellipticity and the offset angle of high harmonics. We show that the emitted harmonics generated by aligned molecules are elliptically polarized even if the applied field is linearly polarized. Using examples of N 2 , O 2 and Ar 2 molecules we show the existence of extrema and sudden changes of the harmonic ellipticity and the offset angle for particular molecular alignment and explain them by the destructive two-centre interference. Taking into account that the aligned molecules are an anisotropic medium for high harmonic generation, we introduce elliptic dichroism as a measure of this anisotropy, for both components of the T-matrix element. We propose that the measurement of the elliptic dichroism may reveal further information about the molecular structure.

  2. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    International Nuclear Information System (INIS)

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D.

    1995-01-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, S approx-gt 1 GW/cm 2 . We also discuss the possibility of experimentally observing this transition

  3. Recent advances at NASA in calculating the electronic spectra of diatomic molecules

    Science.gov (United States)

    Whiting, Ellis E.; Paterson, John A.

    1988-01-01

    Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented.

  4. Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules

    DEFF Research Database (Denmark)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2010-01-01

    A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved....... The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined....

  5. A relation between the rotational g-factor and the electric dipole moment of a diatomic molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.

    1998-01-01

    The relation between the rotational g-factor and the electric dipole moment of a diatomic molecule is investigated. An explicit expression for the irreducible nonadiabatic contribution in terms of excited electronic states is derived. The importance of this expression for the analysis of vibration...

  6. Analytic expression for any pure rotational transition (ΔJ≥1) for a diatomic molecule

    International Nuclear Information System (INIS)

    Korek, M.; Hamdoun, B.; Fakhreddine, K.

    1999-01-01

    Full text.The problem of the pure rotational transitions vJ↔vJ' for any spectra |J-J'|≥1 for a diatomic molecule is considered. It is proved that, the wave functions ΨvJ and ΨvJ' are expanded in terms of the running number m=[J'(J'+1)-J(J+1)]/2 as ΨvJ=Σπ n m n (n=0) and ΨvJ'=Σπ n (-m) n (n=0) where π n are expressed in terms of the pure vibrational wave function φ 0 and its rotational corrections φ n (defined in the conventional perturbation theory). By using this m-representation of the wave functions the pure rotational matrix elements of the considered transitions are given by M vJ vJ' = =Σμ 2n m 2n (n=0) where μ 2n are simple combinations of simple integrals of the form i |γ|φ n >. This formulation is valid for any potential (either numerical or analytical), any vibrational level v and any operator γ. The numerical application to the Dunham potential of the molecule H 2 in the Raman transitions and to the Huffaker potential of the molecule CO in the infrared transitions shows the validity and the high accuracy of the present formulation

  7. Third version of a program for calculating the static interaction potential between an electron and a diatomic molecule

    International Nuclear Information System (INIS)

    Raseev, G.

    1980-01-01

    This program calculates the one-centre expansion of a two-centre wave function of a diatomic molecule and also the multipole expansion of its static interaction with a point charge. It is an extension to some classes of open-shell targets of the previous versions and it provides both the wave function and the potential in a form suitable for use in an electron-molecule scattering program. (orig./HSI)

  8. Effect of Industrial Effluent on the Growth of Marine Diatom ...

    African Journals Online (AJOL)

    The marine centric diatom,Chaetoceros simplex (Ostenfeld, 1901) was exposed to five different concentrations of industrial effluent for 96 hrs to investigate the effect on growth. The physico-chemical parameters viz. colour, odour, temperature, salinity, dissolved oxygen, turbidity, pH, alkalinity, hardness, ammonia, nitrite, ...

  9. Raman spectroscopic studies of isotopic diatomic molecules and a technique for measuring stable isotope ratios using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    A method for measuring stable isotope ratios using Raman scattering has been developed. This method consists of simultaneously counting photons scattered out of a high-intensity laser beam by different isotopically-substituted molecules. A number of studies of isotopic diatomic molecules have been made. The Q-branches of the Raman spectra of the isotopic molecules 14 N 15 N and 16 O 18 O were observed at natural abundance in nitrogen and oxygen samples. Comparison of the ratios of the intensities of the Q-branches of the major nitrogen and oxygen isotopic molecules with mass spectrometric determinations of the isotopic compositions yielded scattering cross sections of 14 N 15 N relative to 14 N 14 N and 16 O 18 O relative to 16 O 16 O. These cross section ratios differ from unity, a difference which can be explained by considering nuclear mass effects on the Franck-Condon factors of the molecular transitions. The measured intensities of the 14 N 15 N and 16 O 18 O Q-branches provided the baseline data needed to make the previously-mentioned extrapolation. High-resolution (approximately 0.15 cm -1 ) spectra of the Q-branches of 14 N 14 N and 16 O 16 O yielded a direct determination of α/sub e/ (the difference between the rotational constant in the ground and first excited vibrational states) for these molecules. The measured values are in excellent agreement with those obtained by other means. Complete Raman spectra (pure rotation, rotation-vibration, and high-resolution Q-branch) were obtained on a sample of pure 18 O 18 O. Analysis of this data yielded the molecular parameters: the equilibrium internuclear separation r/sub e/, the moment of inertia I/sub e/, and the energy parameters α/sub e/, B/sub e/, and ΔG/sub 1 / 2 /. These are in good agreement with data obtained by microwave spectroscopy

  10. The effects of phosphorus limitation on carbon metabolism in diatoms.

    Science.gov (United States)

    Brembu, Tore; Mühlroth, Alice; Alipanah, Leila; Bones, Atle M

    2017-09-05

    Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Authors.

  11. A finite difference Hartree-Fock program for atoms and diatomic molecules

    Science.gov (United States)

    Kobus, Jacek

    2013-03-01

    The newest version of the two-dimensional finite difference Hartree-Fock program for atoms and diatomic molecules is presented. This is an updated and extended version of the program published in this journal in 1996. It can be used to obtain reference, Hartree-Fock limit values of total energies and multipole moments for a wide range of diatomic molecules and their ions in order to calibrate existing and develop new basis sets, calculate (hyper)polarizabilities (αzz, βzzz, γzzzz, Az,zz, Bzz,zz) of atoms, homonuclear and heteronuclear diatomic molecules and their ions via the finite field method, perform DFT-type calculations using LDA or B88 exchange functionals and LYP or VWN correlations ones or the self-consistent multiplicative constant method, perform one-particle calculations with (smooth) Coulomb and Krammers-Henneberger potentials and take account of finite nucleus models. The program is easy to install and compile (tarball+configure+make) and can be used to perform calculations within double- or quadruple-precision arithmetic. Catalogue identifier: ADEB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 171196 No. of bytes in distributed program, including test data, etc.: 9481802 Distribution format: tar.gz Programming language: Fortran 77, C. Computer: any 32- or 64-bit platform. Operating system: Unix/Linux. RAM: Case dependent, from few MB to many GB Classification: 16.1. Catalogue identifier of previous version: ADEB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 98(1996)346 Does the new version supersede the previous version?: Yes Nature of problem: The program finds virtually exact solutions of the Hartree-Fock and density functional theory type equations for atoms, diatomic molecules and their ions

  12. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses

    International Nuclear Information System (INIS)

    Degert, J.

    2002-12-01

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  13. Photodissociation from a manifold of rovibrational states and free-free absorption by a diatomic molecule

    International Nuclear Information System (INIS)

    Lebedev, V S; Presnyakov, L P

    2002-01-01

    An analytical approach for the description of photoabsorption by a gas or plasma medium containing atomic and molecular components in thermodynamic equilibrium is developed. Continuous absorption of radiation is due to the photodissociation of a diatomic molecule from a manifold of excited rovibrational states and free-free transitions between the two electronic terms of a quasimolecule temporarily formed during a collision of atomic particles. The formulae are obtained for individual photodissociation cross sections from a given rovibrational state and for the Boltzmann-averaged cross section. Particular attention is paid to the derivation of a general analytical expression for the total absorption coefficient including the integral contribution of bound-free and free-free radiative transitions. The consideration is based on the theory of nonadiabatic transitions combined with the approximation of a quasicontinuum for rovibrational states. The theory is applied to the investigation of photoabsorption by the H 2 + ion in the IR, visible and UV spectral regions. It is shown that our results are in good agreement with available ab initio quantal calculations of photodissociation cross sections and with semiclassical calculations of absorption coefficients. Special attention is paid to the investigation of the relative contributions of the H 2 + and H - ions to the total absorption in a wide range of wavelengths and temperatures

  14. Optical transition probabilities in electron-vibration-rotation spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Kuz'menko, N.E.; Kuzyakov, Yu.Ya.; Plastinin, Yu.A.

    1974-01-01

    The present review systematizes the data on the absolute probabilities of electron transitions in diatomic molecules, which have been published since the beginning of 1961 and up to the end of 1973, and those on the relative transition probabilities, which have been published since the beginning of 1966 till the end of 1973. The review discussed the theoretical relationships underlying the experimental techniques of determining the absolute transition probabilities. Modifications of the techniques under discussion are not specially examined; the details of interest can be found, however, in the references cited. The factual material-, such as the values of the absolute probabilities of electron transitions, the dependences of the electron transition moments on the internuclear distance and the values of the Franck-Condon factors,- is presented in tables 1, 2 and 4, respectively, embracing all the relevant works known to the present authors. Along with a complete systematization of the transition probability data, the authors have attempted a critical analysis of the available data in order to select the most reliable results. The recommended values of the squared matrix elements of the electron transition dipole moments are given in table 3. The last chaper of the work compares the results of calculations of the Franck-Condon factors obtained with the different milecular potentials [ru

  15. Electric dipole moment of diatomic molecules by configuration interaction. V - Two states of /2/Sigma/+/ symmetry in CN.

    Science.gov (United States)

    Green, S.

    1972-01-01

    Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.

  16. Use of Moeller-Plesset perturbation theory in molecular calculations: Spectroscopic constants of first row diatomic molecules

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Peterson, K.A.

    1998-01-01

    The convergence of Moeller - Plesset perturbation expansions (MP2 - MP4/MP5) for the spectroscopic constants of a selected set of diatomic molecules (BH, CH, HF, N 2 , CO, and F 2 ) has been investigated. It was found that the second-order perturbation contributions to the spectroscopic constants are strongly dependent on basis set, more so for HF and CO than for BH. The MP5 contributions for HF were essentially zero for the cc-pVDZ basis set, but increased significantly with basis set illustrating the difficulty of using small basis sets as benchmarks for correlated calculations. The convergence behavior of the exact Moeller - Plesset perturbation expansions were investigated using estimates of the complete basis set limits obtained using large correlation consistent basis sets. For BH and CH, the perturbation expansions of the spectroscopic constants converge monotonically toward the experimental values, while for HF, N 2 , CO, and F 2 , the expansions oscillate about the experimental values. The perturbation expansions are, in general, only slowly converging and, for HF, N 2 , CO, and F 2 , appear to be far from convergence at MP4. In fact, for HF, N 2 , and CO, the errors in the calculated spectroscopic constants for the MP4 method are larger than those for the MP2 method (the only exception is D e ). The current study, combined with other recent studies, raises serious doubts about the use of Moeller - Plesset perturbation theory to describe electron correlation effects in atomic and molecular calculations. copyright 1998 American Institute of Physics

  17. Direct observation of Young’s double-slit interferences in vibrationally resolved photoionization of diatomic molecules

    Science.gov (United States)

    Canton, Sophie E.; Plésiat, Etienne; Bozek, John D.; Rude, Bruce S.; Decleva, Piero; Martín, Fernando

    2011-01-01

    Vibrationally resolved valence-shell photoionization spectra of H2, N2 and CO have been measured in the photon energy range 20–300 eV using third-generation synchrotron radiation. Young’s double-slit interferences lead to oscillations in the corresponding vibrational ratios, showing that the molecules behave as two-center electron-wave emitters and that the associated interferences leave their trace in the angle-integrated photoionization cross section. In contrast to previous work, the oscillations are directly observable in the experiment, thereby removing any possible ambiguity related to the introduction of external parameters or fitting functions. A straightforward extension of an original idea proposed by Cohen and Fano [Cohen HD, Fano U (1966) Phys Rev 150:30] confirms this interpretation and shows that it is also valid for diatomic heteronuclear molecules. Results of accurate theoretical calculations are in excellent agreement with the experimental findings.

  18. Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The trajectories of fast molecules during and after penetration through foils are governed by Coulomb explosion and distorted by multiple scattering and other penetration phenomena. A scattering event may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the target foil, the transmission pattern recorded at a detector far away from the target is not just a linear superposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions. Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribution for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-parameter correlation on the multiple scattering of penetrating molecules

  19. Inelastic collisions between an atom and a diatomic molecule. I. Theoretical and numerical considerations for the close coupling approximation

    International Nuclear Information System (INIS)

    Choi, B.H.; Tang, K.T.

    1975-01-01

    The close coupled differential equations for rotational excitation in collisions between an atom and a diatomic molecule are reformulated. Although it is equivalent to other formulations, it is computationally more convenient and gives a simpler expression for differential cross sections. Questions concerning real boundary conditions and the unitarity of the S matrix are discussed. Stormer's algorithm for solving coupled differential equations is introduced for molecular scatterings. This numerical procedure, which is known to be very useful in nuclear scattering problems, has to be modified for molecular systems. It is capable of treating the case where all channels are open as well as the case where some of the channels are closed. This algorithm is compared with other typical procedures of solving coupled differential equations

  20. Symbolic derivation of high-order Rayleigh-Schroedinger perturbation energies using computer algebra: Application to vibrational-rotational analysis of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, John M. [Kansas State Univ., Manhattan, KS (United States). Dept. of Chemistry

    1997-01-01

    Rayleigh-Schroedinger perturbation theory is an effective and popular tool for describing low-lying vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for computation of electronic potential energy surfaces, can be used to calculate first-principles molecular vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities, however, such perturbation calculations are rarely extended beyond the second order of approximation, although recent work by Herbert has provided a formula for the nth-order energy correction. This report extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh-Schroedinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The commercial computer algebra software Mathematica is employed to perform the prohibitively tedious symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can successfully be applied with the aid of commercially available computer algebra software.

  1. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Science.gov (United States)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  2. Effect of ageing on survival of benthic diatom propagules

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A.C.; Mitbavkar, S.; De; Hegde, S.; De; Meher, S.S.; Banerjee, D.

    unfavorable for vegetative growth, many diatoms form resting stages to survive cell degradation or death (Anderson, 1975; Malone, 1980; Hargraves and French, 1983; Fryxell, 1990). Various external factors like availability of nutrients (N, P, Fe, Si.... 128, 497-508. 15 Lewis, J., Harris, A.S.D., Jones, K.J., Edmonds, R.L., 1999. Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. J. Plank. Res. 21, 343- 354. Malone, T.C., 1980. Algal size. In...

  3. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    International Nuclear Information System (INIS)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr + , HeNe + , NaAr, and Ar 2 and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar( 3 P 2 ) + Ca + h nu → Ar + Ca + (5p 2 P/sub J/) + e - occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar( 3 P 2 ) + Ca → Ar + Ca + (4p 2 P/sub J/) + e - a surprisingly large cross section of 6.7 x 10 3 A 2 is estimated

  4. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    OpenAIRE

    de Araujo, LEE

    2010-01-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emi...

  5. Excitation two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules

    International Nuclear Information System (INIS)

    Shaaran, T.; Augstein, B. B.; Figueira de Morisson Faria, C.

    2011-01-01

    We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely N 2 and Li 2 . We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We assume that both electrons are initially in the highest occupied molecular orbital (HOMO) and that the second electron is excited to the lowest unoccupied molecular orbital (LUMO). We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account s-p mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the LUMO, which may be observed for a wide range of alignment angles. Such features manifest themselves as the suppression of probability density in specific momentum regions due to the shape of the LUMO wave function, or as an overall decrease in the RESI yield due to the presence of nodal planes.

  6. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    Science.gov (United States)

    de Araujo, Luís E. E.

    2010-09-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.

  7. Some new four-parameter potentials and their use in the study of vibrational thermodynamical quantities of diatomic molecules

    International Nuclear Information System (INIS)

    Sarvpreet Kaur; Mahajan, C.G.

    1999-01-01

    Three four-parameter potentials, U I , U II and U III have been proposed and their accuracy has been demonstrated by finding the mean square deviation from the true RKR potential curve for 15 electronic states of 12 diatomic molecules. Their percentage average mean square deviations from RKR curve have been found to be 1.45, 1.86 and 2.89 respectively. These compare favourably with the value 2.67 for the recently suggested four-parameter potential of Wei Hua which itself yields better results than the commonly employed three-parameter potentials. The superiority of the new potentials (especially of U I and U II ) has been further established by using these potentials to calculate the molecular constants α e and ω e χ e , following Dunham's method. The corresponding percentage average mean deviations for α e turn out to be 3.75, 5.13 and 15.43 and for ω e χ e 8.73, 17.23 and 27.49, respectively, against the respective values of 7.97 and 18.88 with Wei Hua's four-parameter potential. Also included are the values of dissociation energy determined with these potentials and these too corroborate the better performance of U I and U II . The relative worth of various potential functions has been further tested by carrying out numerical study of vibrational partition function (evaluated by sum over states method), entropy and thermal capacity for the ground state of 7 molecules and comparing these with the corresponding findings based on the RKR data. (author)

  8. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    Science.gov (United States)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  9. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    Science.gov (United States)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  10. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.; Villani, M.; Coluccio, M. L.; Majewska, R.; Alabastri, A.; Battista, E.; Schirato, A.; Calestani, D.; Coppedé , N.; Cesarelli, M.; Amato, F.; Di Fabrizio, Enzo M.; Gentile, F.

    2018-01-01

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  11. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.

    2018-04-19

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  12. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses; Manipulation coherente d'atomes et de molecules diatomiques avec des impulsions mises en forme

    Energy Technology Data Exchange (ETDEWEB)

    Degert, J

    2002-12-15

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  13. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  14. Interference between vibration-to-translation and vibration-to-vibration energy transfer modes in diatomic molecules at high collision energies

    International Nuclear Information System (INIS)

    Shin, H.K.

    1983-01-01

    An explicit time dependent approach for simultaneous VT and VV energy transfer in diatom--diatom collisions is explored using the exponential form of ladder operators in the solution of the Schroedinger equation of motion. The collision of two hydrogen molecules is chosen to illustrate the extent of interference between VT and VV modes among various vibrational states. While vibrational energy transfer processes of nominally VT type can be treated with pure VT mode at low collision energies, the intermode coupling is found to be very important at collision energies of several hω. The occurrence of the coupling appears to be nearly universal in vibrational transitions at such energies. Exceptions to the coupling have been discussed

  15. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities

    International Nuclear Information System (INIS)

    Debenest, T.; Silvestre, J.; Coste, M.; Delmas, F.; Pinelli, E.

    2008-01-01

    Benthic diatoms are well known bio-indicators of river pollution by nutrients (nitrogen and phosphorus). Biological indexes, based on diatom sensitivity for non-toxic pollution, have been developed to assess the water quality. Nevertheless, they are not reliable tools to detect pollution by pesticides. Many authors have suggested that toxic agents, like pesticides, induce abnormalities of the diatom cell wall (frustule). High abnormal frustule abundances have been reported in natural diatom communities sampled in streams contaminated by pesticides. However, no direct link was found between the abundances of abnormal frustules in these communities and the pesticide concentrations in stream water. In the present study, a freshwater benthic diatom community, isolated from natural biofilm and cultured under controlled conditions, was treated with a known genotoxic herbicide, maleic hydrazide (MH). Cells were exposed to three concentrations of MH (5 x 10 -6 , 10 -6 , 10 -7 M) for 6 h followed by a 24 h-recovery time. After MH treatments, nucleus alterations were observed: abnormal nucleus location, micronucleus, multinuclear cell or disruption of the nuclear membrane. A dose-dependent increase of nuclear alterations was observed. The difference between the control (9.65 nuclear alterations per 1000 cells observed (9.65 per mille ), S.D. = 4.23) and the highest concentrations (29.40 per mille , S.D. = 8.49 for 10 -6 M and 35.96 per mille , S.D. = 3.71 for 5 x 10 -6 M) was statistically significant (Tukey test, P -6 and 5 x 10 -6 M; Tukey test, P < 0.05). These two parameters tended to increase together (Pearson correlation = 0.702, P < 0.05). The results suggest that the induction of abnormal frustules could be associated with the genotoxic effects of MH. The alterations observed could be related to the effects of MH on the synthesis of the proteins involved in frustule formation or in the regulation of the cytoskeleton of the diatom cells

  16. Effect of UV-B radiation on the marine diatom bellerochea yucatanensis

    International Nuclear Information System (INIS)

    Doehler, G.

    1982-01-01

    There exists no information about the UV-B fluence on several photosynthetic products and nitrogen metabolism. The present report describes the effect of low levels of UV-B radiation on pigments, 14 C- and 15 N-incorporation of the marine diatom Bellerochea yucatanensis. (orig./AJ)

  17. Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms.

    Science.gov (United States)

    Yu, Haoyu; Truhlar, Donald G

    2015-07-14

    Although many transition metal complexes are known to have high multireference character, the multireference character of main-group closed-shell singlet diatomic molecules like BeF, CaO, and MgO has been less studied. However, many group-1 and group-2 diatomic molecules do have multireference character, and they provide informative systems for studying multireference character because they are simpler than transition metal compounds. The goal of the present work is to understand these multireference systems better so that, ultimately, we can apply what we learn to more complicated multireference systems and to the design of new exchange-correlation functionals for treating multireference systems more adequately. Fourteen main-group diatomic molecules and one triatomic molecule (including radicals, cations, and anions, as well as neutral closed-shell species) have been studied for this article. Eight of these molecules contain a group-1 element, and six contain a group-2 element. Seven of these molecules are multireference systems, and eight of them are single-reference systems. Fifty-three exchange-correlation functionals of 11 types [local spin-density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)] and the Hartree-Fock method have been applied to calculate the bond distance, bond dissociation energy (BDE), and dipole moment of these molecules. All of the calculations are converged to a stable solution by allowing the symmetry of the Slater determinant to be broken. A reliable functional should not only predict an accurate BDE but also predict accurate components of the BDE, so each bond dissociation energy has been decomposed into ionization potential (IP) of the electropositive

  18. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Silvestre, J. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Coste, M.; Delmas, F. [Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Pinelli, E. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France)], E-mail: pinelli@ensat.fr

    2008-06-02

    effects of MH. The alterations observed could be related to the effects of MH on the synthesis of the proteins involved in frustule formation or in the regulation of the cytoskeleton of the diatom cells.

  19. The spherical-harmonics representation for the interaction between diatomic molecules: The general case and applications to COsbnd CO and COsbnd HF

    Science.gov (United States)

    Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.; Barreto, Rodrigo L. P.; Palazzetti, Federico; Albernaz, Alessandra F.; Lombardi, Andrea; Maciel, Glauciete S.; Aquilanti, Vincenzo

    2017-07-01

    The spherical-harmonics expansion is a mathematically rigorous procedure and a powerful tool for the representation of potential energy surfaces of interacting molecular systems, determining their spectroscopic and dynamical properties, specifically in van der Waals clusters, with applications also to classical and quantum molecular dynamics simulations. The technique consists in the construction (by ab initio or semiempirical methods) of the expanded potential interaction up to terms that provide the generation of a number of leading configurations sufficient to account for faithful geometrical representations. This paper reports the full general description of the method of the spherical-harmonics expansion as applied to diatomic-molecule - diatomic-molecule systems of increasing complexity: the presentation of the mathematical background is given for providing both the application to the prototypical cases considered previously (O2sbnd O2, N2sbnd N2, and N2sbnd O2 systems) and the generalization to: (i) the COsbnd CO system, where a characteristic feature is the lower symmetry order with respect to the cases studied before, requiring a larger number of expansion terms necessary to adequately represent the potential energy surface; and (ii) the COsbnd HF system, which exhibits the lowest order of symmetry among this class of aggregates and therefore the highest number of leading configurations.

  20. Coupled states approximation for scattering of two diatoms

    International Nuclear Information System (INIS)

    Heil, T.G.; Green, S.; Kouri, D.J.

    1978-01-01

    The coupled states (CS) approximation is developed in detail for the general case of two colliding diatomic molecules. The high energy limit of the exact Lippmann-Schwinger equation is used to obtain the CS equations so that the sufficiency conditions of Kouri, Heil, and Shimoni apply. In addition, care is taken to ensure correct treatment of parity in the CS, as well as correct labeling of the CS by an effective orbital angular momentum. The analysis follows that given by Shimoni and Kouri for atom-diatom collisions where the coupled rotor angular momentum j 12 and projection lambda 12 replace the single diatom angular momentum j and projection lambda. The result is an expression for the differential scattering amplitude which is a generalization of the highly successful McGuire-Kouri differential scattering amplitude for atom-diatom collisions. Also, the opacity function is found to be a generalization of the Clebsch-Gordon weight atom-diatom expression of Shimoni and Kouri. The diatom-diatom CS body frame T matrix T/sup J/(j 1 'j 2 'j 12 'lambda 12 'vertical-bar j 1 j 2 j 12 lambda 12 ) is also found to be nondiagonal in lambda' 12 ,lambda 12 , just as in the atom-diatom case. The parity and identical molecule interchange symmetries are also considered in detail in both the exact close coupling and CS approximations. Symmetrized expressions for all relevant quantities are obtained, along with the symmetrized coupled equations one must solve. The properly labeled and symmetrized CS equations have not been derived before this present work. The present correctly labeled CS theory is tested computationally by applications to three different diatom-diatom potentials. First we carry out calculations for para-para, ortho-ortho, and ortho-para H 2 -H 2 collisions using the experimental potential of Farrar and Lee

  1. Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods.

    Directory of Open Access Journals (Sweden)

    Chiara Lauritano

    Full Text Available Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods.Here we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis which showed no changes in gene expression profiles.Our results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450 were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species.

  2. Enhanced sensitivity to the time variation of the fine-structure constant and mp/me in diatomic molecules: A closer examination of silicon monobromide

    International Nuclear Information System (INIS)

    Beloy, K.; Borschevsky, A.; Schwerdtfeger, P.; Flambaum, V. V.

    2010-01-01

    Recently it was pointed out that transition frequencies in certain diatomic molecules have an enhanced sensitivity to variations in the fine-structure constant α and the proton-to-electron mass ratio m p /m e due to a near cancellation between the fine structure and vibrational interval in a ground electronic multiplet [V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007)]. One such molecule possessing this favorable quality is silicon monobromide. Here we take a closer examination of SiBr as a candidate for detecting variations in α and m p /m e . We analyze the rovibronic spectrum by employing the most accurate experimental data available in the literature and perform ab initio calculations to determine the precise dependence of the spectrum on variations in α. Furthermore, we calculate the natural linewidths of the rovibronic levels, which place a fundamental limit on the accuracy to which variations may be determined.

  3. Direct fit of spectroscopic data of diatomic molecules by using genetic algorithms: II. The ground state of RbCs

    International Nuclear Information System (INIS)

    Almeida, Marcos M; Prudente, Frederico V; Fellows, Carlos E; Marques, Jorge M C; Pereira, Francisco B

    2011-01-01

    We extend our previous methodology based on genetic algorithms (Marques et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085103) to carry out the challenging fit of the RbCs potential curve to spectroscopic data. Specifically, we have fitted an analytic functional form to line positions of the high-resolution Fourier transform spectrum of RbCs obtained by a laser-induced fluorescence technique. The results for the ground electronic state of RbCs show that the present method provides an efficient way to obtain diatomic potentials with great accuracy.

  4. Thermodynamics properties study of diatomic molecules with q-deformed modified Poschl-Teller plus Manning Rosen non-central potential in D dimensions using SUSYQM approach

    Science.gov (United States)

    Suparmi, A.; Cari, C.; Pratiwi, B. N.

    2016-04-01

    D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.

  5. Effect of UV-B radiation on biomass production, pigmentation and protein content of marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.

    1984-01-01

    Several species of marine diatoms were grown at + 18 0 C and + 22 0 C under normal air conditions (0.035 vol.% CO 2 ) at a light/dark alteration of 14.8 h. Intensity of white light was 1 mW (approx.= 5000 lux). An artifical nutrient solution of 35per mille salinity was used. Algae - harvested during exponential growth - were exposed to different intensities of UV-B radiation (439, 717 and 1230 J m -2 m -1 ) for 2 days. UV-B radiation depressed the growth of all tested marine diatoms. Low levels of UV-B resulted in a slight increase of the biomass production (dry weight) compared to not UV-B treated cells. Enhanced UV-B doses caused a diminution of the primary productivity in all species. Algae exposed to UV-B stress showed a marked decrease in the protein and pigment content (chlorophyll a, chlorophyll c 1 + c 2 and carotenoids). In + 22 0 C grown cells of Lauderia annulata and Thalassiosira rotula were more sensitive to UV-B radiation than those cultures grown at + 18 0 C. Bellerochea yucatanensis cells grown at + 22 0 C were less affected after UV-B exposure than at + 18 0 C grown algae. The UV-B sensibility and growth of the individual species varied in a mixture of several marine diatoms. Results were discussed with reference to the UV-B effect on metabolic processes. (orig.)

  6. Effect of hypochlorite on the planktonic and attached (biofilm) diatom cells

    International Nuclear Information System (INIS)

    Nancharaiah, Y.V.; Vinnitha, E.; Venugopalan, V.P.

    2008-01-01

    Rapid, sensitive, multi-species and multi-parametric techniques are desirable for determining treatment efficacy and environmentally realistic toxicity assessment of oxidizing biocides. In this work, the effect of in-use levels the antifouling biocide chlorine was studied using attached and freely suspended cultures of the diatom Cocconeis scutellum. Using confocal microscopy, in vivo chlorophyll fluorescence was collected in x, y and z dimensions for determining mean fluorescence intensity (MFI) per individual cell and related to hypochlorite treatment. The inhibition in the chlorophyll fluorescence of C. scutellum cells was almost 50% after 1 hour of treatment with 2 mg l -1 of added hypochlorite (1.2 mg l -1 total residual oxidant, TRO) and increased to 68 % during recovery period (18 h). On the contrary, attached Cocconeis cells did not show any significant reduction in their chlorophyll fluorescence after treatment with up to 3 mg l -1 hypochlorite for up to 3 h. Reduction in the chlorophyll fluorescence in the attached Cocconeis cells was observed after prolonged (18 h) incubation in seawater dosed with 2.3 or 3.8 mg I-I hypochlorite (1.5 and 3 mg l -1 TRO). The data obtained in this study clearly suggest that (i) hypochlorite treated diatom cells do not recover in terms of chlorophyll fluorescence in short-term assays and (ii) attached diatom cells exhibit enhanced resistance to chlorination-induced cellular injury. (author)

  7. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom.

    Science.gov (United States)

    Guo, Jiahua; Selby, Katherine; Boxall, Alistair B A

    2016-11-01

    The occurrence of antibiotics in surface waters has been reported worldwide with concentrations ranging from ng L -1 to low µg L -1 levels. During environmental risk assessments, effects of antibiotics on algal species are assessed using standard test protocols (e.g., the OECD 201 guideline), where the cell number endpoint is used as a surrogate for growth. However, the use of photosynthetic related endpoints, such as oxygen evolution rate, and the assessment of effects on algal pigments could help to inform our understanding of the impacts of antibiotics on algal species. This study explored the effects of three major usage antibiotics (tylosin, lincomycin, and trimethoprim) on the growth and physiology of two chlorophytes (Desmodesmus subspicatus and Pseudokirchneriella subcapitata), a cyanobacteria (Anabaena flos-aquae), and a diatom (Navicula pelliculosa) using a battery of parameters, including cell density, oxygen evolution rate, total chlorophyll content, carotenoids, and the irradiance-photosynthesis relationship. The results indicated that photosynthesis of chlorophytes was a more sensitive endpoint than growth (i.e., EC 50 derived based on the effects of tylosin on the growth of D. subspicatus was 38.27 µmol L -1 compared with an EC 50 of 17.6 µmol L -1 based on photosynthetic rate), but the situation was reversed when testing cyanobacteria and the diatom (i.e., EC 50 derived based on the effects of tylosin on the growth of A. flos-aquae was 0.06 µmol L -1 ; EC 50 0.33 µmol L -1 based on photosynthetic rate). The pigment contents of algal cells were affected by the three antibiotics for D. subspicatus. However, in some cases, pigment content was stimulated for P. subcapitata, N. pelliculosa, and A. flos-aquae. The light utilization efficiency of chlorophytes and diatom was decreased markedly in the presence of antibiotics. The results demonstrated that the integration of these additional endpoints into existing standardised protocols could provide

  8. Teratogenic Effects of Diatom Metabolites on Sea Urchin Paracentrotus lividus Embryos

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    2010-03-01

    Full Text Available The diatom-derived polyunsaturated aldehydes (PUAs, 2-trans,4-trans-decadienal, 2-trans,4-trans-octadienal, 2-trans,4-trans,7-octatrienal, 2-trans,4-trans-heptadienal, as well as tridecanal were tested on early and later larval development in the sea urchin Paracentrotus lividus. We also tested the effect of some of the more abundant diatom polyunsaturated fatty acids (PUFAs on development, in particular 5,8,11,14,17-eicosapentaenoic acid (EPA, one of the main precursors of diatom PUAs, as well as 4,7,10,13,16,19-docosahexaenoic acid (DHA, 6,9,12,15-octadecatetraenoic acid (stearidonic acid, 6,9,12-octadecatrienoic acid (γ-linolenic acid and 9,12-octadecadienoic acid (linoleic acid. PUAs blocked sea urchin cell cleavage in a dose dependent manner and with increasing chain length from C7 to C10 PUAs, with arrest occurring at 27.27 µM with heptadienal, 16.13 µM with octadienal, 11.47 µM with octatrienal and 5.26 mM with decadienal. Of the PUFAs tested, only EPA and stearidonic acid blocked cleavage, but at much higher concentrations compared to PUAs (331 μM for EPA and 181 μM for stearidonic acid. Sub-lethal concentrations of decadienal (1.32–5.26 μM delayed development of embryos and larvae which showed various degrees of malformations depending on the concentrations tested. Sub-lethal concentrations also increased the proportion of TUNEL-positive cells indicating imminent death in embryos and larvae. Using decadienal as a model PUA, we show that this aldehyde can be detected spectrophotometrically for up to 14 days in f/2 medium.

  9. The effects of oil pollution on Antarctic benthic diatom communities over 5 years

    International Nuclear Information System (INIS)

    Polmear, R.; Stark, J.S.; Roberts, D.; McMinn, A.

    2015-01-01

    Highlights: • We examine the impact of hydrocarbon pollution on Antarctic benthic diatoms. • The effect of standard synthetic lubricant oil and a biodegradable oil were examined. • There were significant effects from both treatments for over 5 years. • There was little difference between the different types of oil. - Abstract: Although considered pristine, Antarctica has not been impervious to hydrocarbon pollution. Antarctica’s history is peppered with oil spills and numerous abandoned waste disposal sites. Both spill events and constant leakages contribute to previous and current sources of pollution into marine sediments. Here we compare the response of the benthic diatom communities over 5 years to exposure to a commonly used standard synthetic lubricant oil, an alternative lubricant marketed as more biodegradable, in comparison to a control treatment. Community composition varied significantly over time and between treatments with some high variability within contaminated treatments suggesting community stress. Both lubricants showed evidence of significant effects on community composition after 5 years even though total petroleum hydrocarbon reduction reached approximately 80% over this time period. It appears that even after 5 years toxicity remains high for both the standard and biodegradable lubricants revealing the temporal scale at which pollutants persist in Antarctica

  10. Effects of molecular orientation in the laser ionization of molecules

    International Nuclear Information System (INIS)

    Xinhua Xie; Gerald Jordan; Christopher Ede; Armin Scrinzi

    2006-01-01

    Complete test of publication follows. Time-dependent electron momentum distributions are calculated during ionization of linear molecules by a strong laser pulse and upon recollision. For typical experimental laser parameters, we find a strong influence of molecular orientation and initial state symmetry on the total ionization rates and also on momentum distributions, compared to which the effect of electron correlation is less important for simple molecules. The dynamics of electron release and subsequent recollision with the parent ion largely determines the time-frequency structure of harmonic radiation, which underlies the generation of attosecond XUV pulses and the time-resolved imaging techniques for the electronic structure of molecules. In the present work, the effects of orientation and initial orbital symmetry are investigated by solving the time-dependent Schroedinger equation for a two-dimensional diatomic molecule in the single-active electron approximation. As in the presence of strong external fields recolliding electrons cannot be easily separated from bound electrons, the electron wave packet is probed at some distance from where all electrons can be safety considered as detached. We find that momentum distributions strongly depend on molecular size, orientation of the molecular axis, and node structure of the initial state. In order to determine the momentum spectra at the time of electron release and upon recollision, we classically propagate the Wigner distributions of probed wavepackets backward and forward in time, respectively. We find that the times of peak recollision current can vary strongly with the orientation of the molecule. Moreover, correlation effects on the electron spectra are included using the multi-configuration time-dependent Hartree-Fock method. The calculations are performed in three spatial dimensions with the restriction to cylindrical symmetry, where the molecule is aligned with the laser field. Correlation is studied

  11. Effects of titanium dioxide nanoparticles derived from consumer products on the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Galletti, Andrea; Seo, Seokju; Joo, Sung Hee; Su, Chunming; Blackwelder, Pat

    2016-10-01

    Increased manufacture of TiO 2 nanoproducts has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO 2 nanoparticles derived from consumer products as opposed to industrial TiO 2 NPs warrant examination in exploring the significance of their release and resultant impacts on the environment. To this end, we examined the significance of the release of these particles and their toxic effect on the marine diatom algae Thalassiosira pseudonana. Our results indicate that nano-TiO 2 sunscreen and toothpaste exhibit more toxicity in comparison to industrial TiO 2 and inhibited the growth of the marine diatom T. pseudonana. This inhibition was proportional to the exposure time and concentrations of nano-TiO 2 . Our findings indicate a significant effect, and therefore, further research is warranted in evaluation and assessment of the toxicity of modified nano-TiO 2 derived from consumer products and their physicochemical properties.

  12. Effect of Cadmium on the population growth of the marine diatom Chaetoceros gracilis Schutt

    Directory of Open Access Journals (Sweden)

    Giovana Vera

    2014-06-01

    Full Text Available Phytoplankton constitutes the base of the trophic webs in the marine environment, so it is important to know the possible effects of pollutants on the algal populations. In the present paper the effect of cadmium on the population growth of the diatom Chaetoceros gracilis was assessed. The microalgae were cultured in the a modified “f/2” Guillard medium, and were exposed to different concentrations of cadmium between 50 and 100000 µg.–1, which produced an inhibitory effect from 20% to 99% on the population growth of Chaetoceros gracilis. Based on the dose (cadmium-response (inhibition relationship, a mean effective concentration (EC50% equal to 591 µg.L–1 of cadmium was obtained.

  13. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus.

    Science.gov (United States)

    Lauritano, Chiara; Carotenuto, Ylenia; Vitiello, Valentina; Buttino, Isabella; Romano, Giovanna; Hwang, Jiang-Shiou; Ianora, Adrianna

    2015-12-01

    Diatoms are eukaryotic unicellular plants that constitute one of the major components of marine phytoplankton, comprising up to 40% of annual productivity at sea and representing 25% of global carbon-fixation. Diatoms have traditionally been considered a preferential food for zooplankton grazers such as copepods, but, in the last two decades, this beneficial role has been challenged after the discovery that many species of diatoms produce toxic metabolites, collectively termed oxylipins, that induce reproductive failure in zooplankton grazers. Diatoms are the dominant natural diet of Calanus sinicus, a cold-temperate calanoid copepod that supports secondary production of important fisheries in the shelf ecosystems of the Northwest Pacific Ocean, Yellow Sea, Sea of Japan and South China Sea. In this study, the effect of the oxylipin-producing diatom Skeletonema marinoi on C. sinicus has been evaluated by analyzing expression level changes of genes involved in defense and detoxification systems. Results show that C. sinicus is more resistant to a diet of this diatom species in terms of gene expression patterns, compared to the congeneric species Calanus helgolandicus which is an important constituent of the temperate waters of the Atlantic Ocean and northern Mediterranean Sea. These findings contribute to the better understanding of genetic and/or phenotypic flexibility of copepod species and their capabilities to cope with stress by identifying molecular markers (such as stress and detoxification genes) as biosensors for environmental perturbations (e.g. toxins and contaminants) affecting marine copepods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    International Nuclear Information System (INIS)

    Thi Thuy Duong; Morin, Soizic; Herlory, Olivier; Feurtet-Mazel, Agnes; Coste, Michel; Boudou, Alain

    2008-01-01

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems

  15. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Thi Thuy Duong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: duongthuy0712@yahoo.com; Morin, Soizic [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Herlory, Olivier [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Feurtet-Mazel, Agnes [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: a.feurtet-mazel@epoc.u-bordeaux1.fr; Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2008-10-20

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems.

  16. The effects of oil pollution on Antarctic benthic diatom communities over 5 years.

    Science.gov (United States)

    Polmear, R; Stark, J S; Roberts, D; McMinn, A

    2015-01-15

    Although considered pristine, Antarctica has not been impervious to hydrocarbon pollution. Antarctica's history is peppered with oil spills and numerous abandoned waste disposal sites. Both spill events and constant leakages contribute to previous and current sources of pollution into marine sediments. Here we compare the response of the benthic diatom communities over 5 years to exposure to a commonly used standard synthetic lubricant oil, an alternative lubricant marketed as more biodegradable, in comparison to a control treatment. Community composition varied significantly over time and between treatments with some high variability within contaminated treatments suggesting community stress. Both lubricants showed evidence of significant effects on community composition after 5 years even though total petroleum hydrocarbon reduction reached approximately 80% over this time period. It appears that even after 5 years toxicity remains high for both the standard and biodegradable lubricants revealing the temporal scale at which pollutants persist in Antarctica. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities

    DEFF Research Database (Denmark)

    Hancke, Kasper; Glud, R.N.

    2004-01-01

    ABSTRACT: Short-term temperature effects on respiration and photosynthesis were investigated in intact diatom-dominated benthic communities, collected at 2 temperate and 1 high-arctic subtidal sites. Areal rates of total (TOE) and diffusive (DOE) O2 exchange were determined from O2-microsensor....... This can be ascribed to changes in physical and biological controls during resuspension. Gross photosynthesis was measured with the light-dark shift method at the 2 temperate sites. Both areal (Pgross) and volumetric (Pgross,vol) rates increased with temperature to an optimum temperature at 12 and 15°C......, with a Q10 for Pgross of 2.2 and 2.6 for the 2 sites, respectively. The gross photosynthesis response could be categorised as psychrotrophic for both sites and no temperature adaptation was observed between the 2 sites. Our measurements document that temperature stimulates heterotrophic activity more than...

  18. Architecture and material properties of diatom shells provide effective mechanical protection

    Science.gov (United States)

    Hamm, Christian E.; Merkel, Rudolf; Springer, Olaf; Jurkojc, Piotr; Maier, Christian; Prechtel, Kathrin; Smetacek, Victor

    2003-02-01

    Diatoms are the major contributors to phytoplankton blooms in lakes and in the sea and hence are central in aquatic ecosystems and the global carbon cycle. All free-living diatoms differ from other phytoplankton groups in having silicified cell walls in the form of two `shells' (the frustule) of manifold shape and intricate architecture whose function and role, if any, in contributing to the evolutionary success of diatoms is under debate. We explored the defence potential of the frustules as armour against predators by measuring their strength. Real and virtual loading tests (using calibrated glass microneedles and finite element analysis) were performed on centric and pennate diatom cells. Here we show that the frustules are remarkably strong by virtue of their architecture and the material properties of the diatom silica. We conclude that diatom frustules have evolved as mechanical protection for the cells because exceptional force is required to break them. The evolutionary arms race between diatoms and their specialized predators will have had considerable influence in structuring pelagic food webs and biogeochemical cycles.

  19. Correlation and symmetry effects in transport through an artificial molecule

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, F. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Ensenada, Baja California (Mexico); Cota, E. [Centro de Ciencias de la Materia Condensada-UNAM, Ensenada, Baja California (Mexico); Ulloa, S.E. [Department of Physics and Astronomy and Condensed Matter and Surface Sciences Program, Ohio University, Athens, Ohio 45701-2979 (United States)

    1999-02-01

    Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment. {copyright} {ital 1999} {ital The American Physical Society}

  20. Effect of holothurian and zoanthid extracts on growth of some bacterial and diatom species

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, C.

    The antifouling properties of the extracts from two zoanthids, viz. Zoanthus sp, Protopalythoa sp and one holothurian species, viz. Holothuria leucospilota occurring in the coastal waters off Goa were tested against 5 bacteria and 2 diatom species...

  1. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    , and Thalassionema did not increase in density after chlorine treatment. It was also demonstrated that diatoms can colonize, grow and photosynthesize on chlorine-treated surfaces. Under pulse chlorination (treatment every 6 h), irrespective of chlorine concentration...

  2. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E. [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom); Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Köckert, Hansjochen; Zaleski, Daniel P.; Stephens, Susanna L. [School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{sub 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.

  3. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI.

    Science.gov (United States)

    Evans, Corey J; Needham, Lisa-Maria E; Walker, Nicholas R; Köckert, Hansjochen; Zaleski, Daniel P; Stephens, Susanna L

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X (2)Π1/2 ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y01, Y02, Y11, and Y21, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.

  4. Effect of Low ph on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri)

    International Nuclear Information System (INIS)

    Thornton, D.C.O.

    2009-01-01

    Rising carbon dioxide (CO 2 ) concentrations in the atmosphere due to human activity are causing the surface ocean to become more acidic. Diatoms play a pivotal role in biogeochemical cycling and ecosystem function in the ocean. ph affected the quantum efficiency of photosystem II and carbohydrate metabolism in a planktonic diatom (Chaetoceros muelleri), representative of a widely distributed genus. In batch cultures grown at low ph, the proportion of total carbohydrate stored within the cells decreased and more dissolved carbohydrates were exuded from the cells into the surrounding medium. Changes in productivity and the way in which diatoms allocate carbon into carbohydrates may affect ecosystem function and the efficiency of the biological carbon pump in a low ph ocean.

  5. Effects of silicon deficiency on lipid and carbohydrate metabolism in the diatom Cyclotella cryptica

    International Nuclear Information System (INIS)

    Roessler, P.G.

    1987-01-01

    Previous studies have shown that silicon deficiency induces lipid accumulation in certain diatom species. The nature of the lipids produced under these conditions was not investigated, however, and the biochemical mechanisms which underlie this phenomenon were not determined. Research was carried out in order to increase our knowledge concerning the aspects of lipid accumulation in diatoms. The first phase of this project indicated that the diatoms C. cryptica, Cylindrotheca fusiformis, and Thalassiosira pseudonana accumulated storage lipids when grown under silicon-limiting conditions. The ratio of saturated and monounsaturated fatty acids to polyunsaturated fatty acids in C. cryptica cells increased markedly after 24 hours of silicon deficiency. Tracer experiments with [ 14 C]bicarbonate suggested that lipid accumulation in silicon-limited C. cryptica cells was due to two distinct processes: (1) an increase in the amount of newly photoassimilated carbon partitioned into lipids, and (2) a slow conversion of non-lipid compounds (carbohydrates and presumably proteins) into lipids

  6. Description of Insecticide Effect in Vitro of the Commercial Diatom on Melophagus Ovinus From the Municipality of Oicatá (Boyacá

    Directory of Open Access Journals (Sweden)

    Herney Cuevas Morales

    2014-08-01

    Full Text Available Among the ectoparasites affecting sheep is the hematophagous diptera (“false tick” or “fly-louse of sheep”, found in temperate and cold zones in South America, which can cause dermatitis and damage of fleece, in addition to acting as a vector for different diseases. Therefore, they are controlled with commercial insecticides that are toxic to humans and animals, disrupting the ecosystem and generating toxic residues on the food; in addition, in some areas, these have become ineffective. In some sheep located in the municipality of Oicatá, a high prevalence of this parasite can be found with limited effectiveness in treatments with traditional insecticides. Hence, the aim of this study was to describe the in vitro efficacy of the commercial diatom in the control of the M. ovinus. 240 individuals of M. ovinus were collected from naturally parasitized animals, from which 120 were divided randomly into four groups of 10 parasites each, running each test three times (replicas. In all cases, the immersion technique was used for adults, to describe the efficacy of the diatom, observing the mortality percentage for each group. After 12 hours of exposure, mortality was higher in the groups exposed to concentrations of diatom (g of diatom: ml of water of 0.1:1, 0.2:1 and 0.3:1. Around the 24th hour, mortality increased to 90%, with diatom in concentrations of 0.1:1 and 0.3:1 and after 48 hours the higher mortality values were obtained with diatom 0.3:1 followed by diatom 0.2:1 and 0.1:1. With the results obtained, we can mention that the diatom has an insecticide effect that exceeds the minimum effective of 60 %.

  7. The Effects of Salinity on Growth and Distribution of Four Freshwater Diatom Species

    International Nuclear Information System (INIS)

    Hayati, Attayeb A

    2007-01-01

    The upper and lower salinity limits of Nitzschia acicularis, Nitzschia pusilla, Nitzschia palea and Synedra acus, which were isolated from the Damour River, Lebanon, were determined from laboratory cultures. Growth responses of the investigated diatoms showed maximum growth in the enriched Damour River natural water (salinity = 0.24 ppt). With an increase in salinity there was a gradual decrease in the growth until the upper limit was reached. At higher salt concentrations near the upper limit a lag phase was observed, during the first two days of the growing culture, where the growth was greatly declined. This reduction in growth can be attributed to high osmotic stress experienced by the investigated diatoms when transferred to flasks containing salinities near the extremes of their tolerance. The investigated diatoms appear to be very resistant and capable of adaptation to new situations because they grew better after this two days lag period. The results of this study also showed that all the investigated diatom species have broader salinity tolerance limits than those reported in the literature and this would enable their distribution at localities with higher or lower salinities than those typical of the Damour River, Lebanon. (author)

  8. Photosynthetic Pigments in Diatoms

    OpenAIRE

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvestin...

  9. Diatom Communities and Metrics as Indicators of Urbanization Effects on Streams and Potential Moderation by Landscape Green Infrastructure

    Science.gov (United States)

    Diatoms are very useful and important indicators of anthropogenic impacts on streams because they are the foundation of primary production and are responsive to nutrients, conductivity, and habitat conditions. We characterized relationships of diatom assemblages with water chemis...

  10. Nitrogen deposition effects on diatom communities in lakes from three National Parks in Washington State

    Science.gov (United States)

    Sheibley, Richard W.; Enache, Mihaela; Swarzenski, Peter W.; Moran, Patrick W.; Foreman, James R.

    2014-01-01

    The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (−1 year−1 and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969–1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980–2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969–1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha−1 year−1 for wet deposition for this lake.

  11. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  12. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  13. Biophotonics of diatoms

    DEFF Research Database (Denmark)

    Gössling, Johannes Wilhelm

    Diatoms are unicellular microalgae present in all aquatic environments on earth. Due to their high photosynthetic productivity and abundance, diatoms are main components of aquatic food webs and among the main contributors of global photosynthetic carbon fixation. A unique feature of diatoms...

  14. Colloquium on diatom-copepod interactions

    DEFF Research Database (Denmark)

    Paffenhofer, G.A.; Ianora, A.; Miralto, A.

    2005-01-01

    in situ were also addressed. During the plenary session, the most recent advances on this topic were presented. The plenary session was followed by 3 working groups on (1) production of aldehydes by phytoplankton, (2) toxic and nutritional effects of diatoms on zooplankton, and (3) the chemistry of diatom...

  15. Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry.

    Science.gov (United States)

    Olenici, Adriana; Blanco, Saúl; Borrego-Ramos, María; Momeu, Laura; Baciu, Călin

    2017-10-01

    Metal pollution of aquatic habitats is a major and persistent environmental problem. Acid mine drainage (AMD) affects lotic systems in numerous and interactive ways. In the present work, a mining area (Roșia Montană) was chosen as study site, and we focused on two aims: (i) to find the set of environmental predictors leading to the appearance of the abnormal diatom individuals in the study area and (ii) to assess the relationship between the degree of valve outline deformation and AMD-derived pollution. In this context, morphological differences between populations of Achnanthidium minutissimum and A. macrocephalum, including normal and abnormal individuals, were evidenced by means of valve shape analysis. Geometric morphometry managed to capture and discriminate normal and abnormal individuals. Multivariate analyses (NMDS, PLS) separated the four populations of the two species mentioned and revealed the main physico-chemical parameters that influenced valve deformation in this context, namely conductivity, Zn, and Cu. ANOSIM test evidenced the presence of statistically significant differences between normal and abnormal individuals within both chosen Achnanthidium taxa. In order to determine the relative contribution of each of the measured physico-chemical parameters in the observed valve outline deformations, a PLS was conducted, confirming the results of the NMDS. The presence of deformed individuals in the study area can be attributed to the fact that the diatom communities were strongly affected by AMD released from old mining works and waste rock deposits.

  16. Effect of surface parameter of interband surface mode frequencies of finite diatomic chain

    International Nuclear Information System (INIS)

    Puszkarski, H.

    1982-07-01

    The surface modes of a finite diatomic chain of alternating atoms (M 1 not= M 2 ) are investigated. The surface force constants are assumed to differ from the bulk ones, with the resulting surface parameter a-tilde identical on both ends of the chain. Criteria, governing the existence of interband surface (IBS) modes with frequencies lying in the forbidden gap between acoustical and optical bulk bands for natural (a = 1) as well as non-natural (a not= 1) surface defect, are analysed by the difference equation method. It is found that the IBS modes localize, depending on the value of the surface parameter a, either at the surface of lighter atoms (if a-tilde is positive), or at that of heavier atoms (if a-tilde is negative). Two, one of no IBS modes are found to exist in the chain depending on the relation between the mass ratio and surface parameter - quantities on which the surface localization increment t-tilde depends. If two modes are present (one acoustical and the other optical), their frequencies are disposed symmetrically with respect to the middle of the forbidden gap, provided the surface defect is natural, or asymmetrically - if it is other than natural. If the localization of the IBS mode exceeds a well defined critical value tsub(c), the mode frequency becomes complex, indicating that the mode undergoes a damping. A comparison of the present results and those obtained by Wallis for the diatomic chain with natural surface defect is also given. (author)

  17. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  18. Effect of Siderophore on Iron Availability in a Diatom and a Dinoflagellate Species: Contrasting Response in Associated Bacteria

    Directory of Open Access Journals (Sweden)

    Nicolas Sanchez

    2018-04-01

    Full Text Available Organic ligands play a key role controlling trace metal bioavailability in the world's oceans, yet the species-specific requirements determining whether certain iron forms can be metabolized largely remain unclear. Siderophores are considered relevant within the pool of ligands keeping iron soluble. We used desferrioxamine B (DFB to study the siderophore's effect on cultures of Skeletonema costatum and Alexandrium catenella. The experimental approach used semi-continuous additions of iron(II and DFB over time, reaching final concentrations of 1 and 10 nM Fe and 10–10,000 nM DFB. The negative effect of DFB on growth in S. costatum was evident and sharp until day 9 for treatments above 500 nM. Delayed growth occurred at 10,000 nM, reaching ~80% of cell density in Controls under both iron conditions. Alexandrium catenella exhibited a less severe negative effect of DFB on growth, only significant at 10,000 nM, while growth was enhanced at lowest DFB. Total bacterial abundance in diatom and dinoflagellate cultures presented inverse trends. While negatively correlated to DFB in diatom cultures, bacteria showed highest abundances in high DFB treatments in dinoflagellate cultures. Delayed growth exhibited in S. costatum at the highest DFB, indicates that favorable changes for Fe uptake occurred over time, suggesting the involvement of other mechanisms facilitating the diatom cell membrane reduction. Overall, unaffected growth in A. catenella suggests that this species can use FeDFB and therefore has the capacity to access strongly complexed Fe sources. Contrasting responses in the bacterial community associated with each species highlight the complexity of these interactions, while suggesting that for A. catenella it may represent an advantage for acquiring Fe. These results demonstrated the capacity for different uptake strategies among phytoplankton species of different functional groups and underlines the necessity to broaden the study of iron

  19. Environmental effects on molecules immersed in liquids

    International Nuclear Information System (INIS)

    Sese, L.M.

    1990-01-01

    A methodology to study environmental effects is thoroughly discussed. It combines molecular quantum mechanics and classical statistical mechanics of molecular fluids. Pair distribution functions collecting statistical information appear quite naturally in the quantum equations describing a single molecule. As well as allowing the computation of any individual molecular property in a liquid phase, this approach satisfies a number of theoretical requirements (dependence on density and temperature, validity in the thermodynamic limit). In a sense, it can be regarded as a useful alternative to the well-known Monte Carlo averaging processes for calculating molecular properties. Numerical applications studying liquid carbon disulphide and liquid carbon tetrachloride at several state points are given. Results cover typical RHF information (CNDO/2) on molecules, and show the sensitivity of the presented methodology to structural changes in liquids. (orig.)

  20. Benchmark calculations with correlated molecular wave functions. VI. Second row A2 and first row/second row AB diatomic molecules

    International Nuclear Information System (INIS)

    Woon, D.E.; Dunning, T.H. Jr.

    1994-01-01

    Benchmark calculations employing the correlation consistent basis sets of Dunning and co-workers are reported for the following diatomic species: Al 2 , Si 2 , P 2 , S 2 , Cl 2 , SiS, PS, PN, PO, and SO. Internally contracted multireference configuration interaction (CMRCI) calculations (correlating valence electrons only) have been performed for each species. For Cl 2 , P 2 , and PN, calculations have also been carried out using Moller--Plesset perturbation theory (MP2, MP3, MP4) and the singles and doubles coupled-cluster method with and without perturbative triples [CCSD, CCSD(T)]. Spectroscopic constants and dissociation energies are reported for the ground state of each species. In addition, the low-lying excited states of Al 2 and Si 2 have been investigated. Estimated complete basis set (CBS) limits for the dissociation energies, D e , and other spectroscopic constants are obtained from simple exponential extrapolations of the computed quantities. At the CBS limit the root-mean-square (rms) error in D e for the CMRCI calculations, the intrinsic error, on the ten species considered here is 3.9 kcal/mol; for r e the rms intrinsic error is 0.009 A, and for ω e it is 5.1 cm -1

  1. Theory of collisions between an atom and a diatomic molecule in the body-fixed coordinate system.)/sup a/ I. Coupled differential equation and asymptotic boundary conditions

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.; Tang, K.T.

    1978-01-01

    The body-fixed (BF) formulation for atom--diatom scatterings is developed to the extent that one can use it to perform accurate close-coupling calculation, without introducing further approximation except truncating a finite basis set of the target molecular wave function, on the same ground as one use the space-fixed (SF) formulation. In this formulation, the coupled differential equations are solved an the boundary conditions matched entirely in the BF coordinate system. A unitary transformation is used to obtain both the coupled differential equation and the boundary condition in BF system system from SF system. All properties of the solution with respect to parity are derived entirely from the transformation, without using the parity eignfunctions of the BF frame. Boundary conditions that yield the scattering (S) matrix and the reactance (R) matrix are presented for each parity in both the far asymptotic region (where the interaction and the centrifugal potentials are both negligible) and the near asymptotic region (where the interaction potential is negligible but the centrifugal potential is not). While our differential equations are the same as those derived by others with different methods, our asymptotic boundary conditions disagree with some existing ones. With a given form of the BF coupled differential equations, the acceptable boundary conditions are discussed

  2. Diatom Responses to Watershed Development and Potential Moderating Effects of Near-Stream Forest and Wetland Cover

    Science.gov (United States)

    Watershed development alters hydrology and delivers anthropogenic stressors to streams via pathways affected by impervious cover. We characterized relationships of diatom communities and metrics with upstream watershed % impervious cover (IC) and with riparian % forest and wetlan...

  3. Comparative toxicological effects of two antifouling biocides on the marine diatom Chaetoceros lorenzianus: Damage and post-exposure recovery.

    Science.gov (United States)

    Chavan, Pooja; Kumar, Rajesh; Kirubagaran, Ramalingam; Venugopalan, Vayalam P

    2017-10-01

    Antifouling biocides are commonly used in coastal electric power stations to prevent biofouling in their condenser cooling systems. However, the environmental impact of the chemical biocides is less understood than the thermal stress effects caused by the condenser effluents. In this study, Chaetoceros lorenzianus, a representative marine diatom, was used to analyse the toxicity of two antifouling biocides, chlorine and chlorine dioxide. The diatom cells were subjected to a range of concentrations of the biocides (from 0.05 to 2mg/L, as total residual oxidants, TRO) for contact time of 30min. They were analysed for viability, genotoxicity, chlorophyll a and cell density endpoints. The cells were affected at all concentrations of the biocides (0.05-2mg/L), showing dose-dependent decrease in viability and increase in DNA damage. The treated cells were later incubated in filtered seawater devoid of biocide to check for recovery. The cells were able to recover in terms of overall viability and DNA damage, when they had been initially treated with low concentrations of the biocides (0.5mg/L of Cl 2 or 0.2mg/L of ClO 2 ). Chlorophyll a analysis showed irreparable damage at all concentrations, while cell density showed increasing trend of reduction, if treated above 0.5mg/L of Cl 2 and 0.2mg/L of ClO 2 . The data indicated that in C. lorenzianus, cumulative toxic effects and recovery potential of ClO 2 up to 0.2mg/L were comparable with those of Cl 2 , up to 0.5mg/L concentration in terms of the studied endpoints. The results indicate that at the biocide levels currently being used at power stations, recovery of the organism is feasible upon return to ambient environment. Similar studies should be carried out on other planktonic and benthic organisms, which will be helpful in the formulation of future guidelines for discharge of upcoming antifouling biocides such as chlorine dioxide. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito, Ecuador

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    2015-12-01

    Full Text Available The tropical Andes are undergoing climate changes that rival those occurring anywhere else on the planet, and are likely to have profound consequences for ecosystems. Paleolimnological investigations of remote mountain lakes can provide details of past environmental change, especially where monitoring data are absent. Here, we reconstruct fossil diatom and chironomid communities spanning the last several hundred years from an Andean lake located in an ecological reserve near Quito, Ecuador. Both diatoms and chironomids recorded assemblage shifts reflective of changing climate conditions. The diatoms are likely responding primarily to temperature-related limnological changes, recording an increase in the number of planktonic taxa in the most recent sediments. This change is consistent with warmer conditions that result in enhanced periods of thermal stratification, allowing planktonic species to proliferate. The chironomids appear to respond mainly to a change in precipitation regime, recording a greater number of terrestrial and semi-terrestrial taxa that have been transported to the lake. A thick tephra deposit at the base of the sediment core affected both diatom and chironomid assemblages. The diatoms registered a change in species composition highlighting the ability of certain taxa to rapidly colonize new environments. In contrast, the chironomids showed a marked drop in abundance immediately following the tephra, but no change in species composition. In both cases the ecological response was short-lived, illustrating the resiliency of the lake to return to baseline conditions following volcanic inputs.

  5. Using diatom assemblages and sulphur in sediments to uncover the effects of historical mining on Lake Arnoux (Quebec, Canada: A retrospective of economic benefits versus environmental debt

    Directory of Open Access Journals (Sweden)

    Paul Brian Hamilton

    2015-09-01

    Full Text Available Monitoring changes in environmental conditions is increasingly important as the Canadian economic infrastructure ramps up exploration and mining development in the more inaccessible northern regions of Canada. Governments are concurrently assessing effects from past mining activities and absorbing the economic cost to society with on-going remediation and monitoring initiatives. The abandoned Aldermac mine in northwestern Quebec, mined from 1932–1943, is an excellent case study for assessing the state of environmental and economic effects of past mining operations. A paleolimnological approach, using diatoms as environmental proxies, was used to evaluate the spatial and temporal impacts on aquatic receiving environments. Based on the inferences drawn from diatom assemblages in Lake Arnoux, prior to mining activity, lake water pH was similar to that of surrounding lakes (circumneutral to weakly acidic. After mining operations terminated, changes in pH and alkalinity in Lake Arnoux coincided with distinct increases in sediment sulphur content. Across a 30- to 40-year span (circa 1940 to 1970s a significant decline in phytoplankton flora coincided with lake acidification and increased clarity of the water column. This resulted in an increase in the benthic diatom population (>90%, replacing the planktonic diatoms. Observed shifts in environmental proxies are concurrent with one, and possibly two, reported tailings pond breaches at the abandoned mine site. Adverse effects of the abandoned Aldermac mine on nearby ecosystems, combined with pressure from local citizens and environmental groups, forced responsible accountability for site restoration led by the Quebec government. Based on the historical period of economic growth, the financial benefits of the Aldermac mine were significant and justify the current pay-it-backward costs for environmental remediation. However, it has now been documented that the pay-it-backward model is not sustainable in

  6. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  7. Enhancing EPA Content in an Arctic Diatom: A Factorial Design Study to Evaluate Interactive Effects of Growth Factors

    Directory of Open Access Journals (Sweden)

    Pia Steinrücken

    2018-04-01

    Full Text Available Microalgae with a high content of the omega-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA are of great demand for microalgae-based technologies. An Arctic strain of the diatom Attheya septentrionalis was shown in previous experiments to increase its EPA content from 3.0 to 4.6% of dry weight (DW in the nutrient-replete exponential phase and nutrient-depleted stationary phase, respectively. In the present study, a factorial-design experiment was used, to investigate this effect in more detail and in combination with varying salinities and irradiances. A mathematical model revealed that both growth phase and salinity, alone and in combination, influenced the EPA content significantly. Maximum EPA values of 7.1% DW were obtained at a salinity of 22 and after 5 days in stationary phase, and might be related to a decreased silica content, an accumulation of storage lipids containing EPA, or both. However, growth rates were lower for low salinity (0.54 and 0.57 d−1 than high salinity (0.77 and 0.98 d−1 cultures.

  8. Effect of vertical mixing on short-term mycosporine-like amino acid synthesis in the Antarctic diatom, Thalasiossira sp.

    Directory of Open Access Journals (Sweden)

    Marcelo Pablo Hernando

    2011-12-01

    Full Text Available One of the adaptations whereby phytoplankton can alleviate damage induced by ultraviolet radiation (280-400 nm is the synthesis of mycosporine-like amino acids (MAAs. The synthesis of MAAs was studied after exposure of the Antarctic diatom Thalassiosira sp. isolated from Potter Cove (South Shetland Is., Antarctica to 2 treatments with a solar simulator: surface (Sfix and vertical mixing (Mix irradiance conditions. Light exposure was simulated in daily cycles with maximum irradiance at noon. Only 2 MAAs, Porphyra-334 (82-85% and Shinorine (15-18%, were identified. The concentration of the two compounds increased during experimental light exposure (50-55% and declined in the dark (10-15%. During the light period the synthesis rate of MAAs per unit of chlorophyll a was higher in the Sfix treatment (µ=0.17 h-1 than in the Mix treatment (µ=0.05 h-1. In spite of the higher MAA levels, low cell numbers were observed in the Sfix treatment, suggesting that the algae synthesized photoprotective compounds at the expense of growth. Our results document overlapping effects of both daily light cycles and vertical mixing affecting the synthesis of MAAs. This, and the high thermal dissipation of the ultraviolet B radiation energy (280-320 nm absorbed by these substances, suggest a rapid photoadaptive response of Thalasiossira sp. upon exposure to elevated irradiance in a stratified water column, as well as the complementary role of vertical mixing in photo-protection.

  9. Generalized valence bond description of the ground states (X(1)Σg(+)) of homonuclear pnictogen diatomic molecules: N2, P2, and As2.

    Science.gov (United States)

    Xu, Lu T; Dunning, Thom H

    2015-06-09

    The ground state, X1Σg+, of N2 is a textbook example of a molecule with a triple bond consisting of one σ and two π bonds. This assignment, which is usually rationalized using molecular orbital (MO) theory, implicitly assumes that the spins of the three pairs of electrons involved in the bonds are singlet-coupled (perfect pairing). However, for a six-electron singlet state, there are five distinct ways to couple the electron spins. The generalized valence bond (GVB) wave function lifts this restriction, including all of the five spin functions for the six electrons involved in the bond. For N2, we find that the perfect pairing spin function is indeed dominant at Re but that it becomes progressively less so from N2 to P2 and As2. Although the perfect pairing spin function is still the most important spin function in P2, the importance of a quasi-atomic spin function, which singlet couples the spins of the electrons in the σ orbitals while high spin coupling those of the electrons in the π orbitals on each center, has significantly increased relative to N2 and, in As2, the perfect pairing and quasi-atomic spin couplings are on essentially the same footing. This change in the spin coupling of the electrons in the bonding orbitals down the periodic table may contribute to the rather dramatic decrease in the strengths of the Pn2 bonds from N2 to As2 as well as in the increase in their chemical reactivity and should be taken into account in more detailed analyses of the bond energies in these species. We also compare the spin coupling in N2 with that in C2, where the quasi-atomic spin coupling dominants around Re.

  10. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  11. The effect of UV radiation on photosynthesis in an Antarctic diatom (Thalassiosira sp.): does vertical mixing matter?

    International Nuclear Information System (INIS)

    Hernando, Marcelo P.; Ferreyra, Gustavo A.

    2004-01-01

    Full text: The reduction of the Antarctic stratospheric ozone resulted in significant increases in ultraviolet B radiation (UVBR, 280-320 nm) reaching the surface of the ocean. A series of laboratory and field experiments were conducted at Potter Cove (25 de Mayo Is., South Shetland Is., Antarctica) to study the effects of UVBR on photosynthesis of a typical Antarctic bloom forming diatom (Thalassiosira sp.) in fixed and moving incubations. There were three irradiance treatments: PART (with only photosynthetic active radiation, PAR, 400- 700 nm), UVAT (with PAR and ultraviolet A radiation, UVAR, 320-400 nm) and UVBT (with PAR, UVAR and UVBR). The three treatments were incubated in the field and laboratory with a solar simulator (SOLSI) in fixed frames at 0.5 and 5 m depth (S fix and B fix , respectively), while for the moving incubations were done within 6 h cycles (Mix). Considering the field and laboratory pooled data, results suggest an overall 45-50 % photosynthesis inhibition of S fix incubations in relation with Mix ones. During SOLSI experiments no significant differences were found between irradiance treatments under normal and medium ozone concentrations. Under low ozone conditions, a 40 % reduction in photosynthesis was observed in the UVBT for S fix . In contrast, no significant differences were observed between the irradiance treatments for Mix. Field experiment showed results similar to the laboratory ones, but in this case not only S fix but Mix incubations presented a significant reduction in photosynthesis under low ozone. The differences between laboratory and field experiments are discussed in terms of the relative significance of UVBR dose and dose rate on both types of experiments. (author)

  12. Effect of light on 2H/1H fractionation in lipids from continuous cultures of the diatom Thalassiosira pseudonana

    Science.gov (United States)

    Sachs, Julian P.; Maloney, Ashley E.; Gregersen, Joshua

    2017-07-01

    Continuous cultures of the marine diatom Thalassiosira pseudonana were grown at irradiances between 6 and 47 μmol m-2 s-1 in order to evaluate the effect of light on hydrogen isotope fractionation in lipids. δ2H values increased with irradiance in phytol by 1.1‰ (μmol m-2 s-1)-1 and by 0.3‰ (μmol m-2 s-1)-1 in the C14:0 fatty acid, but decreased by 0.8‰ (μmol m-2 s-1)-1 in the sterol 24-methyl-cholesta-5,24(28)-dien-3β-ol (C28Δ5,24(28)). The anticorrelation between δ2H values in C28Δ5,24(28) and irradiance is attributed to enhanced sterol precursor synthesis via the plastidic methylerythritol phosphate (MEP) pathway at high irradiance, relative to the cytosolic mevalonic acid (MVA) pathway, and the supposition that MEP precursors are 2H-depleted compared to MVA precursors because they incorporate a greater proportion of hydrogen from photosynthetically produced NADPH. Increasing δ2H values of phytol and C14:0 with irradiance is attributed to a greater proportion of pyruvate, the last common precursor to both lipids, being sourced from glycolysis in the mitochondria and cytosol, where enhanced incorporation of metabolic NADPH and further hydrogen exchange with cell water can enrich pyruvate with 2H relative to pyruvate from the chloroplast. Irrespective of the biosynthetic mechanisms responsible for the 2H/1H fractionation response to light, the high sensitivity of lipid δ2H values in T. pseudonana continuous cultures would result in -30‰ to +40‰ variations in δ2H over a 40 μmol m-2 s-1 range in sub-saturating irradiance if expressed in the environment, depending on the lipid.

  13. Growth inhibition of periphytic diatoms by methanol extracts of sponges and holothurians

    Digital Repository Service at National Institute of Oceanography (India)

    Mokashe, S.S.; Garg, A; Anil, A; Wagh, A

    Crude methanol extracts of a holothurian Holothuria leucospilota, and two sponges Craniella sp. and Ircinia ramosa were tested for their inhibitory effects on the growth of two marine diatoms, Navicula subinflata and N. crucicula, by diatom plating...

  14. Threshold collision-induced dissociation of diatomic molecules: a case study of the energetics and dynamics of O2- collisions with Ar and Xe.

    Science.gov (United States)

    Ahu Akin, F; Ree, Jongbaik; Ervin, Kent M; Kyu Shin, Hyung

    2005-08-08

    The energetics and dynamics of collision-induced dissociation of O2- with Ar and Xe targets are studied experimentally using guided ion-beam tandem mass spectrometry. The cross sections and the collision dynamics are modeled theoretically by classical trajectory calculations. Experimental apparent threshold energies are 2.1 and 1.1 eV in excess of the thermochemical O2- bond dissociation energy for argon and xenon, respectively. Classical trajectory calculations confirm the observed threshold behavior and the dependence of cross sections on the relative kinetic energy. Representative trajectories reveal that the bond dissociation takes place on a short time scale of about 50 fs in strong direct collisions. Collision-induced dissociation is found to be remarkably restricted to the perpendicular approach of ArXe to the molecular axis of O2-, while collinear collisions do not result in dissociation. The higher collisional energy-transfer efficiency of xenon compared with argon is attributed to both mass and polarizability effects.

  15. Threshold collision-induced dissociation of diatomic molecules: A case study of the energetics and dynamics of O2- collisions with Ar and Xe

    International Nuclear Information System (INIS)

    Ahu Akin, F.; Ree, Jongbaik; Ervin, Kent M.; Hyung, Kyu Shin

    2005-01-01

    The energetics and dynamics of collision-induced dissociation of O 2 - with Ar and Xe targets are studied experimentally using guided ion-beam tandem mass spectrometry. The cross sections and the collision dynamics are modeled theoretically by classical trajectory calculations. Experimental apparent threshold energies are 2.1 and 1.1 eV in excess of the thermochemical O 2 - bond dissociation energy for argon and xenon, respectively. Classical trajectory calculations confirm the observed threshold behavior and the dependence of cross sections on the relative kinetic energy. Representative trajectories reveal that the bond dissociation takes place on a short time scale of about 50 fs in strong direct collisions. Collision-induced dissociation is found to be remarkably restricted to the perpendicular approach of Ar/Xe to the molecular axis of O 2 - , while collinear collisions do not result in dissociation. The higher collisional energy-transfer efficiency of xenon compared with argon is attributed to both mass and polarizability effects

  16. Transparent Exopolymeric Particles (TEP Selectively Increase Biogenic Silica Dissolution From Fossil Diatoms as Compared to Fresh Diatoms

    Directory of Open Access Journals (Sweden)

    Jordan Toullec

    2018-03-01

    Full Text Available Diatom production is mainly supported by the dissolution of biogenic silica (bSiO2 within the first 200 m of the water column. The upper oceanic layer is enriched in dissolved and/or colloidal organic matter, such as exopolymeric polysaccharides (EPS and transparent exopolymeric particles (TEP excreted by phytoplankton in large amounts, especially at the end of a bloom. In this study we explored for the first time the direct influence of TEP-enriched diatom excretions on bSiO2 dissolution. Twelve dissolution experiments on fresh and fossil diatom frustules were carried out on seawater containing different concentrations of TEP extracted from diatom cultures. Fresh diatom frustules were cleaned from the organic matter by low ash temperature, and fossil diatoms were made from diatomite powder. Results confirm that newly formed bSiO2 dissolved at a faster rate than fossil diatoms due to a lower aluminum (Al content. Diatom excretions have no effect on the dissolution of the newly formed bSiO2 from Chaetoceros muelleri. Reversely, the diatomite specific dissolution rate constant and solubility of the bSiO2 were positively correlated to TEP concentrations, suggesting that diatom excretion may provide an alternative source of dSi when limitations arise.

  17. Scale-dependent effects of land cover on water physico-chemistry and diatom-based metrics in a major river system, the Adour-Garonne basin (South Western France)

    International Nuclear Information System (INIS)

    Tudesque, Loïc; Tisseuil, Clément; Lek, Sovan

    2014-01-01

    The scale dependence of ecological phenomena remains a central issue in ecology. Particularly in aquatic ecology, the consideration of the accurate spatial scale in assessing the effects of landscape factors on stream condition is critical. In this context, our study aimed at assessing the relationships between multi-spatial scale land cover patterns and a variety of water quality and diatom metrics measured at the stream reach level. This investigation was conducted in a major European river system, the Adour-Garonne river basin, characterized by a wide range of ecological conditions. Redundancy analysis (RDA) and variance partitioning techniques were used to disentangle the different relationships between land cover, water-chemistry and diatom metrics. Our results revealed a top-down “cascade effect” indirectly linking diatom metrics to land cover patterns through water physico-chemistry, which occurred at the largest spatial scales. In general, the strength of the relationships between land cover, physico-chemistry, and diatoms was shown to increase with the spatial scale, from the local to the basin scale, emphasizing the importance of continuous processes of accumulation throughout the river gradient. Unexpectedly, we established that the influence of land cover on the diatom metric was of primary importance both at the basin and local scale, as a result of discontinuous but not necessarily antagonist processes. The most detailed spatial grain of the Corine land cover classification appeared as the most relevant spatial grain to relate land cover to water chemistry and diatoms. Our findings provide suitable information to improve the implementation of effective diatom-based monitoring programs, especially within the scope of the European Water Framework Directive. - Highlights: •The spatial scale dependence of the “cascade effect” in a river system has been demonstrated. •The strength of the relationships between land cover and diatoms through

  18. Memory effects in single-molecule spectroscopy

    International Nuclear Information System (INIS)

    Schmitt, Daniel T.; Schulz, Michael; Reineker, Peter

    2007-01-01

    From the time series of LH2 optical single-molecule fluorescence excitation spectra of Rhodospirillum molischianum the memory function of the Mori-Zwanzig equation for the optical intensity is derived numerically. We show that the time dependence of the excited states is determined by at least three different non-Markovian stochastic processes with decay constants for the Mori-Zwanzig kernel on the order of 1-5min -1 . We suggest that this decay stems from the conformational motion of the protein scaffold of LH2

  19. Quantum theory of anharmonic effects in molecules

    CERN Document Server

    Kazakov, Konstantin V

    2012-01-01

    Presented in a clear and straightforward analysis, this book explores quantum mechanics and the application of quantum mechanics to interpret spectral phenomena. Specifically, the book discusses the relation between spectral features in mid or rear infrared regions, or in Raman scattering spectrum, and interactions between molecules or molecular species such as molecular ions, and their respective motions in gaseous or crystalline conditions. Beginning with an overview of conventional methods and problems which arise in molecular spectroscopy, the second half of the book suggests original t

  20. Thermodynamics properties of diatomic molecules with general ...

    Indian Academy of Sciences (India)

    In this paper, the energy spectra of the general molecular potential are obtained using the asymptotic iteration method within the framework of non-relativistic quantum mechanics.With the energy spectrum obtained, the vibrational partition function is calculated in a closed form and is used to obtain an expression for other ...

  1. Thermodynamics properties of diatomic molecules with general ...

    Indian Academy of Sciences (India)

    AKPAN N IKOT

    2018-01-10

    Jan 10, 2018 ... 2. Ro-vibrational energy spectrum. The radial Schrödinger equation is defined as [17] d2ψ(r) dr2. +. 2μ. ¯h2. (. E − V(r) −. J(J + 1)¯h2. 2μr2. ) ψ(r) = 0,. (2) where μ is the reduced mass, E is the ro-vibrational energy, ¯h is the reduced Planck's constant and J is the rotational quantum number. Substituting eq.

  2. Effect of starvation on the distribution of positional isomers and enantiomers of triacylglycerol in the diatom Phaeodactylum tricornutum

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Lukavský, Jaromír; Nedbalová, Linda; Kolouchová, I.; Sigler, Karel

    2012-01-01

    Roč. 80, AUG 2012 (2012), s. 17-27 ISSN 0031-9422 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:61388971 ; RVO:67985939 Keywords : Phaeodactylum tricornutum * RP-HPLC/MS-APCI * Diatom Subject RIV: CE - Biochemistry; EF - Botanics (BU-J) Impact factor: 3.050, year: 2012

  3. Quantum Effects in Molecule-Based Nanomagnets

    Science.gov (United States)

    Hill, Stephen

    2005-11-01

    Research into molecule-based-magnets has made immense strides in recent years, with the discoveries of all organic molecular magnets, room temperature 3D ordered permanent magnets, and single-molecule magnets (SMMs), the latter exhibiting a host of spectacular quantum phenomena; for a review, see ref. [1]. SMMs represent a molecular approach to nanoscale and sub-nanoscale magnetic particles. They offer all of the advantages of molecular chemistry as well as displaying the superparamagnetic properties of mesoscale magnetic particles of much larger dimensions. They also straddle the interface between classical and quantum behavior; for example, they exhibit quantum tunneling of their magnetization. I will give a general introduction to this area of research, followed by an overview of recent results obtained using high-frequency (40-800 GHz) electron paramagnetic resonance techniques developed at the University of Florida. These results include: an elucidation of the role of molecular symmetry in the magnetic quantum tunneling phenomenon [2]; and the observation of quantum entanglement between pairs of nanomagnets within a supramolecular dimer [3]. 1. D. Gatteschi and R. Sessoli, Angew. Chem. 42, 268 (2003). 2. E. del Barco et al., J. Low Temp. Phys. 140, 119-174 (2005). 3. S. Hill et al., Science 302, 1015 (2003).

  4. Effect of diatom morphology on the small-scale behavior of the copepod Temora stylifera (Dana, 1849)

    KAUST Repository

    Mahadik, Gauri A.; Castellani, Claudia; Mazzocchi, Maria Grazia

    2017-01-01

    We explored the small-scale behavior of the calanoid copepod Temora stylifera in relation to the diatoms Chaetoceros socialis, Leptocylindrus aporus, Leptocylindrus danicus and Pseudo-nitzschia calliantha offered as monospecific diets at similar carbon concentrations. These four diatoms are characterized by distinct size, shape and colony forming ability and are important components of the autumnal bloom co-occurring with the seasonal peak of T. stylifera abundance in Mediterranean coastal waters. High-speed video recordings showed that T. stylifera acquired cells in a suspension feeding mode while creating feeding currents. Copepod behavior was quantified in terms of feeding, motion, and grooming activities. T. stylifera spent more time in hovering than cruising in presence of all diets. The solitary L. aporus and P. calliantha elicited longer feeding bouts, lower appendage beat frequency and shorter grooming events compared to the colonial L. danicus and C. socialis. Overall the present results indicate that the behavioral responses of T. stylifera to different diatom diets were species-specific. The observed behavioral plasticity may help T. stylifera to adjust rapidly to changes in the food environment and this can be advantageous in exploiting short-lived phytoplankton blooms.

  5. Effect of diatom morphology on the small-scale behavior of the copepod Temora stylifera (Dana, 1849)

    KAUST Repository

    Mahadik, Gauri A.

    2017-05-12

    We explored the small-scale behavior of the calanoid copepod Temora stylifera in relation to the diatoms Chaetoceros socialis, Leptocylindrus aporus, Leptocylindrus danicus and Pseudo-nitzschia calliantha offered as monospecific diets at similar carbon concentrations. These four diatoms are characterized by distinct size, shape and colony forming ability and are important components of the autumnal bloom co-occurring with the seasonal peak of T. stylifera abundance in Mediterranean coastal waters. High-speed video recordings showed that T. stylifera acquired cells in a suspension feeding mode while creating feeding currents. Copepod behavior was quantified in terms of feeding, motion, and grooming activities. T. stylifera spent more time in hovering than cruising in presence of all diets. The solitary L. aporus and P. calliantha elicited longer feeding bouts, lower appendage beat frequency and shorter grooming events compared to the colonial L. danicus and C. socialis. Overall the present results indicate that the behavioral responses of T. stylifera to different diatom diets were species-specific. The observed behavioral plasticity may help T. stylifera to adjust rapidly to changes in the food environment and this can be advantageous in exploiting short-lived phytoplankton blooms.

  6. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  7. Environmental investigations using diatom microfossils

    Science.gov (United States)

    Smith, Kathryn E.L.; Flocks, James G.

    2010-01-01

    Diatoms are unicellular phytoplankton (microscopic plant-like organisms) with cell walls made of silica (called a frustule). They live in both freshwater and saltwater and can be found in just about every place on Earth that is wet. The shape and morphology of the diatom frustule unique to each species are used for identification. Due to the microscopic size of diatoms, high-power microscopy is required for diatom identification. Diatoms are vital to life on Earth. They are photosynthetic primary producers, using sunlight to create oxygen and organic carbon from carbon dioxide and water. They are a significant source of the oxygen we breathe, have a major impact on the global carbon cycle (Smetacek, 1999), and are a food source for many aquatic organisms (Mann, 1993). Diatom abundance has even been demonstrated to have an influence on the diversity of larger marine mammals, including whales (Marx and Uhen, 2010). Data on diatom abundance and diversity are extremely useful in environmental studies.

  8. Diatoms and the nanotechnology

    International Nuclear Information System (INIS)

    Toekesi, K.; Bereczky, R.J.; Lakatos, Gy.; Cserhati, C.

    2004-01-01

    Complete text of publication follows. During the last decade studies of interactions between highly charged ions (HCI) and solid surfaces are at the center of interest which is partly stimulated by potential future technical application such as nanofabrication. The investigation of the interactions of highly charged ions with internal surfaces recently become available due to the advances in the fabrication of micro- and nanocapillaries. These target materials offer the opportunity to observe 'hollow atom' formation in free space. Hollow atoms are an exotic form of matter where the atomic charge cloud resides in shells with large diameters while the core is virtually empty. In the past there has been an increasing amount of indirect evidence for the existence of this atomic state. Microcapillary transmission promises to provide direct evidence for the hollow atom formation for the first time. Our earlier theoretical descriptions rely on metallic microcapillaries which have proven to be quite successful in comparison with experimental data. However, since very detailed measurements have recently become available for insulator nanocapillaries, critical and precise tests of theory are only now being possible. We note, that the theoretical description of the interaction between the HCI and insulator nanocapillaries is far from being well understood. One of the key point of the experimental investigations is the preparation of the nanocapillaries. In this work we propose an alternative way to prepare insulator nanocapillaries. We take an advantage of the nature that during the evolution the cylindrical shape nanostructure was developed as a truss of diatoms. The truss of the diatoms contains roughly 99 % SiO 2 and in some cases of diatoms it form almost ideal cylindrical shape. As an example Fig. 1 shows the scanning electron micrograph of the diatom. The size of the holes in the truss are in the nanometer range (see Fig. 1a). On the basis of these properties the

  9. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Ahmad Yari Khosroushahi

    2012-05-01

    Full Text Available Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the recent progress in this century on the application of diatoms in waste degradation, synthesis of biomaterial, biomineraliza­tion, toxicity and toxic effects of mineral elements evaluations. Conclusion: Diatoms can be considered as metal toxicity bioindicators and they can be applied for biomineralization, synthesis of biomaterials, and degradation of wastes.

  10. Dissociation in small molecules

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1982-01-01

    The study of molecular dissociation processes is one of the most interesting areas of modern spectroscopy owing to the challenges presented bt even the simplest of diatomic molecules. This paper reviews the commonly used descriptions of molecular dissociation processes for diatomic molecules, the selection rules for predissociation, and a few of the principles to be remembered when one is forced to speculate about dissociation mechanisms in a new molecule. Some of these points will be illustrated by the example of dissociative ionization in O 2

  11. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  12. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    International Nuclear Information System (INIS)

    Requate, A.

    2007-03-01

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  13. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Sabia, Alessandra; Clavero, Esther; Pancaldi, Simonetta; Salvadó Rovira, Joan

    2018-02-01

    The marine diatom Thalassiosira pseudonana grown under air (0.04% CO 2 ) and 1 and 5% CO 2 concentrations was evaluated to determine its potential for CO 2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO 2 showed higher growth rates (1.14 and 1.29 div day -1 , respectively) and biomass productivities (44 and 48 mg AFDW L -1  day -1 ) than air grown cultures (with 1.13 div day -1 and 26 mg AFDW L -1  day -1 ). The increase of CO 2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1-5% CO 2 . Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO 2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.

  14. Diatomic gasdynamic lasers.

    Science.gov (United States)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  15. Diatomic gasdynamic lasers

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1971-12-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant over-populations of upper vibrational states. When mixtures of CO and N 2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N 2 expansions. The resulting CO-N 2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO 2 lasers

  16. Controlling dynamics in diatomic systems

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum dynamical target is formulated using an iterative method. The method is applied for two diatomic sys- tems, HF and OH.

  17. Comparing optical properties of different species of diatoms

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Su, Y.

    2015-01-01

    species dependent with huge variety in size, shape, and micro- structure. We have experimentally investigated optical properties of frustules of several species of diatoms to further understand light harvesting properties together with commo n traits, effects and differences between the different...... analysis software. The software uses parameters which are extracted from experimental im ages as basis for simulation and allows us to extract the influence of the different elements of the frustule. The information could be used both for predicting optical properties of diatoms and by changing frustule...... parameters, maybe by altering growth conditions of the diatoms tailor their optical properties....

  18. Effects of alumina refinery wastewater and signature metal constituents at the upper thermal tolerance of: 1. The tropical diatom Nitzschia closterium

    International Nuclear Information System (INIS)

    Harford, A.J.; Hogan, A.C.; Tsang, J.J.; Parry, D.L.; Negri, A.P.; Adams, M.S.; Stauber, J.L.; Dam, R.A. van

    2011-01-01

    Research highlights: → Methodology to assess relevant toxicants to a tropical marine diatom are described. → Thermal sensitivity of N. closterium was close to the regional annual maximum SST. → First to derive EC50s for Al, Ga and V in N. closterium under tropical conditions. → N. closterium is one of the most sensitive organisms to Al reported to-date. → Environmental chemistry shows that the discharge is a low risk to this species. - Abstract: Ecotoxicological studies, using the tropical marine diatom, Nitzschia closterium (72-h growth rate), were undertaken to assess potential issues relating to the discharge from an alumina refinery in northern Australia. The studies assessed: (i) the species' upper thermal tolerance; (ii) the effects of three signature metals, aluminium (Al), vanadium (V) and gallium (Ga) (at 32 o C); and (iii) the effects of wastewater (at 27 and 32 o C). The critical thermal maximum and median inhibition temperature for N. closterium were 32.7 o C and 33.1 o C, respectively. Single metal toxicity tests found that N. closterium was more sensitive to Al compared to Ga and V, with IC 50 s (95% confidence limits) of 190 (140-280), 19,640 (11,600-25,200) and 42,000 (32,770-56,000) μg L -1 , respectively. The undiluted wastewater samples were of low toxicity to N. closterium (IC 50 s > 100% wastewater). Environmental chemistry data suggested that the key metals and discharge are a very low risk to this species.

  19. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms

    Science.gov (United States)

    McQuaid, Jeffrey B.; Kustka, Adam B.; Oborník, Miroslav; Horák, Aleš; McCrow, John P.; Karas, Bogumil J.; Zheng, Hong; Kindeberg, Theodor; Andersson, Andreas J.; Barbeau, Katherine A.; Allen, Andrew E.

    2018-03-01

    In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

  20. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach.

    Science.gov (United States)

    Husowitz, B; Talanquer, V

    2007-02-07

    Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.

  1. Diatom flora in subterranean ecosystems: a review

    Directory of Open Access Journals (Sweden)

    Elisa Falasco

    2014-09-01

    Full Text Available In scarcity of light and primary producers, subterranean ecosystems are generally extremely oligotrophic habitats, receiving poor supplies of degradable organic matter from the surface. Human direct impacts on cave ecosystems mainly derive from intensive tourism and recreational caving, causing important alterations to the whole subterranean environment. In particular, artificial lighting systems in show caves support the growth of autotrophic organisms (the so-called lampenflora, mainly composed of cyanobacteria, diatoms, chlorophytes, mosses and ferns producing exocellular polymeric substances (EPSs made of polysaccharides, proteins, lipids and nucleic acids. This anionic EPSs matrix mediates to the intercellular communications and participates to the chemical exchanges with the substratum, inducing the adsorption of cations and dissolved organic molecules from the cave formations (speleothems. Coupled with the metabolic activities of heterotrophic microorganisms colonising such layer (biofilm, this phenomenon may lead to the corrosion of the mineral surfaces. In this review, we investigate the formation of biofilms, especially of diatom-dominated ones, as a consequence of artificial lighting and its impacts on speleothems. Whenever light reaches the subterranean habitat (both artificially and naturally a relative high number of species of diatoms may indeed colonise it. Cave entrances, artificially illuminated walls and speleothems inside the cave are generally the preferred substrates. This review focuses on the diatom flora colonising subterranean habitats, summarizing the information contained in all the scientific papers published from 1900 up to date. In this review we provide a complete checklist of the diatom taxa recorded in subterranean habitats, including a total of 363 taxa, belonging to 82 genera. The most frequent and abundant species recorded in caves and other low light subterranean habitats are generally aerophilic and

  2. A study on interaction of DNA molecules and carbon nanotubes for an effective ejection of the molecules

    International Nuclear Information System (INIS)

    Wu, N.; Wang, Q.

    2012-01-01

    The ejection of DNA molecules from carbon nanotubes is reported from interaction energy perspectives by molecular dynamics simulations. The critical ejection energy, which is to be applied to a DNA molecule for a successful ejection from a carbon nanotube, is investigated based on a study on the friction and binding energy between the DNA molecule and the tube. An effective ejection is realized by subjecting a kinetic energy on the DNA molecule that is larger than the solved critical ejection energy. In addition, the relationship between ejection energies and sizes of DNA molecules and carbon nanotubes is investigated. -- Highlights: ► Report the ejection of DNA molecules from CNTs from interaction energy perspectives. ► Develop a methodology for the critical energy of an effective ejection of a DNA molecule from a CNT. ► Present the relationship between critical ejection energies and sizes of DNA molecules and CNTs. ► Provide a general guidance on the ejection of encapsulated molecules from CNTs.

  3. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  4. Modified Ribose Receptor Response in Isolated Diatom Frustules

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, Carly R.

    2011-08-26

    Diatoms are a distinctive group of microalgae with the unique ability to produce a highly-ordered biosilica matrix, known as the frustule. Diatoms hold significant potential in the biotechnology field as a silica scaffold for embedding proteins. In this study, we analyzed the funtionalization of biosilica with a receptor complex through genetic modification of the diatom, Thalassiosira pseudonana. Through the use of Foerster Resonance Energy Transfer (FRET), the receptor was shown to remain active in transformed frustules after the inner cellular contents were removed. In addition to protein functionality, growth conditions for T. pseudonana were optimized. Untransformed cultures receiving aeration grew more rapidly than stagnant untransformed cultures. Surprisingly, transformed cultures grew more quickly than untransformed cultures. This study demonstrates isolated diatom frustules provide an effective scaffold for embedded receptor complexes. Through this research, we provide the groundwork for the development of new biosensors for use in diagnostics and environmental remediation.

  5. Pigment organization effects on energy transfer and Chl a emission imaged in the diatoms C. meneghiniana and P. tricornutum in vivo: a confocal laser scanning fluorescence (CLSF) microscopy and spectroscopy study.

    Science.gov (United States)

    Premvardhan, Lavanya; Réfrégiers, Matthieu; Büchel, Claudia

    2013-09-26

    The (auto)fluorescence from three diatom strains, Cyclotella meneghiniana (Cm), Phaeodactylum tricornutum 1a (Pt1a), and Phaeodactylum UTex (PtUTex), has been imaged in vivo to submicrometer resolution using confocal laser scanning fluorescence (CLSF) microscopy. The diatoms are excited at 473 and 532 nm, energy primarily absorbed by the carotenoid fucoxanthin (Fx) found within the fucoxanthin chlorophyll a/c proteins (FCPs). On the basis of the fluorescence spectra measured in each image voxel, we obtain information about the spatial and energetic distribution of the terminal Chl a emitters, localized in the FCPs and the reaction centers of the PSII protein complexes, and the nature and location of the primary absorbers that are linked to these emitters; 532 nm excites the highly efficient Fx(red) light harvesters, and lesser amounts of Fx(green)s, that are enriched in some FCPs and preferentially transfer energy to PSII, compared to 473 nm, which excites almost equal amounts of all three previously identified sets of Fx--Fx(red), Fx(green) and Fx(blue)--as well as Chl c. The heterogeneous Chl a emission observed from the (C)LSF images indicates that the different Fx's serve different final emitters in P. tricornutum and suggest, at least in C. meneghiniana , a localization of FCPs with relatively greater Fx(red) content at the chloroplast edges, but with overall higher FCP concentration in the interior of the plastid. To better understand our results, the concentration-dependent ensemble-averaged diatom solution spectra are compared to the (auto)fluorescence spectra of individual diatoms, which indicate that pigment packing effects at an intracellular level do affect the diatoms' spectral properties, in particular, concerning a 710 nm emission band apparent under stress conditions. A species-specific response of the spectral signature to the incident light is also discussed in terms of the presence of a silica shell in Cm but not in Pt1a nor PtUTex.

  6. Diatom Attachment at Aquatic Interfaces: Molecular Interactions, Mechanisms, and Physiology of Adhesion

    National Research Council Canada - National Science Library

    Gretz, Michael

    1997-01-01

    .... those more hydrophobic and that bacterial 'preconditioning' has variable effects on adhesion; (3) developed methodology for mass culture of fouling diatoms and isolation of adhesive components; (4...

  7. The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: The case of the Ebro Estuary (Catalonia, Spain)

    Science.gov (United States)

    Rovira, L.; Trobajo, R.; Leira, M.; Ibáñez, C.

    2012-04-01

    This study of the distribution of benthic diatom assemblages and their relationship with environmental factors in a highly stratified Mediterranean estuary, i.e. the Ebro Estuary, shows the importance of hydrological dynamics to explain the features of the diatom community in such an estuary, where river flow magnitude and fluctuations imply strong physicochemical variability especially in sites close to the sea. Eight sites along the estuary were sampled during 2007-2008 both at superficial and deep water layers, in order to gather both horizontal and vertical estuarine physicochemical and hydrological gradients. Canonical Variates Analysis and Hierarchical Cluster Analysis segregated diatom community in two assemblages depending on the dynamics of the salt-wedge. The diatom assemblages of riverine conditions (i.e. without salt-wedge influence) where characterised by high abundances of Cocconeis placentula var. euglypta and Amphora pediculus, meanwhile high abundances of Nizschia frustulum and Nitzschia inconspicua were characteristic of estuarine conditions (i.e. under salt-wedge influence). Redundancy Analysis showed that both diatom assemblages responded seasonally to Ebro River flows, especially in estuarine conditions, where fluctuating conditions affected diatom assemblages both at spatial and temporal scale.

  8. Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Parigger, Christian G., E-mail: cparigge@tennessee.edu [The University of Tennessee/University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States); Woods, Alexander C.; Surmick, David M.; Gautam, Ghaneshwar; Witte, Michael J. [The University of Tennessee/University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States); Hornkohl, James O. [Hornkohl Consulting, Tullahoma, TN 37388 (United States)

    2015-05-01

    Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C{sub 2}), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C{sub 2}, CN, and TiO diatomic spectra. - Highlights: • We present a program for fitting of molecular spectra. • This includes data base for AlO, C{sub 2}, CN, and TiO. • We discuss the details of the program including fitting. • We show computed examples and reference current work.

  9. Kondo effect in single-molecule magnet transistors

    Science.gov (United States)

    Gonzalez, Gabriel; Leuenberger, Michael; Mucciolo, Eduardo

    2009-03-01

    We present a careful and thorough microscopic derivation of the anisotropic Kondo Hamiltonian for single-molecule magnet (SMM) transistors. When the molecule is strongly coupled to metallic leads, we show that by applying a transverse magnetic field it is possible to topologically induce or quench the Kondo effect in the conductance of a SMM with either an integer or a half-integer spin S>1/2. This topological Kondo effect is due to the Berry-phase interference between multiple quantum tunneling paths of the spin. We calculate the renormalized Berry-phase oscillations of the two Kondo peaks as a function of a transverse magnetic field by means of the poor man's scaling approach. We illustrate our findings with the SMM Ni4, which we propose as a possible candidate for the experimental observation of the conductance oscillations.

  10. Effect of deuteration on the vibrational spectra of organic molecules

    International Nuclear Information System (INIS)

    Billes, Ferenc; Endredi, Henrietta; Varady, Balazs

    2001-01-01

    The stable isotope substitution of organic compounds deforms their vibrational spectra. The modifications of the spectra appear as band shifts and changes in intensities and shapes of the bands. The magnitude of the effect depends on the ratio of the masses of the new and old isotopes and on the atom active position. According to these mentioned reasons large effects can be observed only if hydrogen atoms are substituted. With the effect of the substitution we dealt already in a former lecture. In this lecture we concentrate on the effect of the change of hydrogen to deuterium. We investigate the changes both experimentally and theoretically. There are two possibilities: - the hydrogen atom is in an active position, its interaction with the environment is strong, either it can dissociate or move on the skeleton of the molecule (tautomerism, resonance) and it can build hydrogen bond, (e.g. it is connected to nitrogen and oxygen atoms); - the hydrogen atom is in an indifferent position in the molecule, its interaction with the environment is weak (e.g. it joins carbon atom). When building the hydrogen bond besides the hydrogen donors also acceptors exist, namely, oxygen and nitrogen atoms having non-bonded electron pairs. When comparing the experimental and theoretical (calculated) effects of this type of isotope changes one must take into account that the calculations refer to the isolated molecule while the experimental spectra characterize the compound. The hydrogen bond is a very strong intermolecular interaction and produces tremendous changes in the infrared spectrum of the molecule in comparison to the imagined theoretical spectrum of the molecule. Some bands disappear, appear, or shift and deform drastically. The H/D change diminishes these effects. Of course, these changes entail the shift of several bands. The Raman spectrum is less sensitive to the large dipole moment changes therefore the deuteration effect is there less dramatic. Deuteration of hydrogen

  11. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1983-01-01

    In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis

  12. Towards a representative periphytic diatom sample

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The need to acquire a representative periphytic diatom sample for river water quality monitoring has been recognised in the development of existing diatom indices, important in the development and employment of diatom monitoring tools for the Water Framework Directive. In this study, a nested design with replication is employed to investigate the magnitude of variation in diatom biomass, composition and Trophic Diatom Index at varying scales within a small chalk river. The study shows that the use of artificial substrates may not result in diatom communities that are typical of the surrounding natural substrates. Periphytic diatom biomass and composition varies between artificial and natural substrates, riffles and glides and between two stretches of the river channel. The study also highlights the existence of high variation in diatom frustule frequency and biovolume at the individual replicate scale which may have implications for the use of diatoms in routine monitoring.

  13. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thi Duy Hanh [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Bonani, Walter [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy); Speranza, Giorgio [Center for Materials and Microsystems, PAM-SE, Fondazione Bruno Kessler, Trento (Italy); Sglavo, Vincenzo; Ceccato, Riccardo [Department of Industrial Engineering, University of Trento, Trento (Italy); Maniglio, Devid; Motta, Antonella [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy); Migliaresi, Claudio, E-mail: claudio.migliaresi@unitn.it [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy)

    2016-02-01

    Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions. - Highlights: • Diatomite is a natural source of silica and has a potential as silicon-donor for bone regenerative applications. • Diatom particles derived from purified diatom skeletons were prepared by fragmentation under extreme alkaline condition. • Dissolution of diatom particles derived from diatom skeletons in DI water depend on purification method

  14. Coherent Bichromatic Force Deflection of Molecules

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  15. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  16. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  17. Excited states rotational effects on the behavior of excited molecules

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also

  18. Diatom genomics: genetic acquisitions and mergers.

    Science.gov (United States)

    Nisbet, R Ellen R; Kilian, Oliver; McFadden, Geoffrey I

    2004-12-29

    Diatom algae arose by two-step endosymbiosis. The complete genome of the diatom Thalassiosira pseudonana has now been sequenced, allowing us to reconstruct the remarkable intracellular gene transfers that occurred during this convoluted cellular evolution.

  19. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  20. Fano effect in the transport of an artificial molecule

    Science.gov (United States)

    Norimoto, Shota; Nakamura, Shuji; Okazaki, Yuma; Arakawa, Tomonori; Asano, Kenichi; Onomitsu, Koji; Kobayashi, Kensuke; Kaneko, Nobu-hisa

    2018-05-01

    The Fano effect is a ubiquitous phenomenon arising from interference between a discrete energy state and an energy continuum. We explore this effect in an artificial molecule, namely, two lateral quantum dots (QDs) fabricated from a two-dimensional electron gas system and coupled in series. When the coupling between the leads and QDs is small, the charge stability diagram of the system shows a honeycomb lattice structure that is characteristic of a double QD system. As the coupling increases, a honeycomb structure consisting of the Fano resonances emerges. A numerical simulation based on the T-matrix method can satisfactorily reproduce our experimental observation. This report constitutes a clear example of the ubiquitous nature of the Fano effect in mesoscopic transport.

  1. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  2. Angle-resolved effective potentials for disk-shaped molecules

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  3. Automated measurement of diatom size

    Science.gov (United States)

    Spaulding, Sarah A.; Jewson, David H.; Bixby, Rebecca J.; Nelson, Harry; McKnight, Diane M.

    2012-01-01

    Size analysis of diatom populations has not been widely considered, but it is a potentially powerful tool for understanding diatom life histories, population dynamics, and phylogenetic relationships. However, measuring cell dimensions on a light microscope is a time-consuming process. An alternative technique has been developed using digital flow cytometry on a FlowCAM® (Fluid Imaging Technologies) to capture hundreds, or even thousands, of images of a chosen taxon from a single sample in a matter of minutes. Up to 30 morphological measures may be quantified through post-processing of the high resolution images. We evaluated FlowCAM size measurements, comparing them against measurements from a light microscope. We found good agreement between measurement of apical cell length in species with elongated, straight valves, including small Achnanthidium minutissimum (11-21 µm) and largeDidymosphenia geminata (87–137 µm) forms. However, a taxon with curved cells, Hannaea baicalensis (37–96 µm), showed differences of ~ 4 µm between the two methods. Discrepancies appear to be influenced by the choice of feret or geodesic measurement for asymmetric cells. We describe the operating conditions necessary for analysis of size distributions and present suggestions for optimal instrument conditions for size analysis of diatom samples using the FlowCAM. The increased speed of data acquisition through use of imaging flow cytometers like the FlowCAM is an essential step for advancing studies of diatom populations.

  4. All New Faces of Diatoms: Potential Source of Nanomaterials and Beyond

    Directory of Open Access Journals (Sweden)

    Meerambika Mishra

    2017-07-01

    Full Text Available Nature’s silicon marvel, the diatoms have lately astounded the scientific community with its intricate designs and lasting durability. Diatoms are a major group of phytoplanktons involved in the biogeochemical cycling of silica and are virtually inherent in every environment ranging from water to ice to soil. The usage of diatoms has proved prudently cost effective and its handling neither requires costly materials nor sophisticated instruments. Diatoms can easily be acquired from the environment, their culture requires ambient condition and does not involve any costly media or expensive instruments, besides, they can be transported in small quantities and proliferated to a desirable confluence from that scratch, thus are excellent cost effective industrial raw material. Naturally occurring diatom frustules are a source of nanomaterials. Their silica bio-shells have raised curiosity among nanotechnologists who hope that diatoms will facilitate tailoring minuscule structures which are beyond the capabilities of material scientists. Additionally, there is a colossal diversity in the dimensions of diatoms as the frustule shape differs from species to species; this provides a scope for the choice of a particular species of diatom to be tailored to an exacting requisite, thus paving the way to create desired three dimensional nanocomposites. The present article explores the use of diatoms in various arenas of science, may it be in nanotechnology, biotechnology, environmental science, biophysics or biochemistry and summarizes facets of diatom biology under one umbrella. Special emphasis has been given to biosilicification, biomineralization and use of diatoms as nanomaterials’, drug delivery vehicles, optical and immune-biosensors, filters, immunodiagnostics, aquaculture feeds, lab-on-a-chip, metabolites, and biofuels.

  5. Influence of land-use patterns on benthic diatom communities and ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effects of land-use patterns on both diatom community composition and water quality in tropical streams during the dry season. Benthic diatom collections and water quality sampling were done 4 times at 10 sites. A suite of environmental variables that varied with human ...

  6. Luminescence properties of a nanoporous freshwater diatom.

    Science.gov (United States)

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study

    Science.gov (United States)

    Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.

    2017-12-01

    Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.

  8. Effect of Bombay high crude oil and its water-soluble fraction on growth and metabolism of diatom Thalassiosira sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parab, S.R.; Pandit, R.A.; Kadam, A.N.; Indap, M.M.

    Effect of Bombay high crude oil (BHC) and its water-soluble fraction (WSF) on growth and metabolism of the phytoplankton, Thalassiosira sp. was assessed. The study revealed the signs of acute toxicity at higher concentrations of crude oil (0...

  9. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Bender, Sara J; Parker, Micaela S; Armbrust, E Virginia

    2012-03-01

    Diatoms are photoautotrophic organisms capable of growing on a variety of inorganic and organic nitrogen sources. Discovery of a complete urea cycle in diatoms was surprising, as this pathway commonly functions in heterotrophic organisms to rid cells of waste nitrogen. To determine how the urea cycle is integrated into cellular nitrogen metabolism and energy management, the centric diatom Thalassiosira pseudonana was maintained in semi-continuous batch cultures on nitrate, ammonium, or urea as the sole nitrogen source, under a 16: 8 light: dark cycle and at light intensities that were low, saturating, or high for growth. Steady-state transcript levels were determined for genes encoding enzymes linked to the urea cycle, urea hydrolysis, glutamine synthesis, pyrimidine synthesis, photorespiration, and energy storage. Transcript abundances were significantly affected by nitrogen source, light intensity and a diel cycle. The impact of N source on differential transcript accumulation was most apparent under the highest light intensity. Models of cellular metabolism under high light were developed based on changes in transcript abundance and predicted enzyme localizations. We hypothesize that the urea cycle is integrated into nitrogen metabolism through its connection to glutamine and in the eventual production of urea. These findings have important implications for nitrogen flow in the cell over diel cycles at surface ocean irradiances. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Entanglement of polar symmetric top molecules as candidate qubits.

    Science.gov (United States)

    Wei, Qi; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley

    2011-10-21

    Proposals for quantum computing using rotational states of polar molecules as qubits have previously considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use of polar symmetric top molecules. These offer advantages resulting from a first-order Stark effect, which renders the effective dipole moments nearly independent of the field strength. That permits use of much lower external field strengths for addressing sites. Moreover, for a particular choice of qubits, the electric dipole interactions become isomorphous with NMR systems for which many techniques enhancing logic gate operations have been developed. Also inviting is the wider chemical scope, since many symmetric top organic molecules provide options for auxiliary storage qubits in spin and hyperfine structure or in internal rotation states. © 2011 American Institute of Physics

  11. In vivo exposure to northern diatoms arrests sea urchin embryonic development.

    Science.gov (United States)

    Gudimova, Elena; Eilertsen, Hans C; Jørgensen, Trond Ø; Hansen, Espen

    2016-01-01

    There are numerous reports indicating that marine diatoms may act harmful to early developmental stages of invertebrates. It is believed that the compounds responsible for these detrimental effects are oxylipins resulting from oxidized polyunsaturated fatty acids, and that they may function as grazing deterrents. Most studies reporting these effects have exposed test organisms to diatom extracts or purified toxins, but data from in vivo exposure to intact diatoms are scarce. We have conducted sea urchin egg incubation and plutei feeding experiments to test if intact diatom cells affected sea urchin embryo development and survival. This was done by exposing the common northern sea urchins Strongylocentrotus droebachiensis and Echinus acutus to northern strains of the diatoms Chaetoceros socialis, Skeletonema marinoi, Chaetoceros furcellatus, Attheya longicornis, Thalassiosira gravida and Porosira glacialis. The intact diatom cell suspensions were found to inhibit sea urchin egg hatching and embryogenesis. S. marinoi was the most potent one as it caused acute mortality in S. droebachiensis eggs after only four hours exposure to high (50 μg/L Chla) diatom concentrations, as well as 24 h exposure to normal (20 μg/L Chla) and high diatom concentrations. The second most potent species was T. gravida that caused acute mortality after 24 h exposure to both diatom concentrations. A. longicornis was the least harmful of the diatom species in terms of embryo development arrestment, and it was the species that was most actively ingested by S. droebachiensis plutei. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Relativistic effects in bonding and dipole moments for the diatomic hydrides of the sixth-row heavy elements

    International Nuclear Information System (INIS)

    Ramos, A.F.; Pyper, N.C.; Malli, G.L.

    1988-01-01

    Ab initio Dirac-Fock (DF) and nonrelativistic-limit (NRL) wave functions and dipole moments are calculated to investigate the bonding characteristics and the relativistic effects in the systems HgH + , TlH, PbH + , and BiH. The dipole moment of AuH is evaluated using the DF self-consistent field and relativistic configuration-interaction wave functions obtained by G. L. Malli and N. C. Pyper [Proc. R. Soc. London, Ser. A 407, 377 (1986)]. Contour plots of relativistic molecular orbital densities and difference density maps are presented to illustrate the arrangement of electronic charge in these systems. It is found that the 5d orbitals are involved in the bonding of HgH + , whereas they do not play a significant role in TlH and PbH + . The relativistic calculations predict HgH + , TlH, and PbH + to be bound. The nonrelativistic-limit wave functions predict HgH + and BiH to be unbound but TlH and PbH + to be bound. It is also found that the calculated dipole moments using the DF and the NRL wave functions for these heavy systems differ significantly in magnitude, and in some cases even in the sign

  13. Sampler collection gadget for epilithic diatoms.

    Science.gov (United States)

    Salomoni, S E; Torgan, L C; Rocha, O

    2007-11-01

    This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS) can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.

  14. Sampler collection gadget for epilithic diatoms

    Directory of Open Access Journals (Sweden)

    SE. Salomoni

    Full Text Available This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.

  15. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms

    International Nuclear Information System (INIS)

    Belegratis, M R; Schmidt, V; Nees, D; Stadlober, B; Hartmann, P

    2014-01-01

    The diatoms are ubiquitous, exist in large numbers and show a great diversity of features on their porous silica structures. Therefore, they inspire the fabrication of nanostructured templates for nanoimprint processes (NIL), where large structured areas with nanometer precision are required. In this study, two approaches regarding the respective challenges and potential exploitations are followed and discussed: the first one takes advantage of a template that is directly made of natural occurring diatoms. Here, two replication steps via soft lithography are needed to obtain a template which is subsequently used for NIL. The second approach exploits the technical capabilities of the precise 3D laser lithography (3DLL) based on two-photon polymerization of organic materials. This method enables the fabrication of arbitrary artificial diatom-inspired micro- and nanostructures and the design of an inverse structure. Therefore, only one replication step is needed to obtain a template for NIL. In both approaches, a replication technique for true 3D structures is shown. (paper)

  16. Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium.

    Science.gov (United States)

    Windler, Miriam; Leinweber, Katrin; Bartulos, Carolina Rio; Philipp, Bodo; Kroth, Peter G

    2015-04-01

    Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation. © 2015 Phycological Society of America.

  17. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    Science.gov (United States)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  18. Diatom-induced silicon isotopic fractionation in Antarctic sea ice

    Science.gov (United States)

    Francois, F.; Damien, C.; Jean-Louis, T.; Anthony, W.; Luc, A.

    2006-12-01

    We measured silicon-isotopic composition of dissolved silicon and biogenic silica collected by sequential melting from spring 2003 Antarctic pack ice (Australian sector). Sea ice is a key ecosystem in the Southern Ocean and its melting in spring has been often thought to have a seeding effect for the surface waters, triggering blooms in the mixed layer. This work is the first investigation of the silicon isotopes' proxy in sea ice and allows to estimate the activity of sea-ice diatoms in the different brine structures and the influence of sea- ice diatoms on the spring ice edge blooms. The relative use of the dissolved silicon pool by sea-ice diatoms is usually assessed by calculating nutrient:salinity ratios in the brines. However such an approach is biased by difficulties in evaluating the initial nutrient concentrations in the different brines structures, and by the impossibility to account for late sporadic nutrient replenishments. The silicon-isotopic composition of biogenic silica is a convenient alternative since it integrates an average Si utilization on all generations of diatoms. Measurements were performed on a MC-ICP-MS, in dry plasma mode using external Mg doping. Results are expressed as delta29Si relative to the NBS28 standard. From three sea ice cores with contrasted physico-chemical characteristics, we report significant isotopic fractionations linked to the diatoms activity, with distinct silicon biogeochemical dynamics between different brine structure. The diatoms in snow ice and in brine pockets of frazil or congelation ice have the most positive silicon-isotopic composition (+0.53 to +0.86 p.mil), indicating that they grow in a closed system and use a significant part of the small dissolved silicon pool. In the brine channels and skeletal layer, diatoms display a relatively less positive Si-isotopic composition (+0.41 to +0.70 p.mil), although it is still heavier compared to equilibrium fractionation (+0.38 p.mil). This suggests that they have

  19. The marine diatom Chaeroceros simplex calcitrans Paulsen and its environment. Effects of light and ultraviolet irradiations on the biosynthesis of fatty acids

    International Nuclear Information System (INIS)

    Boutry, J.-L.; Barbier, Michel

    1976-01-01

    In continuous light (24/24 h) or with a 12/24 h photophase, the diatom synthesizes the same total amount of fatty acids. But the photophase considerably increases some of them: C18:2(+535%), C17:2(+422%), C17:0(+97%), C19:0(+97%), C17:1(+72%). Adding ultraviolet irradiations to the two mentioned conditions of light also increases the total amount of fatty acids and induces the biosynthesis of the C20:0. The results are discussed [fr

  20. Models of the delayed nonlinear Raman response in diatomic gases

    International Nuclear Information System (INIS)

    Palastro, J. P.; Antonsen, T. M. Jr.; Pearson, A.

    2011-01-01

    We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O 2 and N 2 , and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas' orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.

  1. Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions.

    Science.gov (United States)

    Xin, Na; Wang, Jinying; Jia, Chuancheng; Liu, Zitong; Zhang, Xisha; Yu, Chenmin; Li, Mingliang; Wang, Shuopei; Gong, Yao; Sun, Hantao; Zhang, Guanxin; Liu, Zhirong; Zhang, Guangyu; Liao, Jianhui; Zhang, Deqing; Guo, Xuefeng

    2017-02-08

    Biphenyl, as the elementary unit of organic functional materials, has been widely used in electronic and optoelectronic devices. However, over decades little has been fundamentally understood regarding how the intramolecular conformation of biphenyl dynamically affects its transport properties at the single-molecule level. Here, we establish the stereoelectronic effect of biphenyl on its electrical conductance based on the platform of graphene-molecule single-molecule junctions, where a specifically designed hexaphenyl aromatic chain molecule is covalently sandwiched between nanogapped graphene point contacts to create stable single-molecule junctions. Both theoretical and temperature-dependent experimental results consistently demonstrate that phenyl twisting in the aromatic chain molecule produces different microstates with different degrees of conjugation, thus leading to stochastic switching between high- and low-conductance states. These investigations offer new molecular design insights into building functional single-molecule electrical devices.

  2. Functionalized diatom silica microparticles for removal of mercury ions

    International Nuclear Information System (INIS)

    Yu Yang; Addai-Mensah, Jonas; Losic, Dusan

    2012-01-01

    Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH 2 ) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g -1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.

  3. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Science.gov (United States)

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  4. Rotational cooling of polar molecules by Stark-tuned cavity resonance

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond

    2003-01-01

    A general scheme for rotational cooling of diatomic heteronuclear molecules is proposed. It uses a superconducting microwave cavity to enhance the spontaneous decay via Purcell effect. Rotational cooling can be induced by sequentially tuning each rotational transition to cavity resonance, starting from the highest transition level to the lowest one using an electric field. Electrostatic multipoles can be used to provide large confinement volume with essentially homogeneous background electric field

  5. Relationship between diatom communities and environmental ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... The relationship between diatom species and measured environmental variables was explored at different sites of Honghe wetland region located in northeastern China. Planktonic and epiphytic diatom assemblages in the wetland were identified from May to October of 2007 and 2008. Their relationships.

  6. Relationship between diatom communities and environmental ...

    African Journals Online (AJOL)

    Abstract. The relationship between diatom species and measured environmental variables was explored at different sites of Honghe wetland region located in northeastern China. Planktonic and epiphytic diatom assemblages in the wetland were identified from May to October of 2007 and 2008. Their relationships with ...

  7. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  8. The First Quantum Theory of Molecules

    Indian Academy of Sciences (India)

    IAS Admin

    rotational energies of diatomic molecules. That theory was ... resent the intensity of light emitted by a black body as a function of ... by the vibrational motion of its parts”. Bjerrum was .... −1/4; despite the fact that no molecule is a rigid rotor,.

  9. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H.

    Science.gov (United States)

    Qu, Chang-Feng; Liu, Fang-Ming; Zheng, Zhou; Wang, Yi-Bin; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; An, Mei-Ling; Wang, Xi-Xi; He, Ying-Ying; Li, Lu-Lu; Miao, Jin-Lai

    2017-07-15

    Ocean acidification (OA) resulting from increasing atmospheric CO 2 strongly influences marine ecosystems, particularly in the polar ocean due to greater CO 2 solubility. Here, we grew the Antarctic sea ice diatom Nitzschia sp. ICE-H in a semicontinuous culture under low (~400ppm) and high (1000ppm) CO 2 levels. Elevated CO 2 resulted in a stimulated physiological response including increased growth rates, chlorophyll a contents, and nitrogen and phosphorus uptake rates. Furthermore, high CO 2 enhanced cellular particulate organic carbon production rates, indicating a greater shift from inorganic to organic carbon. However, the cultures grown in high CO 2 conditions exhibited a decrease in both extracellular and intracellular carbonic anhydrase activity, suggesting that the carbon concentrating mechanisms of Nitzschia sp. ICE-H may be suppressed by elevated CO 2 . Our results revealed that OA would be beneficial to the survival of this sea ice diatom strain, with broad implications for global carbon cycles in the future ocean. Copyright © 2017. Published by Elsevier Ltd.

  10. Effects of confinement on the Rydberg molecule NeH

    International Nuclear Information System (INIS)

    Lo, J M H; Klobukowski, M; Bielinska-Waz, D; Diercksen, G H F; Schreiner, E W S

    2005-01-01

    Ab initio potential energy curves of the Rydberg NeH molecule in the presence of cylindrical spatial confinement were computed by the method of multi-reference configuration interaction with extended basis sets. The influence of the applied potential to the structures and spectra of the ground and excited states of NeH was analysed in terms of perturbation theory. In addition, the phenomenon of field-induced ionization was discussed

  11. Effective intermolecular potential and critical point for C60 molecule

    Science.gov (United States)

    Ramos, J. Eloy

    2017-07-01

    The approximate nonconformal (ANC) theory is applied to the C60 molecule. A new binary potential function is developed for C60, which has three parameters only and is obtained by averaging the site-site carbon interactions on the surface of two C60 molecules. It is shown that the C60 molecule follows, to a good approximation, the corresponding states principle with n-C8H18, n-C4F10 and n-C5F12. The critical point of C60 is estimated in two ways: first by applying the corresponding states principle under the framework of the ANC theory, and then by using previous computer simulations. The critical parameters obtained by applying the corresponding states principle, although very different from those reported in the literature, are consistent with the previous results of the ANC theory. It is shown that the Girifalco potential does not correspond to an average of the site-site carbon-carbon interaction.

  12. What if the Diatoms of the Deep Chlorophyll Maximum Can Ascend?

    Science.gov (United States)

    Villareal, T. A.

    2016-02-01

    Buoyancy regulation is an integral part of diatom ecology via its role in sinking rates and is fundamental to understanding their distribution and abundance. Numerous studies have documented the effects of size and nutrition on sinking rates. Many pelagic diatoms have low intrinsic sinking rates when healthy and nutrient-replete (deep chlorophyll maximum. The potential for ascending behavior adds an additional layer of complexity by allowing both active depth regulation similar to that observed in flagellated taxa and upward transport by some fraction of deep euphotic zone diatom blooms supported by nutrient injection. In this talk, I review the data documenting positive buoyancy in small diatoms, offer direct visual evidence of ascending behavior in common diatoms typical of both oceanic and coastal zones, and note the characteristics of sinking rate distributions within a single species. Buoyancy control leads to bidirectional movement at similar rates across a wide size spectrum of diatoms although the frequency of ascending behavior may be only a small portion of the individual species' abundance. While much remains to be learned, the paradigm of unidirectional downward movement by diatoms is both inaccurate and an oversimplification.

  13. Seasonal and daily fluctuation of diatoms during spring tide periods in Kerkennah Islands

    Directory of Open Access Journals (Sweden)

    Mounir Ben brahim

    2015-06-01

    Full Text Available Objective: To study seasonal and the daily distribution of diatoms in the three tidal periods (flood, slack and ebb period during the spring tide. Methods: Water samples were taken and environmental variables were measured three times in each tidal period during 10 days of spring tide. Sampling was done in 2007 in Cercina station located in the western coast of Kerkennah (34°41'27'' N; 11°07'45'' E (Southern Tunisia. Results: Nutrients showed significant variation between seasons, increasing in spring and decreasing noticeably in autumn and winter. About 36 diatom species were found. Results revealed a remarkable abundance increase in spring and summer. Irregular differences in diatom abundances were revealed over the tidal periods, with the highest rates being detected during the flood and the ebb period, while the abundance rate was lowest during the slack period. This could presumably be attributed to the increase of nutrient supply of suspended particulate matter during water motion. The results revealed a correlation between diatom abundance and temperature, NO2 - , NO3 - , Si(OH4 and PO4 3 . Temperature seemed to be the most important factors which may influence the distribution and diatom abundance. Conclusions: Tide has various effects on the nutrients status and diatoms community (in terms of species composition, succession and abundance between different tidal periods. Fluctuation of diatoms was correlated with changes in the circulation of water bodies and changes in nutrient regime.

  14. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3......)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...

  15. Photon emission induced by impact of electrons on molecules

    International Nuclear Information System (INIS)

    Sprang, H.A. van.

    1980-01-01

    The author discusses both the history and the present state of emission spectroscopy and presents several previously published papers giving experimental data on some diatomic molecules and for chloro-fluoro methanes. (G.T.H.)

  16. Displacement functions for diatomic materials

    International Nuclear Information System (INIS)

    Panrkin, D.M.; Coulter, C.A.

    1979-01-01

    An extension of the methods of Lindhard et at. was used to calculate the total displacement function n/sub ij/(E) for a number of diatomic materials, where n/sub ij/(E) is defined to be the average number of atoms of type j which are displaced from their sites in a displacement cascade initiated by a PKA of type i and energy E. From the n/sub ij/(E) one can calculate the fraction n/sub ij/(E) of the displacements produced by a type i PKA with energy E which are of type j. Values of the n/sub ij/ for MgO, CaO, Al 2 O 3 , and TaO are presented. It is shown that for diatomic materials with mass ratios reasonably near one (e.g., MgO, Al 2 O 3 ) and equal displacement thresholds for the two species the n/sub ij/ become independent of the PKA type i at energies only a few times threshold. However, for larger mass ratios the n/sub ij/ do not become independent of i until much larger, energies are reached - e.g. > 10 5 eV for TaO. In addition, it is found that the n/sub ij/ depend sensitively on the displacement thresholds, with very dramatic charges occuring when the two thresholds become significantly different from one another

  17. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (paluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Diatom production in the marine environment : implications for larval fish growth and condition

    DEFF Research Database (Denmark)

    St. John, Michael; Clemmesen, C.; Lund, T.

    2001-01-01

    To test the effects of diatom production on larval fish growth and condition. laboratory experiments were performed with larval North Sea cod reared on different algal food chains. These food chains were based on cultures of (a) the diatoms Skeletonema costatum and Thalassiosira weissflogii: (b....../omega6 fatty acids in the algal source had no significant effect. The highest and lowest growth rates were observed in food chains based on H. triquetra and T. weissflogii. respectively (means for days 14-16 of 4.0 and - 4.7). The mixed diatom/dinoflagellate diet resulted in inter- mediate growth rates...... and condition. Regressions of growth rates against EPA and DHA content indicated no inhibitory effect of diatom production on growth in larval cod...

  19. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  20. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,; Wenjing Ye,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule's motion and its interaction

  1. Collisional-electron detachment of Cl- on diatomic molecules

    International Nuclear Information System (INIS)

    Annis, B.K.; Datz, S.

    1981-01-01

    Recent experimental results for collisional-electron detachment of Cl - by H 2 /D 2 , N 2 , O 2 , NO, and CO are discussed. The emphasis is on angular distributions and energy loss measurements for laboratory energies of a few hundred eV. Evidence for the possibility of bound excited states of N 2 Cl and COCl and the role of target negative-ion resonant states is presented

  2. Optimizing the multicycle subrotational internal cooling of diatomic molecules

    Science.gov (United States)

    Aroch, A.; Kallush, S.; Kosloff, R.

    2018-05-01

    Subrotational cooling of the AlH+ ion to the miliKelvin regime, using optimally shaped pulses, is computed. The coherent electromagnetic fields induce purity-conserved transformations and do not change the sample temperature. A decrease in a sample temperature, manifested by an increase of purity, is achieved by the complementary uncontrolled spontaneous emission which changes the entropy of the system. We employ optimal control theory to find a pulse that stirs the system into a population configuration that will result in cooling, upon multicycle excitation-emission steps. The obtained optimal transformation was shown capable to cool molecular ions to the subkelvins regime.

  3. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  4. Do Identical Polar Diatomic Molecules Form Stacked or Linear ...

    Indian Academy of Sciences (India)

    ias

    tractive and repulsive Coulomb interactions balance and cancel. Of course ... life, carbon (group 14), i.e., carbon bonding, has been proposed based ... Medical Institute EXROP program. ..... Hughes Medical Institute for support of this work. CW.

  5. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    Science.gov (United States)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  6. Diatomic Metasurface for Vectorial Holography.

    Science.gov (United States)

    Deng, Zi-Lan; Deng, Junhong; Zhuang, Xin; Wang, Shuai; Li, Kingfai; Wang, Yao; Chi, Yihui; Ye, Xuan; Xu, Jian; Wang, Guo Ping; Zhao, Rongkuo; Wang, Xiaolei; Cao, Yaoyu; Cheng, Xing; Li, Guixin; Li, Xiangping

    2018-05-09

    The emerging metasurfaces with the exceptional capability of manipulating an arbitrary wavefront have revived the holography with unprecedented prospects. However, most of the reported metaholograms suffer from limited polarization controls for a restrained bandwidth in addition to their complicated meta-atom designs with spatially variant dimensions. Here, we demonstrate a new concept of vectorial holography based on diatomic metasurfaces consisting of metamolecules formed by two orthogonal meta-atoms. On the basis of a simply linear relationship between phase and polarization modulations with displacements and orientations of identical meta-atoms, active diffraction of multiple polarization states and reconstruction of holographic images are simultaneously achieved, which is robust against both incident angles and wavelengths. Leveraging this appealing feature, broadband vectorial holographic images with spatially varying polarization states and dual-way polarization switching functionalities have been demonstrated, suggesting a new route to achromatic diffractive elements, polarization optics, and ultrasecure anticounterfeiting.

  7. Effect of organic molecules on hydrolysis of peptide bond: A DFT study

    International Nuclear Information System (INIS)

    Makshakova, Olga; Ermakova, Elena

    2013-01-01

    Highlights: ► DFT study of the effects of small organic molecules on the hydrolysis reactions of peptide bonds. ► Organic molecules can activate nonenzymatic hydrolysis reaction. ► Influence of organic acids on activation energy barrier correlates with their electronegativity. - Abstract: The activation and inhibition effects of small organic molecules on peptide hydrolysis have been studied using a model compound dialanine and DFT approach. Solvent-assisted and non-assisted concerted mechanisms were analyzed. Several transition states for the systems: alanine dipeptide–water molecule in complexes with alcohol molecules, acetonitrile, dimethylsulfoxide, propionic, lactic and pyruvic acids and water molecules were localized. The formation of hydrogen bonds between dipeptide, reactive water molecule and molecules of solvents influences the activation energy barrier of the peptide bond hydrolytic reaction. Strong effect of organic acids on the activation energy barrier correlates with their electronegativity. Acetonitrile can act as an inhibitor of reaction. Mechanisms of regulation of the activation energy barrier are discussed in the terms of donor-acceptor interactions

  8. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.

    1979-01-01

    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  9. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    Science.gov (United States)

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  10. Diatom algae of the Guni river (Pamir)

    International Nuclear Information System (INIS)

    Kurbonova, P.A.; Hisoriev, H.H.

    2006-01-01

    There are presented the dates of the results of diatom algae (Bacillariophyta) of the Gunt river. There was found 107 species and 9 subspecies which belong to 3 classics, 12 ordos, 13 families and 28 genus

  11. Importance of sampling frequency when collecting diatoms

    KAUST Repository

    Wu, Naicheng; Faber, Claas; Sun, Xiuming; Qu, Yueming; Wang, Chao; Ivetic, Snjezana; Riis, Tenna; Ulrich, Uta; Fohrer, Nicola

    2016-01-01

    There has been increasing interest in diatom-based bio-assessment but we still lack a comprehensive understanding of how to capture diatoms’ temporal dynamics with an appropriate sampling frequency (ASF). To cover this research gap, we collected

  12. Oceanographic and Biogeochemical Insights from Diatom Genomes

    Science.gov (United States)

    Bowler, Chris; Vardi, Assaf; Allen, Andrew E.

    2010-01-01

    Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes.

  13. Soliton solutions in a diatomic lattice system

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Satsuma, Junkichi.

    1979-04-01

    A continuum limit is considered for a diatomic lattice system with a cubic nonlinearity. A long wave equation describing the interaction of acoustic and optical modes is obtained. It reduces, in certain approximations, to equations having coupled wave solutions. The solutions exhibit trapping of an optical mode by an acoustic soliton. The form of the trapped optical wave depends on the mass ratio of adjacent particles in the diatomic lattice. (author)

  14. Large centric diatoms allocate more cellular nitrogen to photosynthesis to counter slower RUBISCO turnover rates

    Directory of Open Access Journals (Sweden)

    Yaping eWu

    2014-12-01

    Full Text Available Diatoms contribute ~40% of primary production in the modern ocean and encompass the largest cell size range of any phytoplankton group. Diatom cell size influences their nutrient uptake, photosynthetic light capture, carbon export efficiency, and growth responses to increasing pCO2. We therefore examined nitrogen resource allocations to the key protein complexes mediating photosynthesis across six marine centric diatoms, spanning 5 orders of magnitude in cell volume, under past, current and predicted future pCO2 levels, in balanced growth under nitrogen repletion. Membrane bound photosynthetic protein concentrations declined with cell volume in parallel with cellular concentrations of total protein, total nitrogen and chlorophyll. Larger diatom species, however, allocated a greater fraction (by 3.5 fold of their total cellular nitrogen to the soluble RUBISCO carbon fixation complex than did smaller species. Carbon assimilation per unit of RUBISCO large subunit (C RbcL-1 s-1 decreased with cell volume, from ~8 to ~2 C RbcL-1 s-1 from the smallest to the largest cells. Whilst a higher allocation of cellular nitrogen to RUBISCO in larger cells increases the burden upon their nitrogen metabolism, the higher RUBISCO allocation buffers their lower achieved RUBISCO turnover rate to enable larger diatoms to maintain carbon assimilation rates per total protein comparable to small diatoms. Individual species responded to increased pCO2, but cell size effects outweigh pCO2 responses across the diatom species size range examined. In large diatoms a higher nitrogen cost for RUBISCO exacerbates the higher nitrogen requirements associated with light absorption, so the metabolic cost to maintain photosynthesis is a cell size-dependent trait.

  15. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages.

    Directory of Open Access Journals (Sweden)

    Shelly C Wu

    Full Text Available Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.. Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups-the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas than on northern turtles (where mean abundance/state was > 10%. L. cf. mutica was the most abundant species (40% on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts.

  16. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages

    Science.gov (United States)

    Wu, Shelly C.; Bergey, Elizabeth A.

    2017-01-01

    Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina) across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.). Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups–the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas) than on northern turtles (where mean abundance/state was > 10%). L. cf. mutica was the most abundant species (40%) on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts. PMID:28192469

  17. Stark--Zeeman effect of metastable hydrogen molecules

    International Nuclear Information System (INIS)

    Kagann, R.H.

    1975-01-01

    The Stark effect of the N = 1 rotational level of orthohydrogen and the N = 2 rotational level of parahydrogen in the metastable c 3 PI/sub u/ electronic state has been measured using the molecular beam magnetic resonance method. The Stark effect of the metastable state is 10,000 times larger than that of the ground electronic state. The Stark effect of parahydrogen was found to be weakly dependent on static magnetic field strength, whereas the Stark effect of orthohydrogen was found to be more strongly dependent on the magnetic field strength. The Stark effect of orthohydrogen has been calculated using second-order perturbation theory with a pure Stark effect perturbation. The magnetic field dependence of the Stark effect was calculated using third-order perturbation theory with a mixed Stark--Zeeman effect double perturbation. A comparison of the experimental and theoretical values of α/sub perpendicular/ provides information on the electronic transition moment connecting the c 3 PI/sub u/ state to the a 3 Σ + /sub g/ state. The transition moment is needed to calculate the radiative lifetimes of the various vibrational levels of the c 3 PI/sub u/ state. The transition moment also enters the calculation of the quenching of this metastable state by an external electric field. There is a disagreement between theoretical predictions and the results of an experiment on the electric field quenching of the metastables. A test of the electronic transition moment may help shed light on this question. The experimental determination of the values of the transition moments allows one to test theory by comparing these values to those obtained by calculations employing ab initio wavefunctions

  18. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms

    Directory of Open Access Journals (Sweden)

    Bruno Gügi

    2015-09-01

    Full Text Available Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO2 fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.

  19. Effect of Candida albicans and Candida dubliniensis planktonic/biofilm quorum sensing molecules on yeast morphogenesis

    OpenAIRE

    Henriques, Mariana; Martins, Margarida Isabel Barros Coelho; Azeredo, Joana; Oliveira, Rosário

    2006-01-01

    One of the aims of this work was to study the effect of farnesol, a quorum sensing molecule for Candida albicans, on morphologic inhibition of Candida dubliniensis. The second goal of this work was to confirm if Candida dubliniensis also excreted quorum sensing molecules, on both planktonic and biofilm forms. The results clearly demonstrate that Candida dubliniensis undergoes morphological alterations triggered by farnesol. It was also found that supernatants of Candida dubliniensis and Ca...

  20. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    International Nuclear Information System (INIS)

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-01-01

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  1. Radiation damage in diatomic materials at high doses

    International Nuclear Information System (INIS)

    Hobbs, L.W.; Hughes, A.E.

    1975-10-01

    Radiation effects in diatomic materials can differ structurally from those in metals because of the need to take into account different displacement rates on the two sublattices and the inevitable stoichiometric implications; in most diatomic insulators the anion species has the greater displacement cross section. Anion point defect stabilisation in heavily-irradiated (0.1 to 10 dpa) diatomic insulators has been studied using radiolysis of alkali and alkaline earth halides. A temperatures > 0.3 Tsub(m), all anion defects are mobile and can aggregate. Aggregation of anion interstitials results in creation of perfect dislocation loops without the need for primary cation displacements; simultaneous formation of substitutional anion molecular centres provides the necessary cation interstitials. Aggregation of anion vacancies leads to formation of metallic inclusions of the cation species, in some cases in an ordered array, which is the analogue, on a single sublattice, to the void lattice in metals. Availability of sinks for both anion interstitials and anion vacancies yields defect growth kinetics similar to those observed during formation of voids in irradiated metals, and a very high level of damage (approximately 10%) can be sustained in the lattice. The width of the temperature region concerned is much narrower, however, due to the possibility of recombination of aggregated or re-emitted anion vacancies with mobile or dispersed anion molecular defects; the latter can also aggregate to form fluid anion molecular inclusions and so complete the decomposition of the solid into separate phases of its constituent elements. (author)

  2. Nature engineered diatom biosilica as drug delivery systems.

    Science.gov (United States)

    Uthappa, U T; Brahmkhatri, Varsha; Sriram, G; Jung, Ho-Young; Yu, Jingxian; Kurkuri, Nikita; Aminabhavi, Tejraj M; Altalhi, Tariq; Neelgund, Gururaj M; Kurkuri, Mahaveer D

    2018-05-14

    Diatoms, unicellular photosynthetic algae covered with siliceous cell wall, are also called frustule. These are the most potential naturally available materials for the development of cost-effective drug delivery systems because of their excellent biocompatibility, high surface area, low cost and ease of surface modification. Mesoporous silica materials such as MCM-41 and SBA-15 have been extensively used in drug delivery area. Their synthesis is challenging, time consuming, requires toxic chemicals and are energy intensive, making the entire process expensive and non-viable. Therefore, it is necessary to explore alternative materials. Surprisingly, nature has provided some exciting materials called diatoms; biosilica is one such a material that can be potentially used as a drug delivery vehicle. The present review focuses on different types of diatom species used in drug delivery with respect to their structural properties, morphology, purification process and surface functionalization. In this review, recent advances along with their limitations as well as the future scope to develop them as potential drug delivery vehicles are discussed. Copyright © 2018. Published by Elsevier B.V.

  3. Effect of dipole polarizability on positron binding by strongly polar molecules

    International Nuclear Information System (INIS)

    Gribakin, G F; Swann, A R

    2015-01-01

    A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered. (paper)

  4. Magnetic Field Effect in Conjugated Molecules-Based Devices

    Science.gov (United States)

    2017-10-23

    line shapes of magnetoconductance curves for diodes of pentacene:fullerene charge transfer complexes” Org . Electron. 15, 3076 (2014). (AOARD-14-4012...2. “The origins in the transformation of ambipolar to n-type pentacene-based organic field-effect transistors” Org . Electron. 15, 1759 (2014...shell nanoparticles doped PEDOT:PSS hole-transporter. Org . Electron. : Phys. Mater. Appl. 33, 221-226 (2016). 5. Huang, X., Wang, K. Yi, C., Meng, T

  5. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    Directory of Open Access Journals (Sweden)

    Cheong Xin Chan

    Full Text Available Membrane transporters (MTs facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT. Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%. Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely

  6. Fabrication of insulator nanocapillaries from diatoms

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Diatoms are unicellular microscopic organisms with silicon-dioxide based skeleton enveloped with an organic material, which composes essentially polysaccharides and proteins (see Fig. 1a.). As it was shown, the valva of the diatoms build up almost from clean silicondioxide [1]. Therefore, removing the organic compounds from the diatom, we can have in our hand an ideal, about 100 μ m-sized, and almost cylindrical shaped insulating nanostructure. There are various techniques available to disembarrass the diatom from its organic compounds. We used the so called hydrogen peroxide method. The advantageous properties of this method are the followings: a) this is one of the fastest procedures among the possible methods, b) do not require special equipment, c) cheap, and last but not least it is less harmful for health compared to other methods. This procedure can be an alternative way of the fabrication of insulator nanocapillaries. In this case the preparation of the nanocapillaries is simple and quick. Moreover, we do not need to invest expensive special techniques, (like micromachining-, electrochemical etching technique, moulding process etc) as it was necessary for the case of previously developed method producing insulator nanocapillaries [2,3]. Fig. 1b and Fig. 1c. show the scanning electron micrograph of the skeleton of the diatoms. The size of the cylindrical holes are roughly 200 nm (see Fig. 1c). (author)

  7. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    Energy Technology Data Exchange (ETDEWEB)

    Delcorte, Arnaud, E-mail: arnaud.delcorte@uclouvain.be [Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Universite catholique de Louvain, Croix du Sud, 1 bte 3, B-1348 Louvain-la-Neuve (Belgium); Garrison, Barbara J. [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)

    2011-07-15

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C{sub 60} to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to {approx}70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  8. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    International Nuclear Information System (INIS)

    Delcorte, Arnaud; Garrison, Barbara J.

    2011-01-01

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C 60 to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to ∼70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  9. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    Science.gov (United States)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  10. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule\\'s motion and its interaction with the resonator, the MC approach is by far the most accurate modeling approach for the modeling of squeeze-film damping in the free-molecule regime. The accuracy of this approach is demonstrated on several cases in which either analytical solutions or experimental measurements are available. It has been found that unlike the case when resonators oscillate in an unbounded domain, squeeze film damping is very sensitive to the mode shape, which implies that some of the existing modeling approaches based on rigid-resonator assumption may not be accurate when applied to model resonators oscillating at their deformed shape. ©2010 IEEE.

  11. Blinking effect and the use of quantum dots in single molecule spectroscopy

    International Nuclear Information System (INIS)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M.P.; Pardo, Julian; Gräber, P.; Galvez, E.M.

    2013-01-01

    Highlights: ► It is possible to eliminate the blinking effect of a water-soluble QD. ► We provide a direct method to study protein function and dynamics at the single level. ► QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the “on”/“off” states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein–protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  12. Blinking effect and the use of quantum dots in single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Domingo, M.P. [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Pardo, Julian [Grupo Apoptosis, Inmunidad y Cancer, Departamento Bioquimica y Biologia Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza (Spain); Fundacion Aragon I-D (ARAID), Gobierno de Aragon, Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain); Graeber, P. [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Galvez, E.M., E-mail: eva@icb.csic.es [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  13. Influence of the effective mass of water molecule on thermal neutron scattering

    International Nuclear Information System (INIS)

    Markovic, M.

    1981-01-01

    The influence of the effective water molecule mass on the thermal neutron scattering on the nucleus of the hydrogen atom has been investigated. Besides the actual water molecule mass (M = 18) the investigations have been carried out with its two effective values (M1 = 16 and M2 = 20). The differential and total cross sections have been calculated for the incident thermal neutron energy E o = 1 eV. Investigation results show different prominence of the quantum effects and for M2 the appearance of peaks in the quasielastic scattering. (author)

  14. Diatom paleoecology Pass Key core 37, Everglades National Park, Florida Bay

    Science.gov (United States)

    Pyle, Laura; Cooper, S.R.; Huvane, J.K.

    1998-01-01

    During the 20th century, there have been large-scale anthropogenic modifications to the South Florida ecosystem. The effects of these changes on Florida Bay and its biological communities are currently of political and scientific interest. This study is part of a larger effort to reconstruct the history of environmental changes in the bay, using paleoecological techniques. We are using diatom indicators preserved in Florida Bay sediments to infer long-term water quality, productivity, nutrient, and salinity changes. We are also obtaining information concerning the natural variability of the ecosystem. Diatoms are microscopic algae, the remains of which are generally well preserved in sediments, and their distributions are closely linked to water quality. Diatoms were extracted from a 70-cm sediment core collected from the Pass Key mudbank of Florida Bay by the U.S. Geological Survey. Between 300-500 diatom valves from each of 15 core samples were identified and counted. Estimates of absolute abundance, species richness, Shannon-Wiener diversity, and centric:pennate ratios were calculated for each sample that was counted. Information on the ecology of the diatom species is presented, and changes in diatom community composition are evaluated. Samples contained an average of four million diatom valves per gram of sediment. Major changes in the diatom community are evident down core. These include increases in the percent abundance of marine diatoms in the time period represented by the core, probably the result of increasing salinity at Pass Key. Benthic diatoms become less abundant in the top half of the core. This may be related to a number of factors including the die-off of sea grass beds or increased turbidity of the water column. Once the chronology of the Pass Key core 37 is established, these down-core changes can be related to historical events and compared with other indicators in the sedimentary record that are currently being investigated by U.S Geological

  15. Quantification of diatoms in biofilms: Standardisation of methods

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    of the difficulty in sampling and enumeration. Scraping or brushing are the traditional methods used for removal of diatoms from biofilms developed on solid substrata. The method of removal is the most critical step in enumerating the biofilm diatom community...

  16. 9 Records of Diatoms and Physicochemical.cdr

    African Journals Online (AJOL)

    Administrator

    between some physicochemical parameters and diatom species in these ponds. ..... Diversity and relative abundance (%) of diatoms species in selected seasonal ponds in Zaria, Nigeria ..... connection with reference conditions of the water.

  17. Preparation and method of study of fossil diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Two methods of chemical concentration of diatoms occurring in fresh-water sediments, and one chemico-mechanical method of concentration for diatoms occurring in marine sediments are outlined, with emphasis on the extreme care that needs...

  18. The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)

    Science.gov (United States)

    Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.

    2018-04-01

    The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.

  19. Vibrational-rotational relaxation of the simplest hydrogen-containing molecules (review)

    International Nuclear Information System (INIS)

    Molevich, N.E.; Oraevskii, A.N.

    1987-01-01

    In connection with the development of chemical lasers much attention is now devoted to the study of kinetic processes is gaseous mixtures containing the hydrogen halides. Vibrational relaxation of molecules if primarily studied without specifying its relation to the rational levels. Rotational relaxation is regarded a priori as faster than vibrational relaxation, so that the population of the rotational levels is assumed to be in equilibrium. This approach to the relaxation of hydrogen halide molecules (and other diatomic hydrogen-containing molecules), however, is unable to explain satisfactorily the results of the papers discussed below. An analysis of the data obtained in these papers leads to the conclusion that the general picture of relaxation in diatomic hydrogen-containing molecules must be viewed as a unified process of vibrational and rotational relaxation. It is shown that those effects observed during vibrational relaxation of such molecules which are unusual from the standpoint of the theory of vibrational-translational relaxation are well explained in terms of intermolecular vibrational-rotational relaxation together with pure rotational relaxation

  20. Acenes, Heteroacenes and Analogous Molecules for Organic Photovoltaic and Field Effect Transistor Applications

    Science.gov (United States)

    Granger, Devin Benjamin

    donor molecules for bulk heterojunction organic photovoltaics based on anthrathiophene and benzo[1,2-b:4,5-b']dithiophene central units like literature molecules containing fluorene and dithieno[2,3-b:2',3'-d]silole cores. The synthetic strategies of developing reduced symmetry benzo[1,2-b:4,5-b']dithiophene to study the effect of substitution around the central unit is also described. The optical and electronic properties of the donors and acceptors are described along with the performance and characteristics of devices employing these molecules. The final two data chapters focus on new nitrogen containing polycyclic hydrocarbons containing indolizine and (2.2.2) cyclazine units. The optical, electronic and other physical properties of these molecules are explored, in addition to the synthetic strategies for incorporating the indolizine and cyclazine units. By use of alkylsilylethynyl groups, crystal engineering was investigated for the benzo[2,3-b:5,6-b']diindolizine chromophore described in chapter 4 to target the 2-D "brick-work" packing motif for application in field effect transistor devices. Optical and electronic properties of the cyclazine end-capped acene molecules described in chapter 5 were investigated and described in relation to the base acene molecules. In both cases, density functional theory calculations were conducted to better understand unexpected optical properties of these molecules, which are like the linear acene series despite the non-linear attachment.

  1. Diatoms: a fossil fuel of the future.

    Science.gov (United States)

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity

    International Nuclear Information System (INIS)

    Duong, Thi Thuy; Morin, Soizic; Coste, Michel; Herlory, Olivier; Feurtet-Mazel, Agnes; Boudou, Alain

    2010-01-01

    A study was undertaken to examine cadmium accumulation in freshwater biofilm, its effects on biofilm development and on diatom community structure in laboratory experimental conditions. A suspension of a biofilm originated from the Riou-Mort River (South West France) was inoculated into three experimental units containing clean glass substrates under laboratory conditions. Settling and already developed biofilms were exposed to a Cd concentration of 100 μg L -1 . Metal accumulation (total and intracellular metal content) in biofilms, dry weight and ash-free dry mass, diatom cell density and diatom community composition were analyzed. Both total and intracellular Cd accumulated by the biofilm throughout the experiment increased with duration of metal exposure. Biofilms in the course of maturation were showed higher Cd content and less effective development than settled biofilms. However diatom communities in younger biofilms exposed to Cd increased their tolerance to Cd by a highly significant development of Nitzschia palea. In contrast, Cd exposure had different effect in installed biofilm and taxonomic composition. These results indicate that mature biofilm may limit Cd accumulation into its architecture and protect diatom communities from the effects of metals.

  3. Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica and a Coastal Diatom (Thalassiosira pseudonana

    Directory of Open Access Journals (Sweden)

    Scott Meyerink

    2017-07-01

    Full Text Available The fractionation of silicon (Si isotopes was measured in two Southern Ocean diatoms (Proboscia inermis and Eucampia Antarctica and a coastal diatom (Thalassiosira pseudonana that were grown under varying iron (Fe concentrations. Varying Fe concentrations had no effect on the Si isotope enrichment factor (ε in T. pseudonana, whilst E. Antarctica and P. inermis exhibited significant variations in the value of ε between Fe-replete and Fe-limited conditions. Mean ε values in P. inermis and E. Antarctica decreased from (± 1SD −1.11 ± 0.15‰ and −1.42 ± 0.41 ‰ (respectively under Fe-replete conditions, to −1.38 ± 0.27 ‰ and −1.57 ± 0.5 ‰ (respectively under Fe-limiting conditions. These variations likely arise from adaptations in diatoms arising from the nutrient status of their environment. T. pseudonana is a coastal clone typically accustomed to low Si but high Fe conditions whereas E. Antarctica and P. inermis are typically accustomed to High Si, High nitrate low Fe conditions. Growth induced variations in silicic acid (Si(OH4 uptake arising from Fe-limitation is the likely mechanism leading to Si-isotope variability in E. Antarctica and P. inermis. The multiplicative effects of species diversity and resource limitation (e.g., Fe on Si-isotope fractionation in diatoms can potentially alter the Si-isotope composition of diatom opal in diatamaceous sediments and sea surface Si(OH4. This work highlights the need for further in vitro studies into intracellular mechanisms involved in Si(OH4 uptake, and the associated pathways for Si-isotope fractionation in diatoms.

  4. Low dose radiation induced protein and its effect on expression of CD25 molecule in lymphocytes

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2001-01-01

    Objective: To find the substantial basis for effects of low dose radiation, on development, extraction, and the biogical activity of the low-dose radiation-induced proteins, and the effects of LDR induced proteins on CD25 molecule expression of human lymphocytes. Methods: 1. Healthy Kumning male mice exposed to radiation of 226 Ra γ-rays at 5, 10 and 15 cGy respectively. The mice were killed 2 hours after exposure, the spleen cells were broken with ultrasonic energy and then ultra-centrifugalized at low temperature (4 degree C). The LDR-induced proteins were obtained in the supernatant solution. Then the changes of CD25 molecule was measured by flow cytometry (FCM) with immunofluorescence technique, which was used to reflect the effect of LDR induced proteins on CD25 molecule expression of human lymphocytes. Results: LDR induced proteins were obtained from spleen cells in mice exposed to 5-15 cGy whole body radiation. Conclusion: The expression of CD25 molecule of lymphocytes was increased significantly after use of LDR induced proteins. LDR induced proteins can enhance expression of CD25 molecule of lymphocytes slightly

  5. Bianthrone in a Single-Molecule Junction: Conductance Switching with a Bistable Molecule Facilitated by Image Charge Effects

    DEFF Research Database (Denmark)

    Bjørnholm, Thomas

    2010-01-01

    Bianthrone is a sterically hindered compound that exists in the form of two nonplanar isomers. Our experimental study of single-molecule junctions with bianthrone reveals persistent switching of electric conductance at low temperatures, which can be reasonably associated with molecular isomerizat...

  6. Diatoms in Liyu Lake, Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Liang-Chi Wang

    2010-09-01

    Full Text Available This study described the diatoms appeared in the sediments of Liyu Lake, a lowland natural lake situated at Hualen, eastern Taiwan. A total of 50 species was found in the sediments of this eutrophic lake. In them, 8 species were reported for the first time in Taiwan. They are: Cymbella thienemannii, Navicula absoluta, Navicula bacillum, Frustulia rhomboides var. crassinervia, Gyrosigma procerum, Nitzschia paleacea Epithemia smithii and Eunotia subarcuatioides. The ultrastructures of each species were described on the basis of observations under a scanning electron microscope. The ecological implications of the occurrence of these diatom species in this lake were inferred.

  7. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.

    Science.gov (United States)

    Zargiel, Kelli A; Swain, Geoffrey W

    2014-01-01

    Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek(®) 700, Intersleek(®) 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard(®) 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced

  8. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

    Science.gov (United States)

    Young, Jodi N.; Heureux, Ana M.C.; Sharwood, Robert E.; Rickaby, Rosalind E.M.; Morel, François M.M.; Whitney, Spencer M.

    2016-01-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23–68 µM), SC/O (57–116mol mol−1), and K O (413–2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1–3.7s−1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  9. Superexcited states of molecules

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Takagi, Hidekazu.

    1990-01-01

    The report addresses the nature and major features of molecule's superexcited states, focusing on their involvement in dynamic processes. It also outlines the quantum defect theory which allows various processes involving these states to be treated in a unified way. The Rydberg state has close relation with an ionized state with a positive energy. The quantum defect theory interprets such relation. Specifically, the report first describes the quantum defect theory focusing on its basic principle. The multi-channel quantum defect theory is then outlined centering on how to describe a Rydberg-type superexcited state. Description of a dissociative double-electron excited state is also discussed. The quantum defect theory is based on the fact that the physics of the motion of a Rydberg electron vary with the region in the electron's coordinate space. Finally, various molecular processes that involve a superexcited state are addressed focusing on autoionization, photoionization, dissociative recombination and bonding ionization of diatomic molecules. (N.K.)

  10. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  11. Teaching lasers to control molecules

    International Nuclear Information System (INIS)

    Judson, R.S.; Rabitz, H.

    1992-01-01

    We simulate a method to teach a laser pulse sequences to excite specified molecular states. We use a learning procedure to direct the production of pulses based on ''fitness'' information provided by a laboratory measurement device. Over a series of pulses the algorithm learns an optimal sequence. The experimental apparatus, which consists of a laser, a sample of molecules and a measurement device, acts as an analog computer that solves Schroedinger's equation n/Iexactly, in real time. We simulate an apparatus that learns to excite specified rotational states in a diatomic molecule

  12. Effect of continuous recombinant human endostatin pumping combined with TP chemotherapy on serum malignant molecules and angiogenesis molecules in patients with advanced ovarian cancer

    Directory of Open Access Journals (Sweden)

    Wei-Dong Chen

    2017-05-01

    Full Text Available Objective: To study the effect of continuous recombinant human endostatin pumping combined with TP chemotherapy on serum malignant molecules and angiogenesis molecules in patients with advanced ovarian cancer. Methods: 78 patients with advanced ovarian cancer who were treated in our hospital between July 2011 and December 2015 were selected and divided into observation group and control group (n=39 according to the single-blind randomized control method. Before treatment and after 4 cycles of treatment, electrochemical luminescence immunity analyzer was used to detect serum tumor marker levels; RIA method was used to determine serum apoptosis molecule levels; enzyme-linked immunosorbent assay (ELISA was used to detect the serum angiogenesis molecule levels. Results: Before treatment, differences in serum levels of tumor markers, apoptosis molecules and angiogenesis molecules were not statistically significant between two groups of patients (P>0.05. After 4 cycles of treatment, serum carbohydrate antigen 125 (CA125, carbohydrate antigen 153 (CA153, human epididymis protein 4 (HE4, carcinoembryonic antigen (CEA, human chorionic gonadotropin (β-HCG, Bcl-2, Survivin, Bag-1, angiogenin-2 (Ang-2, vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF levels of observation group were significantly lower than those of control group (P<0.05 while Bax level was significantly higher than that of control group (P<0.05. Conclusions: Continuous recombinant human endostatin pumping combined with TP chemotherapy can decrease the malignant degree of advanced ovarian cancer and inhibit angiogenesis.

  13. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  14. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    Science.gov (United States)

    Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972

  15. Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method

    Directory of Open Access Journals (Sweden)

    Ituen B. Okon

    2017-01-01

    Full Text Available We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP. We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2, lithium hydride molecule (LiH, hydrogen chloride molecule (HCl, and carbon (II oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.

  16. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  17. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    Science.gov (United States)

    2008-12-02

    Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...2008 proteinscience.org Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe...diagnosis and treatment, an effort referred to as materiomics. Keywords: steered molecular dynamics; osteogenesis imperfecta ; Young’s modulus; collagen

  18. Effect resonance radiation transfer of excitation porous silicon to I sub 2 molecules sorbed in pores

    CERN Document Server

    Zakharchenko, K V; Kuznetsov, M B; Chistyakov, A A; Karavanskij, V A

    2001-01-01

    One studies the effect of resonance radiation-free transfer of electronic excitation between silicon nanocrystals and iodine molecules sorbed in pores. The experiment procedure includes laser-induced luminescence and laser desorption mass spectrometry. One analyzes photoluminescence spectra prior to and upon iodine sorption. Excitation of iodine through the mechanism of resonance transfer is determined to result in desorption of the iodine sorbed molecules with relatively high kinetic energies (3-1 eV). One evaluated the peculiar distance of resonance transfer the approximate value of which was equal to 2 nm

  19. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  20. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom

    Science.gov (United States)

    Ianora, Adrianna; Miralto, Antonio; Poulet, Serge A.; Carotenuto, Ylenia; Buttino, Isabella; Romano, Giovanna; Casotti, Raffaella; Pohnert, Georg; Wichard, Thomas; Colucci-D'Amato, Luca; Terrazzano, Giuseppe; Smetacek, Victor

    2004-05-01

    The growth cycle in nutrient-rich, aquatic environments starts with a diatom bloom that ends in mass sinking of ungrazed cells and phytodetritus. The low grazing pressure on these blooms has been attributed to the inability of overwintering copepod populations to track them temporally. We tested an alternative explanation: that dominant diatom species impair the reproductive success of their grazers. We compared larval development of a common overwintering copepod fed on a ubiquitous, early-blooming diatom species with its development when fed on a typical post-bloom dinoflagellate. Development was arrested in all larvae in which both mothers and their larvae were fed the diatom diet. Mortality remained high even if larvae were switched to the dinoflagellate diet. Aldehydes, cleaved from a fatty acid precursor by enzymes activated within seconds after crushing of the cell, elicit the teratogenic effect. This insidious mechanism, which does not deter the herbivore from feeding but impairs its recruitment, will restrain the cohort size of the next generation of early-rising overwinterers. Such a transgenerational plant-herbivore interaction could explain the recurringly inefficient use of a predictable, potentially valuable food resource-the spring diatom bloom-by marine zooplankton.

  1. The fascinating diatom frustule—can it play a role for attenuation of UV radiation?

    DEFF Research Database (Denmark)

    Ellegaard, Marianne; Lenau, Torben Anker; Lundholm, Nina

    2016-01-01

    size range as wave lengths of visible and ultraviolet (UV) light. This has prompted research into the possible role of the frustule in mediating light for the diatoms’ photosynthesis as well as into possible photonic applications of the diatom frustule. One of the possible biological roles, as well...... as area of potential application, is UV protection. In this review, we explore the possible adaptive value of the silica frustule with focus on research on the effect of UV radiation ondiatoms. We also explore the possible effect of the frustules on UV radiation, from a theoretical, biological......, and applied perspective, including recent experimental data on UV transmission of diatom frustules....

  2. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour

    Science.gov (United States)

    Smayda, T. J.; Trainer, V. L.

    2010-04-01

    The influence of diatom bloom behaviour, dinoflagellate life cycles, propagule type and upwelling bloom cycles on the seeding of dinoflagellate blooms in eastern boundary current upwelling systems is evaluated. Winter-spring diatom bloom behaviour is contrasted with upwelling bloom behaviour because their phenology impacts dinoflagellate blooms. The winter-spring diatom bloom is usually sustained, whereas the classical upwelling diatom bloom occurs as a series of separate, recurrent mini-blooms intercalated by upwelling-relaxation periods, during which dinoflagellates often bloom. Four sequential wind-regulated phases characterize upwelling cycles, with each phase having different effects on diatom and dinoflagellate bloom behaviour: bloom “spin up”, bloom maximum, bloom “spin down”, and upwelling relaxation. The spin up - bloom maximum is the period of heightened diatom growth; the spin down - upwelling-relaxation phases are the periods when dinoflagellates often bloom. The duration, intensity and ratio of the upwelling and relaxation periods making up upwelling cycles determine the potential for dinoflagellate blooms to develop within a given upwelling cycle and prior to the subsequent “spin up” of upwelling that favours diatom blooms. Upwelling diatoms and meroplanktonic dinoflagellates have three types of propagules available to seed blooms: vegetative cells, resting cells and resting cysts. However, most upwelling dinoflagellates are holoplanktonic, which indicates that the capacity to form resting cysts is not an absolute requirement for growth and survival in upwelling systems. The long-term (decadal) gaps in bloom behaviour of Gymnodinium catenatum and Lingulodinium polyedrum, and the unpredictable bloom behaviour of dinoflagellates generally, are examined from the perspective of seeding strategies. Mismatches between observed and expected in situ bloom behaviour and resting cyst dynamics are common among upwelling dinoflagellates. This

  3. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.

    Science.gov (United States)

    Abdalla, S; Obaid, A; Al-Marzouki, F M

    2017-12-01

    Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. We have succeeded to measure both electrical conductivity due to EFs (σ ENV ) and electrical conductivity due to DNA molecule (σ DNA ) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε' DNA as a

  4. A First Look at Oxygen and Silicon Isotope Variations in Diatom Silica from a Pliocene Antarctic Marine Sediment Core

    Science.gov (United States)

    Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.

    2016-02-01

    Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a

  5. Action Spectrum of Photoinhibition in the Diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Havurinne, Vesa; Tyystjärvi, Esa

    2017-12-01

    Light-dependent electron transfer is necessary for photosynthesis, but light also damages PSII. Light-induced damage to PSII is called photoinhibition, and the damaging reactions of photoinhibition are still under debate. Diatoms possess an exotic combination of light-harvesting pigments, Chls a/c and fucoxanthin, making them an interesting platform for studying the photoreceptors of photoinhibition. We first confirmed the direct proportionality of photoinhibition to the photon flux density of incident light in the diatom Phaeodactylum tricornutum. Phaeodactylum is known for its efficient non-photochemical quenching, and the effect of this photoprotective mechanism on photoinhibition was tested. Photoinhibition proceeded essentially at the same rate in blue-light-grown Phaeodactylum cells that are capable of non-photochemical quenching and in red-light-grown, non-photochemical quenching-deficient cells. To obtain more insight into how the pigment composition of diatoms affects photoinhibition, we measured the action spectrum of photoinhibition in Phaeodactylum. In visible light, the action spectrum resembled the absorption spectrum of Phaeodactylum, and UV radiation caused much more photoinhibition than visible light. Comparison of the action spectrum of photoinhibition with the absorption spectrum and the excitation spectrum of 77 K PSII fluorescence emission confirmed that photosynthetic pigments are involved in photoinhibition, but the photoinhibitory efficiency of red light is weak, suggesting that the role of light-harvesting pigments as light receptors of photoinhibition is secondary. Finally, we compared photoinhibition in Phaeodactylum with that in other photosynthetic organisms, and our data indicate that the PSII reaction centers of Phaeodactylum are not particularly well protected against the primary damage of photoinhibition. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights

  6. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Science.gov (United States)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  7. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    Science.gov (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  8. Observation of Resonant Effects in Ultracold Collisions between Heteronuclear Feshbach Molecules

    Science.gov (United States)

    Ye, Xin; Wang, Fudong; Zhu, Bing; Guo, Mingyang; Lu, Bo; Wang, Dajun

    2016-05-01

    Magnetic field dependent dimer-dimer collisional losses are studied with ultracold 23 Na87 Rb Feshbach molecules. By ramping the magnetic field across the 347.8 G inter-species Feshbach resonance and removing residual atoms with a magnetic field gradient, ~ 8000 pure NaRb Feshbach molecules with a temperature below 1 μK are produced. By holding the pure molecule sample in a crossed optical dipole trap and measuring the time-dependent loss curves under different magnetic fields near the Feshbach resonance, the dimer-dimer loss rates with respect to the atomic scattering length a are mapped out. We observe a resonant feature at around a = 600a0 and a rising tail at above a = 1600a0 . This behavior resembles previous theoretical works on homonuclear Feshbach molecule, where resonant effects between dimer-dimer collisions tied to tetramer bound states were predicted. Our work shows the possibility of exploring four-body physics within a heteronuclear system. We are supported by Hong Kong RGC General Research Fund no. CUHK403813.

  9. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-01-01

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the 2 Σ + ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  10. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Dou, Huili

    2015-01-01

    Highlights: • The specific heat ratio of the mixture increases with increasing Ar. • The thermal efficiency increases first and then decreases with increasing Ar. • Mechanisms of reducing NOx emissions are different for different dilution gases. • A suitable inert gas should be used to meet different requirements. - Abstract: Argon (Ar), nitrogen (N_2) and carbon dioxide (CO_2), present in exhaust gas recirculation (EGR) and air, are common atomic, diatomic and polyatomic inert gases, separately. As dilution gases, they are always added into the intake charge to reduce nitrogen oxides (NOx) emissions, directly or along with EGR and air. This paper presents the effects of Ar, N_2 and CO_2 on mixture properties, combustion, thermal efficiency and NOx emissions of pilot-ignited natural gas engines. Thermodynamic properties of the air-dilution gas mixture with increasing dilution gases, including density, gas constant, specific heat ratio, specific heat capacity, heat capacity and thermal diffusivity, were analyzed theoretically using thermodynamic relations and ideal gas equations based on experimental results. The thermal and diluent effects of dilution gases on NOx emissions were investigated based on Arrhenius Law and Zeldovich Mechanism, experimentally and theoretically. The experiments were arranged based on an electronically controlled heavy-duty, 6-cylinder, turbocharged, pilot-ignited natural gas engine. The resulted show that adding different inert gases into the intake charge had different influences on the thermodynamic properties of the air-dilution gas mixture. No great change in combustion phase was found with increasing dilution ratio (DR) of Ar, while the flame development duration increased significantly and CA50 moved far away from combustion top dead center (TDC) obviously with increasing DR for both of N_2 and CO_2. Adding Ar was superior in maintaining high thermal efficiencies than CO_2 and N_2, but adding CO_2 was superior in maintaining

  11. Diatomic infrared gas-dynamic laser

    International Nuclear Information System (INIS)

    Mckenzie, R.L.

    1971-01-01

    A laser is provided which utilizes the infrared vibration rotation transitions of a diatomic gas such as carbon monoxide. The laser action is produced by an active diatomic gas such as carbon monoxide mixed with a vibrationally resonant pumping gas such as nitrogen. In addition, a noble gas such as argon may be employed as a third gas in the mixture. The gas mixture contains from 1 to 80 vol percent of the active gas based on the pumping gas, and the third gas, if used, can constitute up to 90 percent of the total gas volume. A number of significantly different wavelengths can be produced by the laser. A single laser may contain several optical resonators at different locations, so that the desired wave length can be selected at will

  12. Distilling two-center-interference information during tunneling of aligned molecules with orthogonally polarized two-color laser fields

    Science.gov (United States)

    Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.

    2017-12-01

    When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.

  13. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    OpenAIRE

    Y Yousefi; H Fakhari; K Muminov; M R Benam

    2018-01-01

    Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...

  14. Effects of a donor on the bond property of quantum-dot molecules

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Min; Luo Ying; Ma Ben-Kun; Duan Su-Qing; Zhao Xian-Geng

    2004-01-01

    Within the framework of effective mass approximation, we have calculated the electronic structure of the two laterally coupled quantum dots with a donor by the finite element method. The calculated results show that the bond states of quantum-dot molecules are quite sensitive to the donor positions. By varying the donor position, the transition from covalent to ionic bond state is realized for some electronic states. Some extreme cases are also discussed for comparison.

  15. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    International Nuclear Information System (INIS)

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab

  16. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    Science.gov (United States)

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a

  17. The Therapeutic Effect of the Antitumor Drug 11 Beta and Related Molecules on Polycystic Kidney Disease

    Science.gov (United States)

    2017-10-01

    models (Somlo, Yale). Preparation work to assemble a collection of probes specific for oxidative stress genes and other PKD specific genes (as part... Worked : 6 Contribution to Project: Performance of experiments including those related to mitochondrial biology in vivo and unfolded protein...1 AWARD NUMBER: W81XWH-15-1-0364 TITLE: THE THERAPEUTIC EFFECT OF THE ANTITUMOR DRUG 11 BETA AND RELATED MOLECULES ON POLYYSTIC KIDNEY DISEASE

  18. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    Full Text Available Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  19. Silicon diatom frustules as nanostructured photoelectrodes.

    Science.gov (United States)

    Chandrasekaran, Soundarrajan; Sweetman, Martin J; Kant, Krishna; Skinner, William; Losic, Dusan; Nann, Thomas; Voelcker, Nicolas H

    2014-09-18

    In the quest for solutions to meeting future energy demands, solar fuels play an important role. A particularly promising example is photocatalysis since even incremental improvements in performance in this process are bound to translate into significant cost benefits. Here, we report that semiconducting and high surface area 3D silicon replicas prepared from abundantly available diatom fossils sustain photocurrents and enable solar energy conversion.

  20. Collision-induced dissociation of diatomic ions

    International Nuclear Information System (INIS)

    Los, J.; Govers, T.R.

    1978-01-01

    An attempt is made to illustrate how mass spectrometric studies of dissociation in diatomic molecular ions can provide information on the dynamics of these collisions and on the predissociative states involved. Restriction is made to primary beam energies of the order of at least keV. The review covers the dynamics of dissociation, experimental techniques, direct dissociation in heavy-particle collisions, and translational spectroscopy. 120 references

  1. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    International Nuclear Information System (INIS)

    Santos, O. L.; Fonseca, T. L.; Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-01-01

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller–Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal

  2. Behavior of the Position-Spread Tensor in Diatomic Systems.

    Science.gov (United States)

    Brea, Oriana; El Khatib, Muammar; Angeli, Celestino; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Leininger, Thierry

    2013-12-10

    The behavior of the Position-Spread Tensor (Λ) in a series of light diatomic molecules (either neutral or negative ions) is investigated at a Full Configuration Interaction level. This tensor, which is the second moment cumulant of the total position operator, is invariant with respect to molecular translations, while its trace is also rotationally invariant. Moreover, the tensor is additive in the case of noninteracting subsystems and can be seen as an intrinsic property of a molecule. In the present work, it is shown that the longitudinal component of the tensor, Λ∥, which is small for internuclear distances close to the equilibrium, tends to grow if the bond is stretched. A maximum is reached in the region of the bond breaking, then Λ∥ decreases and converges toward the isolated-atom value. The degenerate transversal components, Λ⊥, on the other hand, usually have a monotonic growth toward the atomic value. The Position Spread is extremely sensitive to reorganization of the molecular wave function, and it becomes larger in the case of an increase of the electron mobility, as illustrated by the neutral-ionic avoided crossing in LiF. For these reasons, the Position Spread can be an extremely useful property that characterizes the nature of the wave function in a molecular system.

  3. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp

    NARCIS (Netherlands)

    Buma, A.G.J.; Van Hannen, E.J.; Veldhuis, M.; Gieskes, W.W.C.

    1996-01-01

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  4. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp.

    NARCIS (Netherlands)

    Buma, A.G.J.; van Hannen, E.J; Veldhuis, M.J W; Gieskes, W.W C

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  5. Identifying community thresholds for lotic benthic diatoms in response to human disturbance.

    Science.gov (United States)

    Tang, Tao; Tang, Ting; Tan, Lu; Gu, Yuan; Jiang, Wanxiang; Cai, Qinghua

    2017-06-23

    Although human disturbance indirectly influences lotic assemblages through modifying physical and chemical conditions, identifying thresholds of human disturbance would provide direct evidence for preventing anthropogenic degradation of biological conditions. In the present study, we used data obtained from tributaries of the Three Gorges Reservoir in China to detect effects of human disturbance on streams and to identify disturbance thresholds for benthic diatoms. Diatom species composition was significantly affected by three in-stream stressors including TP, TN and pH. Diatoms were also influenced by watershed % farmland and natural environmental variables. Considering three in-stream stressors, TP was positively influenced by % farmland and % impervious surface area (ISA). In contrast, TN and pH were principally affected by natural environmental variables. Among measured natural environmental variables, average annual air temperature, average annual precipitation, and topsoil % CaCO 3 , % gravel, and total exchangeable bases had significant effects on study streams. When effects of natural variables were accounted for, substantial compositional changes in diatoms occurred when farmland or ISA land use exceeded 25% or 0.3%, respectively. Our study demonstrated the rationale for identifying thresholds of human disturbance for lotic assemblages and addressed the importance of accounting for effects of natural factors for accurate disturbance thresholds.

  6. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    OpenAIRE

    Ahmad Yari Khosroushahi; Miguel de la Guardia; Mohamad Moradi Ghorakhlu; Ali Akbar Jamali; Fariba Akbari

    2012-01-01

    Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the ...

  7. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  8. Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes

    International Nuclear Information System (INIS)

    Rui-Qiang, Wang; Kai-Ming, Jiang

    2009-01-01

    The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron–phonon coupling strength. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Electron transport in liquids: effect of unbalancing the methane molecule by deuteration

    International Nuclear Information System (INIS)

    Floriano, M.A.; Freeman, G.R.

    1983-01-01

    The mobility of electrons in nonpolar liquids is strongly dependent on the molecular shape. In spherelike methane the mobility is three orders of magnitude greater than in the rodlike ethane. To investigate the enormous gap between methane and ethane, the effect of slightly perturbing the symmetry of the methane molecule by progressive deuterium substitution was studied. At temperatures near the triple point (T/Tsub(c) approximately 0.48) and near the mobility maximum (T/Tsub(c) approximately 0.93) the mobilities change in the order: CH 4 > CH 3 D > CH 2 D 2 3 approximately CD 4 . The differences are related to the symmetries of the molecules and to the rotational motions. (Authors)

  10. Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.

  11. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene

    International Nuclear Information System (INIS)

    Jing, Yu; Tang, Qing; He, Peng; Zhou, Zhen; Shen, Panwen

    2015-01-01

    Systematical computations on the density functional theory were performed to investigate the adsorption of three typical organic molecules, tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF), on the surface of phosphorene monolayers and thicker layers. There exist considerable charge transfer and strong non-covalent interaction between these molecules and phosphorene. In particular, the band gap of phosphorene decreases dramatically due to the molecular modification and can be further tuned by applying an external electric field. Meanwhile, surface molecular modification has proven to be an effective way to enhance the light harvesting of phosphorene in different directions. Our results predict a flexible method toward modulating the electronic and optical properties of phosphorene and shed light on its experimental applications. (paper)

  12. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  13. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    Science.gov (United States)

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

    Science.gov (United States)

    Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A

    2012-10-30

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

  15. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    Science.gov (United States)

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265

  16. Seasonal variations in fouling diatom communities on the Yantai coast

    Science.gov (United States)

    Yang, Cuiyun; Wang, Jianhua; Yu, Yang; Liu, Sujing; Xia, Chuanhai

    2015-03-01

    Fouling diatoms are a main component of biofilm, and play an important role in marine biofouling formation. We investigated seasonal variations in fouling diatom communities that developed on glass slides immersed in seawater, on the Yantai coast, northern Yellow Sea, China, using microscopy and molecular techniques. Studies were conducted during 2012 and 2013 over 3, 7, 14, and 21 days in each season. The abundance of attached diatoms and extracellular polymeric substances increased with exposure time of the slides to seawater. The lowest diatom density appeared in winter and the highest species richness and diversity were found in summer and autumn. Seasonal variation was observed in the structure of fouling diatom communities. Pennate diatoms Cylindrotheca, Nitzschia, Navicula, Amphora, Gomphonema, and Licmophora were the main fouling groups. Cylindrotheca sp. dominated in the spring. Under laboratory culture conditions, we found that Cylindrotheca grew very fast, which might account for the highest density of this diatom in spring. The lower densities in summer and autumn might result from the emergence of fouling animals and environmental factors. The Cylindrotheca sp. was identified as Cylindrotheca closterium using18S rDNA sequencing. The colonization process of fouling diatoms and significant seasonal variation in this study depended on environmental and biological factors. Understanding the basis of fouling diatoms is essential and important for developing new antifouling techniques.

  17. Effect of the environment on the electrical conductance of the single benzene-1,4-diamine molecule junction

    Directory of Open Access Journals (Sweden)

    Shigeto Nakashima

    2011-11-01

    Full Text Available We investigated the effect of the environment on the electrical conductance of a single benzene-1,4-diamine (BDA molecule bridging Au electrodes, using the scanning tunneling microscope (STM. The conductance of the single BDA molecule junction decreased upon a change in the environment from tetraglyme, to mesitylene, to water, and finally to N2 gas, while the spread in the conductance value increased. The order of the conductance values of the single BDA molecule junction was explained by the strength of the interaction between the solvent molecules and the Au electrodes. The order of the spread in the conductance values was explained by the diversity in the coverage of the BDA molecule at metal electrodes and atomic and molecular motion of the single-molecule junction.

  18. Absolute carrier phase effects in the two-color excitation of dipolar molecules

    International Nuclear Information System (INIS)

    Brown, Alex; Meath, W.J.; Kondo, A.E.

    2002-01-01

    The pump-probe excitation of a two-level dipolar (d≠0) molecule, where the pump frequency is tuned to the energy level separation while the probe frequency is extremely small, is examined theoretically as an example of absolute phase control of excitation processes. The state populations depend on the probe field's absolute carrier phase but are independent of the pump field's absolute carrier phase. Interestingly, the absolute phase effects occur for pulse durations much longer and field intensities much weaker than those required to see such effects in single pulse excitation

  19. Effect of osteogenesis imperfecta mutations in tropocollagen molecule on strength of biomimetic tropocollagen-hydroxyapatite nanocomposites

    Science.gov (United States)

    Dubey, Devendra K.; Tomar, Vikas

    2010-01-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that affects cellular synthesis of Type-I collagen fibrils and causes extreme bone fragility. This study reports the effects of OI mutations in Tropocollagen (TC) molecules on strength of model Tropocollagen-Hydroxyapatite biomaterials with two different mineral [hydroxyapatite (HAP)] distributions using three dimensional atomistic simulations. Results show that the effect of TC mutations on the strength of TC-HAP biomaterials is insignificant. Instead, change in mineral distribution showed significant impact on the overall strength of TC-HAP biomaterials. Study suggests that TC mutations manifest themselves by changing the mineral distribution during hydroxyapatite growth and nucleation period.

  20. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    Directory of Open Access Journals (Sweden)

    Satoshi Ohmura

    2016-01-01

    Full Text Available Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC-triethylene glycol (TEG–C60 molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D+ and A- in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  1. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Ohmura, Satoshi, E-mail: s.ohmura.m4@cc.it-hiroshima.ac.jp [Research Center for Condensed Matter Physics, Department of Civil Engineering and Urban Design, Hiroshima Institute of Technology, Hiroshima 731-5193 (Japan); Tsuruta, Kenji [Department of Electrical and Electronic Engineering, Okayama University, Okayama 700-8530 (Japan); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 Japan (Japan); Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy, Department of Chemical Engineering & Materials Science, Department of Biological Sciences, University of Southern California, CA90089-024 (United States)

    2016-01-15

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)–C{sub 60} molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D{sup +} and A{sup -}) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  2. Dynamics in ion-molecule collisions at high velocities: One- and two-electron processes

    International Nuclear Information System (INIS)

    Wang, Yudong.

    1992-01-01

    This dissertation addresses the dynamic interactions in ion-molecule collisions. Theoretical methods are developed for single and multiple electron transitions in fast collisions with diatomic molecules by heavy-ion projectiles. Various theories and models are developed to treat the three basic inelastic processes (excitation, ionization and charge transfer) involving one and more electrons. The development, incorporating the understanding of ion-atom collision theories with some unique characteristics for molecular targets, provides new insights into phenomena that are absent from collisions with atomic targets. The influence from the multiple scattering centers on collision dynamics is assessed. For diatomic molecules, effects due to a fixed molecular orientation or alignment are calculated and compared with available experimental observations. Compared with excitation and ionization, electron capture, which probes deeper into the target, presents significant two-center interference and strong orientation dependence. Attention has been given in this dissertation to exploring mechanisms for two-and multiple electron transitions. Application of independent electron approximation to transfer excitation from molecular hydrogen is studied. Electron-electron interaction originated from projectile and target nuclear centers is studied in conjunction with the molecular nature of target. Limitations of the present theories and models as well as possible new areas for future theoretical and experimental applications are also discussed. This is the first attempt to describe multi-electron processes in molecular dynamics involving fast highly charged ions

  3. [The effect of spermine on acid-base equilibrium in DNA molecule].

    Science.gov (United States)

    Slonitskiĭ, S V; Kuptsov, V Iu

    1990-01-01

    The influence of spermine (Sp) on the acid-induced predenaturational and denaturational transitions in the DNA molecule structure has been studied by means of circular dichroism, spectrophotometric and viscometric titration at supporting electrolyte concentration 10 mM NaCl. The data available indicate that at [N]/[P] less than or equal to 0.60 (here [N] and [P] are molar concentrations of Sp nitrogen and DNA phosphours, respectively) the cooperative structural B----B(+)----S transitions are accompanied by the DNA double-helice winding. No competition for proton acceptor sites in the DNA molecule between H+ and Sp4+ cations has been observed when binding to neutral macromolecule. At 0.60 less than or equal to [N]/[P] less than or equal to 0.75 the displacement of the B----B(+)----S transitions midpoints to acidic pH region has been established. This is accompanied by DNA condensation and the appearance of differential scattering of circularly polarized light. The calculations carried out in the framework of the two-variable Manning theory have shown that the acid-induced reduction of the effective polyion charge density facilitates the Sp-induced DNA condensation. It has been shown that the acid-base equilibrium in the DNA molecule is determined by local [H+] in the 2-3 A hydrated monolayer of the macromolecule. An adequate estimation of [H+] can be obtained on the basis of the Poisson-Boltzman approach. The data obtained are consistent with recently proposed hypothesis of polyelectrolyte invariance of the acid-base equilibrium in the DNA molecule.

  4. The effect of egg versus seston quality on hatching success, naupliar metabolism and survival of Calanus finmarchicus in mesocosms dominated by Phaeocystis and diatoms

    DEFF Research Database (Denmark)

    Koski, Marja; Yebra, L.; Dutz, Jörg

    2012-01-01

    We studied the effect of a developing Skeletonema marinoi/Phaeocystis spp. bloom on Calanus finmarchicus hatching success, early naupliar survival and metabolism. Our focus was (1) on the development of reproductive rates during a bloom initiation, peak and decline in relation to the production o...

  5. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO{sub 2} working electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Der-Ray, E-mail: derray@mail.ndhu.edu.tw; Jiang, Yan-Jang; Liou, Run-Lin; Chen, Chih-Han; Chen, Yi-An; Tsai, Chih-Hung, E-mail: cht@mail.ndhu.edu.tw

    2015-08-30

    Graphical abstract: - Highlights: • High-speed centrifugal processing and sedimentation-rate separation techniques were used to obtain diatom frustules. • Diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. • TiO{sub 2}-diatom paste mixture was used to fabricate working electrodes for DSSCs. • TiO{sub 2}-diatom electrodes improved the light-trapping effect and DSSC efficiency. • DSSCs with using the TiO{sub 2}-diatom electrode exhibited a 38% increase in efficiency. - Abstract: In this study, diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. Spin-coating and high-temperature sintering techniques were then used to fabricate working electrodes for dye-sensitized solar cells (DSSCs). Mixing the diatom frustules with the TiO{sub 2} paste improved the light-trapping effect and scattering properties of the incident light in the TiO{sub 2}-diatom working electrodes, thereby enhancing the power conversion efficiency of the DSSCs. In this study, a high-speed centrifugal processing technology and sedimentation-rate separation techniques were first used to obtain the diatom frustules, which were then mixed with the TiO{sub 2} paste at a weight ratio of 1:50; a spin-coating technique was then used to fabricate the working electrodes. Finally, a high-temperature sintering process (500 °C) was performed. In this study, optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and a surface profiler and spectrometer were used to analyze the characteristics of the working electrodes. The TiO{sub 2} or TiO{sub 2}-diatom working electrodes were prepared under various spin-coating conditions for fabricating and analyzing the characteristics of the DSSCs. The results indicated that under identical conditions, the power conversion efficiency of the DSSCs was 3.81% when coated three times with a conventional TiO{sub 2

  6. Diatom community structure on in-service cruise ship hulls.

    Science.gov (United States)

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  7. Formation and decomposition of astatine molecules

    International Nuclear Information System (INIS)

    Takahashi, Naruto; Ishikuro, Mituhiro; Baba Hiroshi

    1989-01-01

    A method determining the boiling points of elementary astatine and astatine iodide has been developed (K. Otozai and N. Takahashi, Radio. Chim. Acta 31, (1982) 201). Further, it was concluded from the simple rule among the boiling point of elementary halogens and interhalogen compounds that elementary astatine might exist in diatomic molecules as the other halogens. In the present work the reaction mechanisms of elementary astatine with radioactive iodine and organic solvents were studied by means of radiogaschromatography in order to obtain further experimental evidences for diatomic astaine molecules. The following conclusions were obtained by the analysis of reaction kinetics. Two astatine atoms are lost from the elementary astatine fraction per each radioactive decay of astatine. The astatine radical or hot atom liberated by the decay of the complementary astatine atom immediately reacts with iodine or organic solvents. Thus formed astatine compounds decompose in turn due to the decay of astatine

  8. Perturbed path integrals in imaginary time: Efficiently modeling nuclear quantum effects in molecules and materials

    Science.gov (United States)

    Poltavsky, Igor; DiStasio, Robert A.; Tkatchenko, Alexandre

    2018-03-01

    Nuclear quantum effects (NQE), which include both zero-point motion and tunneling, exhibit quite an impressive range of influence over the equilibrium and dynamical properties of molecules and materials. In this work, we extend our recently proposed perturbed path-integral (PPI) approach for modeling NQE in molecular systems [I. Poltavsky and A. Tkatchenko, Chem. Sci. 7, 1368 (2016)], which successfully combines the advantages of thermodynamic perturbation theory with path-integral molecular dynamics (PIMD), in a number of important directions. First, we demonstrate the accuracy, performance, and general applicability of the PPI approach to both molecules and extended (condensed-phase) materials. Second, we derive a series of estimators within the PPI approach to enable calculations of structural properties such as radial distribution functions (RDFs) that exhibit rapid convergence with respect to the number of beads in the PIMD simulation. Finally, we introduce an effective nuclear temperature formalism within the framework of the PPI approach and demonstrate that such effective temperatures can be an extremely useful tool in quantitatively estimating the "quantumness" associated with different degrees of freedom in the system as well as providing a reliable quantitative assessment of the convergence of PIMD simulations. Since the PPI approach only requires the use of standard second-order imaginary-time PIMD simulations, these developments enable one to include a treatment of NQE in equilibrium thermodynamic properties (such as energies, heat capacities, and RDFs) with the accuracy of higher-order methods but at a fraction of the computational cost, thereby enabling first-principles modeling that simultaneously accounts for the quantum mechanical nature of both electrons and nuclei in large-scale molecules and materials.

  9. Effects of autoionizing states on two-photon double ionization of the H2 molecule

    International Nuclear Information System (INIS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I; Koesterke, Lars

    2014-01-01

    Treating the effects of autoionizing intermediate states on two-photon double ionization (DI) of the H 2 molecule using time-dependent laser pulses is a significant computational challenge. Relatively long exposure times are critical to understanding the dynamics. Using the fixed-nuclei approximation, we demonstrate how the doubly excited states enhance the angle-integrated generalized cross sections in H 2 , and how they affect the angular distribution pattern of the ejected electrons. As the energy approaches the threshold for sequential DI, there is a sharp rise in the cross section due to virtual sequential ionization

  10. Bias voltage induced resistance switching effect in single-molecule magnets' tunneling junction.

    Science.gov (United States)

    Zhang, Zhengzhong; Jiang, Liang

    2014-09-12

    An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be 'read out' by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.

  11. Effects of microwave on spin tunneling in single-molecule magnets

    Science.gov (United States)

    Kim, Gwang-Hee; Kim, Tae-Suk

    2005-03-01

    We study theoretically the effects of the irradiated microwave on the magnetization in single-molecule magnets (SMMs) like V15 and Fe8. We find that the shape of magnetization depends on the microwave intensity as well as the microwave polarization. The applied microwave field enhances the tunneling probability. The linearly polarized microwaves induce the suppression of magnetization at both positive and negative magnetic fields. The circularly polarized microwaves are absorbed either at one direction of magnetic field or at both directions of magnetic fields, depending on the polarization directions with respect to the direction of longitudinal magnetic field. The generic features we found will be compared with the recent experimental results.

  12. Calculations of relativistic effects in atoms and molecules from the Schroedinger wave function

    International Nuclear Information System (INIS)

    Detrich, J.H.; Roothaan, C.C.J.

    1981-01-01

    The traditional method for dealing with relativistic effects in atoms and molecules consists of a somewhat heuristic combination of quantum electrodynamics and a many-electron quantum mechanics generalized from the one-electron Dirac theory. On the whole, results calculated from this theory agree with experimental data. Nevertheless, the theory is by no means entirely satisfactory; in its development, certain ambiguities and divergencies must be resolved by somewhat arbitrary and/or questionable means. This paper illuminates - and sidesteps - some of the more questionable aspects of the traditional method, by reformulating electromagnetic interactions between particles in a different way

  13. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting

    KAUST Repository

    Pérez, Louis A.

    2013-09-04

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bias voltage induced resistance switching effect in single-molecule magnets’ tunneling junction

    Science.gov (United States)

    Zhang, Zhengzhong; Jiang, Liang

    2014-09-01

    An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be ‘read out’ by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.

  15. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting

    KAUST Repository

    Pé rez, Louis A.; Chou, Kang Wei; Love, John A.; Van Der Poll, Thomas S.; Smilgies, Detlef Matthias; Nguyen, Thuc Quyen; Krä mer, Edward J.; Amassian, Aram; Bazan, Guillermo C.

    2013-01-01

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of Diatoms in marine biofouling

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A; Patil, J.S..; Mitbavkar, S.; DeCosta, P.M.; DeSilva, S.; Hegde, S.; Naik, R.

    . Ltd., New Delhi, pp. 293-6. de Nys, R., Leya, T., Maximilien, R., Afsar, A., Nair, P. S. R. & Steinberg, P. D. 1996. The need for standardized broad scale bioassay testing: a case study using the red alga Laurencia rigida. Biofouling 10:213-24. de...-1 Content-Type text/plain; charset=ISO-8859-1 Recent Advances on Applied Aspects of Indian Marine Algae with Reference to Global Scenario, Volume 1, A. Tewari (Ed.), 2006 Central Salt & Marine Chemicals Research Institute Role of Diatoms...

  17. Digitisation of the South African diatom collection

    CSIR Research Space (South Africa)

    Van

    2008-06-01

    Full Text Available stream_source_info van der Molen_2008.pdf.txt stream_content_type text/plain stream_size 1285 Content-Encoding UTF-8 stream_name van der Molen_2008.pdf.txt Content-Type text/plain; charset=UTF-8 Digitisation... of the South African Diatom Collection Johan van der Molen, CSIR Background ➲ Since 1950 ➲ Properly curated ➲ In dis-use since ~1990 ➲ Renewed interest since ~2004 ➲ Water bodies in Southern Africa, mostly rivers ➲ Supports taxonomic work and biological...

  18. NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids

    CERN Document Server

    1994-01-01

    The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of­ the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approa...

  19. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal

    2017-08-15

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  20. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal; Deton-Cabanillas, Anne-Flore; Rocha Jimenez Vieira, Fabio; Veluchamy, Alaguraj; Cantrel, Catherine; Wang, Gaohong; Vanormelingen, Pieter; Bowler, Chris; Piganeau, Gwenael; Tirichine, Leila; Hu, Hanhua

    2017-01-01

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  1. The relevance of diatoms for water quality assessment in South ...

    African Journals Online (AJOL)

    Water quality assessment protocols based on the use of diatoms are now well developed and their value substantiated at an international level. The use of diatoms is not designed or intended to be a “rapid” technology. The detailed level of information generated from the procedure outweighs perceived disadvantages of ...

  2. Epiphytic Diatoms along Environmental Gradients in Western European Shallow Lakes

    NARCIS (Netherlands)

    Blanco, Saul; Cejudo-Figueiras, Cristina; Alvarez-Blanco, Irene; van Donk, Ellen|info:eu-repo/dai/nl/069838593; Gross, Elisabeth M.; Hansson, Lars-Anders; Irvine, Kenneth; Jeppesen, Erik; Kairesalo, Timo; Moss, Brian; Noges, Tiina; Becares, Eloy

    Diatom-based assays have been successfully associated worldwide with the tropic status of lakes. Several studies have demonstrated a correlation between epiphytic diatoms and nutrient load in shallow lakes and wetlands. We examine the relative importance of environmental factors in explaining the

  3. Colonization of diatom aggregates by the dinoflagellate Noctiluca scintillans

    DEFF Research Database (Denmark)

    Tiselius, P.; Kiørboe, Thomas

    1998-01-01

    coagulation of diatom cells and not by mucus feeding behavior of N. scintillans. N. scintillans can be positively buoyant, and estimates of encounter rates between N. scintillans and diatom aggregates during ascent demonstrates that this mechanism is sufficient to account for the observed colonization...

  4. Diatom-based water quality monitoring in southern Africa ...

    African Journals Online (AJOL)

    The purpose of this review is to summarise the challenges and future prospects associated with biological water quality monitoring using diatoms with special focus on southern Africa. Much work still needs to be carried out on diatom tolerances, ecological preferences and ecophysiology. It is recommended that past ...

  5. Diatom distribution in the surficial sediments of Lake Fuxian, Yunnan ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... The diatom abundances per gram dry weight sediment vary between 18.4 × 106 and 66.9 × 106 valves (Figure 2). Abundances per gram dry weight of the eight most abundant diatom taxa are shown in Figure 3. The DCA diagram shows centroids of ecoregions in the ordination space of the first axes.

  6. Interference patterns and extinction ratio of the diatom Coscinodiscus granii

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Ellegaard, M.

    2015-01-01

    We report experimental and theoretical verification of the nature and position of multiple interference points of visible light transmitted through the valve of the centric diatom species Coscinodiscus granii. Furthermore, by coupling the transmitted light into an optical fiber and moving...... the diatom valve between constructive and destructive interference points, an extinction ratio of 20 dB is shown...

  7. The health of benthic diatom assemblages in lower stretch

    Indian Academy of Sciences (India)

    This study examines the ecological state of epilithic diatom assemblages along the lower stretch of Mandakini, a glacier-fed Himalayan river. The diatoms were sampled at four stations during winter and summer, only once in each season. Valve counts were obtained from Naphrax mounts prepared from each sample.

  8. Influence of diatom diversity on the ocean biological carbon pump

    Science.gov (United States)

    Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe

    2018-01-01

    Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

  9. Isolation of diatom Navicula cryptocephala and characterization of ...

    African Journals Online (AJOL)

    sjce

    synthesis to the storage of neutral lipids (Qiang et al.,. 2008). Diatoms were shown ... chemical analysis of the oil inside diatom oil droplets, a method for separating ... 120°C for 20 min. 0.1 mg.L. −1. Thiamine, 0.5 μg.L. −1. Biotin and 0.5 μg.L−1.

  10. New Perspectives on the Search for a Parity Violation Effect in Chiral Molecules

    Science.gov (United States)

    Auguste, F.; Tokunaga, S. K.; Shelkovnikov, A.; Daussy, C.; Amy-Klein, A.; Chardonnet, C.; Darquie, B.

    2013-06-01

    Parity violation (PV) effects have so far never been observed in chiral molecules. Originating from the weak interaction, PV should lead to frequency differences in the rovibrational spectra of the two enantiomers of a chiral molecule. However the smallness of the effect represents a very difficult experimental challenge. We propose to compare the rovibrational spectra (around 10 μm) of two enantiomers, recorded using the ultra-high resolution spectroscopy technique of Doppler-free two-photon Ramsey interferometry in a supersonic molecular beam. With an alternate beam of left- and right-handed molecules and thanks to our expertise in the control of the absolute frequency of the probe CO_2 lasers, we should reach a fractional sensitivity better around 10^{-15} (a few tens of millihertz), on the frequency difference between enantiomers. We will review our latest results on the high-resolution spectroscopy, either in cell or in a supersonic beam, of methyltrioxorhenium. B. Darquié, C. Stoeffler, A. Shelkovnikov, C. Daussy, A. Amy-Klein, C. Chardonnet, S. Zrig, L. Guy, J. Crassous, P. Soulard, P. Asselin, T. R. Huet, P. Schwerdtfeger, R. Bast and T. Saue, Chirality 22, 870 (2010). C. Stoeffler, B. Darquié, A. Shelkovnikov, C. Daussy, A. Amy-Klein, C. Chardonnet, L. Guy, J. Crassous, T. R. Huet, P. Soulard and P. Asselin, Phys. Chem. Chem. Phys. 13, 854 (2011). N. Saleh, S. Zrig, L. Guy, R. Bast, T. Saue, B. Darquié and J. Crassous, submitted to Phys. Chem. Chem. Phys. (2013).

  11. The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Beegle, L. W.; Bhartia, R.; Abbey, W. J.

    2016-12-01

    Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination

  12. Displacement cascades in diatomic materials

    International Nuclear Information System (INIS)

    Parkin, D.M.; Coulter, C.A.

    1981-01-01

    A new function, the specified-projectile displacement function p/sub ijk/ (E), is introduced to describe displacement cascades in polyatomic materials. This function describes the specific collision events that produce displacements and hence adds new information not previously available. Calculations of p/sub ijk/ (E) for MgO, Al 2 O 3 and TaO are presented and discussed. Results show that the parameters that have the largest effect on displacement collision events are the PKA energy and the mass ratio of the atom types in the material. It is further shown that the microscopic nature of the displacement events changes over the entire recoil energy range relevant to fusion neutron spectra and that these changes are different in materials whose mass ratio is near one than in those where it is far from one

  13. Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms

    Science.gov (United States)

    Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard

    2012-01-01

    Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981

  14. Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms.

    Directory of Open Access Journals (Sweden)

    Floriane Larras

    Full Text Available Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC(5 and the Effective Concentration 50 (EC(50 for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC(5 and 50 (HC(50. Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and "motile" guild species were more tolerant of PSII inhibitors, while N-autotroph and "low profile" guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron.

  15. A binuclear Fe(III)Dy(III) single molecule magnet. Quantum effects and models.

    Science.gov (United States)

    Ferbinteanu, Marilena; Kajiwara, Takashi; Choi, Kwang-Yong; Nojiri, Hiroyuki; Nakamoto, Akio; Kojima, Norimichi; Cimpoesu, Fanica; Fujimura, Yuichi; Takaishi, Shinya; Yamashita, Masahiro

    2006-07-19

    The binuclear [FeIII(bpca)(mu-bpca)Dy(NO3)4], having Single Molecule Magnet (SMM) properties, belonging to a series of isostructural FeIIILnIII complexes (Ln = Eu, Gd, Tb, Dy, Ho) and closely related FeIILnIII chain structures, was characterized in concise experimental and theoretical respects. The low temperature magnetization data showed hysteresis and tunneling. The anomalous temperature dependence of Mössbauer spectra is related to the onset of magnetic order, consistent with the magnetization relaxation time scale resulting from AC susceptibility measurements. The advanced ab initio calculations (CASSCF and spin-orbit) revealed the interplay of ligand field, spin-orbit, and exchange effects and probed the effective Ising nature of the lowest states, involved in the SMM and tunneling effects.

  16. Isolation and biochemical characterization of underwater adhesives from diatoms.

    Science.gov (United States)

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.

  17. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species.

    Directory of Open Access Journals (Sweden)

    Nathan J Robinson

    Full Text Available The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.

  18. Effect of different substitution position on the switching behavior in single-molecule device with carbon nanotube electrodes

    Science.gov (United States)

    Yang, Jingjuan; Han, Xiaoxiao; Yuan, Peipei; Bian, Baoan; Wang, Yixiang

    2018-01-01

    We investigate the electronic transport properties of dihydroazulene (DHA) and vinylheptafulvene (VHF) molecule sandwiched between two carbon nanotubes using density functional theory and non-equilibrium Green's function. The device displays significantly switching behavior between DHA and VHF isomerizations. It is found the different substitution position of F in the molecule influences the switching ratio of device, which is analyzed by transmission spectra and molecular projected self-consistent Hamiltonian. The observed negative differential resistance effect is explained by transmission spectra and transmission eigenstates of transmission peak in the bias window. The observed reverse of current in VHF form in which two H atoms on the right side of the benzene ring of the molecule are replaced by F is explained by transmission spectra and molecule-electrode coupling with the varied bias. The results suggest that the reasonable substitution position of molecule may improve the switching ratio, displaying a potential application in future molecular circuit.

  19. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi; Fujiwara, Susumu; Yamamoto, Takuya; Vá cha, Martin; Tezuka, Yasuyuki

    2013-01-01

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  20. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi

    2013-08-06

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  1. Plasma-neutral gas interaction in a tokamak divertor: effects of hydrogen molecules and plasma recombination

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Pigarov, A.Yu.; Soboleva, T.K.; Sigmar, D.J.

    1997-01-01

    We investigate the influence of hydrogen molecules on plasma recombination using a collisional-radiative model for multispecies hydrogen plasmas and tokamak detached divertor parameters. The rate constant found for molecular activated recombination of a plasma can be as high as 2 x 10 -10 cm 3 /s, confirming our pervious estimates. We investigate the effects of hydrogen molecules and plasma recombination on self-consistent plasma-neutral gas interactions in the recycling region of a tokamak divertor. We treat the plasma flow in a fluid approximation retaining the effects of plasma recombination and employing a Knudsen neutral transport model for a 'gas box' divertor geometry. For the model of plasma-neutral interactions we employ we find: (a) molecular activated recombination is a dominant channel of divertor plasma recombination; and (b) plasma recombination is a key element leading to a decrease in the plasma flux onto the target and substantial plasma pressure drop which are the main features of detached divertor regimes. (orig.)

  2. Effect of molecular structure on fragmentation of isolated organic molecules in solid rare gas matrices

    International Nuclear Information System (INIS)

    Kobzarenko, A.V.; Sukhov, F.F.; Orlov, A.Yu.; Kovalev, G.V.; Baranova, I.A.; Feldman, V.I.

    2012-01-01

    The effect of excess energy on the primary radical cations of bifunctional carbonyl compounds and aliphatic alkynes was simulated by matrix isolation method using rare gas matrices with various ionization potentials. The formation of fragmentation products was monitored by EPR and FTIR spectroscopy. It was shown that the radical cations of bifunctional compounds (CH 3 OCH 2 COCH 3 and CH 3 COCOCH 3 ) dissociated effectively yielding · CH 3 radicals upon irradiation in solid argon matrix at T≤16 K. In addition to isolated methyl radicals, the radical pairs consisting of two methyl radicals separated by two CO molecules were detected in the case of diacetyl. The probability of fragmentation decreases with the decreasing excess energy by switching from Ar to Xe. In general, bifunctional molecules were found to be less stable to “hot” ionic fragmentation in low-temperature solids in comparison with simple prototype compounds. In the case of alkynes of the R--C≡CH type, a noticeable yield of fragmentation products was observed when R=–C(CH 3 ) 3 , but it was negligible for R=–CH 3 . The mechanisms of “hot” reactions and excess energy relaxation are discussed. - Highlights: ► Radiolysis of bifunctional organic compounds and alkynes. ► Dependence of “hot” fragmentation probability from molecular structure. ► Ions of bifunctional compounds are less stable than those of monofunctional ones. ► Alkynes are rather stable to “hot” fragmentation.

  3. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  4. The instability of molecules in laser field and isotope separation

    International Nuclear Information System (INIS)

    Li, K.

    1981-01-01

    In the present paper the nonlinear differential equation describing the selective decomposition of a molecule as an unimolecular reaction has be deduced from the usual time dependent semi-classical Schroedinger equation. The selective conditions for the instability of a molecule are discussed. The thresholds of the required laser intensities for ICl and HCl diatomic molecules are estimated respectively, where on type of isotope molecules ought to be decomposed for hundred per cent in a laser pulse for different pulse widths. And possibly selective decomposition of the molecule without permanent dipole moment by Raman process is also discussed briefly. (orig.)

  5. Variations in diatom communities at genus and species levels in peatlands (central China) linked to microhabitats and environmental factors.

    Science.gov (United States)

    Chen, Xu; Bu, Zhaojun; Stevenson, Mark A; Cao, Yanmin; Zeng, Linghan; Qin, Bo

    2016-10-15

    Peatlands are a specialized type of organic wetlands, fulfilling essential roles as global carbon sinks, headwaters of rivers and biodiversity hotspots. Despite their importance, peatlands are being lost at an alarming rate due to human disturbance and climatic variability. Both the scientific and regulatory communities have focused considerable attention on developing tools for assessing environmental changes in peatlands. Diatoms are widely used in biomonitoring studies of lakes, rivers and streams as they have high abundance, specific ecological preferences and can respond rapidly to environmental change. However, diatom-based assessment studies in peatlands remain limited. The aims of this study were to identify indicator species and genus for three types of habitats (hummocks, hollows and ditch edges) in peatlands (central China), to examine the effects of physiochemical factors on diatom composition at genus and species levels, and to compare the efficiency of species- and genus-level identification in environmental assessment. Our results revealed that hummocks were characterized by drought-tolerant diatoms, while hollows were dominated by species and genus preferring wet conditions. Ditch edges were characterized by diatoms with different life strategies. Depth to water table, redox potential, conductivity and calcium were significant predictors of both genus- and species-level composition. According to ordination analyses, pH was not correlated with species composition while it was a significant factor associated with genus-level composition. Genus-level composition outperformed species composition in describing the response of diatoms to environmental variables. Our results indicate that diatoms can be useful environmental indicators of peatlands, and show that genus-level taxonomic analysis can be a potential tool for assessing environmental change in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Aggregate Formation During the Viral Lysis of a Marine Diatom

    Directory of Open Access Journals (Sweden)

    Yosuke Yamada

    2018-05-01

    Full Text Available Recent studies have suggested that the viral lysis of microbes not only facilitates the conversion of particulate organic matter into dissolved organic matter, but also promotes the formation of organic aggregates, which enhance the export of organic carbon from the surface ocean to the deep sea. However, experimental data supporting this proposition are limited. Here, we tested the hypothesis that the viral infection of marine diatoms enhances aggregate formation. We used a model system consisting of Chaetoceros tenuissimus, a bloom-forming diatom with an approximate cell size of 3–10 μm, and a DNA virus, CtenDNAV type II, which replicates in the nucleus of C. tenuissimus. The volume of large particles (50–400 μm in equivalent spherical diameters, determined from photographic images was measured over time (up to 15 days in the diatom-alone control and a virus-added diatom culture. We also determined the concentrations of Coomassie-stainable particles (CSP, proteinaceous particles and transparent exopolymeric particles (TEP, acid-polysaccharide-rich particles with colorimetric methods. The total volume of large particles was significantly higher (5–59 fold in the virus-added diatoms than in the diatom-alone control during the period in which the viral lysis of the diatoms proceeded. One class of large particles produced in the virus-added diatoms was flake-shaped. The flakes were tightly packed and dense, and sank rapidly, possibly playing an important role in the vertical delivery of materials from the surface to the deep sea. The bulk CSP concentrations tended to be higher in the virus-added diatoms than in the diatom-alone control, whereas the reverse was true for the TEP. These results suggest that proteinaceous polymers are involved in aggregate formation. Our data support the emerging notion that the viral lysis of microbes facilitates aggregate formation and the export of organic carbon in the ocean.

  7. Variation partitioning of diatom species data matrices: Understanding the influence of multiple factors on benthic diatom communities in tropical streams

    Energy Technology Data Exchange (ETDEWEB)

    Bere, Taurai, E-mail: tbere2015@gmail.com; Mangadze, Tinotenda; Mwedzi, Tongai

    2016-10-01

    Elucidating the confounding influence of multiple environmental factors on benthic diatom communities is important in developing water quality predictive models for better guidance of stream management efforts. The objective of this study was to explore the relative impact of metal pollution and hydromorphological alterations in, addition to nutrient enrichment and organic pollution, on diatom taxonomic composition with the view to improve stream diatom-based water quality inference models. Samples were collected twice at 20 sampling stations in the tropical Manyame Catchment, Zimbabwe. Diatom, macroinvertebrate communities and environmental factors were sampled and analysed. The variations in diatom community composition explained by different categories of environmental factors were analysed using canonical correspondence analysis using variance partitioning (partial CCA). The following variations were explained by the different predictor matrices: nutrient levels and organic pollution - 10.4%, metal pollution - 8.3% and hydromorphological factors - 7.9%. Thus, factors other than nutrient levels and organic pollution explain additional significant variation in these diatom communities. Development of diatom-based stream water quality inference models that incorporate metal pollution and hydromorphological alterations, where these are key issues, is thus deemed necessary. - Highlights: • Confounding influences of multiple environmental factors on diatom communities are elucidated. • Variation explained: nutrients + organic pollution - 10.4%, metals - 8.3% and hydromorphological factors - 7.9%. • Calibration of existing or development of new indices may be necessary.

  8. Variation partitioning of diatom species data matrices: Understanding the influence of multiple factors on benthic diatom communities in tropical streams

    International Nuclear Information System (INIS)

    Bere, Taurai; Mangadze, Tinotenda; Mwedzi, Tongai

    2016-01-01

    Elucidating the confounding influence of multiple environmental factors on benthic diatom communities is important in developing water quality predictive models for better guidance of stream management efforts. The objective of this study was to explore the relative impact of metal pollution and hydromorphological alterations in, addition to nutrient enrichment and organic pollution, on diatom taxonomic composition with the view to improve stream diatom-based water quality inference models. Samples were collected twice at 20 sampling stations in the tropical Manyame Catchment, Zimbabwe. Diatom, macroinvertebrate communities and environmental factors were sampled and analysed. The variations in diatom community composition explained by different categories of environmental factors were analysed using canonical correspondence analysis using variance partitioning (partial CCA). The following variations were explained by the different predictor matrices: nutrient levels and organic pollution - 10.4%, metal pollution - 8.3% and hydromorphological factors - 7.9%. Thus, factors other than nutrient levels and organic pollution explain additional significant variation in these diatom communities. Development of diatom-based stream water quality inference models that incorporate metal pollution and hydromorphological alterations, where these are key issues, is thus deemed necessary. - Highlights: • Confounding influences of multiple environmental factors on diatom communities are elucidated. • Variation explained: nutrients + organic pollution - 10.4%, metals - 8.3% and hydromorphological factors - 7.9%. • Calibration of existing or development of new indices may be necessary.

  9. Importance of sampling frequency when collecting diatoms

    KAUST Repository

    Wu, Naicheng

    2016-11-14

    There has been increasing interest in diatom-based bio-assessment but we still lack a comprehensive understanding of how to capture diatoms’ temporal dynamics with an appropriate sampling frequency (ASF). To cover this research gap, we collected and analyzed daily riverine diatom samples over a 1-year period (25 April 2013–30 April 2014) at the outlet of a German lowland river. The samples were classified into five clusters (1–5) by a Kohonen Self-Organizing Map (SOM) method based on similarity between species compositions over time. ASFs were determined to be 25 days at Cluster 2 (June-July 2013) and 13 days at Cluster 5 (February-April 2014), whereas no specific ASFs were found at Cluster 1 (April-May 2013), 3 (August-November 2013) (>30 days) and Cluster 4 (December 2013 - January 2014) (<1 day). ASFs showed dramatic seasonality and were negatively related to hydrological wetness conditions, suggesting that sampling interval should be reduced with increasing catchment wetness. A key implication of our findings for freshwater management is that long-term bio-monitoring protocols should be developed with the knowledge of tracking algal temporal dynamics with an appropriate sampling frequency.

  10. Effect of molecular structure on fragmentation of isolated organic molecules in solid rare gas matrices

    International Nuclear Information System (INIS)

    Kobrazenko, A.V.; Sukhov, F.F.; Orlov, A.Yu.; Kovalev, G.V.; Baranova, I.A.; Feldman, V.I.

    2011-01-01

    Complete text of publication follows. Elucidation of high-energy reaction pathways in the condensed phase is an important issue for basic understanding of the radiation stability of complex organic molecules. As was shown previously, organic radical cations (RC) may undergo fragmentation or rearrangement in solid matrices due to excess energy. The probability of this process depends on both ionization potential (IP) of the molecule and molecular structure. In the present work we have studied the role of 'hot' ionic reaction channels for RC of some bifunctional compounds and alkynes. The effect of excess energy was simulated by matrix isolation method as described in detail earlier. The formation of fragmentation products was monitored by EPR and FTIR spectroscopy. In the present work it was shown that the RC of bifunctional compounds (CH 3 OCH 2 COCH 3 , CH 3 CO(CH 2 ) n COCH 3 , n 0/2) dissociated efficiently producing · CH 3 radicals upon irradiation in solid argon matrix at T ≤ 16 K. The probability of fragmentation decreases with decrease of excess energy by switching from Ar to Xe. It is worth noting that acetone RC does not show fragmentation under these conditions. Thus, bifunctional molecules were found to be less stable to 'hot' ionic fragmentation in low-temperature solids in comparison with simple prototype carbonyl compounds. In the case of alkynes of the R-C ≡ CH type, a noticeable yield of fragmentation products was observed when R = -C(CH 3 ) 3 , but it was negligible for R = -CH 3 . It means that the presence of triple bond stabilizes the molecular skeleton of linear alkynes toward 'hot' fragmentation, similarly as it was shown for alkenes. The mechanisms of 'hot' reactions and excess energy relaxation are discussed. This work was supported by the Russian Foundation for Basic Research (project 09-03-00848a).

  11. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    Directory of Open Access Journals (Sweden)

    Vasco Giovagnetti

    Full Text Available In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC and non-photochemical fluorescence quenching (NPQ, to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events with that of a slower increase (corresponding to the light diel cycle on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  12. Decadal-scale changes of dinoflagellates and diatoms in the anomalous baltic sea spring bloom.

    Directory of Open Access Journals (Sweden)

    Riina Klais

    Full Text Available The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat to >0.8 (central Baltic Proper, and (ii substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland in the dinoflagellate proportion over four decades. During a recent decade (1995-2004 the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4 and in the Gulf of Finland, (0.4 to 0.6 which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms.

  13. Diatom-Based Paleoenvironmental Reconstruction of Lake Telmen for the Last 6230 Years

    Directory of Open Access Journals (Sweden)

    N.Soninkhishig

    2003-06-01

    Full Text Available The preserved diatom flora in a 14C dated (0-6230 yBP, 343 cm long core sequence from Lake Telmen, Mongolia, was investigated to determine the nature of the lake-ecosystem and watershed response to Late Holocene climate change. Modern Lake Telmen is a slightly saline (presently 4 g L-1 closed- basin lake located along a N-S and E-W aridity ecotone in north-central Mongolia, making it sensitive to climate-driven changes in effective moisture balance. Diatoms were not preserved regularly in two areas of the Lake Telmen sediment record (5380-41 50 yBP and 1050-425 yBP possibly due to high carbonate preservation; however, diatom preservation between these areas was good to excellent. Diatom-based paleosalinity reconstruction using species-specific salinity optima from the Northern Great Plains of North America and community analysis suggests the following climate-lake response model during the Late Holocene. From 6230 to 5520 radiocarbon years ago, warm-dry climate resulted in a small salty (20 g L-1 lake in the Telmen basin that was dominated by high salinity indicator species (e.g. Cyclotella caspia, Navicellapusilla, Brachysira aponina. From 3 860 to 1200 radiocarbon yBP, Lake Telmen recorded a period of a modulating climate that resulted in regular fluctuations in paleosalinity from 2 to 4 g L-1 in conjunction with lake level changes. Dominance in the diatom flora fluctuated between the freshwater planktonic form Cyclotella bodanica var. affinis and the salinity-tolerant benthic taxon Anomoeoneis sphaerophora f. costata during this period characterized by generally more humid climatic periods interspersed with dry-as-present conditions. The most modern samples (0-250 yBP preserve floristic assemblages similar to those found between 3860 to 1200 radiocarbon yBP and indicate that as recently as 250 years ago Lake Telmen had lower salinity values than modern day.

  14. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.

    Science.gov (United States)

    Khoma, Mykhaylo; Jaquet, Ralph

    2017-09-21

    The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .

  15. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  16. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water.

    Science.gov (United States)

    Marella, Thomas Kiran; Parine, Narasimha Reddy; Tiwari, Archana

    2018-05-01

    Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG) emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L -1  day -1 and lipid productivity of 37 mg L -1  day -1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW) depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO 2 sequestration, biodiesel production, and wastewater phycoremediation.

  17. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Science.gov (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  18. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Science.gov (United States)

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  19. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation

    Science.gov (United States)

    Ma, Xia-Xia; Li, Ze-Sheng

    2018-01-01

    Oxygen molecule has a negative effect on perovskite solar cells, which has been investigated experimentally. However, detailed theoretical research is still rare. This study presents a microscopic view to reveal the interaction mechanism between O2 and perovskite based on the first-principles calculation. The results show that O2 is adsorbed on the (100) surface of MAPbI3 perovskite mainly by Van der Waals force. O2 adsorption makes the MAPbI3 surface generate a small number of positive charges, which leads to the increase of the work function of the MAPbI3 surface. This is in agreement with the experimental measurement. And increased work function of MAPbI3 surface is not beneficial to electron transfer from perovskite to electronic extraction layer (such as TiO2). Comparison of the density of states (DOS) of the clean (100) surface and the adsorbed system shows that an in-gap state belonging to O2 appears, which can explain the phenomenon observed from experiments that electron transfers from the surface of perovskite to O2 to form superoxide. The theoretical power conversion efficiency of the system with and without O2 adsorption is evaluated, and it turns out that the power conversion efficiency of the system with O2 adsorption is slightly lower than that of the system without O2 adsorption. This result indicates that avoiding the introduction of O2 molecules between perovskite and electronic extraction layer is beneficial to the perovskite solar cell.

  20. Effect of gold nanoparticle on stability of the DNA molecule: A study of molecular dynamics simulation.

    Science.gov (United States)

    Izanloo, Cobra

    2017-09-02

    An understanding of the mechanism of DNA interactions with gold nanoparticles is useful in today medicine applications. We have performed a molecular dynamics simulation on a B-DNA duplex (CCTCAGGCCTCC) in the vicinity of a gold nanoparticle with a truncated octahedron structure composed of 201 gold atoms (diameter ∼1.8 nm) to investigate gold nanoparticle (GNP) effects on the stability of DNA. During simulation, the nanoparticle is closed to DNA and phosphate groups direct the particles into the major grooves of the DNA molecule. Because of peeling and untwisting states that are occur at end of DNA, the nucleotide base lies flat on the surface of GNP. The configuration entropy is estimated using the covariance matrix of atom-positional fluctuations for different bases. The results show that when a gold nanoparticle has interaction with DNA, entropy increases. The results of conformational energy and the hydrogen bond numbers for DNA indicated that DNA becomes unstable in the vicinity of a gold nanoparticle. The radial distribution function was calculated for water hydrogen-phosphate oxygen pairs. Almost for all nucleotide, the presence of a nanoparticle around DNA caused water molecules to be released from the DNA duplex and cations were close to the DNA.

  1. Effects of Electric Field on the Valence-Bond Property of an Electron in a Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The electronic structure of the quantum-dot molecules in an electric field is investigated by the finite element method with the effective mass approximation. The numerical calculation results show that the valence bond of the quantum-dot molecule alternates between covalent bonds and ionic bonds as the electric field increases. The valence-bond property can be reflected by the oscillator strength of the intraband transition. The bound state with the highest energy level in the quantum-dot molecule gradually changes into a quasibound state when the electric field increases.

  2. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC.

    Science.gov (United States)

    Andrade, C M de; Sá, M F Silva de; Toloi, M R Torqueti

    2012-04-01

    The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. HUVEC were cultured in medium EBM(2), pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.

  3. Diatoms from a peat bog on the Pešter plateau (southwestern Serbia: New records for diatom flora of Serbia

    Directory of Open Access Journals (Sweden)

    Vidaković Danijela

    2016-01-01

    Full Text Available The distribution of diatoms was studied in three types of diatom communities (epiphytes, benthos and plankton of a peat bog on the Pešter plateau. The observed diatom flora inhabited all investigated communities, comprising in total 250 taxa in 53 genera. Among them, 45 taxa were new records for the Serbian diatom flora. Identified taxa belonged to different groups of algae, however alkaliphile diatoms were dominant. New ecological data for Encyonopsis minuta, Pinnularia isostauron and P. marchica are presented here. All the diatoms were documented by light micrographs, and brief notes on their morphology, distribution and ecology are provided. [Projekat Ministarstva nauke Republike Srbije, br. TR 037009

  4. Codon adaptation and synonymous substitution rate in diatom plastid genes.

    Science.gov (United States)

    Morton, Brian R; Sorhannus, Ulf; Fox, Martin

    2002-07-01

    Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants. It is also found that there is a strong correlation between Ks and variation in codon adaptation across diatom genes, providing the first evidence for such a relationship in the algae. It is argued that this finding supports the notion that the correlation arises from selective constraints, not from variation in mutation rate among genes. Finally, the diatom genes are examined with respect to variation in Ks among different synonymous groups. Diatom genes with strong codon adaptation do not show the same variation in synonymous substitution rate among codon groups as the flowering plant psbA gene which, previous studies have shown, has strong codon adaptation but unusually high rates of silent change in certain synonymous groups. The lack of a similar finding in diatoms supports the suggestion that the feature is unique to the flowering plant psbA due to recent relaxations in selective pressure in that lineage.

  5. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Directory of Open Access Journals (Sweden)

    Zhiqian Yi

    2015-09-01

    Full Text Available Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  6. Motion of Br2 molecules in clathrate cages. A computational study of the dynamic effects on its spectroscopic behavior.

    Science.gov (United States)

    Bernal-Uruchurtu, M I; Janda, Kenneth C; Hernández-Lamoneda, R

    2015-01-22

    This work looks into the spectroscopic behavior of bromine molecules trapped in clathrate cages combining different methodologies. We developed a semiempirical quantum mechanical model to incorporate through molecular dynamics trajectories, the effect movement of bromine molecules in clathrate cages has on its absorption spectra. A simple electrostatic model simulating the cage environment around bromine predicts a blue shift in the spectra, in good agreement with the experimental evidence.

  7. Interference, confinement and non Franck-Condon effects in photoionization of H{sub 2} molecules at high photon energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J; MartIn, F [Departamento de Quimica, C-9, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Fojon, O, E-mail: jorge@phys.au.d, E-mail: ofojon@fceia.unr.edu.a, E-mail: fernando.martin@uam.e [Institute de Fisica Rosario (CONICET-UNR), Pellegrini 250, 2000 Rosario (Argentina)

    2009-11-01

    We study in detail photoionization of H{sub 2} molecules by high energy photons. Bound and continuum states are accurately evaluated by using B-spline basis functions. The usual Franck-Condon behavior is not followed when the molecule is parallel to the polarization direction. The origin of this anomaly is related to interference effects. Moreover, it is shown that at these high photon energies, the nuclear asymmetry parameter exhibits a reminiscence of these interference patterns.

  8. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size

    Science.gov (United States)

    Moens, Tom; Vafeiadou, Anna-Maria; De Geyter, Ellen; Vanormelingen, Pieter; Sabbe, Koen; De Troch, Marleen

    2014-09-01

    We examine the capacity of nematodes from three feeding types (deposit feeder, epistrate feeder, predator) to utilize microphytobenthos (MPB), and assess whether diatom cell size and consumer body size are important drivers of their feeding. We analyzed natural stable isotope ratios of carbon and nitrogen in abundant nematode genera and a variety of carbon sources at an estuarine intertidal flat. All nematodes had δ13C indicating that MPB is their major carbon source. δ15N, however, demonstrated that only one deposit and one epistrate feeder genus obtained most of their carbon from direct grazing on MPB, whereas other deposit feeders and predators obtained at least part of their carbon by predation on MPB grazers. We then performed a microcosm experiment in which equal cell numbers of each of three differently sized strains of the pennate diatom Seminavis were offered as food to four, one and one genera of deposit feeders, epistrate feeders and predators, respectively. Previous studies have shown that all but the epistrate feeder ingest whole diatoms, whereas the epistrate feeder pierces cells and sucks out their contents. Most genera showed markedly higher carbon absorption from medium and large cells than from small ones. When considering the number of cells consumed, however, none of the nematodes which ingest whole cells exhibited a clear preference for any specific diatom size. The epistrate feeder was the smallest nematode taxon considered here, yet it showed a marked preference for large cells. These results highlight that the feeding mechanism is much more important than consumer size as a driver of particle size selection in nematodes grazing MPB.

  9. A quantum-mechanical study of atom-diatom collisions in a laser field

    International Nuclear Information System (INIS)

    Chang, Sintarng.

    1989-01-01

    A quantum-mechanical formalism, in both space-fixed (SF) and body-fixed (BF) coordinate systems, is developed for describing an S-state structureless atom (A) colliding with a Estate vibrating rotor diatomic molecule (BC) in the presence of a laser field. The additional Hamiltonians H rad and H int , which describe the laser field and its interaction with the atom-diatom collision system, have been added to the field-free Hamiltonian Ho. And the collision problem can be solved by this extended Hamiltonian. The laser field Hamiltonian is represented by the number state representation. The interaction Hamiltonian is expressed by rvec μ BC . rvec ε, where rvec μ BC is the dipole moment of the diatomic molecule BC, and rvec ε is the electric field strength of the laser field. Since the field-free total angular momentum J is coupling with the laser field, J and its z-axis projection M are no longer conserved. To facilitate the collision problem, the laser field is restricted to a single mode, and its interaction with the collision only involves dipole allowed transitions in which a single photon is absorbed or emitted. For convenience, the coupled-channel equations are solved by the real boundary conditions instead of the complex boundary conditions. On applying the real boundary conditions, the author obtains the K-matrix, which is related to the S-matrix by S = (I + iK)(I - iK) -1 . A model calculation is discussed for the Ar + CO collision system in a laser intensity of 10 9 W/cm 2

  10. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    Directory of Open Access Journals (Sweden)

    Y Yousefi

    2018-02-01

    Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.

  11. Effect of substrate temperature on orientation of subphthalocyanine molecule in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Chou, Chi-Ta; Tang, Wei-Li; Tai, Yian; Lin, Chien-Hung; Liu, Chin-Hsin J.; Chen, Li-Chyong; Chen, Kuei-Hsien

    2012-01-01

    This study investigates the effect of substrate temperature (T s ) on the boron subphthalocyanine chloride (SubPc) thin film and its power conversion efficiency in SubPc/C 60 heterojunction photovoltaic cells. The orientations of SubPc molecules in thin films determined by X-ray diffraction is strongly correlated with the electronic properties of the organic thin films, and can be controlled by the substrate temperature during the vapor deposition. An optimal substrate temperature of 120 °C has been concluded to induced (221) molecular orientation over the (122) orientation and significantly improve the carrier transport of the SubPc thin film. A SubPc/C 60 heterojunction photovoltaic cells thus fabricated shows higher open-circuit voltage and up to 1.55% conversion efficiency has been achieved, which is attributed to preferential (221) orientation of the SubPc deposited at the elevated temperature.

  12. Interference effects in double ionization of spatially aligned hydrogen molecules by fast highly charged ions

    International Nuclear Information System (INIS)

    Landers, A.L.; Alnaser, A.S.; Tanis, J.A.; Wells, E.; Osipov, T.; Carnes, K.D.; Ben-Itzhak, I.; Cocke, C.L.; McGuire, J.H.

    2004-01-01

    Cross sections differential in target orientation angle were measured for 19 MeV F 8+ +D 2 collisions. Multihit position-sensitive detectors were used to isolate the double-ionization channel and determine a posteriori the full momentum vectors of both ejected D + fragments. A strong dependence of the double ionization cross section on the angle between the incident ion direction and the target molecular axis is observed with a ≅3.5:1 enhancement for molecules aligned perpendicular to the projectile axis. This clear asymmetry is attributed to interference effects, analogous to Young's two-slit experiment, arising from coherent contributions to the ionization from both atomic centers. The data are compared to a simple scattering model based on two center interference

  13. Effective electronic-only Kohn–Sham equations for the muonic molecules

    Science.gov (United States)

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the Nuclear-Electronic Orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing muon vibration, which are optimized during the solution of the EKS equations making muon KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a duality between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential maybe derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding muonium atom to ferrocene. In line with previous computational studies, from the six possible species the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

  14. Effective electronic-only Kohn-Sham equations for the muonic molecules.

    Science.gov (United States)

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-03-28

    A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the nuclear-electronic orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing the muon's vibration, which are optimized during the solution of the EKS equations making the muon's KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a "duality" between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential may be derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding a muonium atom to ferrocene. In line with previous computational studies, from the six possible species, the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

  15. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss.

    Science.gov (United States)

    Biosa, Alice; Sanchez-Martinez, Alvaro; Filograna, Roberta; Terriente-Felix, Ana; Alam, Sarah M; Beltramini, Mariano; Bubacco, Luigi; Bisaglia, Marco; Whitworth, Alexander J

    2018-05-01

    Reactive oxygen species exert important functions in regulating several cellular signalling pathways. However, an excessive accumulation of reactive oxygen species can perturb the redox homeostasis leading to oxidative stress, a condition which has been associated to many neurodegenerative disorders. Accordingly, alterations in the redox state of cells and mitochondrial homeostasis are established hallmarks in both familial and sporadic Parkinson's disease cases. PINK1 and Parkin are two genes which account for a large fraction of autosomal recessive early-onset forms of Parkinson's disease and are now firmly associated to both mitochondria and redox homeostasis. In this study we explored the hypothesis that superoxide anions participate in the generation of the Parkin and PINK1 associated phenotypic effect by testing the capacity of endogenous and exogenous superoxide dismutating molecules to rescue the toxic effects induced by loss of PINK1 or Parkin, in both cellular and fly models. Our results demonstrate the positive effect of an increased level of superoxide dismutase proteins on the pathological phenotypes, both in vitro and in vivo. A more pronounced effectiveness for mitochondrial SOD2 activity points to the superoxide radicals generated in the mitochondrial matrix as the prime suspect in the definition of the observed phenotypes. Moreover, we also demonstrate the efficacy of a SOD-mimetic compound, M40403, to partially ameliorate PINK1/Parkin phenotypes in vitro and in vivo. These results support the further exploration of SOD-mimetic compounds as a therapeutic strategy against Parkinson's disease.

  16. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  17. Understanding the relationships between molecule structure and imprinting effect of two acetyl-nitrogen heterocyclic compounds.

    Science.gov (United States)

    Wang, Jian; Dong, Xiao; Xue, Min; Dong, Xuemin; Xu, Zhibin; Meng, Zihui; Luo, Jun

    2016-06-01

    The molecularly imprinted polymers (MIPs) for two structural analogs, 1,3,5-triacetyl-1,3,5-triazacyclohexane (TRAT) and 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT), have been synthesized respectively under the same conditions. The TAT-MIP showed excellent imprinting effect, whereas the TRAT-MIP did not. To understand the different imprinting effects of the MIPs prepared from these two templates, the geometric structures and energetic properties of complexes formed around TAT and TRAT were studied computationally. The results indicate that in liquid phase, for the complexes formed with TAT and its nearest neighbor molecules, the magnitude of the binding energy increases with the number of surrounding TAT, methacrylic acid, and acetonitrile (ACT), whereas for the cases of TRAT, the magnitude of the binding energy increases with the number of surrounding TRAT and trimethylolpropane trimethacrylate. The studied systems form stronger and thus more stable networks encapsulating TAT than with TRAT. ACT may also play an important role in the polymerization phase in stabilizing the shapes of the cavities that TATs reside in. We propose these as the major factors that affect the different imprinting effects of the two MIPs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Oxygen isotopic ratio of the diatom siliceous valves: development of a new method in quantitative paleoclimatology

    International Nuclear Information System (INIS)

    Labeyrie, Laurent.

    1979-07-01

    This paper describes a new method allowing the measurement of the 18 O/ 16 O ratio of the biogenic silica oxygen, which takes into account the effects due to the organic matter and hydration water associated with this type of silica. By isotopic exchange with enriched water, we have been able to fix a treatment which eliminate all contamination and memory effects. This has permitted us to study the temperature dependance of the hydrated silica-water oxygen isotopic fractionation. As application, we present a study of the variations of the delta 18 O of fossil diatoms valves along an Equatorial Pacific sediment core covering the last 20.000 years. The results demonstrate the usefulness of the delta 18 O of the diatom silica for paleoclimatic investigations [fr

  19. The effect of uniform capture molecule orientation on biosensor sensitivity : dependence on analyte properties

    NARCIS (Netherlands)

    Trilling, A.K.; Harmsen, M.M.; Ruigrok, V.J.; Zuilhof, H.; Beekwilder, J.

    2013-01-01

    Uniform orientation of capture molecules on biosensors has been reported to increase sensitivity. Here it is investigated which analyte properties contribute to sensitivity by orientation. Orientation of capture molecules on biosensors was investigated using variable domains of llama heavy-chain

  20. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  1. Surface diffusion of long chainlike molecules: The role of memory effects and stiffness on effective diffusion barriers

    DEFF Research Database (Denmark)

    Hjelt, T.; Vattulainen, Ilpo Tapio

    2000-01-01

    stiffness. Our primary aim is to consider the role played by chain stiffness and the resulting memory effects in tracer diffusion, and in particular their role in the effective tracer diffusion barrier E-A(T) extracted from the well-known Arrhenius form. We show that the memory effects in tracer diffusion......, for a single diffusing chain, about 20% of E-A(T) arises from temperature variations in the memory effects, while only the remaining part comes from thermally activated chain segment movements. At a finite coverage, the memory contribution in E-A(T) is even larger and is typically about 20%-40%. Further...... of recent experimental work as regards surface diffusion of long DNA molecules on a biological interface. (C) 2000 American Institute of Physics....

  2. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  3. Diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoi-dohrnii complex.

    Science.gov (United States)

    Khanam, Mst Ruhina Margia; Shimasaki, Yohei; Hosain, Md Zahangir; Mukai, Koki; Tsuyama, Michito; Qiu, Xuchun; Tasmin, Rumana; Goto, Hiroshi; Oshima, Yuji

    2017-05-01

    The present research investigated the effect of diuron on sinking rate and the physiochemical changes in two marine diatoms, Thalassiosira pseudonana (single-celled species) and Skeletonema marinoi-dohrnii complex (chain-forming species). The results revealed that the sinking rate of both diatoms exposed to diuron at a level of 50% effective concentration for growth (EC50) decreased significantly compared with the control. Photosynthetic performance (Fv/Fm and PI ABS ) of both diatoms also decreased significantly with diuron exposure. The number of cells per chain in S. marinoi-dohrnii decreased significantly with diuron treatment, but T. pseudonana cell diameter remained stable. Neutral lipid concentration per cell was significantly higher compared with control at 72 h in both diatom species exposed to EC50 level diuron. And water-soluble protein concentration per cell at 72 h was lower than control in the T. pseudonana EC50 group only. These biochemical changes may decrease specific gravity of cells and seems to cause a decreased sinking rate in diatoms. The positive significant correlation between the numbers of cells per chain and sinking rate in S. marinoi-dohrnii indicated that chain length is also an important factor in sinking rate regulation for chain-forming diatoms. Thus, our present study suggested that suppression of photosynthetic performance and the resultant physiochemical changes induced the decreased sinking rate that may inhibit the normal survival strategy (avoidance from the surface layer where strong light either causes photo-inhibition or interrupts resting cell formation). Therefore, the use of antifouling agents should be considered for the sustainable marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water

    Directory of Open Access Journals (Sweden)

    Thomas Kiran Marella

    2018-05-01

    Full Text Available Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L−1 day−1 and lipid productivity of 37 mg L−1 day−1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO2 sequestration, biodiesel production, and wastewater phycoremediation. Keywords: Micro algae, Diatom, Biodiesel, Nualgi, Nutrient removal, Wastewater

  5. Automated Diatom Classification (Part A: Handcrafted Feature Approaches

    Directory of Open Access Journals (Sweden)

    Gloria Bueno

    2017-07-01

    Full Text Available This paper deals with automatic taxa identification based on machine learning methods. The aim is therefore to automatically classify diatoms, in terms of pattern recognition terminology. Diatoms are a kind of algae microorganism with high biodiversity at the species level, which are useful for water quality assessment. The most relevant features for diatom description and classification have been selected using an extensive dataset of 80 taxa with a minimum of 100 samples/taxon augmented to 300 samples/taxon. In addition to published morphological, statistical and textural descriptors, a new textural descriptor, Local Binary Patterns (LBP, to characterize the diatom’s valves, and a log Gabor implementation not tested before for this purpose are introduced in this paper. Results show an overall accuracy of 98.11% using bagging decision trees and combinations of descriptors. Finally, some phycological features of diatoms that are still difficult to integrate in computer systems are discussed for future work.

  6. Diatoms - nature materials with great potential for bioapplications

    Directory of Open Access Journals (Sweden)

    Medarević Đorđe P.

    2016-01-01

    Full Text Available Diatoms are widespread unicellular photosynthetic algae that produce unique highly ordered siliceous cell wall, called frustule. Micro- to nanoporous structure with high surface area that can be easily modified, high mechanical resistance, unique optical features (light focusing and luminescence and biocompatibility make diatom frustule as a suitable raw material for the development of devices such as bio- and gas sensors, microfluidic particle sorting devices, supercapacitors, batteries, solar cells, electroluminescent devices and drug delivery systems. Their wide availability in the form of fossil remains (diatomite or diatomaceous earth as well as easy cultivation in the artificial conditions further supports use of diatoms in many different fields of application. This review focused on the recent achievements in the diatom bioapplications such as drug delivery, biomolecules immobilization, bio- and gas sensing, since great progress was made in this field over the last several years.

  7. Abundance of bacterial and diatom fouling on various surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi

    Abundance of bacterial and diatom fouling on aluminium, fibreglass and stainless steel were studied from Dona Paula waters of the Zuari Estuary. Both these forms were reversibly attached in large numbers to surfaces during the initial 24 hr...

  8. Studies on new antifreeze protein from the psychrophilic diatom ...

    African Journals Online (AJOL)

    Studies on new antifreeze protein from the psychrophilic diatom, Fragilariopsis cylindrus. ... African Journal of Biotechnology. Journal Home · ABOUT THIS ... The predicted gene product, AfpA, had a molecular mass of 27 kDa. Expression of ...

  9. Pliocene diatoms from the Bryce Canyon Area, Utah

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    habitat. The fragmentary condition of these indicated agitation during sedimentation. The ratio between the planktonic and benthonic diatoms indicated near-shore deposition. The two extinct species (?), @iSurirella craticula@@ (= @iStictodesmis craticula...

  10. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    OpenAIRE

    Robinson, Nathan J.; Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtl...

  11. Effects of the small molecule HERG activator NS1643 on Kv11.3 channels.

    Directory of Open Access Journals (Sweden)

    Arne Bilet

    Full Text Available NS1643 is one of the small molecule HERG (Kv11.1 channel activators and has also been found to increase erg2 (Kv11.2 currents. We now investigated whether NS1643 is also able to act as an activator of Kv11.3 (erg3 channels expressed in CHO cells. Activation of rat Kv11.3 current occurred in a dose-dependent manner and maximal current increasing effects were obtained with 10 µM NS1643. At this concentration, steady-state outward current increased by about 80% and the current increase was associated with a significant shift in the voltage dependence of activation to more negative potentials by about 15 mV. In addition, activation kinetics were accelerated, whereas deactivation was slowed. There was no significant effect on the kinetics of inactivation and recovery from inactivation. The strong current-activating agonistic effect of NS1643 did not result from a shift in the voltage dependence of Kv11.3 channel inactivation and was independent from external Na(+ or Ca(2+. At the higher concentration of 20 µM, NS1643 induced clearly less current increase. The left shift in the voltage dependence of activation reversed and the voltage sensitivity of activation dramatically decreased along with a slowing of Kv11.3 channel activation. These data show that, in comparison to other Kv11 family members, NS1643 exerts distinct effects on Kv11.3 channels with especially pronounced partial antagonistic effects at higher concentration.

  12. Asymptotically exact calculation of the exchange energies of one-active-electron diatomic ions with the surface integral method

    International Nuclear Information System (INIS)

    Scott, Tony C; Aubert-Frecon, Monique; Hadinger, Gisele; Andrae, Dirk; Grotendorst, Johannes; III, John D Morgan

    2004-01-01

    We present a general procedure, based on the Holstein-Herring method, for calculating exactly the leading term in the exponentially small exchange energy splitting between two asymptotically degenerate states of a diatomic molecule or molecular ion. The general formulae we have derived are shown to reduce correctly to the previously known exact results for the specific cases of the lowest Σ and Π states of H + 2 . We then apply our general formulae to calculate the exchange energy splittings between the lowest states of the diatomic alkali cations K + 2 , Rb + 2 and Cs + 2 , which are isovalent to H + 2 . Our results are found to be in very good agreement with the best available experimental data and ab initio calculations

  13. Multiple molecule effects on the cooperativity of protein folding transitions in simulations

    Science.gov (United States)

    Lewis, Jacob I.; Moss, Devin J.; Knotts, Thomas A.

    2012-06-01

    Though molecular simulation of proteins has made notable contributions to the study of protein folding and kinetics, disagreement between simulation and experiment still exists. One of the criticisms levied against simulation is its failure to reproduce cooperative protein folding transitions. This weakness has been attributed to many factors such as a lack of polarizability and adequate capturing of solvent effects. This work, however, investigates how increasing the number of proteins simulated simultaneously can affect the cooperativity of folding transitions — a topic that has received little attention previously. Two proteins are studied in this work: phage T4 lysozyme (Protein Data Bank (PDB) ID: 7LZM) and phage 434 repressor (PDB ID: 1R69). The results show that increasing the number of proteins molecules simulated simultaneously leads to an increase in the macroscopic cooperativity for transitions that are inherently cooperative on the molecular level but has little effect on the cooperativity of other transitions. Taken as a whole, the results identify one area of consideration to improving simulations of protein folding.

  14. The boomerang effect in electron-hydrogen molecule scattering as determined by time-dependent calculations

    Science.gov (United States)

    Ben-Asher, Anael; Moiseyev, Nimrod

    2017-05-01

    The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.

  15. Effects on Energy Metabolism of Two Guanidine Molecules, (Boc)2 -Creatine and Metformin.

    Science.gov (United States)

    Garbati, Patrizia; Ravera, Silvia; Scarfì, Sonia; Salis, Annalisa; Rosano, Camillo; Poggi, Alessandro; Damonte, Gianluca; Millo, Enrico; Balestrino, Maurizio

    2017-09-01

    Several enzymes are involved in the energy production, becoming a possible target for new anti-cancer drugs. In this paper, we used biochemical and in silico studies to evaluate the effects of two guanidine molecules, (Boc) 2 -creatine and metformin, on creatine kinase, an enzyme involved in the regulation of intracellular energy levels. Our results show that both drugs inhibit creatine kinase activity; however, (Boc) 2 -creatine displays a competitive inhibition, while metformin acts with a non-competitive mechanism. Moreover, (Boc) 2 -creatine is able to inhibit the activity of hexokinase with a non-competitive mechanism. Considering that creatine kinase and hexokinase are involved in energy metabolism, we evaluated the effects of (Boc) 2 -creatine and metformin on the ATP/AMP ratio and on cellular proliferation in healthy fibroblasts, human breast cancer cells (MDA-MB-468), a human neuroblastoma cell line (SH-SY5Y), a human Hodgkin lymphoma cell line (KMH2). We found that healthy fibroblasts were only partially affected by (Boc) 2 -creatine, while both ATP/AMP ratio and viability of the three cancer cell lines were significantly decreased. By inhibiting both creatine kinase and hexokinase, (Boc) 2 -creatine appears as a promising new agent in anticancer treatment. Further research is needed to understand what types of cancer cells are most suitable to treatment by this new compound. J. Cell. Biochem. 118: 2700-2711, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. THE INFLUENCE OF SUBMERGED MACROPHYTES ON SEDIMENTARY DIATOM ASSEMBLAGES(1).

    Science.gov (United States)

    Vermaire, Jesse C; Prairie, Yves T; Gregory-Eaves, Irene

    2011-12-01

    Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P macrophyte, nutrient-limited lakes (BiomEpiV ≥525 μg · L(-1) ; total phosphorus [TP] macrophyte, nutrient-limited lakes (BiomEpiV macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance. © 2011 Phycological Society of America.

  17. Current trends to comprehend lipid metabolism in diatoms.

    Science.gov (United States)

    Zulu, Nodumo Nokulunga; Zienkiewicz, Krzysztof; Vollheyde, Katharina; Feussner, Ivo

    2018-04-01

    Diatoms are the most dominant phytoplankton species in oceans and they continue to receive a great deal of attention because of their significant contributions in ecosystems and the environment. Due to triacylglycerol (TAG) profiles that are abundant in medium-chain fatty acids, diatoms have emerged to be better feed stocks for biofuel production, in comparison to the commonly studied green microalgal species (chlorophytes). Importantly, diatoms are also known for their high levels of the essential ω3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and are considered to be a promising alternative source of these components. The two most commonly exploited diatoms include Thalassiosira pseudonana and Phaeodactylum tricornutum. Although obvious similarities between diatoms and chlorophytes exist, there are some substantial differences in their lipid metabolism. This review provides an overview on lipid metabolism in diatoms, with P. tricornutum as the most explored model. Special emphasis is placed on the synthesis and incorporation of very long chain ω3 fatty acids into lipids. Furthermore, current approaches including genetic engineering and biotechnological methods aimed at improving and maximizing lipid production in P. tricornutum are also discussed. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B

    2014-12-15

    © Inter-Research 2014. Diatom aggregates contribute significantly to the vertical sinking flux of particulate matter in the ocean. These fragile structures form a specific microhabitat for the aggregated cells, but their internal chemical and physical characteristics remain largely unknown. Studies on the impact of aggregation on the Si cycle led to apparent inconsistency. Despite a lower biogenic silica (bSiO2) dissolution rate and diffusion of the silicic acid (dSi) being similar in aggregates and in sea-water, dSi surprisingly accumulates in aggregates. A reaction-diffusion model helps to clarify this incoherence by reconstructing dSi accumulation measured during batch experiments with aggregated and non-aggregated Skeletonema marinoi and Chaetoceros decipiens. The model calculates the effective bSiO2 dissolution rate as opposed to the experimental apparent bSiO2 dissolution rate, which is the results of the effective dissolution of bSiO2 and transport of dSi out of the aggregate. In the model, dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution is modulated by the impact of dSi concentration inside aggregates and diatom viability, as enhanced persistence of metabolically active diatoms has been observed in aggregates. Adsorption better explains dSi accumulation within and outside aggregates, raising the possible importance of dSi travelling within aggregates to the deep sea (potentially representing 20% of the total silica flux). The model indicates that bSiO2 dissolution is effectively decreased in aggregates mainly due to higher diatom viability but also to other parameters discussed herein.

  19. Shift in the species composition of the diatom community in the eutrophic Mauritanian coastal upwelling: Results from a multi-year sediment trap experiment (2003-2010)

    Science.gov (United States)

    Romero, Oscar E.; Fischer, Gerhard

    2017-12-01

    A multiannual, continuous sediment trap experiment was conducted at the mooring site CBeu (Cape Blanc eutrophic, ca. 20 °N, ca. 18 °W; trap depth = 1256-1296 m) in the high-productive Mauritanian coastal upwelling. Here we present fluxes and the species-specific composition of the diatom assemblage, and fluxes of biogenic silica (BSi, opal) and total organic carbon (TOC) for the time interval June 2003-Feb 2010. Flux ranges of studied parameters are (i) total diatoms = 1.2 ∗ 108-4.7 ∗ 104 valves m-2 d-1 (average = 5.9 × 106 valves ± 1.4 × 107); (ii) BSi = 296-0.5 mg m-2 d-1 (average = 41.1 ± 53.5 mg m-2 d-1), and (iii) TOC = 97-1 mg m-2 d-1 (average = 20.5 ± 17.8 mg m-2 d-1). Throughout the experiment, the overall good match of total diatom, BSi and TOC fluxes is reasonably consistent and reflects well the temporal occurrence of the main Mauritanian upwelling season. Spring and summer are the most favorable seasons for diatom production and sedimentation: out of the recorded 14 diatom maxima of different magnitude, six occurred in spring and four in summer. The diverse diatom community at site CBeu is composed of four main assemblages: benthic, coastal upwelling, coastal planktonic and open-ocean diatoms, reflecting different productivity conditions and water masses. A striking feature of the temporal variability of the diatom populations is the persistent pattern of seasonal groups' contribution: benthic and coastal upwelling taxa dominated during the main upwelling season in spring, while open-ocean diatoms were more abundant in fall and winter, when the upper water column becomes stratified, upwelling relaxes and productivity decreases. The relative abundance of benthic diatoms strongly increased after 2006, yet their spring-summer contribution remained high until the end of the trap experiment. The occurrence of large populations of benthic diatoms at the hemipelagic CBeu site is interpreted to indicate transport from shallow waters via nepheloid

  20. Responses of diatom communities to hydrological processes during rainfall events

    Science.gov (United States)

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    The importance of diatoms as a tracer of hydrological processes has been recently recognized (Pfister et al. 2009, Pfister et al. 2011, Tauro et al. 2013). However, diatom variations in a short-term scale (e.g., sub-daily) during rainfall events have not been well documented yet. In this study, rainfall event-based diatom samples were taken at the outlet of the Kielstau catchment (50 km2), a lowland catchment in northern Germany. A total of nine rainfall events were caught from May 2013 to April 2014. Non-metric multidimensional scaling (NMDS) revealed that diatom communities of different events were well separated along NMDS axis I and II, indicating a remarkable temporal variation. By correlating water level (a proxy of discharge) and different diatom indices, close relationships were found. For example, species richness, biovolume (μm3), Shannon diversity and moisture index01 (%, classified according to van Dam et al. 1994) were positively related with water level at the beginning phase of the rainfall (i.e. increasing limb of discharge peak). However, in contrast, during the recession limb of the discharge peak, diatom indices showed distinct responses to water level declines in different rainfall events. These preliminary results indicate that diatom indices are highly related to hydrological processes. The next steps will include finding out the possible mechanisms of the above phenomena, and exploring the contributions of abiotic variables (e.g., hydrologic indices, nutrients) to diatom community patterns. Based on this and ongoing studies (Wu et al. unpublished data), we will incorporate diatom data into End Member Mixing Analysis (EMMA) and select the tracer set that is best suited for separation of different runoff components in our study catchment. Keywords: Diatoms, Rainfall event, Non-metric multidimensional scaling, Hydrological process, Indices References: Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L

  1. Final Report: Cooling Molecules with Laser Light

    International Nuclear Information System (INIS)

    Di Rosa, Michael D.

    2012-01-01

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  2. Multiple ionization dynamics of molecules in intense laser fields

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2005-01-01

    A classical field-ionization model is developed for sequential multiple ionization of diatomic and linear triatomic molecules exposed to intense (∼ 10 15 W/cm 2 ) laser fields. The distance R ion of Coulomb explosion is calculated for a combination of fragment charges, by considering nonadiabatic excitation followed by field ionization associated with the inner and outer saddle points. For diatomic molecules (N 2 , NO, and I 2 ), the model explains behaviors observed in experiments, as R ion (21→31) ion (21→22) between competing charge-asymmetric and symmetric channels, and even-odd fluctuation along a principal pathway. For a triatomic molecule CO 2 , a comparison of the model with an experiment suggests that charge-symmetric (or nearly symmetric) channels are dominantly populated. (author)

  3. Effect of spironolactone on renal and intercellular adhesion molecule-1 expression in Type 2 diabetic rats

    International Nuclear Information System (INIS)

    Zhang Suwan; Li Sumei; Zhai Fei; Zhang Li; Zhang Rong; Ru Yan

    2011-01-01

    Objective: To observe the influence of spironolactone on the serum and urine intercellular adhesion molecule-1 (ICAM-1) level, and the change of renal structure and function of type 2 diabetic rats. Methods: 30 healthy male SD rats were chosen 10 of them were randomly selected as normal controls (group NC) n=10; Then these rats were randomly divided into type 2 diabetes group (group DM) n=10 and type 2 diabetes + spironolactone treated group (group SPI) n=10. After 8 weeks, the levels of blood glucose, serum lipids, urine biochemical, renal pathological changes were examined; while the serum and urine ICAM-1 levels changes were also detected. Results: 1. Compared with group NC, the levels of fBG and HbA1c were significantly increased in group DM and group SPI (P 0.05). 2. After 8 weeks,the levels of ACR, URBP, UICAM-1, SICAM-1 and kidney/body weight ratio in group DM and group SPI were higher than group NC (P<0.05); the five indexes were significantly lower in group SPI compared with group DM (P<0.05). In addition, UICAM-1 excretion rate and SICAM-1 level showed positive correlations with ACR, URBP excretion rate and kidney/body weight ratio (P<0.01). 3. Pathology showed that the extent of glomerular lesions in rats in group SPI apparently reduced, ICAM-1 expression was decreased compared with that in group DM (P<0.01). Conclusion: Spironolactone can definitely protect type 2 diabetic kidney,and this protective effect was independent on the hypoglycemic effect. The mechanisms might be associated with its inhibition effect on ICAM-1 expression and its excretion. (authors)

  4. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya, E-mail: jyli@mail.shcnc.ac.cn; Nan, Fa-Jun, E-mail: fjnan@mail.shcnc.ac.cn; Li, Jia, E-mail: jli@mail.shcnc.ac.cn

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome.

  5. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    International Nuclear Information System (INIS)

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya; Nan, Fa-Jun; Li, Jia

    2013-01-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome

  6. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.; Kim, BongSoo; Mauldin, Clayton E.; Frechet, Jean; Xu, Ting

    2016-01-01

    on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl

  7. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    Science.gov (United States)

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  8. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  9. Effect of Dipolar Interactions on the Magnetization of Single-Molecule Magnets in a cubic lattice

    Science.gov (United States)

    Alcantara Ortigoza, Marisol

    2005-03-01

    Since the one-body tunnel picture of single-molecule magnets (SMM) is not always sufficient to explain the fine structure of experimental hysteresis loops, the effect of intermolecular dipolar interactions has been investigated on an ensemble of 100 3D-systems of 5X5X4 particles, each with spin S = 5, arranged in a cubic lattice. We have solved the Landau-Lifshitz-Gilbert equation for several values of the damping constant, the field sweep rate and the lattice constant. We find that the smaller the damping constant is, the stronger the maximum field needs to be to produce hysteresis. Furthermore, the shape of the hysteresis loops also depends on the damping constant. We also find that the system magnetizes and demagnetizes faster with decreasing sweep rates, resulting in smaller hysteresis loops. Variations of the lattice constant within realistic values (1.5nm and 2.5nm) show that the dipolar interaction plays an important role in magnetic hysteresis by controlling the relaxation process. Examination of temperature dependencies (0.1K and 0.7K) of the above will be presented and compared with recent experimental data on SMM.

  10. The effects of electric fields on charged molecules and particles in individual microenvironments

    Science.gov (United States)

    Jamieson, K. S.; ApSimon, H. M.; Jamieson, S. S.; Bell, J. N. B.; Yost, M. G.

    Measurements of small air ion concentrations, electrostatic potential and AC electric field strengths were taken in an office setting to investigate the link between electric fields and charged molecule and particle concentrations in individual microenvironments. The results obtained indicate that the electromagnetic environments individuals can be exposed to whilst indoors can often bear little resemblance to those experienced outdoors in nature, and that many individuals may spend large periods of their time in "Faraday cage"-like conditions exposed to inappropriate levels and types of electric fields that can reduce localised concentrations of biologically essential and microbiocidal small air ions. Such conditions may escalate their risk of infection from airborne contaminants, including microbes, whilst increasing localised surface contamination. The degree of "electro-pollution" that individuals are exposed to was shown to be influenced by the type of microenvironment they occupy, with it being possible for very different types of microenvironment to exist within the same room. It is suggested that adopting suitable electromagnetic hygiene/productivity guidelines that seek to replicate the beneficial effects created by natural environments may greatly mitigate such problems.

  11. Effect of low dose irradiation on expression of membrane molecules of T lymphocytes in cord blood

    International Nuclear Information System (INIS)

    Liu Chang'an; Yang Guang; Jia Tingzhen

    2001-01-01

    The membrane molecules expression of T lymphocytes of cord blood after low dose irradiation (LDI) was investigated. Freshly isolated lymphocytes from cord blood were irradiated with 62 mGy γ-ray. At different time (4 h, 12 h, 24 h) after irradiation the changes of TCR + , CD3 + , CD4 + , CD8 + cells were examined by flow cytometry with direct immunofluorescence, respectively. The experimental results showed that the proportion of CD3 + , TCR + /CD3 + , CD4 + , CD8 + cells increased significantly after LDI, with the most obvious enhancement noted in the 24 h experimental group. The ratio of CD4 to CD8 showed no significant changes. It is suggested that expedition of the maturation, activation and signal transduction of T lymphocytes from cord blood can be induced by irradiation of 62 mGy γ-ray. So the reconstruction of immune functions after cord blood transplantation can be accelerated, enhancing the graft versus leukemia (GVL) effect and preventing the tumor from relapsing

  12. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    OpenAIRE

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster reson...

  13. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  14. Research on effects of ionizing radiation of human peripheral blood white cell adhesive molecules

    International Nuclear Information System (INIS)

    Li Haijun; Cheng Ying; Le Chen; Min Rui

    2008-01-01

    Objective: To investigate the links between expression and function of adhesive molecule on the surface of irradiated peripheral blood white cells. Methods: Heparinized human peripheral blood was exposed to γ rays with different dose. At the different post-radiation time adhesive molecule expression on cellular surface was determined by double fluorescence labeling antibodies which were against adhesive molecule and special mark of granulocyte or mononuclear cell respectively with flow cytometry, and cellular adhesive ability to different matrixes mediated by adhesive molecule was estimated by commercializing enzyme-linked immunosorbent assay kit and crystalviolet dying. Results: A decline pattern of CD11b on surface of mononuclear cells and CD29 on surface of granulocyte with irradiation dose increase was found. The changes of adhesive ability of mononuclear cells to substance of β1-integrin and collagen-I was well related with irradiation dose. Conclusion: Good relationship shown by the changes of adhesive molecule expression and adhesive ability mediated by the molecules on the surface of peripheral blood white cells with radiation dose was primary base of further research on indicting exposure dose by biomarker. (authors)

  15. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  16. Rotation harmonics for a numerical diatomic potential

    International Nuclear Information System (INIS)

    Kobeissi, H.; Korek, M.

    1983-01-01

    The problem of the determination of the rotation harmonics phi 1 , phi 2 , ... for the case of a numerical diatomic potential is considered. These harmonics defined in a recent work by psisub(vJ) = psisub(vO) + lambda 2 phi 2 + ... (where psisub(vJ) is the wave function of the vibration level v and the rotation level J, and lambda = J(J+1)) are studied for the case of the Dunham potential and for a numerical potential defined by the coordinates of its turning points with polynomial interpolations and extrapolations. It is proved that the analytical expressions of the harmonics phi 1 , phi 2 , ... reduce to polynomials where the coefficients are simply related to those of the potential in the case of the Dunham potential, and to the coordinates of the turning points in the case of the numerical potential. The numerical application is simple. The examples presented show that the vibration-rotation wave function psisub(vJ) calculated by using two harmonics only is ''exact'' up to eight significant figures

  17. Effect of vibrational excitation on the dynamics of ion-molecule reactions

    International Nuclear Information System (INIS)

    Anderson, S.L.

    1981-11-01

    A new experimental technique for the study of vibrational effects on ion-molecule reaction cross sections is described. Vibrational and collision energy dependent cross sections are presented for proton and H atom transfer, charge transfer and collision induced dissociation reactions in various isotopic H 2 + + H 2 systems. Charge and proton transfer cross sections are presented for the reactions of H 2 + and D 2 + with Ar, N 2 , CO, and O 2 . All the reactions are shown to be highly influenced by avoided crossings between the ground and first excited potential energy surfaces. Because of the nature of the crossings, vibrational motion of the systems can cause both adiabatic and non-adiabatic behavior of the system. This makes the vibrational dependences of the various cross sections a very sensitive probe of the dynamics of the collisions particularly, their behavior in the region of the crossings. Evidence is seen for charge transfer between reagents as they approach each other, transition to and in some cases reactions on excited potential energy surfaces, competition between different channels, and strong coupling of proton and charge transfer channels which occurs only for two of the systems studied (H 2 + + Ar, N 2 ). Oscillatory structure is observed in the collision energy dependence of the endoergic H 2 + (v = 0) + Ar charge transfer reaction for the first time, and a simple model which is commonly used for atom-atom charge transfer is used to fit the peaks. Finally a simple model is used to assess the importance of energy resonance and Franck-Condon effects on molecular charge transfer

  18. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  19. Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule

    DEFF Research Database (Denmark)

    Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens

    2009-01-01

    We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...

  20. Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Tanya Sabharwal

    Full Text Available Diatoms rapidly release extracellular oxylipins (oxygenated lipids including polyunsaturated aldehydes in response to herbivory and other stresses. Oxylipins have several defense-related activities including inhibition of reproduction in herbivores and signaling to distant diatoms. Physiological changes in diatoms exposed to varying levels of oxylipins are only beginning to be understood. In this study, Phaeodactylum tricornutum cultures were treated with sublethal concentrations of the polyunsaturated aldehyde trans,trans-2,4-decadienal (DD to assess effects on lipid composition and membrane permeability. In cells treated with DD for 3 hr, all measured saturated and unsaturated fatty acids significantly decreased (0.46-0.69 fold of levels in solvent control cells except for 18:2 (decreased but not significantly. The decrease was greater in the polyunsaturated fatty acid pool than the saturated and monounsaturated fatty acid pool. Analysis of lipid classes revealed increased abundances of phosphatidylethanolamine and phosphatidylcholine at 3 and 6 hr. Concomitantly, these and other membrane lipids exhibited increased saturated and monounsaturated acyl chains content relative to polyunsaturated acyl chains compared to control cells. Evidence of decreased plasma membrane permeability in DD treated cells was obtained, based on reduced uptake of two of three dyes relative to control cells. Additionally, cells pre-conditioned with a sublethal DD dose for 3 hr then treated with a lethal DD dose for 2 hr exhibited greater membrane integrity than solvent pre-conditioned control cells that were similarly treated. Taken together, the data are supportive of the hypothesis that membrane remodeling induced by sublethal DD is a key element in the development of cellular resistance in diatoms to varying and potentially toxic levels of polyunsaturated aldehydes in environments impacted by herbivory or other stresses.

  1. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    Directory of Open Access Journals (Sweden)

    Jianying Zhang

    Full Text Available The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino groups to effectively remove arsenic in its toxic As(III form (arsenite predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film and internal (intraparticle diffusion can be rate-determining for As(III adsorption. Fourier transform infrared spectroscopy (FTIR indicated that the thiol and amino groups potentially responsible for As(III adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III and thiol groups, and through the surface complexation between As(III and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III adsorption capacity holds promise for the treatment of As(III containing wastewater.

  2. Risk assessment of excessive CO{sub 2} emission on diatom heavy metal consumption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengjiao; Li, Shunxing, E-mail: shunxing_li@aliyun.com; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO{sub 2} in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO{sub 2} emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO{sub 2} in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO{sub 2}.

  3. Risk assessment of excessive CO_2 emission on diatom heavy metal consumption

    International Nuclear Information System (INIS)

    Liu, Fengjiao; Li, Shunxing; Zheng, Fengying; Huang, Xuguang

    2016-01-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO_2 in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO_2 emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO_2 in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO_2.

  4. Benthic diatom community response to environmental variables and metal concentrations in a contaminated bay adjacent to Casey Station, Antarctica

    International Nuclear Information System (INIS)

    Cunningham, Laura; Snape, Ian; Stark, Jonathan S.; Riddle, Martin J.

    2005-01-01

    This study examined the effects of anthropogenic contaminants and environmental variables on the composition of benthic diatom communities within a contaminated bay adjacent to an abandoned waste disposal site in Antarctica. The combination of geographical, environmental and chemical data included in the study explained all of the variation observed within the diatom communities. The chemical data, particularly metal concentrations, explained 45.9% of variation in the diatom communities, once the effects of grain-size and spatial structure had been excluded. Of the metals, tin explained the greatest proportion of variation in the diatom communities (28%). Tin was very highly correlated (R 2 > 0.95) with several other variables (copper, iron, lead, and sum of metals), all of which explained similarly high proportions of total variation. Grain-size data explained 23% of variation once the effects of spatial structure and the chemical data had been excluded. The pure spatial component explained only 1.8% of the total variance. The study demonstrates that much of the compositional variability observed in the bay can be explained by concentrations of metal contaminants

  5. Multi-layer hierarchical array fabricated with diatom frustules for highly sensitive bio-detection applications

    International Nuclear Information System (INIS)

    Li, Aobo; Cai, Jun; Pan, Junfeng; Wang, Yu; Yue, Yue; Zhang, Deyuan

    2014-01-01

    Diatoms have delicate porous structures which are very beneficial in improving the absorbing ability in the bio-detection field. In this study, multi-layered hierarchical arrays were fabricated by packing Nitzschia soratensis (N. soratensis) frustules into Cosinodiscus argus (C. argus) frustules to achieve advanced sensitivity in bio-detection chips. Photolithographic patterning was used to obtain N. soratensis frustule arrays, and the floating behavior of C. argus frustules was employed to control their postures for packing N. soratensis frustule array spots. The morphology of the multi-layer C. argus–N. soratensis package array was investigated by scanning electron microscopy, demonstrating that the overall and sub-structures of the diatom frustules were retained. The signal enhancing effect of multi-layer C. argus–N. soratensis packages was demonstrated by fluorescent antibody test results. The mechanism of the enhancement was also analyzed, indicating that both complex hierarchical frustule structures and optimized posture of C. argus frustules were important for improving bio-detection sensitivities. The technique for fabricating multi-layer diatom frustules arrays is also useful for making multi-functional biochips and controllable drug delivery systems. (paper)

  6. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  7. The effect of small molecules on nuclear-encoded translation diseases.

    Science.gov (United States)

    Soiferman, Devorah; Ayalon, Oshrat; Weissman, Sarah; Saada, Ann

    2014-05-01

    The five complexes of the mitochondrial respiratory chain (MRC) supply most organs and tissues with ATP produced by oxidative phosphorylation (OXPHOS). Inherited mitochondrial diseases affecting OXPHOS dysfunction are heterogeneous; symptoms may present at any age and may affect a wide range of tissues, with many diseases giving rise to devastating multisystemic disorders resulting in neonatal death. Combined respiratory chain deficiency with normal complex II accounts for a third of all respiratory deficiencies; mutations in nuclear-encoded components of the mitochondrial translation machinery account for many cases. Although mutations have been identified in over 20 such genes and our understanding of the mitochondrial translation apparatus is increasing, to date no definitive cure for these disorders exists. We evaluated the effect of seven small molecules with reported therapeutic potential in fibroblasts of four patients with combined respiratory complex disorders, each harboring a known mutation in a different nuclear-encoded component of the mitochondrial translation machinery: EFTs, GFM1, MRPS22 and TRMU. Six mitochondrial parameters were screened as follows; growth in glucose-free medium, reactive oxygen species (ROS) production, ATP content, mitochondrial content, mitochondrial membrane potential and complex IV activity. It was clearly evident that each patient displayed an individual response and there was no universally beneficial compound. AICAR increased complex IV activity in GFM1 cells and increased ATP content in MRPS22 fibroblasts but was detrimental to TRMU, who benefitted from bezafibrate. Two antioxidants, ascorbate and N-acetylcysteine (NAC), significantly improved cell growth, ATP content and mitochondrial membrane potential and decreased levels of intracellular reactive oxygen species (ROS) in EFTs fibroblasts. This study presents an expanded repertoire of assays that can be performed using the microtiter screening system with a small number

  8. Crystal lattice desolvation effects on the magnetic quantum tunneling of single-molecule magnets

    Science.gov (United States)

    Redler, G.; Lampropoulos, C.; Datta, S.; Koo, C.; Stamatatos, T. C.; Chakov, N. E.; Christou, G.; Hill, S.

    2009-09-01

    High-frequency electron paramagnetic resonance (HFEPR) and alternating current (ac) susceptibility measurements are reported for a new high-symmetry Mn12 complex, [Mn12O12(O2CCH3)16(CH3OH)4]ṡCH3OH . The results are compared to those of other high-symmetry spin S=10Mn12 single-molecule magnets (SMMs), including the original acetate, [Mn12(O2CCH3)16(H2O)4]ṡ2CH3CO2Hṡ4H2O , and the [Mn12O12(O2CCH2Br)16(H2O)4]ṡ4CH2Cl2 and [Mn12O12(O2CCH2But)16(CH3OH)4]ṡCH3OH complexes. These comparisons reveal important insights into the factors that influence the values of the effective barrier to magnetization reversal, Ueff , deduced on the basis of ac susceptibility measurements. In particular, we find that variations in Ueff can be correlated with the degree of disorder in a crystal which can be controlled by desolvating (drying) samples. This highlights the importance of careful sample handling when making measurements on SMM crystals containing volatile lattice solvents. The HFEPR data additionally provide spectroscopic evidence suggesting that the relatively weak disorder induced by desolvation influences the quantum tunneling interactions and that it is under-barrier tunneling that is responsible for a consistent reduction in Ueff that is found upon drying samples. Meanwhile, the axial anisotropy deduced from HFEPR is found to be virtually identical for all four Mn12 complexes, with no measurable reduction upon desolvation.

  9. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation.

    Science.gov (United States)

    Thompson, Aiysha; Stephens, Jeffrey W; Bain, Stephen C; Kanamarlapudi, Venkateswarlu

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.

  10. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation.

    Directory of Open Access Journals (Sweden)

    Aiysha Thompson

    Full Text Available The glucagon-like peptide receptor (GLP-1R, which is a G-protein coupled receptor (GPCR, signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39 and JANT-4 and the orthosteric binding site mutation (V36A in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.

  11. The Diatom Staurosirella pinnata for Photoactive Material Production.

    Directory of Open Access Journals (Sweden)

    Roberta De Angelis

    Full Text Available A native isolate of the colonial benthic diatom Staurosirella pinnata was cultivated for biosilica production. The silicified cell walls (frustules were used as a source of homogeneous and structurally predictable porous biosilica for dye trapping and random laser applications. This was coupled with the extraction of lipids from biomass showing potential to fabricate photoactive composite materials sustainably. The strain was selected for its ease of growth in culture and harvesting. Biosilica and lipids were obtained at the end of growth in indoor photobioreactors. Frustules were structurally characterized microscopically and their chemistry analyzed with Fourier Transform Infrared Spectroscopy. Frustule capacity of binding laser dyes was evaluated on a set of frustules/Rhodamine B (Rho B solutions and with respect to silicon dioxide and diatomite by Fluorescence Spectroscopy demonstrating a high affinity for the organic dye. The effect of dye trapping property in conveying Rho B emission to frustules, with enhancement of scattering events, was analyzed on Rho B doped polyacrylamide gels filled or not with frustules. Amplified spontaneous emission was recorded at increasing pump power indicating the onset of a random laser effect in frustule filled gels at lower power threshold compared to unfilled matrices.

  12. The Diatom Staurosirella pinnata for Photoactive Material Production

    Science.gov (United States)

    Prosposito, Paolo; Casalboni, Mauro; Lamastra, Francesca Romana; Nanni, Francesca; Congestri, Roberta

    2016-01-01

    A native isolate of the colonial benthic diatom Staurosirella pinnata was cultivated for biosilica production. The silicified cell walls (frustules) were used as a source of homogeneous and structurally predictable porous biosilica for dye trapping and random laser applications. This was coupled with the extraction of lipids from biomass showing potential to fabricate photoactive composite materials sustainably. The strain was selected for its ease of growth in culture and harvesting. Biosilica and lipids were obtained at the end of growth in indoor photobioreactors. Frustules were structurally characterized microscopically and their chemistry analyzed with Fourier Transform Infrared Spectroscopy. Frustule capacity of binding laser dyes was evaluated on a set of frustules/Rhodamine B (Rho B) solutions and with respect to silicon dioxide and diatomite by Fluorescence Spectroscopy demonstrating a high affinity for the organic dye. The effect of dye trapping property in conveying Rho B emission to frustules, with enhancement of scattering events, was analyzed on Rho B doped polyacrylamide gels filled or not with frustules. Amplified spontaneous emission was recorded at increasing pump power indicating the onset of a random laser effect in frustule filled gels at lower power threshold compared to unfilled matrices. PMID:27828985

  13. Pendant unit effect on electron tunneling in U-shaped molecules

    International Nuclear Information System (INIS)

    Liu Min; Chakrabarti, Subhasis; Waldeck, David H.; Oliver, Anna M.; Paddon-Row, Michael N.

    2006-01-01

    The electron transfer reactions of three U-shaped donor-bridge-acceptor molecules with different pendant groups have been studied in different solvents as a function of temperature. Analysis of the electron transfer kinetics in nonpolar and weakly polar solvents provides experimental reaction Gibbs energies that are used to parameterize a molecular solvation model. This solvation model is then used to predict energetic parameters in the electron transfer rate constant expression and allow the electronic coupling between the electron donor and electron acceptor groups to be determined from the rate data. The U-shaped molecules differ by alkylation of the aromatic pendant group, which lies in the 'line-of-sight' between the donor and acceptor groups. The findings show that the electronic coupling through the pendant group is similar for these molecules

  14. Kinetic Effects in the Self-Assembly of Pure and Mixed Tetradecyland Octadecylamine Molecules on Mica

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, J.J.; Salmeron, M.

    2005-09-21

    The self-assembly of tetradecylamine (C14) and of mixtures of tetradecyl and octadecylamine (C18) molecules from chloroform solutions on mica has been studied using atomic force microscopy(AFM). For pure components self-assembly proceeds more slowly for C14 than for C18. In both cases after equilibrium is reached islands of tilted molecules cover a similar fraction of the surface. Images of films formed by mixtures of molecules acquired before equilibrium is reached (short ripening time at room temperature) show only islands with the height corresponding to C18 with many pores. After a long ripening time, when equilibrium is reached, islands of segregated pure components are formed.

  15. Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis

    Science.gov (United States)

    Asli, Abdelhamid; Brouillette, Eric; Ster, Céline; Ghinet, Mariana Gabriela; Brzezinski, Ryszard; Lacasse, Pierre; Jacques, Mario

    2017-01-01

    Staphylococcus aureus is one of the major pathogens causing bovine intramammary infections (IMIs) and mastitis. Mastitis is the primary cause for the use of antibiotics in dairy farms but therapeutic failure is often observed. One of the reasons for the lack of effectiveness of antibiotic therapy despite the observed susceptibility of bacterial isolates in vitro are bacterial biofilms. In this study, we used chitosan of well-defined molecular weight (0.4–0.6, 1.3, 2.6 and 4.0 kDa) and investigated their antibiofilm and antibacterial activities in in vitro and in vivo models related to S. aureus IMIs. A chitosan of at least 6 units of glucosamine was necessary for maximum antibacterial activity. The 2.6 and 4.0 kDa forms were able to prevent biofilm production by the biofilm hyperproducer strain S. aureus 2117 and a bovine MRSA (methicillin-resistant S. aureus). The intramammary administration of the 2.6 kDa chitosan showed no adverse effects in mice or in cows, as opposed to the slight inflammatory effect observed in mammary glands with the 4.0 kDa derivative. The 2.6 kDa chitosan killed bacteria embedded in pre-established biofilms in a dose-dependent manner with a >3 log10 reduction in CFU at 4 mg/ml. Also, the 2.6 kDa chitosan could prevent the persistence of the internalized MRSA into the mammary epithelial cell line MAC-T. An in vitro checkerboard assay showed that the 2.6 kDa chitosan produced a synergy with the macrolide class of antibiotics (e.g., tilmicosin) and reduced the MIC of both molecules by 2–8 times. Finally, the intramammary administration of the 2.6 kDa chitosan alone (P<0.01) or in combination with tilmicosin (P<0.0001) reduced the colonization of mammary glands in a murine IMI model. Our results suggest that the use of chitosan alone or in combination with a low dose of a macrolide could help reduce antibiotic use in dairy farms. PMID:28486482

  16. Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis.

    Directory of Open Access Journals (Sweden)

    Abdelhamid Asli

    Full Text Available Staphylococcus aureus is one of the major pathogens causing bovine intramammary infections (IMIs and mastitis. Mastitis is the primary cause for the use of antibiotics in dairy farms but therapeutic failure is often observed. One of the reasons for the lack of effectiveness of antibiotic therapy despite the observed susceptibility of bacterial isolates in vitro are bacterial biofilms. In this study, we used chitosan of well-defined molecular weight (0.4-0.6, 1.3, 2.6 and 4.0 kDa and investigated their antibiofilm and antibacterial activities in in vitro and in vivo models related to S. aureus IMIs. A chitosan of at least 6 units of glucosamine was necessary for maximum antibacterial activity. The 2.6 and 4.0 kDa forms were able to prevent biofilm production by the biofilm hyperproducer strain S. aureus 2117 and a bovine MRSA (methicillin-resistant S. aureus. The intramammary administration of the 2.6 kDa chitosan showed no adverse effects in mice or in cows, as opposed to the slight inflammatory effect observed in mammary glands with the 4.0 kDa derivative. The 2.6 kDa chitosan killed bacteria embedded in pre-established biofilms in a dose-dependent manner with a >3 log10 reduction in CFU at 4 mg/ml. Also, the 2.6 kDa chitosan could prevent the persistence of the internalized MRSA into the mammary epithelial cell line MAC-T. An in vitro checkerboard assay showed that the 2.6 kDa chitosan produced a synergy with the macrolide class of antibiotics (e.g., tilmicosin and reduced the MIC of both molecules by 2-8 times. Finally, the intramammary administration of the 2.6 kDa chitosan alone (P<0.01 or in combination with tilmicosin (P<0.0001 reduced the colonization of mammary glands in a murine IMI model. Our results suggest that the use of chitosan alone or in combination with a low dose of a macrolide could help reduce antibiotic use in dairy farms.

  17. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  18. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    International Nuclear Information System (INIS)

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-01

    Research highlights: → CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. → CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. → HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. → H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. → HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56 Lck , ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56 Lck , ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new antireservoir therapy.

  19. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Chang [National Institute of Health, Chungbuk (Korea, Republic of); School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Hyeon Guk [National Institute of Health, Chungbuk (Korea, Republic of); Roh, Tae-Young [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Park, Jihwan [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Jung, Kyung-Min; Lee, Joo-Shil [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Sang-Yun [School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Sung Soon [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Byeong-Sun, E-mail: byeongsun@korea.kr [National Institute of Health, Chungbuk (Korea, Republic of)

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  20. The diatom flora of Lake Kinneret (Israel) - Paleolimnological evidence for Holocene climate change and human impact in the southeastern Mediterranean

    Science.gov (United States)

    Vossel, Hannah; Reed, Jane M.; Litt, Thomas

    2015-04-01

    by the clear dominance of planktonic species, such as Cyclotella ocellata PANTOCSEK and Cyclotella paleo-ocellata VOSSEL & VAN DE VIJVER (a newly described centric diatom which may be endemic (Vossel et al., 2015), in phases of high diatom concentration. Such inferred lake-level oscillations correlate well with the output from the climatic models from the Levant region, representing changes in moisture availability (Litt et al., 2012), although the signal is obscured in the last 3,000 years by the effects of anthropogenic eutrophication. References Litt, T.; Ohlwein, C.; Neumann, F. H.; Hense, A. & Stein, M. (2012): Holocene climate variability in the Levant from the Dead Sea pollen record. - Quat. Sci. Rev., 49: 95-105. Schiebel, V. (2013): Vegetation and climate history of the southern Levant during the last 30,000 years based on palynological investigation. - Unpublished PhD thesis. Vossel, H.; Reed, J. M.; Houk, V.; Cvetkoska, A. & Van de Vijver, B. (2015): Cyclotella paleo-ocellata, a new centric diatom (Bacillariophyta) from Lake Kinneret (Israel). Fottea, 15 (1), in press.