Sample records for diastereomers

  1. Antifreeze glycopeptide diastereomers.

    Nagel, Lilly; Budke, Carsten; Dreyer, Axel; Koop, Thomas; Sewald, Norbert


    Antifreeze glycopeptides (AFGPs) are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4-55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS). The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD), and their ability to inhibit ice recrystallization in microphysical experiments.

  2. Antifreeze glycopeptide diastereomers

    Lilly Nagel


    Full Text Available Antifreeze glycopeptides (AFGPs are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4–55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS. The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD, and their ability to inhibit ice recrystallization in microphysical experiments.

  3. Physical Stability of Freeze-Dried Isomalt Diastereomer Mixtures

    Koskinen, Anna-Kaisa; Fraser-Miller, Sara J.; Bøtker, Johan P.


    of the diastereomer compositions showed signs of physical instability when stored in the highest relative humidity condition. The four different crystalline diastereomer mixtures showed specific identifiable solid state properties. Conclusions Isomalt was shown to be a suitable excipient for freeze-drying. Preferably...... a mixture of the diastereomers should be used, as the mixture containing only one of the isomers showed physical instability. A mixture containing a 1:1 ratio of the two diastereomers showed the best physical stability in the amorphous form....

  4. Measurement and analysis of diastereomer ratios for forensic characterization of brodifacoum

    Cort, John R.; Alperin, Paul J.; Cho, Herman M.


    The highly toxic organic compound brodifacoum exists as two diastereomers. The diasteromer ratio in a sample depends on the methods and conditions used for synthesis and purification, and may vary over time due to differential stability of the diastereomers. The stereoisomer distribution may thus be viewed as a chemical forensic signature, containing information about the production and history of unknown samples, and providing a basis of comparison between samples. A determination of diastereomer ratios can be performed by a number of techniques, notably gas or liquid chromatography or nuclear magnetic resonance (NMR) spectroscopy. An analysis of a cross-section of U.S.-made commercial technical grade brodifacoum material shows that there are detectable manufacturer-to-manufacturer and batch-to-batch variations in diastereomer ratios. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. Conformational analysis of menthol diastereomers by NMR and DFT computation

    Härtner, Julia; Reinscheid, Uwe M.


    Correlations between experimental and calculated 13C chemical shifts were performed with the series of all menthol diastereomers. In this way it could be shown that identification problems with newly isolated natural products can be solved. Starting from simulated, low energy conformers of menthol, neomenthol, isomenthol, and neoisomenthol the 13C chemical shifts were obtained using DFT calculations [functional: B3LYP, basis set: 6-31G(d,p)]. Due to differences in chemical shifts, the prochiral methyl groups of the isopropyl substituent of menthol could be differentiated using the correlations between experimental and calculated values. A conformational scan of the dihedral angle of the isopropyl group allowed the determination of the dominating rotamers of menthol (+68.4°) and neomenthol (+172.5°) using 13C chemical shifts. The results were supported by energy calculations, 1JCH and 3JHH measurements. The correlations and 3JHH measurements for isomenthol indicate conformational averaging impeding the determination of the isopropyl group rotamer. For neoisomenthol, MD simulations showed two chair conformations. However, in contrast to calculated energies and correlations between theoretical and experimental 13C chemical shifts, the measured 3JH3H2 coupling of 6.3 Hz indicates an equally populated equilibrium of both conformers.

  6. Diastereomer-specific bioaccumulation of hexabromocyclododecane (HBCD) in a coastal food web, Western Norway

    Haukas, Marianne, E-mail: [Norwegian Institute for Air Research, NO-2027 Kjeller (Norway); Department of Biology, University of Oslo, NO-0316 Oslo (Norway); Hylland, Ketil [Department of Biology, University of Oslo, NO-0316 Oslo (Norway); Norwegian Institute for Water Research, NO-0349 Oslo (Norway); Nygard, Torgeir [Norwegian Institute for Nature Research, NO-7485 Trondheim (Norway); Berge, John Arthur [Norwegian Institute for Water Research, NO-0349 Oslo (Norway); Mariussen, Espen [Norwegian Institute for Air Research, NO-2027 Kjeller (Norway); Norwegian Defence Research Establishment, NO-2007 Kjeller (Norway)


    The present study reports diastereomer-specific accumulation of HBCD from a point source in five marine species representing a typical food web in a Norwegian coastal area. Samples of mussels, polychaetes, crabs and seabird eggs were analyzed for the diastereomers {alpha}-, {beta}- and {gamma}-HBCD, as well as lipid content and stable isotopes of nitrogen ({sup 15}N/{sup 14}N) to estimate trophic level. Accumulated HBCD did not correlate well with lipid content for most of the species, thus wet-weight based concentrations were included in an assessment of biomagnification. In contrast to {beta}- and {gamma}-HBCD, the {alpha}-diastereomer increased significantly with trophic level, resulting in magnification factors > 1 in this coastal marine ecosystem. Data for poikilotherms did not show the same positive correlation between the {alpha}-diastereomer and trophic position as homeotherms. The apparent biomagnification of the {alpha}-HBCD could be due to bioisomerization or diastereomer-specific elimination that differed between poikilotherms and homeotherms.

  7. Synthesis of four diastereomers of sclerophytin F and structural reassignment of several sclerophytin natural products.

    Clark, J Stephen; Delion, Laëtitia; Farrugia, Louis J


    Synthesis of the triol that has been proposed to be the marine natural product sclerophytin F has been completed along with the syntheses of three diastereomers. Comparison of the NMR spectroscopic data for all four compounds to the data reported for the natural product reveals that sclerophytin F is not the 3S diastereomer of sclerophytin A as proposed by Friedrich and Paquette. Re-analysis of the NMR spectroscopic data for known sclerophytin natural products and synthetic analogues leads to the conclusion that sclerophytins E and F are the same compound. This finding has allowed structural reassignment of several other cladiellin natural products.

  8. Content and distribution of phytanic acid diastereomers in organic milk as affected by feed composition

    Che, Brita Ngum; Kristensen, Troels; Nebel, Caroline;


    Phytanic acid (PA) is a bioactive compound found in milk that is derived from the phytol chain of chlorophyll, and the content of PA in milk fat depends on the availability of phytol from feed. In this study, the content of PA diastereomers was analyzed in milk sampled from five organic herds twice...

  9. Distribution of hexabromocyclododecane diastereomers in marine biota in the Western Scheldt Estuary

    Janak, K. [Norwegian Institute of Public Health, Oslo (Norway). Div. of Environmental Medicine; Covaci, A.; Voorspoels, S. [Antwerp Univ., Wilrijk (Belgium). Toxicological Centre


    Hexabromocyclododecane (HBCD) is one of the most common additive flame retardant mainly used in polystyrene foams with the global market consumption in 2001 at about 16 700 tons.1 HBCD production results in a technical product consisting mostly of three diastereomers, {alpha}-, {beta}-, and {gamma}-HBCD, with the {gamma}-isomer being the predominant one. HBCD has a high bioaccumulation potential and bioavailability and has been found in increasing concentrations in environmental samples and in biota. Diastereoisomer-specific analysis of HBCD was achieved by reversed phase HPLC4 and consistently higher concentrations of the {alpha}-isomer compared to {gamma}-isomer have recently been reported, while the {beta}-isomer was non-detected in the majority of samples. The Western Scheldt Estuary is subjected to a variety of suspected brominated flame retardants (BFR) sources such as a BFR manufacturing plant (Terneuzen, The Netherlands), the Antwerp harbour and textile industry located further upstream the river. Recently, polybrominated diphenyl ethers (PBDEs) were investigated in marine species of different trophic levels collected from the Scheldt Estuary. In Europe, HBCD is more widely used than PBDEs and high levels of HBCD have already been reported in sediments from the Scheldt. So far, there is very little known about differences in toxicity, bioavailability and bioaccumulation of HBCD diastereoisomers. In this paper, we report on the levels of the HBCD diastereomers in various marine species and sediment from the Western Scheldt.

  10. Stereoselective inhibition by the diastereomers quinidine and quinine of uptake of cardiac glycosides into isolated rat hepatocytes

    Hedman, A; Meijer, D.K F


    The pharmacokinetic interaction between quinidine and digoxin in patients is well-known, in general requiring a dose reduction of digoxin in patients concomitantly treated with quinidine. Quinine, the diastereomer of quinidine, has not been as extensively studied in this respect. In addition to an i

  11. A desymmetrization route to fused Troger's base analogues: synthesis, isolation, and characterization of the first anti-anti diastereomer of a fused tris-Troger's base analogue.

    Hansson, Anna; Wixe, Torbjörn; Bergquist, Karl-Erik; Wärnmark, Kenneth


    A desymmetrization route to fused Troger's base analogues was developed. In this way, the synthesis of the first example of an anti-anti diastereomer of a fused tris-Troger's base analogue was accomplished. The resulting compound 5b is a nonlinear symmetric regioisomer obtained from p-bromoaniline in 7% yield. The corresponding syn-anti diastereomer 5a was obtained in 4% yield.

  12. Effects of crystallization in the presence of the diastereomer on the crystal properties of (SS)-(+)-pseudoephedrine hydrochloride.

    Gu, C H; Grant, D J


    The formation and separation of diastereomers is widely used to resolve enantiomers. However, during crystallization of a chiral compound from a solution containing its diastereomer, the diastereomer may be incorporated as an impurity into the host crystal lattice, leading to changes in the thermodynamic properties and intrinsic dissolution rate of the host crystals. This hypothesis was tested by growing crystals of (SS)-(+)-pseudoephedrine hydrochloride (+PC) from aqueous solution containing various amounts of (RS)-(-)-ephedrine hydrochloride (-EC). Although the melting phase diagram of these two solid compounds, determined by differential scanning calorimetry (DSC), shows eutectic behavior, 0.034-2.4 mol% of -EC was incorporated into the crystal lattice of +PC during crystallization to form terminal solid solutions with a segregation coefficient of 0.31. In a single batch, the larger crystals contain more incorporated impurities than smaller crystals. The enthalpy and entropy of fusion measured by DSC decrease with increasing incorporation of the guest molecules into the host, indicating increases in the enthalpy and entropy of the solid. The disruption index, which indicates the disruptive effect of guest molecules in the host crystal lattice, is 60 at lattice. The average intrinsic dissolution rate of impure crystals in 2-propanol is 15.8% lower than that of pure host crystals, suggesting the formation of stable solid solutions.

  13. Kinetic studies on the conformational isomerization reaction of the four diastereomers of beta,gamma-bidentate CrATP.

    Gruys, K J; Gregory, P R; Schuster, S M


    The rates of the conformational isomerization reaction of the diastereomers of beta,gamma-bidentate CrATP were studied as a function of pH, buffer concentration, ionic strength, and temperature. The progress of the reaction was monitored by quenching the reaction at various times, and then isolating the individual diastereomers and quantitating the percent of each. This was accomplished using the reverse-phase high-performance liquid chromatography separation technique developed in this laboratory [K. J. Gruys, and S. M. Schuster, Anal. Biochem. 125, 66-73 (1982)]. The rate constants for this isomerization were then determined by obtaining the best computer fit of the data to a reversible binary mechanism (i.e., A in equilibrium B) using interative descent methods. The reaction rate was shown to be dependent on pH, temperature, and ionic strength, but independent of buffer concentration. Keq. constants were independent of all variables except ionic strength. The results from this study are interpreted in terms of a reaction mechanism involving a preequilibrium ionization of the diastereomers followed by a rate-limiting interconversion process.

  14. C-shaped diastereomers containing cofacial thiophene-substituted quinoxaline rings: synthesis, photophysical properties, and X-ray crystallography.

    DeBlase, Catherine R; Finke, Ryan T; Porras, Jonathan A; Tanski, Joseph M; Nadeau, Jocelyn M


    Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.

  15. Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor.

    Madden, M S; Kindon, N D; Ludden, P W; Shah, V K


    In vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase using homocitrate and its analogs allows the formation of modified forms of FeMo-co that show altered substrate specificities (N2, acetylene, cyanide, or proton reduction) of nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC]. The (1R,2S)-threo- and (1S,2S)-erythro-fluorinated diastereomers of homocitrate have been incorporated in vitro into dinitrogenase in place of homocitrat...

  16. (RS)-Propranolol: enantioseparation by HPLC using newly synthesized (S)-levofloxacin-based reagent, absolute configuration of diastereomers and recovery of native enantiomers by detagging.

    Alwera, Shiv; Bhushan, Ravi


    Diastereomers of (RS)-propranolol were synthesized using (S)-levofloxacin-based new chiral derivatizing reagents (CDRs). Levofloxacin was chosen as the pure (S)-enantiomer for its high molar absorptivity (εo  ∼ 24000) and availability at a low price. Its -COOH group had N-hydroxysuccinimide and N-hydroxybenzotriazole, which acted as good leaving groups during nucleophilic substitution by the amino group of the racemic (RS)-propranolol; the CDRs were characterized by UV, IR, (1) H-NMR, high resolution mass spectrometry (HRMS) and carbon, hydrogen, nitrogen, and sulphur fundamental elemental components analyser (CHNS). Diastereomers were separated quantitatively using open column chromatography; absolute configuration of the diastereomers was established and the reagent moiety was detagged under microwave-assisted acidic conditions. (S)- and (R)-propranolol as pure enantiomers and (S)-levofloxacin were separated, isolated and characterized. Optimized lowest-energy structures of the diastereomers were developed using Gaussian 09 Rev. A.02 program and hybrid density functional B3LYP with 6-31G* basis set (based on density functional theory) for explanation of elution order and configuration. In addition, RP HPLC conditions for separation of diastereomers were optimized with respect to pH, concentration of buffer, flow rate of mobile phase and nature of organic modifier. HPLC separation method was validated as per International Conference on Harmonization guidelines. With the systematic application of various analytical techniques, absolute configuration of the diastereomers (and the native enantiomers) of (RS)-propranolol was established. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Development of an HPLC Method with an ODS Column to Determine Low Levels of Aspartame Diastereomers in Aspartame.

    Takashi Ohtsuki

    Full Text Available α-L-Aspartyl-D-phenylalanine methyl ester (L, D-APM and α-D-aspartyl-L-phenylalanine methyl ester (D, L-APM are diastereomers of aspartame (N-L-α-Aspartyl-L-phenylalanine-1-methyl ester, L, L-APM. The Joint FAO/WHO Expert Committee on Food Additives has set 0.04 wt% as the maximum permitted level of the sum of L, D-APM and D, L-APM in commercially available L, L-APM. In this study, we developed and validated a simple high-performance liquid chromatography (HPLC method using an ODS column to determine L, D-APM and D, L-APM in L, L-APM. The limits of detection and quantification, respectively, of L, D-APM and D, L-APM were found to be 0.0012 wt% and 0.004 wt%. This method gave excellent accuracy, repeatability, and reproducibility in a recovery test performed on five different days. Moreover, the method was successfully applied to the determination of these diastereomers in commercial L, L-APM samples. Thus, the developed method is a simple, useful, and practical tool for determining L, D-APM and D, L-APM levels in L, L-APM.

  18. A weak cation-exchange monolith as stationary phase for the separation of peptide diastereomers by CEC.

    Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E


    A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations.

  19. Development of an HPLC Method with an ODS Column to Determine Low Levels of Aspartame Diastereomers in Aspartame.

    Ohtsuki, Takashi; Nakamura, Ryoichiro; Kubo, Satoru; Otabe, Akira; Oobayashi, Yoko; Suzuki, Shoko; Yoshida, Mika; Yoshida, Mitsuya; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi


    α-L-Aspartyl-D-phenylalanine methyl ester (L, D-APM) and α-D-aspartyl-L-phenylalanine methyl ester (D, L-APM) are diastereomers of aspartame (N-L-α-Aspartyl-L-phenylalanine-1-methyl ester, L, L-APM). The Joint FAO/WHO Expert Committee on Food Additives has set 0.04 wt% as the maximum permitted level of the sum of L, D-APM and D, L-APM in commercially available L, L-APM. In this study, we developed and validated a simple high-performance liquid chromatography (HPLC) method using an ODS column to determine L, D-APM and D, L-APM in L, L-APM. The limits of detection and quantification, respectively, of L, D-APM and D, L-APM were found to be 0.0012 wt% and 0.004 wt%. This method gave excellent accuracy, repeatability, and reproducibility in a recovery test performed on five different days. Moreover, the method was successfully applied to the determination of these diastereomers in commercial L, L-APM samples. Thus, the developed method is a simple, useful, and practical tool for determining L, D-APM and D, L-APM levels in L, L-APM.

  20. Discovery of syn-/anti-cocaine-N-oxide diastereomers in unwashed postmortem hair via LC-MS-MS.

    Marsh, Christine M; Crawley, Lindsey R; Himes, Sarah K; Aranda, Roman; Miller, Mark L


    The discovery of two cocaine-N-oxide (CNO) diastereomers, syn- and anti-CNO, is reported for the first time. Prior to this study, only one structural form of CNO was known to exist and has not been analyzed in hair before. CNO is a metabolite of cocaine (COC) and may be considered as an additional biomarker of COC use, along with other known COC metabolites. The analysis of COC in hair for forensic applications is under scrutiny due to the possibility of external contamination. A qualitative liquid chromatography-tandem mass spectrometry method was developed, validated and applied to unwashed postmortem hair samples from drug users. The limit of detection in hair was 8 pg/mg (using 10 mg of unwashed hair) for each CNO diastereomer. The presence of both syn- and anti-forms of CNO was verified in vivo using hair samples collected from known COC-using individuals. Due to the low levels of CNO, it will not always be detectable in COC user hair. In the hair samples analyzed, syn-CNO was detected in more samples than anti-CNO. The stereoselective N-oxidation of COC which favors syn-CNO could have a diagnostic value for COC ingestion determination in hair analysis.

  1. Normal-Phase Open Column versus Reversed-Phase High Performance Liquid Chromatography: Separation of Chlorophyll a and Chlorophyll b from their Diastereomers.

    Schaber, Peter M.


    Background information, procedures used, and typical results obtained are provided for an experiment involving the separation of chlorophyll a and chlorophyll b from their diastereomers. Reasons why the experiment can be easily integrated into most laboratory curricula where high-performance liquid chromatography capabilities exist are given. (JN)

  2. Oxidation of 2'-deoxycytidine to four inter-converting diastereomers of N-1-carbamoyl-4,5-dihydroxy-2-oxo-imidazolidine nucleosides

    Tremblay, S.; Gantchev, T.; Cadet, J.; Wagner, J.R. [Univ Sherbrooke, Fac Med and Hlth Sci, Dept Med Nucl and Radiobiol, Sherbrooke, PQ J1H 5N4, (Canada); Tremblay, L.; Lavigne, P. [Univ Sherbrooke, Fac Med and Hlth Sci, Inst Pharmacol, Sherbrooke, PQ J1H 5N4, (Canada); Cadet, J. [CEA Grenoble, Dept Rech Fondamentale Mat Condensee, SCIB/LAN, UMR-E 3, CEA-UJF, F-38054 Grenoble, (France)


    Modification of 2'-deoxycytidine (dCyd) by hydroxyl radicals and direct ionization leads to the formation of various oxidation products, including dCyd 5,6-glycols, 5-hydroxy-2'-deoxycytidine, and ring fragmentation products. The mechanism of oxidation is complex and poorly understood. In the present work, we have prepared four cis- and trans-diastereomers of N-1-(2-deoxy-{beta}-D-erythro-pentofuranosyl)-1-carbamoyl-2-oxo-4,5-dihydro oxy-imidazolidine by bromination of dCyd followed by peroxidation of the resulting dCyd bromo-hydrins. The structure and stereochemistry of each product were determined by {sup 1}H NMR, {sup 13}C NMR, and 2D NOE analyses. The formation of imidazolidine products involves rearrangement of initial 5(6)-hydroxy-6(5)-hydro-peroxides to C6-C2 endo-peroxides, which subsequently decompose by a concerted pathway to imidazolidine products. A remarkable feature of the four diastereomers was their ability to inter-convert via single and successive cycles of ring-chain tautomerism at N1-C5 and N3-C4, leading to epimerization of C5 and C4, respectively. The rate of isomerization was greater for cis-diastereomers compared to trans-diastereomers, and the rate sharply increased with pH (pH 9.0 {>=} 7.0 {>=} 5.5). (authors)

  3. Enzymatic Resolution of 1-Phenylethanol and Formation of a Diastereomer: An Undergraduate [superscript 1]H NMR Experiment to Introduce Chiral Chemistry

    Faraldos, Juan A.; Giner, Jos-Luis; Smith, David H.; Wilson, Mark; Ronhovde, Kyla; Wilson, Erin; Clevette, David; Holmes, Andrea E.; Rouhier, Kerry


    This organic laboratory experiment introduces students to stereoselective enzyme reactions, resolution of enantiomers, and NMR analysis of diastereomers. The reaction between racemic 1-phenylethanol and vinyl acetate in hexane to form an ester is catalyzed by acylase I. The unreacted alcohol is then treated with a chiral acid and the resulting…

  4. Probing stereoselective inhibition of the acyl binding site of cholesterol esterase with four diastereomers of 2'-N-α-methylbenzylcarbamyl-1, 1'-bi-2-naphthol

    Lin Long-Yau


    Full Text Available Abstract Background Recently there has been increased interest in pancreatic cholesterol esterase due to correlation between enzymatic activity in vivo and absorption of dietary cholesterol. Cholesterol esterase plays a role in digestive lipid absorption in the upper intestinal tract, though its role in cholesterol absorption in particular is controversial. Serine lipases, acetylcholinesterase, butyrylcholinesterase, and cholesterol esterase belong to a large family of proteins called the α/β-hydrolase fold, and they share the same catalytic machinery as serine proteases in that they have an active site serine residue which, with a histidine and an aspartic or glutamic acid, forms a catalytic triad. The aim of this work is to study the stereoselectivity of the acyl chain binding site of the enzyme for four diastereomers of an inhibitor. Results Four diastereomers of 2'-N-α-methylbenzylcarbamyl-1, 1'-bi-2-naphthol (1 are synthesized from the condensation of R-(+- or S-(--1, 1'-bi-2-naphthanol with R-(+- or S-(--α-methylbenzyl isocyanate in the presence of a catalytic amount of pyridine in CH2Cl2. The [α]25D values for (1R, αR-1, (1R, αS-1, (1S, αR-1, and (1S, αS-1 are +40, +21, -21, and -41°, respectively. All four diastereomers of inhibitors are characterized as pseudo substrate inhibitors of pancreatic cholesterol esterase. Values of the inhibition constant (Ki, the carbamylation constant (k2, and the bimolecular rate constant (ki for these four diastereomeric inhibitors are investigated. The inhibitory potencies for these four diastereomers are in the descending order of (1R, αR-1, (1R, αS-1, (1S, αR-1, and (1S, αS-1. The k2 values for these four diastereomers are about the same. The enzyme stereoselectivity for the 1, 1'-bi-2-naphthyl moiety of the inhibitors (R > S, ca. 10 times is the same as that for 2'-N-butylcarbamyl-1, 1'-bi-2-naphthol (2. The enzyme stereoselectivity for the α-methylbenzylcarbamyl moiety of the

  5. Liquid chromatographic enantioseparation of three beta-adrenolytics using new derivatizing reagents synthesized from (S)-ketoprofen and confirmation of configuration of diastereomers.

    Alwera, Shiv; Bhushan, Ravi


    Diastereomers of racemic β-adrenolytic drugs [namely (RS)-propranolol, (RS)-metoprolol and (RS)-atenolol] were synthesized under microwave irradiation with (S)-ketoprofen based chiral derivatization reagents (CDRs) newly synthesized for this purpose. (S)-Ketoprofen was chosen for its high molar absorptivity (εo  ~ 40,000) and its availability as a pure (S)-enantiomer. Its -COOH group was activated with N-hydroxysuccinimide and N-hydroxybenzotriazole; these were easily introduced and also acted as good leaving groups during nucleophilic substitution by the amino group of the racemic β-adrenolytics. The CDRs were characterized by UV, IR, (1) H-NMR, HRMS and CHNS. Separation of diastereomers was achieved by RP HPLC and open column chromatography. Absolute configuration of the diastereomers was established with the help of (1) HNMR supported by developing their optimized lowest energy structures using Gaussian 09 Rev. A.02 program and hybrid density functional B3LYP with 6-31G* basis set (based on density functional theory), and elution order was established. RP HPLC conditions for separation were optimized and the separation method was validated. The limit of detection values were 0.308 and 0.302 ng mL(-1) . Copyright © 2016 John Wiley & Sons, Ltd.

  6. Resolution and isolation of enantiomers of (±)-isoxsuprine using thin silica gel layers impregnated with L-glutamic acid, comparison of separation of its diastereomers prepared with chiral derivatizing reagents having L-amino acids as chiral auxiliaries.

    Bhushan, Ravi; Nagar, Hariom


    Thin silica gel layers impregnated with optically pure l-glutamic acid were used for direct resolution of enantiomers of (±)-isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l-alanine, l-valine and S-benzyl-l-cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed-phase high-performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin-layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)-isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)-isoxsuprine. The elution order in the experimental study of RP-TLC and RP-HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1-0.09 µg/mL in TLC while it was in the range of 22-23 pg/mL in HPLC and 11-13 ng/mL in RP-TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification.

  7. Metabolism studies of the Kratom alkaloid speciociliatine, a diastereomer of the main alkaloid mitragynine, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry.

    Philipp, Anika A; Wissenbach, Dirk K; Weber, Armin A; Zapp, Josef; Maurer, Hans H


    Mitragyna speciosa (Kratom) is currently used as a drug of abuse. When monitoring its abuse in urine, several alkaloids and their metabolites must be considered. In former studies, mitragynine (MG), its diastereomer speciogynine (SG), and paynantheine and their metabolites could be identified in rat and human urine using LC-MS(n). In Kratom users' urines, besides MG and SG, further isomeric compounds were detected. To elucidate whether the MG and SG diastereomer speciociliatine (SC) and its metabolites represent further compounds, the phase I and II metabolites of SC were identified first in rat urine after the administration of the pure alkaloid. Then, the identified rat metabolites were screened for in the urine of Kratom users using the above-mentioned LC-MS(n) procedure. Considering the mass spectra and retention times, it could be confirmed that SC and its metabolites are so far the unidentified isomers in human urine. In conclusion, SC and its metabolites can be used as further markers for Kratom use, especially by consumption of raw material or products that contain a high amount of fruits of the Malaysian plant M. speciosa.

  8. The Role of the Local Conformation of a Cyclically Constrained β-AMINO Acid in the Secondary Structures of a Mixed α/β Diastereomer Pair

    Blodgett, Karl N.; Zwier, Timothy S.


    Synthetic foldamers are non-natural polymers designed to fold into unique secondary structures that either mimic nature's preferred secondary structures, or expand their possibilities. Among the most studied synthetic foldamers are β-peptides, which lengthen the distance between amide groups from the single substituted carbon spacer in α-peptides by one (β) additional carbon. Cyclically constrained β-amino acids can impart rigidity to the secondary structure of oligomers by locking in a particular conformation. The β-residue cis-2-aminocyclohexanecarboxylic acid (cis-ACHC) is one such amino acid which has been shown to drive vastly different secondary structures as a function of the local conformation of the cyclohexane ring. We present data on two diastereomers of the mixed α/β tri-peptide Ac-Ala-β_{ACHC}-Ala-NHBn which differ from one another by the chirality along the ACHC residue (SRSS vs. SSRS). The first oligomer is known to crystallize to a 9/11 mixed helix while the second forms no intramolecular hydrogen bonds in the crystal state. This talk will describe the conformation-specific IR and UV spectroscopy of the above two diastereomers under jet cooled conditions in the gas phase. Assignments based on comparison with calculations show the presence of incipient 9/11 mixed helices and competing structures containing more tightly folded hydrogen-bonded networks. The calculated global minimum structures are observed in each case, and in each case these folded structures are reminiscent of a β-turn.

  9. Separation and characterization of the two diastereomers for [Gd(DTPA-bz-NH2)(H2O)]2-, a common synthon in macromolecular MRI contrast agents: their water exchange and isomerization kinetics.

    Burai, László; Tóth, Eva; Sour, Angélique; Merbach, André E


    Chiral, bifunctional poly(amino carboxylate) ligands are commonly used for the synthesis of macromolecular, Gd(III)-based MRI contrast agents, prepared in the objective of increasing relaxivity or delivering the paramagnetic Gd(III) to a specific site (targeting). Complex formation with such ligands results in two diastereomeric forms for the complex which can be separated by HPLC. We demonstrated that the diastereomer ratio for Ln(III) DTPA derivatives (approximately 60:40) remains constant throughout the lanthanide series, in contrast to Ln(III) EPTPA derivatives, where it varies as a function of the cation size with a maximum for the middle lanthanides (DTPA(5-) = diethylenetriaminepentaacetate; EPTPA(5-) = ethylenepropylenetriaminepentaacetate). The interconversion of the two diastereomers, studied by HPLC, is a proton-catalyzed process (k(obs) = k(1)[H(+)]). It is relatively fast for [Gd(EPTPA-bz-NH(2))(H(2)O)](2-) but slow enough for [Gd(DTPA-bz-NH(2))(H(2)O)](2-) to allow investigation of pure individual isomers (isomerization rate constants are k(1) = (3.03 +/- 0.07) x 10(4) and 11.6 +/- 0.5 s(-1) M(-1) for [Gd(EPTPA-bz-NH(2))(H(2)O)](2)(-) and [Gd(DTPA-bz-NH(2))(H(2)O)](2-), respectively). Individual water exchange rates have been determined for both diastereomers of [Gd(DTPA-bz-NH(2))(H(2)O)](2-) by a variable-temperature (17)O NMR study. Similarly to Ln(III) EPTPA derivatives, k(ex) values differ by a factor of 2 (k(ex)(298) = (5.7 +/- 0.2) x 10(6) and (3.1 +/- 0.1) x 10(6) s(-1)). This variance in the exchange rate has no consequence on the proton relaxivity of the two diastereomers, since it is solely limited by fast rotation. However, such difference in k(ex) will affect proton relaxivity when these diastereomers are linked to a slowly rotating macromolecule. Once the rotation is optimized, slow water exchange will limit relaxivity; thus, a factor of 2 in the exchange rate can lead to a remarkably different relaxivity for the diastereomer complexes

  10. Phase I and II metabolites of speciogynine, a diastereomer of the main Kratom alkaloid mitragynine, identified in rat and human urine by liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry.

    Philipp, Anika A; Wissenbach, Dirk K; Weber, Armin A; Zapp, Josef; Maurer, Hans H


    Mitragyna speciosa (Kratom in Thai), a Thai medical plant, is misused as herbal drug of abuse. Besides the most abundant alkaloids mitragynine (MG) and paynantheine (PAY), several other alkaloids were isolated from Kratom leaves, among them the third abundant alkaloid is speciogynine (SG), a diastereomer of MG. The aim of this present study was to identify the phase I and II metabolites of SG in rat urine after the administration of a rather high dose of the pure alkaloid and then to confirm these findings using human urine samples after Kratom use. The applied liquid chromatography coupled to low- and high-resolution mass spectrometry (LC-HRMS-MS) provided detailed information on the structure in the MS(n) mode particularly with high resolution. For the analysis of the human samples, the LC separation had to be improved markedly allowing the separation of SG and its metabolites from its diastereomer MG and its metabolites. In analogy to MG, besides SG, nine phase I and eight phase II metabolites could be identified in rat urine, but only three phase I and five phase II metabolites in human urine. These differences may be caused by the lower SG dose applied by the user of Kratom preparations. SG and its metabolites could be differentiated in the human samples from the diastereomeric MG and its metabolites comparing the different retention times determined after application of the single alkaloids to rats. In addition, some differences in MS(2) and/or MS(3) spectra of the corresponding diastereomers were observed.

  11. Metabolism studies of the Kratom alkaloids mitraciliatine and isopaynantheine, diastereomers of the main alkaloids mitragynine and paynantheine, in rat and human urine using liquid chromatography-linear ion trap-mass spectrometry.

    Philipp, Anika A; Wissenbach, Dirk K; Weber, Armin A; Zapp, Josef; Maurer, Hans H


    Mitragyna speciosa (Kratom in Thai), native in Southeast Asia, is increasingly misused as a herbal drug of abuse. During metabolism studies on the Kratom alkaloids mitragynine, its diastereomers speciogynine and speciociliatine as well as paynantheine in rats and humans, further isomeric compounds were detected in Kratom users' urine. The question arose whether these compounds were formed from the low abundant, isomeric alkaloids mitraciliatine (MC) and isopaynantheine (ISO-PAY). Therefore, the aim of the presented study was to identify using liquid chromatography-linear ion trap-mass spectrometry their phase I and II metabolites in rat urine after administration of pure MC or ISO-PAY, to confirm their formation in humans, and finally to confirm whether the above-mentioned isomeric compounds in human urine represent MC and ISO-PAY and/or their metabolites. The metabolic pathways of both alkaloids in rats were found to be comparable to those of their corresponding diastereomers. In the human urines tested, not all metabolites found in rats could be detected because of the much lower amounts of MC and ISO-PAY in Kratom. However, all the above-mentioned so far unknown isomeric compounds could be identified in the human urine samples as MC, ISO-PAY and/or their metabolites. The used LC separation was also suitable for the differentiation of all other Kratom alkaloids and their metabolites in human urine.

  12. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers.

    Alenko, Anton; Fleming, Aaron M; Burrows, Cynthia J


    Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.

  13. An LC-MS/MS method for simultaneous determination of cefprozil diastereomers in human plasma and its application for the bioequivalence study of two cefprozil tablets in healthy Chinese volunteers.

    Liu, Min; Ma, Jing-Yi; Zhang, Yanan; Wang, Xiaolin; Zhao, Hongna; Du, Aihua; Yang, Man; Meng, Lingjie; Deng, Ming; Liu, Huichen


    A rapid and sensitive liquid chromatography-tandem mass spectrometric method was developed for the first time and validated for the determination of cefprozil diastereomers in human plasma. The plasma samples were prepared by protein precipitation using acetonitrile. Detection was performed using an electronic spray ion source in the negative ion mode, operating in the multiple reaction monitoring of the transitions m/z 388.0 to m/z 205.0 for cefprozil diastereomers and m/z 346.1 to m/z 268.1 for cephalexin (the internal standard). The calibration curves of cis-cefprozil and trans-cefprozil were linear in the ranges 0.125-16.0 µg/mL and 0.0403-1.72 µg/mL, respectively. The lower limits of quantification of cis- and trans-cefprozil were 0.125 and 0.0403 µg/mL in human plasma, respectively. The intra- and inter-day precisions of cis- and trans-cefprozil were all bioequivalence study of two cefprozil formulations in 24 healthy Chinese volunteers. The two cefprozil tablets were bioequivalent by measurement of cis-, trans- and total cefprozil. We suggest that the bioequivalence of cefprozil formulations can be evaluated only using cis-cefprozil as the analyte in future studies.

  14. Elimination of diastereomer interference to determine Telcagepant (MK-0974) in human plasma using on-line turbulent-flow technology and off-line solid-phase extraction coupled with liquid chromatography/tandem mass spectrometry.

    Xu, Yang; Willson, Kenneth J; Anderson, Melanie D G; Musson, Donald G; Miller-Stein, Cynthia M; Woolf, Eric J


    To eliminate the diastereomer interference on Telcagepant (MK-0974) determination during clinical study support, on-line high turbulent-flow liquid chromatography (HTLC) methods, HTLC-A and HTLC-B that covered dynamic range of 0.5-500 nM and 5-5000 nM, respectively, were developed. To meet the requirement of rapid assay transfer among multiple laboratories and analysts, a solid-phase extraction (SPE) assay was derived from the existing HTLC-B assay under the same dynamic range. The on-line HTLC assays were achieved through direct injection of plasma samples, extraction of analyte with a Cohesive C18 column (50 mm x 0.5 mm, 50 microm), followed by HPLC separation on a FluoPhase RP column (100 mm x 2.1 mm, 5 microm) and MS/MS detection. The off-line SPE assay used Waters Oasis HLB microElution plate to extract the analytes from plasma matrix before injecting on a FluoPhase RP column (150 mm x 2.1 mm, 5 microm) for LC-MS/MS analysis. Under both on-line and off-line assay conditions, the diastereomer 1c was chromatographically separated from MK-0974. Cross-validation with the pooled samples demonstrated that both on-line and off-line assays provided comparable data with a difference of pros and cons of on-line and off-line assays with regard to man power involved in sample preparation, total analysis time, carryover, cost efficiency, and the requirement for assay transfer are discussed.

  15. Ultra high performance liquid chromatography-time-of-flight high resolution mass spectrometry in the analysis of hexabromocyclododecane diastereomers: method development and comparative evaluation versus ultra high performance liquid chromatography coupled to Orbitrap high resolution mass spectrometry and triple quadrupole tandem mass spectrometry.

    Zacs, D; Rjabova, J; Pugajeva, I; Nakurte, I; Viksna, A; Bartkevics, V


    An efficient ultra high performance liquid chromatography (UHPLC)-time-of-flight high resolution mass spectrometry (TOF-HRMS) method was elaborated for the determination of hexabromocyclododecane (HBCD) diastereomers in fish samples and compared against UHPLC-Orbitrap-HRMS and UHPLC-triple quadrupole (QqQ) tandem MS (MS/MS) techniques. The TOF-HRMS analyzer was operated at high resolution (>10000 full width at half maximum (FWHM)) with scanning the m/z range from 600 to 700, to achieve picogram quantitation limits. The effects of various operational parameters on the instrumental response were systematically investigated. Evaluation of the influence of sample clean-up procedure steps on signal suppression effect including removal of the matrix components by means of destructive acidic treatment or non-destructive gel permeation chromatography (GPC), and additional Florisil column chromatography step showed that the analytical response of UHPLC-TOF-HRMS system is much more affected by the presence of matrix components in the final extracts in comparison with UHPLC-Orbitrap-HRMS and UHPLC-QqQ-MS/MS systems. The method was robustly validated and used for the analysis of eel (Anquilla anquilla) samples originating from a Latvian lake. UHPLC-TOF-HRMS showed a suitable performance under the optimized conditions: recoveries for three selected diastereomers in the range of 99-116%; repeatability and intermediate precision expressed as relative standard deviation (RSD) in the ranges of 2.3-7.1% and 2.9-8.1%, respectively. The elaborated method achieved instrumental limits of quantification (i-LOQ) of 0.9-4.5pg on column that were suitable for the trace analysis of three HBCD diastereomers, corresponding to the method limits of quantification (m-LOQ) of 7.0-29pgg(-1) wet weight (w.w.). The efficiency of UHPLC-TOF-HRMS method was evaluated by comparing the performance characteristics and analytical data from real samples with the validation data and real sample results

  16. Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: implications in cell selective lysis by D-amino acid containing antimicrobial peptides.

    Saravanan, Rathi; Bhunia, Anirban; Bhattacharjya, Surajit


    Melittin, the major component of the honey bee venom, is a 26-residue hemolytic and membrane active peptide. Structures of melittin determined either in lipid environments by NMR or by use of X-ray demonstrated two helical regions at the N- and C-termini connected by a hinge or a bend at the middle. Here, we show that deletion of the hinge residues along with two C-terminal terminal Gln residues (Q25 and Q26), yielding a peptide analog of 19-residue or Mel-H, did not affect antibacterial activity but resulted in a somewhat reduced hemolytic activity. A diastereomer of Mel-H or Mel-(d)H containing d-amino acids [(d)V5, (d)V8, (d)L11 and (d)K16] showed further reduction in hemolytic activity without lowering antibacterial activity. We have carried out NMR structures, dynamics (H-D exchange and proton relaxation), membrane localization by spin labeled lipids, pulse-field-gradient (PFG) NMR and isothermal titration calorimetry (ITC) in dodecylphosphocholine (DPC) micelles, as a mimic to eukaryotic membrane, to gain insights into cell selectivity of these melittin analogs. PFG-NMR showed Mel-H and Mel-(d)H both were similarly partitioned into DPC micelles. ITC demonstrated that Mel-H and Mel-(d)H interact with DPC with similar affinity. The micelle-bound structure of Mel-H delineated a straight helical conformation, whereas Mel-(d)H showed multiple beta-turns at the N-terminus and a short helix at the C-terminus. The backbone amide-proton exchange with solvent D(2)O demonstrated a large difference in dynamics between Mel-H and Mel-(d)H, whereby almost all backbone protons of Mel-(d)H showed a much faster rate of exchange as compared to Mel-H. Proton T(1) relaxation had suggested a mobile backbone of Mel-(d)H peptide in DPC micelles. Resonance perturbation by paramagnetic lipids indicated that Mel-H inserted deeper into DPC micelles, whereas Mel-(d)H is largely located at the surface of the micelle. Taken together, results presented in this study demonstrated that the

  17. Spontaneous polarization and dielectric relaxation dynamics of ferroelectric liquid crystals derived from 2(S)-[2(S)-ethylhexyolxy] propionic acid and its (S, R)-diastereomer

    Huang, Lei-Ching; Fu, Chao-Ming, E-mail:


    The spontaneous polarization and molecular dynamics of four ferroelectric liquid crystals (FLCs) with two different kinds of core rings and two types of diastereomeric structures were investigated in this study. The FLCs with a biphenyl ring core structure showed higher spontaneous polarization than the FLCs with a naphthalene ring core structure. The complex dielectric spectra exhibited the Goldstone mode in the ferroelectric (SmC*) phase for all FLCs. The complex dielectric spectra of the four FLCs can be optimally fitted by the Debye model and the Cole–Cole model. Moreover, the Goldstone mode was enhanced under low DC bias fields for the FLCs with the (S, R)- diastereomeric structure, whereas the mode was suppressed for the FLCs with the (S, S)- diastereomeric structure. A microscopic molecular dynamic model is proposed to describe the underlying mechanism of the particular enhancement of the Goldstone mode. The experimental results of dielectric spectra and spontaneous polarization are explained in the discussion of the mesomorphic properties related to the FLC molecular structure.

  18. Spontaneous polarization and dielectric relaxation dynamics of ferroelectric liquid crystals derived from 2(S)-[2(S)-ethylhexyolxy] propionic acid and its (S, R)-diastereomer

    Huang, Lei-Ching; Fu, Chao-Ming


    The spontaneous polarization and molecular dynamics of four ferroelectric liquid crystals (FLCs) with two different kinds of core rings and two types of diastereomeric structures were investigated in this study. The FLCs with a biphenyl ring core structure showed higher spontaneous polarization than the FLCs with a naphthalene ring core structure. The complex dielectric spectra exhibited the Goldstone mode in the ferroelectric (SmC*) phase for all FLCs. The complex dielectric spectra of the four FLCs can be optimally fitted by the Debye model and the Cole-Cole model. Moreover, the Goldstone mode was enhanced under low DC bias fields for the FLCs with the (S, R)- diastereomeric structure, whereas the mode was suppressed for the FLCs with the (S, S)- diastereomeric structure. A microscopic molecular dynamic model is proposed to describe the underlying mechanism of the particular enhancement of the Goldstone mode. The experimental results of dielectric spectra and spontaneous polarization are explained in the discussion of the mesomorphic properties related to the FLC molecular structure.

  19. Synthesis and Detailed Examination of Spectral Properties of (S and (R-Higenamine 4′-O-β-d-Glucoside and HPLC Analytical Conditions to Distinguish the Diastereomers

    Eisuke Kato


    Full Text Available Higenamine is a tetrahydroisoquinoline present in several plants that has β-adrenergic receptor agonist activity. Study of the biosynthesis of higenamine has shown the participation of norcoclaurine synthase, which controls the stereochemistry to construct the (S-isomer. However, when isolated from nature, higenamine is found as the racemate, or even the (R-isomer. We recently reported the isolation of higenamine 4′-O-β-d-glucoside. Herein, its (R- and (S-isomers were synthesized and compared to precisely determine the stereochemistry of the isolate. Owing to their similar spectral properties, determination of the stereochemistry based on NMR data was considered inappropriate. Therefore, a high-performance liquid chromatography method was established to separate the isomers, and natural higenamine 4′-O-β-d-glucoside was determined to be a mixture of isomers.

  20. Identification and Characterisation of the Antimicrobial Peptide, Phylloseptin-PT, from the Skin Secretion of Phyllomedusa tarsius, and Comparison of Activity with Designed, Cationicity-Enhanced Analogues and Diastereomers

    Yitian Gao


    Full Text Available Antimicrobial peptides belonging to the phylloseptin family are mainly found in phyllomedusine frogs. These peptides not only possess potent antimicrobial activity but exhibit low toxicity against eukaryotic cells. Therefore, they are considered as promising drug candidates for a number of diseases. In a recent study, potent antimicrobial activity was correlated with the conserved structures and cationic amphiphilic characteristics of members of this peptide family. A phylloseptin peptide precursor was discovered here in the skin secretion of Phyllomedusa tarsius and the mature peptide was validated by MS/MS sequencing, and was subsequently named phylloseptin-PT. The chemically-synthesized and purified phylloseptin-PT displayed activity against Staphylococcus aureus and Candida albicans. Nevertheless, a range of cationicity-enhanced peptide analogues of phylloseptin-PT, which contained amino acid substitutions at specific sites, exhibited significant increases in antimicrobial activity compared to native phylloseptin-PT. In addition, alternative conformers which were designed and chemically-synthesized with d-lysine, showed potent antimicrobial activity and enhanced bioavailability. These data indicate that phylloseptins may represent potential candidates for next-generation antibiotics. Thus, rational design through modification of natural antimicrobial peptide templates could provide an accelerated path to overcoming obstacles en-route to their possible clinical applications.

  1. Studies on the phase I and II metabolism and the toxicological analysis of the alkaloids of the herbal drug of abuse Mitragyna speciosa Korth. (Kratom) using gas chromatography-mass spectrometry and liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry

    Philipp, Anika-Anina


    In the presented studies, the herbal drug Kratom (Mitragyna speciosa) was investigated regarding its metabolism and its toxicological analysis in rat and human urine. Depending on the plant species and plant parts the three most abundant alkaloids of Mitragyna speciosa are MG, PAY and the MG diastereomer SG. Further alkaloids are the MG diastereomers SC and MC and ISO-PAY the diastereomer of PAY. The diastereomers of MG and PAY were mainly metabolized by hydrolysis of the methylester in p...

  2. Rapid Determination of Hexabromocyclododecane Diastereomers in Water Samples by Ultrasound-Assisted Ionic Liquid Microextraction Coupled with LC-MS-MS%超声辅助离子液体微萃取-液相色谱-串联质谱法测水中六溴环十二烷

    姚宇翔; 苑金鹏; 吕海波; 钱晓迪; 孙友敏


    建立了超声辅助离子液体液-液微萃取(USA-IL-DLLME)结合液相色谱-串联质谱测定水中六溴环十二烷3种异构体(α-HBCD、β-HBCD、γ-HBCD)的分析方法.实验中分别考察了离子液体萃取剂的种类及体积、超声时间、样品pH及盐浓度等因素的影响.在最佳条件下,HBCDs 3种异构体在0.5~100 μg/L质量浓度条件下有较好的线性关系,相关系数大于0.998,最低检出限分别为156.4、84.6、85.5 ng/L,测定下限分别为0.626、0.339、0.342 μg/L.相对标准偏差(n=5)为5.3% ~9.7%.采用该方法对实际环境水样进行了检测与加标回收实验,在1、20μg/L 2个添加水平下,加标回收率为71% ~ 102%.方法具有简单快速、有机溶剂用量少、绿色环保的特点.

  3. A Novel Synthesis of 3-O-Allyl-4, 5, 6-tri-O-benzyl-1-O-(p-methoxybenzyl)-D-myo-inositol

    Zhi Zhou YUE; Yuan Chao LI


    Highly efficient synthesis of the entitled compound was achieved from a readily available myo-inositol derivative. The key step involved a desymmetrization with (+)-camphor dimethyl ketal to give two diastereomers. The two diastereomers could be used to synthesize the same compound by changing the orders to introduce the protective groups.

  4. Asymmetrische Totalsynthese von 16(S)-Iloprost und 3-Oxa-16(S)-Iloprost mittels der Azoen-Strategie


    The present dissertation describes completely stereocontrolled asymmetric syntheses of 16S-iloprost and of 16S-3-oxa-iloprost by a azoene strategy. As Ilomedin and Ventavis registrated iloprost (1:1 mixture of diastereomers at C16) serves as a drug against ischemic heart disease, peripheral vascular disease and primary pulmonary hypertension. The 16S-diastereomer is 5 to 20 times more potent than the 16R-diastereomer in inhibiting collagen-induced platelet aggregation. 3-oxa-16S-iloprost shou...

  5. Halogenated Contaminants in Farmed Salmon, Trout, Tilapia, Pangasius, and Shrimp

    Leeuwen, van S.P.J.; Velzen, van M.J.M.; Swart, C.P.; Veen, van der I.; Traag, W.A.; Boer, de J.


    Polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzo-p-furans (PCDD/Fs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane diastereomers (HBCDs), and perfluorinated compounds (PFCs) were analyzed in popular farmed fish such as

  6. Walking in the woods with quantum chemistry--applications of quantum chemical calculations in natural products research.

    Tantillo, Dean J


    This Highlight describes applications of quantum chemical calculations to problems in natural products chemistry, including the elucidation of natural product structures (distinguishing between constitutional isomers, distinguishing between diastereomers, and assigning absolute configuration) and determination of reasonable mechanisms for their formation.

  7. Relative stereochemical determination and synthesis of the C1-C17 fragment of a new natural polyketide.

    Fleury, Etienne; Lannou, Marie-Isabelle; Bistri, Olivia; Sautel, François; Massiot, Georges; Pancrazi, Ange; Ardisson, Janick


    The challenging determination of the relative stereochemistry of a complex natural polyketide portion was achieved. After careful NMR analysis, a concise synthesis of a set of possible relative diastereomers (only 6 diastereomers out of the 32 initially envisioned) has been carried out using a common strategy based on enantioselective aldol reactions. With a high predictability, final NMR comparison established the relative stereochemistry of the C1-C17 fragment of this natural product.

  8. Synthesis and dynamic stereochemistry of 4-aryl-thiomorpholine-3,5-dione derivatives

    Szawkało, Joanna; Maurin, Jan K.; Pluciński, Franciszek; Czarnocki, Zbigniew


    A series of new N-aryl-substituted thiomorpholine-3,5-diones were synthesized. Crystal structures of seven compounds were established on the basis of X-ray crystallography. Stable at room temperature diastereomers were detected for (2-phenyl)-substituted derivatives using 1H NMR. The dynamic stereochemistry of compound 36 was studied with variable-temperature 1H NMR and the mechanism of diastereomers interconversion was proposed on the basis of quantum chemical calculations.

  9. New insight into the biosynthesis of flavanolignans in the white-flowered variant of Silybum marianum.

    Nyiredy, Sz; Samu, Zs; Szücs, Z; Gulácsi, K; Kurtán, T; Antus, S


    It has been demonstrated that besides the known flavanolignan constituents of the white-flowered variant of Silybum marianum, (-)-silandrin A (3a) and (-)-isosilandrin A (4a); their trans-benzodioxane diastereomers, (-)-silandrin B (3b) and (-)-isosilandrin B (4b), are also produced by the plant. Moreover, the isolation of their cis-benzodioxane diastereomers, (-)-isocisilandrin (5) and cisilandrin (6), confirm that the previously proposed biosynthetic pathway involving a nonselective O-beta coupling is correct.

  10. Solvent-dependent diastereoselectivities in reductions of beta-hydroxyketones by SmI2.

    Chopade, Pramod R; Davis, Todd A; Prasad, Edamana; Flowers, Robert A


    The reductions of a series of beta-hydroxyketones by SmI(2) were examined in THF, DME, and CH(3)CN using methanol as a proton source. Reductions in THF and DME typically lead to the syn diastereomer with DME providing higher diastereoselectivities. Reductions in CH(3)CN provided the anti diastereomer predominantly. This study reveals that solvation plays an important role in substrate reduction by SmI(2). [reaction: see text

  11. Synthesis of fluorescent label, DBD-beta-proline, and the resolution efficiency for chiral amines by reversed-phase chromatography.

    Min, Jun Zhe; Toyo'oka, Toshimasa; Kato, Masaru; Fukushima, Takeshi


    DBD-d(and l)-beta-proline, new fluorescent chiral derivatization reagents, were synthesized from the reaction of 4-(N,N-dimethylaminosulfonyl)-7- fl uoro-2,1,3-benzoxadiazole (DBD-F) with beta-proline. The racemic mixture synthesized was separated by a chiral stationary phase (CSP) column, Chiralpak AD-H, with n-hexane-EtOH-TFA-diethylamine (70:30:0.1:0.1) as the mobile phase. The dl-forms were decided according to the results obtained from a circular dichroism (CD) detector after separation by the CSP column. The fractionated enantiomers reacted with chiral amine to produce a couple of diastereomers. The labeling proceeded in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and pyridine as the activation reagents. The reaction conditions were mild and no racemization occurred during the diastereomer formation. The resulting diastereomers fluoresced at around 570 nm (excitation at around 460 nm). Good linearity of the calibration curves was obtained in the range 1-75 pmol and the detection limits on chromatogram were less than 1 pmol. The separability of the diastereomers was compared with the diastereomers derived from DBD-d(or l)-proline. The resolution values (Rs) obtained from the diastereomers of three chiral amines with DBD-d(or l)-beta-proline were higher than those derived from DBD-d(or l)-proline, e.g. dl-phenylalanine methylester (dl-PAME), 2.23 vs 1.37; (R)(S)-1-phenylethylamine [(R)(S)-PEA], 2.09 vs 1.13; and (R)(S)-1-(1-naphthyl)ethylamines [(R)(S)-NEA], 5.19 vs 1.23. The results suggest that the position of COOH group on pyrrolidine moiety in the structures is one of the important factors for the efficient separation of a couple of the diastereomers.

  12. Rotational Spectrum and Carbon Atom Structure of Dihydroartemisinic Acid

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks


    Dihydroartemisinic acid (DHAA, C15H24O2, five chiral centers) is a precursor in proposed low-cost synthetic routes to the antimalarial drug artemisinin. In one reaction process being considered in pharmaceutical production, DHAA is formed from an enantiopure sample of artemisinic acid through hydrogenation of the alkene. This reaction needs to properly set the stereochemistry of the asymmetric carbon for the synthesis to produce artemisinin. A recrystallization process can purify the diastereomer mixture of the hydrogenation reaction if the unwanted epimer is produced in less than 10% abundance. There is a need in the process analytical chemistry to rapidly (less than 1 min) measure the diastereomer excess and current solutions, such a HPLC, lack the needed measurement speed. The rotational spectrum of DHAA has been measured at 300:1 signal-to-noise ratio in a chirped-pulsed Fourier transform microwave spectrometer operating from 2-8 GHz using simple heating of the compound. The 13C isotope analysis provides a carbon atom structure that confirms the diastereomer. This structure is in excellent agreement with quantum chemistry calculations at the B2PLYPD3/ 6-311++G** level of theory. The DHAA spectrum is expected to be fully resolved from the unwanted diastereomer raising the potential for fast diastereomer excess measurement by rotational spectroscopy in the pharmaceutical production process.

  13. New concept of the origin of life on earth

    Konstantinov, K. K.; Konstantinova, A. F.


    A model of coupled autocatalytic reactions with allowance for the crystallization of diastereomer is considered. It is shown that the differences in the physical properties of diastereomers can be a 100% enantioselective factor, which makes it possible to obtain a significant chiral polarization even at low autocatalysis enantioselectivity. In terms of a complicated model, more complex molecules should have a higher chiral polarization than simpler ones. The calculation of the dynamics of the model under consideration shows that the presence of binomial coefficients in the reaction of pair formation from two different enantiomers (provided that diastereomers have identical properties) leads to the occurrence of an additional 100% enantioselective factor. Estimation shows that the theoretical difference between the right- and left-handed molecules (which is due to weak interaction), described in the literature, is sufficient to explain the directed symmetry breaking and construction of biological molecules from L-amino acids and D-sugars at the origin of life on earth.

  14. Stereochemistry and spectroscopic analysis of bis-Betti base derivatives of 2,3-dihydroxynaphthalene.

    Zamani, Mehdi; Shafiee, Mehdi; Keshavarz, Mohammad Hossein


    Density functional theory (DFT) was used to study the stereochemistry, thermodynamic stability, and spectra of recently synthesized bis-Betti base derivatives of 2,3-dihydroxynaphthalene obtained through multicomponent reactions of 2,3-dihydroxynaphthalene with aminoisoxazole and benzaldehyde derivatives. The stereochemistry of the products was investigated by theoretically calculating the infrared (IR) and proton nuclear magnetic resonance ((1)H NMR) spectra of the diastereomers and comparing them to the corresponding experimental data. The thermochemical properties of the reactions, including the enthalpy, internal energy, entropy, and Gibbs free energy, were also calculated. The diastereoselectivity of the reactions was estimated from the equilibrium distribution of diastereomers. According to the results, the synthesis of bis-Betti bases is exothermic and accompanied by a decrease in entropy. The energy difference between the diastereomers is quite small, but the Gibbs free energy change for the equilibrium syn anti favors the anti over syn configuration. These results are in good agreement with experimental observations.

  15. Palladium(II) complexes supported by a bidentate bis(secondary)phosphine linked by pyridine

    Winston, Matthew S.


    A series of complexes of the type (PNP-H2)PdX2 (X=Cl, Br, I) have been synthesized, where PNP-H2 is a bis(secondary)phosphine ligand linked by a pyridine, 2,6-(2\\'-(Ph(H)P)(C6H4))2(C5H3N). Due to chirality at phosphorus, the parent ligand exists as a mixture of nearly equivalent rac and meso diastereomers non-interconverting at room temperature. When ligated to Pd(II) halides, however, the diastereomeric ratio is dependent upon the halide. The chloro, bromo, and iodo complexes have been characterized crystallographically. Conformationally similar meso diastereomers of each dihalide are roughly C s symmetric in the solid state, while the rac diastereomers (identified only for X=Br, I) show substantially different solid-state conformations. © 2014 Elsevier B.V.

  16. Dynamic thermodynamic resolution: advantage by separation of equilibration and resolution.

    Lee, Won Koo; Park, Yong Sun; Beak, Peter


    In the investigation of a chemical reaction, researchers typically survey variables such as time, temperature, and stoichiometry to optimize yields. This Account demonstrates how control of these variables, often in nontraditional ways, can provide significant improvements in enantiomeric ratios for asymmetric reactions. Dynamic thermodynamic resolution (DTR) offers a convenient method for the resolution of enantiomeric products in the course of a reaction. This process depends on an essential requirement: the equilibration of the penultimate diastereomers must be subject to external control. As a general case, the reaction of A(R), A(S) with B under the influence of the chiral species, L*, gives resolved products C(R) and C(S). In the first step of dynamic resolution under thermodynamic control, the enantiomeric reactants A(R) and A(S) and L* form the diastereomers A(R)/L* and A(S)/L*. The equilibrium between A(R) and A(S) can be rapid, slow, or not operative, and L* can represent a ligand, an auxiliary, or a crystallization process that provides a chiral environment. Second, the populations of the diastereomers are controlled, usually by thermal equilibration. Finally, the reaction of the diastereomers with a reagent B provides the enantiomeric products C(R) and C(S). The control of the diastereomeric equilibrium distinguishes DTR from other resolution techniques. By contrast, physical resolutions separate thermodynamically stable, nonequilibrating diastereomers, and dynamic kinetic resolutions utilize kinetic control for reactions of rapidly equilibrating diastereomers. The dynamic thermodynamic resolutions discussed in this Account illustrate cases of significantly improved enantioselectivities using this technique. Although many of the well-recognized cases come from organolithium chemistry, the principles are general, and we also present cases facilitated by other chemistries. This approach has been used to control enantioselectivities in a number of

  17. Asymmetric activation of the Pd catalyst bearing the tropos biphenylphosphine (BIPHEP) ligand with the chiral diaminobinaphthyl (DABN) activator.

    Mikami, Koichi; Aikawa, Kohsuke; Yusa, Yukinori


    [reaction: see text] The enantio- and diastereomerically pure Pd complex of the tropos biphenylphosphine (BIPHEP) ligand is obtained through complexation of the enantiopure (R)-diaminobinaphthyl (DABN) with either enantiomer of the BIPHEP-Pd catalyst, followed by tropo-inversion of the less favorable (S)-BIPHEP-Pd/(R)-DABN diastereomer to the more favorable (R)-BIPHEP-Pd/(R)-DABN diastereomer. The enantiopure BIPHEP-Pd catalyst with DABN affords higher enantioselectivity and catalytic efficiency as an activated Lewis acid catalyst than the enantiopure BIPHEP-Pd catalyst without DABN.

  18. Synthesis and stereochemistry of 6-membered ring phosphonates

    Michael D. Pungente


    Full Text Available Background: Organophosphorus compounds have important industrial and biomedical applications as pharmaceutical and agrochemical agents, as well as transition state analogs for the production of monoclonal antibodies. Methods: Two diastereomers of a 6-membered ring, cyclic phenyl phosphonate were synthesized in 8 steps from 1,3-butanediol. Results: The stereochemistry of the diastereomers was elucidated on the basis of H NMR nuclear Overhauser effects (NOE difference experiments. Conclusions: Such cyclic phosphonates may have utility serving as transition state analogs for the production of monoclonal antibodies.

  19. Study on the Stereoselective Synthesis of Carbapenem Sidechain (2S,4S)-4-Acetylsulphanyl-2-[(S)-1-phenylethylcarbamoyl]-pyrrolidine-1-carboxylic Acid 4-Nitrobenzyl Ester

    Qian LIU; Gang FANG; Li Ping WU; Jian Mei CUI; Xiao Tian LIANG; Song WU


    A stereoselective and economic synthesis of the carbapenem sidechain (2S, 4S)-4-ace-tylsulphanyl-2-[ (S)1-phenylethyl-carbamoyl] pyrrolidine-l-carboxylic acid 4-nitrobenzyl ester was developed. Due to the effect of spatial hindrance, only the (2S,4S) diastereomer 3 was obtained by coupling 1 and the inexpensive racemic 2 catalyzed by EEDQ.

  20. Preparation and properties of diuridine 3’,5’-boranophosphate

    陈耀全; 屈付成; 张一兵


    Diuridine 3’, 5’-boianophosphate has been synthesized. Its diastereomers were separated and their configurations were tentatively assigned based on the selective snake venom phosphodiesterase (SVPDE) hydrolysis. It is found that, compared to the unmodified parent compound diuridine phosphate, the nucleophilicity and the stability of the modified compounds to SVPDE are significantly enhanced.

  1. Facile syntheses of dissymmetric ferrocene-functionalized Lewis acids and acid-base pairs.

    Morgan, Ian R; Di Paolo, Angela; Vidovic, Dragoslav; Fallis, Ian A; Aldridge, Simon


    A facile synthetic approach is reported for the synthesis of dissymmetric 1,2-ferrocenediyl Lewis acids and mixed acid-base pairs including the first example of a 1-phosphino-2-borylferrocene; the use of non-racemic electrophiles allows for the isolation of single diastereomer products.

  2. Versatile Stereocontrol in Asymmetric Horner-Wadsworth-Emmons Resolution of a Racemic Diphenylphosphoryl-Protected a-Aminoaldehyde

    Kreuder, Reinhard; Rein, Tobias; Reiser, Oliver


    In kinetic resolutions of the racemic aldehyde 1 by reaction with chiral phosphonates of type 2, all of which contain the same chiral auxiliary in the same enantiomeric form, any of the four diastereomers 3a, 3b, 4a or 4b can be obtained as the main product by an appropriate choice of reaction pa...

  3. Functionalized 2′-amino-α-L-LNA

    Kumar, T. Santhosh; Madsen, Andreas Stahl; Østergaard, Michael;


    Chemically modified oligonucleotides are increasingly applied in nucleic acid based therapeutics and diagnostics. LNA (locked nucleic acid) and its diastereomer α-L-LNA are two promising examples thereof that exhibit increased thermal and enzymatic stability. Herein, the synthesis, biophysical ch...

  4. Synthesis and Chiral Separation of Dinucleotide(TpAZT) Phosphoramidates

    Chang Xue LIN; Hua FU; Guang Zhong TU; Yu Fen ZHAO


    Dinucleotide (TpAZT) phosphoramidates were synthesized by Todd reaction of dinucleoside H-phosphonates and amino acid methyl esters, and their diastereomers (Rp and Sp) were separated by crystallization, and the results showed that natural and cheap methyl esters of alanine and phenylalanine can be used for large-scale synthesis of dinucleotide analogs.

  5. Fast transient absorption spectroscopy of the early events in photoexcited chiral benzophenone-naphthalene dyads

    Perez-Ruiz, R.; Groeneveld, M.M.; van Stokkum, I.H.M.; Tormos, R.; Williams, R.M.; Miranda, M.A.


    Photoinduced intra-molecular energy transfer in two ketoprofen(KP)-naproxol(NPX) diastereomers proceeds via two pathways. Very fast singlet-triplet energy transfer (k = 1.2 x 10(11) s(-1)) from KP to NPX occurs for a small percentage (6%) and the major pathway is triplet-triplet energy transfer (k s

  6. 以葡辛胺为拆分剂拆分酮基布洛芬%Resolving Ketoprofen Using n-Octyl-d-glucamine as an Optical Resolution Agent

    朱圣东; 吴元欣; 喻子牛


    The process of resolution of racemic ketoprofen using n-octyl-d-glucamine as an optical resolution agent was investigated. The process consists of preparation of the diastereomer salt of ketoprofen with n-octyl-d-glucamine,liberation of S-(+)-ketoprofen from its diastereomer salt and recovery of the remaining ketoprofen and n-octyl-dglucamine. The suitable conditions for preparation of the diastereomer salt were methanol and ethyl acetate (1:1 by volume) as the solvent, the ratio of solvent volume to ketoprofen mass at 8 ml:1 g, and the molar ratio of ketoprofen to n-octyl-d-glucamine at 1:1. The preferred approach to liberate S-(+)-ketoprofen from its diastereomer salt was alkali dissolution, acid adjustment and ethyl acetate extraction. Racemization of the recovered ketoprofen could be achieved by reacting the recovered ketoprofen with 10% NaOH at 507 kPa for 6 h. The recovered n-octyl-dglucamine could be refined by acid dissolution and alkali adjustment. S-(+)-ketoprofen can be obtained with high optical purity and yield, showing that the present process is a practical and efficient one which can be used in industrial scale for preparation of S-(+)-ketoprofen.

  7. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks


    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  8. Diastereoselective Allylation of "N"-"Tert"-Butanesulfinyl Imines: An Asymmetric Synthesis Experiment for the Undergraduate Organic Laboratory

    Chen, Xiao-Yang; Sun, Li-Sen; Gao, Xiang; Sun, Xing-Wen


    An asymmetric synthetic experiment that encompasses both diastereoselectivity and enantioselectivity is described. In this experiment, Zn-mediated allylation of an ("R")-"N"-"tert"-butanesulfinyl imine is first performed to obtain either diastereomer using two different solvent systems, followed by oxidation of the…

  9. Stereoselective biodegradation of tricyclic terpanes in heavy oils from the Bolivar Coastal Fields, Venezuela

    Alberdi, M. [Stanford University (United States). Dept. of Geological and Environmental Sciences; PDVSA-Intevep, Caracas (Venezuela); Moldowan, J.M.; Dahl, J.E. [Stanford University (United States). Dept. of Geological and Environmental Sciences; Peters, K.E. [Mobil Technology Co., Dallas, TX (United States)


    Gas chromatography-mass spectrometry (GC-MS) and GC-MS-MS analyses of heavy oils from Bolivar Coastal Fields (Lagunillas Field) show a complete set of demethylated tricyclic terpanes. As is the case for the 25-norhopanes, the demethylated tricyclics are probably formed in reservoirs by microbially-mediated removal of the methyl group from the C-10 position, generating putative 17-nor-tricyclic terpanes. Diastereomeric pairs of tricyclic terpanes are resolved above C{sub 24} due to resolution of 22S and 22R epimers, but the elution order of the 22S and 22R epimers is unknown. Early-eluting diastereomers (EE) predominate over late-eluting diastereomers (LE) (C{sub 25}-C{sub 29}) in the heavily degraded oils, indicating a stereoselective preference for the LE stereoisomers during biodegradation. Conversely, the LE diastereomers predominate over the EE diastereomers in the 17-nor tricyclic series (C{sub 24}-C{sub 28}), indicating that tricyclic terpanes and 17-nor-tricyclic terpanes are directly linked as precursors and products, respectively. A good correlation exists between the destruction of steranes and the demethylation of hopanes and tricyclic terpanes. This suggests that terpane demethylation occurs during sterane destruction and hopane demethylation, although the rate is slower, indicating that tricyclic terpanes are more resistant to biodegradation. (Author)

  10. Double Intramolecular Transacetalization of Polyhydroxy Acetals: Synthesis of Conformationally-Restricted 1,3-Dioxanes with Axially-Oriented Phenyl Moiety

    Samuel Asare-Nkansah


    Full Text Available The synthesis of conformationally-restricted 1,3-dioxanes with a phenyl moiety fixed in an axial orientation at the acetalic center is described. Starting with diethyl 3-hydroxyglutarate (15, benzaldehyde acetal 12a and acetophenone ketal 12b bearing a protected 1,3,5-trihydroxypentyl side chain in the o-position were prepared. The first acid-catalyzed intramolecular transacetalization gave a mixture of diastereomeric 2-benzofurans 18 (ratio of diastereomers 2:2:1:1. After OH group deprotection, the second intramolecular transacetalization afforded tricyclic alcohol 14a (2-(1,5-epoxy-1,3,4,5-tetrahydro-2-benzoxepin-3-yl]ethan-1-ol. Analogous cyclizations led to the corresponding silyl ether 22a (19% and azide 23a (13%. Whereas tricyclic alcohol 14a was obtained as a 1:1 mixture of diastereomers, the silyl ether 22a and the azide 23a afforded only one diastereomer. This observation indicates a faster cyclization of the minor diastereomers providing the thermodynamically-favored compounds with equatorially-oriented substituents in the 3-position of the tricyclic 1,5-epoxy-2-benzoxepine system. In general, acetophenone-derived ketalic compounds (b-series required very mild reaction conditions and gave lower yields than the corresponding acetalic compounds (a-series.

  11. Illustrating the Utility of X-Ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence

    Hoang, Giang T.; Kubo, Tomohiro; Young, Victor G., Jr.; Kautzky, Jacob A.; Wissinger, Jane E.


    Two introductory organic chemistry laboratory experiments are described based on the Diels-Alder reaction of 2,3,4,5-tetraphenylcyclopentadienone, which is synthesized prior to or in a one-pot reaction, with styrene. Students are presented with three possible products, the "endo" and "exo" diastereomers and the decarbonylated…

  12. Amitorines A and B, Nitrogenous Diterpene Metabolites of Theonella swinhoei: Isolation, Structure Elucidation, and Asymmetric Synthesis.

    Ota, Koichiro; Hamamoto, Yukiko; Eda, Wakiko; Tamura, Kenta; Sawada, Akiyoshi; Hoshino, Ayako; Mitome, Hidemichi; Kamaike, Kazuo; Miyaoka, Hiroaki


    Two new nitrogenous prenylbisabolanes never before found in Lithistid sponges have been isolated from Theonella swinhoei. These new diterpenes, named amitorine A (1) and amitorine B (2), containing a prenylbisabolane skeleton have been characterized by spectroscopic analyses, and the relative and absolute configurations of 1 and 2 were determined by asymmetric synthesis of both diastereomers via the common bicyclic lactone 6 intermediate.

  13. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    Bhushan, Ravi; Dixit, Shuchi


    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  14. Use of the steroid derivative RPR 106541 in combination with site-directed mutagenesis for enhanced cytochrome P-450 3A4 structure/function analysis.

    Stevens, J C; Domanski, T L; Harlow, G R; White, R B; Orton, E; Halpert, J R


    RPR 106541 (20R-16alpha,17alpha-[butylidenebis(oxy)]-6al pha, 9alpha-difluoro-11beta-hydroxy-17beta-(methylthio)androst a-4-en-3-one) is an airway-selective steroid developed for the treatment of asthma. Two metabolites produced by human liver microsomes were identified as R- and S-sulfoxide diastereomers based on liquid chromatography/mass spectrometry analysis, proton nuclear magnetic resonance, and cochromatography with standards. Sulfoxide formation was determined to be cytochrome P-450 (CYP) 3A4-dependent by correlation with CYP3A4-marker nifedipine oxidase activity, inhibition by cyclosporin A and troleandomycin, and inhibition of R- (70%) and S- (64%) sulfoxide formation by anti-3A antibody. Expressed CYP2C forms catalyzed RPR 106541 sulfoxidation; however, other phenotyping approaches failed to confirm the involvement of CYP2C forms in these reactions in human liver microsomes. Expressed CYP3A4 catalyzed the formation of the sulfoxide diastereomers in a 1:1 ratio, whereas CYP3A5 displayed stereoselectivity for formation of the S-diastereomer. The high rate of sulfoxidation by CYP3A4 and the blockage of oxidative metabolism at the electronically favored 6beta-position provided advantages for RPR 106541 over other substrates as an active site probe of CYP3A4. Therefore, oxidation of RPR 106541 by various CYP3A4 substrate recognition site (SRS) mutants was assessed. In SRS-4, A305V and F304A showed dramatically reduced rates of R-diastereomer formation (83 and 64% decreases, respectively), but S-diastereomer formation was affected to a lesser extent. A370V (SRS-5) showed decreased formation of the R-sulfoxide (52%) but increased formation of the S-diastereomer. In the SRS-2 region, the most dramatic change in sulfoxide ratios was observed for L210A. In conclusion, the structure of RPR 106541 imposes specific constraints on enzyme binding and activity and thus represents an improved CYP3A4 probe substrate.

  15. Reactions of fac-[Re(CO)3(H2O)3]+ with nucleoside diphosphates and thiamine diphosphate in aqueous solution investigated by multinuclear NMR spectroscopy.

    Adams, Kristie M; Marzilli, Patricia A; Marzilli, Luigi G


    Products formed between monoester diphosphates (MDPs) and fac-[Re(CO)3(H2O)3]OTf at pH 3.6 were examined. Such adducts of the fac-[Re(CO)3]+ moiety have an uncommon combination of properties for an "inert" metal center in that sharp NMR signals can be observed, yet the products are equilibrating at rates allowing NMR EXSY cross-peaks to be observed. Thiamine diphosphate (TDP) and uridine 5'-diphosphate (5'-UDP) form 1:1 bidentate {Palpha,Pbeta} chelates, in which the MDP binds Re(I) via Palpha and Pbeta phosphate groups. Asymmetric centers are created at Re(I) (RRe/SRe) and Palpha (Delta/Lambda), leading to four diastereomers. The two mirror pairs of diastereomers (RReDelta/SReLambda) and (RReLambda/SReDelta) for TDP (no ribose) and for all four diastereomers (RReDelta, RReLambda, SReDelta, SReLambda) for 5'-UDP (asymmetric ribose) gave two and four sets of NMR signals for the bound MDP, respectively. 31Palpha-31Palpha EXSY cross-peaks indicate that the fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- isomers interchange slowly on the NMR time scale, with an average k approximately equal to 0.8 s(-1) at 32 degrees C; the EXSY cross-peaks could arise from chirality changes at only Re(I) or at only Palpha. Guanosine 5'-diphosphate (5'-GDP), with a ribose moiety and a Re(I)-binding base, formed both possible diastereomers (RRe and SRe) of the fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- macrochelate, with one slightly more abundant diastereomer suggested to be RRe by Mn2+ ion 1H NMR signal line-broadening combined with distances from molecular models. Interchange of the diastereomers requires that the coordination site of either N7 or Pbeta move to the H2O site. 31Palpha-31Palpha EXSY cross-peaks indicate a k approximately equal to 0.5 s(-1) at 32 degrees C for RRe-to-SRe interchange. The similarity of the rate constants for interchange of fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- and fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- adducts suggest strongly that interchange of Pbeta and H2O coordination

  16. Lewis acid catalyzed cyclization of glycals/2-deoxy-D-ribose with arylamines: additional findings on product structure and reaction diastereoselectivity.

    Du, Chengtang; Li, Fulong; Zhang, Xuefeng; Hu, Wenxiang; Yao, Qizheng; Zhang, Ao


    The cyclization reactions of arylamines with 2-deoxy-D-ribose or glycals were reinvestigated in the current report. In the montmorillonite KSF- or InCl(3)-initiated reactions of 2-deoxy-D-ribose with arylamines, a pair of diastereomeric tetrahydro-2H-pyran-fused tetrahydroquinolines was obtained in a nearly 1:1 ratio where the structure of one diastereomer was incorrectly assigned in the literature. Meanwhile, the diastereoselectivity in InBr(3)-catalyzed cyclization of glycals with arylamines was also incorrectly reported previously. It was found that high diastereomeric selectivity was achieved only when a C5-substituted glycal was used; otherwise, a pair of diastereomers was obtained in moderate yield with 1:1 diastereomeric ratio. Furthermore, tetrahydrofuran-fused tetrahydroquinolines 5b and 5b' were also prepared successfully by using TBDPS-protected ribose as the glycal precursor and montmorillonite KSF as the activator.

  17. Synthesis and structure activity relationship studies of 3-biaryl-8-oxa-bicyclo[3.2.1]octane-2-carboxylic acid methyl esters

    Torun, Lokman; Madras, Bertha K.; Meltzer, Peter C.


    Stille cross coupling protocols were utilized for the synthesis of 3-(biaryl)-8-oxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid methyl esters, which furnished products in high yields where in some cases Suzuki coupling under the conditions utilized provided complex reaction mixture. Samarium iodide reduction of the resulting coupling products produced both of the 2β-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers and the 2α-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers. Among the series synthesized, the benzothiophene substituted compounds demonstrated significant binding profiles of inhibition of WIN 35,438 with 177 fold selectivity for DAT vs. SERT. PMID:22398259

  18. Computational and NMR Spectroscopic Evidence for Stereochemistry-Dependent Conformations of 2,2,6,6-Tetramethylpiperidinyl-Masked 1,2-Diols.

    Fought, Ellie L; Chatterjee, Shreyosree; Windus, Theresa L; Chen, Jason S


    2,2,6,6-Tetramethylpiperidinyl-masked 1,2-diols exhibited stereochemistry-dependent hydroxyl proton chemical shifts: ca. 7 ppm for the syn diastereomer and ca. 2 ppm for the anti diastereomer. A computational search for low energy geometries revealed that the syn isomer favors a six-membered ring hydrogen bond to nitrogen and the anti isomer favors a five-membered ring hydrogen bond to oxygen. The computed low energy conformations were found to have a large difference in hydroxyl proton shielding that was reflected in the experimental chemical shift difference. This chemical shift difference was observed in a broad range of solvents, and thus may be useful as a stereochemical probe. The stereochemistry-dependent conformation and chemical shift signature appeared to be due to a syn pentane interaction between the gem-dimethyl groups on the 2,2,6,6-tetramethylpiperidinyl moiety.

  19. Asymmetric Synthesis of Bicyclic Nitrocyclopropanes from Primary Nitro Compounds and Stereoselective Formation of Tetrahydro-2H-cyclopenta[b]furans via Ring Expansion/Cyclization Reaction.

    Kamimura, Akio; Moriyama, Takaaki; Ito, Yuji; Kawamoto, Takuji; Uno, Hidemitsu


    Optically active bicyclic nitrocyclopropanes are readily prepared from primary chiral nitro compounds, prepared by the conjugate addition of propionaldehyde to a nitro alkene in the presence of proline-derived organocatalysts. The one-step cyclopropanation took place smoothly in a highly stereoselective manner regardless of the stereogenic center adjacent to the allylic unit. Although the allylation reaction catalyzed by BF3·OEt2 provides a mixture of two possible diastereomers, subsequent oxidation of the alcoholic carbon after the formation of nitrocyclopropanes gave diastereomerically pure single products. As a result, separation of the diastereomers during the reaction sequence is unnecessary. Baeyer-Villiger oxidation of the bicyclic nitrocyclopropane ketones followed by enolization resulted in stereoselective formation of a novel cyclopenta[b]furan ring in good yield via ring expansion followed by transannular nucleophilic cyclization.

  20. Studies towards C-3 functionalization of β-lactams using substituted allylsilanes



    An effective and stereoselective synthesis of 3-(1'-methyl/phenylallyl)-3-phenylthio-β-lactams (3/4) using substituted allylsilane and Lewis acid is described. The reaction leads to the formation of a mixture of C-3 substituted allyl β-Lactams. However, these compounds on desulphurisation using tri-n-butyltinhydride and Raney Ni provide two separable diastereomers of the reduced product.

  1. Determination of Short-Chain Chlorinated Paraffins by Carbon Skeleton Gas Chromatography



    Short-Chain Chlorinated Paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with a chlorination degree between 50 and 70 % by mass, and a linear carbon chain length from C10 to C13, constituted by thousands of homologues, diastereomers and enantiomers. They have been used in many different applications, such as extreme pressure additives in lubricants and cutting fluids, plasticizers in PVC, and flame retardants in paints, adhesives and sealants. SCCPs are tox...

  2. Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes

    Philipp Röse


    Full Text Available The cobalt(I-catalysed 1,4-hydrovinylation reaction of allyloxytrimethylsilane and allyl alcohol with substituted 1,3-dienes leads to hydroxy-functionalised 1,4-dienes in excellent regio- and diastereoselective fashion. Those 1,4-dienols can be converted into tetrahydrofuran and pyran derivatives under indirect electrochemical conditions generating selenium or iodonium cations. The reactions proceed in good yields and regioselectivities for the formation of single diastereomers.

  3. Theoretical and computational chemistry.

    Meuwly, Markus


    Computer-based and theoretical approaches to chemical problems can provide atomistic understanding of complex processes at the molecular level. Examples ranging from rates of ligand-binding reactions in proteins to structural and energetic investigations of diastereomers relevant to organo-catalysis are discussed in the following. They highlight the range of application of theoretical and computational methods to current questions in chemical research.

  4. Staudinger ketene-imine cycloaddition, RCM approach to macrocrocyclic bisazetidinones.

    Ibrahim, Yehia A; Al-Azemi, Talal F; Abd El-Halim, Mohamed D; John, Elizabeth


    Application of Staudinger ketene-imine cycloaddition reaction to bis-o-allyloxyarylideneamines afforded the corresponding bisallyloxyazetidinones as the cis-cis diastereomers, exclusively obtained as a mixture of cis-syn-cis and cis-anti-cis. RCM of the latter using Grubbs' catalysts afforded the corresponding macrocyclic bisazetidinones in good yields. The cis-anti-cis bisazetidinones are readily identified by (1)H NMR using Eu(hfc)(3) chiral shift reagent.

  5. Stereoselective addition of 2-phenyloxazol-4-yl trifluoromethanesulfonate to N-sulfinyl imines: application to the synthesis of the HCV protease inhibitor boceprevir.

    Morris, William J; Muppalla, Kiran K; Cowden, Cameron; Ball, Richard G


    The stereoselective addition of 2-phenyloxazol-4-yl trifluoromethanesulfonate to N-sulfinylimines is described. Vinyl anions derived from enol triflate 2 undergo 1,2-addition with a variety of aldimines to afford the corresponding secondary sulfonamides as single diastereomers. The absolute stereochemistry was confirmed by X-ray crystallography which provides support that the reaction proceeds through an open, nonchelate transition state. This methodology has been applied to the synthesis of the ketoamide fragment of the protease inhibitor boceprevir.

  6. A new approach to the synthesis of functional derivatives of nido-carborane: alkylation of [9-MeS-nido-7,8-C2B9H11]⁻.

    Zakharova, Maria V; Sivaev, Igor B; Anufriev, Sergey A; Timofeev, Sergey V; Suponitsky, Kyrill Yu; Godovikov, Ivan A; Bregadze, Vladimir I


    A series of asymmetrically substituted sulfonium derivatives of nido-carborane [9-R(Me)S-nido-7,8-C2B9H11] (R = Et, Pr, Bu, Bn, CH=CH2, CH2CH=CH2, CH2C≡CH, CH=C=CH2) were prepared by alkylation of the 9-methylthio-nido-7,8-carborane. The synthesized compounds are the first examples of diastereomers combining nido-carborane and sulfonium chiral centers.

  7. A small-fish model for behavioral-toxicological screening of new antimalarial drugs: a comparison between erythro- and threo-mefloquine

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei


    Background New antimalarial drugs need to be developed because over time resistance against the existing drugs develops. Furthermore, some of the drugs have severe side effects. Here we describe a behavioral small-fish model for early detection of neurotoxic effects of new drugs. As case example we compare the effects of two mefloquine diastereomers on the behavior of goldfish using an automated 3D tracking system. Findings In a preliminary experiment, the overall toxic effects in terms of mo...

  8. Diastereodivergent and Enantioselective [4+2] Annulations of γ-Butenolides with Cyclic 1-Azadienes

    Chao Li; Kun Jiang; Ying-Chun Chen


    An asymmetric annulation reaction of γ-butenolides and cyclic 1-azadienes containing a 1,2-benzoisothiazole-1,1-dioxide motif has been studied, proceeding in a tandem Michael addition-aza-Michael addition sequence. Endo-type cycloadducts bearing fused tetracyclic skeletons were isolated in fair yields and with high enantioselectivity (up to >99% ee) under the catalysis of modified cinchona alkaloid (DHQD)2PHAL. Besides, exo-type diastereomers could be produced using β-isocupreidine (β-ICD...

  9. Enantiomer-specific accumulation of HBCD in fish from the Western Scheldt Estuary

    Janak, K.; Becher, G. [Norwegian Institute of Public Health, Oslo (Norway). Division of Environmental Medicine; Covaci, A.; Voorspoels, S. [Antwerp Univ., Wilrijk (Belgium). Toxicological Centre


    Hexabromocyclododecane (HBCD) is used as an additive flame retardant mainly in expanded and extruded polystyrene for thermal insulation foams and to a lesser extent for backcoating of fabrics for furniture. The global market consumption in 2001 was estimated around 16 700 tons of which about 57% were used in Europe.1 HBCD has a high bioaccumulation potential and is found in increasing concentrations in environmental samples and in biota. HBCD is produced by bromination of 1Z,5E,9E-cyclododeca-1,5,9-triene (cis,trans,trans-CDT), a butadiene trimer. The resulting technical product consists of more than 90% of a mixture of three diastereomers of 1,2,5,6,9,10-hexabromocyclododecane termed {alpha}-, {beta}-, and {gamma}-HBCD. The three diastereomers may be separated by reversed phase HPLC. The three diastereomers are chiral and exist as pairs of mirror-image enantiomers. The enantiomers have identical physico-chemical properties and abiotic degradation rates, but may have different biological and toxicological properties and therefore different biotransformation rates. These transformations may result in nonracemic mixtures of the enantiomers. Enantiomer analysis has been used extensively to study transformation dynamics of chiral pollutants. Recently the complete separation of the three pairs of enantiomers of HBCD by chiral reversed phase HPLC has been demonstrated. The Western Scheldt Estuary on the border between Belgium and the Netherlands has been shown to be highly contaminated with brominated flame retardants (BFRs). Probable sources are BFR manufacturing and textile industry as well as harbour activity in Antwerp. High levels of polybrominated diphenylethers (PBDEs) have been reported in sediments and in various marine benthic and pelagic organisms. Sediments from the Western Scheldt are also highly contaminated by HBCD. In this paper, we report on the enantiomer composition of the HBCD diastereomers in various fish species from the Western Scheldt.

  10. Synthesis of variants of Marfey's reagent having d-amino acids as chiral auxiliaries and liquid-chromatographic enantioseparation of (RS)-Mexiletine in spiked plasma: assessment and comparison with L-amino acid analogs.

    Bhushan, Ravi; Vashistha, Vinod Kumar


    Five d-amino acids have been used for the first time to synthesize chiral derivatizing reagents (as variants of Marfey's reagent) by nucleophilic displacement of one of the fluorine atoms in 1,5-difluoro-2,4-dinitrobenzene as against the literature reports on application of only l-amino acids or their amides as chiral auxiliaries in dinitrobenzene (DNB) moiety. Five other DNB based reagents were also prepared by nucleophilic substitution of fluorine atom with the set of the same amino acids in l-configuration, as chiral auxiliaries. These reagents were characterized and used for synthesis of diastereomers of (RS)-Mexiletine spiked in human plasma. Diastereomers were synthesized employing microwave irradiation and were separated on reversed-phase C18 column. Performance of the two types of chiral derivatizing reagents was compared. The reagents containing d-amino acids provided enhanced separation of diastereomers than those containing l-amino acids. The best resolution was obtained using mobile phase consisting of acetonitrile and 0.1% trifluoroacetic acid in gradient mode. The detection was carried out at 340nm. The method so developed was validated for linearity, accuracy and precision. The limit of quantitation was found to be approximately 25.2ngmL(-1) in human plasma.

  11. Experimental design-guided development of a stereospecific capillary electrophoresis assay for methionine sulfoxide reductase enzymes using a diastereomeric pentapeptide substrate.

    Zhu, Qingfu; Huo, Xingyu; Heinemann, Stefan H; Schönherr, Roland; El-Mergawy, Rabab; Scriba, Gerhard K E


    A capillary electrophoresis method has been developed and validated to evaluate the stereospecific activity of recombinant human methionine sulfoxide reductase enzymes employing the C-terminally dinitrophenyl-labeled N-acetylated pentapeptide ac-KIFM(O)K-Dnp as substrate (M(O)=methionine sulfoxide). The separation of the ac-KIFM(O)K-Dnp diastereomers and the reduced peptide ac-KIFMK-Dnp was optimized using experimental design with regard to the buffer pH, buffer concentration, sulfated β-cyclodextrin and 15-crown-5 concentration as well as capillary temperature and separation voltage. A fractional factorial response IV design was employed for the identification of the significant factors and a five-level circumscribed central composite design for the final method optimization. Resolution of the peptide diastereomers as well as analyte migration time served as responses in both designs. The resulting optimized conditions included 50mM Tris buffer, pH 7.85, containing 5mM 15-crown-5 and 14.3mg/mL sulfated β-cyclodextrin, at an applied voltage of 25kV and a capillary temperature of 21.5°C. The assay was subsequently applied to the determination of the stereospecificity of recombinant human methionine sulfoxide reductases A and B2. The Michaelis-Menten kinetic data were determined. The pentapeptide proved to be a good substrate for both enzymes. Furthermore, the first separation of methionine sulfoxide peptide diastereomers is reported.

  12. Caspase-3-dependent apoptosis of citreamicin ε-induced heLa iells Is associated with reactive oxygen species generation

    Liu, Lingli


    Citreamicins, members of the polycyclic xanthone family, are promising antitumor agents that are produced by Streptomyces species. Two diastereomers, citreamicin ε A (1) and B (2), were isolated from a marine-derived Streptomyces species. The relative configurations of these two diastereomers were determined using NMR spectroscopy and successful crystallization of citreamicin ε A (1). Both diastereomers showed potent cytotoxic activity against HeLa (cervical cancer) and HepG2 (hepatic carcinoma) cells with IC 50 values ranging from 30 to 100 nM. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay confirmed that citreamicin ε A (1) induced cellular apoptosis, and Western blot analysis showed that apoptosis occurred via activation of caspase-3. The 2,7-dichlorofluorescein diacetate assay indicated that citreamicin ε substantially increased the intracellular concentration of reactive oxygen species (ROS). To confirm the hypothesis that citreamicin ε induced apoptosis through an increase in the intracellular ROS concentration, the oxidized products, oxicitreamicin ε A (3) and B (4), were obtained from a one-step reaction catalyzed by Ag 2O. These products, with a reduced capacity to increase the intracellular ROS concentration, exhibited a significantly weakened cytotoxicity in both HeLa and HepG2 cells compared with that of citreamicin ε A (1) and B (2). © 2013 American Chemical Society.

  13. Chiral vanadium(V) complexes with 2-aminoglucose Schiff-base ligands and their solution configurations: synthesis, structures, and DFT calculations.

    Mohammadnezhad, Gholamhossein; Böhme, Michael; Geibig, Daniel; Burkhardt, Anja; Görls, Helmar; Plass, Winfried


    The sugar-modified Schiff-base ligands derived from benzyl 2-deoxy-2-salicylideneamino-α-D-glucopyranoside (H2L(5-Br) and H2L(3-OMe)) were used to prepare the chiral oxidovanadium(V) complexes [VO(L(5-Br))(OMe)] (1) and [VO(L(3-OMe))(OMe)] (2) which can be isolated from a methanol solution as the six-coordinate complexes with an additional methanol ligand [VO(L(5-Br))(OMe)(MeOH)] (1-MeOH) and [VO(L(3-OMe))(OMe) (MeOH)] (2-MeOH). Both complexes crystallize in the orthorhombic space group P2(1)2(1)2(1) together with two solvent molecules of methanol as 1-MeOH·2MeOH and 1-MeOH·2MeOH. In both crystal structures, only diastereomers with A configuration at the chiral vanadium centre (OC-6-24-A) are observed which corresponds to an cis configuration of the oxido group at the vanadium centre and the benzyl group at the anomeric carbon of the sugar backbone. Upon recrystallization of 2-MeOH from chloroform, the five-coordinate complex 2 was obtained which crystallizes in the monoclinic space group P2(1) with one co-crystallized chloroform molecule (2·CHCl3). For the chiral vanadium centre in 2·CHCl3, a C configuration (SPY-5-43-C) is observed which corresponds to an trans structure as far as the orientations of the oxido and benzyl groups are concerned. (1)H and (51)V NMR spectra of 1 and 2 indicate the presence of two diastereomers in solution. Their absolute configurations can be assigned based on the magnetic anisotropy effect of the oxidovanadium group. This effect leads to significant differences for the (1)H NMR chemical shifts of the H-2 (1.1 ppm) and H-3 protons (0.3 ppm) of the glucose backbone of the two diastereomers, with the downfield shift observed for the H-2 proton of the C-configured and the H-3 proton of the A-configured diastereomer at the vanadium centre. For 1 and 2 the difference between the (51)V NMR chemical shifts of the two diastereomers is 30 and 28 ppm, respectively. Also in the (13)C NMR significant chemical shift differences between the

  14. Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment.

    Sharma, Raman; Litchfield, John; Bergman, Arthur; Atkinson, Karen; Kazierad, David; Gustavson, Stephanie M; Di, Li; Pfefferkorn, Jeffrey A; Kalgutkar, Amit S


    A previous report from our laboratory disclosed the identification of PF-04991532 [(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid] as a hepatoselective glucokinase activator for the treatment of type 2 diabetes mellitus. Lack of in vitro metabolic turnover in microsomes and hepatocytes from preclinical species and humans suggested that metabolism would be inconsequential as a clearance mechanism of PF-04991532 in vivo. Qualitative examination of human circulating metabolites using plasma samples from a 14-day multiple ascending dose clinical study, however, revealed a glucuronide (M1) and monohydroxylation products (M2a and M2b/M2c) whose abundances (based on UV integration) were greater than 10% of the total drug-related material. Based on this preliminary observation, mass balance/excretion studies were triggered in animals, which revealed that the majority of circulating radioactivity following the oral administration of [¹⁴C]PF-04991532 was attributed to an unchanged parent (>70% in rats and dogs). In contrast with the human circulatory metabolite profile, the monohydroxylated metabolites were not detected in circulation in either rats or dogs. Available mass spectral evidence suggested that M2a and M2b/M2c were diastereomers derived from cyclopentyl ring oxidation in PF-04991532. Because cyclopentyl ring hydroxylation on the C-2 and C-3 positions can generate eight possible diastereomers, it was possible that additional diastereomers may have also formed and would need to be resolved from the M2a and M2b/M2c peaks observed in the current chromatography conditions. In conclusion, the human metabolite scouting study in tandem with the animal mass balance study allowed early identification of PF-04991532 oxidative metabolites, which were not predicted by in vitro methods and may require additional scrutiny in the development phase of PF-04991532.

  15. Biliary bile acids in birds of the Cotingidae family: taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid.

    Hagey, Lee R; Iida, Takashi; Ogawa, Shoujiro; Adachi, Yuuki; Une, Mizuho; Mushiake, Kumiko; Maekawa, Masamitsu; Shimada, Miki; Mano, Nariyasu; Hofmann, Alan F


    Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.

  16. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS.

    Kowalska, Joanna; Lewdorowicz, Magdalena; Zuberek, Joanna; Grudzien-Nogalska, Ewa; Bojarska, Elzbieta; Stepinski, Janusz; Rhoads, Robert E; Darzynkiewicz, Edward; Davis, Richard E; Jemielity, Jacek


    Analogs of the mRNA cap are widely employed to study processes involved in mRNA metabolism as well as being useful in biotechnology and medicinal applications. Here we describe synthesis of six dinucleotide cap analogs bearing a single phosphorothioate modification at either the alpha, beta, or gamma position of the 5',5'-triphosphate chain. Three of them were also modified with methyl groups at the 2'-O position of 7-methylguanosine to produce anti-reverse cap analogs (ARCAs). Due to the presence of stereogenic P centers in the phosphorothioate moieties, each analog was obtained as a mixture of two diastereomers, D1 and D2. The mixtures were resolved by RP HPLC, providing 12 different compounds. Fluorescence quenching experiments were employed to determine the association constant (K(AS)) for complexes of the new analogs with eIF4E. We found that phosphorothioate modifications generally stabilized the complex between eIF4E and the cap analog. The most strongly bound phosphorothioate analog (the D1 isomer of the beta-substituted analog m(7)Gpp(S)pG) was characterized by a K(AS) that was more than fourfold higher than that of its unmodified counterpart (m(7)GpppG). All analogs modified in the gamma position were resistant to hydrolysis by the scavenger decapping pyrophosphatase DcpS from both human and Caenorhabditis elegans sources. The absolute configurations of the diastereomers D1 and D2 of analogs modified at the alpha position (i.e., m(7)Gppp(S)G and m(2) (7,2'-O )Gppp(S)G) were established as S(P) and R(P) , respectively, using enzymatic digestion and correlation with the S(P) and R(P) diastereomers of guanosine 5'-O-(1-thiodiphosphate) (GDPalphaS). The analogs resistant to DcpS act as potent inhibitors of in vitro protein synthesis in rabbit reticulocyte lysates.

  17. Development and Comparison of Three Liquid Chromatography-Atmospheric Pressure Chemical Ionization/Mass Spectrometry Methods for Determining Vitamin D Metabolites in Human Serum

    Bedner, Mary; Karen W. Phinney


    Liquid chromatographic methods with atmospheric pressure chemical ionization mass spectrometry were developed for the determination of the vitamin D metabolites 25-hydroxyvitamin D2 (25(OH)D2), 25-hydroxyvitamin D3 (25(OH)D3), and 3-epi-25-hydroxyvitamin-D3 (3-epi-25(OH)D3) in the four Levels of SRM 972, Vitamin D in Human Serum. One method utilized a C18 column, which separates 25(OH)D2 and 25(OH)D3, and one method utilized a CN column that also resolves the diastereomers 25(OH)D3 and 3-epi-...

  18. Resolution of Pd catalyst with tropos biphenylphosphine (BIPHEP) ligand by DM-DABN: asymmetric catalysis by an enantiopure BIPHEP-Pd complex.

    Mikami, Koichi; Aikawa, Kohsuke; Yusa, Yukinori; Hatano, Manabu


    [reaction: see text] The racemic Pd complex with the chirally flexible (tropos) biphenylphosphine (BIPHEP) ligand can be resolved with enantiopure 3,3'-dimethyl-2,2'-diamino-1,1'-binaphthyl (DM-DABN) as a resolving agent at room temperature. The enantiopure BIPHEP-Pd complex is obtained from complexation with enantiopure DABN followed by tropo-inversion into the single BIPHEP-Pd diastereomer at 80 degrees C and protonation at 0 degrees C. The enantiopure BIPHEP-Pd complex can be used as an efficient Lewis acid catalyst for the Diels-Alder reaction at room temperature to give high enantioselectivity (82% ee, 60%).

  19. Health promoting factors from milk of cows fed green plant material-The role of phytanic acid

    Che, Brita Ngum


    muscles, and to elucidate the total content of PA and the distribution of its diastereomers in milk as affected by feed composition. In this project, we established primary porcine myotubes as an efficient skeletal muscle model for metabolic studies. Satellite cells (SC) derived from porcine muscles were...... cultured to generate differentiated primary porcine myotubes. Viability studies were performed to determine which concentrations or length of treatments could be tolerated by the myotubes under glucose uptake, glycogen synthesis, and FA oxidation (FAO) experiments. Optimization of glucose uptake assay...

  20. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper


    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger...

  1. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N


    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  2. Direct Catalytic Asymmetric Mannich-Type Reaction of Alkylamides.

    Arteaga, Fernando Arteaga; Liu, Zijian; Brewitz, Lennart; Chen, Jianyang; Sun, Bo; Kumagai, Naoya; Shibasaki, Masakatsu


    Direct enolate formation coupled with subsequent enantioselective C-C bond formation remains a topic of intense interest in asymmetric catalysis. This methodology is achieved even with low acidic amides without an electron-withdrawing group at the α-position in the context of a Mannich-type reaction. Acetate-, propionate-, and butyrate-type 7-azaindoline amides served as enolate precursors to afford the desired Mannich adducts with high stereoselectivity, and ligand-enabled diastereo-divergency provided access to both anti/syn diastereomers. The facile transformation of the amide moiety ensures the synthetic utility of the Mannich adducts.

  3. Click chemistry decoration of amino sterols as promising strategy to developed new leishmanicidal drugs.

    Porta, Exequiel O J; Carvalho, Paulo B; Avery, Mitchell A; Tekwani, Babu L; Labadie, Guillermo R


    A series of 1,2,3-triazolylsterols was prepared from pregnenolone through reductive amination and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The newly generated stereocenter of the key propargylamino intermediate provided a mixture of diastereomers which were separated chromatographically, and the configuration of the R isomer was determined by X-ray crystallography. Ten triazolyl sterols were prepared, and the products and intermediates were screened in vitro against different parasites, with some compounds presenting IC50 values in the low micromolar range against Leishmania donovani. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Formation of three N-acetyl-L-cysteine monoadducts and one diadduct by the reaction of S-(1,2-dichlorovinyl)-L-cysteine sulfoxide with N-acetyl-L-cysteine at physiological conditions: chemical mechanisms and toxicological implications.

    Barshteyn, Nella; Elfarra, Adnan A


    Previously, our laboratory has shown that S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS), a Michael acceptor produced by a flavin-containing monooxygenase 3 (FMO3)-mediated oxidation of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), is a more potent nephrotoxicant than DCVC. In the present study, we characterized reactions of DCVCS with nucleophilic amino acids. DCVCS incubations with N-acetyl-L-cysteine (NAC) at pH 7.4 and 37 degrees C for 1 h resulted in the formation of three monoadducts and one diadduct characterized by LC/MS, 1H NMR, and 1H-detected heteronuclear single quantum correlation. The formation of all adducts (with relative ratios of 29, 31, 24, and 12%, respectively) was rapid and time-dependent; the half-lives of the two DCVCS diastereomers in the presence of NAC were 13.8 (diastereomer I) and 9.4 min (diastereomer II). Adducts 1 and 2 were determined to be diastereomers of S-[1-chloro-2-(N-acetyl-L-cystein- S-yl)vinyl]-L-cysteine sulfoxide formed by Michael addition of NAC to the terminal vinylic carbon of DCVCS followed by loss of HCl. Adduct 4 was determined to be S-[2-chloro-2-(N-acetyl-L-cystein- S-yl)vinyl]-L-cysteine sulfoxide formed from the initial Michael addition product followed by a less favorable loss of HCl and/or by a rearrangement of adduct 2 through the formation of a cyclic chloronium ion. The addition of another molecule of NAC to monoadducts 1, 2, or 4 resulted in the formation of the novel diadduct, S-[2,2-( N-acetyl-L-cystein-S-yl)vinyl]-L-cysteine sulfoxide (adduct 3), whose detection in relatively large amount suggests that DCVCS could act as a cross-linking agent. DCVCS was not reactive with N-acetyl-L-lysine or L-valinamide at similar incubation conditions. Collectively, the results suggest selective reactivity of DCVCS toward protein sulfhydryl groups. Furthermore, the cross-linking properties of DCVCS may in part explain its high nephrotoxic potency.

  5. The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells


    Nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells has been described to be synergistically potentiated by the simultaneous addition of dibutyryl cAMP. To elucidate further the role of cAMP in NGF-induced neurite outgrowth we have used the adenylate cyclase activator forskolin, cAMP, and a set of chemically modified cAMP analogues, including the adenosine cyclic 3',5'-phosphorothioates (cAMPS) (Rp)-cAMPS and (Sp)-cAMPS. These diastereomers have differentia...

  6. Thermal history of the periphery of the Junggar Basin, Northwestern China

    King, J. David; Yang, Jianqiang; Pu, Fan


    Geochemical analysis of rock core samples show that the basin periphery has experienced low thermal stress; present-day heat flows are in the range of 25–35 mW/m2 and have not been significantly higher than the worldwide mean of approx. 63 mW/m2 since the mid-Permian. Present day heat flows were determined from corrected borehole temperatures and rock thermal conductivities. Paleo-heat flows were determined by first-order reaction kinetic modeling of several geochemical paleothermometers (vitrinite reflectance, clay mineral diagenesis and relative proportions of sterane and hopane biological marker diastereomers).

  7. Combining two-directional synthesis and tandem reactions, part 11: second generation syntheses of (±-hippodamine and (±-epi-hippodamine

    Alcaraz Marie-Lyne


    Full Text Available Abstract Background Hippodamine is a volatile defence alkaloid isolated from ladybird beetles which holds potential as an agrochemical agent and was the subject of a synthesis by our group in 2005. Results Two enhancements to our previous syntheses of (±-hippodamine and (±-epi-hippodamine are presented which are able to shorten the syntheses by up to two steps. Conclusion Key advances include a two-directional homologation by cross metathesis and a new tandem reductive amination/double intramolecular Michael addition which generates 6 new bonds, 2 stereogenic centres and two rings, giving a single diastereomer in 74% yield.

  8. Stereochemistry of N-Benzoyl-5-substituted-1-benzazepines Revisited: Synthesis of the Conformationally Biased Derivatives and Revision of the Reported Structure.

    Tabata, Hidetsugu; Yoneda, Tetsuya; Tasaka, Tomohiko; Ito, Shigekazu; Oshitari, Tetsuta; Takahashi, Hideyo; Natsugari, Hideaki


    The syn (aR*,5R*) and anti (aS*,5R*) diastereomers of N-benzoyl-C5-substituted-1-benzazepines originating in the chiralities at C5 and the Ar-N(C═O) axis were first stereoselectively synthesized by biasing the conformation with a substituent at C6 and C9, respectively. Detailed examination of the stereochemistry (i.e., conformation and configuration) of these N-benzoyl-1-benzazepines by X-ray crystallographic analysis, VT NMR, and DFT calculations revealed new physicochemical aspects of these heterocycles including revision of the stereochemistry previously reported.

  9. Use of achiral/chiral SFC/MS for the profiling of isomeric cinnamonitrile/hydrocinnamonitrile products in chiral drug synthesis.

    Alexander, A J; Staab, A


    A directly coupled achiral/chiral SFC/MS method has been developed for the profiling of a three-step stereoselective synthesis of cinnamonitrile and hydrocinnamonitrile intermediates. Semipurified reaction mixtures were screened in one step to determine the diastereomeric/enantiomeric composition of the final product as well as to identify any remaining E/Z isomers present from the starting material. The coupled achiral/chiral column combination was found to significantly enhance the separation of both enantiomers and diastereomers, without adding significantly to the overall analysis time. This analytical technique should prove to be generally useful for the profiling of isomeric reaction products in chiral drug synthesis.

  10. (11R-13-Dimethylammonio-11,13-dihydro-4,5-epoxycostunolide semifumarate

    Sundar Neelakantan


    Full Text Available Crystals of the title salt, C17H28NO3+·C4H3O4−, were obtained by reacting parthenolide with dimethylamine followed by conversion of the amine adduct into a water-soluble fumarate salt. Subsequent crystallization of the fumarate salt from water afforded colorless orthorhombic crystals. The amine addition is highly stereospecific yielding exclusively a single diastereomer with R-configuration at the newly formed C-11 chiral carbon. In the crystal, intermolecular O—H...O and N—H...O hydrogen bonds help to establish the packing.

  11. Double Intramolecular Transacetalization of Polyhydroxy Acetals: Synthesis of Conformationally-Restricted 1,3-Dioxanes with Axially-Oriented Phenyl Moiety

    Samuel Asare-Nkansah; Bernhard Wünsch


    The synthesis of conformationally-restricted 1,3-dioxanes with a phenyl moiety fixed in an axial orientation at the acetalic center is described. Starting with diethyl 3-hydroxyglutarate (15), benzaldehyde acetal 12a and acetophenone ketal 12b bearing a protected 1,3,5-trihydroxypentyl side chain in the o-position were prepared. The first acid-catalyzed intramolecular transacetalization gave a mixture of diastereomeric 2-benzofurans 18 (ratio of diastereomers 2:2:1:1). After OH group deprotec...

  12. Total synthesis and biological investigation of (-)-promysalin.

    Steele, Andrew D; Knouse, Kyle W; Keohane, Colleen E; Wuest, William M


    Compounds that specifically target pathogenic bacteria are greatly needed, and identifying the method by which they act would provide new avenues of treatment. Herein we report the concise, high-yielding total synthesis (eight steps, 35% yield) of promysalin, a natural product that displays antivirulence phenotypes against pathogenic bacteria. Guided by bioinformatics, four diastereomers were synthesized, and the relative and absolute stereochemistries were confirmed by spectral and biological analysis. Finally, we show for the first time that promysalin displays two antivirulence phenotypes: the dispersion of mature biofilms and the inhibition of pyoverdine production, hinting at a unique pathogenic-specific mechanism of action.

  13. New polysulphanes from aerial parts of Ferula behboudiana Rech. f. & Esfand.

    Yousefi, Maryam; Mohammadi, Mehdi; Habibi, Zohreh; Shafiee, Abbas


    The chloroformic extract of the aerial parts of Ferula behboudiana (Umbelliferae) afforded four new polysulphane derivatives: 1-sec-butyl-2-[(E)-3-(methylthio)prop-1-enyl]disulphane (1), 1-sec-butyl-2-[(Z)-3-(methylthio)prop-1-enyl]disulphane (2), 1-[(E)-3-(methylthio)prop-1-enyl)-2-(1-(methylthio)propyl]disulphane (3) and 1-[(Z)-3-(methylthio)prop-1-enyl)-2-(1-(methylthio)propyl]disulphane (4). Structural elucidation of diastereomers was carried out easily due to completely resolved signals in (1)H NMR spectra and with 2D-NMR techniques.

  14. Inherently chiral calix[4]arenes via oxazoline directed ortholithiation: synthesis and probe of chiral space

    Simon A. Herbert


    Full Text Available The diastereoselective oxazoline-directed lithiation of calix[4]arenes is reported with diastereoselective ratios of greater than 100:1 in some instances. Notably, it has been found that the opposite diastereomer can be accessed via this approach merely through the choice of an alkyllithium reagent. The inherently chiral oxazoline calix[4]arenes have also been preliminarily examined as ligands in the palladium-catalyzed Tsuji–Trost allylation reaction, returning results comparable to their planar chiral ferrocene counterparts pointing towards future application of these types of compounds.

  15. N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C-H insertion and aziridination reactions.

    Lebel, Hélène; Huard, Kim; Lectard, Sylvain


    The rhodium-catalyzed decomposition of N-tosyloxycarbamates to generate metal nitrenes which undergo intramolecular C-H insertion or aziridination reaction is described. Aliphatic N-tosyloxycarbamates produce oxazolidinones with high yields and stereospecificity through insertion in benzylic, tertiary, and secondary C-H bonds. Intramolecular aziridination occurs with allylic N-tosyloxycarbamates to produce aziridines as single diastereomers. The reaction proceeds at room temperature using a rhodium catalyst and an excess of potassium carbonate and does not require the use of strong oxidant, such as hypervalent iodine reagents. A rhodium nitrene species is presumably involved, as both reactions are stereospecific.

  16. Design, synthesis, and pharmacological characterization of novel, potent NMDA receptor antagonists

    Conti, Paola; De Amici, Marco; Grazioso, Giovanni


    acids were tested at ionotropic and metabotropic glutamate receptors. None of the compounds was active, neither as agonists nor as antagonists, at 1 mM on metabotropic receptors (mGluR1, -2, -4, and -5 expressed in CHO cell lines). Conversely, the pair of stereoisomers 8A/8B showed a remarkable affinity......, antagonist potency, and selectivity for NMDA receptors, when tested on ionotropic glutamate receptors. The affinity of 8A proved to be 5 times higher than that of diastereomer 8B (K(i) values 0.21 and 0.96 microM, respectively). Furthermore, compounds 8A and 8B exhibited a noteworthy anticonvulsant activity...

  17. Stereoselective Synthesis of a New cis Monocyclic β-lactam Bearing a Sugar Moiety at Its N1 Position and Its Physical Characterization

    Parvaneh Alvand


    Full Text Available Synthesis of a new monocyclic β-lactam containing a sugar moiety at its N1 position via [2+2] cycloaddition reaction of ketene and imine is described. Reaction of achiral phenoxy ketene with chiral aldimine derived from chiral 2, 3, 4, 6-tetra-O-acetyl-β-D-galactopyranosylamine and 2-hydroxy-3-methoxy benzaldehyde resulted in the formation of 2 as a single diastereomer. Then its physical characterization has been determined at the AM1 level of theory.

  18. A new guaiane mannoside from a Eutypa-like fungus isolated from Murraya paniculata in Brazil

    Souza, Afonso D.L.; Rodrigues-Filho, Edson [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Souza, Antonia Q.L.; Henrique-Silva, Flavio [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Genetica e Evolucao; Pereira, Jose O. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Ciencias Agrarias


    A Eutypa-like fungus was isolated from the stems of Murraya paniculata. The fungus was cultivated in liquid medium and produced the new guaiane-type sesquiterpenoid (1R,4S,5S,7R,10R)- 10-hydroxyguaianol 10-O-beta-mannopyranoside and the 3-hydroxy-5-phenylmethyl-(3S,5R)- tetrahydrofuran-2-one, a diastereomer of harzialactone A, obtained for the first time from a natural source. The structures of these metabolites were elucidated based on analysis of their spectroscopic data. (author)

  19. Diastereodivergent and Enantioselective [4+2] Annulations of γ-Butenolides with Cyclic 1-Azadienes

    Chao Li


    Full Text Available An asymmetric annulation reaction of γ-butenolides and cyclic 1-azadienes containing a 1,2-benzoisothiazole-1,1-dioxide motif has been studied, proceeding in a tandem Michael addition-aza-Michael addition sequence. Endo-type cycloadducts bearing fused tetracyclic skeletons were isolated in fair yields and with high enantioselectivity (up to >99% ee under the catalysis of modified cinchona alkaloid (DHQD2PHAL. Besides, exo-type diastereomers could be produced using β-isocupreidine (β-ICD as the catalyst, though with moderate enantioselectivity.

  20. Diastereodivergent and Enantioselective [4+2] Annulations of γ-Butenolides with Cyclic 1-Azadienes.

    Li, Chao; Jiang, Kun; Chen, Ying-Chun


    An asymmetric annulation reaction of γ-butenolides and cyclic 1-azadienes containing a 1,2-benzoisothiazole-1,1-dioxide motif has been studied, proceeding in a tandem Michael addition-aza-Michael addition sequence. Endo-type cycloadducts bearing fused tetracyclic skeletons were isolated in fair yields and with high enantioselectivity (up to >99% ee) under the catalysis of modified cinchona alkaloid (DHQD)2PHAL. Besides, exo-type diastereomers could be produced using β-isocupreidine (β-ICD) as the catalyst, though with moderate enantioselectivity.

  1. Morphological characterization of fullerene–androsterone conjugates

    Alberto Ruiz


    Full Text Available Here we report on the self-organization characteristics in water of two diastereomer pairs of fullerene–androsterone hybrids that have the hydrophobic C60 appendage in the A and D ring of the androsterone moiety, respectively. The morphology and particle size in aqueous solution were determined by transmission electron microscopy (TEM and dynamic light scattering (DLS, with satisfactory agreement between both techniques. In general, these fullerene derivatives are shown to organize into spherical nano-scale structures with diameters in the ranges of 10–20 and 30–50 nm, respectively.

  2. Cafestol to Tricalysiolide B and Oxidized Analogues: Biosynthetic and Derivatization Studies Using Non-heme Iron Catalyst Fe(PDP).

    Bigi, Marinus A; Liu, Peng; Zou, Lufeng; Houk, K N; White, M Christina


    The tricalysiolides are a recently isolated class of diterpene natural products featuring the carbon backbone of the well-known coffee extract, cafestol. Herein we validate the use of our non-heme iron complex, Fe(PDP), as an oxidative tailoring enzyme mimic to test the proposal that this class of natural products derives from cafestol via cytochrome P-450-mediated furan oxidation. Thereafter, as predicted by computational analysis, C-H oxidation derivatization studies provided a novel 2° alcohol product as a single diastereomer.

  3. Synthesis of stereotetrads by regioselective cleavage of diastereomeric MEM-protected 2-methyl-3,4-epoxy alcohols with diethylpropynyl aluminum.

    Torres, Wildeliz; Torres, Gerardo; Prieto, José A


    The regioselectivity of the epoxide ring opening of 2-methyl-3,4-epoxy alcohols with diethylpropynylalane has been studied as a function of the C1 alcohol protecting group. An efficient selective method was developed using MEM as the protecting group. The reaction proceeded in a highly regioselective manner providing the useful 1,3-diol motif. The undesired 1,4-diol product produced by some free alcohol diastereomers was not observed. This highly stereoselective method provides access to termini-differentiated stereotetrads, which are essential building bocks for polypropionate synthesis.

  4. In vivo therapeutic efficacy of frog skin-derived peptides against Pseudomonas aeruginosa-induced pulmonary infection.

    Chen, Chen; Mangoni, Maria Luisa; Di, Y Peter


    Pseudomonas aeruginosa is an opportunistic and frequently drug-resistant pulmonary pathogen especially in cystic fibrosis sufferers. Recently, the frog skin-derived antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c were found to possess potent in vitro antipseudomonal activity. Here, they were first shown to preserve the barrier integrity of airway epithelial cells better than the human AMP LL-37. Furthermore, Esc(1-21)-1c was more efficacious than Esc(1-21) and LL-37 in protecting host from pulmonary bacterial infection after a single intra-tracheal instillation at a very low dosage of 0.1 mg/kg. The protection was evidenced by 2-log reduction of lung bacterial burden and was accompanied by less leukocytes recruitment and attenuated inflammatory response. In addition, the diastereomer was more efficient in reducing the systemic dissemination of bacterial cells. Importantly, in contrast to what reported for other AMPs, the peptide was administered at 2 hours after bacterial challenge to better reflect the real life infectious conditions. To the best of our knowledge, this is also the first study investigating the effect of AMPs on airway-epithelia associated genes upon administration to infected lungs. Overall, our data highly support advanced preclinical studies for the development of Esc(1-21)-1c as an efficacious therapeutic alternative against pulmonary P. aeruginosa infections.

  5. Stereospecific micellar electrokinetic chromatography assay of methionine sulfoxide reductase activity employing a multiple layer coated capillary.

    Zhu, Qingfu; El-Mergawy, Rabab G; Heinemann, Stefan H; Schönherr, Roland; Jáč, Pavel; Scriba, Gerhard K E


    A micellar electrokinetic chromatography method for the analysis of the l-methionine sulfoxide diastereomers employing a successive multiple ionic-polymer layer coated fused-silica capillary was developed and validated in order to investigate the stereospecificity of methionine sulfoxide reductases. The capillary coating consisted of a first layer of hexadimethrine and a second layer of dextran sulfate providing a stable strong cathodic EOF and consequently highly repeatable analyte migration times. The methionine sulfoxide diastereomers, methionine as product as well as β-alanine as internal standard were derivatized by dabsyl chloride and separated using a 35 mM sodium phosphate buffer, pH 8.0, containing 25 mM SDS as BGE and a separation voltage of 25 kV. The method was validated in the range of 0.15-2.0 mM with respect to linearity and precision. The LODs of the analytes ranged between 0.04 and 0.10 mM. The assay was subsequently applied to determine the stereospecificity of methionine sulfoxide reductases as well as the enzyme kinetics of human methionine sulfoxide reductase A. Monitoring the decrease of the l-methionine-(S)-sulfoxide Km = 411.8 ± 33.8 μM and Vmax = 307.5 ± 10.8 μM/min were determined.

  6. A Novel Bis(phosphido)pyridine [PNP] 2− Pincer Ligand and Its Potassium and Bis(dimethylamido)zirconium(IV) Complexes

    Winston, Matthew S.


    A novel PNP bis(secondary phosphine)pyridine pincer ligand, 2,6-bis(2-(phenylphosphino)phenyl)pyridine, has been prepared in high yield, and the properties of the doubly deprotonated form as a ligand in K 4(PNP)2(THF)6 and (PNP)Zr(NMe2) 2 have been investigated. The neutral PNP ligand has been isolated as a mixture of noninterconverting diastereomers, due to the presence of two chirogenic phosphorus atoms of the secondary phopshines, but coordination of the dianionic form to potassium and zirconium allows for isolation of a single diastereomer in near-quantitative yield. The structure of a bis(dimethylamido) zirconium(IV) derivative of the bis(phosphido)pyridine ligand and DFT calculations suggest that the phosphides do not π-bond to early transition metals, likely due to geometric strain and possibly orbital size mismatch between phosphorus and zirconium. As a result, the soft phosphides are prone to formation of insoluble oligomers with substantial bridging of the phosphido lone pairs to other zirconium centers. © 2010 American Chemical Society.

  7. Qualitative and quantitative analysis of enantiomers by mass spectrometry: application of a simple chiral chloride probe via rapid in-situ reaction.

    Wang, Lin; Chai, Yunfeng; Ni, Zhangqin; Wang, Lu; Hu, Ruilin; Pan, Yuanjiang; Sun, Cuirong


    A tandem mass spectrometry method for high-sensitivity qualitative and quantitative discrimination of chiral amino compounds is conducted. The method is based on a chemical derivation process that uses a simple reagent, L-1-(phenylsulfonyl)pyrrolidine-carbonyl chloride, as the probe. The method is applicable in both organic solutions and biological conditions. Twenty-one pairs of enantiomer containing amino acids, amino alcohols, and amines are used to produce diastereomers using the probe via in situ reaction for 20 s at room temperature. The resulting diastereomers are successfully recognized based on the relative peak intensities of their fragments in positive mode, with the chiral recognition ability values ranging from 0.35 to 3.83. The L/D ratio of Pro spiked at different concentrations (enantiomeric excess) in both acetonitrile and dog plasma is determined by establishing calibration curves. This method achieves a lower limit of quantification of 50 pmol in analyzing amino acids using an extract ion chromatograph. The relative standard deviation for both qualitative and quantitative results is <5%. Thus, the present method is demonstrated as a new and practical technique of rapidly and sensitively determining enantiomers of amino compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Differential effect of schisandrin B stereoisomers on ATR-mediated DNA damage checkpoint signaling.

    Tatewaki, Naoto; Nishida, Hiroshi; Yoshida, Masaaki; Ando, Hidehiro; Kondo, Seizo; Sakamaki, Toshiyuki; Konishi, Tetsuya


    We have previously reported that schisandrin B (SchB) is a specific inhibitor of ATR (ataxia telangiectasia and Rad-3-related) protein kinase. Since SchB consists of a mixture of its diastereomers gomisin N (GN) and γ-schisandrin (γ-Sch), the inhibitory action of SchB might result from a stereospecific interaction between one of the stereoisomers of SchB and ATR. Therefore, we investigated the effect of GN and γ-Sch on UV (UVC at 254 nm)-induced activation of DNA damage checkpoint signaling in A549 cells. UV-induced cell death (25 - 75 J/m(2)) was amplified by the presence of the diastereomers, especially GN. At the same time, GN, but not γ-Sch, inhibited the phosphorylation of checkpoint proteins such as p53, structural maintenance of chromosomes 1, and checkpoint kinase 1 in UV-irradiated cells. Moreover, GN inhibited the G2/M checkpoint during UV-induced DNA damage. The in vitro kinase activity of immunoaffinity-purified ATR was dose-dependently inhibited by GN (IC50: 7.28 μM) but not by γ-Sch. These results indicate that GN is the active component of SchB and suggest that GN inhibits the DNA damage checkpoint signaling by stereospecifically interacting with ATR.

  9. Bromidocarbonyl{(1S,2S-N-[2-(dicyclohexylphosphanylethylidenyl]-N′-[2-(diphenylphosphanylethyl]-1,2-diphenylethane-1,2-diamine}iron(II tetraphenylborate

    Samantha A. M. Smith


    Full Text Available In the title compound, trans-(S,S-[FeBr(CO(PPh2CH2CH2NHCHPhCHPhNCHCH2PCy2]BPh4, the FeII ion is in a distorted octahedral complex geometry with a cis-β ligand geometry in which two diastereomers co-crystallized in the asymmetric unit. These diastereomers differ by the orientation of the N—H moieties on the ligand; one is in the S conformation (A, and the other R (B. Diasteromer A has a P—Fe—P angle of 104.36 (6° and B has a P—Fe—P angle of 102.70 (6°. During the refinement of the structure, electron density peaks were located that were believed to be highly disordered solvent molecules (possibly diethyl ether. Attempts made to model the solvent molecule were not successful. The SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] option in PLATON indicated there was a large solvent cavity of 363 Å3. In the final cycles of refinement, this contribution of 117 electrons to the electron density was removed from the observed data. The density, the F(000 value, the molecular weight and the formula are given without taking into account the results obtained with SQUEEZE.

  10. Determination of the absolute configurations at stereogenic centers in the presence of axial chirality.

    Polavarapu, Prasad L; Jeirath, Neha; Kurtán, Tibor; Pescitelli, Gennaro; Krohn, Karsten


    Cephalochromin, a homodimeric naphthpyranone natural product, contains both axial chirality due to the hindered rotation along the biaryl axis and central chirality due to the C-2, C-2' stereogenic centers of the fused pyranone ring. For determining the absolute configurations (ACs) of central chirality elements, different chiroptical spectroscopic methods, namely vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotation (OR), have been used. From these experimental data, in conjunction with corresponding quantum chemical predictions at B3LYP/6-311G* level, it is found that the ECD spectra of cephalochromin are dominated by its axial chirality and are not suitable to distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers and hence to determine the ACs of the central chirality elements. OR signs also did not distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers. On other hand, VCD spectrum of cephalochromin exhibited separate spectral features attributable to axial chirality and stereogenic centers, thereby allowing the determination of both types of chirality elements. This is the first investigation demonstrating that, because of vibrations specific to the studied stereogenic centers, VCD spectroscopy can be used to simultaneously determine the ACs of axial and central chirality elements whenever other chiroptical methods (ECD and OR) fail to report on them.

  11. Chirality in distorted square planar Pd(O,N)2 compounds.

    Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi


    Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry.

  12. Dumbbell-type fullerene-steroid hybrids: a join experimental and theoretical investigation for conformational, configurational, and circular dichroism assignments.

    Ruíz, Alberto; Morera-Boado, Cercis; Almagro, Luis; Coro, Julieta; Maroto, Enrique E; Herranz, María Ángeles; Filippone, Salvatore; Molero, Dolores; Martínez-Álvarez, Roberto; Garcia de la Vega, José M; Suárez, Margarita; Martín, Nazario


    New [60]fullerene-steroid conjugates (4-6) have been synthesized by 1,3-dipolar cycloaddition and Bingel-Hirsch cyclopropanation reactions from suitably functionalized epiandrosterone and [60]fullerene. Since a new stereocenter is created in the formation of the Prato monoaduct, two different diastereomers were isolated by HPLC (4, 5) whose absolute configurations were assigned according to the highly reliable "sector rule" on fullerenes. A further reaction of the malonate-containing diastereomer 5 with a second C60 molecule has afforded dumbbell fullerene 6 in which the two fullerene units are covalently connected through an epiandrosterone moiety. The new compounds have been spectroscopically characterized and their redox potentials, determined by cyclic voltametry, reveal three reversible reduction waves for hybrids 4 and 5, whereas these signals are split in dumbbell 6. Theoretical calculations at semiempirical (AM1) and single point B3LYP/6-31G(d) levels have predicted the most stable conformations for the hybrid compounds (4-6), showing the importance of the chlorine atom on the D ring of the steroid. Furthermore, TDDFT calculations have allowed assignments of the experimentally determined circular dichroism (CD) of the [60]fullerene-steroid hybrids based on the sign and position of the Cotton effects, despite the exceptionally large systems under study.

  13. Stereoselective synthesis and structure-affinity relationships of bicyclic kappa receptor agonists.

    Kracht, Daniel; Rack, Elisabeth; Schepmann, Dirk; Fröhlich, Roland; Wünsch, Bernhard


    Reductive amination of the bicyclic ketone 4 led diastereoselectively to endo-configured amines, which were transformed into the amides 7-10. The synthesis of the diastereomers 25 with an exo-configured amino moiety at position 6 was only successful after deactivation of both N-atoms of the 1,4-diazabicyclo[3.3.1]nonane system. The N-1-oxide 19 with an N-4-tosyl moiety was the crucial intermediate, which allows SN2 substitution with NaN3 under inversion of the configuration at position 6. Whereas the endo-configured pyrrolidine 7a (WMS-1302) revealed a kappa receptor affinity of 73 nM, the exo-configured diastereomer 25a was almost inactive at the kappa receptor (Ki > 1 microM). Replacement of the 3,4-dichlorophenylacetyl residue by other acyl and sulfonyl residues showed that it is essential for high kappa affinity. The kappa receptor affinities of the conformationally constrained pyrrolidines 7a and 25a were correlated with the dihedral angle N(pyrrolidine)-C-C-N(acetamide). A systematic conformational analysis of the potent but flexible kappa agonist 2 showed that a dihedral angle of 168 degrees (as in 25a) is energetically more disfavored than a dihedral angle of 58 degrees (7a). However, even the conformation with a dihedral angle of 58 degrees does not represent an energy minimum, which might explain the reduced kappa affinity of 7a.

  14. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy.

    Nothias-Scaglia, Louis-Félix; Gallard, Jean-François; Dumontet, Vincent; Roussi, Fanny; Costa, Jean; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc


    Three new jatrophane esters (1-3) were isolated from Euphorbia amygdaloides ssp. semiperfoliata, including an unprecedented macrocyclic jatrophane ester bearing a hemiketal substructure, named jatrohemiketal (3). The chemical structures of compounds 1-3 and their relative configurations were determined by spectroscopic analysis. The absolute configuration of compound 3 was determined unambiguously through an original strategy combining NMR spectroscopy and molecular modeling. Conformational search calculations were performed for the four possible diastereomers 3a-3d differing in their C-6 and C-9 stereocenters, and the lowest energy conformer was used as input structure for geometry optimization. The prediction of NMR parameters ((1)H and (13)C chemical shifts and (1)H-(1)H coupling constants) by density functional theory (DFT) calculations allowed identifying the most plausible diastereomer. Finally, the stereostructure of 3 was solved by comparison of the structural features obtained by molecular modeling for 3a-3d with NMR-derived data (the values of dihedral angles deduced from the vicinal proton-proton coupling constants ((3)JHH) and interproton distances determined by ROESY). The methodology described herein provides an efficient way to solve or confirm structural elucidation of new macrocyclic diterpene esters, in particular when no crystal structure is available.

  15. DryLab® optimised two-dimensional high performance liquid chromatography for differentiation of ephedrine and pseudoephedrine based methamphetamine samples.

    Andrighetto, Luke M; Stevenson, Paul G; Pearson, James R; Henderson, Luke C; Conlan, Xavier A


    In-silico optimised two-dimensional high performance liquid chromatographic (2D-HPLC) separations of a model methamphetamine seizure sample are described, where an excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This separation was completed in the heart-cutting mode of 2D-HPLC where C18 columns were used in both dimensions taking advantage of the selectivity difference of methanol and acetonitrile as the mobile phases. This method development protocol is most significant when optimising the separation of chemically similar chemical compounds as it eliminates potentially hours of trial and error injections to identify the optimised experimental conditions. After only four screening injections the gradient profile for both 2D-HPLC dimensions could be optimised via simulations, ensuring the baseline resolution of diastereomers (ephedrine and pseudoephedrine) in 9.7 min. Depending on which diastereomer is present the potential synthetic pathway can be categorized.

  16. (S,S)- and (S,R)-1'-[{sup 18}F]fluorocarazolol, ligands for the visualization of pulmonary {beta}-adrenergic receptors with PET

    Elsinga, Philip H.; Vos, Marten G.; Waarde, Aren van; Braker, Anton H.; Groot, Tjibbe J. de; Anthonio, Rutger L.; Weemaes, Anne-Miek A.; Brodde, Otto-Erich; Visser, Gerben M.; Vaalburg, Willem


    The {beta}-adrenoceptor antagonist carazolol has been labelled with fluorine-18 in the isopropyl group via a reductive alkylation by [{sup 18}F]-fluoroacetone of the corresponding (S)-desisopropyl compound according to a known procedure. The introduction of fluorine in the isopropyl group creates a new stereogenic centre resulting in the formation of (S,S)- and (S,R)-1'-[{sup 18}F]fluorocarazolol, which were separated by HPLC. Tissue distribution studies were performed in male Wistar rats. Both the (S,S)- and (S,R)-diastereomers (S.A. 500-2000 Ci/mmol; 18.5-74 TBq/mmol) showed high uptake in lung and heart, which could be blocked by pretreatment of the animals with ({+-})-propranolol. No significant differences were observed between the biodistribution of the two diastereomers. Metabolite analysis showed a rapid appearance of polar metabolites in plasma, while at 60 min postinjection 92% and 82% of the total radioactivity in lung and heart was unmetabolized 1'-[{sup 18}F]fluorocarazolol. In a PET-study with male Wistar rats, the lungs were clearly visualized and the pulmonary uptake was decreased after pretreatment of the animals with ({+-})-propranolol. The heart could not be visualized. Similar results were obtained in PET-studies with lambs.

  17. Photolysis of brominated flame retardants in textiles exposed to natural sunlight.

    Kajiwara, Natsuko; Desborough, Jennifer; Harrad, Stuart; Takigami, Hidetaka


    Photolytic transformation profiles of technical hexabromocyclododecane (HBCD) and technical decabromodiphenyl ether (DecaBDE) in flame-retarded textiles exposed to natural sunlight were compared. Textiles that contained approximately 4% HBCDs by weight showed no substantial loss of any of the HBCD diastereomers during the entire exposure period (371 days), indicating that they were resistant to sunlight, that is, that debromination and isomerization of HBCD diastereomers did not occur under the experimental conditions. Exposure of a textile treated with technical DecaBDE resulted in the formation of polybrominated dibenzofurans (PBDFs) as products of photodecomposition of polybrominated diphenyl ethers present in the technical DecaBDE. After 329 days of exposure, the total PBDF concentration reached a maximum of 27 000 ng g(-1), which was approximately 10 times the initial concentration. During the experiment, di- to hexa-BDF congener concentrations increased continuously. Although the concentrations of PBDFs in the textiles were 4–5 orders of magnitude lower than the concentrations of polybrominated diphenyl ethers, it is important to note that PBDFs were formed as a result of sunlight exposure during normal use of products treated with technical DecaBDE.

  18. Development and Validation of a Stability-Indicating RP-UPLC Method for the Estimation of Impurities in Cinacalcet Hydrochloride API and its Formulation.

    Sunil Reddy, Pingili; Raju, Thummala Veera Raghava; Raju, Penmetsa Satyanarayana; Varma, Nadimpalli Sunil; Babu, Kondra Sudhakar


    A sensitive, stability-indicating, gradient reversed-phase ultra-performance liquid chromatography method has been developed for the quantitative estimation of cinacalcet hydrochloride impurities in active pharmaceutical ingredients and pharmaceutical formulations. Efficient chromatographic separation was achieved on an Acquity BEH Shield RP18, 100 × 2.1 mm, 1.7 µm column with the mobile phase containing pH 6.6 phosphate buffer and acetonitrile. The flow rate of the mobile phase was 0.3 mL min(-1) with a column temperature of 35°C and detection wavelength at 223 nm. The relative response factor values of (+)-R-1-(1-Naphthyl)ethylamine, regioisomer, diastereomer isomer-1, and diastereomer isomer-2 were 1.79, 0.99, 0.89, and 0.88, respectively. The cinacalcet hydrochloride formulation sample was subjected to the stress conditions of acid, base, oxidative, hydrolytic, thermal, humidity, and photolytic degradation. Cinacalcet hydrochloride was found to degrade significantly under the peroxide stress conditions. The degradation products were well-resolved from cinacalcet hydrochloride and its impurities. The peak purity test results confirmed that the cinacalcet hydrochloride peak was homogenous in all stress samples and the mass balance was found to be more than 96%, thus proving the stability-indicating power of the method. The developed method was validated according to ICH guidelines.

  19. Effects of benthos, temperature, and dose on the fate of hexabromocyclododecane in experimental coastal ecosystems.

    Bradshaw, Clare; Strid, Anna; von Stedingk, Hans; Gustafsson, Kerstin


    The authors studied the fate of the brominated flame retardant hexabromocyclododecane (HBCDD) added in a particulate suspension to experimental ecosystems assembled from brackish (Baltic Sea) coastal bays. Two experiments examined how benthic macrofauna (over 21 d) and increased temperature (14 d) affected HBCDD concentrations and fractionation of α, β, and γ diastereomers in the water, sediment, and biota. A third experiment run over 3 seasons (231 d), studied the effect of HBCDD dose on the same endpoints. In all treatments of the 3 experiments, HBCDD partitioned mainly to the sediment, and this proportion increased with time. Presence of macrofauna tended to increase the HBCDD concentration in the sediment and decreased its concentration in the water. Increased temperature (+ 5°C) decreased the amount of HBCDD in sediment and water but not in the filter- and deposit-feeding infaunal bivalves (Macoma balthica). The partitioning between water, sediment, and biota was not concentration dependent. In all treatments, sediment became enriched in γ-HBCDD, M. balthica in α-HBCDD, and water in α- and β-HBCDD. Bioaccumulation of HBCDD in M. balthica was high in all experiments (log biota-sediment accumulation factor [BSAF] > 1.25), the α diastereomer contributing the most (log BSAF 2.1-5.2). There is a risk of trophic transfer of HBCDD from benthic to pelagic food webs, as well as secondary poisoning of marine consumers.

  20. Deracemization of Racemic Amino Acids Using (R)- and (S)-Alanine Racemase Chiral Analogues as Chiral Converters

    Paik, Manjeong [Sunchon National Univ., Suncheon (Korea, Republic of); Jeon, So Hee; Lee, Wonjae [Chosun Univ., Gwangju (Korea, Republic of); Kang, Jong Seong [Chungnam National Univ., Daejeon (Korea, Republic of); Kim, Kwan Mook [Ewha Womans Univ., Seoul (Korea, Republic of)


    Our findings show that both (R)- and (S)-ARCA can be practical chiral converters for L- and D-amino acids, respectively, in the deracemization of racemic amino acids. The overall stereoselectivities of both chiral converters are generally greater than 90%. In addition, we developed chiral and achiral HPLC methods for the analysis of stereoselectivity determination. This chromatographic method proved much more accurate and convenient at determining both enantiomer and diastereomer purity than did those previously reported. Deracemization is the stereoselective process of converting a racemate into either a pure enantiomer or a mixture in which one enantiomer is present in excess.1 Previous studies have shown that (S)-alanine racemase chiral analogue (ARCA) [(S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde], developed as a chiral convertor compound that imitates the function of alanine racemase, plays an essential role in the stereoselective conversion of amino acid. Since (S)-ARCA showed a higher stability with D-amino acids than with L-amino acids, several L-amino acids were preferentially converted to D-amino acids via (S)-ARCA/D-amino acid imine diastereomer formation. For the deracemization process undertaken in this study, we utilized both (R)-ARCA and (S)-ARCA as chiral converters, which were expected to generate L- and D-amino acids, respectively, from the starting racemic mixtures.

  1. Racemization at C-2 of naringin in pummelo (Citrus grandis) with increasing maturity determined by chiral high-performance liquid chromatography.

    Caccamese, Salvatore; Chillemi, Rosa


    The relative content of (2S)- and (2R)-naringin in the albedo of pummelo during maturation in the entire season was determined by normal-phase HPLC using Chiralpak IB, a polysaccharide-derived chiral stationary phase, and n-hexane/ethanol doped with 0.5% TFA as mobile phase. A sigmoid curve was obtained showing variation from 95.3% of (2S)-naringin in very immature fruits to 53% in mature fruit samples (2.3 and 14.4cm diameter, respectively). A comparison was made with previous results obtained for grapefruit and sour orange and a tentative explanation of the bitter taste of sour orange is proposed. The Chiralpak IB is much more efficient with respect to the Chiralcel OD used for the other two Citrus species and separation and resolution factors of 1.73 and 9.2, respectively, were achieved. Authentic samples of naringin and neohesperidin were also separated into their C-2 diastereomers with Chiralpak IB and isolation of the pure diastereomers of naringin was accomplished.

  2. Stereodifferentiation--the effect of P chirality of oligo(nucleoside phosphorothioates) on the activity of bacterial RNase H.

    Koziolkiewicz, M; Krakowiak, A; Kwinkowski, M; Boczkowska, M; Stec, W J


    P stereoregular phosphorothioate analogs of pentadecamer 5'-d(AGATGTTTGAGCTCT)-3' were synthesized by the oxathiaphospholane method. Their diastereomeric purity was assigned by means of enzymatic degradation with nuclease P1 and, independently, with snake venom phosphodiesterase. DNA-RNA hybrids formed by phosphorothioate oligonucleotides (PS-oligos) with the corresponding complementary pentadecaribonucleotide were treated with bacterial RNase H. The DNA-RNA complex containing the PS-oligo of [all-RP] configuration was found to be more susceptible to RNase H-dependent degradation of the pentadecaribonucleotide compared with hybrids containing either the [all-SP] counterpart or the so called 'random mixture of diastereomers' of the pentadeca(nucleoside phosphorothioate). This stereodependence of RNase H action was also observed for a polyribonucleotide (475 nt) hybridized with these phosphorothioate oligonucleotides. The results of melting studies of PS-oligo-RNA hybrids allowed a rationalization of the observed stereodifferentiation in terms of the higher stability of heterodimers formed between oligoribonucleotides and [all-RP]-oligo(nucleoside phosphorothioates), compared with the less stable heterodimers formed with [all-SP]-oligo(nucleoside phosphorothioates) or the random mixture of diastereomers. Images PMID:8559657

  3. Biogenetic studies in Mentha x piperita. 2. Stereoselectivity in the bioconversion of pulegone into menthone and isomenthone.

    Fuchs, S; Beck, T; Sandvoss, M; Mosandl, A


    Mentha x piperita shoot tips and first leaf pairs were fed with aqueous solutions of different deuterium-labeled pulegone and various enantiomeric distributions. The essential oil was extracted by solid-phase microextraction and analyzed using enantioselective multidimensional gas chromatography/mass spectrometry. The genuine p-menthan-3-ones (-)-menthone and (+)-isomenthone as well as their labeled analogues were analyzed simultaneously. Both enantiomers of labeled pulegone were converted into the corresponding labeled p-menthan-3-ones by Mentha x piperita, indicating an unspecific reduction process. The generation of 4S- and 4R-configured p-menthan-3-ones differed in their stereoselectivities. Labeled (S)-pulegone was reduced by Mentha x piperita more rapidly rather than (R)-pulegone. From a comparison of labeled pulegone enantiomers the bioconversion preferrably led to 4S-configured diastereomers.

  4. (1S*,3R*,5S*,7S*-4,4,8,8-Tetrachloro-1-isopropyl-5-methyltricyclo[,5]octane

    Koblandy M. Turdybekov


    Full Text Available The title compound, C12H16Cl4, is a derivative of the natural product 1-isopropyl-4-methylcyclohexa-1,4-diene, and represents a diastereomer with two trans-fused cyclopropane rings. Both enantiomers are present in the non-centrosymmetric polar space group Pna21. The central cyclohexane ring is planar within 0.02 (1 Å. The C atoms of dichloromethylene groups deviate from this plane by 1.19 (1 and −1.26 (1 Å, whereas the isopropyl and methyl groups are oriented more equatorially, deviating by 0.71 (1 and −0.87 (1 Å, respectively.

  5. Practical synthesis of enantiomerically pure beta2-amino acids via proline-catalyzed diastereoselective aminomethylation of aldehydes.

    Chi, Yonggui; English, Emily P; Pomerantz, William C; Horne, W Seth; Joyce, Leo A; Alexander, Lane R; Fleming, William S; Hopkins, Elizabeth A; Gellman, Samuel H


    Proline-catalyzed diastereoselective aminomethylation of aldehydes using a chiral iminium ion, generated from a readily prepared precursor, provides alpha-substituted-beta-amino aldehydes with 85:15 to 90:10 dr. The alpha-substituted-beta-amino aldehydes can be reduced to beta-substituted-gamma-amino alcohols, the major diastereomer of which can be isolated via crystallization or column chromatography. The amino alcohols are efficiently transformed to protected beta2-amino acids, which are valuable building blocks for beta-peptides, natural products, and other interesting molecules. Because conditions for the aminomethylation and subsequent reactions are mild, beta2-amino acid derivatives with protected functional groups in the side chain, such as beta2-homoglutamic acid, beta2-homotyrosine, and beta2-homolysine, can be prepared in this way. The synthetic route is short, and purifications are simple; therefore, this method enables the preparation of protected beta2-amino acids in useful quantities.

  6. Modular synthesis of the pyrimidine core of the manzacidins by divergent Tsuji–Trost coupling

    Bretzke, Sebastian; Scheeff, Stephan; Vollmeyer, Felicitas; Eberhagen, Friederike; Rominger, Frank


    Summary The design, development and application of an efficient procedure for the concise synthesis of the 1,3-syn- and anti-tetrahydropyrimidine cores of manzacidins are reported. The intramolecular allylic substitution reaction of a readily available joint urea-type substrate enables the facile preparation of both diastereomers in high yields. The practical application of this approach is demonstrated in the efficient and modular preparation of the authentic heterocyclic cores of manzacidins, structurally unique bromopyrrole alkaloids of marine origin. Additional features of this route include the stereoselective generation of the central amine core with an appending quaternary center by an asymmetric addition of a Grignard reagent to a chiral tert-butanesulfinyl ketimine following an optimized Ellman protocol and a cross-metathesis of a challenging homoallylic urea substrate, which proceeds in good yields in the presence of an organic phosphoric acid. PMID:27340499

  7. Syntheses and fully diastereospecific photochromic reactions of thiophenophan-1-enes with chiral bridges.

    Jin-nouchi, Hirotsugu; Takeshita, Michinori


    Thiophenophan-1-enes with chiral polyether bridges were prepared and their diastereospecific photochromic reactions were studied. The coupling reaction of substituted dithienylethenes and various chiral synthons afforded thiophenophan-1-enes, namely, bridged dithienylethenes, as single enantiomers without optical resolution, thus indicating that these reactions occurred diastereoselectively. Upon UV irradiation, each optically active thiophenophan-1-ene isomerized to the corresponding enantiomer of the closed form and returned to the initial enantiomer of the open form upon visible irradiation. Because thiophenophan-1-enes never isomerized to other diastereomers even at a high temperature, they underwent diastereospecific photochromic reactions. Large changes were observed in the measurement of the optical rotations of the solutions of thiophenophan-1-enes at 588 nm according to their photochromic reactions. As there was no absorption at this wavelength for both isomers of each thiophenophan-1-enes, the nondestructive readout of the photochromic reaction could be carried out by using these chiral thiophenophan-1-enes.

  8. Expedient Organocatalytic Syntheses of 4-Substituted Pyrazolidines and Isoxazolidines

    Tarek Yousfi


    Full Text Available The efficient organocatalytic synthesis of heterocyclic systems of biological relevance is a subject of growing interest. We have found that the pyrrolidine/benzoic acid-catalyzed reaction of α-substituted propenals such as methacrolein, 2-benzylpropenal and 2-(n-hexylpropenal with activated hydrazines takes place in very good yields (83%–99.6% under very mild conditions to afford 4-substituted pyrazolidin-3-ols (as diastereomer mixtures; subsequent oxidation with PCC affords the corresponding-4-substituted-3-pyrazolidinones in essentially quantitative yields. In a similar way, 4-substituted isoxazolidinones are obtained with N-Cbz-hydroxylamine as a reagent. The use of chiral diarylprolinol trimethylsilyl ethers as catalysts allows the synthesis of several of these compounds in optically active form, in some cases with excellent enantioselectivity (up to 96:4 er. A preliminary evaluation of the biological activity shows that some of these compounds exhibit interesting antibacterial and antifungal activities.

  9. Resolution of the Chiral Drugs

    DENG JinGen; ZHU Jin


    @@ Chiral drugs are generally not permitted to be used in racemic form so that unintended side effects and unnecessary environmental hazards are avoided. Moreover, homochiral molecules are required immediately to progress key toxicological and clinical studies in the drug discovery. One series of technologies which can rapidly supply homochiral compounds is the separation of racemates, and of those the technique of crystallization of diastereomers is extremely effective-principally because it is simple to operate and it affords both enantiomers. In classical resolution via diastereoisomeric salt formation, the resolved compounds are limited to a given racemic acid or base and the choice of a suitable resolving agent for a racemic target compound is achieved by time-consuming trial-and-error procedure.

  10. Derivatization of carbohydrates for GC and GC-MS analyses.

    Ruiz-Matute, A I; Hernández-Hernández, O; Rodríguez-Sánchez, S; Sanz, M L; Martínez-Castro, I


    GC and GC-MS are excellent techniques for the analysis of carbohydrates; nevertheless the preparation of adequate derivatives is necessary. The different functional groups that can be found and the diversity of samples require specific methods. This review aims to collect the most important methodologies currently used, either published as new procedures or as new applications, for the analysis of carbohydrates. A high diversity of compounds with diverse functionalities has been selected: neutral carbohydrates (saccharides and polyalcohols), sugar acids, amino and iminosugars, polysaccharides, glycosides, glycoconjugates, anhydrosugars, difructose anhydrides and products resulting of Maillard reaction (osuloses, Amadori compounds). Chiral analysis has also been considered, describing the use of diastereomers and derivatives to be eluted on chiral stationary phases.

  11. New monoaromatic steroids in organic matter of the apocatagenesis zone

    Kashirtsev, V. A.; Fomin, A. N.; Shevchenko, N. P.; Dolzhenko, K. V.


    According to the materials of geochemical study in the core of the ultradeep hole SV-27 of aromatic fractions of bitumoids of the Vilyui syneclise (East Siberia) by the method of chromatography-mass spectrometry, starting from the depth of >5000 m, four diastereomers of previously unknown hydrocarbons, which become predominant in the fraction at a depth of ˜6500 m, were distinguished. Similar hydrocarbons were found in organic matter of Upper Paleozoic rocks of the Kharaulakh anticlinorium in the Verkhoyansk folded area. According to the intense molecular ion m/z 366 and the character of the basic fragmental ions (m/z 238, 309, and 323), the major structure of the compounds studied was determined as 17-desmethyl-23-methylmonoaromatic steroid C27. The absence of such steroids in oil of the Vilyui syneclise shows that deep micro-oils did not participate in the formation of oil fringes of gas condensate deposits of the region.

  12. Formation of isoprostane bicyclic endoperoxides from the autoxidation of cholesteryl arachidonate.

    Yin, Huiyong; Havrilla, Christine M; Morrow, Jason D; Porter, Ned A


    Autoxidation of polyunsaturated fatty acids and esters leads to a complex mixture containing hydroperoxides and cyclic peroxides. Prostaglandin bicyclic endoperoxides have been detected from the autoxidation of cholesteryl arachidonate by LC-MS and GC-MS techniques. All four possible types (I-IV) of bicyclic endoperoxides have been found starting from different regioisomeric hydroperoxides of cholesteryl arachidonate. Furthermore, the stereochemistry of Type IV bicyclic endoperoxides has been determined by conversion to pentafluorobenzyl (PFB) ester, trimethylsilyl (TMS) derivatives, and comparison with synthetic standards by the use of GC-MS. All eight possible diastereomers of the derivatized isoprostanes were observed and were separated by gas chromatography. The bicyclic endoperoxides with the two alkyl chains syn on the cyclopentane ring were formed preferentially to those with anti configuration, a result anticipated from earlier work. Substantial amounts of the anti-substituted isoprostanes, including PGF(2)(alpha), were, however, observed in the product mixture.

  13. An easy stereoselective access to beta,gamma-aziridino alpha-amino ester derivatives via mannich reaction of benzophenone imines of glycine esters with N-sulfonyl alpha-chloroaldimines.

    Kiss, Loránd; Mangelinckx, Sven; Sillanpää, Reijo; Fülöp, Ferenc; De Kimpe, Norbert


    Mannich-type addition of benzophenone imine glycinates across newly synthesized N-(p-toluenesulfonyl) alpha-chloroaldimines afforded gamma-chloro-alpha,beta-diamino ester derivatives with moderate diastereoselectivity as separable mixtures of anti and syn diastereomers. The gamma-chloro-alpha,beta-diamino esters were efficiently cyclized under basic conditions to the corresponding beta,gamma-aziridino alpha-amino ester derivatives, representing a new class of conformationally constrained heterocyclic alpha,beta-diamino acid derivatives. The relative configuration of the aziridines was determined via X-ray diffraction analysis. Mechanisms and intermediate transition states to explain the stereochemical outcome of the Mannich reaction with different substrates or under different conditions are proposed. The synthetic importance of the beta,gamma-aziridino alpha-amino ester derivatives is demonstrated by their conversion into the corresponding Boc-protected derivatives and ring opening reactions to alpha,beta-diamino esters and a gamma-amino alpha,beta-unsaturated amino ester.

  14. The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase.

    Pawlowska, Roza; Korczynski, Dariusz; Nawrot, Barbara; Stec, Wojciech J; Chworos, Arkadiusz


    T4 DNA ligase is one of the most commonly used enzymes for in vitro molecular research and a useful model for testing the ligation mechanism of ATP-dependent DNA ligation. To better understand the influence of phosphate group modifications in the ligation process, a series of ATP analogs were tested as cofactors. P-diastereomers of newly developed β,γ-hypo-ATPαS (thio) and β,γ-hypo-ATP (oxo) were synthesized and their activity was compared to ATPαS and their natural precursors. The evaluation of presented ATP analogs revealed the importance of the α-phosphate stereogenic center in ATPαS for the T4 DNA ligase activity and sheds new light on the interaction between ATP-dependent DNA ligases and cofactors.

  15. Relative stereochemical determination and synthesis of the C17-C25 δ-lactone fragment of hemicalide.

    Fleury, Etienne; Sorin, Geoffroy; Prost, Elise; Pancrazi, Ange; Sautel, François; Massiot, Georges; Lannou, Marie-Isabelle; Ardisson, Janick


    Hemicalide is a novel marine metabolite polyketide distinguished by a unique mechanism of action. Because of insufficient quantities of purified material, this natural product has evaded complete stereochemical assignments. Recently, we have determined the relative stereochemistry of the C8-C13 hexad by synthesizing the C1-C13 fragment. Presently, we report the assignment of the C17-C25 δ-lactone fragment. NMR analysis of authentic hemicalide along with a computational conformation study allowed us to reduce the number of putative relative isomers from 16 to 4. Concise syntheses of the four candidate diastereomers were achieved using a common strategy based on a Dias aldehyde allylation reaction, an intramolecular Horner-Wadsworth-Emmons olefination, and a dihydroxylation reaction. Finally, thorough NMR comparisons enabled us to deduce the relative stereochemistry of the C1-C17 fragment with high certainty.

  16. Mitragynine concentrations in two fatalities.

    Domingo, Olwen; Roider, Gabriele; Stöver, Andreas; Graw, Matthias; Musshoff, Frank; Sachs, Hans; Bicker, Wolfgang


    Two cases of fatalities are reported of which the recreational use of Mitragyna speciosa ("kratom") could be confirmed. One of these cases presents with one of the highest postmortem mitragynine concentrations published to date. Our results show that even extremely high mitragynine blood concentrations following the consumption of kratom do not necessarily have to be the direct cause of death in such fatalities as a result of an acute overdose. The two cases are compared with regard to the differences in mitragynine concentrations detected and the role of mitragynine in the death of the subjects. Irrespective of the big differences in mitragynine concentrations in the postmortem blood samples, mitragynine was not the primary cause of death in either of the two cases reported here. Additionally, by rough estimation, a significant difference in ratio of mitragynine to its diastereomers in the blood and urine samples between the two cases could be seen.

  17. New insights into the structure-activity-relationship of selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitors UCPH-101 and UCPH-102

    Hansen, Stinne Wessel; Erichsen, Mette Norman; Huynh, T.H.V.


    In the present study, we made further investigations on the structure-activity requirements of the selective excitatory amino acid transporter 1 (EAAT1) inhibitor, 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101), by exploring 15...... (2-amino-4-([1,1'-biphenyl]-4-yl)-3-cyano-7-isopropyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene) was carried out, and in agreement with a study of a related scaffold, the R configuration at C4 was found to be mandatory for inhibitory activity, while both the C7 diastereomers were found to be active...

  18. Isolation, Structure Elucidation and Total Synthesis of Lajollamide A from the Marine Fungus Asteromyces cruciatus

    Johannes F. Imhoff


    Full Text Available The marine-derived filamentous fungus Asteromyces cruciatus 763, obtained off the coast of La Jolla, San Diego, USA, yielded the new pentapeptide lajollamide A (1, along with the known compounds regiolone (2, hyalodendrin (3, gliovictin (4, 1N-norgliovicitin (5, and bis-N-norgliovictin (6. The planar structure of lajollamide A (1 was determined by Nuclear Magnetic Resonance (NMR spectroscopy in combination with mass spectrometry. The absolute configuration of lajollamide A (1 was unambiguously solved by total synthesis which provided three additional diastereomers of 1 and also revealed that an unexpected acid-mediated partial racemization (2:1 of the l-leucine and l-N-Me-leucine residues occurred during the chemical degradation process. The biological activities of the isolated metabolites, in particular their antimicrobial properties, were investigated in a series of assay systems.

  19. Diastereoselective syntheses of new analogues of the farnesyltransferase inhibitor RPR 130401.

    Pichon, Nicolas; Harrison-Marchand, Anne; Mailliet, Patrick; Maddaluno, Jacques


    The access to several benzo[f]perhydroisoindolic analogues of farnesyltransferase inhibitors from a single dienic precursor is reported. An initial [4 + 2] cycloaddition between diphenylisobenzofuran6 and pyrrolines 11, 14, and 15 led to either the syn or the anti isomers, depending on the mode of activation of the cycloaddition. The syn diastereomers were isolated in 90% de under 12 kbar at room temperature, while their anti counterparts were obtained with the same selectivity by warming the reaction mixture to 110 degrees C in toluene at atmospheric pressure. Both syn and anti adducts were separately N-deprotected, and the resulting amines reacted with an activated ester derived from the acid (20) to afford the final targets (5). Two new analogues (5a and 5b) of the FT inhibitor RPR 130401 were thus synthesized in a mere three-step synthetic scheme with overall yields from 30 to 60%.

  20. Enhanced diastereoselectivity via confinement: photoisomerization of 2,3-diphenylcyclopropane-1-carboxylic acid derivatives within zeolites.

    Sivaguru, J; Sunoj, Raghavan B; Wada, Takehiko; Origane, Yumi; Inoue, Yoshihisa; Ramamurthy, Vaidhyanathan


    From the perspective of asymmetric induction, the photochemistry of 24 chiral esters and amides of cis-2,3-diphenylcyclopropane-1-carboxylic acid from excited singlet and triplet states has been investigated within zeolites. The chiral auxiliaries placed at a remote location from the isomerization site functioned far better within a zeolite than in solution. Generally, chiral auxiliaries with an aromatic or a carbonyl substituent performed better than the ones containing only alkyl substituents. A model based on cation-binding-dependent flexibility of the chiral auxiliary accounts for the observed variation in de between aryl (and carbonyl) and alkyl chiral auxiliaries within zeolites. Cation-dependent diastereomer switch was also observed in select examples.

  1. Synthesis of (3,5-/sup 14/C)trachelanthamidine and (5-/sup 3/H)isoretronecanol and their incorporation into the retronecine moiety of riddelliine in Senecio riddellii

    Leete, E.; Rana, J.


    (+/-)-(3,5-/sup 14/C)Trachelanthamidine and (+/-)-(5-/sup 3/H)isoretronecanol, which are diastereomers, were prepared from potassium (/sup 14/C)cyanide and (5-/sup 3/H)proline, respectively. These compounds and (1,4-/sup 14/C)putrescine were administered to Senecio riddellii plants resulting in the formation of labeled riddelliine, in which almost all the radioactivity was located in its retronecine moiety. The activity of the beta-alanine obtained by degradation of the retronecine was consistent with specific labeling of this pyrrolizidine base at the expected positions. The extremely high absolute incorporation (15.1, 22.1%) of trachelanthamidine into riddelliine strongly favors this 1-hydroxymethylpyrrolizidine as the one on the main biosynthetic pathway to retronecine. The lower incorporation (0.75%) of isoretronecanol may represent a minor or aberrant pathway to retronecine.

  2. On the Additions of Lithium Methyl p-Tolyl Sulfoxide to N-(PMPArylaldimines

    Matteo Zanda


    Full Text Available The results presented in this paper confirm that the stereochemical outcome of the reversible additions of lithium (R-methyl p-tolyl sulfoxide to N-arylidene-p-anisidines (NPMP imines depends on: (a the reaction conditions used and (b the electronic properties of the arylidene moiety on the starting imine. In particular, we show that under kinetic control (-70 °C the additions involving electron-rich N-arylidene groups occur with very high stereocontrol in favor of the (2S,RS-diastereomers, whereas an electron-deficient group favors the opposite stereochemical outcome. Based on the observations above, a mechanistic hypothesis is proposed.

  3. Ionic Liquids as Carbene Catalyst Precursors in the One-Pot Four-Component Assembly of Oxo Triphenylhexanoates (OTHOs

    Anton Axelsson


    Full Text Available Ionic liquids (ILs are a convenient and inexpensive source of N-heterocyclic carbenes (NHCs. In this study, dialkyl imidazolium-based ILs are used as carbene precursors in a four-component synthesis of oxo triphenylhexanoates (OTHOs, where it was found that IL outperformed commonly used NHC precatalysts in terms of reaction efficiency. The reaction is highly stereoselective, delivering the anti-diastereomer (20:1 dr, and the OTHOs can be obtained in high-to-excellent yields. By virtue of the four-component reaction-setup, facile construction of the OTHO scaffold with a diverse set of functional groups (21 examples can be achieved. In the context of sustainability, the IL can be recovered and reused several times without affecting selectivity or yield. Moreover, most compounds can be isolated by precipitation and filtration, mitigating the use of solvent-demanding chromatography.

  4. Treatment of endosulfan contaminated water with in vitro plant cell cultures.

    Lucero, Patricia A; Ferrari, Mónica M; Orden, Alejandro A; Cañas, Irene; Nassetta, Mirtha; Kurina-Sanz, Marcela


    Endosulfan is a Persistent Organic Pollutant insecticide still used in many countries. It is commercially available as mixtures of two diastereomers, α- and β-endosulfan, known as technical grade endosulfan (TGE). A laboratory model based on the use of axenic plant cell cultures to study the removal and metabolization of both isomers from contaminated water matrixes was established. No differences were recorded in the removal of the two individual isomers with the two tested endemic plants, Grindelia pulchella and Tessaria absinthioides. Undifferentiated cultures of both plant species were very efficient to lower endosulfan concentration in spiked solutions. Metabolic fate of TGE was evaluated by analyzing the time course of endosulfan metabolites accumulation in both plant biomass and bioremediation media. While in G. pulchella we only detected endosulfan sulfate, in T. absinthioides the non-toxic endosulfan alcohol was the main metabolite at 48h, giving the possibility of designing phytoremediation approaches.

  5. Mechanism, reactivity, and regioselectivity in rhodium-catalyzed asymmetric ring-opening reactions of oxabicyclic alkenes: a DFT Investigation

    Qi, Zheng-Hang; Zhang, Yi; Gao, Yun; Zhang, Ye; Wang, Xing-Wang; Wang, Yong


    The origin of the enantio- and regioselectivity of ring-opening reaction of oxabicyclic alkenes catalyzed by rhodium/Josiphos has been examined using M06-2X density functional theory(DFT). DFT calculations predict a 98% ee for the enantioselectivity and only the 1,2-trans product as one regio- and diastereomer, in excellent agreement with experimental results. The solvent tetrahydrofuran(THF) plays a key role in assisting nucleophilic attack. Orbital composition analysis of the LUMO and the NPA atomic charge calculations were conducted to probe the origins of the regioselectivity. The orbital composition analysis reveals two potential electrophilic sites of the Rh–π-allyl intermediate M3 and the NPA atomic charges demonstrate that Cα carries more positive charges than Cγ, which suggests that Cα is the electrophilic site. PMID:28074930

  6. Synthesis and spectroscopic analysis of a stereoisomer library of the phytophthora mating hormone α1 and derived bis-Mosher esters.

    Bajpai, Reena; Curran, Dennis P


    Fluorous mixture synthesis provided all eight diastereomers of the phytophthora hormone α1 with the R configuration at C11 as individual samples after demixing and detagging. The library of all possible bis-Mosher esters (16) was then made by esterification. Complete sets of (1)H, (13)C, and (for the Mosher esters) (19)F NMR spectra were recorded, assigned, and compared with each other and with published spectra. Not all of the spectra are unique, and the (1)H NMR spectra of the Mosher esters provided the most information. The previous assignment of the natural sample as an "all-R" stereoisomer mixed with its 3S-epimer was confirmed. © 2011 American Chemical Society

  7. 3-Ishwarone, a Rare Ishwarane Sesquiterpene from Peperomia scandens Ruiz & Pavon: Structural Elucidation through a Joint Experimental and Theoretical Study

    Fernando M. dos S.


    Full Text Available 3-Ishwarone, (1, a sesquiterpene with a rare ishwarane skeleton, was isolated from Peperomia scandens Ruiz & Pavon (Piperaceae. Its structure was unambiguously determined by 1D- and 2D-NMR and infrared analyses, as well as by comparative theoretical studies which involved calculations of 13C-NMR chemical shifts, using the Density Functional Theory (DFT with the mPW1PW91 hybrid functional and Pople’s 6-31G(d basis set, and of vibrational frequencies, using the B3LYP hybrid functional and triple ζ Dunning’s correlation consistent basis set (cc-pVTZ, of (1 and three of its possible diastereomers, compounds 2–4.

  8. A monoclinic polymorph of (R,R-4,4′-dibromo-2,2′-[cyclohexane-1,2-diylbis(nitrilomethanylylidene]diphenol

    Kwang Ha


    Full Text Available The title compound, C20H20Br2N2O2, a tetradentate Schiff base, is the enantiomerically pure R,R-diastereomer of four possible stereoisomers. The molecular structure reveals two strong intramolecular O—H...N hydrogen bonds between the hydroxy O atom and the imino N atom, which each generate S(6 rings. In the crystal, molecules are stacked in columns along the a axis; when viewed down the b axis, successive columns are stacked in the opposite direction. The structure reported herein is the monoclinic polymorph of the previously reported orthorhombic form [Yi & Hu (2009. Acta Cryst. E65, o2643], in which the complete molecule is generated by a crystallographic twofold axis.




    Full Text Available This study describes the in vitro degradation studies of the diastereomeric ketoprofen glucuronides, under physiological conditions (pH 7.4, 37°C, (R-ketoprofen glucuronide t½ = 30 min, (S-ketoprofen glucuronide t½ = 70 min and the irreversible binding of diastereomeric ketoprofen glucuronides (15 μg/ml to human serum albumin (HSA (289 μM and human plasma under physiological conditions (pH 7.4, 37ºC. The (R-ketoprofen glucuronide irreversibly bound to a greater extent in both human plasma and human serum albumin. This is the reverse to that found in previous studies. These findings further support the hypothesis that faster degradation of 1-O-acyl glucuronide (in this case the (R-diastereomer is associated with a greater extent of irreversible binding.

  10. N-methyl-D-aspartic acid receptor agonists

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B


    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  11. Diastereoselective anodic hetero- and homo-coupling of menthol-, 8-methylmenthol- and 8-phenylmenthol-2-alkylmalonates

    Matthias C. Letzel


    Full Text Available Diastereoselective radical coupling was achieved with chiral auxiliaries. The radicals were generated by anodic decarboxylation of five malonic acid derivatives. These were prepared from benzyl malonates and four menthol auxiliaries. Coelectrolyses with 3,3-dimethylbutanoic acid in methanol at platinum electrodes in an undivided cell afforded hetero-coupling products in 22–69% yield with a diastereoselectivity ranging from 5 to 65% de. Electrolyses without a coacid led to diastereomeric homo-coupling products in 21–50% yield with ratios of diastereomers being 1.17:2.00:0.81 to 7.03:2.00. The stereochemistry of the new stereogenic centers was confirmed by X-ray structure analysis and 13C NMR data.

  12. Resolution of the Chiral Drugs

    DENG; JinGen


    Chiral drugs are generally not permitted to be used in racemic form so that unintended side effects and unnecessary environmental hazards are avoided. Moreover, homochiral molecules are required immediately to progress key toxicological and clinical studies in the drug discovery. One series of technologies which can rapidly supply homochiral compounds is the separation of racemates, and of those the technique of crystallization of diastereomers is extremely effective-principally because it is simple to operate and it affords both enantiomers. In classical resolution via diastereoisomeric salt formation, the resolved compounds are limited to a given racemic acid or base and the choice of a suitable resolving agent for a racemic target compound is achieved by time-consuming trial-and-error procedure.  ……

  13. Domino Reactions in Drug Design and Discovery.

    Bhar, Shanta; Ramana, Mucheli M V


    With reference to challenges in developing varied and exceedingly complex scaffolds expeditiously through atom economy, domino reactions have assumed a significant role in several transformative endeavors towards established pharmaceuticals and new chemical entities across diverse therapeutic classes such as HIV integrase inhibitors, DPP4 [dipeptidyl peptidase IV] inhibitors, GSK- 3 (Glycogen Synthase Kinase 3) inhibitors, neoplastic drugs and microtubule antagonists. The very large chemical space of Domino Reactions can be leveraged for the design strategy of drugs and drug- like candidates with leading examples like Indinavir (Crixivan), Trandolapril (Mavik), Biyouyanagin A, endo pyrrolizidinone diastereomer [GSK] and several others. Domino reactions therefore constitute an integral part of both creative and functional aspects of drug design and discovery, contributing both enhanced efficiency as well as synthetic versatility to pharmaceutical drug design.

  14. Anti-respiratory syncytial virus prenylated dihydroquinolone derivatives from the gorgonian-derived fungus Aspergillus sp. XS-20090B15.

    Chen, Min; Shao, Chang-Lun; Meng, Hong; She, Zhi-Gang; Wang, Chang-Yun


    Two new prenylated dihydroquinolone derivatives, 22-O-(N-Me-l-valyl)aflaquinolone B (1) and 22-O-(N-Me-l-valyl)-21-epi-aflaquinolone B (2), and two known analogues, aflaquinolones A (3) and D (or a diastereomer of D, 4), were isolated from the mycelia of a gorgonian-derived Aspergillus sp. fungus. The structures of the new compounds were elucidated by spectroscopic methods, ECD spectra, Marfey's method, and chemical conversion. Compounds 1 and 2 display an unusual esterification of N-Me-l-Val to the side-chain prenyl group. Compound 2 exhibited outstanding anti-RSV activity with an IC50 value of 42 nM, approximately 500-fold stronger than that of the positive control ribavirin (IC50 = 20 μM), and showed a comparatively higher therapeutic ratio (TC50/IC50 = 520).

  15. Switchable Diastereoselectivity in the Fluoride Promoted Vinylogous Mukaiyama-Michael Reaction of 2-Trimethylsilyloxyfuran Catalyzed by Crown Ethers

    Della Sala, Giorgio


    The fluoride promoted vinylogous Mukaiyama-Michael reaction (VMMR) of 2-trimethylsilyloxyfuran with diverse α,β-unsaturated ketones is described. The TBAF catalyzed VMMR afforded high anti-diastereoselectivity irrespective of the solvents used. The KF/crown ethers catalytic systems proved to be highly efficient in terms of yields and resulted in a highly diastereoselective unprecedented solvent/catalyst switchable reaction. Anti-adducts were obtained as single diastereomers or with excellent diastereoselectivities when benzo-15-crown-5 in CH2Cl2 was employed. On the other hand, high syn-diastereoselectivities (from 76:24 to 96:4) were achieved by employing dicyclohexane-18-crown-6 in toluene. Based on DFT calculations, the catalysts/solvents-dependent switchable diastereoselectivities are proposed to be the result of loose or tight cation-dienolate ion pairs.

  16. Solution state structure determination of silicate oligomers by 29SI NMR spectroscopy and molecular modeling.

    Cho, Herman; Felmy, Andrew R; Craciun, Raluca; Keenum, J Patrick; Shah, Neil; Dixon, David A


    Evidence for nine new solution state silicate oligomers has been discovered by (29)Si NMR homonuclear correlation experiments of (29)Si-enriched samples. In addition to enhancing signal sensitivity, the isotopic enrichment increases the probability of the (29)Si-(29)Si two-bond scalar couplings that are necessary for the observation of internuclear correlations in 2-D experiments. The proposed assignments are validated by comparisons of experimental and simulated cross-peaks obtained with high digital resolution. The internuclear connectivity indicated by the NMR data suggests that several of these oligomers can have multiple stereoisomers, including conformers and/or diastereomers. The stabilities of these oligomers and their possible stereoisomers have been investigated by electronic structure calculations.

  17. Mechanism, reactivity, and regioselectivity in rhodium-catalyzed asymmetric ring-opening reactions of oxabicyclic alkenes: a DFT Investigation

    Qi, Zheng-Hang; Zhang, Yi; Gao, Yun; Zhang, Ye; Wang, Xing-Wang; Wang, Yong


    The origin of the enantio- and regioselectivity of ring-opening reaction of oxabicyclic alkenes catalyzed by rhodium/Josiphos has been examined using M06-2X density functional theory(DFT). DFT calculations predict a 98% ee for the enantioselectivity and only the 1,2-trans product as one regio- and diastereomer, in excellent agreement with experimental results. The solvent tetrahydrofuran(THF) plays a key role in assisting nucleophilic attack. Orbital composition analysis of the LUMO and the NPA atomic charge calculations were conducted to probe the origins of the regioselectivity. The orbital composition analysis reveals two potential electrophilic sites of the Rh-π-allyl intermediate M3 and the NPA atomic charges demonstrate that Cα carries more positive charges than Cγ, which suggests that Cα is the electrophilic site.

  18. Chemoselective Switch in the Asymmetric Organocatalysis of 5 H -Oxazol-4-ones and N -Itaconimides: Addition-Protonation or [4+2] Cycloaddition

    Zhu, Bo


    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We report a synthetic strategy for a chemoselective switch and a diastereo-divergent approach for the asymmetric reaction of 5H-oxazol-4-ones and N-itaconimides catalyzed by L-tert-leucine-derived tertiary amine-urea compounds. The reaction was modulated to harness either tandem conjugate addition-protonation or [4+2] cycloaddition as major product with excellent enantio- and diastereoselectivities. Subjecting the enantio-enriched cycloaddition products to a basic silica gel reagent yields the diastereomer vis-à-vis the product directly obtained under conditions for addition-protonation, thus opening a diastereo-divergent route for creating 1,3-tertiary-hetero-quaternary stereocenters. Quantum chemical studies further provide stereochemical analysis for the [4+2] process and a plausible mechanism for this chemoselective switch is proposed.

  19. From meso-Lactide to Isotactic Polylactide: Epimerization by B/N Lewis Pairs and Kinetic Resolution by Organic Catalysts.

    Zhu, Jian-Bo; Chen, Eugene Y-X


    B/N Lewis pairs have been discovered to catalyze rapid epimerization of meso-lactide (LA) or LA diastereomers quantitatively into rac-LA. The obtained rac-LA is kinetically polymerized into poly(L-lactide) and optically resolved D-LA, with a high stereoselectivity k(L)/k(D) of 53 and an ee of 91% at 50.6% monomer conversion, by newly designed bifunctional chiral catalyst 4 that incorporates three key elements (β-isocupreidine core, thiourea functionality, and chiral BINAM) into a single organic molecule. The epimerization and enantioselective polymerization can be coupled into a one-pot process for transforming meso-LA directly into poly(L-lactide) and D-LA.


    Goff, Dane; Lagarias, J. Clark; Shih, Willy C.; Klein, Melvin P.; Rapoport, Henry


    Peptide cyclization via the p-nitrophenyl ester of 4-methyl-3-[4'-{beta}-N-(N'-tert-butyloxycarbonyl-L~prolyl)-aminoethyl]phenoxy-pentanoic acid (9) has afforded a single cyclopeptide diastereomer,9R-isopropyl-5S,6-trimethylene-8-dearnino-1,2-dihydro-p-phencyclopeptine (4), in 36% yield. From the comparative analysis of the UV, IR, CD, and {sup 1}H NMR spectra of 4 and cyclopeptide 5S,6-trimethylene 8-deamino-1,2-dihydro-p-phencyclopeptine (3d), of known geometry, the conformational identities of the 14-membered ring systems were ascertained. From these data the assignment of R stereochemistry at C9 for cyclopeptide 4 was deduced. Since the stereochemistry at C9 in the naturally occurring phencyclopeptines is the same, these results suggest a feasible route to the stereoselective total synthesis of the phencyclopeptines.

  1. Synthesis and conformational analysis of new derivatives of 7-chloro-1,3-dihydro-5-phenyl-2h-1,4-benzodiazepine-2-one

    Imanzadeh, G H; Sadra, Y


    1,4-benzodiazepine-2-ones and their derivatives are prominent structures in medicinal chemistry. These biomolecules have wide biological activities and posses therapeutic applications. In this works, we introduce new derivatives of 1,4-benzodiazepine-2-ones which are synthesized using michael addition reaction of 7-chloro- 1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-ones with fumaric esters that matches with green chemistry protocols. The structures of all products are confirmed by FT-IR, 1H-NMR, 13C-NMR and MASS spectroscopy. Since the stereochemistry of 1,4-benzo diazepine-2-ones is important, we study the most stable conformer of one of the products as a model for conformational analysis by hyper chem soft ware and semi empirical AM1 program. Also, using the 1H-NMR spectrum, we investigate the produced diastereomers of one of products as a model.

  2. A new chiral derivatizing agent for the HPLC separation of α-amino acids on a standard reverse-phase column.

    Kotthaus, A F; Altenbach, H-J


    A new chiral derivatizing agent for α-amino acids is described which leads to diastereomers that can be separated by reverse-phase HPLC with direct detection by a diode array detector. The main advantage of the presented procedure is the fact that an excess of the derivatizing reagent can be employed as the product exhibits an absorption maximum at 360 nm, while the reagent has its absorption maximum at 260 nm. Therefore, it is possible to suppress the reagent signal by a detection wavelength of 400 nm leading to an easy and general method for the enantioseparation of a mixture of DL-amino acids and the determination of the enantiomeric purity of α-amino acid as exemplified by 16 different α-amino acids.

  3. Analysis of ochratoxin A in grapes, musts and wines by LC–MS/MS: First comparison of stable isotope dilution assay and diastereomeric dilution assay methods

    Roland, Aurélie, E-mail: [Nyseos, 2 place Pierre Viala, Montpellier Cedex 1 34060 (France); Bros, Pauline, E-mail: [Institut Français de la Vigne et du Vin, UMT Qualinnov, 2 place Pierre Viala, Montpellier Cedex 1 34060 (France); Bouisseau, Anaïs, E-mail: [Nyseos, 2 place Pierre Viala, Montpellier Cedex 1 34060 (France); Institut des Biomolécules Max Mousseron, UMR-CNRS-5247, Universités Montpellier I and II, Place Eugène Bataillon, 34095 Montpellier (France); Cavelier, Florine, E-mail: [Institut des Biomolécules Max Mousseron, UMR-CNRS-5247, Universités Montpellier I and II, Place Eugène Bataillon, 34095 Montpellier (France); Schneider, Rémi, E-mail: [Institut Français de la Vigne et du Vin, UMT Qualinnov, 2 place Pierre Viala, Montpellier Cedex 1 34060 (France)


    Highlights: • OTA extraction on immunoaffinity columns is not adapted for DIDA quantification. • The use of a labeled internal standard is compulsory to obtain reliable results. • SIDA and DIDA quantification approaches have been compared for the first time. Abstract: Ochratoxin A (OTA) exhibits potent nephrotoxic, carcinogenic and teratogenic effects and its maximum level in wines has been set to 2 μg L⁻¹ by regulation. Consequently, the analytical procedures for OTA determination in wines have to be both very sensitive and reliable. In this paper, we compared two quantification methods: the stable isotope dilution assay (SIDA) and the diastereomeric dilution assay (DIDA). For this purpose, non-natural analogues of OTA were synthesized: the labeled OTA (OTA-d₄) as a diastereomeric mixture for the SIDA and one non-natural OTA’s diastereomer (OTA-dia) for the DIDA. To quantify OTA in red grapes, musts or wines, the sample preparation was optimized using immunoaffinity column extraction and the analysis was performed by LC–MS/MS in Multiple Reaction Monitoring mode. A validation procedure in agreement with the International Organization of Vine and Wine recommendations was conducted. It appeared that SIDA quantification exhibited excellent sensitivity (LOD < 1 ng L⁻¹), accuracy (recovery = 98%), repeatability (RSD < 3%) and intermediate reproducibility (RSD < 4%) compared to quantification by DIDA. Indeed, DIDA method did not provide satisfactory results demonstrating that immunoaffinity extraction is exclusively selective for the natural OTA and not for its diastereomer, which therefore cannot be considered as a good internal standard for this particular method.

  4. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    Azusa Saika

    Full Text Available Mannosylerythritol lipids (MELs belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S-erythritol (R-form as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R-erythritol (S-form as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.

  5. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake


    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  6. a Chiral Tagging Strategy for Determining Absolute Configuration and Enantiomeric Excess by Molecular Rotational Spectroscopy

    Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks


    The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).

  7. Phosphoester Hydrolysis and Intramolecular Transesterification of Ribonucleoside 2'- and 3'-Phosphoromonothioate Triesters: Kinetics and Mechanisms for the Reactions of 5'-O-Methyluridine 2'- and 3'-Dimethylphosphoromonothioates.

    Ora, Mikko; Oivanen, Mikko; Lönnberg, Harri


    The hydrolytic reactions of the monothioate analogs of 5'-O-methyluridine 2'- and 3'-dimethylphosphates have been followed over a wide acidity range, H(0) = -1.7 ([HCl] = 5 mol L(-)(1)) to pH 9. Two reactions were found to compete: mutual interconversion of the 2'- and 3'-isomers and phosphoester hydrolysis to a mixture of phosphorothioate diesters, viz., the R(P) and S(P) diastereomers of 2',3'-cyclic thiophosphate and 2'/3'-monomethylthiophosphates (i.e., three pairs of diastereomers). No marked desulfurization could be observed. The interconversion and hydrolysis both show first-order dependence of rate on acidity at pH catalyzed (first-order in [OH(-)]) already at pH 2. The hydrolysis is susceptible to general base catalysis in carboxylic acid buffers, the Brönsted beta value being 0.8. In contrast, no conclusive evidence for buffer-catalyzed isomerization could be obtained. All these reactions are suggested to proceed via a pentacoordinated thiophosphorane intermediate, obtained at pH 2 by an attack of a deprotonated hydroxy function (oxyanion) on a neutral thiophosphate. The monocationic intermediate (pH 2) also gives isomerization products without catalysis (departure of 2'/3'-oxyanion), whereas breakdown to the hydrolysis products needs either a specific or a general acid catalysis process (departure of methanol). Accordingly, the observed general-base-catalyzed hydrolysis most likely consists of consecutive specific base/general acid catalysis. The phosphorothioate triesters studied are, under very acidic conditions, more than 2 orders of magnitude more stable than their oxyphosphate counterparts, whereas the rate-retarding "thio effect" (k(P)(=)(O)/k(P)(=)(S)) is much smaller with the hydroxide ion-catalyzed reactions (ca. 4) and almost negligible with the pH-independent hydrolysis.

  8. Stereospecific capillary electrophoresis assays using pentapeptide substrates for the study of Aspergillus nidulans methionine sulfoxide reductase A and mutant enzymes.

    Zhu, Qingfu; El-Mergawy, Rabab G; Zhou, Yuzhen; Chen, Chunyang; Heinemann, Stefan H; Schönherr, Roland; Robaa, Dina; Sippl, Wolfgang; Scriba, Gerhard K E


    Stereospecific capillary electrophoresis-based methods for the analysis of methionine sulfoxide [Met(O)]-containing pentapeptides were developed in order to investigate the reduction of Met(O)-containing peptide substrates by recombinant Aspergillus nidulans methionine sulfoxide reductase A (MsrA) as well as enzymes carrying mutations in position Glu99 and Asp134. The separation of the diastereomers of the N-acetylated, C-terminally 2,4-dinitrophenyl (Dnp)-labeled pentapeptides ac-Lys-Phe-Met(O)-Lys-Lys-Dnp, ac-Lys-Asp-Met(O)-Asn-Lys-Dnp and ac-Lys-Asn-Met(O)-Asp-Lys-Dnp was achieved in 50 mM Tris-HCl buffers containing sulfated β-CD in fused-silica capillaries, while the diastereomer separation of ac-Lys-Asp-Met(O)-Asp-Lys-Dnp was achieved by sulfated β-CD-mediated MEKC. The methods were validated with regard to range, linearity, accuracy, limits of detection and quantitation as well as precision. Subsequently, the substrates were incubated with wild-type MsrA and three mutants in the presence of dithiothreitol as reductant. Wild-type MsrA displayed the highest activity towards all substrates compared to the mutants. Substitution of Glu99 by Gln resulted in the mutant with the lowest activity towards all substrates except for ac-Lys-Asn-Met(O)-Asp-Lys-Dnp, while replacement Asn for Asp134 lead to a higher activity towards ac-Lys-Asp-Met(O)-Asn-Lys-Dnp compared with the Glu99 mutant. The mutant with Glu instead of Asp134 was the most active among the mutant enzymes. Molecular modeling indicated that the conserved Glu99 residue is buried in the Met-S-(O) groove, which might contribute to the correct placing of substrates and, consequently, to the catalytic activity of MsrA, while Asp134 did not form hydrogen bonds with the substrates but only within the enzyme.

  9. Chiral analysis of amphetamines in hair by liquid chromatography-tandem mass spectrometry: compliance-monitoring of attention deficit hyperactivity disorder (ADHD) patients under Elvanse® therapy and identification after controlled low-dose application.

    Binz, Tina M; Williner, Elena; Strajhar, Petra; Dolder, Patrick C; Liechti, Matthias E; Baumgartner, Markus R; Kraemer, Thomas; Steuer, Andrea E


    Amphetamine (AMP) is used as an illicit drug and also for the treatment of attention deficit hyperactivity disorder (ADHD). Respective drugs most often contain the enantiomer (S)-AMP as active compound or (S)-AMP is formed from the prodrug lisdexamfetamine (Elvanse®) whereas the illicit drug is usually traded as racemate ((R/S)-AMP). A differentiation between the use of the medically prescribed drug and the abuse of illicit street amphetamine is of great importance, for example in retrospective consumption monitoring by hair analysis. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the chiral separation and quantitation of (S)- and (R)-AMP in hair was developed. For this purpose, 20 mg hair was extracted and derivatized with N-(2,4-dinitro-5-fluorophenyl)-L(S)-valinamide L(S)-(DNPV) to yield amphetamine diastereomers. Baseline separation of the resulting diastereomers was achieved on a high-pressure liquid-chromatography system (HPLC) coupled to a Sciex QTRAP® 5500 linear ion trap quadrupole mass spectrometer. The method was successfully validated. Analysis of hair samples from nine Elvanse® patients revealed only (S)-AMP in eight cases; one subject showed both enantiomers indicating a (side-) consumption of street amphetamine. The analysis of the 16 amphetamine users' samples showed only racemic amphetamine. Furthermore, it could be shown in a controlled study that (S)-AMP can be detected after administration of even very low doses of lisdexamfetamine and dexamphetamine, which can be of interest in forensic toxicology and especially in drug-facilitated crime (DFC). The method now enables the retrospective compliance-monitoring of ADHD patients and the differentiation between medically prescribed intake of (S)-amphetamine and abuse of illicit street amphetamine. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Effect of Stereochemistry on the Decomposition Rate of 5 - Hydroxy - 6 - hydroperoxy - 5,6 - dihydrothymidine%立体构型对5-羟基-6-氢过氧基-5,6-二氢胸腺嘧啶脱氧核苷热分解速率的影响



    In the present work, the thermal decomposition mechanisms for the three diastereomers of 5 -hydroxy - 6 - hydroperoxy -5,6 -dihydrothymidine (5 - OH -6 - OOH - DHT), i. e., trans'- (5R,6R), trans - (5S, 6S), and cis - (5S,6R), have been investigated at the B3LYP/6 -311 + + G(2d,p) level of theory. The solvent effect of water on these processes was assessed by single - point computation at the gas - phase optimization geometries by means of the CPCM model. Our calculations suggest that the 6S eis -trans pair (5R,6S, 5S,6S) exhibits relatively higher decomposition rate than the 6R cis -trans pair (5S,6R, 5R,6R). Whether the 6S or 6R, the cis and trans diastereomers have very close reaction rates. The decomposition rates of the four diastereomers at room temperature in the aqueous solution obey the following order : cis - (5 R, 6S) 〉 trans - ( 5 S, 6S) 〉 trans - (5 R,6R) 〉 eis- (5S,6R).%采用B3LYP/6—311++G(2d,P)方法对5-羟基-6-氢过氧基-5,6-二氢胸腺嘧啶脱氧核苷(5-OH-6-OOH—DHT)的trans-(5R,6R)、trans-(5s,6s)和cis-(5S,6R)三种构型的热分解机理进行了理论研究.同时利用CPCM模型对气相中的优化构型进行单点计算以确定水的溶剂效应.结果表明:与6R对的顺、反构型(5s,6R,5R,6R)相比,6s对的顺、反构型(5R,6S,5S,6S)均表现出相对较高的分解速率;此外,不论是6s对,还是6R对,它们的顺、反构型的反应速率十分接近.常温下这四种空间异构体在水溶液中分解速率的顺序为:cis-(5R,6S)〉trans-(5S,6S)〉trans-(5R,6R)〉cis-(5S,6R).

  11. Enantioselective Total Synthesis and Structural Revision of (一)-Isochaetominine%(一)-Isochaetominine推测结构的对映选择性全合成与结构修正

    黄培强; 茅中一; 耿辉


    报道生物碱isochaetominine推测结构8的对映选择性全合成与结构修正.采用立体多样性合成策略,通过L-色氨酸与L-丙氨酸苄酯组合,以DMDO氧化启动的串联反应为关键反应,经5步高效地完成了isochaetominine推测结构8及其立体异构体(+)-2,3,14-tri-epi-chaetominine (12)的全合成.基于本实验室此前有关毛壳菌素(1)立体多样性合成的工作,天然isochaetominine的结构修正为(一)-11-epi-chaetominine (18).我们此前已完成了该天然产物的首次对映选择性全合成(从L-色氨酸出发,5步,总产率31.6%).此外,通过研究色氨酸与缬氨酸叔丁酯组合,建立了isochaetominine C三个非对映立体异构体的立体多样性合成.最后,证实了化合物13B无法进行C(14)位定点差向异构化,但可以进行C(11)和C(14)双差向异构化.%In this paper,the enantioselective total synthesis and structure revision of the proposed structure of isochaetominine 8 are described.On the basis of the stereodivergent strategy,a highly efficient five-step synthesis of the proposed structure of isochaetominine 8 and its diastereomer (+)-2,3,14-tri-epi-chaetominine (12) was achieved.The method features the use of L-tryptophan and L-alanine benzyl ester as the starting materials,and a dimethyldioxirane (DMDO)-triggered tandem reaction as a key step.A comparison of the physical and spectral data of the natural isochaetominine with those of the diastereomers obtained during our previous stereodivergent synthesis of chaetominine (1),allowed revising the structure of isochaetominine as (一)-11-epi-chaetominine (18).The first enantioselective total synthesis of this natural product has been accomplished previously in our laboratories in five steps,31.6% overall yield from L-tryptophan.Besides,an investigation on the L-tryptophan and L-valine tert-butyl ester-based synthesis of isochaetominine C resulted in a stereodivergent synthesis of three diastereomers of isochaetominine C

  12. Towards Co-evolution of Membrane Transport and Metabolism

    Wei, Chenyu; Pohorille, Andrzej


    Protocellular boundaries were inextricably connected to the metabolism they encapsulated: to be inheritable, early metabolism must have led to an increased rate of growth and division of vesicles and, similarly, transport through vesicle boundaries must have supported the evolution of metabolism. Even though explaining how this coupling emerged and evolved in the absence of the complex machinery of modern cells is one of the key issues in studies on the origin of life, little is known about the biochemical and biophysical processes that might have been involved. This gap in our knowledge is a major impediment in efforts to construct scenarios for the origin of life and laboratory models of protocells. A combination of experimental and computational studies carried out by us and our collaborators is aimed at helping to close this gap. Properties of membranes might have contributed to the selection of RNA as an early biopolymer. A kinetic mechanism was proposed (Sacerdote & Szostak, 2005) in which ribose was supplied more quickly than other aldopentoses to primordial cells for preferential incorporation of ribonucleotides into nucleic acids. This proposal is based on a finding that ribose permeates membranes an order of magnitude faster than its diastereomers, arabinose and xylose. Our computer simulations, which yield permeation rates in excellent agreement with experiment, and kinetic modeling explain this phenomenon in terms of inter- and intramolecular interactions involving exocyclic hydroxyl groups attached to carbon atoms of the pyranose ring (Wei and Pohorille, 2009). They also constrain scenarios for the formation of the earliest nucleic acids (Wei and Pohorille, 2013). In one scenario, sugars permeate protocellular walls and subsequently are used to synthesize nucleic acids inside protocells. As long as this process proceeds at the rate faster than 6x10(exp -3)/s, ribose derivatives will be available for synthesis easier than their diastereomers. If

  13. Experimental and Theoretical Studies of the Factors Affecting the Cycloplatination of the Chiral Ferrocenylaldimine (SC-[(η5-C5H5Fe{(η5-C5H4–C(H=N–CH(Me(C6H5}

    Concepción López


    Full Text Available The study of the reactivity of the enantiopure ferrocenyl Schiff base (SC-[FcCH=N–CH(Me(C6H5] (1 (Fc = (η5-C5H5Fe(η5-C5H4 with cis-[PtCl2(dmso2] under different experimental conditions is reported. Four different types of chiral Pt(II have been isolated and characterized. One of them is the enantiomerically pure trans-(SC-[Pt{κ1-N[FcCH=N–CH(Me(C6H5]}Cl2(dmso] (2a in which the imine acts as a neutral N-donor ligand; while the other three are the cycloplatinated complexes: [Pt{κ2-C,N [(C6H4–N=CHFc]}Cl(dmso] (7a and the two diastereomers {(Sp,SC and (Rp,SC} of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}]Fe(η5-C5H5}Cl(dmso] (8a and 9a, respectively. Isomers 7a-9a, differ in the nature of the metallated carbon atom [CPh (in 7a or CFc (in 8a and 9a] or the planar chirality of the 1,2-disubstituted ferrocenyl unit (8a and 9a. Reactions of 7a–9a with PPh3 gave [Pt{κ2-C,N[(C6H4–N=CHFc]}Cl(PPh3] (in 7b and the diastereomers (Sp,SC and (Rp,SC of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}] Fe(η5-C5H5}Cl(PPh3] (8b and 9b, respectively. Comparative studies of the electrochemical properties and cytotoxic activities on MCF7 and MDA-MB231 breast cancer cell lines of 2a and cycloplatinated complexes 7b-9b are also reported. Theoretical studies based on DFT calculations have also been carried out in order to rationalize the results obtained from the cycloplatination of 1, the stability of the Pt(II complexes and their electrochemical properties.

  14. Solid Phase Chemical Synthesis and Structure - Activity Study of Brevinin - 2R and Analogues as Antimicrobial Peptides

    Hashem Yaghoubi


    Full Text Available Background: Brevinin-2R, as 25 amino acids peptide of the skin of Rana ridibunda frog, possesses potent antimicrobial and low hemolytic activity. It has an N-terminal hydrophilic region and a C-terminal loop that is delineated by an intra-disulfide bridge. In our study, Brevinin-2R and its diastereomer as well  as its  cyclic  analogue  were  synthesized  and  characterized  in  order  to investigate its structural features and biological implications.Methods: MIC determination is based on the recommended classical method of national comittee for labratory safety standard (NCLSS and standard by Hancock With some change on cationic peptides. In this study All bacterial strains were obtained from Industrial-Scientific Research center.Results: Both analogues showed lower antimicrobial activities compared to Brevinin-2R. In spite of Brevinin-2R peptide which shows low hemolytic activity, these analogues failed to show any hemolytic activity even at higherconcentrations (up to 400 µ g/ml. Based on proteolytic stability measurements,diastereomer and cyclic analogues displayed 90% and 60% residual antimicrobial activity, respectively, while antimicrobial activity of Brevinin-2R was 20%. The CD analysis revealed that amphipathic α-helical conformation of the synthesized peptides is involved in antimicrobial effects.Conclusion: CD studies and HPLC based measurement of retention time using a reverse phase column indicated that the Brevinin-2R can form an amphipathic loop  resulting  in  an  enhanced  hydrophobicity.  The  hemolytic  activity  ofBrevinin-2R and its analogues appeared to correlate with the retention time aswell as the α-helicity. Accordingly, it seems that the combination of incorporating of D-amino acids into lytic peptides and their cyclization may result in developing new antimicrobial peptides with improved properties for treating infectious diseases.

  15. Dynamic Chirality Control of tropos DPCB-digold Skeleton by Chiral Binaphthyldicarboxylate.

    Ito, Shigekazu; Nanko, Masaki; Shinozaki, Tomokazu; Kojima, Masafumi; Aikawa, Kohsuke; Mikami, Koichi


    The planar 3,4-diphosphinidenecyclobutene (DPCB) can be remarkably twisted into a C2 -type helical structure by dual coordination of a AuCl moiety. A prompt chirality control of the twisted DPCB skeleton ligated by the digold units affords the enantiopure structure by exchanging the chloride ligands for chiral [1,1'-binaphthalene]-2,2'-dicarboxylate. The chirality of the diaurated 2,2'-bis(diphenylphosphanyl)-1,1'-biphenyl (BIPHEP) system can be controlled prior to that of DPCB. Mixing of a DPCB-bis(chlorogold) complex with the chiral silver salt dynamically leads to a single diastereomer, which was characterized by the (31) P NMR spectrum and the CD couplet patterns in the visible (DPCB) area. The absolute configuration of the singly induced helical structure was assigned by the theoretical CD spectra determined by TD-DFT calculations. Intramolecular alkoxycyclization of hexa-4,5-dien-1-ol catalyzed by the asymmetric DPCB-digold structure were also attempted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quinine-Based Zwitterionic Chiral Stationary Phase as a Complementary Tool for Peptide Analysis: Mobile Phase Effects on Enantio- and Stereoselectivity of Underivatized Oligopeptides.

    Ianni, Federica; Sardella, Roccaldo; Carotti, Andrea; Natalini, Benedetto; Lindner, Wolfgang; Lämmerhofer, Michael


    Peptide stereoisomer analysis is of importance for quality control of therapeutic peptides, the analysis of stereochemical integrity of bioactive peptides in food, and the elucidation of the stereochemistry of peptides from a natural chiral pool which often contains one or more D-amino acid residues. In this work, a series of model peptide stereoisomers (enantiomers and diastereomers) were analyzed on a zwitterionic ion-exchanger chiral stationary phase (Chiralpak ZWIX(+) 5 µm), in order to investigate the retention and separation performance for such compounds on this chiral stationary phase and elucidate its utility for this purpose. The goal of the study focused on 1) investigations of the effects of the sample matrix used to dissolve the peptide samples; 2) optimization of the mobile phase (enabling deriving information on factors of relevance for retention and separation); and 3) derivation of structure-selectivity relationships. It turned out that small di- and tripeptides can be well resolved under optimized conditions, typically with resolutions larger than 1.5. The optimized mobile phase often consisted of methanol-tetrahydrofuran-water (49:49:2; v/v/v) with 25 mM formic acid and 12.5 mM diethylamine. This work proposes some guidance on which mobile phases can be most efficiently used for peptide stereoisomer separations on Chiralpak ZWIX. Chirality 28:5-16, 2016. © 2015 Wiley Periodicals, Inc.

  17. Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C.

    Lenartowicz, Paweł; Makowski, Maciej; Oszywa, Bartosz; Haremza, Kinga; Latajka, Rafał; Pawełczak, Małgorzata; Kafarski, Paweł


    Addition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C. Depending on diastereomer these compounds most likely act as slowly reacting substrates or competitive inhibitors. This was proved by TLC analysis of the medium in which interaction of methyl (S)-phenylalanyl-(R,S)-(S-adamantyl)cysteinate (7i) with the enzyme was studied. Molecular modeling enabled to establish their mode of binding showed that S2 pocket is long and narrow and accommodates phenyl group of phenylalanine while significantly spacious sites located at the surface of the enzyme (one of them being S1 pocket) bind the adamantyl moiety oriented in different direction for each stereoisomer. Finally replacement of carboxymethyl moiety of methyl (S)-phenylalanyl-(R,S)-(S-phenyl)cysteinate (7c) with nitrile group provided about 650-times more potent inhibitor of cathepsin C indicating that the studied C-terminal S-substituted cysteines are good activity probes for S1 binding pocket of this enzyme. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Cooperativity of axial and centre chirality in the biaryl disulfoxide/Rh(i)-catalysed asymmetric 1,4-addition of arylboronic aids to 2-cyclohexenone: a DFT study.

    Zha, Gao-Feng; Qin, Hua-Li; Kantchev, Eric Assen B


    Atropisomeric biaryl disulfoxides contain two independent chiral elements. Previously, the (M,S,S)-diastereomer showed very high catalytic activity and selectivity in the Rh-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β-enones whereas the (M,R,R) counterpart - none. Herein, DFT computations on the key transmetallation (turnover-determining) and carborhodation (enantioselectivity-determining) steps of the catalytic cycle show that the (M,S,S)-ligand gives rise to lower reaction barriers for these elementary steps. However, the barriers for the (M,R,R)-ligand are not sufficiently high to explain the lack of reactivity. Hence, this phenomenon is most likely due to the failure of catalyst formation from the ligand and the dimeric Rh precatalyst complex. The hitherto unknown (M,S,R)-ligand shows predicted enantioselectivity similar to the (M,S,S)-ligand as a consequence of lower reaction barriers associated with those isomers whose key features resemble the (M,S,S)-ligand.

  19. Capillary electrophoresis and column chromatography in biomedical chiral amino acid analysis.

    Waldhier, Magdalena C; Gruber, Michael A; Dettmer, Katja; Oefner, Peter J


    Free amino acids are typically quantified as the sum of their enantiomers, because in terrestrial organisms they mainly exist in the left-handed form. However, with increasing understanding of the biological significance of right-handed amino acids interest in enantioselective quantification of amino acids has steadily increased. Initially, electrophoretic and chromatographic methods using chiral (pseudo)-stationary phases or chiral eluents were applied to the separation of amino acid enantiomers. Later, derivatization of amino acids prior to chromatography with chiral reagents gained in popularity, because the diastereomers formed can be resolved on conventional reversed-phase columns. Novel multi-interaction chiral columns turned attention back to direct chiral chromatographic methods. Hyphenation to mass spectrometry has increasingly replaced optical detection because of superior selectivity, although this has not obviated the need for baseline resolution of amino acid enantiomers. Despite the progress made, enantioselective separation and quantification of amino acids remains an analytical challenge owing to frequently incomplete resolution of all naturally occurring enantiomers and insufficient sensitivity for the determination of the trace amounts of D-amino acids typically found in biological fluids and tissues.

  20. Potent Synergy between Spirocyclic Pyrrolidinoindolinones and Fluconazole against Candida albicans.

    Premachandra, Ilandari Dewage Udara Anulal; Scott, Kevin A; Shen, Chengtian; Wang, Fuqiang; Lane, Shelley; Liu, Haoping; Van Vranken, David L


    A spiroindolinone, (1S,3R,3aR,6aS)-1-benzyl-6'-chloro-5-(4-fluorophenyl)-7'-methylspiro[1,2,3a,6a-tetrahydropyrrolo[3,4-c]pyrrole-3,3'-1H-indole]-2',4,6-trione, was previously reported to enhance the antifungal effect of fluconazole against Candida albicans. A diastereomer of this compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo-1, was found to enhance the effect of fluconazole with an EC50 value of 300 pM against a susceptible strain of C. albicans and going as low as 2 nM against some resistant strains. Synazo-1 exhibits true synergy with fluconazole, with an FIC index below 0.5 in the strains tested. Synazo-1 exhibited low toxicity in mammalian cells relative to the concentrations required for antifungal synergy.

  1. Unusual traits of cis and trans-2,3-dibromo-1,1-dimethylindane on the way from 1,1-dimethylindene to 2-bromo-, 3-bromo-, and 2,3-dibromo-1,1-dimethylindene

    Stephenson, David S; Lattke, Ernst; Böhrer, Petra; Ruhdorfer, Jakob


    Summary Do not rely on the widely accepted rule that vicinal, sp3-positioned protons in cyclopentene moieties should always have more positive 3 J NMR coupling constants for the cis than for the trans arrangement: Unrecognized exceptions might misguide one to wrong stereochemical assignments and thence to erroneous mechanistic conclusions. We show here that two structurally innocent-looking 2,3-dibromo-1,1-dimethylindanes violate the rule by means of their values of 3 J(cis) = 6.1 Hz and 3 J(trans) = 8.4 Hz. The stereoselective formation of the trans diastereomer from 1,1-dimethylindene was improved with the tribromide anion (Br3 −) as the brominating agent in place of elemental bromine; the ensuing, regiospecific HBr elimination afforded 3-bromo-1,1-dimethylindene. The addition of elemental bromine to the latter compound, followed by thermal HBr elimination, furnished 2,3-dibromo-1,1-dimethylindene, whose Br/Li interchange reaction, precipitation, and subsequent protolysis yielded only 2-bromo-1,1-dimethylindene. PMID:27559369

  2. Synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid vinyl-ACCA) derivatives: key intermediates for the preparation of inhibitors of the hepatitis C virus NS3 protease.

    Beaulieu, Pierre L; Gillard, James; Bailey, Murray D; Boucher, Colette; Duceppe, Jean-Simon; Simoneau, Bruno; Wang, Xiao-Jun; Zhang, Li; Grozinger, Karl; Houpis, Ioannis; Farina, Vittorio; Heimroth, Heidi; Krueger, Thomas; Schnaubelt, Jürgen


    (1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is a key building block in the synthesis of potent inhibitors of the hepatitis C virus NS3 protease such as BILN 2061, which was recently shown to dramatically reduce viral load after administration to patients infected with HCV genotype 1. We have developed a scalable process that delivers derivatives of this unusual amino acid in >99% ee. The strategy was based on the dialkylation of a glycine Schiff base using trans-1,4-dibromo-2-butene as an electrophile to produce racemic vinyl-ACCA, which was subsequently resolved using a readily available, inexpensive esterase enzyme (Alcalase 2.4L). Factors that affect diastereoselection in the initial dialkylation steps were examined and the conditions optimized to deliver the desired diastereomer selectively. Product inhibition, which was encountered during the enzymatic resolution step, initially resulted in prolonged cycle times. Enrichment of racemic vinyl-ACCA through a chemical resolution via diastereomeric salt formation or the use of forcing conditions in the enzymatic reaction both led to improvements in throughput and the development of a viable process. The chemistry described herein was scaled up to produce multikilogram quantities of this building block.

  3. Synthesis and characterization of fac-Re(CO)3-aspartic-N-monoacetic acid, a structural analogue of a potential new renal tracer, fac-(99m)Tc(CO)3(ASMA).

    Klenc, Jeffrey; Lipowska, Malgorzata; Taylor, Andrew T; Marzilli, Luigi G


    The reaction of an aminopolycarboxylate ligand, aspartic-N-monoacetic acid (ASMA), with [Re(CO)3(H2O)3](+) was examined. The tridentate coordination of ASMA to this Re(I) tricarbonyl precursor yielded fac-Re(CO)3(ASMA) as a mixture of diastereomers. The chemistry is analogous to that of the Tc(I) tricarbonyl complex, which yields fac-(99m)Tc(CO)3(ASMA) under similar conditions. The formation, structure, and isomerization of fac-Re(CO)3(ASMA) products were characterized by HPLC, (1)H NMR spectroscopy, and X-ray crystallography. The two major fac-Re(CO)3(ASMA) diastereomeric products each have a linear ONO coordination mode with two adjacent five-membered chelate rings, but they differ in the endo or exo orientation of the uncoordinated acetate group, in agreement with expectations based on previous studies. Conditions have been identified for the expedient isomerization of fac-Re(CO)3(ASMA) to a mixture consisting primarily of one major product. Because different isomeric species typically have different pharmacokinetic characteristics, these conditions may provide for the practical isolation of a single (99m)Tc(CO)3(ASMA) species, thus allowing the isolation of the isomer that has optimal imaging and pharmacokinetic characteristics. This information will aid in the design of future (99m)Tc radiopharmaceuticals.

  4. Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit.

    McGarvey, D J; Christoffersen, R E


    Biosynthesis of the phytohormone ethylene in higher plants proceeds via the following pathway: S-adenosylmethionine----1-aminocyclopropane-1-carboxylic acid (ACC)----ethylene. Ethylene-forming enzyme (EFE), the enzyme responsible for the oxidation of ACC to ethylene, has been only partially characterized in vitro. We have obtained authentic EFE activity in vitro from extracts of avocado fruit (Persea americana Mill. cv Hass). Ammonium sulfate fractionation revealed the presence of two EFE activities, which we designate as EFE1 and EFE2. EFE1 activity utilizes ACC and O2 as substrates and requires Fe(II) and ascorbate as cofactors. The enzyme has a relatively low Km (32 microM) for ACC, discriminates diastereomers of 1-amino-2-ethyl-cyclopropane-1-carboxylic acid, and is inhibited competitively by 2-aminoisobutyric acid, thus confirming its identity with authentic EFE. Activity is retained in a 100,000 x g supernatant and has a pH optimum of 7.5-8.0, suggesting a cytosolic localization.

  5. Bioconversion of 6-(N-methyl-N-phenyl)aminomethyl androstane steroids by Nocardioides simplex.

    Sukhodolskaya, Galina; Fokina, Victoria; Shutov, Andrei; Nikolayeva, Vera; Savinova, Tatiana; Grishin, Yuri; Kazantsev, Alexey; Lukashev, Nikolay; Donova, Marina


    The newly synthesized (α/β)-diastereomers of 6-(N-methyl-N-phenyl)aminomethylandrost-4-ene-3,17-dione (5) and 6-(N-methyl-N-phenyl)aminomethylandrost-4-en-17β-ol-3-one (6) were firstly investigated as substrates for the whole cells of Nocardioides simplex VKM Ac-2033D in comparison with their unsubstituted analogs, - androst-4-ene-3,17-dione (1) and androst-4-en-17β-ol-3-one (2). 1(2)-Dehydroderivatives were identified as the major bioconversion products from all the substrates tested. When using the mixtures of (α/β)-stereoisomers of 5 and 6 as the substrates, only β-stereoisomers of the corresponding 1,4-diene-steroids were formed. Along with 1(2)-dehydrogenation, N. simplex VKM Ac-2033D promoted oxidation of the hydroxyl group at C-17 position of 6: both 6(α) and 6(β) were transformed to the corresponding 17-keto derivatives. No steroid core destruction was observed during the conversion of the 6-substituted androstanes 5 and 6, while it was significant when 1 or 2 was used as the substrate. The results suggested high potentials of N. simplex VKM Ac-2033D for the generation of novel 1(2)-dehydroanalogs.

  6. Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli.

    Li, Kunhua; Li, Gengnan; Bradbury, Louis M T; Hanson, Andrew D; Bruner, Steven D


    Homocysteine S-methyltransferases (HMTs, EC catalyse the conversion of homocysteine to methionine using S-methylmethionine or S-adenosylmethionine as the methyl donor. HMTs play an important role in methionine biosynthesis and are widely distributed among micro-organisms, plants and animals. Additionally, HMTs play a role in metabolite repair of S-adenosylmethionine by removing an inactive diastereomer from the pool. The mmuM gene product from Escherichia coli is an archetypal HMT family protein and contains a predicted zinc-binding motif in the enzyme active site. In the present study, we demonstrate X-ray structures for MmuM in oxidized, apo and metallated forms, representing the first such structures for any member of the HMT family. The structures reveal a metal/substrate-binding pocket distinct from those in related enzymes. The presented structure analysis and modelling of co-substrate interactions provide valuable insight into the function of MmuM in both methionine biosynthesis and cofactor repair.

  7. sup 3 sup 1 P high resolution solid state NMR studies of phosphoorganic compounds of biological interest

    Potrzebowski, M J; Kazmierski, S


    In this review several applications of sup 3 sup 1 P high resolution solid state NMR spectroscopy in structural studies of bioorganic samples is recorded. The problem of pseudopolymorphism of bis[6-O,6'-O-(1,2:3,4diisopropylidene-alpha-D-galactopyranosyl) phosphothionyl] disulfide (1) and application of sup 3 sup 1 P C/MAS experiment to investigate of this phenomenon is discussed. The influence of weak C-H--S intermolecular contacts on molecular packing of 1,6-anhydro-2-O-tosyl-4-S- (5,5-dimethyl-2-thioxa-1,3,2-dioxaphosphophorinan-2-= yl)-beta-D-glucopyranose (2) and S sub P , R sub P diastereomers of deoxyxylothymidyl-3'-O-acetylthymidyl (3',5')-O-(2-cyanoethyl) phosphorothioate (3) and their implication on sup 3 sup 1 P NMR spectra is shown. The final part of review describes the recent progress in structural studies of O-phosphorylated amino acids (serine, threonine, tyrosine), relationship between molecular structure and sup 3 sup 1 P chemical shift parameters delta sub i sub i and influence of hydrogen ...

  8. Enantioresolution of (RS)-baclofen by liquid chromatography: A review.

    Batra, Sonika; Bhushan, Ravi


    Baclofen is a commonly used racemic drug and has a simple chemical structure in terms of the presence of only one stereogenic center. Since the desirable pharmacological effect is in only one enantiomer, several possibilities exist for the other enantiomer for evaluation of the disposition of the racemic mixture of the drug. This calls for the development of enantioselective analytical methodology. This review summarizes and evaluates different methods of enantioseparation of (RS)-baclofen using both direct and indirect approaches, application of certain chiral reagents and chiral stationary phases (though very expensive). Methods of separation of diastereomers of (RS)-baclofen prepared with different chiral derivatizing reagents (under microwave irradiation at ease and in less time) on reversed-phase achiral columns or via a ligand exchange approach providing high-sensitivity detection by the relatively less expensive methods of TLC and HPLC are discussed. The methods may be helpful for determination of enantiomers in biological samples and in pharmaceutical formulations for control of enantiomeric purity and can be practiced both in analytical laboratories and industry for routine analysis and R&D activities.

  9. Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids.

    Mutaguchi, Yuta; Ohmori, Taketo; Akano, Hirofumi; Doi, Katsumi; Ohshima, Toshihisa


    Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria.

  10. Enthalpy of sublimation in the study of the solid state of organic compounds. Application to erythritol and threitol.

    Lopes Jesus, A J; Tomé, Luciana I N; Eusébio, M Ermelinda; Redinha, J S


    The enthalpies of sublimation of erythritol and L-threitol have been determined at 298.15 K by calorimetry. The values obtained for the two diastereomers differ from one another by 17 kJ mol(-1). An interpretation of these results is based on the decomposition of this thermodynamic property in a term coming from the intermolecular interactions of the molecules in the crystal (delta(int)H degrees) and another one related with the conformational change of the molecules on going from the crystal lattice to the most stable forms in the gas phase (delta(conf)H degrees). This last term was calculated from the values of the enthalpy of the molecules in the gas state and of the enthalpy of the isolated molecules with the crystal conformation. Both quantities were obtained by density functional theory (DFT) calculations at the B3LYP/6-311G++(d,p) level of theory. The results obtained in this study show that the most important contribution to the differences observed in the enthalpy of sublimation are the differences in the enthalpy of conformational change (13 kJ mol(-1)) rather than different intermolecular forces exhibited in the solid phase. This is explained by the lower enthalpy of threitol in the gas phase relative to erythritol, which is attributed to the higher strength of the intramolecular hydrogen bonds in the former. The comparison of the calculated infrared spectra obtained for the two compounds in the gas phase supports this interpretation.

  11. Zirconium and hafnium Salalen complexes in isospecific polymerisation of propylene.

    Press, Konstantin; Venditto, Vincenzo; Goldberg, Israel; Kol, Moshe


    The activity of dibenzylzirconium and dibenzylhafnium Salalen complexes in polymerisation of propylene with MAO as a cocatalyst is described. Three Salalen ligand precursors combining a bulky alkyl group (1-adamantyl) on the imine-side phenol and electron withdrawing halo groups of different sizes on the amine-side phenol were explored. All metal complexes were obtained as single diastereomers. An X-ray crystallographic structure of a hafnium complex of an additional ligand carrying the combination of tert-butyl and chloro substituted phenolates, 4-Hf, revealed a fac-mer wrapping of the Salalen ligand around the metal centre. All complexes led to active catalysts in propylene polymerisation and to isotactic polypropylene of high regioregularity. The zirconium complexes led to polypropylene having molecular weights of Mw = 132,000-200,000 and isotacticities of [mmmm] = 65.7-75.0%. The hafnium complexes led to polypropylene of higher molecular weights of Mw = 375,000-520,000 and higher stereoregularities of [mmmm] = 80.6-89.3%, the highest isotacticity obtained with 3-Hf.

  12. Indirect enantioseparation of fluoxetine in mouse serum by derivatization with 1R-(-)-menthyl chloroformate followed by ultra high performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    Zhao, Jing; Jin, Yan; Shin, Yujin; Jeong, Kyung Min; Lee, Jeongmi


    Here we describe a simple and sensitive analytical method for the enantioselective quantification of fluoxetine in mouse serum using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The sample preparation method included a simple deproteinization with acetonitrile in 50 μL of serum, followed by derivatization of the extracts in 50 μL of 2 mM 1R-(-)-menthyl chloroformate at 45ºC for 55 min. These conditions were statistically optimized through response surface methodology using a central composite design. Under the optimized conditions, neither racemization nor kinetic resolution occurred. The derivatized diastereomers were readily resolved on a conventional sub-2 μm C18 column under a simple gradient elution of aqueous methanol containing 0.1% formic acid. The established method was validated and found to be linear, precise, and accurate over the concentration range of 5.0-1000.0 ng/mL for both R and S enantiomers (r(2) > 0.993). Stability tests of the prepared samples at three different concentration levels showed that the R- and S-fluoxetine derivatives were relatively stable for 48 h. No significant matrix effects were observed. Last, the developed method was successfully used for enantiomeric analysis of real serum samples collected at a number of time points from mice administered with racemic fluoxetine.

  13. Studies on the hydrolytic stability of 2'-fluoroarabinonucleic acid (2'F-ANA).

    Watts, Jonathan K; Katolik, Adam; Viladoms, Júlia; Damha, Masad J


    The stability of 2'-deoxy-2'-fluoroarabinonucleic acid (2'F-ANA) to hydrolysis under acidic and basic conditions was compared to that of DNA, RNA and 2'F-RNA. In enzyme-free simulated gastric fluid (pH approximately 1.2), 2'F-ANA was found to have dramatically increased stability (virtually no cleavage observed after 2 days) with respect to both DNA (t(1/2) approximately 2 min) and RNA (t(1/2) approximately 3 h (PO) or 3 days (PS)). These results were observed for both phosphodiester and phosphorothioate backbones and with multiple mixed-base sequences. Under basic conditions, 2'F-ANA also showed good stability. In 1 M NaOH at 65 degrees C, 2'F-ANA had a t(1/2) of approximately 20 h, while RNA was entirely degraded in a few minutes. Furthermore, the nuclease cleavage of phosphorothioate 2'F-ANA and DNA by snake venom phosphodiesterase was studied in detail. One diastereomer of the PS-2'F-ANA linkage was found to be much more vulnerable to enzymatic cleavage than the other, which is parallel to the properties observed for PS-DNA. Additional studies of 2'F-ANA-containing oligonucleotides are warranted based on the excellent stability properties described here.

  14. A micellar electrokinetic chromatography-mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids.

    Moldovan, Radu-Cristian; Bodoki, Ede; Kacsó, Timea; Servais, Anne-Catherine; Crommen, Jacques; Oprean, Radu; Fillet, Marianne


    In the context of bioanalytical method development, process automatization is nowadays a necessity in order to save time, improve method reliability and reduce costs. For the first time, a fully automatized micellar electrokinetic chromatography-mass spectrometry (MEKC-MS) method with in-capillary derivatization was developed for the chiral analysis of d- and l-amino acids using (-)-1-(9-fluorenyl) ethyl chloroformate (FLEC) as labeling reagent. The derivatization procedure was optimized using an experimental design approach leading to the following conditions: sample and FLEC plugs in a 2:1 ratio (15s, 30mbar: 7.5s, 30mbar) followed by 15min of mixing using a voltage of 0.1kV. The formed diastereomers were then separated using a background electrolyte (BGE) consisting of 150mM ammonium perfluorooctanoate (APFO) (pH=9.5) and detected by mass spectrometry (MS). Complete chiral resolution was obtained for 8 amino acids, while partial separation was achieved for 6 other amino acid pairs. The method showed good reproducibility and linearity in the low micromolar concentration range. The applicability of the method to biological samples was tested by analyzing artificial cerebrospinal fluid (aCSF) samples.

  15. A New Alkamide with an Endoperoxide Structure from Acmella ciliata (Asteraceae and Its in Vitro Antiplasmodial Activity

    Narjara Silveira


    Full Text Available From the aerial parts of Acmella ciliata (H.B.K. Cassini (basionym Spilanthes ciliata Kunth; Asteraceae, three alkamides were isolated and identified by mass- and NMR spectroscopic methods as (2E,6E,8E-N-isobutyl-2,6,8-decatrienamide (spilanthol, (1, N-(2-phenethyl-2E-en-6,8-nonadiynamide (2 and (2E,7Z-6,9-endoperoxy-N-isobutyl-2,7-decadienamide (3. While 1 and 2 are known alkamides, compound 3 has not been described until now. It was found that the unusual cyclic peroxide 3 exists as a racemate of both enantiomers of each alkamide; the 6,9-cis- as well as the 6,9-trans-configured diastereomers, the former represents the major, the latter the minor constituent of the mixture. In vitro tests for activity against the human pathogenic parasites Trypanosoma brucei rhodesiense and Plasmodium falciparum revealed that 1 and 3 possess activity against the NF54 strain of the latter (IC50 values of 4.5 and 5.1 µM, respectively while 2 was almost inactive. Compound 3 was also tested against multiresistant P. falciparum K1 and was found to be even more active against this parasite strain (IC50 = 2.1 µM with considerable selectivity (IC50 against L6 rat skeletal myoblasts = 168 µM.

  16. Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates

    Zhihong Xu


    Full Text Available Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs. However, the availability of α-P-borano-γ-P-substituted NTP analogs remains limited due to challenges with synthesis and purification. Here, we report the chemical synthesis and stability of a new potential class of NRTI prodrugs: stavudine (d4T 5′-α-P-borano-γ-P-N-L-tryptophanyltriphosphates. One-pot synthesis of these compounds was achieved via a modified cyclic trimetaphosphate approach. Pure Rp and Sp diastereomers were obtained after HPLC separation. Based on LC-MS analysis, we report degradation pathways, half-lives (5–36 days and mechanisms arising from structural differences to generate the corresponding borano tri- and di-phosphates, and H-phosphonate, via several parallel routes in buffer at physiologically relevant pH and temperature. Here, the major hydrolysis products, d4T α-P-boranotriphosphate Rp and Sp isomers, were isolated by HPLC and identified with spectral data. We first propose that one of the major degradation products, d4T H-phosphonate, was generated from the d4T pronucleotides via a protonation-promoted intramolecular reduction followed by a second step nucleophilic attack. This report could provide valuable information for pronucleotide-based drug design in terms of selective release of target nucleotides.

  17. C2-Symmetric Dibenzosuberane-based Helicenes as Potential Chirochromic Optical Switches and Amorphous Hosts in OLED Applications

    CHEN Chien-Tien; CHOU Y-Chen; KAO Jin-Y; LI Tai-Wei; LIU Chia-Cheng; LI Ying-Chieh; CHANG I-Hsin; LIN Jin-Sheng; YEN Chia-Wen


    @@ Three C2-symmetric (10R,11R)-diethyl substituted dibenzosuberane (DBS)-based helicenes with varying steric and conjugation demands of their bottom fragments were synthesized. Only the helicene-7a[with the bottom part derived from tetralone was found photo-switchable in reasonable time scale. Photoisomerization of the diastereomerically pure (10R,11R,P)-helicene (7a) at 280 nm led to virtually exclusive formation of the opposite M form-diastereomer 7a′ (7a′/7a = 99.6/0.4). The preferential return of 7a′ to 7a can be effected upon irradiation at 254 nm (7a′/7a = 3G/67) or thermally at 130 7a′/7a = 0/100). The photo-induced switching process amounts to a 133% difference in d.e. (from 99.2% to-34%). The concomitant change of helicene chirality between these two diastereomeric photostationary states augurs well for their potential application as an optical switch in LC materials. To our knowledge, our system serves as the best chirochromic optical switch as compared to the examples possessing similar photochromic properties.

  18. C2-Symmetric Dibenzosuberane-based Helicenes as Potential Chirochromic Optical Switches and Amorphous Hosts in OLED Applications

    CHEN; Chien-Tien


    Three C2-symmetric (10R,11R)-diethyl substituted dibenzosuberane (DBS)-based helicenes with varying steric and conjugation demands of their bottom fragments were synthesized. Only the helicene-7a[with the bottom part derived from tetralone was found photo-switchable in reasonable time scale. Photoisomerization of the diastereomerically pure (10R,11R,P)-helicene (7a) at 280 nm led to virtually exclusive formation of the opposite M form-diastereomer 7a′ (7a′/7a = 99.6/0.4). The preferential return of 7a′ to 7a can be effected upon irradiation at 254 nm (7a′/7a = 3G/67) or thermally at 130 7a′/7a = 0/100). The photo-induced switching process amounts to a 133% difference in d.e. (from 99.2% to-34%). The concomitant change of helicene chirality between these two diastereomeric photostationary states augurs well for their potential application as an optical switch in LC materials. To our knowledge, our system serves as the best chirochromic optical switch as compared to the examples possessing similar photochromic properties.……

  19. Half-sandwich (6-arene)ruthenium(II) chiral Schiff base complexes: Analysis of the diastereomeric mixtures in solution by 2D-NMR spectroscopy

    Rakesh K Rath; G A Nagana Gowda; Akhil R Chakravarty


    2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [($\\eta^6$--cymene)Ru(L∗)Cl] (1) and [(6--cymene)Ru(L∗)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L∗ is the anion of ()-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (Ru, C)- and (Ru, C)-diastereomers display the presence of attractive CH/ interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C∗-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C∗) or the methyl group attached to C∗ in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (Ru, C) for the major isomers of 1-3 in solution.

  20. The role of noninnocent solvent molecules in organocatalyzed asymmetric Michael addition reactions.

    Patil, Mahendra P; Sunoj, Raghavan B


    A proline-catalyzed asymmetric Michael addition between ketones and trans-beta-nitrostyrene was studied by using the density-functional theory with mPW1PW91 and B3LYP functionals. Improved insight into the enantio- and diastereoselective formation of gamma-nitroketones/-aldehydes is obtained through transition-state analysis. Consideration of the activation parameters obtained from gas-phase calculations and continuum solvation models failed to reproduce the reported experimental stereoselectivities for the reaction between cyclohexanone and 3-pentanone with trans-beta-nitrostyrene. The correct diastereo- and enantioselectivites were obtained only upon explicit inclusion of solvent molecules in the diastereomeric transition states that pertain to the C--C bond formation. Among the several transition-state models that were examined, the one that exhibits cooperative hydrogen-bonding interactions with two molecules of methanol could explain the correct stereochemical outcome of the Michael reaction. The change in differential stabilization that arises as a result of electrostatic and hydrogen-bonding interactions in the key transition states is identified as the contributing factor toward obtaining the correct diastereomer. This study establishes the importance of including explicit solvent molecules in situations in which the gas-phase and continuum models are inadequate in obtaining meaningful insight regarding experimental stereoselectivities.

  1. A practical synthesis of (+)-discodermolide and analogues: fragment union by complex aldol reactions.

    Paterson, I; Florence, G J; Gerlach, K; Scott, J P; Sereinig, N


    A practical stereocontrolled synthesis of (+)-discodermolide (1) has been completed in 10.3% overall yield (23 steps longest linear sequence). The absolute stereochemistry of the C(1)-C(6) (7), C(9)-C(16) (8), and C(17)-C(24) (9) subunits was established via substrate-controlled, boron-mediated, aldol reactions of the chiral ethyl ketones 10, 11, and 12. Key fragment coupling reactions were a lithium-mediated, anti-selective, aldol reaction of aryl ester 8 (under Felkin-Anh induction from the aldehyde component 9), followed by in situ reduction to produce the 1,3-diol 40, and a (+)-diisopinocampheylboron chloride-mediated aldol reaction of methyl ketone 7 (overturning the inherent substrate induction from the aldehyde component 52) to give the (7S)-adduct 58. The flexibility of our overall strategy is illustrated by the synthesis of a number of diastereomers and structural analogues of discodermolide, which should serve as valuable probes for structure-activity studies.

  2. Metabolism of indole alkaloid tumor promoter, (-)-indolactam V, which has the fundamental structure of teleocidins, by rat liver microsomes

    Hagiwara, N.; Irie, K.; Tokuda, H.; Koshimizu, K.


    Metabolic activation and/or deactivation of indole alkaloid tumor promoter, (-)-indolactam V (ILV), was examined using rat liver microsomes. Reaction of ILV with the microsomes supplemented with NADPH and MgCl/sub 2/ gave three major metabolites, which were identified as (-)-N13-desmethylindolactam V and two diastereomers of (-)-2-oxyindolactam V at C-3. The tumor-promoting activities of these metabolites were evaluated by induction of Epstein-Barr virus early antigen and inhibition of specific binding of (/sup 3/H)-12-O-tetradecanoylphorbol-13-acetate to a mouse epidermal particulate fraction, and proved to be conspicuously lower than that of ILV. These results demonstrate that the metabolism of ILV results in detoxification, and that it itself is the tumor-promoting entity. Studies on the enzymes concerned with this metabolism suggested the involvement of cytochrome P-450-containing mixed-function oxidases. Similar deactivation seems to be possible by skin, where the mixed-function oxidases are known to exist.

  3. Studies toward the Unique Pederin Family Member Psymberin: Structure Activity Relationships, Biochemical Studies and Genetics Identify the Mode of Action of Psymberin

    Wu, Cheng-Yang; Feng, Yu; Cardenas, Eduardo R.; Williams, Noelle; Floreancig, Paul E.; De Brabander, Jef K.; Roth, Michael G.


    Psymberin is the only member of the pederin natural product family that contains a dihydroisocoumarin side chain. Structural modifications of psymberin uncoupled inhibition of protein translation from cytotoxicity, suggesting that psymberin has more than one bioactivity. A forward genetic screen in Caenorhabditis elegans was conducted to identify the molecular target(s) of psymberin. Multiple independent psymberin-resistant mutants were isolated, each containing the same point mutation in a gene encoding a ribosomal protein. However, a psymberin-resistant mutant strain bearing this mutation was not cross-resistant to the pederin family member mycalamide A, which binds to the archaeal form of the same protein. Thus, two pederin family members likely differ in how they bind the same molecular target. The accumulation of psymberin in cells was sensitive to the stereochemistry of the amide side chain at C4 or C8 and the presence of the dihydroisocoumarin side chain. The observation that psymberin diastereomers or dihydroisocoumarin-truncated analogs lose all cytotoxic activity while retaining the ability to inhibit protein translation in a cell-free in vitro assay can be explained in the context of these differential cell uptake issues. Finally, we also demonstrate that the blistering activity associated with pederin and other members of the family is not due to their protein synthesis inhibiting activity. Unlike pederin and mycalamide, psymberin does not display irritant or blistering activity. PMID:23088155

  4. Studies toward the unique pederin family member psymberin: structure-activity relationships, biochemical studies, and genetics identify the mode-of-action of psymberin.

    Wu, Cheng-Yang; Feng, Yu; Cardenas, Eduardo R; Williams, Noelle; Floreancig, Paul E; De Brabander, Jef K; Roth, Michael G


    Psymberin is the only member of the pederin natural product family that contains a dihydroisocoumarin side chain. Structural modifications of psymberin uncoupled inhibition of protein translation from cytotoxicity, suggesting that psymberin has more than one bioactivity. A forward genetic screen in Caenorhabditis elegans was conducted to identify the molecular target(s) of psymberin. Multiple independent psymberin-resistant mutants were isolated, each containing the same point mutation in a gene encoding a ribosomal protein. However, a psymberin-resistant mutant strain bearing this mutation was not cross-resistant to the pederin family member mycalamide A, which binds to the archaeal form of the same protein. Thus, two pederin family members likely differ in how they bind the same molecular target. The accumulation of psymberin in cells was sensitive to the stereochemistry of the amide side chain at C4 or C8 and the presence of the dihydroisocoumarin side chain. The observation that psymberin diastereomers or dihydroisocoumarin-truncated analogs lose all cytotoxic activity while retaining the ability to inhibit protein translation in a cell-free in vitro assay can be explained in the context of these differential cell uptake issues. Finally, we also demonstrate that the blistering activity associated with pederin and other members of the family is not due to their protein synthesis inhibiting activity. Unlike pederin and mycalamide, psymberin does not display irritant or blistering activity.

  5. A novel UV degradation product of Ebastine: isolation and characterization using Q-TOF, NMR, IR and computational chemistry.

    Rapolu, Ravi; Pandey, Avadhesh Kumar; Raju, Ch Krishnam; Ghosh, Kaushik; Srinivas, Kolupula; Awasthi, Atul; Navalgund, Sameer G; Surendranath, Koduru V


    Forced degradation of Ebastine (1-(4-(1,1-dimethylethyl)phenyl)-4-(4-(diphenylmethoxy) piperidin-1-yl)butan-1-one) drug substance in ultraviolet light condition resulted into an unknown significant degradation product. This degradation product was analyzed using a newly developed reverse-phase HPLC, where it was eluted at 2.73 relative retention time to Ebastine peak. UV degradation product was isolated from reaction mass using preparative HPLC and its structure was elucidated using high resolution MS, multidimensional NMR and FTIR spectroscopic techniques. UV degradation product has been characterized as 2-(4-(benzhydryloxy)piperidin-1-yl)-1-(4-(tert-butyl)phenyl)-2-methylcyclopropanol. (1)H and (13)C NMR chemical shift values were generated using computational chemistry for possible two diastereomers (7R10S and 7R10R) and later 7R10R was confirmed (and its enantiomer) as final structure given it showed close agreement with experimental NMR data. Formation of UV degradation product as a recemic mixture was further verified by computational chemistry evaluation, chiral HPLC and polarimetery. To best of our knowledge, this is a novel degradation product which is not discussed at any form of publication yet.

  6. Plasma, tissue and urinary levels of aloin in rats after the administration of pure aloin.

    Park, Mi-Young; Kwon, Hoon-Jeong; Sung, Mi-Kyung


    Aloin is a physiologically active anthraquinone present in aloe. There are two isomers of aloin, aloin A and aloin B, occurring as a mixture of diastereomers. The objective of this study was to determine the bioavailability and tissue distribution of aloin. Rats were gavaged with 11.8g/kg aloin, and the levels of aloin and its conjugates were measured in plasma, tissues, and urine. Plasma aloin level showed a peak at 1hr after the administration and the concentration was 59.07+/-10.5 ng/ml. The 24 h cumulated urinary aloin was 0.03% of the initial dose. These results suggest that aloin is absorbed and reaches a peak plasma level within 1-1.5 h after the administration and a significant portion is possibly metabolized or is excreted in feces. These results can apply to the determination of the adequate intake level of aloe and aloe products to achieve the desired biological effect, and to interprete in vitro study results.

  7. Stereochemical and conformational study on fenoterol by ECD spectroscopy and TD-DFT calculations.

    Tedesco, Daniele; Zanasi, Riccardo; Wainer, Irving W; Bertucci, Carlo


    Fenoterol and its derivatives are selective β2-adrenergic receptor (β2-AR) agonists whose stereoselective biological activities have been extensively investigated in the past decade; a complete stereochemical characterization of fenoterol derivatives is therefore crucial for a better understanding of the effects of stereochemistry on β2-AR binding. In the present project, the relationship between chiroptical properties and absolute stereochemistry of the stereoisomers of fenoterol (1) was investigated by experimental ECD spectroscopy and time-dependent density functional theory (TD-DFT). DFT geometry optimizations were carried out at the RI-B97D/TZVP/IEFPCM(MeOH) level and subsequent TD-DFT calculations were performed using the PBE0 hybrid functional. Despite the large pool of equilibrium conformers found for the investigated compounds and the known limitations of the level of theory employed, the computational protocol was able to reproduce the experimental ECD spectra of the stereoisomers of 1. The main contribution to the overall chiroptical properties was found to arise from the absolute configuration of the chiral center in α-position to the resorcinol moiety. Based on this evidence, a thorough conformational analysis was performed on the optimized DFT conformers, which revealed the occurrence of a different equilibrium between conformational patterns for the diastereomers of fenoterol: the (R,R')/(S,S') enantiomeric pair showed a higher population of folded conformations than the (R,S')/(S,R') pair.

  8. Prediction and determination of the stereochemistry of the 1,3,5-trimethyl-substituted alkyl chain in verucopeptin, a microbial metabolite.

    Yoshimura, Aya; Kishimoto, Shinji; Nishimura, Shinichi; Otsuka, Saori; Sakai, Yuki; Hattori, Akira; Kakeya, Hideaki


    For the prediction of the relative stereochemistry of 1,3-dimethyl substitution in alkyl chains, a simple approach based on (1)H NMR data was recently proposed; Δδ values of methylene protons located between methyl-substituted methine carbons can be diagnostic for predicting it. Here we applied this empirical "geminal proton rule" to verucopeptin, a lipopeptide from Streptomyces sp. To determine the absolute stereochemistry of the 1,3,5-trimethyl-substituted alkyl chain in verucopeptin, we converted the corresponding alkyl chain to a carboxylic acid by oxidative cleavage. The geminal proton rule clearly predicted the relative stereochemistry as 31S*,33S*,35R*. This prediction was definitely confirmed by synthesizing four possible diastereomers and comparing their NMR spectra. Furthermore, we reinvestigated the geminal proton rule using reported compounds and our synthesized compounds. Our result strongly suggests that the rule was solid, at least for predicting the stereochemistry of 2,4-dimethylated and 2,4,6-trimethylated fatty acids.

  9. Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes.

    Rajaratnam, Rajathees; Martin, Elisabeth K; Dörr, Markus; Harms, Klaus; Casini, Angela; Meggers, Eric


    Controlling the relative and absolute configuration of octahedral metal complexes constitutes a key challenge that needs to be overcome in order to fully exploit the structural properties of octahedral metal complexes for applications in the fields of catalysis, materials sciences, and life sciences. Herein, we describe the application of a proline-based chiral tridentate ligand to decisively control the coordination mode of an octahedral rhodium(III) complex. We demonstrate the mirror-like relationship of synthesized enantiomers and differences between diastereomers. Further, we demonstrate, using the established pyridocarbazole pharmacophore ligand as part of the organometallic complexes, the importance of the relative and absolute stereochemistry at the metal toward chiral environments like protein kinases. Protein kinase profiling and inhibition data confirm that the proline-based enantiopure rhodium(III) complexes, despite having all of the same constitution, differ strongly in their selectivity properties despite their unmistakably mutual origin. Moreover, two exemplary compounds have been shown to induce different toxic effects in an ex vivo rat liver model.

  10. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard


    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures.

  11. Supercritical fluid chromatography and steady-state recycling: phase appropriate technologies for the resolutions of pharmaceutical intermediates in the early drug development stage.

    Yan, Tony Q; Orihuela, Carlos; Preston, Jay P; Xia, Fang


    The use of phase appropriate technologies is critical for efficiently moving drug candidates forward in the early stages of drug discovery and development. Phase appropriate purification technology develops the analytical method and subsequently scales up the method and turns the sample around quickly (Kennedy et al., J Chromatogr A 2004; 1046:55). In this article, separation results and conditions from supercritical fluid chromatography (SFC), high-performance liquid chromatography (HPLC), and steady-state recycling (SSR) for the resolutions of three pharmaceutical intermediates in the early stage of the drug development are discussed. The first study used SFC and SSR to separate an impurity for a Good Manufacturing Practice (GMP) campaign. The analytical method development and scale-up conditions are discussed. Productivity, solvent usage, and sample solubility under SFC and SSR conditions are also compared. The second study compared SFC to batch HPLC in separating a diastereomer. Due to higher separation efficiency, SFC was able to resolute multiple peaks. The third study involved the addition of dichloromethane as a co-solvent in SFC purification--improving sample selectivity and solubility. From the separation results of these purifications, SFC and SSR are clearly phase appropriate technologies in the early drug development stage.

  12. Indirect chiral separation of new recreational drugs by gas chromatography-mass spectrometry using trifluoroacetyl-L-prolyl chloride as chiral derivatization reagent.

    Weiß, Jennifer A; Mohr, Stefan; Schmid, Martin G


    New recreational drugs such as amphetamine-, cathinone, and benzofury derivatives gained high popularity on the drug market in recent years. They can be purchased via the Internet from different providers and online portals. Most of these compounds are chiral, which makes the development of chiral separation methods necessary. Besides this, it is useful to find out if the compounds were sold as racemic mixtures. Also, it is important to check whether the new psychoactive compounds contain further ingredients or impurities. The aim of this research was the continuation of the application of a method for indirect chiral separation of 24 new psychoactive compounds recently purchased via the Internet. After derivatization with the chiral derivatization reagent trifluoroacetyl-L-prolyl chloride, chromatographic separation of diastereomers was achieved using a 30 m HP5-MS capillary column. As carrier gas, helium was used with a constant flow of 1.0 ml/min. Three different column temperature programs were tested. Under optimum conditions 13 out of 24 compounds were successfully resolved into their enantiomers obtaining Rs values up to 7.0. The use of a single quadrupole mass spectrometer as the detector allowed the identification of the compounds in multicomponent samples.

  13. Screening Analyses of Pinosylvin Stilbenes, Resin Acids and Lignans in Norwegian Conifers

    Anne Fiksdahl


    Full Text Available The content and distribution of stilbenes and resin acids in Scots pine (Pinus sylvestris and spruce (Picea abies, sampled in central Norway, have been examined. The contents of pinosylvin stilbenes in pine heartwood/living knots were 0.2-2/2-8 % (w/w. No stilbenes could be detected in spruce (Picea abies. The resin acid contents of pine sapwood/heartwood and knots were 1-4 and 5-10 % (w/w, respectively. Minor amounts of resin acids (< 0.2/< 0.04 %w/w were identified in spruce wood/knots. The lignan content in knots of Norwegian spruce was 6.5 % (w/w. Diastereomerically pure hydroxymatairesinol (HMR, 84 % of total lignans was readily isolated from this source since only minor quantities (2.6 % of total lignans of the allo-HMR diastereomer was detected. Insignificant amounts of lignans were present in the sapwood. Lignans could not be detected in the sapwood or knots of Norwegian sallow (Salix caprea, birch (Betula pendula or juniper (Juniperus communis.

  14. Crystal structures of the two epimers from the unusual thermal C6-epimerization of 5-oxo-1,2,3,5,5a,6,7,9b-octahydro-7,9a-epoxypyrrolo[2,1-a]isoindole-6-carboxylic acid, 5a(RS,6(SR,7(RS,9a(SR,9b(SR and 5a(RS,6(RS,7(RS,9a(SR,9b(SR

    Dmitry S. Poplevin


    Full Text Available The isomeric title compounds, C12H13NO4 (Ia and C12H13NO4 (IIa, the products of an usual thermal C6-epimerization of 5-oxo-1,2,3,5,5a,6,7,9b-octahydro-7,9a-epoxypyrrolo[2,1-a]isoindole-6-carboxylic acid, represent the two different diastereomers and have very similar molecular geometries. The molecules of both compounds comprise a fused tetracyclic system containing four five-membered rings (pyrrolidine, pyrrolidinone, dihydrofuran and tetrahydrofuran, all of which adopt the usual envelope conformations. The dihedral angle between the basal planes of the pyrrolidine and pyrrolidinone rings are 14.3 (2 and 16.50 (11°, respectively, for (Ia and (IIa. The nitrogen atom has a slightly pyramidalized geometry [bond-angle sum = 355.9 and 355.3°, for (Ia and (IIa], respectively. In the crystal of (Ia, molecules form zigzag-like hydrogen-bonded chains along [010] through strong O—H...O hydrogen bonds and are further linked by weak C—H...O hydrogen bonds into complex two-tier layers parallel to (100. Unlike (Ia, the crystal of (IIa contains centrosymmetric cyclic hydrogen-bonded dimers [graph set R22(14], formed through strong O—H...O hydrogen bonds and are further linked by weak C—H...O hydrogen bonds into ribbons extending across [101].

  15. Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (ANURA, BUFONIDAE): An unexpected variability in alkaloid profiles and a profusion of new structures.

    Garraffo, H Martin; Andriamaharavo, Nirina R; Vaira, Marcos; Quiroga, María F; Heit, Cecilia; Spande, Thomas F


    GC-MS analysis of single-skins of ten Melanophryniscus rubriventris toads (five collections of two toads each) captured during their breeding season in NW Argentina has revealed a total of 127 alkaloids of which 56 had not been previously detected in any frog or toad. Included among these new alkaloids are 23 new diastereomers of previously reported alkaloids. What is particularly distinguishing about the alkaloid profiles of these ten collections is the occurrence of many of the alkaloids, whether known or new to us, in only one of the ten skins sampled, despite two skins being obtained from each breeding site of the five populations. Many of the alkaloids are of classes known to have structures with branched-chains (e.g. pumiliotoxins and tricyclic structures) that are considered to derive from dietary mites. A large number of previously reported and new alkaloids are also of unclassified structures. Only a very few 3,5-disubstituted-indolizidine or -pyrrolizidine alkaloids are observed that have a straight-chain carbon skeleton and are likely derived from ant prey. The possible relationship of these collections made during the toad's brief breeding episodes to sequestration of dietary arthropods and individual alkaloid profiles is discussed.

  16. Separation of drug stereoisomers by the formation of. beta. -cyclodextrin inclusion complexes

    Armstrong, D.W.; Ward, T.J.; Armstrong, R.D.; Beesley, T.E.


    For many drugs, only racemic mixtures are available for clinical use. Because different stereoisomers of drugs often cause different physiological responses, the use of pure isomers could elicit more exact therapeutic effects. Differential complexation of a variety of drug stereoisomers by immobilized ..beta..-cyclodextrin was investigated. Chiral recognition and racemic resolution were observed with a number of compounds from such clinically useful classes as ..beta..-blockers, calcium-channel blockers, sedative hypnotics, antihistamines, anticonvulsants, diuretics, and synthetic opiates. Separation of the diastereomers of the cardioactive and antimalarial cinchona alkaloids and of two antiestrogens was demonstrated as well. Three dimensional projections of ..beta..-cyclodextrin complexes of propanol, which is resolved by this technique, and warfarin, which is not, are compared. These studies have improved the understanding and application of the chiral interactions of ..beta..-cyclodextrin, and they have demonstrated a means to measure optical purity and to isolate or produce pure enantiomers of drugs. In addition, this highly specific technique could also be used in the pharmacological evaluation of enantiometric drugs. 27 references, 3 figures, 2 tables.

  17. A Tethered Ru-S Complex with an Axial Chiral Thiolate Ligand for Cooperative Si-H Bond Activation: Application to Enantioselective Imine Reduction.

    Wübbolt, Simon; Maji, Modhu Sudan; Irran, Elisabeth; Oestreich, Martin


    An axial chiral version of the 2,6-dimesitylphenyl group attached to sulfur is reported. Its multistep preparation starts from (S)-binol, and the thiol group is established by a racemization-free thermal Newman-Kwart rearrangement. The new chiral thiolate ligand decorated with one mesityl group is used in the synthesis of a tethered ruthenium chloride complex. Its spectroscopic characterization revealed solvent-dependent epimerization at the ruthenium center. The major diastereomer is crystallographically characterized. Chloride abstraction with tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF4) yields the corresponding coordinatively unsaturated ruthenium complex with the Ru-S bond exposed. Si-H bond activation at this Ru-S bond proceeds in syn fashion but with moderate facial selectivity (d.r. = 70:30), generating diastereomeric chiral-at-ruthenium hydrosilane adducts. Their application to catalytic imine hydrosilylation led to promising enantioinduction (40% ee), thereby providing proof of concept for asymmetric catalysis involving cooperative Si-H bond activation.

  18. Immobilization of Jacobsen type catalysts on modified silica

    Jairo Cubillos


    Full Text Available Varios catalizadores tipo Jacobsen fueron inmovilizados por enlace covalente en sílica amorfa previamente funcionalizada con 3-aminopropiltrietoxisilano (3-APTES. La caracterización de estos catalizadores y sus precursores por FTIR, DR UV-VIS, TGA y AAS permitió confirmar la inmovilización de los complejos de salen de Mn(III. Los catalizadores heterogéneos se evaluaron en la epoxidación diastereoselectiva de R-(+-limoneno utilizando dimetildioxirano (DMD generado in situ como agente oxidante, obteniéndose 1,2-epóxido como producto mayoritario. Bajo las mismas condiciones de reacción, los catalizadores heterogéneos mostraron una leve reducción en la selectividad en comparación con el catalizador homogéneo. La selectividad inicial se mantuvo en tres ensayos consecutivos de los catalizadores. Sin embargo, después de tres reusos, se observó pérdida de selectividad del catalizador inmovilizado. Los resultados FTIR sugieren la degradación parcial del catalizador heterogenizado. A pesar de que el método de inmovilización se seleccionó de tal manera que se minimizaran los cambios en la estructura del catalizador homogéneo, el exceso diastereomérico (d.e. se redujo considerablemente con los catalizadores inmovilizados.

  19. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation.

    Campbell, James C; VanSchouwen, Bryan; Lorenz, Robin; Sankaran, Banumathi; Herberg, Friedrich W; Melacini, Giuseppe; Kim, Choel


    The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. Here, we determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a 'gatekeeper' for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalytic subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. These results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B. © 2016 Federation of European Biochemical Societies.

  20. New DNA adducts of crotonaldehyde and acetaldehyde.

    Hecht, S S; McIntee, E J; Wang, M


    This paper summarizes our recent studies on adducts produced in the reactions of the carcinogens crotonaldehyde (2-butenal) and acetaldehyde with deoxyguanosine (dG) and DNA. Human exposure to these carcinogens can be considerable, from both exogenous and endogenous sources. Crotonaldehyde reacts with DNA to form Michael addition products, a pathway that has been well described. We describe a second major pathway, in which 3-hydroxybutanal, formed by addition of H(2)O to crotonaldehyde, reacts with DNA to produce the Schiff base N(2)-(3-hydroxybut-1-ylidene)dG as well as several diastereomers of N(2)-paraldol-dG. Acetaldehyde reacts with DNA and dG giving a major Schiff base adduct, N(2)-ethylidene-dG. A cross-linked adduct of acetaldehyde has been characterized for the first time, and other adducts resulting from the reaction of two and three molecules of acetaldehyde with dG have been observed. The results of these studies demonstrate that some structurally unique adducts are formed from these carcinogenic aldehydes and suggest some new directions for research on the potential role of aldehydes in human cancer.

  1. Synthesis of a family of spirocyclic scaffolds: building blocks for the exploration of chemical space.

    Kumar, Sarvesh; Thornton, Paul D; Painter, Thomas O; Jain, Prashi; Downard, Jared; Douglas, Justin T; Santini, Conrad


    This report describes the preparation of a series of 17 novel racemic spirocyclic scaffolds that are intended for the creation of compound libraries by parallel synthesis for biological screening. Each scaffold features two points of orthogonal diversification. The scaffolds are related to each other in four ways: (1) through stepwise changes in the size of the nitrogen-bearing ring; (2) through the oxidation state of the carbon-centered point of diversification; (3) through the relative stereochemical orientation of the two diversification sites in those members that are stereogenic; and (4) through the provision of both saturated and unsaturated versions of the furan ring in the scaffold series derived from 3-piperidone. The scaffolds provide incremental changes in the relative orientation of the diversity components that would be introduced onto them. The scaffolds feature high sp(3) carbon content which is essential for the three-dimensional exploration of chemical space. This characteristic is particularly evident in those members of this family that bear two stereocenters, i.e., the two series derived from 3-piperidone and 3-pyrrolidinone. In the series derived from 3-piperidone we were able to "split the difference" between the two diastereomers by preparation of their corresponding unsaturated version.

  2. Total synthesis of the indolizidine alkaloid tashiromine

    McElhinney Alison D


    Full Text Available Abstract Background Tashiromine 1 is a naturally occurring indolizidine alkaloid. It has been the subject of thirteen successful total syntheses to date. Our own approach centres on the stereoselective construction of the indolizidine core by capture of an electrophilic acyliminium species by a pendant allylsilane. The key cyclisation precursor is constructed using olefin cross-metathesis chemistry, which has the potential to facilitate both racemic and asymmetric approaches, depending upon the choice of the allylsilane metathesis partner. Results The use of the allyltrimethylsilane cross-metathesis approach enables the rapid construction of the key cyclisation precursor 3 (3 steps from commercial materials, which undergoes acid-induced cyclisation to give the desired bicyclic indolizidine skeleton as a 96:4 mixture of diastereomers. Simple functional group interconversions allowed the completion of the total synthesis of racemic tashiromine in six steps (19% overall yield. Three chiral α-alkoxyallylsilanes (12,14 and 15 were prepared in enantioenriched form and their cross-metathesis reactions studied as part of a putative asymmetric approach to tashiromine. In the event, α-hydroxysilane 12 underwent isomerisation under the reaction conditions to acylsilane 17, while silanes 14 and 15 were unreactive towards metathesis. Conclusion A concise, stereoselective total synthesis of racemic tashiromine has been developed. Attempts to translate this into an asymmetric synthesis have thus far been unsuccessful.

  3. Hydroxypyridyl Imines: Enhancing Chromatographic Separation and Stereochemical Analysis of Chiral Amines via Circular Dichroism.

    Joyce, Leo A; Regalado, Erik L; Welch, Christopher J


    Imine-bond formation between chiral amines and commercially available 3-hydroxypyridine-2-carboxaldehyde (HCA) was exploited for rapid determination of stereochemical composition. Chiral supercritical fluid chromatography (SFC) screening of the derivatized imine compounds led to the elucidation of multiple combinations of mobile and stationary phases that gave resolution of all members of a series of chiral amines. The first eluting enantiomer was generally the derivative of the (R)-amine enantiomer across the series that was studied, indicating that the imine formed from the (S)-amine has more favorable interaction with the chiral stationary phase of the column. These conditions were then applied to more challenging compounds, namely amino alcohols and diastereomers possessing more than one stereocenter. The approach was utilized to monitor stereoselective biocatalytic transamination and assign the absolute configuration of the enantiomeric products. Finally, hydrolysis of the imine bond of the derivative was shown to generate enantiopure amine starting materials without racemization. This further highlights the value of this approach for creating readily reversed derivatives that enhance chromatographic separation and aid in the determination of absolute configuration.

  4. In silico prediction of buffer solubility based on quantum-mechanical and HQSAR- and topology-based descriptors.

    Göller, Andreas H; Hennemann, Matthias; Keldenich, Jörg; Clark, Timothy


    We present an artificial neural network (ANN) model for the prediction of solubility of organic compounds in buffer at pH 6.5, thus mimicking the medium in the human gastrointestinal tract. The model was derived from consistently performed solubility measurements of about 5000 compounds. Semiempirical VAMP/AM1 quantum-chemical wave function derived, HQSAR-derived logP, and topology-based descriptors were employed after preselection of significant contributors by statistical and data mining approaches. Ten ANNs were trained each with 90% as a training set and 10% as a test set, and deterministic analysis of prediction quality was used in an iterative manner to optimize ANN architecture and descriptor space, based on Corina 3D molecular structure and AM1/COSMO single point wave function. In production mode, a mean prediction value of the 10 ANNs is created, as is a standard deviation based quality parameter. The productive ANN based on Corina geometries and AM1/COSMO wave function gives an r2cv of 0.50 and a root-mean-square error of 0.71 log units, with 87 and 96% of the compounds having an error of less than 1 and 1.5 log units, respectively. The model is able to predict permanently charged species, e.g. zwitterions or quaternary amines, and problematic structures such as tautomers and unresolved diastereomers almost as well as neutral compounds.

  5. Cathodic hydrodimerization of nitroolefins

    Michael Weßling


    Full Text Available Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  6. Cathodic hydrodimerization of nitroolefins.

    Weßling, Michael; Schäfer, Hans J


    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C-C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  7. Octahedral Complexes with Predetermined Helical Chirality: Xylene-Bridged Bis([4,5]-pineno-2,2'-bipyridine) Ligands (Chiragen[o-, m-, p-xyl]) with Ruthenium(II).

    Mürner, Hansruedi; von Zelewsky, Alex; Stoeckli-Evans, Helen


    Tetradentate ligands are obtained by joining two optically active [4,5]-pineno-2,2'-bipyridine molecules in a stereoselective reaction, where two new stereogenic centers are created. These ligands are new members of the chiragen family that form OC-6 complexes with predetermined helical chirality. Ru(II) complexes with 4,4'-dimethyl-2,2'-bipyridine occupying the remaining coordination sites have been synthesized with all three new ligands. Characterization of the ruthenium complexes by NMR spectroscopy confirm C(2)-symmetric structures in solution. CD spectra show that the complexes are composed of only one helical diastereomer with the expected absolute configurations. In addition, a strong chiral amplification is observed, if precursors of low enantiomeric purity are used. This is due to the inability of ligands that are heterochiral in the two bpy moieties to coordinate to one center. X-ray structural data were obtained for the complex Delta-[RuCG[o-xyl](4,4'-DMbpy)](PF(6))(2). Crystal data (Mo Kalpha, 298 K): trigonal, space group R3, a = 52.986(4) Å, c = 10.545(1) Å, V = 25639(4) Å(3), Z = 18, R1 = 0.087, and wR2 = 0.0986 for 2609 observed reflections.

  8. Daring the Challenge and Thinking Big: The Value of Early Process R&D.

    Abele, Stefan; Funel, Jacques-Alexis; Schmidt, Gunther; Moessner, Christian; Schwaninger, Mischa; Marti, Roger

    The production of the L/T channel blocker ACT-280778 required the enantiomerically pure 5-phenylbicyclo[2.2.2]oct-5-en-2-one (1) as key building block. As the published routes towards 1 are very low yielding (<0.5% yield) and comprise many steps that are not acceptable for scale-up, a series of processes to 1 was developed to match the increasing requirements from first kg-batches to clinical supplies. The three routes are characterized by an individual asset. (1) The first route contains a scale-up of a Diels-Alder reaction with highly reactive reagents and afforded 90 kg enantiomerically pure 1. To mitigate safety risks, a flow reactor was developed for the high-temperature Diels-Alder reaction. This route relied on an efficient enantiomer separation on a ¼-ton scale by HPLC. (2) A Crystallization Induced Diastereomer Transformation (CIDT) during an intramolecular aldol reaction was the pivotal step of a first enantioselective route that starts with the Shibasaki reaction. (3) The 2(nd) enantioselective route represents a rare example of organocatalysis on scale and allowed to skip six out of nine steps with a significant impact on the cost of goods. This simple way to 1 opened up a short synthesis of Hayashi's chiral diene ligands (bod*) that were so far lacking an affordable access. Some of these novel C1-symmetrical dienes have shown very high enantioselectivities in Rh-catalyzed additions of arylboronates.

  9. Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5'-aldehyde transaldolase.

    Barnard-Britson, Sandra; Chi, Xiuling; Nonaka, Koichi; Spork, Anatol P; Tibrewal, Nidhi; Goswami, Anwesha; Pahari, Pallab; Ducho, Christian; Rohr, Jurgen; Van Lanen, Steven G


    The lipopeptidyl nucleoside antibiotics represented by A-90289, caprazamycin, and muraymycin are structurally highlighted by a nucleoside core that contains a nonproteinogenic β-hydroxy-α-amino acid named 5'-C-glycyluridine (GlyU). Bioinformatic analysis of the biosynthetic gene clusters revealed a shared open reading frame encoding a protein with sequence similarity to serine hydroxymethyltransferases, resulting in the proposal that this shared enzyme catalyzes an aldol-type condensation with glycine and uridine-5'-aldehyde to furnish GlyU. Using LipK involved in A-90289 biosynthesis as a model, we now functionally assign and characterize the enzyme responsible for the C-C bond-forming event during GlyU biosynthesis as an l-threonine:uridine-5'-aldehyde transaldolase. Biochemical analysis revealed this transformation is dependent upon pyridoxal-5'-phosphate, the enzyme has no activity with alternative amino acids, such as glycine or serine, as aldol donors, and acetaldehyde is a coproduct. Structural characterization of the enzyme product is consistent with stereochemical assignment as the threo diastereomer (5'S,6'S)-GlyU. Thus this enzyme orchestrates C-C bond breaking and formation with concomitant installation of two stereocenters to make a new l-α-amino acid with a nucleoside side chain.

  10. Influence of Soil Factors on the Stereoselective Fate of a Novel Chiral Insecticide, Paichongding, in Flooded Paddy Soils.

    Li, Juying; Huang, Tuo; Li, Lizong; Ding, Tengda; Zhu, Hong; Yang, Bo; Ye, Qingfu; Gan, Jay


    In this study, the fate of paichongding was investigated in three soils with contrasting soil properties. In general, low soil pH has the potential to retard the mineralization and promote the dissipation of paichongding and the formation of its primary transformation product and to accelerate the formation of bound residue. The dissipation of paichongding stereoisomers was very fast and diastereoselective. This selectivity was found only between diastereomers and not between enantiomers and was observed to be soil dependent. In the acidic soil, the enantiomers (5R,7R)- and (5S,7S)-paichongding were degraded more quickly than (5R,7S)- and (5S,7R)-paichongding, whereas a contrary trend was observed in the neutral soil, and such selectivity did not occur in the alkaline soil. The OM and clay contents also played important roles in the fate of paichongding. This effect of soil properties should be considered in risk assessment of chiral pesticides and their application in the field.

  11. Isolation and identification of trans-2- and trans-3-hydroxy-1,8-cineole glucosides from Alpinia galanga.

    Someya, Y; Kobayashi, A; Kubota, K


    Three hydroxy-1,8-cineole glucopyranosides, (1R, 2R, 4S)- and (1S, 2S, 4R)-trans-2-hydroxy-1,8-cineole beta-D-glucopyranosides, and (1R, 3S, 4S)-trans-3-hydroxy-1,8-cineole beta-D-glucopyranoside, which are possible precursors of acetoxy-1,8-cineoles as unique aroma components, were isolated from the rhizomes of greater galangal (Alpinia galanga W.). Their structures were analyzed by FAB-MS and NMR spectrometry, and the absolute configulation of each aglycone was determined by using a GC-MS analysis with a capillary column coated with a chiral stationary phase. The composition of the diastereomers of (1R, 2R, 4S)- and (1S, 2S, 4R)-trans-2-hydroxy-1,8-cineole beta-D-glucopyranosides in the rhizomes was determined as 3:7 by a GC-MS analysis after preparing the trifluoroacetate derivatives of the glucosides.

  12. Synthesis and self-assembly of glycal-based bolaforms.

    Bozell, Joseph J; Tice, Nathan C; Sanyal, Nibedita; Thompson, David; Kim, Jong-Mok; Vidal, Sébastien


    Glycal-based bolaforms serve as synthetically flexible components of molecular self-assembly. The compounds are prepared in good yield by a Ferrier reaction between triacetylglucal or -galactal or diacetylxylal and a long chain alpha,omega-diol, followed by deacetylation under Zemplen conditions. The reactions are stereoselective and preferentially afford the alpha-diastereomer. The bolaforms undergo self-assembly in water or water/dioxane solution to give a variety of nanostructures. In solution, bolaforms with C8 or C10 chains between glucal headgroups form nanoscale vesicles. In contrast, bolaforms with C12 chains exhibit lower solubility and a dynamic self-assembly, forming several different nanoscale structures. However, the solid-state structures of C12 bolaform isomers adopt shapes very similar to those of bolaforms possessing more extensive hydrogen-bonding networks, indicating that multiple hydrogen bonds in solution are important to formation of stable, discrete nanostructures but that only a few key intermolecular interactions between bolaform headgroups are necessary to determine the structure in the solid state. The diversity and differentiation of the functional groups present in glycal-based bolaforms suggest that they could be useful probes of the various noncovalent forces controlling the structure of new nanomaterials.

  13. Two Major Bile Acids in the Hornbills, (24R,25S)-3α,7α,24-Trihydroxy-5β-cholestan-27-oyl Taurine and Its 12α-Hydroxy Derivative.

    Satoh, Rika; Ogata, Hiroaki; Saito, Tetsuya; Zhou, Biao; Omura, Kaoru; Kurabuchi, Satoshi; Mitamura, Kuniko; Ikegawa, Shigeo; Hagey, Lee R; Hofmann, Alan F; Iida, Takashi


    Two major bile acids were isolated from the gallbladder bile of two hornbill species from the Bucerotidae family of the avian order Bucerotiformes Buceros bicornis (great hornbill) and Penelopides panini (Visayan tarictic hornbill). Their structures were determined to be 3α,7α,24-dihydroxy-5β-cholestan-27-oic acid and its 12α-hydroxy derivative, 3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid (varanic acid, VA), both present in bile as their corresponding taurine amidates. The four diastereomers of varanic acid were synthesized and their assigned structures were confirmed by X-ray crystallographic analysis. VA and its 12-deoxy derivative were found to have a (24R,25S)-configuration. 13 additional hornbill species were also analyzed by HPLC and showed similar bile acid patterns to B. bicornis and P. panini. The previous stereochemical assignment for (24R,25S)-VA isolated from the bile of varanid lizards and the Gila monster should now be revised to the (24S,25S)-configuration.

  14. Between peptides and bile acids: self-assembly of phenylalanine substituted cholic acids.

    Travaglini, Leana; D'Annibale, Andrea; di Gregorio, Maria Chiara; Schillén, Karin; Olsson, Ulf; Sennato, Simona; Pavel, Nicolae V; Galantini, Luciano


    Biocompatible molecules that undergo self-assembly are of high importance in biological and medical applications of nanoscience. Peptides and bile acids are among the most investigated due to their ability to self-organize into many different, often stimuli-sensitive, supramolecular structures. With the aim of preparing molecules mixing the aggregation properties of bile acid and amino acid-based molecules, we report on the synthesis and self-association behavior of two diastereomers obtained by substituting a hydroxyl group of cholic acid with a l-phenylalanine residue. The obtained molecules are amphoteric, and we demonstrate that they show a pH-dependent self-assembly. Both molecules aggregate in globular micelles at high pH, whereas they form tubular superstructures under acid conditions. Unusual narrow nanotubes with outer and inner cross-section diameters of about 6 and 3 nm are formed by the derivatives. The diasteroisomer with α orientation of the substituent forms in addition a wider tubule (17 nm cross-section diameter). The ability to pack in supramolecular tubules is explained in terms of a wedge-shaped bola-form structure of the derivatives. Parallel or antiparallel face-to-face dimers are hypothesized as fundamental building blocks for the formation of the narrow and wide nanotubes, respectively.

  15. Direct assignment of the absolute configuration of a distinct class of deoxyribonucleoside cyclic N-acylphosphoramidites at phosphorus by M-GOESY nuclear magnetic resonance spectroscopy.

    Wilk, Andrzej; Grajkowski, Andrzej; Bull, Thomas E; Dixon, Ann M; Freedberg, Darón I; Beaucage, Serge L


    The determination of the absolute configuration of deoxyribonucleoside cyclic N-acylphosphoramidites at phosphorus toward the synthesis of P-stereodifined phosphorothioated oligodeoxyribonucleotides is easily accomplished with computer-assisted molecular modeling and M-GOESY NMR spectroscopy. Specifically, computer-modeling diasteromeric phosphoramidite 3 has identifed a proximal (2.55 A) through-space interaction between benzylic H-5 and sugar H-2' ', which can predictably be detected by M-GOESY NMR in SP-3 but not in RP-3 because of being too distant (5.85 A). Consistent with computer-assisted modeling predictions, M-GOESY NMR spectra of SP-3 and RP-3 revealed NOE signals generated from nuclei near the selectively excited H-2' ' that are common to both SP-3 and RP-3, namely those of H-2', H-4', H-3', and H-1'. In addition, a diagnostic NOE signal at 5.5 ppm (benzylic H-5) is, as predicted, only detected in SP-3 and thus provides an unequivocal assessment of the configuration of the diastereomer at phosphorus. M-GOESY NMR data also confirm that the condensation of deoxyribonucleoside cyclic N-acylphosphoramidites with base-activated nucleosidic or nucleotidic 5'-hydroxyls proceeds via a single nucleophilic event.

  16. A fast and inexpensive procedure for the isolation of synthetic cannabinoids from 'Spice' products using a flash chromatography system.

    Moosmann, Bjoern; Kneisel, Stefan; Wohlfarth, Ariane; Brecht, Volker; Auwärter, Volker


    In the age of the Internet, the variety of drugs offered online is constantly increasing, and new drugs emerge every month. One group of drugs showing such an enormous increase is that of synthetic cannabinoids. Since their first identification in 'herbal mixtures', new structural modifications continue to appear on the market. In order to keep up with this process, toxicological screening methods need to be up to date. This can become extremely difficult if no reference material is available. In this article, a fast and effective way to extract and purify synthetic cannabinoids from 'herbal mixtures' is presented. This method opens a new opportunity for a timely reaction by obtaining reference material straight out of the 'herbal mixtures' ordered via the Internet. Isolation was carried out on a flash chromatography system with gradient elution on a C18 column using methanol and 0.55 % formic acid as mobile phases. The obtained purity of all compounds exceeded 99 %. In addition to the isolation of single compounds, the method proved to be suitable for the separation of various synthetic cannabinoids in one mixture, including the diastereomers cis- and trans-CP-47,497-C8. This approach for obtaining pure standards of new drugs proved to be effective, inexpensive and much quicker than waiting for the substances to be commercially available as reference material.

  17. Non-racemic amino acids in the Murray and Murchison meteorites.

    Pizzarello, S; Cronin, J R


    Small (1.0-9.2%) L-enantiomer excesses were found in six alpha-methyl-alpha-amino alkanoic acids from the Murchison (2.8-9.2%) and Murray (1.0-6.0%) carbonaceous chondrites by gas chromatography-mass spectroscopy of their N-trifluoroacetyl or N-pentafluoropropyl isopropyl esters. These amino acids [2-amino-2,3-dimethylpentanoic acid (both diastereomers), isovaline, alpha-methyl norvaline, alpha-methyl valine, and alpha-methyl norleucine] are either unknown or rare in the terrestrial biosphere. Enantiomeric excesses were either not observed in the four alpha-H-alpha-amino alkanoic acids analyzed (alpha-amino-n-butyric acid, norvaline, alanine, and valine) or were attributed to terrestrial contamination. The substantial excess of L-alanine reported by others was not found in the alanine in fractionated extracts of either meteorite. The enantiomeric excesses reported for the alpha-methyl amino acids may be the result of partial photoresolution of racemic mixtures caused by ultraviolet circularly polarized light in the presolar cloud. The alpha-methyl-alpha-amino alkanoic acids could have been significant in the origin of terrestrial homochirality given their resistance to racemization and the possibility for amplification of their enantiomeric excesses suggested by the strong tendency of their polymers to form chiral secondary structure.

  18. Chiral Recognition of Diketopiperazine Cyclo(Pro-Gly) and Propranolol Using (-)-Epigallocatechin-3-O-gallate.

    Ishizu, Takashi; Tsutsumi, Hiroyuki; Yokoyama, Emi; Tanabe, Haruka; Yokoyama, Aoi


    In the (1)H-NMR spectrum of a solution containing an equimolecular amount of cyclo(L-Pro-Gly), cyclo(D-Pro-Gly) and (-)-epigallocatechin-3-O-gallate (EGCg) in a D2O, a difference in the chemical shift of (1)H-NMR signal for H7α, H7β,8α of the Pro residue was observed. Judging from the crystal structures of the 2 : 2 complexes of EGCg and cyclo(L-Pro-Gly), cyclo(D-Pro-Gly), the difference in the chemical shift resulted mainly from a magnetic anisotropic shielding effect by the ring current from the B ring of EGCg. Therefore, it was considered that chirality of cyclo(Pro-Gly) was recognized by EGCg in the D2O solution. Furthermore, in the (1)H-NMR spectrum of a solution containing an equimolecular amount of racemic propranolol ((R)- and (S)-propranolols) and EGCg in D2O, the (1)H-NMR signal for H2 of the naphthalene group was observed as two doublets, suggesting that the racemic propranolol formed diastereomers of complexes with EGCg; as a result, chirality of propranolol was recognized by EGCg in the D2O solution.

  19. Fate and effect of hexabromocyclododecane in the environment

    Hunziker, R.W.; Friederich, U. [Dow Europe, GmbH, Horgen (Switzerland); MacGregor, J.A.; Desjardins, D. [Wildlife International, Ltd., Easton, MD (United States); Ariano, J. [Great Lakes Chemical Corp., West Lafayette, IN (United States); Gonsior, S.


    Hexabromocyclododecane (HBCD) is used as a flame retardant mainly in building insulation composed of extruded or expanded polystyrene foam. A minor use is in flame retardant back-coats of some upholstery textiles. Sales in Europe are estimated to be 9000 t/yr. HBCD has been detected in a number of environmental samples mainly in sediment of urban areas. In a series of acute aquatic toxicity tests, no effect was exhibited at concentrations equal to or below the water solubility of the technical product which consists of ca. 85% {gamma} diastereomer. However, considerable bioconcentration has been reported (log BCF=4). In recent work it has been reported that a shift occurs along the food chain, from {gamma}, the predominant isomer in the technical product, to the {alpha} isomer. HBCD is very hydrophobic and not readily biodegradable, and has been presumed to be persistent in the environment. It is therefore important to have a good understanding of the environmental fate and lifetime of all HBCD isomers. This paper describes new findings on the water solubility of HBCD with respect to its 3 individual isomers, presents results on the acute toxicity in the marine alga Skeletonema costatum at the limit of solubility of all individual isomers and shows first data of an ongoing fate study with {sup 14}C-HBCD where the primary biodegradation of the individual metabolites is differentiated.

  20. Towards the chiral metabolomics: Liquid chromatography–mass spectrometry based DL-amino acid analysis after labeling with a new chiral reagent, (S)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl) pyrrolidine-2-carboxylate, and the application to saliva of healthy volunteers

    Mochizuki, Toshiki; Takayama, Takahiro; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo’oka, Toshimasa, E-mail:


    Highlights: • A novel chiral labeling reagent was synthesized. • Analysis of DL-amino acids was performed by UPLC–ESI-MS/MS. • Efficient enantioseparation and detection of DL-amino acids were performed. • DL-Amino acid in saliva was successfully determined under mild conditions. - Abstract: A novel triazine-type chiral derivatization reagent, i.e., (S)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl) pyrrolidine-2-carboxylate (DMT-(S)-Pro-OSu), was developed for the highly sensitive and selective detection of chiral amines and amino acids by UPLC–MS/MS analysis. The enantiomers of amino acids were easily labeled with the reagents at room temperature within 40 min in an alkaline medium containing triethylamine. The diastereomers derived from proteolytic amino acids, except serine, were well separated under isocratic elution conditions by reversed-phase chromatography using an ODS column (R{sub s} = 1.2–9.0). DL-Serine was separated by use of an ADME column which has relatively higher polar surface than the conventional ODS column. The characteristic product ions, i.e., m/z 195.3 and m/z 209.3, were detected from all the diastereomers by the collision-induced dissociation of the protonated molecule. A highly sensitive detection on the amol–fmol level was obtained from the selected reaction monitoring (SRM) chromatogram. The chiral amines (e.g., adrenaline and noradrenaline) labeled with DMT-(S)-Pro-OSu were also well separated and sensitively detected by the present procedure. The method using DMT-(S)-Pro-OSu was used for the determination of DL-amino acids in the human saliva from healthy volunteers. Various L-amino acids were identified in the saliva. Furthermore, D-alanine (D-Ala) and D-proline (D-Pro) were also detected in relatively high concentrations (>5%). The ratio was higher in male saliva than in female saliva. However, the difference in the ratio of D-Ala for one day was not very high and the effect of foods and beverage

  1. Chiral metal-dithiolene/viologen ion pairs: synthesis and electrical conductivity.

    Kisch, H; Eisen, B; Dinnebier, R; Shankland, K; David, W I; Knoch, F


    postulated to occur by disproportionation of the monoanion as suggested by the almost linear increase of log(sigma) with decreasing disproportionation energy. The conductivity of diastereomers of ions with two unlike configurations like [(S,S)-HiBV]-[Ni[(R,R)-diotte]2]2 (1.1 x 10(-1) ohm(-1) cm(-1)) is one to two orders of magnitude higher as compared to the diastereomers with two like-configured ions.

  2. Towards the chiral metabolomics: Liquid chromatography-mass spectrometry based DL-amino acid analysis after labeling with a new chiral reagent, (S)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidine-2-carboxylate, and the application to saliva of healthy volunteers.

    Mochizuki, Toshiki; Takayama, Takahiro; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa


    A novel triazine-type chiral derivatization reagent, i.e., (S)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl) pyrrolidine-2-carboxylate (DMT-(S)-Pro-OSu), was developed for the highly sensitive and selective detection of chiral amines and amino acids by UPLC-MS/MS analysis. The enantiomers of amino acids were easily labeled with the reagents at room temperature within 40 min in an alkaline medium containing triethylamine. The diastereomers derived from proteolytic amino acids, except serine, were well separated under isocratic elution conditions by reversed-phase chromatography using an ODS column (Rs=1.2-9.0). DL-Serine was separated by use of an ADME column which has relatively higher polar surface than the conventional ODS column. The characteristic product ions, i.e., m/z 195.3 and m/z 209.3, were detected from all the diastereomers by the collision-induced dissociation of the protonated molecule. A highly sensitive detection on the amol-fmol level was obtained from the selected reaction monitoring (SRM) chromatogram. The chiral amines (e.g., adrenaline and noradrenaline) labeled with DMT-(S)-Pro-OSu were also well separated and sensitively detected by the present procedure. The method using DMT-(S)-Pro-OSu was used for the determination of DL-amino acids in the human saliva from healthy volunteers. Various L-amino acids were identified in the saliva. Furthermore, D-alanine (D-Ala) and D-proline (D-Pro) were also detected in relatively high concentrations (>5%). The ratio was higher in male saliva than in female saliva. However, the difference in the ratio of D-Ala for one day was not very high and the effect of foods and beverage seemed to be negligible. Based on the results using L-Ala-d3, the D-Ala in saliva seemed to be produced due to the racemization with some enzymes such as racemase. The racemization reaction was reversible, i.e., D-Ala-d3 was also racemized to L-Ala-d3 in saliva. Thus, care should be taken during the analysis of DL

  3. Separation of Cyclic Dipeptides (Diketopiperazines from Their Corresponding Linear Dipeptides by RP-HPLC and Method Validation

    Mareike Perzborn


    Full Text Available Simple, rapid, sensitive, precise, and accurate methods for detection and separation of seven diketopiperazines (DKPs, cyclo(Gly-Gly, cyclo(dl-Ala-dl-Ala, cyclo(l-Asp-l-Phe, cyclo(l-Asp-l-Asp, cyclo(Gly-l-Phe, cyclo(l-Pro-l-Tyr, and cyclo(l-Arg-l-Arg, from their corresponding linear dipeptides and related amino acids l-Phe and l-Tyr by reversed-phase high-performance liquid chromatography (RP-HPLC were established. Moreover, for the racemic DKP cyclo(dl-Ala-dl-Ala and dipeptide dl-Ala-dl-Ala, separation of the diastereomers was achieved. All methods can be performed within 15 min. For all DKPs, dipeptides, and amino acids, linear ranges with correlation coefficients R2 greater than 0.998 were determined. Lowest limits of detection were found to be between 0.05 and 10 nmol per 10 μL injection, depending on the substance. For all tested substances intrarun and interrun precision ranged from 0.5 to 4.7% and 0.7 to 9.9% relative standard deviation, and accuracy was between −4.2 and 8.1% relative error. Short-term and freeze-thaw stabilities were 93% or greater for all substances. Recovery rate after heat treatment was determined to be at least 97%. These methods will be useful for quantitative determination of DKPs and their potential biodegradation products: dipeptides and amino acids

  4. Accumulation and phytotoxicity of technical hexabromocyclododecane in maize.

    Wu, Tong; Huang, Honglin; Zhang, Shuzhen


    To investigate the accumulation and phytotoxicity of technical hexabromocyclododecane (HBCD) in maize, young seedlings were exposed to solutions of technical HBCD at different concentrations. The uptake kinetics showed that the HBCD concentration reached an apparent equilibrium within 96hr, and the accumulation was much higher in roots than in shoots. HBCD accumulation in maize had a positive linear correlation with the exposure concentration. The accumulation of different diastereoisomers followed the order γ-HBCD>β-HBCD>α-HBCD. Compared with their proportions in the technical HBCD exposure solution, the diastereoisomer contribution increased for β-HBCD and decreased for γ-HBCD in both maize roots and shoots with exposure time, whereas the contribution of α-HBCD increased in roots and decreased in shoots throughout the experimental period. These results suggest the diastereomer-specific accumulation and translocation of HBCD in maize. Inhibitory effects of HBCD on the early development of maize followed the order of germination rate>root biomass≥root elongation>shoot biomass≥shoot elongation. Hydroxyl radical (OH) and histone H2AX phosphorylation (γ-H2AX) were induced in maize by HBCD exposure, indicative of the generation of oxidative stress and DNA double-strand breaks in maize. An OH scavenger inhibited the expression of γ-H2AX foci in both maize roots and shoots, which suggests the involvement of OH generation in the HBCD-induced DNA damage. The results of this study will offer useful information for a more comprehensive assessment of the environmental behavior and toxicity of technical HBCD.

  5. Mechanisms for the formation of isoprostane endoperoxides from arachidonic acid. "Dioxetane" intermediate versus beta-fragmentation of peroxyl radicals.

    Yin, Huiyong; Havrilla, Christine M; Gao, Ling; Morrow, Jason D; Porter, Ned A


    The isoprostanes are a class of autoxidation products generated from arachidonic acid (or its esters) by a free radical initiated process. The potent biological activity of these compounds has been attracting intense research interest since they were detected in humans as well as animal models in the early 1990s. The measurement of these compounds has been regarded as one of the most useful non-invasive biomarkers for oxidative stress status. Two mechanisms for the formation of these compounds have been proposed. In the first mechanism, a peroxyl radical undergoes successive 5-exo cyclizations analogous to the enzymatic mechanism proposed for prostaglandin biosynthesis. The second mechanism starts with a 4-exo cyclization of a peroxyl radical leading to an intermediate dioxetane, a mechanism that has also been proposed for prostaglandin biosynthesis as well as for the formation of 4-hydroxy nonenal (HNE). Autoxidation of cholesteryl-15-HpETE under free radical conditions provides Type IV isoprostanes. The "dioxetane" mechanism for isoprostane generation from 15-HpETE requires that optically pure products are formed from an optically pure reactant, whereas an alternate mechanism for the process involving beta-fragmentation of the 15-peroxyl would give racemic isoprostane products. We have carried out a test of the mechanism based upon these stereochemical requirements. The results of analysis of the product mixture derived from autoxidation of optically pure Ch-15-HpETE by atmospheric pressure chemical ionization-mass spectrometry coupled with chiral high performance liquid chromatography indicate that the major isoprostane diastereomers are formed as a racemic mixture. These experimental results are consistent with a mechanism for isoprostane formation involving beta-fragmentation of the 15-peroxyl radical followed by re-addition of oxygen to form the 11-HPETE peroxyl, and they exclude a mechanism proceeding through the formation of a dioxetane intermediate.

  6. Metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the patas monkey: pharmacokinetics and characterization of glucuronide metabolites.

    Hecht, S S; Trushin, N; Reid-Quinn, C A; Burak, E S; Jones, A B; Southers, J L; Gombar, C T; Carmella, S G; Anderson, L M; Rice, J M


    The metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was examined in the patas monkey, in order to provide further information about NNK metabolic pathways in primates. Female patas monkeys were given i.v. injections of [5-3H]NNK, and metabolites in serum and urine were analyzed by HPLC. Metabolism by alpha-hydroxylation of NNK was rapid and extensive, and the products of this pathway, 4-hydroxy-4-(3-pyridyl)butyric acid and 4-oxo-4-(3-pyridyl) butyric acid, accounted for a relatively large proportion of serum and urinary metabolites at all time points. This is significant because the formation of these products is associated with modification of DNA by NNK. The other major metabolic pathway was carbonyl reduction to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which detected both unconjugated and diastereomeric O-glucuronides. One of these glucuronides had been previously identified in rat urine, but the other diastereomer, which was the more prevalent of the two in serum and urine, had not been observed in studies of NNK metabolism in rodents. It was characterized by its spectral properties, by enzymatic hydrolysis to NNAL, and by derivatization of the released NNAL enantiomer with (R)-(+)-alpha-methylbenzylisocyanate. The two NNAL glucuronides accounted for 15-20% of the urinary metabolites in monkeys given 0.1 micrograms/kg NNK, which is similar to a smoker's dose, suggesting their use as dosimeters of NNK exposure in humans. Pharmacokinetic parameters were consistent with those observed in previous studies of nitrosamines, and varied predictably with body weight of five species. The results of this study have provided new insights relevant to assessing human metabolism of NNK.

  7. Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy - 1,4 terephthaloyl- oxy- 1,4-phenylenecarbonyloxy (1,2-dodecane] [C34H36O8]n, Synthesized from Racemic Materials: Kinetics, Structure and Optical Characterization.

    Mercedes Pérez Méndez


    Full Text Available The cholesteric liquid-crystal poly[oxycarbonyl-1,4-phenylene-oxy-1,4 terephthaloyl-oxy-1,4-phenylenecarbonyloxy(1,2-dodecane] [C34H36O8]n, named PTOBDME, synthesized by polycondensation reaction from equimolar quantities of TOBC and the racemic mixture of glycol (R-S-1,2 dodecanediol, exhibits unexpected optical activity and chiral morphology. The structure of racemic-PTOBDME, under different polymerization kinetics conditions, is analyzed by conventional NMR techniques and compared with those of polymer enantiomers R-PTOBDME and S-PTOBDME obtained starting R(+1,2 and S(-1,2-dodecanediol respectively. Molecular models based on the NMR signals intensities are proposed. The optical activity of racemicPTOBDME is evaluated by measuring the ORD values during kinetics study, and compared to the chiral polymers. Each enantiomeric polymer seems to present the same stereoregular head-tail, isotactic structure than the racemic, which we explain by the higher reactivity of the primary hydroxyl than the secondary one in the glycol through polycondensation. For each enantiomer, two independent sets of signals were observed by NMR, explained as two diastereomeric helical conformers: gg and gt, related with two possible staggered conformations, along the copolymer backbone. Chirality in racemic-PTOBDME is proposed to be due to the kinetic resolution of a preferable helical diastereomer, such as Sgt, with respect to the possible four forms, while the R/S ratio of asymmetric carbon atoms remained 50:50. Chiral amplification is observed in R-PTOBDME and S-PTOBDME due to a helical screw sense excess. Optimum yield was obtained for racemic PTOBDME, after 120 minutes polycondensated and decanted in toluene for 24 hours. Two weeks later a second fraction precipitated from the toluene mother liquor with 67.6% chiral excess. After eight months and two weeks a third fraction precipitated with 85.2% chiral excess.

  8. Glutathione modifies the oxidation products of 2'-deoxyguanosine by singlet molecular oxygen.

    Peres, Patrícia S; Valerio, Andressa; Cadena, Silvia M S C; Winnischofer, Sheila M B; Scalfo, Alexsandra C; Di Mascio, Paolo; Martinez, Glaucia R


    The oxidation of the free nucleoside 2'-deoxyguanosine (dGuo) by singlet molecular oxygen ((1)O2) has been studied over the three last decades due to the major role of DNA oxidation products in process such as ageing, mutation and carcinogenesis. In the present work we investigated the dGuo oxidation by (1)O2 in the presence of the important low molecular antioxidant, glutathione, in its reduced (GSH) and oxidized (GSSG) forms. There were applied different conditions of concentration, pH, time of incubation, and the use of a [(18)O]-labeled thermolabile endoperoxide naphthalene derivative as a source of [(18)O]-labeled (1)O2. Data was obtained through high performance liquid chromatography (HPLC) and HPLC coupled to micrOTOF Q-II analysis of the main oxidation products: the diastereomers of spiroiminodihydantoin-2'-deoxyribonucleosides (dSp) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). An intriguing result was that 8-oxodGuo levels increased by 100 fold when dGuo was oxidized by (1)O2 in the presence of GSH and by 2 fold in the presence of GSSG, while dSp levels dropped to zero for both conditions. All data from dGuo, 8-oxodGuo and dSp quantification together with the analysis of residual GSH/GSSG content in each sample strongly suggest that glutathione modifies the mechanism of dGuo oxidation by (1)O2 by disfavoring the pathway of dSp formation. Copyright © 2015. Published by Elsevier Inc.

  9. HPLC enantioseparation of racemic bupropion, baclofen and etodolac: modification of conventional ligand exchange approach by pre-column formation of chiral ligand exchange complexes.

    Singh, Manisha; Bhushan, Ravi


    Separation of racemic mixture of (RS)-bupropion, (RS)-baclofen and (RS)-etodolac, commonly marketed racemic drugs, has been achieved by modifying the conventional ligand exchange approach. The Cu(II) complexes were first prepared with a few l-amino acids, namely, l-proline, l-histidine, l-phenylalanine and l-tryptophan, and to these was introduced a mixture of the enantiomer pair of (RS)-bupropion, or (RS)-baclofen or (RS)-etodolac. As a result, formation of a pair of diastereomeric complexes occurred by 'chiral ligand exchange' via the competition between the chelating l-amino acid and each of the two enantiomers from a given pair. The diastereomeric mixture formed in the pre-column process was loaded onto HPLC column. Thus, both the phases during chromatographic separation process were achiral (i.e. neither the stationary phase had any chiral structural feature of its own nor did the mobile phase have any chiral additive). Separation of diastereomers was successful using a C18 column and a binary mixture of MeCN and TEAP buffer of pH 4.0 (60:40, v/v) as mobile phase at a flow rate of 1 mL/min and UV detection at 230 nm for (RS)-Bup, 220 nm for (RS)-Bac and 223 nm for (RS)-Etd. Baseline separation of the two enantiomers was obtained with a resolution of 6.63 in <15 min. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Aldolase as a Chirality Intersection of L-Amino Acids and D-Sugars

    Munegumi, Toratane


    Aldolase plays an important role in glycolysis and gluconeogenesis to produce D-fructose-1,6-bisphosphate (D-FBP) from dihydroxyacetone phosphate (DHP) and D-glyceraldehyde-3-phosphate (D-GAP). This reaction is stereoselective and retains the D-GAP 2R configuration and yields D-FBP (with the configuration: 3S, 4S, 5R). The 3- and 4-position carbons are the newly formed chiral carbons because the 5-position carbon of D-FBP comes from the 2-position of D-GAP. Although four diastereomeric products, ( 3S, 4R, 5R), ( 3R, 4R, 5R), ( 3R, 4S, 5R), ( 3S, 4S, 5R), are expected in the nonenzymatic reaction, only the ( 3S, 4S, 5R) diastereomer (D-FBP) is obtained. Therefore, the chirality in the 3- and 4-positions is induced by the chirality of the enzyme composed of L-amino acid residues. D-Glucose-6-phosphate (D-G6P), which is generated from D-FBP in the gluconeogenesis pathway, produces D-ribose-5-phosphate (D-R5P) in the pentose phosphate pathway. D-R5P is converted to PRPP (5-phosphoribosyl-α-pyrophosphate), which is used for the de novo synthesis of nucleotides. Ribonucleic acid (RNA) uses the nucleotides as building blocks. The configurations of the 4R-carbon and of the 3S-carbon are retained. The stereochemical structure of RNA is based on 3S as well as 4R (D). The consideration above suggests that aldolase is a key enzyme that determines the 3S configuration in D-R5P. It is thus a chirality intersection between amino acids and sugars, because the sugar chirality is determined by the chiral environment of an L-amino acid protein, aldolase, to produce D-FBP.

  11. Computational tools for mechanistic discrimination in the reductive and metathesis coupling reactions mediated by titanium(IV) isopropoxide

    Akshai Kumar; Ashoka G Samuelson


    A theoretical study has been carried out at the B3LYP/LANL2DZ level to compare the reactivity of phenyl isocyanate and phenyl isothiocyanate towards titanium(IV) alkoxides. Isocyanates are shown to favour both mono insertion and double insertion reactions. Double insertion in a head-to-tail fashion is shown to be more exothermic than double insertion in a head-to-head fashion. The head-to-head double insertion leads to the metathesis product, a carbodiimide, after the extrusion of carbon dioxide. In the case of phenyl isothiocyanate, calculations favour the formation of only mono insertion products. Formation of a double insertion product is highly unfavourable. Further, these studies indicate that the reverse reaction involving the metathesis of N,N'-diphenyl carbodiimide with carbon dioxide is likely to proceed more efficiently than the metathesis reaction with carbon disulphide. This is in excellent agreement with experimental results as metathesis with carbon disulphide fails to occur. In a second study, multilayer MM/QM calculations are carried out on intermediates generated from reduction of titanium(IV) alkoxides to investigate the effect of alkoxy bridging on the reactivity of multinuclear Ti species. Bimolecular coupling of imines initiated by Ti(III) species leads to a mixture of diastereomers and not diastereoselective coupling of the imine. However if the reaction is carried out by a trimeric biradical species, diastereoselective coupling of the imine is predicted. The presence of alkoxy bridges greatly favours the formation of the d,l (±) isomer, whereas the intermediate without alkoxy bridges favours the more stable meso isomer. As a bridged trimeric species, stabilized by bridging alkoxy groups, correctly explains the diastereoselective reaction, it is the most likely intermediate in the reaction.

  12. Aldolase as a chirality intersection of L-amino acids and D-sugars.

    Munegumi, Toratane


    Aldolase plays an important role in glycolysis and gluconeogenesis to produce D-fructose-1,6-bisphosphate (D-FBP) from dihydroxyacetone phosphate (DHP) and D-glyceraldehyde-3-phosphate (D-GAP). This reaction is stereoselective and retains the D-GAP 2R configuration and yields D-FBP (with the configuration: 3S, 4S, 5R). The 3- and 4-position carbons are the newly formed chiral carbons because the 5-position carbon of D-FBP comes from the 2-position of D-GAP. Although four diastereomeric products, (3S, 4R, 5R), (3R, 4R, 5R), (3R, 4S, 5R), (3S, 4S, 5R), are expected in the nonenzymatic reaction, only the (3S, 4S, 5R) diastereomer (D-FBP) is obtained. Therefore, the chirality in the 3- and 4-positions is induced by the chirality of the enzyme composed of L-amino acid residues. D-Glucose-6-phosphate (D-G6P), which is generated from D-FBP in the gluconeogenesis pathway, produces D-ribose-5-phosphate (D-R5P) in the pentose phosphate pathway. D-R5P is converted to PRPP (5-phosphoribosyl-α-pyrophosphate), which is used for the de novo synthesis of nucleotides. Ribonucleic acid (RNA) uses the nucleotides as building blocks. The configurations of the 4R-carbon and of the 3S-carbon are retained. The stereochemical structure of RNA is based on 3S as well as 4R (D). The consideration above suggests that aldolase is a key enzyme that determines the 3S configuration in D-R5P. It is thus a chirality intersection between amino acids and sugars, because the sugar chirality is determined by the chiral environment of an L-amino acid protein, aldolase, to produce D-FBP.

  13. Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis.

    Cheng, Qing-Yun; Xiong, Jun; Huang, Wei; Ma, Qin; Ci, Weimin; Feng, Yu-Qi; Yuan, Bi-Feng


    2-hydroxyglutarate (2HG) is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG dependent dioxygenases that function on the epigenetic modifications. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and differentiation between D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) is crucially important for accurate diagnosis of 2HG related diseases. Here we developed a strategy by chiral derivatization combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive determination of D-2HG and L-2HG enantiomers. N-(p-toluenesulfonyl)-L-phenylalanyl chloride (TSPC) was used to derivatize 2HG. The formed diastereomers by TSPC labeling can efficiently improve the chromatographic separation of D-2HG and L-2HG. And derivatization by TSPC could also markedly increase the detection sensitivities by 291 and 346 folds for D-2HG and L-2HG, respectively. Using the developed method, we measured the contents of D-2HG and L-2HG in clear cell renal cell carcinoma (ccRCC) tissues. We observed 12.9 and 29.8 folds increase of D-2HG and L-2HG, respectively, in human ccRCC tissues compared to adjacent normal tissues. The developed chiral derivatization combined with LC-ESI-MS/MS analysis offers sensitive determination of D-2HG and L-2HG enantiomers, which benefits the precise diagnosis of 2HG related metabolic diseases.

  14. Blending synthetic pheromones of cerambycid beetles to develop trap lures that simultaneously attract multiple species.

    Wong, Joseph C H; Mitchell, Robert F; Striman, Becca L; Millar, Jocelyn G; Hanks, Lawrence M


    We evaluated attraction of cerambycid beetle species to blends of known cerambycid pheromones to determine whether such blends could be used as effective trap lures for detecting and monitoring multiple species simultaneously. Pheromone-baited traps captured 1,358 cerambycid beetles of which 1,101 (81.1%) belonged to three species in the subfamily Cerambycinae: Neoclytus acuminatus (F.), Neoclytus mucronatus (F.), and Xylotrechus colonus (F.). Beetles of these species were significantly attracted to synthetic blends that contained their pheromone components (isomers of 3-hydroxy-2-hexanone, 2,3-hexanediol, or both), despite the presence of pheromone components of different species, including other isomers of 2,3-hexanediol, (E/Z)-6,10-dimethyl-5,9-undecadien-2-yl acetate, and citral. In some cases, attraction was partially inhibited by the pheromone components of heterospecific species, whereas for N. acuminatus, attraction was completely inhibited when blends contained (2R*,3S*)-hexanediol, the racemic mixture of diastereomers of its pheromone, (2S,3S)-hexanediol. Among the remaining beetles captured were three species in the subfamily Lamiinae: Astyleiopus variegatus (Haldeman), Graphisurus fasciatus (Degeer), and Lepturges angulatus (LeConte). All three lamiine species were previously known to be attracted to (E/Z)-6,10-dimethyl-5,9-undecadien-2-yl acetate and were captured in significant numbers by blends containing that compound. Our results suggest that different types of cerambycid pheromones can be combined to create effective multispecies lures for use in surveillance programs that target exotic cerambycid species.

  15. Novel GluN2B selective NMDA receptor antagonists: relative configuration of 7-meth-oxy-2-methyl-2,3,4,5-tetra-hydro-1H-3-benzazepin-1-ols.

    Tewes, Bastian; Frehland, Bastian; Fröhlich, Roland; Wünsch, Bernhard


    The title compounds, C22H29NO2 (3) and C22H29NO2 (4) [systematic names: (1S*,2R*)-7-meth-oxy-2-methyl-3-(4-phenyl-but-yl)-2,3,4,5-tetra-hydro-1H-3-benzazepin-1-ol and (1R*,2R*)-7-meth-oxy-2-methyl-3-(4-phenyl-but-yl)-2,3,4,5-tetra-hydro-1H-3-benzazepin-1-ol, are diastereomers with the relative configuration of the adjacent hydroxyl and methyl groups at the seven-membered azepine ring being trans in (3) and cis in (4). In the crystals the orientation of these groups is -anti-periplanar (3) and +syn-clinal (4). In both cases, the crystals studied proved to be of a racemic mixture, with relative configurations (R*,S*)-3 and (R*,R*)-4. In both compounds, the seven-membered azepine ring has a chair-like conformation, and the 4-phenyl-butyl side chain adopts a extended conformation in (R*,S*)-3, but a twisted conformation in (R*,R*)-4. In the crystal of (S*,R*)-3, mol-ecules are linked via C-H⋯O hydrogen bonds, forming slabs parallel to the ac plane. In the crystal of (R*,R*)-4, mol-ecules are linked via O-H⋯N hydrogen bonds, forming chains propagating along the c-axis direction. The chains are linked by C-H⋯O hydrogen bonds, forming slabs parallel to the ac plane.

  16. d-Amino Acid Scan of Two Small Proteins.

    Simon, Mark D; Maki, Yuta; Vinogradov, Alexander A; Zhang, Chi; Yu, Hongtao; Lin, Yu-Shan; Kajihara, Yasuhiro; Pentelute, Bradley L


    A "D-scan" of two small proteins, the disulfide-rich Ecballium elaterium trypsin inhibitor II (EETI-II) and a minimized Z domain of protein A (Z33), is reported. For each protein, the stereochemistry of one amino acid at a time was inverted to generate a series of diastereomers. In much the same way an alanine scan determines necessary residues for protein function, the D-scan elucidated the critical stereocenters of the 30-residue EETI-II and the 33-residue Z33. The folding properties and activity of each variant were investigated. A total of 24 out of 30 EETI-II D-scan analogues folded to give a three-disulfide product. Of the 24 variants that folded, half were high-affinity trypsin inhibitors, and three were as active as the wild type (WT). Of these 12 active variants, most were substantially less stable to reduction than WT EETI-II (WT first reduction potential -270.0 ± 1.5 mV, WT second reduction potential -307.2 ± 1.1 mV). Similarly, ten Z33 analogues retained high binding affinity to IgG (KD Z33 analogues were substantially less stable than the WT (ΔG(H2O, 263 K) = 2.4 ± 1.2 kcal/mol). Collectively, our findings show that the D-scan is powerful new strategy for studying how the stereochemistry of amino acids affects the structure and function of proteins.

  17. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function: IMPLICATION OF AN EPOXIDE HYDROLASE IN THE TRANSFORMATIONS OF LINOLEATE.

    Chiba, Takahito; Thomas, Christopher P; Calcutt, M Wade; Boeglin, William E; O'Donnell, Valerie B; Brash, Alan R


    Creation of an intact skin water barrier, a prerequisite for life on dry land, requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate, which is esterified to the ω-hydroxyl of an epidermis-specific ceramide. Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for covalent binding to protein, thus forming the corneocyte lipid envelope, a key component of the epidermal barrier. Herein, we report the transformations of esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol synthesis catalyzed by the consecutive actions of 12R-LOX and epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy derivative, formed with a specificity that implicates participation of an epoxide hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses, we identify and quantify specifically 9R,10S,13R-trihydroxy-11E-octadecenoate as the single major triol esterified in porcine epidermis and the same isomer with lesser amounts of its 10R diastereomer in human epidermis. The 9R,10S,13R-triol is formed by SN2 hydrolysis of the 9R,10R-epoxy-13R-hydroxy-octadecenoate product of the LOX enzymes, a reaction specificity characteristic of epoxide hydrolase. The high polarity of triol over the primary linoleate products enhances the concept that the oxidations disrupt corneocyte membrane lipids, promoting release of free ω-hydroxyceramide for covalent binding to protein and sealing of the waterproof barrier.

  18. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function

    Chiba, Takahito; Thomas, Christopher P.; Calcutt, M. Wade; Boeglin, William E.; O'Donnell, Valerie B.; Brash, Alan R.


    Creation of an intact skin water barrier, a prerequisite for life on dry land, requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate, which is esterified to the ω-hydroxyl of an epidermis-specific ceramide. Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for covalent binding to protein, thus forming the corneocyte lipid envelope, a key component of the epidermal barrier. Herein, we report the transformations of esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol synthesis catalyzed by the consecutive actions of 12R-LOX and epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy derivative, formed with a specificity that implicates participation of an epoxide hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses, we identify and quantify specifically 9R,10S,13R-trihydroxy-11E-octadecenoate as the single major triol esterified in porcine epidermis and the same isomer with lesser amounts of its 10R diastereomer in human epidermis. The 9R,10S,13R-triol is formed by SN2 hydrolysis of the 9R,10R-epoxy-13R-hydroxy-octadecenoate product of the LOX enzymes, a reaction specificity characteristic of epoxide hydrolase. The high polarity of triol over the primary linoleate products enhances the concept that the oxidations disrupt corneocyte membrane lipids, promoting release of free ω-hydroxyceramide for covalent binding to protein and sealing of the waterproof barrier. PMID:27151221

  19. S-alk(en)yl-L-cysteine sulfoxides and relative pungency measurements of photosynthetic and nonphotosynthetic tissues of Allium porrum.

    Doran, James A; O'Donnell, Jennifer S; Lairson, Luke L; McDonald, Mary Ruth; Schwan, Adrian L; Grodzinski, Bernard


    Three standard assays for pyruvate gave equivalent measurements of relative pungency for two leek cultivars ( 'Tadorna' and 'Ramona'). Background pyruvate levels varied depending on the assay used, ranging from 0.4 (lactate dehydrogenase) to 1.5 (high-performance liquid chromatography, HPLC) micromol g(-1) fresh weight (FW) on average. The relative pungencies of the two leek cultivars were also compared to total concentrations of the S-alk(en)yl-L-cysteine sulfoxides (RCSOs). The average ratio of EPy to total RCSOs was 10.9, indicating that standard pungency assays underestimate the levels of RCSOs in the tissue. A detailed analysis of 'Tadorna' leaves showed that total RCSO concentrations decreased acropetally. Profiles were composed of (-/+)-methyl-, (-/+)-ethyl-, (+)-propyl-, and (+)-1-propenyl-L-cysteine sulfoxide (MCSO, ECSO, PCSO, and 1-PeCSO, respectively). (+)-PCSO was the most prominent in green (2.4 mg g (-1) FW), yellow (5.5 mg g (-1) FW), and white (3.8 mg g (-1) FW) tissues. The prop(en)yl-L-cysteine sulfoxide derivatives were dominant in tissues that had photosynthetic capacity. The (+)-MCSO levels were high in the bulb (3.6 mg g (-1) FW). Interestingly, detectable levels of (-/+)-ECSO were measured in the leaves ( approximately 0.5 mg g (-1) FW). RCSO profiles of the different tissue regions were similar, but more (+)-PCSO and (+)-1-PeCSO were detected in the bulb. In general, mature upper leaf tissues had lower levels of total RCSOs. Overall, mild extraction methods and a low-temperature HPLC protocol (preferably with long retention times) achieved adequate compound separation and resolution of the diastereomers.

  20. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia

    Koopmans, M.P.; Koester, J.; Hartgers, W.A. [Netherlands Institute for Sea Research (NIOZ), Den Burg (Netherlands)] [and others


    A wide range of novel diagenetic and catagenetic products of the diaromatic carotenoid isorenieratene, a pigment of the photosynthetic green sulphur bacteria Chlorobiaceae, has been identified in a number of sedimentary rocks ranging from Ordovician to Miocene. Compound identification is based on NMR, mass spectrometry, the presence of atropisomers, and stable carbon isotopes. Atropisomers contain an axially chiral centre which, in combination with other chiral centres, results in two or more diastereomers that can be separated on a normal GC column. Chlorobiaceae use the reverse TCA cycle to fix carbon, so that their biomass is enriched in {sup 13}C. High {sup 13}C contents of isorenieratene derivatives therefore support their inferred origins. Isorenieratene derivatives include C{sub 40}, C{sub 33}, and C{sub 32}, diaryl isoprenoids and short-chain aryl isoprenoids with additional aromatic and/or S-containing rings. C{sub 33} and C{sub 32} compounds are diagenetic products of C{sub 33} and C{sub 32} {open_quotes}carotenoids{close_quotes} formed from isorenieratene during early diagenesis through expulsion of toluene and m-xylene, respectively. Cyclisation of the polyene acyclic isoprenoid chain can proceed via an intramolecular Diels-Alder reaction, followed by aromatisation of the newly formed ring. Sulphurisation is also an important process during early diagenesis, competing with expulsion and cyclisation. Sulphur-bound isorenieratane is released during progressive diagenesis, due to cleavage of relatively weak S-S and C-S bonds. Diagenetic and catagenetic products of isorenieratene are expected to find applications in reconstruction of palaoenvironments and in oil-oil and oil-source rock correlation studies. Their presence in several petroleum source rocks suggests that anoxia is an important environmental parameter for the preservation of organic matter. 118 refs., 22 figs., 2 tabs.

  1. Simultaneous quantification and pharmacokinetics of alkaloids in Herba Ephedrae-Radix Aconiti Lateralis extracts.

    Song, Shuai; Tang, Qingfa; Huo, Huiling; Li, Hancheng; Xing, Xuefeng; Luo, Jiabo


    The combination of Herba Ephedrae (Mahuang in Chinese) and Radix Aconiti Lateralis (Fuzi in Chinese) is a classical preparation in traditional Chinese medicine and used for treating colds and rheumatic arthralgia. However, herbal medicines containing ephedrines and Aconitum alkaloids are strictly regulated because of the potential for adverse effects on the cardiovascular system and the central nervous system. We aimed to investigate the pharmacokinetics of 11 alkaloids in the Mahuang-Fuzi combination and single-herb extracts after oral administration in rats. The alkaloids were norephedrine, norpseudoephedrine, ephedrine, pseudoephedrine, methylephedrine, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypaconine. Simultaneous determination of the alkaloids, including two pairs of diastereomers, was achieved in 14.5 min by a simple, rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry method. The separation was performed on a Zorbax SB-Aq column (100 mm × 2.1 mm, 3.5 μm) at a flow rate of 0.3 mL/min using acetonitrile-0.1% formic acid aqueous solution as the mobile phase. The validated method demonstrated adequate sensitivity, selectivity and process efficiency for the quantitative analysis of complex herbal components. Compared with single-herb extracts, alkaloids in plasma (except methylephedrine, benzoylmesaconine and benzoylhypaconine) showed slower elimination (the mean residence time or half-life was longer), although the maximum plasma concentration and area under the plasma concentration curve values decreased. Accumulation may occur with continuous drug intake. These results suggest that drug monitoring may be essential for the safe use of the Mahuang-Fuzi combination.

  2. Enantiomeric HPLC resolution and absolute stereochemistry assignment of a new poligamain derivative.

    Pistolozzi, M; Royo, V; Pereira, A C; Silva, M L A; Silva, R; Cunha, W R; Vaconcelos, K; Cass, Q B; Martins, C H G; Bastos, J K; Varchi, G; Guerrini, A; Bertucci, C


    A new aryltetralin lignan derivative, 1, was obtained by reacting dimethyl succinate and piperonal, furnishing the lactone 4-(3',4'-methylenedioxybenzyl)-4,5-dihydro-2(3H)-furanone, which was reacted once again with piperonal and LDA to give the dibenzylbutirolactone 7-hydroxyhinokinin. The cyclization of 7-hydroxyhinokinin into polygamain occurred in the presence of trifluoroacetic acid. The reduction of the furanic ring of polygamain was done by its reaction with DIBAL in THF, furnishing the diol functionalized lignin derivative 1 as single diastereomer. The enantiomeric fractions of 1 were obtained by preparative enantioselective HPLC. The absolute stereochemistry was assigned by electronic circular dichroism (ECD) and nuclear magnetic resonance (NMR) spectroscopy. An all-trans relative configuration was determined by NMR on the bases of ¹H coupling constants and nuclear Overhauser effect (n.O.e.) experiments. The absolute configuration at C1 was assigned on the basis of the ECD sign at 296 nm by comparison to the ECD spectra of structural analogues with defined stereochemistry. The assignment of the absolute configuration was confirmed by applying the exciton chirality method to the well-defined ECD couplets at 285 and 200 nm allied to the two electronic transitions L(b) and B(b) of the aromatic moieties, respectively. Rac-1 and its enantiomeric isomers were evaluated against important bacteria responsible for dental caries. The best results obtained for the (1R,2S,3S) isomer were against Streptococcus mutans (250 μM), Streptococcus salivarius (250 μM), Streptococcus sobrinus (280 μM) and Streptococcus mitis (280 μM). The (1S,2R,3R) isomer was active only against Streptococcus sanguinis (280 μM). The enantiomeric mixture was less active than the (1R,2S,3S) isomer.

  3. It's all about Me: methyl-induced control of coordination stereochemistry by a flexible tridentate N,C,N' ligand.

    Kariuki, Benson M; Platts, James A; Newman, Paul D


    A chiral, tridentate, pyridyl-functionalised NHC pro-ligand, S-L(Me)-H[PF₆], has been prepared diastereoselectively via a five step synthesis starting from 1R,3S-diamino-1,2,2-trimethylcyclopentane. The S prefix refers to the stereochemistry of a methyl substituted stereogenic carbon in one of the pyridyl arms which is generated by a stereoselective BH4(-) reduction of an imine precursor. The ligand has been coordinated to Rh(I) and Ir(I) to give trigonal bipyramidal complexes of the type [M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)]PF6 (M = Rh, Ir) as single diastereomers. A combination of spectroscopic and X-ray techniques confirm the stereoselective formation of the thermodynamically preferred endo,endo isomer. Similar reactions with R,S-L(Me)-H[PF₆] gave a mixture of endo,endo-[M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)](+) and exo,exo-[M(κ(3)-N,C,N'-R-L(Me))(1,5-COD)](+). The absolute configuration at the metal is, therefore, solely dictated by the stereochemistry of the single methylpyridyl carbon. The observation of stereoselection extends to the square planar Ni(II) complex [Ni(δ-κ(3)-N,C,N'-S-L(Me))Cl](+) which is isolated as one (δ) of the two possible conformational isomers. DFT studies have been employed to explain the observed stereoselectivity with the configurations observed in the solid state being confirmed as those of lowest energy.

  4. The significance of chirality in drug design and development.

    Brooks, W H; Guida, W C; Daniel, K G


    Proteins are often enantioselective towards their binding partners. When designing small molecules to interact with these targets, one should consider stereoselectivity. As considerations for exploring structure space evolve, chirality is increasingly important. Binding affinity for a chiral drug can differ for diastereomers and between enantiomers. For the virtual screening and computational design stage of drug development, this problem can be compounded by incomplete stereochemical information in structure libraries leading to a "coin toss" as to whether or not the "ideal" chiral structure is present. Creating every stereoisomer for each chiral compound in a structure library leads to an exponential increase in the number of structures resulting in potentially unmanageable file sizes and screening times. Therefore, only key chiral structures, enantiomeric pairs based on relative stereochemistry need be included, and lead to a compromise between exploration of chemical space and maintaining manageable libraries. In clinical environments, enantiomers of chiral drugs can have reduced, no, or even deleterious effects. This underscores the need to avoid mixtures of compounds and focus on chiral synthesis. Governmental regulations emphasizing the need to monitor chirality in drug development have increased. The United States Food and Drug Administration issued guidelines and policies in 1992 concerning the development of chiral compounds. These guidelines require that absolute stereochemistry be known for compounds with chiral centers and that this information should be established early in drug development in order that the analysis can be considered valid. From exploration of structure space to governmental regulations it is clear that the question of chirality in drug design is of vital importance.

  5. Enantiomeric fraction determination of 2-arylpropionic acids in a package plant membrane bioreactor.

    Hashim, Nor H; Stuetz, Richard M; Khan, Stuart J


    Enantiomeric compositions of three 2-arylpropionic acid (2-APA) drugs, ibuprofen, naproxen, and ketoprofen, were monitored in a membrane bioreactor (MBR) treating municipal effluent in a small rural town in Australia. Specific enantiomers were determined as amide diastereomers using the chiral derivatizing reagent, (R)-1-phenylethylamine (PEA), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The six individual enantiomers were quantified by isotope dilution and the enantiomeric fractions (EFs) were determined. Over four separate sampling events, ibuprofen EF ranged from 0.88 to 0.94 (median 0.93) in the influent and 0.38 to 0.40 (median 0.39) in the effluent. However, no significant change in ketoprofen EF was observed, with influent EFs of 0.56-0.60 (median 0.58) and effluent EFs 0.54-0.68 (median 0.56). This is the first report of enantiospecific analysis of ketoprofen in municipal wastewater and it is not yet clear why such different behavior was observed compared to ibuprofen. Naproxen EF was consistently measured at 0.99 in the influent and ranged from 0.86 to 0.94 (median 0.91) in the effluent. This study demonstrates that EF is a relatively stable parameter and does not fluctuate according to concentration or other short-term variables introduced by sampling limitations. The enantiospecific analysis of chiral chemicals presents a promising approach to elucidate a more thorough understanding of biological treatment processes and a potential tool for monitoring the performance of key biological pathways.

  6. Structure-Based Design and Synthesis of Apramycin-Paromomycin Analogues. Importance of the Configuration at the 6'-Position and Differences Between the 6'-Amino and Hydroxy Series.

    Mandhapati, Appi Reddy; Yang, Guanyu; Kato, Takayuki; Shcherbakov, Dimitri; Hobbie, Sven N; Vasella, Andrea; Böttger, Erik C; Crich, David


    The preparation of a series of four analogues of the aminoglycoside antibiotics neomycin and paromomycin is described in which ring I, involved in critical binding interactions with the ribosomal target, is replaced by an apramycin-like dioxabicyclo[4.4.0]octane system. The effect of this modification is to lock the hydroxymethyl side chain of the neomycin or paromomycin ring I, as part of dioxabicyclooctane ring, into either the gauche-gauche or the gauche-trans conformation (respectively axial or equatorial to the bicyclic system). The antiribosomal activity of these compounds is investigated with cell-free translation assays using both bacterial ribosomes and recombinant hybrid ribosomes carrying eukaryotic decoding A site cassettes. Compounds substituted with an equatorial hydroxyl or amino group in the newly formed ring are considerably more active than their axial diastereomers lending strong support to crystallographically-derived models of aminoglycoside-ribosome interactions. One such bicyclic compound carrying an equatorial hydroxyl group has activity equal to that of the parent, yet displays better ribosomal selectivity, predictive of an enhanced therapeutic index. A paromomycin analog lacking the hydroxymethyl ring I side chain is considerably less active than the parent. Antibacterial activity against model Gram negative and Gram positive bacteria is reported, for selected compounds, as is activity against ESKAPE pathogens and recombinant bacteria carrying specific resistance determinants. Analogues with a bicyclic ring I carrying equatorial amino or hydroxyl groups mimicking the bound side chains of neomycin and paromomcyin, respectively, show excellent activity and by virtue of their novel structure retain this activity in strains that are insensitive to the parent compounds.

  7. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of small subunit residues

    Jeyakanthan, Jeyaraman [National Synchrotron Radiation Research Center; Drevland, Randy [University of Texas, Austin; Gayathri, Dasara [University of Madras; Velmurugan, Devadasan [University of Madras; Shinkai, Akeo [SPring8/JASRI, Mikazuki, Hyogo and RIKEN, Japan; Kuramitsu, Seiki [SPring8/JASRI, Mikazuki, Hyogo and RIKEN, Japan; Yokoyama, Shigeyuki [University of Tokyo, Tokyo, Japan; Graham, David E [ORNL


    The aconitase family of hydro-lyase enzymes includes three classes of proteins that catalyze the isomerization of -hydroxyacids to -hydroxyacids. Besides aconitase, isopropylmalate isomerase (IPMI) proteins specifically catalyze the isomerization of , -dicarboxylates with hydrophobic -chain groups, and homoaconitase (HACN) proteins catalyze the isomerization of tricarboxylates with variable chain length -carboxylate groups. These enzymes stereospecific hydro-lyase activities make them attractive catalysts to produce diastereomers from unsaturated precursors. However, sequence similarity and convergent evolution among these proteins leads to widespread misannotation and uncertainty about gene function. To find the substrate specificity determinants of homologous IPMI and HACN proteins from Methanocaldococcus jannaschii, the small-subunit HACN protein (MJ1271) was crystallized for X-ray diffraction. The structural model showed characteristic residues in a flexible loop region between 2 and 3 that distinguish HACN from IPMI and aconitase proteins. Site-directed mutagenesis of MJ1271 produced loop-region variant proteins that were reconstituted with wild-type MJ1003 large-subunit protein. The heteromers formed promiscuous hydro-lyases with reduced activity but broader substrate specificity. Both R26K and R26V variants formed relatively efficient IPMI enzymes, while the T27A variant had uniformly lower specificity constants for both IPMI and HACN substrates. The R26V T27Y variant resembles the MJ1277 IPMI small subunit in its flexible loop sequence, but demonstrated the broad substrate specificity of the R26V variant. These mutations may reverse the evolution of HACN activity from an ancestral IPMI gene, demonstrating the evolutionary potential for promiscuity in hydro-lyase enzymes. Understanding these specificity determinants enables the functional reannotation of paralogous HACN and IPMI genes in numerous genome sequences. These structural and kinetic results will

  8. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China.

    Ni, Hong-Gang; Zeng, Hui


    Hexabromocyclododecane diastereoisomers (α, β, and γ-HBCD) and tetrabromobisphenol A (TBBPA) were investigated in air conditioning filter dust (designated as particulate phase of indoor air, PPIA) collected from an office building in Shenzhen, China in 2009. Concentrations of ΣHBCD (sum of α-, β-, and γ-HBCD) ranged from 652 to 122, 973 ng/g in PPIA. Generally, γ-HBCD was the most abundant diastereomer. Concentrations of TBBPA ranged from 30 to 59, 140 ng/g in PPIA. According to our results, approximate 61.9 pg/kg body weight/day (pg/kg/d) PM2.5 bound ΣHBCD can be inhaled deep into the lungs and 31.3 pg/kg/d PM10 bound ΣHBCD tends to be deposited in the upper parts of the respiratory system, and those values of TBBPA were 28.7 pg/kg/d and 14.5 pg/kg/d for the lower and upper respiratory tracts, respectively. The average intakes of ΣHBCD via dust inhalation and ingestion were 37.92 pg/kg/d and 2, 079 pg/kg/d for adults, and those data of TBBPA were 17.62 pg/kg/d and 966.2 pg/kg/d, respectively. Our research found that exposure via indoor dust inhalation and ingestion contributed more than dietary pathway. Sensitivity analysis result suggests that the concentration of HBCD and TBBPA is the most significant parameter governing estimated results, and the other parameters, such as body weight and inhalation rate, do not affect the outcome much.

  9. HPTLC Bioautography Guided Isolation of α-Glucosidase Inhibiting Compounds from Justicia secunda Vahl (Acanthaceae).

    Theiler, Barbara A; Istvanits, Stefanie; Zehl, Martin; Marcourt, Laurence; Urban, Ernst; Caisa, Lugardo O Espinoza; Glasl, Sabine


    α-Glucosidase inhibitors form an essential basis for the development of novel drugs in diabetes type 2 treatment. Searching for α-glucosidase inhibitors in plants, TLC bioautographic assays have been established and improved within the last years. In traditional medicine, extracts from the leaves of Justicia secunda Vahl are used to treat diabetes mellitus symptoms. To screen for α-glucosidase inhibitors in J. secunda via HPTLC bioautography. Methodology - Extracts from the leaves of J. secunda and fractions thereof were evaluated in terms of their α-glucosidase inhibiting potential by subjecting them to HPTLC bioautography. The aqueous (AQ) fraction deriving from the methanol extract was further fractionated via column chromatography on polystyrene Diaion® HP-20. Two AQ subfractions revealed active compounds, which were isolated via preparative HPTLC and semipreparative HPLC. Their identification and structure elucidation was achieved employing HPLC-ESI-MS(n) , HRESI-MS, and NMR analyses. α-Glucosidase inhibitors were visualised as white zones on violet background on the TLC plate. The crude water extract, the methanol extract, and the methanol extract derived AQ fraction showed α-glucosidase inhibiting effects. In the latter, two diastereomeric mixtures responsible for the α-glucosidase inhibition were enriched. They were identified as the novel 2-caffeoyloxy-4-hydroxy-glutaric acid and the diastereomers secundarellone B and C. The current study presents the α-glucosidase inhibiting potential of J. secunda supporting its traditional medicinal use in diabetes mellitus treatment. HPTLC bioautography screening for α-glucosidase inhibitors provides a simple and effective method for the investigation of complex samples, such as plant extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. A rapid and sensitive detection of D-Aspartic acid in Crystallin by chiral derivatized liquid chromatography mass spectrometry.

    Mizuno, Hajime; Miyazaki, Yasuto; Ito, Keisuke; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa


    A method for the determination of D-Aspartic acid (D-Asp) and its D/L ratio in peptides and proteins has been developed. This method was carried out with good separation of the D/L chiral peptide pairs by combination of a chiral derivatization and an ADME column separation. Furthermore, a cationic derivatization reagent, DBD-Py-NCS, increased the sensitivity of the ESI-MS/MS detection. To confirm the comprehensive peptide analysis, synthesized α-Crystallin tryptic peptides, which included D-Asp residues, were analyzed. The 5 pairs of D/L-Asp that included peptide diastereomers were well separated. Their peak resolutions were more than 1.5 and the results were reproducible (RSD<0.05, n=5). As an application of this method, we analyzed the α-Crystallin standard and UV irradiated α-Crystallin. After trypsin digestion and DBD-Py-NCS derivatization, the tryptic peptide derivatives were applied to LC-MS/MS. Based on the results of peptide sequence identification, almost all the tryptic peptides of the αA- and αB-Crystallin homologous subunits of α-Crystallin were detected as DBD-Py NCS derivatives. However, there was no D-Asp residue in the standard proteins. In the case of the UV irradiated α-Crystallin, Asp(76) and Asp(84) in the αA-Crystallin and Asp(96) in αB-Crystallin were racemized to D-Asp. These results show that this proposed chiral peptide LC-MS/MS method using chiral derivatization provides a rapid and sensitive analysis for post translational Asp racemization sites in aging proteins.

  11. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan


    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  12. Isomer-specific analysis of nonylphenols with estrogenic activity and their distribution in aquatic environment in relation to endocrine disrupters

    Kim, Y.S.; Katase, T.; Inoue, T. [Nihon Univ., Fujisawa, Kanagawa (Japan). College of Bioresource Sciences; Horii, Y.; Yamashita, N. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Makino, M.; Uchiyama, T.; Fujimoto, Y. [Nihon Univ., Chiba (Japan). College of Pharmacy


    The effect of estrogen-exposure on levels of a larval storage protein of Balanus amphitrite, cypris major protein (CMP), which is related to barnacle vitellin, has been examined at low concentrations (0.01-1.0 {mu}g/l) of 4-nonylphenol (NP) and 17{beta}-estradiol (E2) (1.0 {mu}g/l) from egg hatching until the nauplius cypris stage. Eventually, the exposure to 0.01 {mu}g/l of NP led to a ca. 50% increase in the optical density of the CMP. There are theoretically ca. 170 kinds of isomers of NP, based on the structure of the nonyl side chain in NP. We fractionated a commercial NP by high performance liquid chromatography (HPLC) to give six fractions (Fr. 1- Fr. 6). Fr. 3 - Fr. 5 were further separated to afford 14 fractions by using gas chromatograph equipped with a preparative fraction collector (GC-PFC) and 11 NP isomers were identified by gas chromatograph equipped with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). The chemical structures of 11 isomers (NP1 to NP14) were characterized and estrogenicities of the selected isomers were tested in recombinant yeast screen system. The 4-(1,1-dimethyl-2-ethyl-pentyl)- phenol (NP7) was found to exhibit the highest estrogenic activity corresponding to 1.9 x 10{sup -3} that of E2. The NP4 and 6 were structurally in diastereomer. The individual isomer of NP in aquatic samples taken from Ariake Sea and Tokyo, Japan was analyzed by steam distillation extraction in the present study.

  13. Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant.

    Sadhu, Samir Kumar; Okuyama, Emi; Fujimoto, Haruhiro; Ishibashi, Masami; Yesilada, Erdem


    As Cistus laurifolius has been used traditionally to treat inflammatory and rheumatic disorders, its leaves were tested for prostaglandin (PG) inhibitory and antioxidant activities. The leaf extract showed both activities, i.e., inhibitory effect at 300 microg/ml on PGE1- and E2-induced contractions in guinea pig ileum and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect. The separation guided by the activities shown by these dual assays provided sixteen compounds, 1-16. Known compounds 1-12 and 15 were identified as 3-O-methyl quercetin (1), 3,7-O-dimethyl quercetin (2), genkwanin (3), 3,7-O-dimethyl kaempferol (4), 3,4'-O-dimethyl quercetin (5), apigenin (6), 3,4'-O-dimethyl kaempferol (7), ellagic acid (8), beta-sitosterol-3-O-beta-glucoside (9), quercetin 3-O-alpha-rhamnoside (10), 5-O-p-coumaroyl quinic acid methyl ester (11), 1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-alpha-l-rhamnopyranoxypropyl)-2-methoxyphenoxy]-1,3-propanediol (12) and 2,3-dihydro-2-(4'-alpha-l-rhamnopyranosyloxy-3'-methoxyphenyl)-3-hydroxymethyl-7-methoxy-5-benzofuranpropanol (15). New lignan glycosides 13 and 14 were determined to be olivil 9-O-beta-D-xyloside and berchemol 9-O-rhamnoside, respectively. Compound 16 was isolated as a 2:1 mixture of two diastereomers, the major one of which was determined to be (7S,8R)-dihydrodehydrodiconiferyl alcohol 9'-O-alpha-L-rhamnoside. The structures were determined by detailed 2D NMR analysis together with NOEDF and CD. PG inhibitory effect was observed in 1, 5, 10, 12 and 16 at 30 microg/ml and antioxidant activity, in 1, 2, 8, 10, 12-14 and 16.

  14. Nuclear medicine program. Progress report for quarter ending June 30, 1995

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L. [and others


    In this report we describe the first synthesis of the (-)(-) and (-)(+) isomers of 1-azabicyclo oct-3-yl {alpha}-(1-fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate ({open_quotes}FQNPe{close_quotes}). Earlier studies with the racemic FQNPe mixture had demonstrated high in vitro binding affinity for the muscarinic-cholinergic receptor and showed that pre-treatment of rats with this new agent significantly blocked receptor localization of subsequently injected -Z-(-,-)-IQNP. Because of the potential important use of fluorine-18-labeled analogues for clinical evaluation of changes in muscarinic-cholinergic receptors by positron emission tomography (PET), we have now synthesized the diastereomeric isomers of FQNPe. Multi-gram quantities of ethyl-{alpha}- (1-chloropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate were prepared and then saponified into the racemic {alpha}-(1-chloropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetic acid mixture. The racemic acid was resolved into (-)- and (+)-{alpha}-(1-chloropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetic acid enantiomers by isolation of the (-) salt of (S-)-(-)-{alpha}-methylbenzylamine and the (+) salt of (R)-(+)-{alpha}-methylbenzylamine. The resolved (-)- ([{alpha}]{sub D} = -12.1{degrees}, c = 5.8, chloroform) and (+)-acetic acids ([{alpha}]{sub D} = + 11.6{degrees}, c = 6.0, chloroform) were fully characterized and then converted to the enantiomeric ethyl-{alpha}-(1-fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetates by a four-step reaction sequence. The (-)- and (+)-ethyl-{alpha}-(1-fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetates were then each transesterified with (-)-quinuclidinol to form the (-)(-) FQNPe and (-)(+) FQNPe diastereomers. These diastereomeric esters will now be evaluated in in vitro studies. The availability of the substrates for preparation of the fluorine-18-labeled enantiomers will now allow evaluation of the radiolabeled compounds in animals.

  15. Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by L-rhamnulose-1-phosphate and L-fuculose-1-phosphate aldolases in aqueous borate buffer.

    Garrabou, Xavier; Calveras, Jordi; Joglar, Jesús; Parella, Teodor; Bujons, Jordi; Clapés, Pere


    Aldol addition reactions of dihydroxyacetone (DHA) to N-Cbz-amino aldehydes catalyzed by L-rhamnulose-1-phosphate aldolase (RhuA) in the presence of borate buffer are reported. High yields of aldol adduct (e.g. 70-90%) were achieved with excellent (>98 : 2 syn/anti) stereoselectivity for most S or R configured acceptors, which compares favorably to the reactions performed with DHAP. The stereochemical outcome was different and depended on the N-Cbz-amino aldehyde enantiomer: the S acceptors gave the syn (3R,4S) aldol adduct whereas the R ones gave the anti (3R,4R) diastereomer. Moreover, the tactical use of Cbz protecting group allows simple and efficient elimination of borate and excess of DHA by reverse phase column chromatography or even by simple extraction. This, in addition to the use of unphosphorylated donor nucleophile, makes a useful and expedient methodology for the synthesis of structurally diverse iminocyclitols. The performance of aldol additions of dihydroxyacetone phosphate (DHAP) to N-Cbz-amino aldehydes using RhuA and L-fuculose-1-phosphate aldolase (FucA) catalyst in borate buffer was also evaluated. For FucA catalysts, including FucA F131A, the initial velocity of the aldol addition reactions using DHAP were between 2 and 10 times faster and the yields between 1.5 and 4 times higher than those in triethanolamine buffer. In this case, the retroaldol velocities measured for some aldol adducts were lower than those without borate buffer indicating some trapping effect that could explain the improvement of yields.

  16. Crystal structures of the two epimers from the unusual thermal C6-epimerization of 5-oxo-1,2,3,5,5a,6,7,9b-octa-hydro-7,9a-ep-oxy-pyrrolo-[2,1-a]iso-indole-6-carb-oxy-lic acid, 5a(RS),6(SR),7(RS),9a(SR),9b(SR) and 5a(RS),6(RS),7(RS),9a(SR),9b(SR).

    Poplevin, Dmitry S; Zubkov, Fedor I; Dorovatovskii, Pavel V; Zubavichus, Yan V; Khrustalev, Victor N


    The isomeric title compounds, C12H13NO4 (Ia) and C12H13NO4 (IIa), the products of an usual thermal C6-epimerization of 5-oxo-1,2,3,5,5a,6,7,9b-octa-hydro-7,9a-ep-oxy-pyrrolo-[2,1-a]iso-indole-6-carb-oxy-lic acid, represent the two different diastereomers and have very similar mol-ecular geometries. The mol-ecules of both compounds comprise a fused tetra-cyclic system containing four five-membered rings (pyrrolidine, pyrrolidinone, di-hydro-furan and tetra-hydro-furan), all of which adopt the usual envelope conformations. The dihedral angle between the basal planes of the pyrrolidine and pyrrolidinone rings are 14.3 (2) and 16.50 (11)°, respectively, for (Ia) and (IIa). The nitro-gen atom has a slightly pyramidalized geometry [bond-angle sum = 355.9 and 355.3°, for (Ia) and (IIa)], respectively. In the crystal of (Ia), mol-ecules form zigzag-like hydrogen-bonded chains along [010] through strong O-H⋯O hydrogen bonds and are further linked by weak C-H⋯O hydrogen bonds into complex two-tier layers parallel to (100). Unlike (Ia), the crystal of (IIa) contains centrosymmetric cyclic hydrogen-bonded dimers [graph set R(2)2(14)], formed through strong O-H⋯O hydrogen bonds and are further linked by weak C-H⋯O hydrogen bonds into ribbons extending across [101].

  17. Planar chiral (η6-arene)Cr(CO)3 containing carboxylic acid derivatives: synthesis and use in the preparation of organometallic analogues of the antibiotic platensimycin.

    Patra, Malay; Merz, Klaus; Metzler-Nolte, Nils


    With more and more organometallic compounds receiving attention for applications in medicinal organometallic chemistry, the need arises for stereoselective syntheses of more complicated structures containing organometallic moieties, for example as isosteric substitutes for organic drug candidates. Herein, the synthesis and characterization of both diastereomers of a planar chiral (η(6)-arene)Cr(CO)(3) containing carboxylic acid derivative, namely, 3-{η(6)-(1, 2, 3, 4-tetrahydro-1-endo/exo-methyl-2-oxonaphthalen-1-yl)-tricarbonylchromium(0)}propanoic acid (7 and 8) is reported. The molecular structures of both were confirmed by single crystal X-ray diffraction. The degree of diastereoselectivity in Cr(CO)(3) complexation with methyl/tert-butyl-3-(1,2,3,4-tetrahydro-1-methyl-2-oxonaphthalen-1-yl)propanoate (4a/4b) vs. the Michael addition of methyl/tert-butyl acrylate to (η(6)-1-methyl-2-tetralone)Cr(CO)(3) (9) was also examined. In the latter case the alkylation was found to be completely diastereoselective and gave methyl/tert-butyl-3-{η(6)-(1, 2, 3, 4-tetrahydro-1-endo-methyl-2-oxonaphthalen-1-yl)-tricarbonylchromium (0)}propanoate (5a and 5b) in excellent yield. Both the carboxylic acids 7 and 8 were coupled with the aminoresorcyclic acid core to achieve diastereomeric bioorganometallics 15a and 15b based on the naturally occurring antibiotic platensimycin lead structure (1a, see Fig. 1). The newly synthesized bioorganometallics were tested against various Gram-positive and Gram-negative bacterial strains but show no promising antibacterial activity.

  18. The metabolomics of (+/-)-arecoline 1-oxide in the mouse and its formation by human flavin-containing monooxygenases.

    Giri, Sarbani; Krausz, Kristopher W; Idle, Jeffrey R; Gonzalez, Frank J


    The alkaloid arecoline is a main constituent of areca nuts that are chewed by approximately 600 million persons worldwide. A principal metabolite of arecoline is arecoline 1-oxide whose metabolism has been poorly studied. To redress this, synthetic (+/-)-arecoline 1-oxide was administered to mice (20mg/kg p.o.) and a metabolomic study performed on 0-12h urine using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry (UPLC-TOFMS) with multivariate data analysis. A total of 16 mass/retention time pairs yielded 13 metabolites of (+/-)-arecoline 1-oxide, most of them novel. Identity of metabolites was confirmed by tandem mass spectrometry. The principal pathways of metabolism of (+/-)-arecoline 1-oxide were mercapturic acid formation, with catabolism to mercaptan and methylmercaptan metabolites, apparent CC double-bond reduction, carboxylic acid reduction to the aldehyde (a novel pathway in mammals), N-oxide reduction, and de-esterification. Relative percentages of metabolites were determined directly from the metabolomic data. Approximately, 50% of the urinary metabolites corresponded to unchanged (+/-)-arecoline 1-oxide, 25% to other N-oxide metabolites, while approximately, 30% corresponded to mercapturic acids or their metabolites. Many metabolites, principally mercapturic acids and their derivatives, were excreted as diastereomers that could be resolved by UPLC-TOFMS. Arecoline was converted to arecoline 1-oxide in vitro by human flavin-containing monooxygenases FMO1 (K(M): 13.6+/-4.9muM; V(MAX): 0.114+/-0.01nmolmin(-1)microg(-1) protein) and FMO3 (K(M): 44.5+/-8.0microM; V(MAX): 0.014+/-0.001nmolmin(-1)microg(-1) protein), but not by FMO5 or any of 11 human cytochromes P450. This report underscores the power of metabolomics in drug metabolite mining.

  19. Evidence for the intermediacy of Wheland-Meisenheimer complexes in SEAr reactions of aminothiazoles with 4,6-dinitrobenzofuroxan.

    Boga, Carla; Del Vecchio, Erminia; Forlani, Luciano; Goumont, Régis; Terrier, François; Tozzi, Silvia


    Reactions of DNBF with a series of 2-aminothiazoles (1 a-f) to afford thermodynamically stable C-bonded sigma-adducts have been investigated in acetonitrile. A most significant finding emerged on recording NMR spectra immediately after mixing of equimolar amounts of DNBF and the unsubstituted 2-aminothiazole (1 a) in Me2SO: namely, that the formation of 9 a is preceded by that of a short-lived intermediate species X. From the 1H NMR parameters characterizing this intermediate, as well as the dependence of its lifetime on the experimental conditions-the presence of excess DNBF over 1 a increases the lifetime of X while an excess of base (1 a) accelerates its conversion into 9 a--it is convincingly demonstrated that the structure of X combines the presence of a positively charged Wheland complex moiety (with regard to the thiazole ring) with that of a negatively charged Meisenheimer complex moiety (with regard to the benzofuroxan system). So far, only one intermediate of this type (noted WM) has been successfully characterized, in the reactions of DNBF with 1,3,5-tris(N,N-dialkylamino)benzenes. Among the key features supporting the intermediacy of X along the reaction coordinate leading to 9 a is the fact that the reactions of DNBF with 1 a in the presence of an alcohol (MeOH, EtOH, nPrOH) produce new adducts arising from the addition of an alcohol molecule to the thiazole moiety of WM-1 a. Reflecting the presence of three chiral centres, these species are formed as mixtures of several diastereomers that could all be characterized in their racemic forms in ethanol. These findings generalize the previous report on the formation of Wheland-Meisenheimer carbon-carbon complexes in homocyclic series.

  20. Cyclic peptide formation catalyzed by an antibody ligase

    Smithrud, David B.; Benkovic, Patricia A.; Benkovic, Stephen J.; Roberts, Victoria; Liu, Josephine; Neagu, Irina; Iwama, Seiji; Phillips, Barton W.; Smith, Amos B.; Hirschmann, Ralph


    Cyclic hexapeptides represent a class of compounds with important, diverse biological activities. We report herein that the antibody 16G3 catalyzes the cyclization of d-Trp-Gly-Pal-Pro-Gly-Phe⋅p-nitrophenyl ester (8a) to give c-(d-Trp-Gly-Pal-Pro-Gly-l-Phe) (11a). The antibody does not, however, catalyze either epimerization or hydrolysis. The resulting rate enhancement of the cyclization by 16G3 (22-fold) was sufficient to form the desired product in greater than 90% yield. In absolute rate terms, the turnover of 16G3 is estimated to be 2 min−1. The background rate of epimerization of 8a was reduced from 10 to 1% and hydrolysis from 50 to 4% in the presence of 16G3. As expected, the catalytic effects of 16G3 were blocked by the addition of an amount of the hapten equal to twice the antibody concentration. We also synthesized three diastereomers of 8a: the d-Trp1-d-Phe6 (8b), l-Trp1-l-Phe6 (8c), and l-Trp1-d-Phe6 (8d) hexapeptides as well as d-Trp′-l-Trp6 (12) and d-Phe′-l-Phe6 (13). As expected, the rate enhancement by 16G3 was greatest for 8a, because the stereochemistry of Trp1 and Phe6 matches that of the corresponding residues on the hapten used to induce the biosynthesis of 16G3. A model of the variable domain of 16G3 was generated from the primary sequence using the antibody structural database to guide the model construction. The resulting model provided support for some previously proposed interpretations of the kinetic data, while providing valuable new insights for others. PMID:10688882

  1. Fast and high-resolution stereochemical analysis by nonuniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets.

    Lafon, Olivier; Hu, Bingwen; Amoureux, Jean-Paul; Lesot, Philippe


    Natural abundance deuterium (NAD) 2D NMR spectroscopy using chiral or achiral liquid crystals is an efficient analytical tool for the stereochemical analysis of enantio- or diastereomers by the virtue of proton-to-deuterium substitution. In particular, it allows the measurement of enantiopurity of organic synthetic molecules or the determination of the natural isotopic (1)H/(2)H fractionation in biological molecules, such as fatty acid methyl esters (FAME). So far, the NAD 2D spectra of solutes were acquired by using uniform sampling (US) and processed by conventional 2D Fourier transform (FT), which could result in long measurement times for medium-sized analytes or low solute concentrations. Herein, we demonstrate that this conventional approach can be advantageously replaced by nonuniform sampling (NUS) processed by covariance (Cov) transform. This original spectral reconstruction provides a significant enhancement of spectral resolution, as well as a reduction of measurement times. The application of Cov to NUS data has required the introduction of a regularization procedure in the time domain for the indirect dimension. The analytical potential of combining Cov and NUS is demonstrated by measuring the enantiomeric excess of a scalemic mixture of 2-ethyloxirane and by determining the diastereomeric excess of methyl vernoleate, a natural FAME. These two organic compounds were aligned in a polypeptide (poly(γ-benzyl-L-glutamate)) mesophase. In the case of NAD 2D NMR spectroscopy, we show that Cov and NUS methods allow a decrease in measurement time by a factor of two compared with Cov applied to US data and a factor of four compared with FT applied to US data.

  2. Using torsional forces to explain the gradient temperature Raman spectra of endosulfan isomers and its irreversible isomerization

    Schmidt, Walter F.; Hapeman, Cathleen J.; McConnell, Laura L.; Rice, Clifford P.; Broadhurst, C. Leigh; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.; Shelton, Daniel R.


    Since the 1950's, the broad-spectrum, organochlorine insecticide endosulfan (6,7,8, 9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) has been used on numerous crops. Due to its persistence, bioaccumulation, long-range transport, and adverse effects to human health and ecosystems, it was officially identified as a persistent organic pollutant (POP) in 2011. The last uses in the United States were phased out in 2016. Endosulfan consists of two diastereomers, α-endosulfan and β-endosulfan, and while the α-isomer exists as two asymmetrical, twist-chair enantiomers which interchange, the β-isomer is a symmetrical-chair conformation. In addition, the β-isomer was found to isomerize to the α-isomer. Gradient Temperature Raman Spectroscopy (GTRS) enables identification the molecular sites at which bending vibrational modes becomes twisting or wagging vibrational modes. Previous studies using GTRS and chemical calculations afforded evidence for specific bond movements and the irreversibility of the isomerization mechanism. However, not all of the vibrational modes observed in the spectra could be explained. Thus, new analyses of the GTRS data were conducted to examine the effects of torsional forces on the bond movement, which allowed for the identification of all the peaks. These newly-identified torsional forces provide further confirmation of the isomerization mechanism and its irreversibility. Finally, this isomerization explains why β-endosulfan is rarely detected in the atmosphere.

  3. Development and validation of a novel LC-MS/MS method for simultaneous determination of abiraterone and its seven steroidal metabolites in human serum: Innovation in separation of diastereoisomers without use of a chiral column.

    Alyamani, Mohammad; Li, Zhenfei; Upadhyay, Sunil K; Anderson, David J; Auchus, Richard J; Sharifi, Nima


    Abiraterone acetate (AA), the prodrug of abiraterone, is FDA-approved for the treatment of castration-resistant prostate cancer. Abiraterone is metabolized in patients to a more potent analogue, D4A. However, we have recently reported that this analogue is further metabolized to additional metabolites in patients treated with AA. Here, we present a liquid chromatography-tandem mass spectrometry method developed to resolve and detect abiraterone and its seven metabolites in human serum using an AB Sciex Qtrap 5500 mass analyzer coupled with a Shimadzu Nexera UPLC station. Analytes and the internal standard (abiraterone-d4) were extracted from human serum using the liquid-liquid extraction procedure. The analytes were separated using a Zorbax Eclipse Plus C18 150×2.1mm, 3.5μm column at 40°C and an isocratic mobile phase 35% A (0.1% formic acid in water), 65% B (0.1% formic acid in methanol:acetonitrile; 60:40). Electrospray ionization in positive mode was applied with multiple reaction monitoring in a total run time of 13min. Abiraterone detection was linear in the range 2-400ng/mL and all metabolites from 0.1-20ng/mL. The method was validated following US FDA guidelines for bioanalytical method validation, and all the metabolite results were within the acceptance limits. Despite the similarity in structure and mass transition between the metabolites, the validated method separated all the metabolites, including diastereomers, to allow accurate identification and quantitation of each compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Emission behavior of hexabromocyclododecanes and polybrominated diphenyl ethers from flame-retardant-treated textiles.

    Kajiwara, Natsuko; Takigami, Hidetaka


    To evaluate the emission behavior of hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs) added to textile products as flame retardants, we used a small stainless steel container (7 cm i.d. × 5.5 cm height, ca. 210 cm(3)) to conduct emission tests on three upholstery textile samples at temperatures of 20, 40, 60, and 80 °C. The textile samples, which were intended for use in curtain manufacture and had been treated with either technical HBCD or technical DecaBDE, emitted HBCDs and PBDEs, including BDE 209, even at room temperature (20 °C), and the emission rates increased with increasing test temperature. These results indicate that flame-retardant-treated upholstery textiles have the potential to be major sources of brominated flame retardant contamination in indoor air and dust. The HBCD diastereomer emission profiles at the test temperatures of 20 and 40 °C were similar to the profiles of the original textile samples; in contrast, at the higher test temperatures, the proportion of α-HBCD was larger (up to 70% of the total HBCD emission) than in the original samples. At the higher test temperatures, the proportions of di- to hexa-BDEs in the emissions were clearly larger than in the original sample, suggesting that the textile products treated with technical DecaBDE could be a source of environmentally relevant PBDE congeners such as BDE 47, 99, and 100. The emission rates of HBCDs from the textiles were two orders of magnitude higher than those of PBDEs, suggesting that HBCDs volatilize more easily from textile products to the indoor environment than PBDEs.

  5. Evaluation of drug incorporation into hair segments and nails by enantiomeric analysis following controlled single MDMA intakes.

    Madry, Milena M; Steuer, Andrea E; Hysek, Cédric M; Liechti, Matthias E; Baumgartner, Markus R; Kraemer, Thomas


    Incorporation rates of the enantiomers of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA) into hair and nails were investigated after controlled administration. Fifteen subjects without MDMA use received two doses of 125 mg of MDMA. Hair, nail scrapings, and nail clippings were collected 9-77 days after the last administration (median 20 days). Hair samples were analyzed in segments of 1- to 2-cm length. After chiral derivatization with N-(2,4-dinitro-5-fluorophenyl)-L-valinamide, MDMA and MDA diastereomers were analyzed by liquid chromatography-tandem mass spectrometry. Highest concentrations in hair segments corresponded to the time of MDMA intake. They ranged from 101 to 3200 pg/mg and 71 to 860 pg/mg for R- and S-MDMA, and from 3.2 to 116 pg/mg and 4.4 to 108 pg/mg for R- and S-MDA, respectively. MDMA and MDA concentrations in nail scrapings and clippings were significantly lower than in hair samples. There was no significant difference between enantiomeric ratios of R/S-MDMA and R/S-MDA in hair and nail samples (medians 2.2-2.4 for MDMA and 0.85-0.95 for MDA). Metabolite ratios of MDA to MDMA were in the same range in hair and nail samples (medians 0.044-0.055). Our study demonstrates that administration of two representative doses of MDMA was detected in the hair segments corresponding to the time of intake based on average hair growth rates. MDMA was detected in all nail samples regardless of time passed after intake. Comparable R/S ratios in hair and nail samples may indicate that incorporation mechanisms into both matrices are comparable.

  6. Detection of oxidation products of 5-methyl-2'-deoxycytidine in Arabidopsis DNA.

    Shuo Liu

    Full Text Available Epigenetic regulations play important roles in plant development and adaptation to environmental stress. Recent studies from mammalian systems have demonstrated the involvement of ten-eleven translocation (Tet family of dioxygenases in the generation of a series of oxidized derivatives of 5-methylcytosine (5-mC in mammalian DNA. In addition, these oxidized 5-mC nucleobases have important roles in epigenetic remodeling and aberrant levels of 5-hydroxymethyl-2'-deoxycytidine (5-HmdC were found to be associated with different types of human cancers. However, there is a lack of evidence supporting the presence of these modified bases in plant DNA. Here we reported the use of a reversed-phase HPLC coupled with tandem mass spectrometry method and stable isotope-labeled standards for assessing the levels of the oxidized 5-mC nucleosides along with two other oxidatively induced DNA modifications in genomic DNA of Arabidopsis. These included 5-HmdC, 5-formyl-2'-deoxycytidine (5-FodC, 5-carboxyl-2'-deoxycytidine (5-CadC, 5-hydroxymethyl-2'-deoxyuridine (5-HmdU, and the (5'S diastereomer of 8,5'-cyclo-2'-deoxyguanosine (S-cdG. We found that, in Arabidopsis DNA, the levels of 5-HmdC, 5-FodC, and 5-CadC are approximately 0.8 modifications per 10(6 nucleosides, with the frequency of 5-HmdC (per 5-mdC being comparable to that of 5-HmdU (per thymidine. The relatively low levels of the 5-mdC oxidation products suggest that they arise likely from reactive oxygen species present in cells, which is in line with the lack of homologous Tet-family dioxygenase enzymes in Arabidopsis.

  7. Isobutoxypentabromocyclododecanes (iBPBCDs): a new class of polybrominated compounds.

    Heeb, Norbert V; Graf, Heidi; Bernd Schweizer, W; Lienemann, P


    Isobutoxypentabromocyclododecanes (iBPBCDs) represent a new class of polybrominated compounds found in several flame-proofed polystyrene materials and in a technical mixture of hexabromocyclododecanes (HBCDs). Of the 64 stereoisomers possible, we now have analytical evidence for 16 different stereoisomers. By reversed- and chiral-phase liquid chromatography we distinguished 8 diastereomeric pairs of enantiomers, named alpha-, beta-, gamma-, delta-, epsilon-, xi-, eta-, and theta-iBPBCDs in accordance with their chromatographic retention on a C(18)-RP-column. Crystal structure analysis revealed the stereochemistry of the most prominent theta-iBPBCD stereoisomers, which were determined to be (1R)-1-iso-butoxy-(2R,5R,6S,9S,10R)-2,5,6,9,10-pentabromocyclododecane and its enantiomer. The eight iBPBCD diastereomers were also found in several expanded (EPS) and extruded polystyrene materials (XPS). Stereoisomer pattern varied to a large extent with delta-, eta-, and theta-iBPBCDs dominating in EPS- and alpha-, beta-, epsilon-, and xi-isomers in XPS-materials. The substitution of a bromine atom with an alkoxy group is expected to result in more lipophilic compounds than the parent HBCD compounds. The chromatographic retention on the reversed-phase column supports this assumption. Therefore, we expect that certain iBPBCD stereoisomers may also have the potential to accumulate in biota like e.g. alpha-HBCDs. The presented spectroscopic and chromatographic data allow the identification of 16 different iBPBCD stereoisomers in plastic materials, environmental samples, and biota. With this, the occurrence, fate, and toxicological relevance of this new class of polybrominated compounds can now be studied in more detail.

  8. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions.

    Di Grazia, Antonio; Cappiello, Floriana; Cohen, Hadar; Casciaro, Bruno; Luca, Vincenzo; Pini, Alessandro; Di, Y Peter; Shai, Yechiel; Mangoni, Maria Luisa


    Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.

  9. A divergent asymmetric approach to aza-spiropyran derivative and (1S,8aR-1-hydroxyindolizidine

    Huang Pei-Qiang


    Full Text Available Abstract Background Spiroketals and the corresponding aza-spiroketals are the structural features found in a number of bioactive natural products, and in compounds possessing photochromic properties for use in the area of photochemical erasable memory, self-development photography, actinometry, displays, filters, lenses of variable optical density, and photomechanical biomaterials etc. And (1R,8aS-1-hydroxyindolizidine (3 has been postulated to be a biosynthetic precursor of hydroxylated indolizidines such as (+-lentiginosine 1, (--2-epilentiginosine 2 and (--swainsonine, which are potentially useful antimetastasis drugs for the treatment of cancer. In continuation of a project aimed at the development of enantiomeric malimide-based synthetic methodology, we now report a divergent, concise and highly diastereoselective approach for the asymmetric syntheses of an aza-spiropyran derivative 7 and (1S,8aR-1-hydroxyindolizidine (ent-3. Results The synthesis of aza-spiropyran 7 started from the Grignard addition of malimide 4. Treatment of the THP-protected 4-hydroxybutyl magnesium bromide with malimide 4 at -20°C afforded N,O-acetal 5a as an epimeric mixture in a combined yield of 89%. Subjection of the diastereomeric mixture of N,O-acetal 5a to acidic conditions for 0.5 h resulted in the formation of the desired functionalized aza-spiropyran 7 as a single diastereomer in quantitative yield. The stereochemistry of the aza-spiropyran 7 was determined by NOESY experiment. For the synthesis of ent-3, aza-spiropyran 7, or more conveniently, N,O-acetal 5a, was converted to lactam 6a under standard reductive dehydroxylation conditions in 78% or 77% yield. Reduction of lactam 6a with borane-dimethylsulfide provided pyrrolidine 8 in 95% yield. Compound 8 was then converted to 1-hydroxyindolizidine ent-3 via a four-step procedure, namely, N-debenzylation/O-mesylation/Boc-cleavage/cyclization, and O-debenzylation. Alternatively, amino alcohol 8 was mesylated

  10. Origins of enantioselectivity during allylic substitution reactions catalyzed by metallacyclic iridium complexes.

    Madrahimov, Sherzod T; Hartwig, John F


    In depth mechanistic studies of iridium catalyzed regioselective and enantioselective allylic substitution reactions are presented. A series of cyclometalated allyliridium complexes that are kinetically and chemically competent to be intermediates in the allylic substitution reactions was prepared and characterized by 1D and 2D NMR spectroscopies and single-crystal X-ray difraction. The rates of epimerization of the less thermodynamically stable diastereomeric allyliridium complexes to the thermodynamically more stable allyliridium stereoisomers were measured. The rates of nucleophilic attack by aniline and by N-methylaniline on the isolated allyliridium complexes were also measured. Attack on the thermodynamically less stable allyliridium complex was found to be orders of magnitude faster than attack on the thermodynamically more stable complex, yet the major enantiomer of the catalytic reaction is formed from the more stable diastereomer. Comparison of the rates of nucleophilic attack to the rates of epimerization of the diastereomeric allyliridium complexes containing a weakly coordinating counterion showed that nucleophilic attack on the less stable allyliridium species is much faster than conversion of the less stable isomer to the more stable isomer. These observations imply that Curtin-Hammett conditions are not met during iridium catalyzed allylic substitution reactions by η(3)-η(1)-η(3) interconversion. Rather, these data imply that when these conditions exist for this reaction, they are created by reversible oxidative addition, and the high selectivity of this oxidative addition step to form the more stable diastereomeric allyl complex leads to the high enantioselectivity. The stereochemical outcome of the individual steps of allylic substitution was assessed by reactions of deuterium-labeled substrates. The allylic substitution was shown to occur by oxidative addition with inversion of configuration, followed by an outer sphere nucleophilic attack

  11. Complexes of 5,5'-aminoacido-substituted 2,2'-bipyridyl ligands: control of diastereoselectivity with a pH switch and a chloride-responsive combinatorial library.

    Telfer, Shane G; Yang, Xiao-Juan; Williams, Alan F


    The synthesis and coordination chemistry of a new chiral ligand, 2,2'-bipyridine substituted at the 5 and 5' positions by N-methyl-L-valine methyl ester (5), is presented. The ligand readily forms complexes [M(5)3]2+ where M = Co(II) and Fe(II) in CH3CN, and the complexation reaction is slightly diastereoselective (d.e. =ca. 20%) in favour of the Delta diastereomer. The addition of six equivalents of HCl to these complexes [M(II)(5)3]2+ leads to formation of Delta-[M(II)(5H2)3]8+ with a d.e. of 100%. This high diastereoselectivity can be reversed by the addition of base i.e. the diastereoselectivity can be controlled by the pH. Delta-[Fe(5H2)3]8+ was found to bind chloride ions in CD3OD-CD3CN (6:1) with a binding constant of 260 M(-1). [Co(II)(5)3]2+ can be oxidised to Delta-[Co(III)(5H2)3]9+. Formation constants for both [Co(II)(5)3]2+ and [Co(II)(5H2)3]8+ in acetonitrile were obtained by spectrophotometric titrations. In the former case, the stability constant, log beta3 = 19.5(8), is very similar to that measured for [Co(II)(bipy)3]2+ (log beta3 = 19.3(7)) but this drops significantly when the amine groups of are protonated (log beta3 = 16.5(2)). A dynamic combinatorial library was prepared by mixing three equivalents of, three equivalents of bipy, and two equivalents of Co(II) in CD3CN. The presence of all possible Delta- and Lambda-[Co(II)(5)x(bipy)(3-x)]2+ complexes was inferred from 1H NMR and ES-MS spectra. Addition of protons to this library reduced the number of components by inducing diastereoselectivity, and presence of chloride further simplified the 1H NMR spectrum, indicating that [Cl2 ligand Delta-[Co(II)(5H2)3

  12. Novel chiral derivatization reagents possessing a pyridylthiourea structure for enantiospecific determination of amines and carboxylic acids in high-throughput liquid chromatography and electrospray-ionization mass spectrometry for chiral metabolomics identification.

    Nagao, Ryuji; Tsutsui, Haruhito; Mochizuki, Toshiki; Takayama, Takahiro; Kuwabara, Tomohiro; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa


    This paper reports the synthesis and the application of novel derivatization reagents possessing a pyridylthiourea structure for the enantiospecific determination of chiral amines and carboxylic acids in high-throughput LC-ESI-MS/MS. The novel reagents, i.e., (R)-N-(3-pyridylthiocarbamoyl)pyrrolidine-2-carboxylic acid (PyT-C) and (S)-3-amino-1-(3-pyridylthiocarbamoyl)pyrrolidine (PyT-N), were evaluated as chiral derivatization reagents for the enantiomeric determination of chiral amines and carboxylic acids, respectively, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The chiral amines and carboxylic acids were easily labeled with PyT-C and PyT-N, respectively, at 60°C in 60min in the presence of 2,2'-dipyridyl disulfide (DPDS) and triphenylphosphine (TPP) as the activation reagents. The resulting diastereomers were completely separated by reversed-phase chromatography using a small particle (1.7μm) ODS column (Rs=3.54-6.00 for carboxylic acids and Rs=3.07-4.75 for amines). A highly sensitive detection at the sub-fmol level was also obtained from the SRM chromatograms at a single monitoring ion, m/z 137.0 (0.72-1.46fmol for carboxylic acids and 0.55-1.89fmol for amines). The proposed procedure using PyT-C and PyT-N was applied to the determination of chiral amines and carboxylic acids spiked into human saliva, as a model study of chiral metabonomics identification. dl-Amino acid methyl esters and N-acetyl dl-amino acids, which are the representatives as the chiral amines and carboxylic acids, in the saliva were clearly identified by the present method. Because the same product ion at m/z 137.0 was obtained from collision-induced dissociation (CID) of protonated molecular ions of all the derivatives, the proposed procedure using both reagents (i.e., PyT-C and PyT-N) seems to be useful for chiral metabolomics identification having selected functional groups (i.e., amines and carboxylic acids).

  13. Enantiomeric resolution of biomarkers in space analysis: Chemical derivatization and signal processing for gas chromatography-mass spectrometry analysis of chiral amino acids.

    Pietrogrande, M C; Basaglia, G


    The work compares two GC-MS methods for enantioselective separation of amino acids as suitable candidate for stereochemical analysis of chiral amino acids on board spacecrafts in space exploration missions of solar system body environments. Different derivatization reagents are used: a mixture of alkyl chloroformate-alcohol-pyridine to obtain the alkyl alkoxy carbonyl esters and a mixture of perfluorinated alcohols and anhydrides to form perfluoroacyl perfluoroalkyl esters. 20 proteinogenic amino acids were derivatized with the two procedures and submitted to GC-MS analysis on a Chirasil-l-Val stationary phase. The results were then compared in terms of the enantiomeric separation achieved and intensity of MS response. The combination of methyl chloroformate (MCF) and heptafluoro-1-butanol (HFB) allows separation of 14 enantiomeric pairs, five of which display a resolution (R(s)>or=1.2) supposed to be sufficient to quantify the enantiomeric excess. Three mixtures of trifluoroacetic (TFAA) and heptafluorobutyric (HFBA) anhydrides were combined with the corresponding perfluorinated alcohols - TFE (2,2,2-trifluoro-1-ethanol) and HFB (2,2,3,3,4,4,4-heptafluoro-1-butanol) - to give three different reagents (TFAA-TFE, TFAA-HFB, HFBA-HFB): the derivatives obtained show separation of the same number of proteinogenic amino acids (14 of 20) at a temperature lower than column bleeding limit (200 degrees C) and 8 of them give a separation with R(s)>or=1.2. Linearity study and limit of detection (X(LOD)) computation show that both methods are suitable for quantitative determination of several amino acid diastereomers at trace level (X(LOD) approximately 0.5nmol as derivatized quantity). Both the procedures were coupled with automatic data handling to increase their suitability for space analysis: the simplified data treatment is especially helpful to handle the low quality data recovered from space experiments and labor and time are saved, as imposed by the space experiments

  14. Benzocyclotrimers: from the Mills-Nixon effect to gas hosting.

    Fabris, Fabrizio; Zonta, Cristiano; Borsato, Giuseppe; De Lucchi, Ottorino


    The formal annulation of three bicylic olefins yields a class of molecules termed benzocyclotrimers (BCTs), which have unusual electronic properties. The bonds in the central aromatic ring, for example, alternate in length: rather than resembling a substituted benzene, a BCT instead evokes comparison to a cyclohexatriene. Forty years have passed since the synthesis of heptiptycene, the first BCT, was reported. In the interim, many methods have been developed for preparing tris-bicycloannulated benzenes. More than thirty different BCTs have so far been reported, with a variety of morphological features and properties. Over the same period, yields have increased from just a few percent to almost quantitative conversion. This improvement in synthetic access has expanded interest beyond the original theoretical considerations (bond-length fixation in aromatics) to functional applications (supramolecular scaffolds). In this Account, we describe the evolution of synthetic approaches to BCTs and their derivatives, as well as the applications that are now being explored for these compounds. Early syntheses of BCTs involved chloroolefins treated with butyl lithium. A strained alkyne intermediate was postulated early on, and was indeed trapped in 1981. Subsequent efforts have focused on improving chemoselectivity by mitigating the drastic conditions required for the generation of the alkyne intermediate. Our introduction of Cu(I) to induce lithium-copper exchange was successful in this regard. Further improvement resulted from the use of bicylic bromo(trimethylstannyl)olefins. In an effort to avoid the toxicity of the tin reagents, the Heck reaction and Pd catalysis have been pursued for cyclotrimerizing bicylic bromo- and iodoolefins. Depending on the symmetry of the starting bicylic olefin, two diastereomers can be obtained in the preparation of a BCT: a syn compound with C(3) symmetry and an anti compound with C(s) symmetry. Studying the diastereomeric outcome in a

  15. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia

    Koopmans, Martin P.; Köster, Jürgen; Van Kaam-Peters, Heidy M. E.; Kenig, Fabien; Schouten, Stefan; Hartgers, Walter A.; de Leeuw, Jan W.; Sinninghe Damsté, Jaap S.


    A wide range of novel diagenetic and catagenetic products of the diaromatic carotenoid isorenieratene, a pigment of the photosynthetic green sulphur bacteria Chlorobiaceae, has been identified in a number of sedimentary rocks ranging from Ordovician to Miocene. Compound identification is based on NMR, mass spectrometry, the presence of atropisomers, and stable carbon isotopes. Atropisomers contain an axially chiral centre which, in combination with other chiral centres, results in two or more diastereomers that can be separated on a normal GC column. Chlorobiaceae use the reverse TCA cycle to fix carbon, so that their biomass is enriched in 13C. High 13C contents of isorenieratene derivatives therefore support their inferred origins. Isorenieratene derivatives include C 40, C 33, and C 32, diaryl isoprenoids and short-chain aryl isoprenoids with additional aromatic and/or S-containing rings. C 33 and C 32 compounds are diagenetic products of C 33 and C 32 “carotenoids” formed from isorenieratene during early diagenesis through expulsion of toluene and m-xylene, respectively. Cyclisation of the polyene acyclic isoprenoid chain can proceed via an intramolecular Diels-Alder reaction, followed by aromatisation of the newly formed ring. Sulphurisation is also an important process during early diagenesis, competing with expulsion and cyclisation. Sulphur-bound isorenieratane is released during progressive diagenesis, due to cleavage of relatively weak Ssbnd S and Csbnd S bonds. Cleavage of C-C bonds during aromatisation of newly formed rings and during catagenesis yields short-chain compounds. The inherent presence of a conjugated double bond system in carotenoids implies that similar diagenetic and catagenetic reactions can occur with all carotenoids. Chlorobiaceae live at or below the oxic/anoxic boundary layer and require both light and H 2S. The presence of isorenieratene or its diagenetic and catagenetic products in ancient sedimentary rocks and crude oils is

  16. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef


    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also

  17. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.

    Awale, Mahendra; Jin, Xian; Reymond, Jean-Louis


    Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at and should provide useful assistance to drug

  18. Hemiasterlin derivative (R)(S)(S)-BF65 and Akt inhibitor MK-2206 synergistically inhibit SKOV3 ovarian cancer cell growth.

    Lai, Wei-Ting; Cheng, Kai-Lin; Baruchello, Riccardo; Rondanin, Riccardo; Marchetti, Paolo; Simoni, Daniele; Lee, Ray M; Guh, Jih-Hwa; Hsu, Lih-Ching


    We reported previously that a hemiasterlin derivative BF65 is a potent anticancer agent that can inhibit microtubule assembly. Here we show that a more potent stereospecific diastereomer (R)(S)(S)-BF65 can synergize with an allosteric Akt inhibitor MK-2206 to suppress the growth of SKOV3 ovarian cancer cells with constitutively active Akt. (R)(S)(S)-BF65 induced mitotic arrest and MK-2206 caused G0/G1 arrest, while the combination of both induced simultaneous G0/G1 and G2/M cell cycle arrest. (R)(S)(S)-BF65 induced phosphorylation and inactivation of Bcl-2, and downregulated Mcl-1, consequently may lead to apoptosis. (R)(S)(S)-BF65 inhibited mitogen-activated protein kinases (MAPKs), which may stimulate cell proliferation upon activation. (R)(S)(S)-BF65 also induced DNA damage after long-term treatment. MK-2206 is known to inhibit phosphorylation and activation of Akt and suppress cancer cell growth. The combination of (R)(S)(S)-BF65 and MK-2206 also inhibited the Akt pathway. Interestingly, MK-2206 upregulated Bcl-2 and induced activation of MAPKs in SKOV3 cells; however, when combined with (R)(S)(S)-BF65, these prosurvival effects were reversed. The combination also more significantly decreased Mcl-1 protein, increased PARP cleavage, and induced γ-H2AX, a DNA damage marker. Remarkably, MK-2206 enhanced the microtubule depolymerization effect of (R)(S)(S)-BF65. The combination of (R)(S)(S)-BF65 and MK-2206 also markedly inhibited cell migration. Thus, MK-2206 synergizes with (R)(S)(S)-BF65 to inhibit SKOV3 cell growth via downregulating the Akt signaling pathway, and enhancing the microtubule disruption effect of (R)(S)(S)-BF65. (R)(S)(S)-BF65 in turn suppresses Bcl-2 and MAPKs induced by MK-2206. (R)(S)(S)-BF65 and MK-2206 compensate each other leading to increased apoptosis and enhanced cytotoxicity, and may also suppress cancer cell invasion.

  19. Synthesis and characterization of transition metal complexes of dimeric N-confused porphyrin linked by an o-xylene fragment.

    Chmielewski, Piotr J


    Insertion of nickel(II), zinc, cadmium, or silver(III) into both macrocyclic crevices of 2,2'-o-xylene-bis(5,10,15,20-tetrakis(p-tolyl)-2-aza-21-carbaporphyrin) results in homometallic dimeric complexes which were isolated and characterized by NMR, UV-vis, mass spectrometry, and cyclic voltammetry. The 1H NMR study of these systems at low temperatures (203-233 K) allowed determination of most stable conformers with respect to a rotational freedom around the xylene bridge. An unfolded conformation for the dicationic bis(silver(III)) complex was determined on the basis of 2D nuclear Overhauser effect spectrometry experimentation. A mixture of nonequally populated diastereomers is observed for bis(zinc) and bis(cadmium) complexes due to a possibility of two different orientations of the apical anionic ligands with respect to the bridge. In a reaction of 5,10,15,20-tetrakis(p-tolyl)-2-aza-21-carbaporphyrinato nickel(II) with 2-(o-bromoxylene)-5,10,15,20-tetrakis(p-tolyl)-2-aza-21-carbaporphyrin in the presence of a proton scavenger, two isomeric bis(N-confused porphyrin) complexes with one subunit "empty" and the other metalated by nickel(II) were obtained. In the product 10, the o-xylene links external nitrogens of the subunits while product 11 consists of the xylene bridge between external nitrogen of the nonmetalated subunit and internal carbon of the fragment containing a nickel(II) ion. The products were characterized by mass spectrometry, UV-vis, NMR, and, in the case of complex 11, also by X-ray crystallographic analysis (space group P1, a =17.007(3), b = 18.130(3), c = 18.797(2) A, alpha = 105.856(13) degrees, beta = 107.447(13) degrees, gamma = 98.818(15) degrees, V = 5141.1(15) A3, Z = 2). Insertion of zinc or silver(III) into an empty crevice of 10 resulted in heterometallic zinc-nickel(II) or silver(III)-nickel(II) complexes 12 or 13, respectively, which were characterized by NMR, UV-vis, and cyclic voltammetry. The subunits in the bis(porphyrin) systems

  20. Isotopic variants of light and heavy L-pyroglutamic acid succinimidyl esters as the derivatization reagents for DL-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry

    Mochizuki, Toshiki; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo’oka, Toshimasa, E-mail:


    Graphical abstract: -- Highlights: •Isotopic variants of chiral labeling reagents were newly synthesized. •Analysis of DL-amino acids was performed by UPLC–ESI–MS/MS. •Highly efficient enantioseparation and detection of DL-amino acids were performed. •Differential analysis of DL-amino acid was successfully performed in real samples. -- Abstract: L-Pyroglutamic acid succinimidyl ester (L-PGA-OSu) and its isotopic variant (L-PGA[d{sub 5}]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60 °C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs = 1.95–8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5–3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy L-PGA-OSu for the differential analysis of the DL-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the DL-amino acids in human serum samples, spiked with the different concentrations of D-amino acids, were determined by the procedures using L-PGA-OSu and L-PGA[d{sub 5}]-OSu. The D/L ratios in the two sample groups at different concentrations of

  1. Final report on the safety assessment of phytantriol.


    Phytantriol is an alcohol used in around 100 cosmetic products at concentrations ranging from 0.0002% to 1.0%, although uses at concentrations up to 3% are under development. Phytanriol is supplied at 95.2% and 96.0% purity. Impurities include water, sulphated ash, heavy metals, and a diastereomer of Phytantriol, 3,7,11,15-tetramethyl-1,2,3,4-tetrahydroxyhexadecane. Dermal penetration is low; skin permeability was calculated as log Kp = - 1.734. Oral LD50 values in mice and rats were reported to be > 5000 mg/kg. Ocular application of 100% Phytantriol did cause severe corneal damage in some animals, at 23% in diethyl phthalate only slight corneal opacity was seen, and at 10% transient opacity was seen, which resolved by 48 h. Phytantriol at 100% was a severe skin irritant in animal tests. Phytantriol at 3% and 10% in diethyl phthalate produced only slight erythema, which cleared by 48 h. Phytantriol, in the Longhorn egg chorioallantoic membrane assay, was found to have almost no irritation potential when tested at 3% concentration in corn oil. Phytantriol at 25% did produce sensitization in a maximization test, but concentrations of 1% and lower did not cause a sensitization response. Phytantriol is neither phototoxic nor photoallergenic. Phytantriol did not induce aberrations in cultured human lymphocytes, when tested within cytotoxicity limits, nor was it mutagenic in Ames tests, with or without metabolic activation. None of 101 human volunteers reacted initially or to challenge patches of 3% Phytantriol in corn oil. In another investigation of 227 volunteers induced and challenged with 3% Phytantriol in 70:30 ethyl alcohol/water, one person had a mild reaction to the first induction patch; this was the only positive reaction during the induction and challenge phases for all of the volunteers. Phytantriol had no adverse effects in any of 206 volunteer subjects in a repeat insult patch test at 5%. Although data were not available with which to assess reproductive

  2. Mutagenicity and tumorigenicity of the four enantiopure bay-region 3,4-diol-1,2-epoxide isomers of dibenz[a,h]anthracene.

    Chang, Richard L; Wood, Alexander W; Huang, Mou Tuan; Xie, Jian Guo; Cui, Xiao Xing; Reuhl, Kenneth R; Boyd, D R; Lin, Yong; Shih, Weichung Joe; Balani, Suresh K; Yagi, Haruhiko; Jerina, Donald M; Conney, Allan H


    Each enantiomer of the diastereomeric pair of bay-region dibenz[a,h]anthracene 3,4-diol-1,2-epoxides in which the benzylic 4-hydroxyl group and epoxide oxygen are either cis (isomer 1) or trans (isomer 2) were evaluated for mutagenic activity. In strains TA 98 and TA 100 of Salmonella typhimurium, the diol epoxide with (1S,2R,3S,4R) absolute configuration [(-)-diol epoxide-1] had the highest mutagenic activity. In Chinese hamster V-79 cells, the diol epoxide with (1R,2S,3S,4R) absolute configuration [(+)-diol epoxide-2] had the highest mutagenic activity. The (1R,2S,3R,4S) diol epoxide [(+)-diol epoxide-1] also had appreciable activity, whereas the other two bay-region diol epoxide enantiomers had very low activity. In tumor studies, the (1R,2S,3S,4R) enantiomer was the only diol epoxide isomer tested that had strong activity as a tumor initiator on mouse skin and in causing lung and liver tumors when injected into newborn mice. This stereoisomer was about one-third as active as the parent hydrocarbon, dibenz[a,h]anthracene as a tumor initiator on mouse skin; it was several-fold more active than dibenz[a,h]anthracene as a lung and liver carcinogen when injected into newborn mice. (-)-(3R,4R)-3β,4α-dihydroxy-3,4-dihydro-dibenz[a,h]anthracene [(-)-3,4-dihydrodiol] was slightly more active than dibenz[a,h]anthracene as a tumor initiator on mouse skin, whereas (+)-(3S,4S)-3α,4β-dihydroxy-3,4-dihydro-dibenz[a,h]anthracene [(+)-3,4-dihydrodiol] had only very weak activity. The present investigation and previous studies with the corresponding four possible enantiopure bay-region diol epoxide enantiomers/diastereomers of benzo[a]pyrene, benz[a]anthracene, chrysene, benzo[c]phenanthrene, dibenz[c,h]acridine, dibenz[a,h]acridine and dibenz[a,h]anthracene indicate that the bay-region diol epoxide enantiomer with [R,S,S,R] absolute stereochemistry has high tumorigenic activity on mouse skin and in newborn mice.

  3. Core-shell LC-MS/MS method for quantification of second generation anticoagulant rodenticides diastereoisomers in rat liver in relationship with exposure of wild rats.

    Fourel, Isabelle; Damin-Pernik, Marlène; Benoit, Etienne; Lattard, Virginie


    Second generation anticoagulant rodenticides (SGARs), pesticides used worldwide to control rodent populations, exist in two diastereoisomer chemical species because they own two stereogenic centers. A core-shell LC-MS/MS multi-residue method for comprehensive quantitative analysis of the diastereoisomers of five SGARs as well as three first generation anticoagulant rodenticide molecules has been fully validated in liver of rats according to a bioanalytical guideline. A core-shell column (superficially porous particles) has been chosen for its ability to separate the diastereomers of bromadiolone, difenacoum, brodifacoum, flocoumafen and difethialone and for its robustness to rat liver extracts. The highly selective chromatographic separation of the diastereoisomers contributes to good signal to noise ratios and then enhances the sensitivity of the method compared to the ones of fully porous columns. An elution gradient has been optimized with 10mM ammonium acetate and acetonitrile as aqueous/organic mobile phase respectively. Triple quadrupole mass detector has been used to achieve specifity and LLOQ from 0.92 to 2.2ng/g for each diastereoisomer, or first generation anticoagulant rodenticides. Then we evidenced diastereoisomeric ratios in liver of rats issued from not controlled exposure of wild rats (Rattus norvegicus) trapped in a French Parisian park through a campaign of rodent eradication. We compared them to diastereoisomeric ratios in SGARs commercial baits that contain both isomers, and showed that one of the two diastereoiomers had nearly disappeared in liver of rats. The proportions of cis-bromadiolone and trans-difenacoum were really lowered compared to the baits: 5/7 and 9/12 rats had only trans-bromadiolone and cis-difenacoum hepatic residues respectively. Liver persistence of the two diastereoisomers of bromadiolone and difenacoum was different due to differences in their pharmacokinetics in wild rats. The new core-shell LC-MS/MS method is

  4. Cyclotriveratrylene (CTV) as a new chiral triacid scaffold capable of inducing triple helix formation of collagen peptides containing either a native sequence or Pro-Hyp-Gly repeats.

    Rump, Erik T; Rijkers, Dirk T S; Hilbers, Hans W; de Groot, Philip G; Liskamp, Rob M J


    A new triacid scaffold is described based on the cone-shaped cyclotriveratrylene (CTV) molecule that facilitates the triple helical folding of peptides containing either a unique blood platelet binding collagen sequence or collagen peptides composed of Pro-Hyp-Gly repeats. The latter were synthesized by segment condensation using Fmoc-Pro-Hyp-Gly-OH. Peptides were coupled to this CTV scaffold and also coupled to the Kemp's triacid (KTA) scaffold. After assembly of peptide H-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu(OAll)-Arg-Gly-Val-Glu (OAll)-Gly-[Pro-Hyp-Gly]2-NH2 (13) by an orthogonal synthesis strategy to both triacid scaffolds, followed by deprotection of the allyl groups, the molecular constructs spontaneously folded into a triple helical structure. In contrast, the non-assembled peptides did not. The melting temperature (Tm) of (+/-) CTV[CH2C(O)N(H)Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (14) is 19 degrees C, whereas KTA[Gly-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (15) has a Tm of 20 degrees C. Thus, it was shown for the first time that scaffolds were also effective in stabilizing the triple helix of native collagen sequences. The different stabilizing properties of the two CTV enantiomers could be measured after coupling of racemic CTV triacid to the collagen peptide, and subsequent chromatographic separation of the diastereomers. After assembly of the two chiral CTV scaffolds to the model peptide H-Gly-Gly-(Pro-Hyp-Gly)5-NH2 (24), the (+)-enantiomer of CTV 28b was found to serve as a better triple helix-inducing scaffold than the (-)-enantiomer 28a. In addition to an effect of the chirality of the CTV scaffold, a certain degree of flexibility between the CTV cone and the folded peptide was also shown to be of importance. Restricting the flexibility from two to one glycine residues resulted in a significant difference between the two collagen mimics 20a and 20b, whereas the difference was

  5. Technetium Complexes of a Hydrazinonicotinamide-Conjugated Cyclic Peptide and 2-Hydrazinopyridine: Synthesis and Characterization.

    Liu, Shuang; Edwards, D. Scott; Harris, Anthony R.; Heminway, Stuart J.; Barrett, John A.


    Ternary ligand technetium complexes of a hydrazinonicotinamide-conjugated cyclic peptide (HYNICtide: cyclo(D-Val-NMeArg-Gly-Asp-Mamb(5-(6-(6-hydrazinonicotinamido)hexanamide)))) and 2-hydrazinopyridine (HYPY) were prepared and characterized by various spectroscopic methods. The HPLC concordance experiments for (99m)Tc and (99)Tc analogues show clearly that the same complexes are prepared on the no-carrier-added ((99m)Tc) and the carrier-added ((99)Tc) levels. Using a chirality experiment, it was demonstrated that the presence of two radiometric peaks in the HPLC chromatograms of RP444, RP445, and RP446 is due to the resolution of diastereomers, which result from the presence of chiral cyclic peptide and the formation of two enantiomers of the technetium chelate. In a ligand challenge experiment, we found that the high solution stability of these ternary ligand [(99m)Tc]HYNICtide complexes is due to their kinetic inertness. The 1:1:1:1 composition for Tc:HYNICtide:L:tricine (L = TPPTS, TPPDS, and TPPMS) in these ternary ligand [(99)Tc]HYNICtide complexes is confirmed by (1)H NMR and FAB mass spectral data and is completely consistent with that determined on the tracer ((99m)Tc) level. In addition, the IC(50) values of RP444, RP445, and RP446 and the two isomeric forms of RP444 were determined using a platelet IIb/IIIa binding assay. Both isomeric forms of RP444 were found to have the same binding affinity (IC(50) = 13 +/- 2 nM). Complexes [(99)Tc(HYPY)(PPh(3))(2)Cl(2)] and [(99)Tc(HYPY)(PPh(3))(tricine)] were isolated from the reaction of HYPY with [n-Bu(4)N][TcOCl(4)(-)] in the presence of excess tricine and triphenylphosphine. [(99)Tc(HYPY)(PPh(3))(tricine)] serves as a model for ternary ligand [(99m)Tc]HYNICtide complexes. Both complexes have been characterized by HPLC, spectroscopic (IR, NMR, and FAB-MS) methods, and elemental analysis. The HPLC concordance for complexes [(99m)Tc(HYPY)(PPh(3))(tricine)] and [(99)Tc(HYPY)(PPh(3))(tricine)] shows that the two

  6. Synthesis, structure, and reactivity of iridium perfluorocarbene complexes: regio- and stereo-specific addition of HCl across a metal carbon double bond.

    Yuan, Jian; Bourgeois, Cheryl J; Rheingold, Arnold L; Hughes, Russell P


    Reductive activation of an α-fluorine in the perfluoroalkyl complexes Cp*(L)(i)Ir-CF2RF using Mg/graphite leads to perfluorocarbene complexes Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3; RF = CF3, C2F5, C6F5). New complexes E-Cp*(PMe3)Ir[double bond, length as m-dash]CFC2F5 and E-Cp*(CO)Ir[double bond, length as m-dash]CFC6F5 have been characterized by single crystal X-ray diffraction studies, and a comparison of metric parameters with previously reported analogues is reported. Experimental NMR and computational DFT (B3LYP/LACV3P**++) studies agree that for Ir[double bond, length as m-dash]CFRF complexes (RF = CF3, CF2CF3) the thermodynamic preference for the E or Z isomer depends on the steric requirements of ligand L; when L = CO the Z-isomer (F cis to Cp*) is preferred and for L = PMe3 the E-isomer is preferred. When reduction of the precursors is carried out in the dark the reaction is completely selective to produce E- or Z-isomers. Exposure of solutions of these compounds to ambient light results in slow conversion to a photostationary non-equilibrium mixture of E and Z isomers. In the dark, these E/Z mixtures convert thermally to their preferred E or Z equilibrium geometries in an even slower reaction. A study of the temperature dependent kinetics of this dark transformation allows ΔG(‡)298 for rotation about the Ir[double bond, length as m-dash]CFCF3 double bond to be experimentally determined as 25 kcal mol(-1); a DFT/B3LYP/LACV3P**++ calculation of this rotation barrier is in excellent agreement (27 kcal mol(-1)) with the experimental value. Reaction of HCl with toluene solutions of Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3) or Cp*(CO)Ir[double bond, length as m-dash]C(CF3)2 at low temperature resulted in regiospecific addition of HCl across the metal carbon double bond, ultimately yielding Cp*(L)Ir(CHFRF)Cl and Cp*(CO)Ir[CH(CF3)2]Cl. Reaction of HCl with single E or Z diastereomers of Cp*(L)Ir[double bond, length as m

  7. Isolation of atomically precise mixed ligand shell PdAu24 clusters

    Sels, Annelies; Barrabés, Noelia; Knoppe, Stefan; Bürgi, Thomas


    Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1,1-binaphthyl-2,2-dithiol) leads to species of composition PdAu24(2-PET)18-2x(BINAS)x due to ligand exchange reactions. The BINAS adsorbs in a specific mode that bridges the apex and one core site of two adjacent S(R)-Au-S(R)-Au-S(R) units. Species with different compositions of the ligand shell can be separated by HPLC. Furthermore, site isomers can be separated. For the cluster with exactly one BINAS in its ligand shell only one isomer is expected due to the symmetry of the cluster, which is confirmed by High-Performance Liquid Chromatography (HPLC). Addition of a second BINAS to the ligand shell leads to several isomers. In total six distinguishable isomers are possible for PdAu24(2-PET)14(BINAS)2 including two pairs of enantiomers concerning the adsorption pattern. At least four distinctive isomers are separated by HPLC. Calculations indicate that one of the six possibilities is energetically disfavoured. Interestingly, diastereomers, which have an enantiomeric relationship concerning the adsorption pattern of chiral BINAS, have significantly different stabilities. The relative intensity of the observed peaks in the HPLC does not reflect the statistical weight of the different isomers. This shows, as supported by the calculations, that the first adsorbed BINAS molecule influences the adsorption of the second incoming BINAS ligand. In addition, experiments with the corresponding Pt doped gold cluster reveal qualitatively the same behaviour, however with slightly different relative abundances of the corresponding isomers. This finding points towards the influence of electronic effects on the isomer distribution. Even for clusters containing more than two BINAS ligands a limited number of isomers were found, which is in contrast to the corresponding situation for monothiols, where the number of possible isomers is much larger.Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1

  8. The first bis-cyanoxime: synthesis and properties of a new versatile and accessible polydentate bifunctional building block for coordination and supramolecular chemistry.

    Cheadle, Carl; Gerasimchuk, Nikolay; Barnes, Charles L; Tyukhtenko, Sergiy I; Silchenko, Svitlana


    A new multidentate bifunctional organic ligand – di-N,N′-(2-cyano-2-oximinoacetyl)piperazine – was synthesized in high yield using a two-step procedure carried out under ambient conditions. At first, the reaction of piperazine and neat methylcyanoacetate led to the di-N,N′-(cyanoacetyl)piperazine (1), which then was converted into bis-cyanoxime, di-N,N′-(2-cyano-2-oximinoacetyl)piperazine (HL, 2) using a room temperature nitrosation reaction with gaseous methylnitrite. Synthesized bis-cyanoxime was characterized by 1H, 13C NMR, UV-visible, IR spectroscopy and the X-ray analysis. The ligand 2 exists as a mixture of three diastereomers arising from the syn- and anti-geometry of the cyanoxime group. The prolonged crystallization of 2 from an ethanol–water mixture leads to the formation of: (a) colorless crystals that according to the X-ray analysis contain a 51.2:48.8% co-crystallized mixture of both isomers that have the same H-bonding motif (minority), and (b) a white amorphous material that represents an almost pure anti-isomer (majority). The deprotonation of 2 leads to the formation of a yellow dianion that demonstrated pronounced solvatochromism of its n → π* transition in the nitroso-chromophore. The disodium salt Na2L·4H2O (3) was obtained from 2 using NaOC2H5 in ethanol. The new bis-cyanoxime 2 reacts with Tl2CO3 and AgNO3 in aqueous solutions with the formation of light-stable, sparingly soluble yellow precipitates of M′2L·xH2O composition (M′ = Tl, Ag; Tl = 4, x = 0; Ag = 5, x = 2). The reaction of 3 with Ni2+ or K2M′′Cl4 (M′′ = Pd, Pt) in aqueous solutions leads to NiL·4H2O (6), PdL·4H2O (7) and PtL·5H2O (8). The crystal structure of 4 was determined and revealed the formation of a 3D-coordination polymeric complex in which the bis-cyanoxime acts as a dianionic, bridging, formally decadentate ligand. Each Tl(I) center has two bonds (2.655, 2.769 Å), shorter than the sum of ionic radii Tl–O (oxime group), and three longer

  9. Formation of Fused-Ring 2′-Deoxycytidine Adducts from 1-Chloro-3-buten-2-one, an in Vitro 1,3-Butadiene Metabolite, under in Vitro Physiological Conditions

    Sun, Liang; Pelah, Avishay; Zhang, Dong-Ping; Zhong, Yu-Fang; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu; Elfarra, Adnan A.


    1-Chloro-3-buten-2-one (CBO) is a potential metabolite of 1,3-butadiene (BD), a carcinogenic air pollutant. CBO is a bifunctional alkylating agent that readily reacts with glutathione (GSH) to form mono-GSH and di-GSH adducts. Recently, CBO and its precursor 1-chloro-2-hydroxy-3-butene (CHB) were found to be cytotoxic and genotoxic in human liver cells in culture with CBO being approximately 100-fold more potent than CHB. In the present study, CBO was shown to react readily with 2′-deoxycytidine (dC) under in vitro physiological conditions (pH 7.4, 37 °C) to form four dC adducts with the CBO moieties forming fused rings with the N3 and N4 atoms of dC. The four products were structurally characterized as 2-hydroxy-2-hydroxymethyl-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahy dro-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-1 and dC-2, a pair of diastereomers), 4-chloromethyl-4-hydroxy-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahydr o-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-3), and 2-chloromethyl-2-hydroxy-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahydr o-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-4). Interestingly, dC-1 and dC-2 were stable under our experimental conditions (pH 7.4, 37 °C, 6 h) and existed in equilibrium as indicated by HPLC analysis, whereas dC-3 and dC-4 were labile with the half-lives being 3.0 ± 0.36 and 1.7 ± 0.06 h, respectively. Decomposition of dC-4 produced both dC-1 and dC-2, whereas acid hydrolysis of dC-1/dC-2 and dC-4 in 1 M HCl at 100 °C for 30 min yielded the deribosylated adducts dC-1H/dC-2H and dC-4H, respectively. Because fused-ring dC adducts of other chemicals are mutagenic, the characterized CBO-dC adducts could be mutagenic and play a role in the cytotoxicity and genotoxicity of CBO and its precursors, CHB and BD. The CBO-dC adducts may also be used as standards to characterize CBO-DNA adducts and to develop potential biomarkers for CBO formation in vivo. PMID:24020501

  10. Development of self-assembling nanowires containing electronically active oligothiophenes

    Tsai, Wei-Wen

    modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without

  11. Bi- and tri-metallic Rh and Ir complexes containing click derived bis- and tris-(pyrazolyl-1,2,3-triazolyl) N-N' donor ligands and their application as catalysts for the dihydroalkoxylation of alkynes.

    Vuong, Khuong Q; Wong, Chin M; Bhadbhade, Mohan; Messerle, Barbara A


    A series of bi-topic and tri-topic pyrazolyl-1,2,3-triazolyl donor ligands (; = 1,X-bis((4-((1H-pyrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)methyl)benzene (X = 2, 3 and 4; o-C6H4(PyT)2, m-C6H4(PyT)2 and p-C6H4(PyT)2) and = 1,3,5-tris((4-((1H-pyrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)methyl)benzene, 1,3,5-C6H3(PyT)3) were conveniently synthesised in 'one pot' reactions using the Cu(i) catalysed 'click' reaction. Rh(i), Ir(i), Rh(iii) and Ir(iii) complexes with ligands of the general formulae C6H6-n[(PyT)M(CO)2]n[BAr]n (M = Rh, Ir; n = 2, 3; ; ) and C6H6-n[(PyT)MCp*Cl]n[BAr]n (M = Rh, Ir; n = 2, 3; ; ) were synthesised and fully characterised. In solution each of the bi- or tri-metallic complexes and exists as a mixture of two (, ) or three ( and ) diastereomers due to the presence of a chiral centre at each metal centre in these complexes. The solid state structures of complexes and were determined by single crystal X-ray crystallography and showed that each bidentate arm of these multitopic ligands coordinates to the Rh or Ir centre in a bidentate fashion via the pyrazolyl-N2 and 1,2,3-triazolyl N3' donors. The intermetallic distances in these solid state structures vary from 8.66 Å to 15.17 Å. These complexes were assessed as catalysts for the dihydroalkoxylation of alkynes using the cyclisation of 2-(5-hydroxypent-1-ynyl)benzyl alcohol, , to a mixture of two spiroketals, 2,3,4,5-tetrahydro-spirol[furan-2,3'-isochroman], , and 3',4',5',6'-tetrahydro-spiro[isobenzofuran-1(3H),2'(2H)pyran], , as the model reaction. The Rh(i) complexes (), with the highest TOF of 2052 h(-1) for complex , were the most active catalysts when compared with the other complexes under investigation here. The Ir(i) complexes () were moderately active as catalysts for the same transformation. No significant enhancement in catalytic reactivity was observed with the Rh(i) series bi- and trimetallic complexes () when compared with their monometallic analogues. The bi- and trimetallic Ir

  12. Identification and analysis of acetaldehyde induced deoxyribonucleic acid adducts by ultra performance liquid chromatography-tandem mass spectrometry%超高效液相色谱-串联质谱法鉴定与分析乙醛诱导脱氧核糖核苷酸加合物

    张宁; 张园; 张维冰


    Ultra performance liquid chromatography-tandem mass spectrometry ( UPLC-MS/MS)was used for the identification and analysis of the two diastereomers of adducts((6S,8S) 1,N2-propano-2′-deoxyguanosine(ProdG)and(6R,8R)ProdG). By contrasting the chromato-graphic retention time and mass spectrographic fragmentation patterns with ProdG standard ,it was proved that ProdG addcuts can be formed from the reaction of 2′-deoxyguanosine( dG ) with acetaldehyde. Vitro experiments showed that ProdG adducts can be formed in double stranded deoxyribonucleic acid( DNA)by the induction of acetaldehyde,and the formation of (6R,8R)ProdG was higher than that of( 6S,8S)ProdG. In cell experiments,acetaldehyde exposure can significantly increase the levels of ProdG adducts in genomic DNA of human embryonic lung fibroblast MRC5 cells,and the enhancement of ProdG was positively correlated with the concentration of acetaldehyde. In addition,the up-regulation of(6R,8R)ProdG was from 6. 4±0. 3 to 127. 2±2. 7 adducts per 108 nucleotides,higher than that of( 6S,8S)ProdG from 6. 5±0. 3 to 115. 3±2. 5 adducts per 10 8 nucleotides by acetaldehyde exposure at 100μmol/L. This work provides an experimental basis for the up-regulation of DNA adducts induced by acetaldehyde exposure.%采用超高效液相色谱-串联质谱法对两种非对映异构体(6S,8S)1,N2-丙基-2′-脱氧鸟苷(ProdG)和(6R,8R) ProdG加合物进行鉴定与分析。通过色谱保留时间及质谱碎裂方式分析,证明乙醛与2′-脱氧鸟苷( dG)反应可形成 ProdG加合物。体外实验表明,乙醛能够诱导脱氧核糖核苷酸( DNA)形成 ProdG 加合物,并且(6R,8R)ProdG的生成量大于(6S,8S)ProdG的生成量。细胞实验结果显示,乙醛暴露能显著提高人肺胚成纤维细胞(MRC5)基因组 DNA中 ProdG加合物的水平,且 ProdG加合物的水平与乙醛的暴露浓度呈正相关。此外,100μmol/L 的乙醛暴露使(6R,8R

  13. Development of a fluidized-bed method for on-line evaluation of radiotracers in vitro; Entwicklung einer Fliessbettechnik zur Bewertung von Radiopharmaka an Zellkulturen

    Noll, T.


    offenporigen Mikrotraegern mit einer Messtechnik zur on-line Radioaktivitaetserfassung. Die ueber lange Zeitraeume stabile Betriebsweise im Fliessgleichgewicht ermoeglicht die Durchfuehrung einer Vielzahl von Experimenten an der gleichen Zellkultur. Alle relevanten Parameter (O{sub 2}, pH, T, etc.) koennen entsprechend den experimentellen Anforderungen eingestellt werden. Der Volumenstrom des zirkulierenden Mediums kann an den Blutvolumenstrom des in der Untersuchung simulierten Organismus angepasst werden und die Dosierprofile der Radiotracer koennen variabel eingestellt werden, um die in vivo Verhaeltnisse zu simulieren. Die Entnahme und Untersuchung der immobilisierten Zellen ist jederzeit moeglich. Unter Verwendung dieses Systems wurde die Aufnahmekinetik von 2-[{sup 18}F]Fluordeoxyglukose (FDG) in humanen Gliomzellen (86HG39) untersucht und es konnte gezeigt werden, dass die Abhaengigkeit der Lumped Konstanten (LC) fuer FDG von der Medienglukosekonzentration der im Rattenhirn ermittelten Abhaengigkeit entspricht. Fuer normoglykaemische Konzentrationen wurden fuer die Lumped Konstante Werte um 0,7 bestimmt, der in der Hypoglykaemie bis auf einen Wert von 1,22 bei einer Glukosekonzentration von 3 mM anstieg. Die Geschwindigkeitskonstanten fuer das Dreikompartiment-Modell entsprachen denen, die in vivo mittels PET ermittelt wurden. Diese Uebereinstimmungen belegen die Eignung des entwickelten Systems zur Bewertung von Radiotracern. In weiteren Untersuchungen wurde die Aufnahmekinetik der beiden diastereomeren Formen von 4-[18F]Fluorprolin bestimmt. Es konnte gezeigt werden, dass beide Diastereomere nicht metabolisiert werden und eine identische intrazellulaere Gleichgewichtskonzentration erreichen. Fuer das trans-Diastereomer wurden jedoch dreifach hoehere Geschwindigkeitskonstanten ermittelt. (orig.)