WorldWideScience

Sample records for diarrhea virus ns4b

  1. Rab5 Enhances Classical Swine Fever Virus Proliferation and Interacts with Viral NS4B Protein to Facilitate Formation of NS4B Related Complex

    Directory of Open Access Journals (Sweden)

    Jihui Lin

    2017-08-01

    Full Text Available Classical swine fever virus (CSFV is a fatal pig pestivirus and causes serious financial losses to the pig industry. CSFV NS4B protein is one of the most important viral replicase proteins. Rab5, a member of the small Rab GTPase family, is involved in infection and replication of numerous viruses including hepatitis C virus and dengue virus. Until now, the effects of Rab5 on the proliferation of CSFV are poorly defined. In the present study, we showed that Rab5 could enhance CSFV proliferation by utilizing lentivirus-mediated constitutive overexpression and eukaryotic plasmid transient overexpression approaches. On the other hand, lentivirus-mediated short hairpin RNA knockdown of Rab5 dramatically inhibited virus production. Co-immunoprecipitation, glutathione S-transferase pulldown and laser confocal microscopy assays further confirmed the interaction between Rab5 and CSFV NS4B protein. In addition, intracellular distribution of NS4B-Red presented many granular fluorescent signals (GFS in CSFV infected PK-15 cells. Inhibition of basal Rab5 function with Rab5 dominant negative mutant Rab5S34N resulted in disruption of the GFS. These results indicate that Rab5 plays a critical role in facilitating the formation of the NS4B related complexes. Furthermore, it was observed that NS4B co-localized with viral NS3 and NS5A proteins in the cytoplasm, suggesting that NS3 and NS5A might be components of the NS4B related complex. Taken together, these results demonstrate that Rab5 positively modulates CSFV propagation and interacts with NS4B protein to facilitate the NS4B related complexes formation.

  2. Discovery of Dengue Virus NS4B Inhibitors

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  3. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus.

    Science.gov (United States)

    Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao

    2016-09-15

    A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection

  4. In Vitro Evaluation of Novel Inhibitors against the NS2B-NS3 Protease of Dengue Fever Virus Type 4

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2013-12-01

    Full Text Available The discovery of potent therapeutic compounds against dengue virus is urgently needed. The NS2B-NS3 protease (NS2B-NS3pro of dengue fever virus carries out all enzymatic activities needed for polyprotein processing and is considered to be amenable to antiviral inhibition by analogy. Virtual screening of 300,000 compounds using Autodock 3 on the GVSS platform was conducted to identify novel inhibitors against the NS2B-NS3pro. Thirty-six compounds were selected for in vitro assay against NS2B-NS3pro expressed in Pichia pastoris. Seven novel compounds were identified as inhibitors with IC50 values of 3.9 ± 0.6–86.7 ± 3.6 μM. Three strong NS2B-NS3pro inhibitors were further confirmed as competitive inhibitors with Ki values of 4.0 ± 0.4, 4.9 ± 0.3, and 3.4 ± 0.1 μM, respectively. Hydrophobic and hydrogen bond interactions between amino acid residues in the NS3pro active site with inhibition compounds were also identified.

  5. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  6. A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4

    International Nuclear Information System (INIS)

    Hanley, Kathryn A.; Manlucu, Luella R.; Gilmore, Lara E.; Blaney, Joseph E.; Hanson, Christopher T.; Murphy, Brian R.; Whitehead, Stephen S.

    2003-01-01

    An acceptable live-attenuated dengue virus vaccine candidate should have low potential for transmission by mosquitoes. We have identified and characterized a mutation in dengue virus type 4 (DEN4) that decreases the ability of the virus to infect mosquitoes. A panel of 1248 mutagenized virus clones generated previously by chemical mutagenesis was screened for decreased replication in mosquito C6/36 cells but efficient replication in simian Vero cells. One virus met these criteria and contained a single coding mutation: a C-to-U mutation at nucleotide 7129 resulting in a Pro-to-Leu change in amino acid 101 of the nonstructural 4B gene (NS4B P101L). This mutation results in decreased replication in C6/36 cells relative to wild-type DEN4, decreased infectivity for mosquitoes, enhanced replication in Vero and human HuH-7 cells, and enhanced replication in SCID mice implanted with HuH-7 cells (SCID-HuH-7 mice). A recombinant DEN4 virus (rDEN4) bearing this mutation exhibited the same set of phenotypes. Addition of the NS4B P101L mutation to rDEN4 bearing a 30 nucleotide deletion (Δ30) decreased the ability of the double-mutant virus to infect mosquitoes but increased its ability to replicate in SCID-HuH-7 mice. Although the NS4B P101L mutation decreases infectivity of DEN4 for mosquitoes, its ability to enhance replication in SCID-HuH-7 mice suggests that it might not be advantageous to include this specific mutation in an rDEN4 vaccine. The opposing effects of the NS4B P101L mutation in mosquito and vertebrate systems suggest that the NS4B protein is involved in maintaining the balance between efficient replication in the mosquito vector and the human host

  7. NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Xun-Cheng Su

    Full Text Available BACKGROUND: The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation in the absence of inhibitor and lining the substrate binding site (closed conformation in the presence of an inhibitor. METHODS: In this work, nuclear magnetic resonance (NMR spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS: In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION: Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.

  8. The Future of HCV Therapy: NS4B as an Antiviral Target

    Directory of Open Access Journals (Sweden)

    Hadas Dvory-Sobol

    2010-11-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a major worldwide cause of liver disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 170 million individuals are infected with HCV, with three to four million new cases each year. The current standard of care, combination treatment with interferon and ribavirin, eradicates the virus in only about 50% of chronically infected patients. Notably, neither of these drugs directly target HCV. Many new antiviral therapies that specifically target hepatitis C (e.g. NS3 protease or NS5B polymerase inhibitors are therefore in development, with a significant number having advanced into clinical trials. The nonstructural 4B (NS4B protein, is among the least characterized of the HCV structural and nonstructural proteins and has been subjected to few pharmacological studies. NS4B is an integral membrane protein with at least four predicted transmembrane (TM domains. A variety of functions have been postulated for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. This review summarizes potential targets within the nonstructural protein NS4B, with a focus on novel classes of NS4B inhibitors.

  9. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    Science.gov (United States)

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle

  10. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    Science.gov (United States)

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. Yellow fever is an acute viral hemorrhagic disease which threatens approximately one billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than seven decades, the low vaccination rate fails to prevent outbreaks in at

  11. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore; Rice, Amy J.; Ojeda, Isabel; Light, Samuel; Minasov, George; Vargas, Jason; Nagarathnam, Dhanapalan; Anderson, Wayne F.; Johnson, Michael E. (UIC); (NWU); (Novalex); (DNSK)

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.

  12. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine.

    Science.gov (United States)

    Ikram, Aqsa; Obaid, Ayesha; Awan, Faryal Mehwish; Hanif, Rumeza; Naz, Anam; Paracha, Rehan Zafar; Ali, Amjad; Janjua, Hussnain Ahmed

    2017-01-01

    Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4 + and CD8 + T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A search for RNA insertions and NS3 gene duplication in the genome of cytopathic isolates of bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    V.L. Quadros

    2006-07-01

    Full Text Available Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV and an antigenically identical but cytopathic virus (cpBVDV can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98% to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.

  14. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  15. Predicción de epítopos T y B de la proteína NS4b del virus dengue tipo 3

    Directory of Open Access Journals (Sweden)

    Nevis Amin

    2013-12-01

    Full Text Available El dengue se considera una enfermedad emergente y la principal de las afecciones virales transmitidas por artrópodos en términos de morbilidad y mortalidad. A pesar de los múltiples esfuerzos realizados por la comunidad científica internacional, aún no existe una vacuna licenciada contra esta entidad. La NS4b, una de las más pequeñas proteínas del virus del dengue induce respuesta de anticuerpo y de inmunomediadores en pacientes infectados por este virus. Sin embargo, poco es conocido sobre su estructura antigénica. En el campo de diseño de vacunas es muy útil la aplicación de las técnicas in silico, tanto para el descubrimiento y desarrollo de vacunas nuevas como para las existentes. Numerosos epítopos predichos se han verificado experimentalmente, lo que demostró la utilidad de tales predicciones. En este trabajo fueron aplicados los programas de predicción: BcePred, ABCpred, HLApred, ProPred y Proped1, para la búsqueda de nuevos epítopos de la proteína NS4b del virus dengue tipo 3. Se identificaron 27 epítopos de células B y 126 de la T. La secuencia de aminoácidos del mimotopo de la proteína NS4b (FEKQLGQV fue predicha como epítopo B por el servidor Bcepred, con la puntuación más alta. El análisis teórico de la potencialidad del epítopo T-FEKQLGQV tuvo una alta cobertura para ser presentado por una muestra de la población cubana. Del total de epítopos T predichos, 13 resultaron promiscuos, que pudieran ser potenciales candidatos vacunales. La importancia de estos resultados radica en sentar las bases moleculares para el desarrollo de una vacuna profiláctica de subunidades.

  16. Resistance Analyses of HCV NS3/4A Protease and NS5B Polymerase from Clinical Studies of Deleobuvir and Faldaprevir.

    Directory of Open Access Journals (Sweden)

    Kristi L Berger

    Full Text Available The resistance profile of anti-hepatitis C virus (HCV agents used in combination is important to guide optimal treatment regimens. We evaluated baseline and treatment-emergent NS3/4A and NS5B amino-acid variants among HCV genotype (GT-1a and -1b-infected patients treated with faldaprevir (HCV protease inhibitor, deleobuvir (HCV polymerase non-nucleoside inhibitor, and ribavirin in multiple clinical studies.HCV NS3/4A and NS5B population sequencing (Sanger method was performed on all baseline plasma samples (n = 1425 NS3; n = 1556 NS5B and on post-baseline plasma samples from patients with virologic failure (n = 113 GT-1a; n = 221 GT-1b. Persistence and time to loss of resistance-associated variants (RAVs was estimated using Kaplan-Meier analysis.Faldaprevir RAVs (NS3 R155 and D168 and deleobuvir RAVs (NS5B 495 and 496 were rare (90%. Virologic relapse was associated with RAVs in both NS3 and NS5B (53% GT-1b; 52% GT-1b; some virologic relapses had NS3 RAVs only (47% GT-1a; 17% GT-1b. Median time to loss of GT-1b NS5B P495 RAVs post-treatment (5 months was less than that of GT-1b NS3 D168 (8.5 months and GT-1a R155 RAVs (11.5 months.Faldaprevir and deleobuvir RAVs are more prevalent among virologic failures than at baseline. Treatment response was not compromised by common NS3 polymorphisms; however, alanine at NS5B amino acid 499 at baseline (wild-type in GT-1a, polymorphism in GT-1b may reduce response to this deleobuvir-based regimen.

  17. Efficient hepatitis c virus genotype 1b core-NS5A recombinants permit efficacy testing of protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Pham, Long V.; Ramirez Almeida, Santseharay; Carlsen, Thomas H R

    2017-01-01

    Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants......, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5= untranslated region (5=UTR)-NS2, NS4A, or NS5A regions. Importantly...

  18. Development and characterization of serotype-specific monoclonal antibodies against the dengue virus-4 (DENV-4) non-structural protein (NS1).

    Science.gov (United States)

    Gelanew, Tesfaye; Hunsperger, Elizabeth

    2018-02-06

    Dengue, caused by one of the four serologically distinct dengue viruses (DENV-1 to - 4), is a mosquito-borne disease of serious global health significance. Reliable and cost-effective diagnostic tests, along with effective vaccines and vector-control strategies, are highly required to reduce dengue morbidity and mortality. Evaluation studies revealed that many commercially available NS1 antigen (Ag) tests have limited sensitivity to DENV-4 serotype compared to the other three serotypes. These studies indicated the need for development of new NS1 Ag detection test with improved sensitivity to DENV-4. An NS1 capture enzyme linked immunoassay (ELISA) specific to DENV-4 may improve the detection of DENV-4 cases worldwide. In addition, a serotype-specific NS1 Ag test identifies both DENV and the infecting serotype. In this study, we used a small-ubiquitin-like modifier (SUMO*) cloning vector to express a SUMO*-DENV-4 rNS1 fusion protein to develop NS1 DENV-4 specific monoclonal antibodies (MAbs). These newly developed MAbs were then optimized for use in an anti-NS1 DENV-4 capture ELISA. The serotype specificity and sensitivity of this ELISA was evaluated using (i) supernatants from DENV (1-4)-infected Vero cell cultures, (ii) rNS1s from all the four DENV (1-4) and, (iii) rNS1s of related flaviviruses (yellow fever virus; YFV and West Nile virus; WNV). From the evaluation studies of the newly developed MAbs, we identified three DENV-4 specific anti-NS1 MAbs: 3H7A9, 8A6F2 and 6D4B10. Two of these MAbs were optimal for use in a DENV-4 serotype-specific NS1 capture ELISA: MAb 8A6F2 as the capture antibody and 6D4B10 as a detection antibody. This ELISA was sensitive and specific to DENV-4 with no cross-reactivity to other three DENV (1-3) serotypes and other heterologous flaviviruses. Taken together these data indicated that our MAbs are useful reagents for the development of DENV-4 immunodiagnostic tests.

  19. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  20. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    to demonstrate the expression of ns4b in HCV-229E-infected cells using flow cytometry. Given a previously reported contiguous five amino acid shared region between ns4b and myelin basic protein, a purified recombinant histidine-tagged ns4b protein and (or) human myelin basic protein were injected into mice......Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...... and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  1. Characterization of monoclonal antibodies that specifically recognize the palm subdomain of hepatitis C virus nonstructural protein 5B polymerase.

    Science.gov (United States)

    Ingravallo, P; Lahser, F; Xia, E; Sodowich, B; Lai, V C; Hong, Z; Zhong, W

    2001-06-01

    The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) which plays an essential role in viral RNA replication. Antibodies that specifically recognize NS5B will have utilities in monitoring NS5B production and subcellular localization, as well as in structure-function studies. In this report, three mouse monoclonal antibodies (mAbs), 16A9C9, 16D9A4 and 20A12C7, against a recombinant NS5B protein (genotype 1a, H-77 strain) were produced. These mAbs specifically recognize HCV NS5B, but not RdRps of polivirus (PV), bovine viral diarrhea virus (BVDV) or GB virus B (GBV-B). The mAbs can readily detect NS5B in cellular lysates of human osteosarcoma Saos2 cells constitutively expressing the nonstructural region of HCV (NS3-NS4A-NS4B-NS5A-NS5B). NS5B proteins of different HCV genotypes/subtypes (1a, 1b, 2a, 2c, 5a) showed varied affinity for these mAbs. Interestingly, the epitopes for the mAbs were mapped to the palm subdomain (amino acid 188-370) of the HCV RdRp as determined by immunoblotting analysis of a panel of HCV/GBV-B chimeric NS5B proteins. The binding site was mapped between amino acid 231 and 267 of NS5B for 16A9C9, and between 282 and 372 for 16D9A4 and 20A12C7. Furthermore, these mAbs showed no inhibitory effect on the NS5B polymerase activity in vitro.

  2. Bovine viral diarrhea virus 1b fetal infection with extensive hemorrhages

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) subtype 1b was isolated from tissues of a term bovine fetus with hemorrhages in multiple tissues. At autopsy, multiple petechial hemorrhages were observed at gross examination throughout the body and placenta. Lung, kidney, thymus, and liver fresh tissues were exam...

  3. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    Science.gov (United States)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  4. Adapted J6/JFH1-based Hepatitis C virus recombinants with genotype-specific NS4A show similar efficacies against lead protease inhibitors, alpha interferon, and a putative NS4A inhibitor

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Serre, Stéphanie B N

    2013-01-01

    To facilitate studies of hepatitis C virus (HCV) NS4A, we aimed at developing J6/JFH1-based recombinants with genotype 1- to 7-specific NS4A proteins. We developed efficient culture systems expressing NS4A proteins of genotypes (isolates) 1a (H77 and TN), 1b (J4), 2a (J6), 4a (ED43), 5a (SA13), 6a...... (HK6a), and 7a (QC69), with peak infectivity titers of ∼3.5 to 4.5 log10 focus-forming units per ml. Except for genotype 2a (J6), growth depended on adaptive mutations identified in long-term culture. Genotype 1a, 1b, and 4a recombinants were adapted by amino acid substitutions F772S (p7) and V1663A...... (NS4A), while 5a, 6a, and 7a recombinants required additional substitutions in the NS3 protease and/or NS4A. We demonstrated applicability of the developed recombinants for study of antivirals. Genotype 1 to 7 NS4A recombinants showed similar responses to the protease inhibitors telaprevir (VX-950...

  5. Molecular and biochemical characterization of the NS1 protein of non-cultured influenza B virus strains circulating in Singapore

    KAUST Repository

    Jumat, Muhammad; Sugrue, Richard J.; Tan, Boon Huan; Maurer-Stroh, Sebastian; Lee, Raphael Tze Chuen; Wong, Puisan

    2016-01-01

    In this study we compared the NS1 protein of Influenza B/Lee/40 and several non-cultured Influenza B virus clinical strains detected in Singapore. In B/Lee/40 virus-infected cells and in cells expressing the recombinant B/Lee/40 NS1 protein a full-length 35 kDa NS1 protein and a 23 kDa NS1 protein species (p23) were detected. Mutational analysis of the NS1 gene indicated that p23 was generated by a novel cleavage event within the linker domain between an aspartic acid and proline at amino acid residues at positions 92 and 93 respectively (DP92–93), and that p23 contained the first 92 amino acids of the NS1 protein. Sequence analysis of the Singapore strains indicated the presence of either DP92–93 or NP92–93 in the NS1 protein, but protein expression analysis showed that p23 was only detected in NS1 proteins with DP92–93.. An additional adjacent proline residue at position 94 (P94) was present in some strains and correlated with increased p23 levels, suggesting that P94 has a synergistic effect on the cleavage of the NS1 protein. The first 145 amino acids of the NS1 protein are required for inhibition of ISG15-mediated ubiquitination, and our analysis showed that Influenza B viruses circulating in Singapore with DP92–93 expressed truncated NS1 proteins and may differ in their capacity to inhibit ISG15 activity. Thus, DP92–93 in the NS1 protein may confer a disadvantage to Influenza B viruses circulating in the human population and interestingly the low frequency of DP92–93detection in the NS1 protein since 2004 is consistent with this suggestion.

  6. Molecular and biochemical characterization of the NS1 protein of non-cultured influenza B virus strains circulating in Singapore

    KAUST Repository

    Jumat, Muhammad Raihan

    2016-08-04

    In this study we compared the NS1 protein of Influenza B/Lee/40 and several non-cultured Influenza B virus clinical strains detected in Singapore. In B/Lee/40 virus-infected cells and in cells expressing the recombinant B/Lee/40 NS1 protein a full-length 35 kDa NS1 protein and a 23 kDa NS1 protein species (p23) were detected. Mutational analysis of the NS1 gene indicated that p23 was generated by a novel cleavage event within the linker domain between an aspartic acid and proline at amino acid residues at positions 92 and 93 respectively (DP92–93), and that p23 contained the first 92 amino acids of the NS1 protein. Sequence analysis of the Singapore strains indicated the presence of either DP92–93 or NP92–93 in the NS1 protein, but protein expression analysis showed that p23 was only detected in NS1 proteins with DP92–93.. An additional adjacent proline residue at position 94 (P94) was present in some strains and correlated with increased p23 levels, suggesting that P94 has a synergistic effect on the cleavage of the NS1 protein. The first 145 amino acids of the NS1 protein are required for inhibition of ISG15-mediated ubiquitination, and our analysis showed that Influenza B viruses circulating in Singapore with DP92–93 expressed truncated NS1 proteins and may differ in their capacity to inhibit ISG15 activity. Thus, DP92–93 in the NS1 protein may confer a disadvantage to Influenza B viruses circulating in the human population and interestingly the low frequency of DP92–93detection in the NS1 protein since 2004 is consistent with this suggestion.

  7. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    International Nuclear Information System (INIS)

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B.

    2006-01-01

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV

  8. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Matthew Brecher

    2017-05-01

    Full Text Available The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2 in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV, West Nile virus (WNV, and Yellow fever virus (YFV on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and

  9. Stability of the resistance to the thiosemicarbazone derived from 5,6-Dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus

    OpenAIRE

    Castro, Eliana Florencia; Campos, Rodolfo Hector; Cavallaro, Lucía Vicenta

    2017-01-01

    Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1–5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of...

  10. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo.

    Science.gov (United States)

    Yuan, Shuofeng; Chan, Jasper Fuk-Woo; den-Haan, Helena; Chik, Kenn Ka-Heng; Zhang, Anna Jinxia; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Yip, Cyril Chik-Yan; Mak, Winger Wing-Nga; Zhu, Zheng; Zou, Zijiao; Tee, Kah-Meng; Cai, Jian-Piao; Chan, Kwok-Hung; de la Peña, Jorge; Pérez-Sánchez, Horacio; Cerón-Carrasco, José Pedro; Yuen, Kwok-Yung

    2017-09-01

    Zika virus (ZIKV) infection may be associated with severe complications in fetuses and adults, but treatment options are limited. We performed an in silico structure-based screening of a large chemical library to identify potential ZIKV NS2B-NS3 protease inhibitors. Clinically approved drugs belonging to different drug classes were selected among the 100 primary hit compounds with the highest predicted binding affinities to ZIKV NS2B-NS3-protease for validation studies. ZIKV NS2B-NS3 protease inhibitory activity was validated in most of the selected drugs and in vitro anti-ZIKV activity was identified in two of them (novobiocin and lopinavir-ritonavir). Molecular docking and molecular dynamics simulations predicted that novobiocin bound to ZIKV NS2B-NS3-protease with high stability. Dexamethasone-immunosuppressed mice with disseminated ZIKV infection and novobiocin treatment had significantly (P < 0.05) higher survival rate (100% vs 0%), lower mean blood and tissue viral loads, and less severe histopathological changes than untreated controls. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of ZIKV. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  12. Identification of specific regions in hepatitis C virus core, NS2 and NS5A that genetically interact with p7 and co-ordinate infectious virus production.

    Science.gov (United States)

    Gouklani, H; Beyer, C; Drummer, H; Gowans, E J; Netter, H J; Haqshenas, G

    2013-04-01

    The p7 protein of hepatitis C virus (HCV) is a small, integral membrane protein that plays a critical role in virus replication. Recently, we reported two intergenotypic JFH1 chimeric viruses encoding the partial or full-length p7 protein of the HCV-A strain of genotype 1b (GT1b; Virology; 2007; 360:134). In this study, we determined the consensus sequences of the entire polyprotein coding regions of the wild-type JFH1 and the revertant chimeric viruses and identified predominant amino acid substitutions in core (K74M), NS2 (T23N, H99P) and NS5A (D251G). Forward genetic analysis demonstrated that all single mutations restored the infectivity of the defective chimeric genomes suggesting that the infectious virus production involves the association of p7 with specific regions in core, NS2 and NS5A. In addition, it was demonstrated that the NS2 T23N facilitated the generation of infectious intergenotypic chimeric virus encoding p7 from GT6 of HCV. © 2012 Blackwell Publishing Ltd.

  13. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    International Nuclear Information System (INIS)

    Ambrose, R.L.; Mackenzie, J.M.

    2015-01-01

    The West Nile virus strain Kunjin virus (WNV KUN ) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV KUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV KUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein

  14. Rota virus Diarrhea in Hospitalized Children

    International Nuclear Information System (INIS)

    Habib, M. I.; Khan, K. M. A.; Zia, N.; Kazi, S. G.

    2014-01-01

    Objective: To determine the frequency and clinical features of Rota virus diarrhea in children presenting in a tertiary care hospital. Study Design: A cross-sectional, observational study. Place and Duration of Study: National Institute of Child Health, Karachi, from January to June 2007. Methodology: A total of three hundred children of either gender aged 1 month to 5 years, who presented with diarrhea of < 7 days as a primary illness were enrolled. Children with bloody diarrhea or nosocomial gastroenteritis acquired during hospitalization for other disease were not included. Detection of Rota virus in stool was done by enzyme linked immunoassay. Results: Out of 300 children, 188 (63%) tested positive and 112 (37%) tested negative for Rota virus. Positive Rota virus cases in 7 - 12 months of age was (n = 34, 18.08%). Overall, 151 (80.3%) children with Rota virus were less than 3 years old. 182 (60.7%) had fever, 118 (39.3%) had vomiting and 156 (82.9%) children had both fever and vomiting. Conclusion: This study shows that Rota virus is a common organism causing diarrhea in children less than 3 years of age. There is a need to incorporate Rota virus vaccine in the national EPI program to decrease the disease burden as highlighted in this study. (author)

  15. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    Full Text Available AbstrakLatar belakang: Protein Non Struktural 3 (NS3 virus dengue menginduksi respon antibodi netralisasidan respon sel T CD4+ dan CD8+, serta berperan dalam replikasi virus. Protein NS3 memiliki epitopepitopsel T dan B yang terdapat perbedaan kelestarian pada berbagai strain virus dengue serotipe 4(DENV-4. Penelitian ini bertujuan untuk mengetahui kelestarian epitop sel T dan B pada protein NS3DENV-4 strain-strain dunia dan keempat serotipe virus dengue strain Indonesia.Metode: Penelitian ini dilakukan di Departemen Mikrobiologi Fakultas Kedokteran UI sejak Juni 2013 - April2014. Sekuens asam amino NS3 DENV-4 strain 081 didapatkan setelah produk PCR gen NS3 DENV-4 081disekuensing. Epitop-epitop sel T dan sel B protein NS3 DENV-4 081 dianalisis dan dibandingkan dengansekuens asam amino protein NS3 dari 124 strain DENV-4 di dunia dan keempat serotipe DENV strain Indonesia.Strain-strain dunia merupakan strain yang ada di benua Amerika (Venezuela, Colombia, dll dan Asia (Cina,Singapura, dll. Referensi posisi epitop sel T dan B protein NS3 diperoleh dari laporan penelitian terdahulu.Hasil: Delapan epitop sel T dan 2 epitop sel B dari protein NS3 DENV-4 081 ternyata identik dan lestaripada protein NS3 dari 124 strain DENV-4 dunia. Epitop sel B di posisi asam amino 537-544 pada proteinNS3 DENV-4 081 ternyata identik dan lestari dengan epitop sel B protein NS3 dari keempat serotipeDENV strain Indonesia.Kesimpulan: Kelestarian yang luas dari epitop sel T dan B pada hampir seluruh strain DENV-4 dunia danserotipe-serotipe DENV strain Indonesia. (Health Science Journal of Indonesia 2015;6:126-31Kata kunci: virus dengue, protein NS3, epitop sel T, epitop sel B AbstractBackground: Non Structural 3 (NS3 protein of dengue virus (DENV is known to induce antibody, CD4+and CD8+ T cell responses, and playing role in viral replication. NS3 protein has T and B cell epitopes,which has conservation difference between DENV-4 strains. This study aimed to identify

  16. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus.

    Science.gov (United States)

    Castro, Eliana F; Campos, Rodolfo H; Cavallaro, Lucía V

    2014-01-01

    Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1-5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1-5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1-5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.

  17. 5′ UTR and NS5B-based genotyping of hepatitis C virus in patients from Damietta governorate, Egypt

    Directory of Open Access Journals (Sweden)

    Radwa R. El-Tahan

    2018-03-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a main health problem in Egypt causing high rates of mortalities. Egypt has the highest HCV prevalence in the world, with specific HCV subtypes epidemic and circulating extensively in the country. Different antiviral therapy protocols have been implemented for treating Egyptian HCV patients. Due to the limited data about HCV in Egypt, this study aimed to genotype HCV strains circulating in the Nile Delta Damietta governorate and to investigate the variation in the nonstructural 5B (NS5B region targeted by the newly approved antiviral drugs. Thirty HCV samples from treatment-naïve patients were genotyped by restriction fragment length polymorphism. Some samples were genotyped by direct sequencing of their 5′ untranslated region (UTR and NS5B regions. Phylogenetic analysis was also performed on the sequences of their NS5B regions. Fourteen new sequences have been deposited in the GenBank database. Results showed that subtype 4a was prevalent in addition to subtype 1g. None of the previously reported NS5B substitutions were detected in the sequenced isolates from treatment-naïve patients, which may be a good predictor for efficient treatment of HCV Egyptian patients with Sofosbuvir. Further studies on Sofosbuvir treated-HCV Egyptian patients are required to investigate whether any NS5B substitutions can confer resistance to treatment.

  18. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    Science.gov (United States)

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  19. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections.

    Science.gov (United States)

    Deore, R R; Chern, J-W

    2010-01-01

    Hepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ≈50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.

  20. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening.

    Science.gov (United States)

    Hussain, Waqar; Qaddir, Iqra; Mahmood, Sajid; Rasool, Nouman

    2018-06-01

    Dengue fever is one of the most prevalent disease in tropical and sub-tropical regions of the world. According to the World Health Organisation (WHO), approximately 3.5 billion people have been affected with dengue fever. Four serotypes of dengue virus (DENV) i.e. DENV1, DENV2, DENV3 and DENV4 have up to 65% genetic variations among themselves. dengue virus 4 (DENV4) was first reported from Amazonas, Brazil and is spreading perilously due to lack of awareness of preventive measures, as it is the least targeted serotype. In this study, non-structural protein 4B of dengue virus 4 (DENV4-NS4B) is computationally characterised and simulations are performed including solvation, energy minimizations and neutralisation for the refinement of predicted model of the protein. The spiropyrazolopyridone is considered as an effective drug against NS4B of DENV2, therefore, a total of 91 different analogues of spiropyrazolopyridone are used to analyse their inhibitory action against DENV4-NS4B. These compounds are docked at the binding site with various binding affinities, representing their efficacy to block the binding pocket of the protein. Pharmacological and pharmacokinetic assessment performed on these inhibitors shows that these are suitable candidates to be used as a drug against the dengue fever. Among all these 91 compounds, Analogue-I and Analogue-II are analysed to be the most effective inhibitor having potential to be used as drugs against dengue virus.

  1. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus.

    Directory of Open Access Journals (Sweden)

    Eliana F Castro

    Full Text Available Bovine viral diarrhea virus (BVDV is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC is a non-nucleoside polymerase inhibitor (NNI of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1-5 present an N264D mutation in the NS5B gene (RdRp whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1-5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1-5 remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.

  2. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness

    Directory of Open Access Journals (Sweden)

    Uyeki Timothy M

    2010-01-01

    Full Text Available Abstract Background Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea. Methods From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI. Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus. Results Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6% upper respiratory specimens and 21 (2.9% of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1 virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection. Conclusions The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.

  3. Characterization of purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro

    International Nuclear Information System (INIS)

    Rubach, Jon K.; Wasik, Brian R.; Rupp, Jonathan C.; Kuhn, Richard J.; Hardy, Richard W.; Smith, Janet L.

    2009-01-01

    The Sindbis virus RNA-dependent RNA polymerase (nsP4) is responsible for the replication of the viral RNA genome. In infected cells, nsP4 is localized in a replication complex along with the other viral non-structural proteins. nsP4 has been difficult to homogenously purify from infected cells due to its interactions with the other replication proteins and the fact that its N-terminal residue, a tyrosine, causes the protein to be rapidly turned over in cells. We report the successful expression and purification of Sindbis nsP4 in a bacterial system, in which nsP4 is expressed as an N-terminal SUMO fusion protein. After purification the SUMO tag is removed, resulting in the isolation of full-length nsP4 possessing the authentic N-terminal tyrosine. This purified enzyme is able to produce minus-strand RNA de novo from plus-strand templates, as well as terminally add adenosine residues to the 3' end of an RNA substrate. In the presence of the partially processed viral replicase polyprotein, P123, purified nsP4 is able to synthesize discrete template length minus-strand RNA products. Mutations in the 3' CSE or poly(A) tail of viral template RNA prevent RNA synthesis by the replicase complex containing purified nsP4, consistent with previously reported template requirements for minus-strand RNA synthesis. Optimal reaction conditions were determined by investigating the effects of time, pH, and the concentrations of nsP4, P123 and magnesium on the synthesis of RNA

  4. Mechanistic Characterization of GS-9190 (Tegobuvir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase▿

    Science.gov (United States)

    Shih, I-hung; Vliegen, Inge; Peng, Betty; Yang, Huiling; Hebner, Christy; Paeshuyse, Jan; Pürstinger, Gerhard; Fenaux, Martijn; Tian, Yang; Mabery, Eric; Qi, Xiaoping; Bahador, Gina; Paulson, Matthew; Lehman, Laura S.; Bondy, Steven; Tse, Winston; Reiser, Hans; Lee, William A.; Schmitz, Uli; Neyts, Johan; Zhong, Weidong

    2011-01-01

    GS-9190 (Tegobuvir) is a novel imidazopyridine inhibitor of hepatitis C virus (HCV) RNA replication in vitro and has demonstrated potent antiviral activity in patients chronically infected with genotype 1 (GT1) HCV. GS-9190 exhibits reduced activity against GT2a (JFH1) subgenomic replicons and GT2a (J6/JFH1) infectious virus, suggesting that the compound's mechanism of action involves a genotype-specific viral component. To further investigate the GS-9190 mechanism of action, we utilized the susceptibility differences between GT1b and GT2a by constructing a series of replicon chimeras where combinations of 1b and 2a nonstructural proteins were encoded within the same replicon. The antiviral activities of GS-9190 against the chimeric replicons were reduced to levels comparable to that of the wild-type GT2a replicon in chimeras expressing GT2a NS5B. GT1b replicons in which the β-hairpin region (amino acids 435 to 455) was replaced by the corresponding sequence of GT2a were markedly less susceptible to GS-9190, indicating the importance of the thumb subdomain of the polymerase in this effect. Resistance selection in GT1b replicon cells identified several mutations in NS5B (C316Y, Y448H, Y452H, and C445F) that contributed to the drug resistance phenotype. Reintroduction of these mutations into wild-type replicons conferred resistance to GS-9190, with the number of NS5B mutations correlating with the degree of resistance. Analysis of GS-9190 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of GS-9190 is different from other nonnucleoside inhibitors. Collectively, these data demonstrate that GS-9190 represents a novel class of nonnucleoside polymerase inhibitors that interact with NS5B likely through involvement of the β-hairpin in the thumb subdomain. PMID:21746939

  5. Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes

    Directory of Open Access Journals (Sweden)

    Yu-Fu Hung

    2015-07-01

    Full Text Available Dengue virus (DENV is an important human pathogen causing millions of disease cases and thousands of deaths worldwide. Non-structural protein 4A (NS4A is a vital component of the viral replication complex (RC and plays a major role in the formation of host cell membrane-derived structures that provide a scaffold for replication. The N-terminal cytoplasmic region of NS4A(1–48 is known to preferentially interact with highly curved membranes. Here, we provide experimental evidence for the stable binding of NS4A(1–48 to small liposomes using a liposome floatation assay and identify the lipid binding sequence by NMR spectroscopy. Mutations L6E;M10E were previously shown to inhibit DENV replication and to interfere with the binding of NS4A(1–48 to small liposomes. Our results provide new details on the interaction of the N-terminal region of NS4A with membranes and will prompt studies of the functional relevance of the curvature sensitive membrane anchor at the N-terminus of NS4A.

  6. Cleavage preference distinguishes the two-component NS2B-NS3 serine proteinases of Dengue and West Nile viruses.

    Science.gov (United States)

    Shiryaev, Sergey A; Kozlov, Igor A; Ratnikov, Boris I; Smith, Jeffrey W; Lebl, Michal; Strongin, Alex Y

    2007-02-01

    Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.

  7. Antiviral Activity and Resistance Analysis of NS3/4A Protease Inhibitor Grazoprevir and NS5A Inhibitor Elbasvir in Hepatitis C Virus GT4 Replicons.

    Science.gov (United States)

    Asante-Appiah, Ernest; Curry, Stephanie; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Nickle, David; Qiu, Ping; Howe, Anita; Lahser, Frederick C

    2017-07-01

    Although genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated. For grazoprevir, the 50% effective concentration (EC 50 ) against the replicon bearing the reference GT4a (ED43) NS3 protease and NS4A was 0.7 nM. The median EC 50 for grazoprevir against chimeric replicons encoding NS3/4A sequences from GT4 clinical isolates was 0.2 nM (range, 0.11 to 0.33 nM; n = 5). The difficulty in establishing replicons bearing NS3/4A resistance-associated substitutions was substantially overcome with the identification of a G162R adaptive substitution in NS3. Single NS3 substitutions D168A/V identified from de novo resistance selection studies reduced grazoprevir antiviral activity by 137- and 47-fold, respectively, in the background of the G162R replicon. For elbasvir, the EC 50 against the replicon bearing the reference full-length GT4a (ED43) NS5A gene was 0.0002 nM. The median EC 50 for elbasvir against chimeric replicons bearing clinical isolates from GT4 was 0.0007 nM (range, 0.0002 to 34 nM; n = 14). De novo resistance selection studies in GT4 demonstrated a high propensity to suppress the emergence of amino acid substitutions that confer high-potency reductions to elbasvir. Phenotypic characterization of the NS5A amino acid substitutions identified (L30F, L30S, M31V, and Y93H) indicated that they conferred 15-, 4-, 2.5-, and 7.5-fold potency losses, respectively, to elbasvir

  8. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    Science.gov (United States)

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  9. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    Energy Technology Data Exchange (ETDEWEB)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Lim, Siew Pheng [Novartis Institutes of Tropical Diseases (Singapore); Lefeuvre, Peggy [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Erbel, Paul [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Novartis Institutes of Tropical Diseases (Singapore)

    2006-02-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  10. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    International Nuclear Information System (INIS)

    D’Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-01-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained

  11. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed Virus. 113.215 Section 113.215 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD...

  12. Hepatitis C Virus NS3/4A Protease Inhibitors: A Light at the End of the Tunnel

    Science.gov (United States)

    Chatel-Chaix, Laurent; Baril, Martin; Lamarre, Daniel

    2010-01-01

    Hepatitis C virus (HCV) infection is a serious and growing threat to human health. The current treatment provides limited efficacy and is poorly tolerated, highlighting the urgent medical need for novel therapeutics. The membrane-targeted NS3 protein in complex with the NS4A comprises a serine protease domain (NS3/4A protease) that is essential for viral polyprotein maturation and contributes to the evasion of the host innate antiviral immunity by HCV. Therefore, the NS3/4A protease represents an attractive target for drug discovery, which is tied in with the challenge to develop selective small-molecule inhibitors. A rational drug design approach, based on the discovery of N-terminus product inhibition, led to the identification of potent and orally bioavailable NS3 inhibitors that target the highly conserved protease active site. This review summarizes the NS3 protease inhibitors currently challenged in clinical trials as one of the most promising antiviral drug class, and possibly among the first anti-HCV agents to be approved for the treatment of HCV infection. PMID:21994705

  13. Hepatitis C Virus NS3/4A Protease Inhibitors: A Light at the End of the Tunnel

    Directory of Open Access Journals (Sweden)

    Laurent Chatel-Chaix

    2010-08-01

    Full Text Available Hepatitis C virus (HCV infection is a serious and growing threat to human health. The current treatment provides limited efficacy and is poorly tolerated, highlighting the urgent medical need for novel therapeutics. The membrane-targeted NS3 protein in complex with the NS4A comprises a serine protease domain (NS3/4A protease that is essential for viral polyprotein maturation and contributes to the evasion of the host innate antiviral immunity by HCV. Therefore, the NS3/4A protease represents an attractive target for drug discovery, which is tied in with the challenge to develop selective small-molecule inhibitors. A rational drug design approach, based on the discovery of N-terminus product inhibition, led to the identification of potent and orally bioavailable NS3 inhibitors that target the highly conserved protease active site. This review summarizes the NS3 protease inhibitors currently challenged in clinical trials as one of the most promising antiviral drug class, and possibly among the first anti-HCV agents to be approved for the treatment of HCV infection.

  14. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    Science.gov (United States)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  15. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants.

    Science.gov (United States)

    Chen, Nanhua; Li, Shuangjie; Zhou, Rongyun; Zhu, Meiqin; He, Shan; Ye, Mengxue; Huang, Yucheng; Li, Shuai; Zhu, Cong; Xia, Pengpeng; Zhu, Jianzhong

    2017-10-15

    Porcine epidemic diarrhea virus (PEDV) causes devastating impact on global pig-breeding industry and current vaccines have become not effective against the circulating PEDV variants since 2011. During the up-to-date investigation of PEDV prevalence in Fujian China 2016, PEDV was identified in vaccinated pig farms suffering severe diarrhea while other common diarrhea-associated pathogens were not detected. Complete genomes of two PEDV representatives (XM1-2 and XM2-4) were determined. Genomic comparison showed that these two viruses share the highest nucleotide identities (99.10% and 98.79%) with the 2011 ZMDZY strain, but only 96.65% and 96.50% nucleotide identities with the attenuated CV777 strain. Amino acid alignment of spike (S) proteins indicated that they have the similar mutation, insertion and deletion pattern as other Chinese PEDV variants but also contain several unique substitutions. Phylogenetic analysis showed that 2016 PEDV variants belong to the cluster of recombination strains but form a new branch. Recombination detection suggested that both XM1-2 and XM2-4 are inter-subgroup recombinants with breakpoints within ORF1b. Remarkably, the natural recombinant HNQX-3 isolate serves as a parental virus for both natural recombinants identified in this study. This up-to-date investigation provides the direct evidence that natural recombinants may serve as parental viruses to generate recombined PEDV progenies that are probably associated with the vaccination failure. Copyright © 2017. Published by Elsevier B.V.

  16. A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine Hafirassou

    2017-12-01

    Full Text Available Dengue virus (DENV infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT and oligosaccharyltransferase (OST complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.

  17. Comprehensive Screening for Naturally Occurring Hepatitis C Virus Resistance to Direct-Acting Antivirals in the NS3, NS5A, and NS5B Genes in Worldwide Isolates of Viral Genotypes 1 to 6.

    Science.gov (United States)

    Patiño-Galindo, Juan Ángel; Salvatierra, Karina; González-Candelas, Fernando; López-Labrador, F Xavier

    2016-04-01

    There is no comprehensive study available on the natural hepatitis C virus (HCV) polymorphism in sites associated with resistance including all viral genotypes which may present variable susceptibilities to particular direct-acting antivirals (DAAs). This study aimed to analyze the frequencies, genetic barriers, and evolutionary histories of naturally occurring resistance-associated variants (RAVs) in the six main HCV genotypes. A comprehensive analysis of up to 103 RAVs was performed in 2,901, 2,216, and 1,344 HCV isolates for the NS3, NS5A, and NS5B genes, respectively. We report significant intergenotypic differences in the frequencies of natural RAVs for these three HCV genes. In addition, we found a low genetic barrier for the generation of new RAVs, irrespective of the viral genotype. Furthermore, in 1,126 HCV genomes, including sequences spanning the three genes, haplotype analysis revealed a remarkably high frequency of viruses carrying more than one natural RAV to DAAs (53% of HCV-1a, 28.5% of HCV-1b, 67.1% of HCV-6, and 100% of genotype 2, 3, 4, and 5 haplotypes). With the exception of HCV-1a, the most prevalent haplotypes showed RAVs in at least two different viral genes. Finally, evolutionary analyses revealed that, while most natural RAVs appeared recently, others have been efficiently transmitted over time and cluster in well-supported clades. In summary, and despite the observed high efficacy of DAA-based regimens, we show that naturally occurring RAVs are common in all HCV genotypes and that there is an overall low genetic barrier for the selection of resistance mutations. There is a need for natural DAA resistance profiling specific for each HCV genotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus.

    Science.gov (United States)

    Phan, Tung G; Vo, Nguyen P; Bonkoungou, Isidore J O; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling; Delwart, Eric

    2012-10-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.

  19. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Science.gov (United States)

    de Chassey, Benoît; Aublin-Gex, Anne; Ruggieri, Alessia; Meyniel-Schicklin, Laurène; Pradezynski, Fabrine; Davoust, Nathalie; Chantier, Thibault; Tafforeau, Lionel; Mangeot, Philippe-Emmanuel; Ciancia, Claire; Perrin-Cocon, Laure; Bartenschlager, Ralf; André, Patrice; Lotteau, Vincent

    2013-01-01

    Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  20. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Directory of Open Access Journals (Sweden)

    Benoît de Chassey

    Full Text Available Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1 appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  1. Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus

    Energy Technology Data Exchange (ETDEWEB)

    Fogeron, Marie-Laure [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Jirasko, Vlastimil; Penzel, Susanne [ETH Zurich, Physical Chemistry (Switzerland); Paul, David [Heidelberg University, Department of Infectious Diseases, Molecular Virology (Germany); Montserret, Roland; Danis, Clément; Lacabanne, Denis; Badillo, Aurélie [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Gouttenoire, Jérôme; Moradpour, Darius [University of Lausanne, Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois (Switzerland); Bartenschlager, Ralf [Heidelberg University, Department of Infectious Diseases, Molecular Virology (Germany); Penin, François [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); and others

    2016-06-15

    We describe the expression of the hepatitis C virus nonstructural protein 4B (NS4B), which is an integral membrane protein, in a wheat germ cell-free system, the subsequent purification and characterization of NS4B and its insertion into proteoliposomes in amounts sufficient for multidimensional solid-state NMR spectroscopy. First spectra of the isotopically [{sup 2}H,{sup 13}C,{sup 15}N]-labeled protein are shown to yield narrow {sup 13}C resonance lines and a proper, predominantly α-helical fold. Clean residue-selective leucine, isoleucine and threonine-labeling is demonstrated. These results evidence the suitability of the wheat germ-produced integral membrane protein NS4B for solid-state NMR. Still, the proton linewidth under fast magic angle spinning is broader than expected for a perfect sample and possible causes are discussed.

  2. Bovine Virus Diarrhea (BVD)

    OpenAIRE

    Hoar, Bruce R.

    2004-01-01

    Bovine virus diarrhea (BVD) is a complicated disease to discuss as it can result in a wide variety of disease problems from very mild to very severe. BVD can be one of the most devastating diseases cattle encounter and one of the hardest to get rid of when it attacks a herd. The viruses that cause BVD have been grouped into two genotypes, Type I and Type II. The disease syndrome caused by the two genotypes is basically the same, however disease caused by Type II infection is often more severe...

  3. NS5A Sequence Heterogeneity and Mechanisms of Daclatasvir Resistance in Hepatitis C Virus Genotype 4 Infection.

    Science.gov (United States)

    Zhou, Nannan; Hernandez, Dennis; Ueland, Joseph; Yang, Xiaoyan; Yu, Fei; Sims, Karen; Yin, Philip D; McPhee, Fiona

    2016-01-15

    Daclatasvir is an NS5A inhibitor approved for treatment of infection due to hepatitis C virus (HCV) genotypes (GTs) 1-4. To support daclatasvir use in HCV genotype 4 infection, we examined a diverse genotype 4-infected population for HCV genotype 4 subtype prevalence, NS5A polymorphisms at residues associated with daclatasvir resistance (positions 28, 30, 31, or 93), and their effects on daclatasvir activity in vitro and clinically. We performed phylogenetic analysis of genotype 4 NS5A sequences from 186 clinical trial patients and 43 sequences from the European HCV database, and susceptibility analyses of NS5A polymorphisms and patient-derived NS5A sequences by using genotype 4 NS5A hybrid genotype 2a replicons. The clinical trial patients represented 14 genotype 4 subtypes; most prevalent were genotype 4a (55%) and genotype 4d (27%). Daclatasvir 50% effective concentrations for 10 patient-derived NS5A sequences representing diverse phylogenetic clusters were ≤0.080 nM. Most baseline sequences had ≥1 NS5A polymorphism at residues associated with daclatasvir resistance; however, only 3 patients (1.6%) had polymorphisms conferring ≥1000-fold daclatasvir resistance in vitro. Among 46 patients enrolled in daclatasvir trials, all 20 with baseline resistance polymorphisms achieved a sustained virologic response. Circulating genotype 4 subtypes are genetically diverse. Polymorphisms conferring high-level daclatasvir resistance in vitro are uncommon before therapy, and clinical data suggest that genotype 4 subtype and baseline polymorphisms have minimal impact on responses to daclatasvir-containing regimens. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Discrepancy between Hepatitis C Virus Genotypes and NS4-Based Serotypes: Association with Their Subgenomic Sequences

    Directory of Open Access Journals (Sweden)

    Nan Nwe Win

    2017-01-01

    Full Text Available Determination of hepatitis C virus (HCV genotypes plays an important role in the direct-acting agent era. Discrepancies between HCV genotyping and serotyping assays are occasionally observed. Eighteen samples with discrepant results between genotyping and serotyping methods were analyzed. HCV serotyping and genotyping were based on the HCV nonstructural 4 (NS4 region and 5′-untranslated region (5′-UTR, respectively. HCV core and NS4 regions were chosen to be sequenced and were compared with the genotyping and serotyping results. Deep sequencing was also performed for the corresponding HCV NS4 regions. Seventeen out of 18 discrepant samples could be sequenced by the Sanger method. Both HCV core and NS4 sequences were concordant with that of genotyping in the 5′-UTR in all 17 samples. In cloning analysis of the HCV NS4 region, there were several amino acid variations, but each sequence was much closer to the peptide with the same genotype. Deep sequencing revealed that minor clones with different subgenotypes existed in two of the 17 samples. Genotyping by genome amplification showed high consistency, while several false reactions were detected by serotyping. The deep sequencing method also provides accurate genotyping results and may be useful for analyzing discrepant cases. HCV genotyping should be correctly determined before antiviral treatment.

  5. Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B.

    Science.gov (United States)

    Hanoulle, Xavier; Badillo, Aurélie; Wieruszeski, Jean-Michel; Verdegem, Dries; Landrieu, Isabelle; Bartenschlager, Ralf; Penin, François; Lippens, Guy

    2009-05-15

    We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.

  6. Epitope Sequences in Dengue Virus NS1 Protein Identified by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Leticia Barboza Rocha

    2017-10-01

    Full Text Available Dengue nonstructural protein 1 (NS1 is a multi-functional glycoprotein with essential functions both in viral replication and modulation of host innate immune responses. NS1 has been established as a good surrogate marker for infection. In the present study, we generated four anti-NS1 monoclonal antibodies against recombinant NS1 protein from dengue virus serotype 2 (DENV2, which were used to map three NS1 epitopes. The sequence 193AVHADMGYWIESALNDT209 was recognized by monoclonal antibodies 2H5 and 4H1BC, which also cross-reacted with Zika virus (ZIKV protein. On the other hand, the sequence 25VHTWTEQYKFQPES38 was recognized by mAb 4F6 that did not cross react with ZIKV. Lastly, a previously unidentified DENV2 NS1-specific epitope, represented by the sequence 127ELHNQTFLIDGPETAEC143, is described in the present study after reaction with mAb 4H2, which also did not cross react with ZIKV. The selection and characterization of the epitope, specificity of anti-NS1 mAbs, may contribute to the development of diagnostic tools able to differentiate DENV and ZIKV infections.

  7. Hepatitis C Virus NS3 Mediated Microglial Inflammation via TLR2/TLR6 MyD88/NF-κB Pathway and Toll Like Receptor Ligand Treatment Furnished Immune Tolerance.

    Directory of Open Access Journals (Sweden)

    Ayilam Ramachandran Rajalakshmy

    Full Text Available Recent evidence suggests the neurotrophic potential of hepatitis C virus (HCV. HCV NS3 protein is one of the potent antigens of this virus mediating inflammatory response in different cell types. Microglia being the immune surveillance cells in the central nervous system (CNS, the inflammatory potential of NS3 on microglia was studied. Role of toll like receptor (TLR ligands Pam2CSK3 and Pam3CSK4 in controlling the NS3 mediated microglial inflammation was studied using microglial cell line CHME3.IL (Interleukin-8, IL-6, TNF-α (Tumor nicrosis factor alpha and IL-1β gene expressions were measured by semi quantitative RT-PCR (reverse transcription-PCR. ELISA was performed to detect IL-8, IL-6, TNF-α, IL-1β and IL-10 secretion. FACS (Flourescent activated cell sorting was performed to quantify TLR1, TLR2, TLR6, MyD88 (Myeloid differntiation factor 88, IkB-α (I kappaB alpha and pNF-κB (phosphorylated nuclear factor kappaB expression. Immunofluorescence staining was performed for MyD88, TLR6 and NF-κB (Nuclear factor kappaB. Student's t-test or One way analysis of variance with Bonferoni post hoc test was performed and p < 0.05 was considered significant.Microglia responded to NS3 by secreting IL-8, IL-6, TNF-α and IL-1β via TLR2 or TLR6 mediated MyD88/NF-κB pathway. Transcription factor NF-κB was involved in activating the cytokine gene expression and the resultant inflammatory response was controlled by NF-κB inhibitor, Ro106-9920, which is known to down regulate pro-inflammatory cytokine secretion. Activation of the microglia by TLR agonists Pam3CSK4 and Pam2CSK4 induced immune tolerance against NS3. TLR ligand treatment significantly down regulated pro-inflammatory cytokine secretion in the microglia. IL-10 secretion was suggested as the possible mechanism by which TLR agonists induced immune tolerance. NS3 as such was not capable of self-inducing immune tolerance in microglia.In conclusion, NS3 protein was capable of activating

  8. A cooperative interaction between nontranslated RNA sequences and NS5A protein promotes in vivo fitness of a chimeric hepatitis C/GB virus B.

    Directory of Open Access Journals (Sweden)

    Lucile Warter

    Full Text Available GB virus B (GBV-B is closely related to hepatitis C virus (HCV, infects small non-human primates, and is thus a valuable surrogate for studying HCV. Despite significant differences, the 5' nontranslated RNAs (NTRs of these viruses fold into four similar structured domains (I-IV, with domains II-III-IV comprising the viral internal ribosomal entry site (IRES. We previously reported the in vivo rescue of a chimeric GBV-B (vGB/III(HC containing HCV sequence in domain III, an essential segment of the IRES. We show here that three mutations identified within the vGB/III(HC genome (within the 3'NTR, upstream of the poly(U tract, and NS5A coding sequence are necessary and sufficient for production of this chimeric virus following intrahepatic inoculation of synthetic RNA in tamarins, and thus apparently compensate for the presence of HCV sequence in domain III. To assess the mechanism(s underlying these compensatory mutations, and to determine whether 5'NTR subdomains participating in genome replication do so in a virus-specific fashion, we constructed and evaluated a series of chimeric subgenomic GBV-B replicons in which various 5'NTR subdomains were substituted with their HCV homologs. Domains I and II of the GBV-B 5'NTR could not be replaced with HCV sequence, indicating that they contain essential, virus-specific RNA replication elements. In contrast, domain III could be swapped with minimal loss of genome replication capacity in cell culture. The 3'NTR and NS5A mutations required for rescue of the related chimeric virus in vivo had no effect on replication of the subgenomic GBneoD/III(HC RNA in vitro. The data suggest that in vivo fitness of the domain III chimeric virus is dependent on a cooperative interaction between the 5'NTR, 3'NTR and NS5A at a step in the viral life cycle subsequent to genome replication, most likely during particle assembly. Such a mechanism may be common to all hepaciviruses.

  9. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    Science.gov (United States)

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    Energy Technology Data Exchange (ETDEWEB)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada); Schriewer, Jill [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO (United States); Evans, David H. [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada); Buller, R. Mark [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO (United States); Barry, Michele, E-mail: michele.barry@ualberta.ca [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada)

    2014-05-15

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus.

  11. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    International Nuclear Information System (INIS)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee; Schriewer, Jill; Evans, David H.; Buller, R. Mark; Barry, Michele

    2014-01-01

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus

  12. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations.

    Directory of Open Access Journals (Sweden)

    Thomas Pietschmann

    2009-06-01

    Full Text Available With the advent of subgenomic hepatitis C virus (HCV replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs, previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A, but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I as well as NS5A (S2204R, whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.

  13. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins.

    Science.gov (United States)

    Turkington, Hannah L; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin; Hale, Benjamin G

    2018-03-01

    Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The

  14. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4 through interaction with HCV NS5B and alteration of lipid droplet formation.

    Directory of Open Access Journals (Sweden)

    In-Woo Park

    Full Text Available Hepatitis C virus (HCV RNA replication involves complex interactions among the 3'x RNA element within the HCV 3' untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3' X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4, a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.

  15. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia.

    Science.gov (United States)

    Aryati, Aryati; Trimarsanto, Hidayat; Yohan, Benediktus; Wardhani, Puspa; Fahri, Sukmal; Sasmono, R Tedjo

    2013-12-29

    Early diagnosis of dengue infection is crucial for better management of the disease. Diagnostic tests based on the detection of dengue virus (DENV) Non Structural Protein 1 (NS1) antigen are commercially available with different sensitivities and specificities observed in various settings. Dengue is endemic in Indonesia and clinicians are increasingly using the NS1 detection for dengue confirmation. This study described the performance of Panbio Dengue Early NS1 and IgM Capture ELISA assays for dengue detection during our surveillance in eight cities in Indonesia as well as the genetic diversity of DENV NS1 genes and its relationship with the NS1 detection. The NS1 and IgM/IgG ELISA assays were used for screening and confirmation of dengue infection during surveillance in 2010-2012. Collected serum samples (n = 440) were subjected to RT-PCR and virus isolation, in which 188 samples were confirmed for dengue infection. The positivity of the ELISA assays were correlated with the RT-PCR results to obtain the sensitivity of the assays. The NS1 genes of 48 Indonesian virus isolates were sequenced and their genetic characteristics were studied. Using molecular data as gold standard, the sensitivity of NS1 ELISA assay for samples from Indonesia was 56.4% while IgM ELISA was 73.7%. When both NS1 and IgM results were combined, the sensitivity increased to 89.4%. The NS1 sensitivity varied when correlated with city/geographical origins and DENV serotype, in which the lowest sensitivity was observed for DENV-4 (19.0%). NS1 sensitivity was higher in primary (67.6%) compared to secondary infection (48.2%). The specificity of NS1 assay for non-dengue samples were 100%. The NS1 gene sequence analysis of 48 isolates revealed the presence of polymorphisms of the NS1 genes which apparently did not influence the NS1 sensitivity. We observed a relatively low sensitivity of NS1 ELISA for dengue detection on RT-PCR-positive dengue samples. The detection rate increased significantly

  16. Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1).

    Science.gov (United States)

    Li, Jinqian; Feng, Shengjun; Liu, Xi; Guo, Mingzhe; Chen, Mingxiao; Chen, Yiyi; Rong, Liang; Xia, Jinyu; Zhou, Yuanping; Zhong, Jin; Li, Yi-Ping

    2018-05-01

    Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  18. Involvement of cyclophilin B in the replication of Japanese encephalitis virus.

    Science.gov (United States)

    Kambara, Hiroto; Tani, Hideki; Mori, Yoshio; Abe, Takayuki; Katoh, Hiroshi; Fukuhara, Takasuke; Taguwa, Shuhei; Moriishi, Kohji; Matsuura, Yoshiharu

    2011-03-30

    Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. In this study, we have examined the effect of cyclosporin A (CsA) on the propagation of JEV. CsA exhibited potent anti-JEV activity in various mammalian cell lines through the inhibition of CypB. The propagation of JEV was impaired in the CypB-knockdown cells and this reduction was cancelled by the expression of wild-type but not of peptidylprolyl cis-trans isomerase (PPIase)-deficient CypB, indicating that PPIase activity of CypB is critical for JEV propagation. Infection of pseudotype viruses bearing JEV envelope proteins was not impaired by the knockdown of CypB, suggesting that CypB participates in the replication but not in the entry of JEV. CypB was colocalized and immunoprecipitated with JEV NS4A in infected cells. These results suggest that CypB plays a crucial role in the replication of JEV through an interaction with NS4A. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Genetic Variability of Bovine Viral Diarrhea Virus and Evidence for a Possible Genetic Bottleneck during Vertical Transmission in Persistently Infected Cattle.

    Directory of Open Access Journals (Sweden)

    Natalie Dow

    Full Text Available Bovine viral diarrhea virus (BVDV, a Pestivirus in the family Flaviviridae, is an economically important pathogen of cattle worldwide. The primary propagators of the virus are immunotolerant persistently infected (PI cattle, which shed large quantities of virus throughout life. Despite the absence of an acquired immunity against BVDV in these PI cattle there are strong indications of viral variability that are of clinical and epidemiological importance. In this study the variability of E2 and NS5B sequences in multiple body compartments of PI cattle were characterized using clonal sequencing. Phylogenetic analyses revealed that BVDV exists as a quasispecies within PI cattle. Viral variants were clustered by tissue compartment significantly more often than expected by chance alone with the central nervous system appearing to be a particularly important viral reservoir. We also found strong indications for a genetic bottleneck during vertical transmission from PI animals to their offspring. These quasispecies analyses within PI cattle exemplify the role of the PI host in viral propagation and highlight the complex dynamics of BVDV pathogenesis, transmission and evolution.

  20. MD421: Electron cloud studies on 25 ns beam variants (BCMS, 8b+4e)

    CERN Document Server

    Iadarola, Giovanni; Belli, Eleonora; Carver, Lee Robert; Dijkstal, Philipp; Li, Kevin Shing Bruce; Mether, Lotta; Romano, Annalisa; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2017-01-01

    This note describes a Machine Development session performed with the main goal of studying the e-cloud mitigation that can be obtained by injecting mixed trains of 8b+4e beam type and trains having the standard 25 ns structure. Additionally, in the course of the MD, the pure 8b+4e beam was also checked to be stable when injected with low chromaticity and octupole current settings. Subsequently, the operational BCMS 25 ns beam was also injected with the 8b+4e settings and found to be unstable. The operational settings for injection were re-found by gradually increasing the chromaticity and octupole knobs until all the bunches of the injected beam could remain stable after injection.

  1. Evolutionary dynamics of hepatitis C virus NS3 protease domain during and following treatment with narlaprevir, a potent NS3 protease inhibitor

    NARCIS (Netherlands)

    de Bruijne, J.; Thomas, X. V.; Rebers, S. P.; Weegink, C. J.; Treitel, M. A.; Hughes, E.; Bergmann, J. F.; de Knegt, R. J.; Janssen, H. L. A.; Reesink, H. W.; Molenkamp, R.; Schinkel, J.

    2013-01-01

    Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected

  2. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2013-01-01

    Full Text Available Currently, hepatitis C virus (HCV infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin. The new therapy has significantly improved sustained virologic response (SVR; however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors.

  3. Novel nucleotide and amino acid covariation between the 5'UTR and the NS2/NS3 proteins of hepatitis C virus: bioinformatic and functional analyses.

    Directory of Open Access Journals (Sweden)

    Hung-Yu Sun

    Full Text Available Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd nucleotide of the 5'UTR with the 14(th, 41(st, 76(th, 110(th, 211(th and 212(th residues of NS2 and with the 71(st, 175(th and 621(st residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR₂₄₃ and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR₂₄₃ depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR₂₄₃-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR₂₄₃ co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.

  4. Dengue NS1 Antigen - for Early Detection of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Amol Hartalkar

    2015-08-01

    Full Text Available Objectives: To evaluate the efficacy of NS1 antigen assay for early diagnosis of dengue virus infection in a tertiary care hospital. Methods: This cross sectional study was carried out in department of Medicine from August to December 2013. Total 100 patients with dengue fever were included. Complete blood count, alanine aminotransferase (ALT, aspartate aminotransferase (AST, Dengue NS1 antigen and IgM and IgG antibodies of dengue virus were done in all cases. Results: Of the 100 sera tested, 75% were positive for dengue virus infection based on dengue NS1 antigen, IgM antibody and IgG antibody. Dengue NS1 antigen and IgM, IgG antibody were able to detect dengue virus infection between day 1 to day 8 in 92% of samples, 86.7% of samples and 82.6% of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were IgM positive and 62% were IgG positive. Based on the dengue NS1 antigen and IgM antibody combination, 74% were positive for dengue virus infections. Sensitivity of Dengue NS1 antigen was 92.3% and specificity of 74.28% in comparison to IgM antibody. Detection rate increased to 75%, based on the antigen and IgG antibody combination. Sensitivity of dengue NS1 antigen was 90.3% and specificity of 65.8% in comparison to IgG antibody. Conclusion: Dengue NS1 antigen is a useful, sensitive and specific test for early diagnosis of dengue virus infection and it improves diagnostic efficiency in combination with antibody test. Key words: Dengue fever, NS1 antigen. Introduction: Dengue fever (DF is the most common arboviral illness in humans. Each year, an estimated 50-100 million cases of dengue fever and 500,000 cases of dengue hemorrhagic fever occur worldwide, with 30000 deaths (mainly in children. Globally 2.5-3 billion people in approximately 112 tropical and subtropical countries are at risk of dengue.of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were Ig

  5. Two unusual hepatitis C virus subtypes, 2j and 2q, in Spain: Identification by nested-PCR and sequencing of a NS5B region.

    Science.gov (United States)

    Margall, N; March, F; Español, M; Torras, X; Gallego, A; Coll, P

    2015-10-01

    Many studies have reported the use of the NS5B gene to subtype hepatitis C virus (HCV). Other HCV genes, such as HCV-5' UTR, Core (C) and E1, have also been used. In some studies, NS5B have been used together with 5'-UTR or C genes to improve genotyping results obtained using commercial procedures. Only two studies in Spain have compared molecular techniques versus commercial procedures regarding the efficacy of HCV subtyping. The aim of this study was to determine whether nested PCR and sequencing of a NS5B region was more reliable than commercial procedures to subtype HCV. We analyzed the results of HCV genotyping in [726] serum specimens collected from 2001 to 2013. From 2001 to 2011, we used PCR and INNO-LiPA hybridization or its new version Versant HCV Genotype 2.0 assay (471 samples). From 2012 to 2013, we used nested PCR and sequencing of a NS5B region (255 cases). This method used two pairs of primers to amplify the RNA of the sample converted to DNA by retrotranscription. The amplification product of 270 base pairs was further sequenced. To identify the subtype, the sequences obtained were compared to those in the international database: http://hcv.lanl.gov./content/sequence/, HCV/ToolsOutline.html and Geno2pheno[hcv] http://hcv.bioinf.mpi-inf.mpg.de/index.php. Nested PCR of a NS5B region and sequencing identified all but one subtype (0.4%, 1/255), differentiated all 1a subtypes from 1b subtypes, and characterized all HCV 2-4 subtypes. This approach also distinguished two subtypes, 2j and 2q, that had rarely been detected previously in Spain. However, commercial procedures failed to subtype 12.7% (60/471) of samples and to genotype 0.6% of specimens (3/471). Nested PCR and sequencing of a NS5B region improved the subtyping of HCV in comparison with classical procedures and identified two rare subtypes in Spain: 2j and 2q. However, full length genome sequencing is recommended to confirm HCV 2j and 2q subtypes. Copyright © 2015. Published by Elsevier B.V.

  6. Identification and Characterization of Bovine Viral Diarrhea Virus from Indonesian Cattle (IDENTIFIKASI DAN KARAKTERISASI VIRUS BOVINE VIRAL DIARRHEA DARI SAPI INDONESIA

    Directory of Open Access Journals (Sweden)

    Muharam Saepulloh

    2015-05-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important viral disease, which a ubiquitous pathogen ofcattle with worldwide economic importance and due to its misdiagnose with other viruses. The goal of thecurrent study was to identify and characterize of BVDV by reverse transcriptase polymerase chainreaction (RT-PCR and followed by sequence genome analyses. Blood, feces, and semen samples werecollected from 588 selected cattle from animals suffering from diarrhea and respiratory manifestation. RTPCRresults showed that the 69 (11.74% samples were positive to BVDV. Further molecularcharacterization was conducted only with 17 PCR positive samples. The results indicated the 17 IndonesianBVD virus isolates were belonging to the genotype-1 of BVDV (BVDV-1 based on sequence analysis anda phylogenetic relationship between Indonesian BVDV isolates and BVDV in the world. This finding is thefirst report of BVD-1 circulated in Indonesian cattle.

  7. Competitive virus assay method for titration of noncytopathogenic bovine viral diarrhea viruses (END⁺ and END⁻ viruses).

    Science.gov (United States)

    Muhsen, Mahmod; Ohi, Kota; Aoki, Hiroshi; Ikeda, Hidetoshi; Fukusho, Akio

    2013-03-01

    A new, reliable and secure virus assay method, named the competitive virus assay (CVA) method, has been established for the titration of bovine viral diarrhea viruses (BVDVs) that either show the exaltation of Newcastle disease virus (END) phenomenon or heterologous interference phenomenon (but not the END phenomenon). This method is based on the principle of (1) homologous interference between BVDVs, by using BVDV RK13/E(-) or BVDV RK13/E(+) strains as competitor virus, and (2) END phenomenon and heterologous interference, by using attenuated Newcastle disease virus (NDV) TCND strain as challenge virus. In titration of BVDV END(+) and BVDV END(-) viruses, no significant difference in estimated virus titer was observed between CVA and conventional methods. CVA method demonstrated comparable levels of sensitivity and accuracy as conventional END and interference methods, which require the use of a velogenic Miyadera strain of NDV and vesicular stomatitis virus (VSV), both of which are agents of high-risk diseases. As such, the CVA method is a safer alternative, with increased bio-safety and bio-containment, through avoidance of virulent strains that are commonly employed with conventional methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Discovery of a Hepatitis C Virus NS5B Replicase Palm Site Allosteric Inhibitor (BMS-929075) Advanced to Phase 1 Clinical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Kap-Sun; Beno, Brett R.; Parcella, Kyle; Bender, John A.; Grant-Young, Katherine A.; Nickel, Andrew; Gunaga, Prashantha; Anjanappa, Prakash; Bora, Rajesh Onkardas; Selvakumar, Kumaravel; Rigat, Karen; Wang, Ying-Kai; Liu, Mengping; Lemm, Julie; Mosure, Kathy; Sheriff, Steven; Wan, Changhong; Witmer, Mark; Kish, Kevin; Hanumegowda, Umesh; Zhuo, Xiaoliang; Shu, Yue-Zhong; Parker, Dawn; Haskell, Roy; Ng, Alicia; Gao, Qi; Colston, Elizabeth; Raybon, Joseph; Grasela, Dennis M.; Santone, Kenneth; Gao, Min; Meanwell, Nicholas A.; Sinz, Michael; Soars, Matthew G.; Knipe, Jay O.; Roberts, Susan B.; Kadow, John F.

    2017-05-04

    The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.

  9. Eradication of bovine viral diarrhea virus in Germany-Diversity of subtypes and detection of live-vaccine viruses.

    Science.gov (United States)

    Wernike, Kerstin; Schirrmeier, Horst; Strebelow, Heinz-Günter; Beer, Martin

    2017-09-01

    Bovine viral diarrhea (BVD) causes high economic losses in the cattle population worldwide. In Germany, an obligatory control program with detection and removal of persistently infected animals is in force since 2011. For molecular tracing of virus transmission, a comprehensive sequence data base of the currently circulating BVD viruses was established. Partial sequences of 1007 samples collected between 2008 and 2016 were generated. As dominant viruses, subtypes 1b (47.0%) and 1d (26.5%) could be identified with no marked geographic or sampling year effect, a much higher amount of BVDV-2c was detected in 2013 compared to other years, predominantly in Western Germany. In addition, subtypes 1a, 1e, 1f, 1h, 1g, 1k, and 2a were found. Interestingly, besides field-viruses, two different live-vaccine viruses were detected in tissue samples of newborn calves (n=37) whose mothers were immunized during pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Protein clustering and RNA phylogenetic reconstruction of the influenza A [corrected] virus NS1 protein allow an update in classification and identification of motif conservation.

    Science.gov (United States)

    Sevilla-Reyes, Edgar E; Chavaro-Pérez, David A; Piten-Isidro, Elvira; Gutiérrez-González, Luis H; Santos-Mendoza, Teresa

    2013-01-01

    The non-structural protein 1 (NS1) of influenza A virus (IAV), coded by its third most diverse gene, interacts with multiple molecules within infected cells. NS1 is involved in host immune response regulation and is a potential contributor to the virus host range. Early phylogenetic analyses using 50 sequences led to the classification of NS1 gene variants into groups (alleles) A and B. We reanalyzed NS1 diversity using 14,716 complete NS IAV sequences, downloaded from public databases, without host bias. Removal of sequence redundancy and further structured clustering at 96.8% amino acid similarity produced 415 clusters that enhanced our capability to detect distinct subgroups and lineages, which were assigned a numerical nomenclature. Maximum likelihood phylogenetic reconstruction using RNA sequences indicated the previously identified deep branching separating group A from group B, with five distinct subgroups within A as well as two and five lineages within the A4 and A5 subgroups, respectively. Our classification model proposes that sequence patterns in thirteen amino acid positions are sufficient to fit >99.9% of all currently available NS1 sequences into the A subgroups/lineages or the B group. This classification reduces host and virus bias through the prioritization of NS1 RNA phylogenetics over host or virus phenetics. We found significant sequence conservation within the subgroups and lineages with characteristic patterns of functional motifs, such as the differential binding of CPSF30 and crk/crkL or the availability of a C-terminal PDZ-binding motif. To understand selection pressures and evolution acting on NS1, it is necessary to organize the available data. This updated classification may help to clarify and organize the study of NS1 interactions and pathogenic differences and allow the drawing of further functional inferences on sequences in each group, subgroup and lineage rather than on a strain-by-strain basis.

  11. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene.

    Science.gov (United States)

    Sabet, Salwa; George, Marina A; El-Shorbagy, Haidan M; Bassiony, Heba; Farroh, Khaled Y; Youssef, Tareq; Salaheldin, Taher A

    2017-01-01

    Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV.

  12. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein.

    Science.gov (United States)

    Silva, M M S; Dias, A C M S; Cordeiro, M T; Marques, E; Goulart, M O F; Dutra, R F

    2014-10-01

    A thiophene-modified screen printed electrode (SPE) for detection of the Dengue virus non-structural protein 1 (NS1), an important marker for acute phase diagnosis, is described. A sulfur-containing heterocyclic compound, the thiophene was incorporated to a carbon ink to prepare reproducible screen printed electrodes. After cured, the thiophene SPE was coated by gold nanoparticles conjugated to Protein A to form a nanostrutured surface. The Anti-NS1 antibodies immobilized via their Fc portions via Protein A, leaving their antigen specific sites free circumventing the problem of a random antibodies immobilization. Amperometric responses to the NS1 protein of dengue virus were obtained by cyclic voltammetries performed in presence of ferrocyanide/ferricyanide as redox probe. The calibration curve of immunosensor showed a linear response from 0.04 µg mL(-1) to 0.6 µg mL(-1) of NS1 with a good linear correlation (r=0.991, pink enhanced the electroanalytical properties of the SPEs, increasing their reproducibility and sensitivity. This point-of-care testing represents a great potential for use in epidemic situations, facilitating the early diagnosis in acute phase of dengue virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of porcine epidemic diarrhea virus (PEDV) following inoculation of 4 week-old feeder pigs

    Science.gov (United States)

    Porcine epidemic diarrhea virus (PEDV) emerged in the U.S. in April 2013 and caused significant losses to the swine industry. The purpose of this investigation was to determine tissue localization, shedding patterns, virus carriage, antibody response, and aerosol transmission of PEDV following inocu...

  14. Efficient Culture Adaptation of Hepatitis C Virus Recombinants with Genotype-Specific Core-NS2 by Using Previously Identified Mutations

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith M; Carlsen, Thomas H R

    2011-01-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, and interferon-based therapy cures only 40 to 80% of patients, depending on HCV genotype. Research was accelerated by genotype 2a (strain JFH1) infectious cell culture systems. We previously developed viable JFH1-based...... (HC-TN and DH6), 1b (DH1 and DH5), and 3a (DBN) isolates, using previously identified adaptive mutations. Introduction of mutations from isolates of the same subtype either led to immediate efficient virus production or accelerated culture adaptation. The DH6 and DH5 recombinants without introduced...... mutations did not adapt to culture. Universal adaptive effects of mutations in NS3 (Q1247L, I1312V, K1398Q, R1408W, and Q1496L) and NS5A (V2418L) were investigated for JFH1-based genotype 1 to 5 core-NS2 recombinants; several mutations conferred adaptation to H77C (1a), J4 (1b), S52 (3a), and SA13 (5a...

  15. Characterization of vaniprevir, a hepatitis C virus NS3/4A protease inhibitor, in patients with HCV genotype 1 infection: safety, antiviral activity, resistance, and pharmacokinetics.

    Science.gov (United States)

    Lawitz, Eric; Sulkowski, Mark; Jacobson, Ira; Kraft, Walter K; Maliakkal, Benedict; Al-Ibrahim, Mohamed; Gordon, Stuart C; Kwo, Paul; Rockstroh, Juergen Kurt; Panorchan, Paul; Miller, Michelle; Caro, Luzelena; Barnard, Richard; Hwang, Peggy May; Gress, Jacqueline; Quirk, Erin; Mobashery, Niloufar

    2013-09-01

    Vaniprevir is a competitive inhibitor of the hepatitis C virus (HCV) NS3/4A protease that has potent anti-HCV activity in preclinical models. This placebo-controlled dose-ranging study assessed the safety, tolerability, and antiviral efficacy of vaniprevir monotherapy in patients with genotype 1 chronic HCV infection. Treatment-naive and treatment-experienced non-cirrhotic adult patients with baseline HCV RNA >10(6)IU/ml were randomized to receive placebo or vaniprevir at doses of 125 mg qd, 600 mg qd, 25mg bid, 75 mg bid, 250 mg bid, 500 mg bid, and 700 mg bid for 8 days. Forty patients (82.5% male, 75% genotype 1a) received at least one dose of placebo or vaniprevir. After 1 week of vaniprevir, the decrease in HCV RNA from baseline ranged from 1.8 to 4.6 log₁₀IU/ml across all treatment groups, and there was a greater than dose-proportional increase in vaniprevir exposure at doses above 75 mg bid. The most commonly reported drug-related adverse events (AEs) were diarrhea (n=5) and nausea (n=5). No pattern of laboratory or ECG abnormalities was observed, all AEs resolved during the study, and there were no discontinuations due to AEs. No serious AEs were reported. Resistance-associated amino acid variants were identified at positions R155 and D168 in patients infected with genotype 1a virus. Vaniprevir monotherapy demonstrated potent antiviral activity in patients with chronic genotype 1 HCV infection, and was generally well tolerated with no serious AEs or discontinuations due to AEs. Further development of vaniprevir, including studies in combination with other anti-HCV agents, is ongoing. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Clinical Correlates of Diarrhea and Gut Parasites among Human Immunodeficiency Virus Seropositive Patients

    Directory of Open Access Journals (Sweden)

    Elvis Bisong

    2017-09-01

    Full Text Available Cluster differentiation 4 (CD4 count estimation, which is not readily available in most resource poor settings in Nigeria, is an important indexdetermining commencement of antiretroviral therapy (ART. It is imperative for physicians who come in contact with these patients in such settings to recognize other parameters to evaluate these patients. The clinical correlates of diarrhea and gut parasites among human immunodeficiency virus (HIV-seropositive patients attending our special treatment clinic were studied. Three hundred and forty consenting HIV-positive adult subjects were enrolled. Their stool and blood specimens were collected for a period of three months. Stool samples were analyzed for the presence of diarrhea and gut parasites. The patients were clinically evaluated by physical examination for the presence of pallor, dehydration, oral thrush, wasting lymphadenopathy, dermatitis, skin hyperpigmentation, and finger clubbing. Participants with diarrhea represented 14.1% of the population, while 21.5% harbored one or more parasites. In the subjects with diarrhea, 14.6% harbored gut parasites. The presence of diarrhea was associated with a low CD4 count. Clinically, oral thrush, wasting, and rashes were more reliable predictors of low CD4 count levels; whereas, the presence of pallor, dehydration, wasting, and rashes correlated with the presence of diarrhea. HIV patients presenting with pallor, dehydration, wasting, and rashes should be evaluated for the presence of diarrhea. The clinical variables associated with low CD4 count in this study may guide commencing antiretroviral therapy in resource poor settings.

  17. Rationalizing meat consumption. The 4Ns.

    Science.gov (United States)

    Piazza, Jared; Ruby, Matthew B; Loughnan, Steve; Luong, Mischel; Kulik, Juliana; Watkins, Hanne M; Seigerman, Mirra

    2015-08-01

    Recent theorizing suggests that the 4Ns - that is, the belief that eating meat is natural, normal, necessary, and nice - are common rationalizations people use to defend their choice of eating meat. However, such theorizing has yet to be subjected to empirical testing. Six studies were conducted on the 4Ns. Studies 1a and 1b demonstrated that the 4N classification captures the vast majority (83%-91%) of justifications people naturally offer in defense of eating meat. In Study 2, individuals who endorsed the 4Ns tended also to objectify (dementalize) animals and included fewer animals in their circle of moral concern, and this was true independent of social dominance orientation. Subsequent studies (Studies 3-5) showed that individuals who endorsed the 4Ns tend not to be motivated by ethical concerns when making food choices, are less involved in animal-welfare advocacy, less driven to restrict animal products from their diet, less proud of their animal-product decisions, tend to endorse Speciesist attitudes, tend to consume meat and animal products more frequently, and are highly committed to eating meat. Furthermore, omnivores who strongly endorsed the 4Ns tended to experience less guilt about their animal-product decisions, highlighting the guilt-alleviating function of the 4Ns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame.

    Directory of Open Access Journals (Sweden)

    Marijke van Rikxoort

    Full Text Available Oncolytic influenza A viruses with deleted NS1 gene (delNS1 replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15 coding sequence into the viral NS gene segment (delNS1-IL-15. DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1 infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.

  19. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Masaya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Hasegawa, Hideki [Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Tashiro, Masato [Influenza Virus Research Center, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Wang, Lei [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Kimura, Taichi; Tanino, Mishie; Tsuda, Masumi [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Tanaka, Shinya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan)

    2013-11-29

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.

  20. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  1. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model

    Directory of Open Access Journals (Sweden)

    Katalin Szentpáli-Gavallér

    2016-02-01

    Full Text Available West Nile virus (WNV strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L, NS2A (A30P, NS3 (P249H NS4B (P38G, C102S, E249G. The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.

  2. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    Science.gov (United States)

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  3. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir.

    Science.gov (United States)

    Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William

    2016-01-11

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  5. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    Science.gov (United States)

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Comparison of reproductive protection against bovine viral diarrhea virus provided by multivalent viral vaccines containing inactivated fractions of bovine viral diarrhea virus 1 and 2

    Science.gov (United States)

    The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. Beef heifers and cows (n=122), seronegative and virus negative for BVDV, were randomly ...

  7. Hepatitis C virus expressing reporter tagged NS5A protein

    DEFF Research Database (Denmark)

    2014-01-01

    Hepatitis C reporter viruses containing Core through NS2 of prototype isolates of all major HCV genotypes and the remaining genes of isolate JFH1, by insertion of reporter genes in domain III of HCV NS5A were developed. A deletion upstream of the inserted reporter gene sequence conferred favorable...... growth kinetics in Huh7.5 cells to these viruses. These reporter viruses can be used for high throughput analysis of drug and vaccine candidates as well as patient samples. JFH1-based intergenotypic recombinants with genotype specific homotypic 5'UTR, or heterotypic 5'UTR (either of genotype 1a (strain H...

  8. Alkaline stabilization of manure slurry inactivates porcine epidemic diarrhea virus

    Science.gov (United States)

    The porcine epidemic diarrhea virus (PEDv) outbreak in North America has substantially impacted swine production since it causes nearly 100% mortality in infected pre-weaned piglets. The PED virus is transmitted via the fecal oral route and manure may remain a source of reinfection; therefore, prop...

  9. Docking, synthesis and bioassay studies of imine derivatives as potential inhibitors for dengue NS2B/ NS3 serine protease

    Directory of Open Access Journals (Sweden)

    Neni Frimayanti

    2017-11-01

    Full Text Available Objective: To search imine derivatives as new active agents against dengue type 2 NS2B/NS3 using molecular docking, since there is no effective vaccine against flaviviral infections. Methods: In this research, molecular docking was performed for a series of imine derivatives and the information obtained from the docking studies was used to explore the binding modes of these imine derivatives with dengue type 2 NS2B/NS3 serine protease. A set of imine were synthesized and bioassay study of the inhibitory activities of these compounds was then performed. Results: The results indicated that MY8 and MY4 have the ability to inhibit DEN2 NS2B/NS3 proteolytic activity. Conclusions: These two compounds were chosen as the reference for the next stage in drug design as new inhibitor agents against NS2B/NS3.

  10. Complete Genome Sequences of Porcine Epidemic Diarrhea Virus Strains JSLS-1/2015 and JS-2/2015 Isolated from China.

    Science.gov (United States)

    Tao, Jie; Li, Benqiang; Zhang, Chunling; Liu, Huili

    2016-11-10

    Two porcine epidemic diarrhea virus (PEDV) strains, JSLS-1/2015 and JS-2/2015, were isolated from piglets with watery diarrhea in South China. Two genomic sequences were highly homologous to the attenuated DR13 strain. Furthermore, JSLS-1/2015 contains a 24-amino-acid deletion in open reading frame 1b, which was first reported in PEDV isolates. Copyright © 2016 Tao et al.

  11. Differential sensitivity of 5'UTR-NS5A recombinants of hepatitis C virus genotypes 1-6 to protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Humes, Daryl

    2014-01-01

    BACKGROUND & AIMS: Hepatitis C virus (HCV) therapy will benefit from the preclinical evaluation of direct-acting antiviral (DAA) agents in infectious culture systems that test the effects on different virus genotypes. We developed HCV recombinants comprising the 5' untranslated region-NS5A (5-5A...... daclatasvir. The 1a(TN) 5-5A and JFH1-independent full-length viruses had similar levels of sensitivity to the DAA agents, validating the 5-5A recombinants as surrogates for full-length viruses in DAA testing. Compared with the 1a(TN) full-length virus, the 3a(S52) 5-5A recombinant was highly resistant to all...... protease inhibitors, and the 4a(ED43) recombinant was highly resistant to telaprevir and boceprevir, but most sensitive to other protease inhibitors. Compared with other protease inhibitors, MK-5172 had exceptional potency against all HCV genotypes. The NS5A inhibitor daclatasvir had the highest potency...

  12. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton; Tripathi, Rakesh; Sun, Chaohong; Kempf, Dale J. (AbbVie)

    2017-02-21

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP21212 and containing two protein molecules in the asymmetric unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.

  13. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    Energy Technology Data Exchange (ETDEWEB)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Hampton-Smith, Rachel J.; Aloia, Amanda L. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Eddes, James S. [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Simpson, Kaylene J. [Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hoffmann, Peter [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide (Australia); Beard, Michael R. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia)

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  14. Intranasal P particle vaccine provided partial cross-variant protection against human GII.4 norovirus diarrhea in gnotobiotic pigs.

    Science.gov (United States)

    Kocher, Jacob; Bui, Tammy; Giri-Rachman, Ernawati; Wen, Ke; Li, Guohua; Yang, Xingdong; Liu, Fangning; Tan, Ming; Xia, Ming; Zhong, Weiming; Jiang, Xi; Yuan, Lijuan

    2014-09-01

    Noroviruses (NoVs) are the leading cause of nonbacterial acute gastroenteritis worldwide in people of all ages. The P particle is a novel vaccine candidate derived from the protruding (P) domain of the NoV VP1 capsid protein. This study utilized the neonatal gnotobiotic pig model to evaluate the protective efficacies of primary infection, P particles, and virus-like particles (VLPs) against NoV infection and disease and the T cell responses to these treatments. Pigs either were vaccinated intranasally with GII.4/1997 NoV (VA387)-derived P particles or VLPs or were inoculated orally with a GII.4/2006b NoV variant. At postinoculation day (PID) 28, pigs either were euthanized or were challenged with the GII.4/2006b variant and monitored for diarrhea and virus shedding for 7 days. The T cell responses in intestinal and systemic lymphoid tissues were examined. Primary NoV infection provided 83% homologous protection against diarrhea and 49% homologous protection against virus shedding, while the P particle and VLP vaccines provided cross-variant protection (47% and 60%, respectively) against diarrhea. The protection rates against diarrhea are significantly inversely correlated with T cell expansion in the duodenum and are positively correlated with T cell expansion in the ileum and spleen. The P particle vaccine primed for stronger immune responses than VLPs, including significantly higher numbers of activated CD4+ T cells in all tissues, gamma interferon-producing (IFN-γ+) CD8+ T cells in the duodenum, regulatory T cells (Tregs) in the blood, and transforming growth factor β (TGF-β)-producing CD4+ CD25- FoxP3+ Tregs in the spleen postchallenge, indicating that P particles are more immunogenic than VLPs at the same dose. In conclusion, the P particle vaccine is a promising vaccine candidate worthy of further development. The norovirus (NoV) P particle is a vaccine candidate derived from the protruding (P) domain of the NoV VP1 capsid protein. P particles can be

  15. Designing cyclopentapeptide inhibitor as potential antiviral drug for dengue virus ns5 methyltransferase.

    Science.gov (United States)

    Idrus, Syarifuddin; Tambunan, Usman Sumo Friend; Zubaidi, Ahmad Ardilla

    2012-01-01

    NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.

  16. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  17. Efficient cell culture system for hepatitis C virus genotype 1a and 1b

    DEFF Research Database (Denmark)

    2013-01-01

    isolate in generating efficient cell culture systems for other isolates by transfer of mutations across isolates, subtypes or major genotypes. Furthermore neutralization studies showed that viruses of e.g. genotype 1 were efficiently neutralized by genotype Ia, 4a and 5a serum, an effect that could......The present inventors developed hepatitis C virus 1a/2a and 1b/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and NS2 were replaced by the corresponding genes of the genotype Ia reference strain H77C or TN or the corresponding genes of the genotype Ib...... reference strain J4. Sequence analysis of recovered 1a/2a and 1b/2a recombinants from 2 serial passages and subsequent reverse genetic studies revealed adaptive mutations in e.g. p7, NS2 and/or NS3. In addition, the inventors demonstrate the possibility of using adaptive mutations identified for one HCV...

  18. Design of New Competitive Dengue Ns2b/Ns3 Protease Inhibitors—A Computational Approach

    Directory of Open Access Journals (Sweden)

    Noorsaadah Abd. Rahman

    2011-02-01

    Full Text Available Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of drug discovery strategies that could efficiently and cost-effectively identify antiviral drug leads for development into potent drugs. To this effect, several computational approaches were applied in this work. Initially molecular docking studies of reference ligands to the DEN2 NS2B/NS3 serine protease were carried out. These reference ligands consist of reported competitive inhibitors extracted from Boesenbergia rotunda (i.e., 4-hydroxypanduratin A and panduratin A and three other synthesized panduratin A derivative compounds (i.e., 246DA, 2446DA and 20H46DA. The design of new lead inhibitors was carried out in two stages. In the first stage, the enzyme complexed to the reference ligands was minimized and their complexation energies (i.e., sum of interaction energy and binding energy were computed. New compounds as potential dengue inhibitors were then designed by putting various substituents successively on the benzyl ring A of the reference molecule. These substituted benzyl compounds were then computed for their enzyme-ligand complexation energies. New enzyme-ligand complexes, exhibiting the lowest complexation energies and closest to the computed energy for the reference compounds, were then chosen for the next stage manipulation and design, which involved substituting positions 4 and 5 of the benzyl ring A (positions 3 and 4 for 2446DA with various substituents.

  19. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Short communication. Genotyping and phylogenetic analysis of bovine viral diarrhea virus (BVDV) isolates in Kosovo

    OpenAIRE

    Izedin Goga; Kristaq Berxholi; Beqe Hulaj; Driton Sylejmani; Boris Yakobson; Yehuda Stram

    2014-01-01

    Three serum samples positive in Antigen ELISA BVDV have been tested to characterise genetic diversity of bovine viral diarrhea virus (BVDV) in Kosovo. Samples were obtained in 2011 from heifers and were amplified by reverse transcription-polymerase chain reaction, sequenced and analysed by computer-assisted phylogenetic analysis. Amplified products and nucleotide sequence showed that all 3 isolates belonged to BVDV 1 genotype and 1b sub genotype. These results enrich the extant knowledge of B...

  1. Manure treatment and natural inactivation of porcine epidemic diarrhea virus in soils

    Science.gov (United States)

    The outbreak of porcine epidemic diarrhea virus (PEDv) in North America has substantially impacted U.S. swine production in recent years. The virus it is easily transmitted among pigs and causes nearly 100% mortality in pre-weaned piglets. Because PEDv is an enteric virus spread via fecal-oral conta...

  2. Clinical report: Detection and management of bovine viral diarrhea virus Type 1b in a large dairy herd

    Science.gov (United States)

    Case Description: 1,081 newborn calves from a commercial dairy were tested for bovine viral diarrhea virus antigen by pooled RT-PCR as part of a screening program. Ear tissue from twenty six calves initially tested positive and 14 confirmed positive with antigen capture ELISA two weeks later (1.3...

  3. Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine.

    Science.gov (United States)

    Dastjerdi, Akbar; Carr, John; Ellis, Richard J; Steinbach, Falko; Williamson, Susanna

    2015-12-01

    An outbreak of porcine epidemic diarrhea occurred in the summer of 2014 in Ukraine, severely affecting piglets <10 days of age; the mortality rate approached 100%. Full genome sequencing showed the virus to be closely related to strains reported from North America, showing a sequence identity of up to 99.8%.

  4. Identification of one B-cell epitope from NS1 protein of duck Tembusu virus with monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Jinfeng Ti

    Full Text Available This study describes the identification of one linear B-cell epitope on TMUV NS1 protein with monoclonal antibody (mAb 3G2 by indirect enzyme-linked immunosorbent assay (ELISA. In this study, NS1 protein was expressed in prokaryotic expression system and purified. One mAb against NS1 protein was generated from Balb/c mice immunized with recombinant protein NS1. A set of 35 partially-overlapping polypeptides covering the entire NS1 protein was expressed with PGEX-6P-1 vector and screened with mAb 3G2. One polypeptide against the mAb was acquired and identified by indirect ELISA and western-blot. To map the epitope accurately, one or two amino acid residues were removed from the carboxy and amino terminal of polypeptide sequentially. A series of truncated oligopeptides were expressed and purified. The minimal determinant of the linear B cell epitope was recognized and identified with mAb 3G2. The accurate linear B-cell epitope was 269DEKEIV274 located in NS1 protein. Furthermore, sequence alignment showed that the epitope was highly conserved and specific among TMUV strains and other flavivirus respectively. The linear B-cell epitope of TMUV NS1 protein could benefit the development of new vaccines and diagnostic assays.

  5. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  6. Prevalence of NS5B resistance-associated variants in treatment-naïve Asian patients with chronic hepatitis C.

    Science.gov (United States)

    Yang, Song; Xing, Huichun; Feng, Shenghu; Ju, Wei; Liu, Shunai; Wang, Xiaomei; Ou, Weini; Cheng, Jun; Pan, Calvin Q

    2018-02-01

    There is little information on the association between baseline non-structural protein (NS) 5b resistance-associated variants (RAVs) and treatment failure in hepatitis C patients. This study examined the frequencies of natural hepatitis C virus (HCV) NS5B resistance-associated variants (RAVs) in an Asian cohort. Samples from Asian HCV patients enrolled between October 2009 and September 2014 were analyzed for NS5B RAVs within the region from amino acid 230 to 371. Serum samples were tested by PCR genotyping, with sequence alignment performed using the neighbor-joining method. NS5B was detected by Sanger sequencing followed by Geno2pheno analysis. NS5B RAVs were detected in 80.52% (1199/1489) of patients; 68.4% (1019/1489) and 79.7% (1186/1489) were associated with resistance to sofosbuvir (SOF) and dasabuvir (DSV), respectively. These RAVs were present in 95% (1004/1058) of genotype 1b patients. When genotypes 1b and 2a were compared, SOF-associated RAVs were detected at a higher frequency in genotype 1b (94.8% [1004/1058] vs. 2.9% [9/309]; χ 2 = 1054.433, P C316H/N was more common in genotype 1b (94.7% [1002/1058] vs. 0% [0/309]; χ 2 = 1096.014, P C316Y/H/N/W was higher in genotype 1b (94.7% [1002/1058] vs. 0% [0/309]; χ 2 = 1096.014, P < 0.001). In conclusion, baseline SOF and DSV RAVs are common in Asian HCV patients and predominantly occur in genotype 1b.

  7. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase.

    Science.gov (United States)

    Watashi, Koichi; Ishii, Naoto; Hijikata, Makoto; Inoue, Daisuke; Murata, Takayuki; Miyanari, Yusuke; Shimotohno, Kunitada

    2005-07-01

    Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.

  8. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  9. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    International Nuclear Information System (INIS)

    Lalime, Erin N.; Pekosz, Andrew

    2014-01-01

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function

  10. Successful retreatment with grazoprevir and elbasvir for patients infected with hepatitis C virus genotype 1b, who discontinued prior treatment with NS5A inhibitor-including regimens due to adverse events.

    Science.gov (United States)

    Kanda, Tatsuo; Yasui, Shin; Nakamura, Masato; Nakamoto, Shingo; Takahashi, Koji; Wu, Shuang; Sasaki, Reina; Haga, Yuki; Ogasawara, Sadahisa; Saito, Tomoko; Kobayashi, Kazufumi; Kiyono, Soichiro; Ooka, Yoshihiko; Suzuki, Eiichiro; Chiba, Tetsuhiro; Maruyama, Hitoshi; Moriyama, Mitsuhiko; Kato, Naoya

    2018-03-23

    Sustained virologic response (SVR) by interferon and interferon-free treatment can results in the reduction of advanced liver fibrosis and the occurrence of hepatocellular carcinoma in patients infected with hepatitis C virus (HCV). Recent interferon-free treatment for HCV shortens the duration of treatment and leads to higher SVR rates, without any serious adverse events. However, it is important to retreat patients who have had treatment-failure with HCV non-structural protein 5A (NS5A) inhibitor-including regimens. Combination of sofosbuvir and ledipasvir only leads to approximately 100% SVR rates in HCV genotype (GT1b), NS5A inhibitor-naïve patients in Japan. This combination is not an indication for severe renal disease or heart disease, and these patients should be treated or retreated with a different regimen. Retreatment with HCV non-structural protein 3/4A inhibitor, grazoprevir, and HCV NS5A inhibitor, elbasvir, successfully eradicated HCV RNA in three patients with HCV genotype 1b infection who discontinued prior interferon-free treatments including HCV NS5A inhibitors due to adverse events within 2 weeks. Retreatment with the 12-week combination regimen of grazoprevir and elbasvir is effective for HCV GT1b patients who discontinue the HCV NS5A inhibitor-including regimens within 2 weeks. The treatment response may be related to the short duration of initial treatment, which did not produce treatment-emergent RASs.

  11. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    Directory of Open Access Journals (Sweden)

    Canard Bruno

    2011-10-01

    Full Text Available Abstract Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4. Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  12. Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease.

    Science.gov (United States)

    Rajagopalan, Ravi; Pan, Lin; Schaefer, Caralee; Nicholas, John; Lim, Sharlene; Misialek, Shawn; Stevens, Sarah; Hooi, Lisa; Aleskovski, Natalia; Ruhrmund, Donald; Kossen, Karl; Huang, Lea; Yap, Sophia; Beigelman, Leonid; Serebryany, Vladimir; Liu, Jyanwei; Sastry, Srikonda; Seiwert, Scott; Buckman, Brad

    2017-01-01

    The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection. Copyright © 2016 American Society for Microbiology.

  13. Analysis of the PDZ binding specificities of Influenza A Virus NS1 proteins

    Directory of Open Access Journals (Sweden)

    Nagasaka Kazunori

    2011-01-01

    Full Text Available Abstract The Influenza A virus non-structural protein 1 (NS1 is a multifunctional virulence factor with several protein-protein interaction domains, involved in preventing apoptosis of the infected cell and in evading the interferon response. In addition, the majority of influenza A virus NS1 proteins have a class I PDZ-binding motif at the C-terminus, and this itself has been shown to be a virulence determinant. In the majority of human influenza NS1 proteins the consensus motif is RSxV: in avian NS1 it is ESxV. Of the few human strains that have the avian motif, all were from very high mortality outbreaks of the disease. Previous work has shown that minor differences in PDZ-binding motifs can have major effects on the spectrum of cellular proteins targeted. In this study we analyse the effect of these differences upon the binding of Influenza A virus NS1 protein to a range of cellular proteins involved in polarity and signal transduction.

  14. [Diarrhea].

    Science.gov (United States)

    Müllhaupt, B

    2002-10-16

    Diarrhea is not a single disease, but only a symptom of different diseases. Diarrhea is characterized by an increase in bowel movements (more than three per day) and an increased liquidity of stools. Acute diarrheas are defined as those that last less than four weeks, whereas chronic diarrheas persist for more than four weeks. The pathophysiological basis of diarrhea is a disturbed enteral water- and electrolyte balance, which can be caused by an increased secretion of osmotically active electrolytes (secretory diarrhea) or the increased ingestion of osmotically active substances (osmotic diarrhea). The stool characteristics allows to distinguish watery, bloody and fatty diarrhea. Acute diarrheas are mostly caused by an infectious agent (viruses, bacteria and parasites), whereas the differential diagnosis of chronic diarrhea is considerably larger and therefore the diagnostic work-up is more complex.

  15. Comparative study and grouping of nonstructural (NS1)proteins of influenza A viruses by the method of oligopeptide mapping

    International Nuclear Information System (INIS)

    Sokolov, B.P.; Rudneva, I.A.; Zhdanov, V.M.

    1983-01-01

    Oligopeptide mapping of 35 S-methionine labeled non-stuctural (NS1) proteins of 23 influenza A virus strains showed the presence of both common and variable oligopeptides. Analysis of the oligopeptide maps revealed at least four groups of NS1 proteins. The first group includes NS1 proteins of several human H1N1 influenza viruses (that were designated as H0N1 according to the old classification). The second group is composed of NS1 proteins of H1N1 and H2N2 viruses. The third group includes NS1 proteins of H3N2 human influenza viruses. The fourth group is composed of NS1 proteins of five avian influenza viruses and an equine (H3N8) influenza virus. Two animal influenza viruses A/equi/Prague/56 (H7N7) and A/duck/England/56 (H11N6) contain NS1 proteins that belong to the second group. (Author)

  16. Molecular dynamic simulation of complex NS2B-NS3 DENV2 ...

    African Journals Online (AJOL)

    Several vaccines have been developed against the disease, but they only ... a two component NS2B-NS3 protease that cleaves viral precursor proteins, and ... The results provide conformational changes of enzyme-inhibitor complex that is ...

  17. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-10-31

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.

  18. The inhibition of cAMP-dependent protein kinase by full-length hepatitis C virus NS3/4A complex is due to ATP hydrolysis.

    Science.gov (United States)

    Aoubala, M; Holt, J; Clegg, R A; Rowlands, D J; Harris, M

    2001-07-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, but the molecular mechanisms of viral pathogenesis remain to be established. The HCV non-structural protein NS3 complexes with NS4A and has three enzymatic activities: a proteinase and a helicase/NTPase. Recently, catalytically inactive NS3 fragments containing an arginine-rich motif have been reported to interact with, and inhibit, the catalytic subunit of cAMP-dependent protein kinase (PKA C-subunit). Here we demonstrate that full-length, catalytically active NS3/4A, purified from recombinant baculovirus-infected insect cells, is also able to inhibit PKA C-subunit in vitro. This inhibition was abrogated by mutation of either the arginine-rich motif or the conserved helicase motif II, both of which also abolished NTPase activity. As PKA C-subunit inhibition was also enhanced by poly(U) (an activator of NS3 NTPase activity), we hypothesized that PKA C-subunit inhibition could be due to NS3/4A-mediated ATP hydrolysis. This was confirmed by experiments in which a constant ATP concentration was maintained by addition of an ATP regeneration system--under these conditions PKA C-subunit inhibition was not observed. Interestingly, the mutations also abrogated the ability of wild-type NS3/4A to inhibit the PKA-regulated transcription factor CREB in transiently transfected hepatoma cells. Our data are thus not consistent with the previously proposed model in which the arginine-rich motif of NS3 was suggested to act as a pseudosubstrate inhibitor of PKA C-subunit. However, in vivo effects of NS3/4A suggest that ATPase activity may play a role in viral pathology in the infected liver.

  19. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    Science.gov (United States)

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  20. Complete Genomic Sequence of Border Disease Virus, a Pestivirus from Sheep

    Science.gov (United States)

    Becher, Paul; Orlich, Michaela; Thiel, Heinz-Jürgen

    1998-01-01

    The genus Pestivirus of the family Flaviviridae comprises three established species, namely, bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV), and border disease virus from sheep (BDV). In this study, we report the first complete nucleotide sequence of BDV, that of strain X818. The genome is 12,333 nucleotides long and contains one long open reading frame encoding 3,895 amino acids. The 5′ noncoding region (NCR) of BDV X818 consists of 372 nucleotides and is thus similar in length to the 5′ NCR reported for other pestiviruses. The 3′ NCR of X818 is 273 nucleotides long and thereby at least 32 nucleotides longer than the 3′ NCR of pestiviruses analyzed thus far. Within the 3′ NCR of BDV X818, the sequence motif TATTTATTTA was identified at four locations. The same repeat was found at two or three locations within the 3′ NCR of different CSFV isolates but was absent in the 3′ NCR of BVDV. Analysis of five additional BDV strains showed that the 3′ NCR sequences are highly conserved within this species. Comparison of the deduced amino acid sequence of X818 with the ones of other pestiviruses allowed the prediction of polyprotein cleavage sites which were conserved with regard to the structural proteins. It has been reported for two BVDV strains that cleavage at the nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B is mediated by the NS3 serine protease and for each site a conserved leucine was found at the P1 position followed by either serine or alanine at P1′ (N. Tautz, K. Elbers, D. Stoll, G. Meyers, and H.-J. Thiel, J. Virol. 71:5415–5422, 1997; J. Xu, E. Mendez, P. R. Caron, C. Lin, M. A. Murcko, M. S. Collett, and C. M. Rice, J. Virol. 71:5312–5322). Interestingly, P1′ of the predicted NS5A/5B cleavage site of BDV is represented by an asparagine residue. Transient expression studies demonstrated that this unusual NS5A/5B processing site is efficiently cleaved by the NS3 serine protease of BDV. PMID

  1. A comparison of 454 sequencing and clonal sequencing for the characterization of hepatitis C virus NS3 variants

    NARCIS (Netherlands)

    Ho, Cynthia K. Y.; Welkers, Matthijs R. A.; Thomas, Xiomara V.; Sullivan, James C.; Kieffer, Tara L.; Reesink, Henk W.; Rebers, Sjoerd P. H.; de Jong, Menno D.; Schinkel, Janke; Molenkamp, Richard

    2015-01-01

    We compared 454 amplicon sequencing with clonal sequencing for the characterization of intra-host hepatitis C virus (HCV) NS3 variants. Clonal and 454 sequences were obtained from 12 patients enrolled in a clinical phase I study for telaprevir, an NS3-4a protease inhibitor. Thirty-nine datasets were

  2. Lime application to manure as a management strategy for Porcine Epidemic Diarrhea virus

    Science.gov (United States)

    Arrival of Porcine Epidemic Diarrhea virus (PEDv) in 2013 resulted in billions of dollars in losses in the United States. Currently, increased on-farm biosecurity and mortality management help limit the virus spread. Managing PEDv infections requires mandatory reporting to the United States Depart...

  3. Complete genomic sequences for hepatitis C virus subtypes 4b, 4c, 4d, 4g, 4k, 4l, 4m, 4n, 4o, 4p, 4q, 4r and 4t.

    Science.gov (United States)

    Li, Chunhua; Lu, Ling; Wu, Xianghong; Wang, Chuanxi; Bennett, Phil; Lu, Teng; Murphy, Donald

    2009-08-01

    In this study, we characterized the full-length genomic sequences of 13 distinct hepatitis C virus (HCV) genotype 4 isolates/subtypes: QC264/4b, QC381/4c, QC382/4d, QC193/4g, QC383/4k, QC274/4l, QC249/4m, QC97/4n, QC93/4o, QC139/4p, QC262/4q, QC384/4r and QC155/4t. These were amplified, using RT-PCR, from the sera of patients now residing in Canada, 11 of which were African immigrants. The resulting genomes varied between 9421 and 9475 nt in length and each contains a single ORF of 9018-9069 nt. The sequences showed nucleotide similarities of 77.3-84.3 % in comparison with subtypes 4a (GenBank accession no. Y11604) and 4f (EF589160) and 70.6-72.8 % in comparison with genotype 1 (M62321/1a, M58335/1b, D14853/1c, and 1?/AJ851228) reference sequences. These similarities were often higher than those currently defined by HCV classification criteria for subtype (75.0-80.0 %) and genotype (67.0-70.0 %) division, respectively. Further analyses of the complete and partial E1 and partial NS5B sequences confirmed these 13 'provisionally assigned subtypes'.

  4. Baseline Polymorphisms and Emergence of Drug Resistance in the NS3/4A Protease of Hepatitis C Virus Genotype 1 following Treatment with Faldaprevir and Pegylated Interferon Alpha 2a/Ribavirin in Phase 2 and Phase 3 Studies.

    Science.gov (United States)

    Berger, K L; Scherer, J; Ranga, M; Sha, N; Stern, J O; Quinson, A-M; Kukolj, G

    2015-10-01

    Analysis of data pooled from multiple phase 2 (SILEN-C1 to 3) and phase 3 studies (STARTVerso1 to 4) of the hepatitis C virus (HCV) nonstructural protein 3/4A (NS3/4A) protease inhibitor faldaprevir plus pegylated interferon alpha/ribavirin (PR) provides a comprehensive evaluation of baseline and treatment-emergent NS3/4A amino acid variants among HCV genotype-1 (GT-1)-infected patients. Pooled analyses of GT-1a and GT-1b NS3 population-based pretreatment sequences (n = 3,124) showed that faldaprevir resistance-associated variants (RAVs) at NS3 R155 and D168 were rare (<1%). No single, noncanonical NS3 protease or NS4A cofactor baseline polymorphism was associated with a reduced sustained virologic response (SVR) to faldaprevir plus PR, including Q80K. The GT-1b NS3 helicase polymorphism T344I was associated with reduced SVR to faldaprevir plus PR (P < 0.0001) but was not faldaprevir specific, as reduced SVR was also observed with placebo plus PR. Among patients who did not achieve SVR and had available NS3 population sequences (n = 507 GT-1a; n = 349 GT-1b), 94% of GT-1a and 83% of GT-1b encoded faldaprevir treatment-emergent RAVs. The predominant GT-1a RAV was R155K (88%), whereas GT-1b encoded D168 substitutions (78%) in which D168V was predominant (67%). The novel GT-1b NS3 S61L substitution emerged in 7% of virologic failures as a covariant with D168V, most often among the faldaprevir breakthroughs; S61L in combination with D168V had a minimal impact on faldaprevir susceptibility compared with that for D168V alone (1.5-fold difference in vitro). The median time to loss of D168 RAVs among GT-1b-infected patients who did not have a sustained virologic response at 12 weeks posttreatment (non-SVR12) after virologic failure was 5 months, which was shorter than the 14 months for R155 RAVs among GT-1a-infected non-SVR12 patients, suggesting that D168V is less fit than R155K in the absence of faldaprevir selective pressure. Copyright © 2015, American Society for

  5. Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review.

    Science.gov (United States)

    Sun, Dongbo; Wang, Xinyu; Wei, Shan; Chen, Jianfei; Feng, Li

    2016-03-01

    Porcine epidemic diarrhea (PED) is an intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV); manifestations of the disease are diarrhea, vomiting and dehydration. Starting from the end of 2010, a PED outbreak occurred in several pig-producing provinces in southern China. Subsequently, the disease spread throughout the country and caused enormous economic losses to the pork industry. Accumulating studies demonstrated that new PEDV variants that appeared in China were responsible for the PED outbreak. In the current mini-review, we summarize PEDV epidemiology and vaccination in China.

  6. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus

    Directory of Open Access Journals (Sweden)

    Margit Mutso

    2018-04-01

    Full Text Available Infection by Chikungunya virus (CHIKV of the Old World alphaviruses (family Togaviridae in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP (nsP1, nsp2, nsP3 and nsP4 that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  7. Comparison of reproductive protection against bovine viral diarrhea virus provided by multivalent viral vaccines containing inactivated fractions of bovine viral diarrhea virus 1 and 2.

    Science.gov (United States)

    Walz, Paul H; Riddell, Kay P; Newcomer, Benjamin W; Neill, John D; Falkenberg, Shollie M; Cortese, Victor S; Scruggs, Daniel W; Short, Thomas H

    2018-04-23

    Bovine viral diarrhea virus (BVDV) is an important viral cause of reproductive disease, immune suppression and clinical disease in cattle. The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. BVDV negative beef heifers and cows (n = 122) were randomly assigned to one of four groups. Groups A-C (n = 34/group) received two pre-breeding doses of one of three commercially available multivalent vaccines containing inactivated fractions of BVDV 1 and BVDV 2, and Group D (n = 20) served as negative control and received two doses of saline prior to breeding. Animals were bred, and following pregnancy diagnosis, 110 cattle [Group A (n = 31); Group B (n = 32); Group C (n = 31); Group D (n = 16)] were subjected to a 28-day exposure to cattle persistently infected (PI) with BVDV (1a, 1b and 2a). Of the 110 pregnancies, 6 pregnancies resulted in fetal resorption with no material for testing. From the resultant 104 pregnancies, BVDV transplacental infections were demonstrated in 73 pregnancies. The BVDV fetal infection rate (FI) was calculated at 13/30 (43%) for Group A cows, 27/29 (93%) for Group B cows, 18/30 (60%) for Group C cows, and 15/15 (100%) for Group D cows. Statistical differences were observed between groups with respect to post-vaccination antibody titers, presence and duration of viremia in pregnant cattle, and fetal infection rates in offspring from BVDV-exposed cows. Group A vaccination resulted in significant protection against BVDV infection as compared to all other groups based upon outcome measurements, while Group B vaccination did not differ in protection against BVDV infection from control Group D. Ability of inactivated BVDV vaccines to provide protection against BVDV fetal infection varies significantly among commercially available products; however, in this challenge

  8. In Vitro Antiviral Activity and Resistance Profile of the Next-Generation Hepatitis C Virus NS5A Inhibitor Pibrentasvir.

    Science.gov (United States)

    Ng, Teresa I; Krishnan, Preethi; Pilot-Matias, Tami; Kati, Warren; Schnell, Gretja; Beyer, Jill; Reisch, Thomas; Lu, Liangjun; Dekhtyar, Tatyana; Irvin, Michelle; Tripathi, Rakesh; Maring, Clarence; Randolph, John T; Wagner, Rolf; Collins, Christine

    2017-05-01

    Pibrentasvir (ABT-530) is a novel and pan-genotypic hepatitis C virus (HCV) NS5A inhibitor with 50% effective concentration (EC 50 ) values ranging from 1.4 to 5.0 pM against HCV replicons containing NS5A from genotypes 1 to 6. Pibrentasvir demonstrated similar activity against a panel of chimeric replicons containing HCV NS5A of genotypes 1 to 6 from clinical samples. Resistance selection studies were conducted using HCV replicon cells with NS5A from genotype 1a, 1b, 2a, 2b, 3a, 4a, 5a, or 6a at a concentration of pibrentasvir that was 10- or 100-fold over its EC 50 for the respective replicon. With pibrentasvir at 10-fold over the respective EC 50 , only a small number of colonies (0.00015 to 0.0065% of input cells) with resistance-associated amino acid substitutions were selected in replicons containing genotype 1a, 2a, or 3a NS5A, and no viable colonies were selected in replicons containing NS5A from other genotypes. With pibrentasvir at 100-fold over the respective EC 50 , very few colonies (0.0002% of input cells) were selected by pibrentasvir in genotype 1a replicon cells while no colonies were selected in other replicons. Pibrentasvir is active against common resistance-conferring substitutions in HCV genotypes 1 to 6 that were identified for other NS5A inhibitors, including those at key amino acid positions 28, 30, 31, or 93. The combination of pibrentasvir with HCV inhibitors of other classes produced synergistic inhibition of HCV replication. In summary, pibrentasvir is a next-generation HCV NS5A inhibitor with potent and pan-genotypic activity, and it maintains activity against common amino acid substitutions of HCV genotypes 1 to 6 that are known to confer resistance to currently approved NS5A inhibitors. Copyright © 2017 Ng et al.

  9. Specific Mutations in the PB2 Protein of Influenza A Virus Compensate for the Lack of Efficient Interferon Antagonism of the NS1 Protein of Bat Influenza A-Like Viruses.

    Science.gov (United States)

    Aydillo, Teresa; Ayllon, Juan; Pavlisin, Amzie; Martinez-Romero, Carles; Tripathi, Shashank; Mena, Ignacio; Moreira-Soto, Andrés; Vicente-Santos, Amanda; Corrales-Aguilar, Eugenia; Schwemmle, Martin; García-Sastre, Adolfo

    2018-04-01

    Recently, two new influenza A-like viruses have been discovered in bats, A/little yellow-shouldered bat/Guatemala/060/2010 (HL17NL10) and A/flat-faced bat/Peru/033/2010 (HL18NL11). The hemagglutinin (HA)-like (HL) and neuraminidase (NA)-like (NL) proteins of these viruses lack hemagglutination and neuraminidase activities, despite their sequence and structural homologies with the HA and NA proteins of conventional influenza A viruses. We have now investigated whether the NS1 proteins of the HL17NL10 and HL18NL11 viruses can functionally replace the NS1 protein of a conventional influenza A virus. For this purpose, we generated recombinant influenza A/Puerto Rico/8/1934 (PR8) H1N1 viruses containing the NS1 protein of the PR8 wild-type, HL17NL10, and HL18NL11 viruses. These viruses (r/NS1PR8, r/NS1HL17, and r/NS1HL18, respectively) were tested for replication in bat and nonbat mammalian cells and in mice. Our results demonstrate that the r/NS1HL17 and r/NS1HL18 viruses are attenuated in vitro and in vivo However, the bat NS1 recombinant viruses showed a phenotype similar to that of the r/NS1PR8 virus in STAT1 -/- human A549 cells and mice, both in vitro and in vivo systems being unable to respond to interferon (IFN). Interestingly, multiple mouse passages of the r/NS1HL17 and r/NS1HL18 viruses resulted in selection of mutant viruses containing single amino acid mutations in the viral PB2 protein. In contrast to the parental viruses, virulence and IFN antagonism were restored in the selected PB2 mutants. Our results indicate that the NS1 protein of bat influenza A-like viruses is less efficient than the NS1 protein of its conventional influenza A virus NS1 counterpart in antagonizing the IFN response and that this deficiency can be overcome by the influenza virus PB2 protein. IMPORTANCE Significant gaps in our understanding of the basic features of the recently discovered bat influenza A-like viruses HL17NL10 and HL18NL11 remain. The basic biology of these unique

  10. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    Science.gov (United States)

    Turnbull, Matthew L; Wise, Helen M; Nicol, Marlynne Q; Smith, Nikki; Dunfee, Rebecca L; Beard, Philippa M; Jagger, Brett W; Ligertwood, Yvonne; Hardisty, Gareth R; Xiao, Haixia; Benton, Donald J; Coburn, Alice M; Paulo, Joao A; Gygi, Steven P; McCauley, John W; Taubenberger, Jeffery K; Lycett, Samantha J; Weekes, Michael P; Dutia, Bernadette M; Digard, Paul

    2016-10-15

    Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic

  11. Structure of Hepatitis C Virus Polymerase in Complex with Primer-Template RNA

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Ralph T.; Edwards, Thomas E.; Murakami, Eisuke; Lam, Angela M.; Grice, Rena L.; Du, Jinfa; Sofia, Michael J.; Furman, Philip A.; Otto, Michael J. (Pharmasset); (Emerald)

    2012-08-01

    The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory {beta}-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory {beta}-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.

  12. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    Full Text Available Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3. The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  13. How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea?

    Directory of Open Access Journals (Sweden)

    Vasseur Monique

    2007-03-01

    Full Text Available Abstract Rotavirus is the major cause of infantile gastroenteritis and each year causes 611 000 deaths worldwide. The virus infects the mature enterocytes of the villus tip of the small intestine and induces a watery diarrhea. Diarrhea can occur with no visible tissue damage and, conversely, the histological lesions can be asymptomatic. Rotavirus impairs activities of intestinal disaccharidases and Na+-solute symports coupled with water transport. Maldigestion of carbohydrates and their accumulation in the intestinal lumen as well as malabsorption of nutrients and a concomitant inhibition of water reabsorption can lead to a malabsorption component of diarrhea. Since the discovery of the NSP4 enterotoxin, diverse hypotheses have been proposed in favor of an additional secretion component in the pathogenesis of diarrhea. Rotavirus induces a moderate net chloride secretion at the onset of diarrhea, but the mechanisms appear to be quite different from those used by bacterial enterotoxins that cause pure secretory diarrhea. Rotavirus failed to stimulate Cl- secretion in crypt, whereas it stimulated Cl- reabsorption in villi, questioning, therefore, the origin of net Cl- secretion. A solution to this riddle was that intestinal villi do in fact secrete chloride as a result of rotavirus infection. Also, the overall chloride secretory response is regulated by a phospholipase C-dependent calcium signaling pathway induced by NSP4. However, the overall response is weak, suggesting that NSP4 may exert both secretory and subsequent anti-secretory actions, as did carbachol, hence limiting Cl- secretion. All these characteristics provide the means to make the necessary functional distinction between viral NSP4 and bacterial enterotoxins.

  14. Subtype Specific Differences in NS5A Domain II Reveals Involvement of Proline at Position 310 in Cyclosporine Susceptibility of Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Israr-ul H. Ansari

    2012-11-01

    Full Text Available Hepatitis C virus (HCV is susceptible to cyclosporine (CsA and other cyclophilin (CypA inhibitors, but the genetic basis of susceptibility is controversial. Whether genetic variation in NS5A alters cell culture susceptibility of HCV to CypA inhibition is unclear. We constructed replicons containing NS5A chimeras from genotypes 1a, 2a and 4a to test how variation in carboxy terminal regions of NS5A altered the genotype 1b CsA susceptibility. All chimeric replicons including genotype 1b Con1LN-wt replicon exhibited some cell culture sensitivity to CsA with genotype 4a being most sensitive and 1a the least. The CypA binding pattern of truncated NS5A genotypes correlated with the susceptibility of these replicons to CsA. The Con1LN-wt replicon showed increased susceptibility towards CsA when proline at position 310P was mutated to either threonine or alanine. Furthermore, a 15 amino acid long peptide fused N terminally to GFP coding sequences confirmed involvement of proline at 310 in CypA binding. Our findings are consistent with CypA acting on multiple prolines outside of the previously identified CypA binding sites. These results suggest multiple specific genetic variants between genotype 1a and 1b in the C-terminus of NS5A alter the CsA susceptibility of replicons, and some variants may oppose the effects of others.

  15. Enzymatic activities of the GB virus-B RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Ranjith-Kumar, C.T.; Santos, Jan Lee; Gutshall, Lester L.; Johnston, Victor K.; Juili, L.-G.; Kim, M.-J.; Porter, David J.; Maley, Derrick; Greenwood, Cathy; Earnshaw, David L.; Baker, Audrey; Gu Baohua; Silverman, Carol; Sarisky, Robert T.; Kao Cheng

    2003-01-01

    The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn 2+ concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp

  16. Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...

  17. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway.

    Science.gov (United States)

    Ling, Shifeng; Luo, Mingyang; Jiang, Shengnan; Liu, Jiayu; Ding, Chunying; Zhang, Qinghuan; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-05-01

    Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    Science.gov (United States)

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  19. Conservation of a crystallographic interface suggests a role for β-sheet augmentation in influenza virus NS1 multifunctionality

    International Nuclear Information System (INIS)

    Kerry, Philip S.; Long, Elizabeth; Taylor, Margaret A.; Russell, Rupert J. M.

    2011-01-01

    The structure of a monomeric effector domain from influenza A virus NS1 is presented from diffraction data extending to 1.8 Å resolution. Comparison of this and other NS1 effector-domain structures shows conformational changes at a strand–strand packing interface, hinting at a role for β-strand augmentation in NS1 function. The effector domain (ED) of the influenza virus virulence factor NS1 is capable of interaction with a variety of cellular and viral targets, although regulation of these events is poorly understood. Introduction of a W187A mutation into the ED abolishes dimer formation; however, strand–strand interactions between mutant NS1 ED monomers have been observed in two previous crystal forms. A new condition for crystallization of this protein [0.1 M Bis-Tris pH 6.0, 0.2 M NaCl, 22%(w/v) PEG 3350, 20 mM xylitol] was discovered using the hanging-drop vapour-diffusion method. Diffraction data extending to 1.8 Å resolution were collected from a crystal grown in the presence of 40 mM thieno[2,3-b]pyridin-2-ylmethanol. It was observed that there is conservation of the strand–strand interface in crystals of this monomeric NS1 ED in three different space groups. This observation, coupled with conformational changes in the interface region, suggests a potential role for β-sheet augmentation in NS1 function

  20. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    Science.gov (United States)

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  1. Interactions between the Hepatitis C Virus Nonstructural 2 Protein and Host Adaptor Proteins 1 and 4 Orchestrate Virus Release

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    2018-03-01

    Full Text Available Hepatitis C virus (HCV spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the μ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2 protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.

  2. Structural Basis for dsRNA Recognition by NS1 Protein of Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, A.; Wong, S; Yuan, Y

    2009-01-01

    Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.

  3. HoBi-like virus challenge of pregnant cows that had previously given birth to calves persistently infected with bovine viral diarrhea virus

    Science.gov (United States)

    The ability of bovine viral diarrhea viruses (BVDV) to establish persistent infection (PI) following fetal infection is central to keeping these viruses circulating. Similarly, an emerging species of pestivirus, HoBi-like viruses, is also able to establish PIs. Dams that are not PI, but carrying PI ...

  4. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication

    Science.gov (United States)

    Jiang, Wei; Sheng, Chunjie; Gu, Xiuling; Liu, Dong; Yao, Chen; Gao, Shijuan; Chen, Shuai; Huang, Yinghui; Huang, Wenlin; Fang, Min

    2016-01-01

    Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets. PMID:27869202

  5. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors

    Directory of Open Access Journals (Sweden)

    Mirza MU

    2015-03-01

    Full Text Available Muhammad Usman Mirza,1 Noor-Ul-Huda Ghori,2 Nazia Ikram,3 Abdur Rehman Adil,4 Sadia Manzoor3 1Centre for Research in Molecular Medicine (CRiMM, The University of Lahore, Lahore, 2Atta-ur-Rehman School of Applied Biosciences (ASAB, National University of Science and Technology, Islamabad, 3Institute of Molecular Biology and Biotechnology (IMBB, The University of Lahore, Lahore, Pakistan; 4Centre for Excellence in Molecular Biology (CEMB, The University of Punjab, Lahore, Pakistan Abstract: Hepatitis C virus (HCV is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties. Keywords: hepatitis C, NS5B inhibitors, molecular docking, Auto

  6. Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase

    Science.gov (United States)

    Furuta, Atsushi; Tsubuki, Masayoshi; Endoh, Miduki; Miyamoto, Tatsuki; Tanaka, Junichi; Abdus Salam, Kazi; Akimitsu, Nobuyoshi; Tani, Hidenori; Yamashita, Atsuya; Moriishi, Kohji; Nakakoshi, Masamichi; Sekiguchi, Yuji; Tsuneda, Satoshi; Noda, Naohiro

    2015-01-01

    Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure–activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition. PMID:26262613

  7. Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase

    Directory of Open Access Journals (Sweden)

    Atsushi Furuta

    2015-08-01

    Full Text Available Hepatitis C virus (HCV is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3 helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure–activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.

  8. Bovine virus diarrhea virus in free-living deer from Denmark.

    Science.gov (United States)

    Nielsen, S S; Roensholt, L; Bitsch, V

    2000-07-01

    Free-living deer are suggested as a possible source of infection of cattle with bovine virus diarrhea (BVD) virus. To examine this hypothesis blood samples from 476 free-living deer were collected during two different periods and tested for BVD virus and antibody in Denmark. In 1995-96, 207 animals were tested. These included 149 roe deer (Capreolus capreolus), 29 fallow deer (Dama dama), 20 red deer (Cervus elaphus) and one sika deer (Cervus sika). For the remaining eight animals no species information was available. In 1998-99, 269 animals were tested including 212 roe deer and 57 red deer. The animals were selected from areas with a relatively high prevalence of cattle herds with a BVD persistent infection status in 1997 and 1998. All 207 samples from 1995-96 were found antibody-negative except two samples from red deer. Only 158 of the 207 samples were tested for virus and were all found negative. Of the 269 samples from 1998-99 all but one were antibody negative. The positive sample was from a red deer. All samples were virus-negative. It appears that BVD infection does not occur in roe deer in Denmark. The presence of antibody in a few red deer from various districts in Jutland probably results from cattle to deer transmission, rather than spread among deer. Hence, the possibility of free-living deer as a source of infection for cattle in Denmark seems to be remote.

  9. Type-specific antibody for hepatitis C virus detected by use of NS-4 peptide and hepatitis C virus genome in Korea.

    Science.gov (United States)

    Son, Han-Chul; Yoon, Man-Soo; Kim, Yoon-Jin; Kim, In-Hoo; Kim, You-Sun

    2002-05-01

    Hepatitis C virus, often possessing mutant genes, have the features that allow them to avoid host's immunologic response and further cause chronic progressive infections. Therefore, it is essential for those patients infected of HCV to receive improved diagnostic procedures. And it is equally important to investigate the course of disease progression and the response to treatment. The goal of this study is to review the efficacy of the third generation immunoblot assay and standardized RT-PCR-Hybridization assay, and in contrast with genotype identification(genotyping), the followings were briefly evaluated for the efficacy of serotype identification(serotyping) by using NS-4 peptide in the observation of the course and in the treatment of patients with HCV hepatitis. 1. The true positive rate in 132 cases showing repeated positives with 3rd generation anti-HCV EIA are 81.8% by immunoblot assay and 75.8% by RT-PCR-Hybridization assay. 2. The 79.5% concordance of immunoblot and RT-PCR-Hybridization assay is shown. The negative results from immunoblot assay are also negative in RT-PCR-Hybridization assay. 3. Among 95 patients with HCV hepatitis patients in 95 cases, the serotype 1, 2 and 4 were 53.2%, 45.2%, and 1.6%, respectively. In 29 cases, the genotypes of patients with HCV showed 1b in 15 cases, 2a/2c in 8 cases, 2b in 2 cases and mixed type in 4 cases. 4. In comparison between serotype and genotype, they showed 75.9% concordance. But serotyping showed higher efficacy in experimental procedures and sampling conditions, with more convenience. Based on above evaluation and reference review, it is reasonable to check with 3rd generation immunoblot assay the samples producing repeated positive results from anti-HCV EIA. For more definitive diagnosis of HCV infection, it is appropriate to confirm and double-check with standardized RT-PCR-Hybridization assay. Lastly, it is strongly suggested that for observation of progression and for choice of interferon treatment

  10. Analysis of hepatitis C virus core/NS5A protein co-localization using novel cell culture systems expressing core-NS2 and NS5A of genotypes 1-7

    DEFF Research Database (Denmark)

    Galli, Andrea; Scheel, Troels K H; Prentoe, Jannick C

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen infecting hepatocytes. With the advent of infectious cell culture systems, the HCV particle assembly and release processes are finally being uncovered. The HCV core and NS5A proteins co-localize on cytoplasmic lipid droplets (c......LDs) or on the endoplasmic reticulum (ER) at different stages of particle assembly. Current knowledge on assembly and release is primarily based on studies in genotype 2a cell culture systems; however, given the high genetic heterogeneity of HCV, variations might exist among genotypes. Here, we developed novel HCV strain...... JFH1-based recombinants expressing core-NS2 and NS5A from genotypes 1-7, and analysed core and NS5A co-localization in infected cells. Huh7.5 cells were transfected with RNA of core-NS2/NS5A recombinants and putative adaptive mutations were analysed by reverse genetics. Adapted core-NS2/NS5A...

  11. Case Report: Emergence of bovine viral diarrhea virus persistently infected calves in a closed herd

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) continues to have significant economic impact on the cattle industry worldwide. The virus is primarily maintained in the cattle population due to persistently infected animals. Herd surveillance along with good vaccination programs and biosecurity practices are the...

  12. Bovine viral diarrhea virus (BVDV) genetic diversity in Spain: A review

    International Nuclear Information System (INIS)

    Diéguez, F.J.; Cerviño, M.; Yus, E.

    2017-01-01

    Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  13. Bovine viral diarrhea virus (BVDV) genetic diversity in Spain: A review

    Energy Technology Data Exchange (ETDEWEB)

    Diéguez, F.J.; Cerviño, M.; Yus, E.

    2017-07-01

    Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  14. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    Science.gov (United States)

    Dussart, Philippe; Petit, Laure; Labeau, Bhety; Bremand, Laetitia; Leduc, Alexandre; Moua, David; Matheus, Séverine; Baril, Laurence

    2008-08-20

    We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV) infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France), and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA), pan-E Dengue Early ELISA (Panbio - Brisbane, Australia)-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad). We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222) was 87.4% (95% confidence interval: 82.3% to 91.5%); that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4%) after 15 minutes and 82.4% (95% CI: 76.8% to 87.2%) after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%). The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8%) and a specificity of 97.9% (95% CI: 88.9% to 99.9%). Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  15. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    Directory of Open Access Journals (Sweden)

    Philippe Dussart

    Full Text Available BACKGROUND: We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France, and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA, pan-E Dengue Early ELISA (Panbio - Brisbane, Australia-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad. METHODS: We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. RESULTS: The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222 was 87.4% (95% confidence interval: 82.3% to 91.5%; that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4% after 15 minutes and 82.4% (95% CI: 76.8% to 87.2% after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%. The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8% and a specificity of 97.9% (95% CI: 88.9% to 99.9%. CONCLUSION: Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  16. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens

    2011-01-01

    memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...

  17. Addition of ribavirin to daclatasvir plus asunaprevir for chronic hepatitis C 1b patients with baseline NS5A resistance-associated variants improved response.

    Science.gov (United States)

    Hong, Chun-Ming; Liu, Chun-Jen; Yeh, Shiou-Hwei; Chen, Pei-Jer

    2017-04-01

    Daclatasvir is a nonstructural protein 5A inhibitor with potent activity against hepatitis C virus genotypes 1-6 in vitro, and asunaprevir is a nonstructural protein 3 protease inhibitor with activity against genotypes 1, 4, 5, and 6. Despite a 90% sustained virologic response (SVR) rate, the SVR rate in patients with baseline NS5A-L31/Y93H polymorphisms decreased to around 40%. Therefore, an alternative regimen under the consideration of cost-effectiveness would be important. Whether the addition of ribavirin could improve the SVR rate among this group of patients remains unknown and hence our case series was reported. For six adult chronic hepatitis C 1b patients with a pre-existing NS5A-Y93H (>20%) polymorphism, we added ribavirin (800 mg/d) to daclatasvir/asunaprevir for 24 weeks and followed through 12-weeks post-treatment. Four of these patients received interferon/ribavirin treatment before but relapsed, while the other two were naïve cases. Two of them had liver cirrhosis and one had hepatocellular carcinoma postcurative therapy. The primary efficacy end-point was undetectable hepatitis C virus RNA (hepatitis C virus RNA level ofhepatitis C patients with NS5A-Y93H polymorphism, the addition of ribavirin to daclatasvir/asunaprevir may increase the SVR12 rate with minimal side effects, and thus deserves more comprehensive trials in resource-limited areas. Copyright © 2016. Published by Elsevier B.V.

  18. Short communication. Genotyping and phylogenetic analysis of bovine viral diarrhea virus (BVDV isolates in Kosovo

    Directory of Open Access Journals (Sweden)

    Izedin Goga

    2014-03-01

    Full Text Available Three serum samples positive in Antigen ELISA BVDV have been tested to characterise genetic diversity of bovine viral diarrhea virus (BVDV in Kosovo. Samples were obtained in 2011 from heifers and were amplified by reverse transcription-polymerase chain reaction, sequenced and analysed by computer-assisted phylogenetic analysis. Amplified products and nucleotide sequence showed that all 3 isolates belonged to BVDV 1 genotype and 1b sub genotype. These results enrich the extant knowledge of BVDV and represent the first documented data about Kosovo BVDV isolates.

  19. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis.

    Science.gov (United States)

    Jung, Kwonil; Saif, Linda J

    2015-05-01

    Porcine epidemic diarrhea virus (PEDV), a member of the genera Alphacoronavirus in the family Coronaviridae, causes acute diarrhea/vomiting, dehydration and high mortality in seronegative neonatal piglets. For the last three decades, PEDV infection has resulted in significant economic losses in the European and Asian pig industries, but in 2013-2014 the disease was also reported in the US, Canada and Mexico. The PED epidemic in the US, from April 2013 to the present, has led to the loss of more than 10% of the US pig population. The disappearance and re-emergence of epidemic PED indicates that the virus is able to escape from current vaccination protocols, biosecurity and control systems. Endemic PED is a significant problem, which is exacerbated by the emergence (or potential importation) of multiple PEDV variants. Epidemic PEDV strains spread rapidly and cause a high number of pig deaths. These strains are highly enteropathogenic and acutely infect villous epithelial cells of the entire small and large intestines although the jejunum and ileum are the primary sites. PEDV infections cause acute, severe atrophic enteritis accompanied by viremia that leads to profound diarrhea and vomiting, followed by extensive dehydration, which is the major cause of death in nursing piglets. A comprehensive understanding of the pathogenic characteristics of epidemic or endemic PEDV strains is needed to prevent and control the disease in affected regions and to develop an effective vaccine. This review focuses on the etiology, epidemiology, disease mechanisms and pathogenesis as well as immunoprophylaxis against PEDV infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Detergent-resistant membrane association of NS2 and E2 during hepatitis C virus replication.

    Science.gov (United States)

    Shanmugam, Saravanabalaji; Saravanabalaji, Dhanaranjani; Yi, MinKyung

    2015-04-01

    Previously, we demonstrated that the efficiency of hepatitis C virus (HCV) E2-p7 processing regulates p7-dependent NS2 localization to putative virus assembly sites near lipid droplets (LD). In this study, we have employed subcellular fractionations and membrane flotation assays to demonstrate that NS2 associates with detergent-resistant membranes (DRM) in a p7-dependent manner. However, p7 likely plays an indirect role in this process, since only the background level of p7 was detectable in the DRM fractions. Our data also suggest that the p7-NS2 precursor is not involved in NS2 recruitment to the DRM, despite its apparent targeting to this location. Deletion of NS2 specifically inhibited E2 localization to the DRM, indicating that NS2 regulates this process. Treatment of cells with methyl-β-cyclodextrin (MβCD) significantly reduced the DRM association of Core, NS2, and E2 and reduced infectious HCV production. Since disruption of the DRM localization of NS2 and E2, either due to p7 and NS2 defects, respectively, or by MβCD treatment, inhibited infectious HCV production, these proteins' associations with the DRM likely play an important role during HCV assembly. Interestingly, we detected the HCV replication-dependent accumulation of ApoE in the DRM fractions. Taking into consideration the facts that ApoE was shown to be a major determinant for infectious HCV particle production at the postenvelopment step and that the HCV Core protein strongly associates with the DRM, recruitment of E2 and ApoE to the DRM may allow the efficient coordination of Core particle envelopment and postenvelopment events at the DRM to generate infectious HCV production. The biochemical nature of HCV assembly sites is currently unknown. In this study, we investigated the correlation between NS2 and E2 localization to the detergent-resistant membranes (DRM) and HCV particle assembly. We determined that although NS2's DRM localization is dependent on p7, p7 was not targeted to these

  1. Characterization of thymus-associated lymphoid depletion in bovine calves acutely or persistently infected with bovine viral diarrhea virus 1, bovine viral diarrhea 2 or HoBi-like pestivirus

    Science.gov (United States)

    Viruses from recognized pestivirus species bovine viral diarrhea 1 (BVDV-1) and BVDV-2 and the proposed pestivirus species HoBi-like virus infect primarily cattle. Exposure of cattle to these viruses can lead to either acute or persistent infections depending on the timing and status of the animal ...

  2. Comparison of Detection of Bovine Virus Diarrhea Virus Antigen in Various Types of Tissue and Fluid Samples Collected from Persistently Infected Cattle

    Science.gov (United States)

    Bovine viral diarrhea viruses are economically important pathogens of cattle. Most new infections are acquired from animals persistently infected with the virus. Surveillance programs rely on skin biopsies for detection of persistently infected cattle. The purpose of this study was to compare ant...

  3. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    Science.gov (United States)

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  4. Potential of plant alkaloids as dengue ns3 protease inhibitors: Molecular docking and simulation approach

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir ul Qamar

    2014-08-01

    Full Text Available Dengue infection has become a worldwide health problem and infection rate is increasing each year. Alkaloids are important phytochemicals of medicinal plant and can be used as vaccine candidates for viruses. Therefore, present study was designed to find potential alkaloids inhibitors against the Dengue virus NS2B/NS3 protease which can inhibit the viral replication inside the host cell. Through molecular docking it was investigated that most of the alkaloids bound deeply in the binding pocket of Dengue virus NS2B/NS3 protease and had potential interactions with catalytic triad. Five alkaloids (6’-desmethylthalifaboramin; 3,5-dihydroxythalifaboramine; Betanin; Reserpic acid and Tubulosine successfully blocked the catalytic triad of NS2B/NS3 protease and these alkaloids can serve as a potential drug candidate to stop viral replication. It can be concluded from this study that these alkaloids could serve as important inhibitors to inhibit the replication of DENV and need further in-vitro investigations to confirm their efficacy and drug ability.

  5. Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence

    Directory of Open Access Journals (Sweden)

    Ping Jihui

    2011-01-01

    Full Text Available Abstract Background To understand the evolutionary steps required for a virus to become virulent in a new host, a human influenza A virus (IAV, A/Hong Kong/1/68(H3N2 (HK-wt, was adapted to increased virulence in the mouse. Among eleven mutations selected in the NS1 gene, two mutations F103L and M106I had been previously detected in the highly virulent human H5N1 isolate, A/HK/156/97, suggesting a role for these mutations in virulence in mice and humans. Results To determine the selective advantage of these mutations, reverse genetics was used to rescue viruses containing each of the NS1 mouse adapted mutations into viruses possessing the HK-wt NS1 gene on the A/PR/8/34 genetic backbone. Both F103L and M106I NS1 mutations significantly enhanced growth in vitro (mouse and canine cells and in vivo (BALB/c mouse lungs as well as enhanced virulence in the mouse. Only the M106I NS1 mutation enhanced growth in human cells. Furthermore, these NS1 mutations enhanced early viral protein synthesis in MDCK cells and showed an increased ability to replicate in mouse interferon β (IFN-β pre-treated mouse cells relative to rPR8-HK-NS-wt NS1. The double mutant, rPR8-HK-NS-F103L + M106I, demonstrated growth attenuation late in infection due to increased IFN-β induction in mouse cells. We then generated a rPR8 virus possessing the A/HK/156/97 NS gene that possesses 103L + 106I, and then rescued the L103F + I106M mutant. The 103L + 106I mutations increased virulence by >10 fold in BALB/c mice. We also inserted the avian A/Ck/Beijing/1/95 NS1 gene (the source lineage of the A/HK/156/97 NS1 gene that possesses 103L + 106I, onto the A/WSN/33 backbone and then generated the L103F + I106M mutant. None of the H5N1 and H9N2 NS containing viruses resulted in increased IFN-β induction. The rWSN-A/Ck/Beijing/1/95-NS1 gene possessing 103L and 106I demonstrated 100 fold enhanced growth and >10 fold enhanced virulence that was associated with increased tropism for lung

  6. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis?

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2016-08-01

    Full Text Available Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1 has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.

  7. MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease.

    Science.gov (United States)

    Baril, Martin; Racine, Marie-Eve; Penin, François; Lamarre, Daniel

    2009-02-01

    The mitochondrial antiviral signaling (MAVS) protein plays a central role in innate antiviral immunity. Upon recognition of a virus, intracellular receptors of the RIG-I-like helicase family interact with MAVS to trigger a signaling cascade. In this study, we investigate the requirement of the MAVS structure for enabling its signaling by structure-function analyses and resonance energy transfer approaches in live cells. We now report the essential role of the MAVS oligomer in signal transduction and map the transmembrane domain as the main determinant of dimerization. A combination of mutagenesis and computational methods identified a cluster of residues making favorable van der Waals interactions at the MAVS dimer interface. We also correlated the activation of IRF3 and NF-kappaB with MAVS oligomerization rather than its mitochondrial localization. Finally, we demonstrated that MAVS oligomerization is disrupted upon expression of HCV NS3/4A protease, suggesting a mechanism for the loss of antiviral signaling. Altogether, our data suggest that the MAVS oligomer is essential in the formation of a multiprotein membrane-associated signaling complex and enables downstream activation of IRF3 and NF-kappaB in antiviral innate immunity.

  8. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    Science.gov (United States)

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  9. Mosquito densonucleosis virus non-structural protein NS2 is necessary for a productive infection

    International Nuclear Information System (INIS)

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee; Afanasiev, Boris; Kittayapong, Pattamaporn; Carlson, Jonathan; Corsini, Joe

    2008-01-01

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins. Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny

  10. Naturally occurring mutations associated with resistance to HCV NS5B polymerase and NS3 protease inhibitors in treatment-naïve patients with chronic hepatitis C.

    Science.gov (United States)

    Costantino, Angela; Spada, Enea; Equestre, Michele; Bruni, Roberto; Tritarelli, Elena; Coppola, Nicola; Sagnelli, Caterina; Sagnelli, Evangelista; Ciccaglione, Anna Rita

    2015-11-14

    The detection of baseline resistance mutations to new direct-acting antivirals (DAAs) in HCV chronically infected treatment-naïve patients could be important for their management and outcome prevision. In this study, we investigated the presence of mutations, which have been previously reported to be associated with resistance to DAAs in HCV polymerase (NS5B) and HCV protease (NS3) regions, in sera of treatment-naïve patients. HCV RNA from 152 naïve patients (84 % Italian and 16 % immigrants from various countries) infected with different HCV genotypes (21,1a; 21, 1b; 2, 2a; 60, 2c; 22, 3a; 25, 4d and 1, 4k) was evaluated for sequence analysis. Amplification and sequencing of fragments in the NS5B (nt 8256-8640) and NS3 (nt 3420-3960) regions of HCV genome were carried out for 152 and 28 patients, respectively. The polymorphism C316N/H in NS5B region, associated with resistance to sofosbuvir, was detected in 9 of the 21 (43 %) analysed sequences from genotype 1b-infected patients. Naturally occurring mutations V36L, and M175L in the NS3 protease region were observed in 100 % of patients infected with subtype 2c and 4. A relevant proportion of treatment naïve genotype 1b infected patients evaluated in this study harboured N316 polymorphism and might poorly respond to sofosbuvir treatment. As sofosbuvir has been approved for treatment of HCV chronic infection in USA and Europe including Italy, pre-treatment testing for N316 polymorphism on genotype 1b naïve patients should be considered for this drug.

  11. Feed intake and weight changes in Bos indicus-Bos taurus crossbred steers following Bovine Viral Diarrhea Virus Type 1b challenge under production conditions

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366) that were challenge...

  12. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication.

    Directory of Open Access Journals (Sweden)

    Yongqian Zhao

    2015-03-01

    Full Text Available Flavivirus RNA replication occurs within a replication complex (RC that assembles on ER membranes and comprises both non-structural (NS viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase and C-terminal RNA-dependent-RNA polymerase (RdRp domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3 at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV, the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5.

  13. Diarrhea

    OpenAIRE

    Warren, Ralph E.

    1983-01-01

    The four major mechanisms of diarrhea are osmotic forces, secretory forces, exudation from a disrupted intestinal mucosa, and disturbed intestinal motility. In many illnesses, more than one mechanism produces diarrhea. The rotaviruses and the Norwalk viruses have recently been recognized as common causes of viral gastroenteritis. Also, the major cause of antibiotic-associated colitis is now known to be an overgrowth of Clostridium difficile. Campylobacter has also been identified as a common ...

  14. Preclinical and Clinical Resistance Profile of EDP-239, a Novel Hepatitis C Virus NS5A Inhibitor.

    Science.gov (United States)

    Owens, Christopher M; Brasher, Bradley B; Polemeropoulos, Alex; Rhodin, Michael H J; McAllister, Nicole; Wong, Kelly A; Jones, Christopher T; Jiang, Lijuan; Lin, Kai; Or, Yat Sun

    2016-10-01

    EDP-239, a potent and selective hepatitis C virus (HCV) nonstructural protein 5A (NS5A) inhibitor developed for the treatment of HCV infection, has been investigated in vitro and in vivo This study sought to characterize genotypic changes in the HCV NS5A sequence of genotype 1 (GT1) replicons and to compare those changes to GT1 viral RNA mutations isolated from clinical trial patients. Resistance selection experiments in vitro using a subgenomic replicon identified resistance-associated mutations (RAMs) at GT1a NS5A amino acid positions 24, 28, 30, 31, and 93 that confer various degrees of resistance to EDP-239. Key RAMs were similarly identified in GT1b NS5A at amino acid positions 31 and 93. Mutations F36L in GT1a and A92V in GT1b do not confer resistance to EDP-239 individually but were found to enhance the resistance of GT1a K24R and GT1b Y93H. RAMs were identified in GT1 patients at baseline or after dosing with EDP-239 that were similar to those detected in vitro Baseline RAMs identified at NS5A position 93 in GT1, or positions 28 or 30 in GT1a only, correlated with a reduced treatment response. RAMs at additional positions were also detected and may have contributed to reduced EDP-239 efficacy. The most common GT1a and GT1b RAMs found to persist up to weeks 12, 24, or 48 were those at NS5A positions 28, 30, 31, 58 (GT1a only), and 93. Those RAMs persisting at the highest frequencies up to weeks 24 or 48 were L31M and Q30H/R for GT1a and L31M and Y93H for GT1b. (This study has been registered at ClinicalTrials.gov under identifier NCT01856426.). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Bovine viral diarrhea virus (BVDV genetic diversity in Spain: A review

    Directory of Open Access Journals (Sweden)

    Francisco J. Diéguez

    2017-07-01

    Full Text Available Bovine viral diarrhea virus (BVDV, a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  16. Efficient cell culture system for hepatitis C virus genotype 2B

    DEFF Research Database (Denmark)

    2014-01-01

    The present inventors developed hepatitis C virus 2b/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and the complete NS2 were replaced by the corresponding genes of the genotype 2b reference strain J8. Sequence analysis of recovered 2b/2a recombinants from 2...

  17. A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein.

    Science.gov (United States)

    Dias, Ana Carolina M S; Gomes-Filho, Sérgio L R; Silva, Mízia M S; Dutra, Rosa F

    2013-06-15

    An immunosensor for the non-structural protein 1 (NS1) of the dengue virus based on carbon nanotube-screen printed electrodes (CNT-SPE) was successfully developed. A homogeneous mixture containing carboxylated carbon nanotubes was dispersed in carbon ink to prepare a screen printed working electrode. Anti-NS1 antibodies were covalently linked to CNT-SPE by an ethylenediamine film strategy. Amperometrical responses were generated at -0.5 V vs. Ag/AgCl by hydrogen peroxide reaction with peroxidase (HRP) conjugated to the anti-NS1. An excellent detection limit (in the order of 12 ng mL(-1)) and a sensitivity of 85.59 μA mM(-1)cm(-2) were achieved permitting dengue diagnostic according to the clinical range required. The matrix effect, as well as the performance of the assays, was successfully evaluated using spiked blood serum sample obtaining excellent recovery values in the results. Carbon nanotubes incorporated to the carbon ink improved the reproducibility and sensitivity of the CNT-SPE immunosensor. This point-of-care approach represents a great potential value for use in epidemic situations and can facilitate the early screening of patients in acute phase of dengue virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Structure-Based Mutational Analysis of the Hepatitis C Virus NS3 Helicase

    Science.gov (United States)

    Tai, Chun-Ling; Pan, Wen-Ching; Liaw, Shwu-Huey; Yang, Ueng-Cheng; Hwang, Lih-Hwa; Chen, Ding-Shinn

    2001-01-01

    The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3. PMID:11483774

  19. Studies on genetic diversity of bovine viral diarrhea viruses in Danish cattle herds

    DEFF Research Database (Denmark)

    Nagy, Abdou; Fahnøe, Ulrik; Rasmussen, Thomas Bruun

    2014-01-01

    Scandinavian countries have successfully pursued bovine viral diarrhea virus (BVDV) eradication without the use of vaccines. In Denmark, control and eradication of BVDV were achieved during the last two decades, but occasionally new BVDV infections are detected in some Danish cattle herds. The aim...

  20. Virtual Screening for Potential Inhibitors of NS3 Protein of Zika Virus

    Directory of Open Access Journals (Sweden)

    Maheswata Sahoo

    2016-09-01

    Full Text Available Zika virus (ZIKV is a mosquito borne pathogen, belongs to Flaviviridae family having a positive-sense single-stranded RNA genome, currently known for causing large epidemics in Brazil. Its infection can cause microcephaly, a serious birth defect during pregnancy. The recent outbreak of ZIKV in February 2016 in Brazil realized it as a major health risk, demands an enhanced surveillance and a need to develop novel drugs against ZIKV. Amodiaquine, prochlorperazine, quinacrine, and berberine are few promising drugs approved by Food and Drug Administration against dengue virus which also belong to Flaviviridae family. In this study, we performed molecular docking analysis of these drugs against nonstructural 3 (NS3 protein of ZIKV. The protease activity of NS3 is necessary for viral replication and its prohibition could be considered as a strategy for treatment of ZIKV infection. Amongst these four drugs, berberine has shown highest binding affinity of –5.8 kcal/mol and it is binding around the active site region of the receptor. Based on the properties of berberine, more similar compounds were retrieved from ZINC database and a structure-based virtual screening was carried out by AutoDock Vina in PyRx 0.8. Best 10 novel drug-like compounds were identified and amongst them ZINC53047591 (2-(benzylsulfanyl-3-cyclohexyl-3H-spiro[benzo[h]quinazoline-5,1'-cyclopentan]-4(6H-one was found to interact with NS3 protein with binding energy of –7.1 kcal/mol and formed H-bonds with Ser135 and Asn152 amino acid residues. Observations made in this study may extend an assuring platform for developing anti-viral competitive inhibitors against ZIKV infection.

  1. Prevalence of naturally occurring NS5A resistance-associated substitutions in patients infected with hepatitis C virus subtype 1a, 1b, and 3a, co-infected or not with HIV in Brazil.

    Science.gov (United States)

    Malta, Fernanda; Gaspareto, Karine Vieira; Lisboa-Neto, Gaspar; Carrilho, Flair José; Mendes-Correa, Maria Cássia; Pinho, João Renato Rebello

    2017-11-13

    Non-structural 5A protein (NS5A) resistance-associated substitutions (RASs) have been identified in patients infected with hepatitis C virus (HCV), even prior to exposure to direct-acting antiviral agents (DAAs). Selection for these variants occurs rapidly during treatment and, in some cases, leads to antiviral treatment failure. DAAs are currently the standard of care for hepatitis C treatment in many parts of the world. Nevertheless, in Brazil, the prevalence of pre-existing NS5A RASs is largely unknown. In this study, we evaluated the frequency of naturally occurring NS5A RASs in Brazilian patients infected with HCV as either a monoinfection or coinfection with human immunodeficiency virus (HIV). Direct Sanger sequencing of the NS5A region was performed in 257 DAA-naïve patients chronically infected with HCV (156 monoinfected with HCV and 101 coinfected with HIV/HCV). The frequencies of specific RASs in monoinfected patients were 14.6% for HCV GT-1a (M28 V and Q30H/R), 6.0% for GT-1b (L31F/V and Y93H), and 22.6% for GT-3a (A30K and Y93H). For HIV/HCV-coinfected patients, the frequencies of RAS were 3.9% for GT-1a (M28 T and Q30H/R), and 11.1% for GT-1b (Y93H); no RASs were found in GT-3a sequences. Substitutions that may confer resistance to NS5A inhibitors exist at baseline in Brazilian DAA-naïve patients infected with HCV GT-1a, -1b, and -3a. Standardization of RAS definitions is needed to improve resistance analyses and to facilitate comparisons of substitutions reported across studies worldwide. Therapeutic strategies should be optimized to efficiently prevent DAA treatment failure due to selection for RASs, especially in difficult-to-cure patients.

  2. Pathological studies on bovine viral diarrhea

    International Nuclear Information System (INIS)

    Elkady, A.A.M.A.

    2002-01-01

    Bovine viral diarrhea virus (BVDV) is classified as an RNA virus in the family flavin viride and is a member of the genus pest virus (Collet et al 1989). BVDV has a worldwide distribution and infections in cattle populations (Kahrs et al 1970). It was recognized since 50 years ago, the initial description of an acute enteric disease of cattle in North America, which was characterized by outbreaks of diarrhea and erosive of digestive tract (Olafsonp et al 1946). The disease and causative agent were named bovine viral diarrhea (B V D ) and (B V DV), respectively. This virus was subsequently associated with a sporadically occurring and highly fatal enteric disease that was termed mucosal disease (M D), (Ramsey and Chivers 1953). The initial isolate of BVDV did not produce cytopathic effect in cell culture, whereas an isolate from MD did produce cytopathic effects (Lee et al 1957). In vitro characteristic of non cytopathic or sytopathic effects of BVDV is referred to as the biotype of the virus. It has now been established that MD occurs only when xattle that are born immuno tolerant to and persistently infected with a noncyropathic BVDV become super infected with a cytopathic BVDV. The knowledge of the molecular biology. Pathogenesis and epidemiology of BVDV has greatly evolved in the past 10-15 years and has provided a better understanding of this complex infectious agent. Infection with BVDV can result in a wide spectrum of diseases ranging from subclinical infection s to a highly fatal from known as mucosal disease (ND). The clinical response to infection depends on multiple interactive factors. Host factors that influence the clinical outcome of BVDV infection include whether the host is immunocompetent or immuno tolerant to BVDV, pregnancy status, gestational age of the fetus, immune status (passively derived or actively derived from previous infection or vaccination) and concurrent level of environmental stress

  3. Naturally occurring resistance mutations within the core and NS5B regions in hepatitis C genotypes, particularly genotype 5a, in South Africa.

    Science.gov (United States)

    Prabdial-Sing, N; Blackard, J T; Puren, A J; Mahomed, A; Abuelhassan, W; Mahlangu, J; Vermeulen, M; Bowyer, S M

    2016-03-01

    Approximately 1 million South Africans are infected with Hepatitis C virus (HCV). The standard of care (SOC) in South Africa is combination therapy (pegylated interferon and ribavirin). HCV genotypes and/or mutations in the core/non-structural regions have been associated with response to therapy and/or disease progression. This study examines mutations in the core (29-280 amino acids, including ∼ 90 E1 amino acids) and NS5B (241-306 amino acids) regions on pre-treatment isolates from patients attending Johannesburg hospitals or asymptomatic South African blood donors. Diversity within known CD4+ and CD8+ T-cell epitopes was also explored. Samples grouped into subtypes 1a(N = 10) 1b(N = 12), 3a(N = 5), 4a(N = 3) and 5a(N = 61). Two mutations, associated with interferon resistance-R70Q and T110N-were present in 29 genotype 5a core sequences. No resistance mutation to NS5B nucleotide inhibitors, sofosbuvir was found. Six putative CD8+ and one CD4+ T-cell epitope sequence in the core region showed binding scores of <300 IC50nM to HLA alleles frequently observed in the South African population. No known CD8+ and CD4+ T-cell epitopes were mapped in the NS5B region. The analysis begs the question whether those infected with genotype 5a will benefit better on interferon-free combination therapies. This study provides new insight into one of the lesser studied HCV genotypes and compares the diversity seen in a large pre-treatment cohort with other subtypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Generation of the Bovine Viral Diarrhea Virus E0 Protein in Transgenic Astragalus and Its Immunogenicity in Sika Deer

    OpenAIRE

    Gao, Yugang; Zhao, Xueliang; Zang, Pu; Liu, Qun; Wei, Gongqing; Zhang, Lianxue

    2014-01-01

    The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in tr...

  5. NS5A resistance-associated substitutions in patients with genotype 1 hepatitis C virus: Prevalence and effect on treatment outcome.

    Science.gov (United States)

    Zeuzem, Stefan; Mizokami, Masashi; Pianko, Stephen; Mangia, Alessandra; Han, Kwang-Hyub; Martin, Ross; Svarovskaia, Evguenia; Dvory-Sobol, Hadas; Doehle, Brian; Hedskog, Charlotte; Yun, Chohee; Brainard, Diana M; Knox, Steven; McHutchison, John G; Miller, Michael D; Mo, Hongmei; Chuang, Wan-Long; Jacobson, Ira; Dore, Gregory J; Sulkowski, Mark

    2017-05-01

    The efficacy of NS5A inhibitors for the treatment of patients chronically infected with hepatitis C virus (HCV) can be affected by the presence of NS5A resistance-associated substitutions (RASs). We analyzed data from 35 phase I, II, and III studies in 22 countries to determine the pretreatment prevalence of various NS5A RASs, and their effect on outcomes of treatment with ledipasvir-sofosbuvir in patients with genotype 1 HCV. NS5A gene deep sequencing analysis was performed on samples from 5397 patients in Gilead clinical trials. The effect of baseline RASs on sustained virologic response (SVR) rates was assessed in the 1765 patients treated with regimens containing ledipasvir-sofosbuvir. Using a 15% cut-off, pretreatment NS5A and ledipasvir-specific RASs were detected in 13% and 8% of genotype 1a patients, respectively, and in 18% and 16% of patients with genotype 1b. Among genotype 1a treatment-naïve patients, SVR rates were 91% (42/46) vs. 99% (539/546) for those with and without ledipasvir-specific RASs, respectively. Among treatment-experienced genotype 1a patients, SVR rates were 76% (22/29) vs. 97% (409/420) for those with and without ledipasvir-specific RASs, respectively. Among treatment-naïve genotype 1b patients, SVR rates were 99% for both those with and without ledipasvir-specific RASs (71/72 vs. 331/334), and among treatment-experienced genotype 1b patients, SVR rates were 89% (41/46) vs. 98% (267/272) for those with and without ledipasvir-specific RASs, respectively. Pretreatment ledipasvir-specific RASs that were present in 8-16% of patients have an impact on treatment outcome in some patient groups, particularly treatment-experienced patients with genotype 1a HCV. The efficacy of treatments using NS5A inhibitors for patients with chronic hepatitis C virus (HCV) infection can be affected by the presence of NS5A resistance-associated substitutions (RASs). We reviewed results from 35 clinical trials where patients with genotype 1 HCV infection

  6. Intestinal Parasitosis in Relation to Anti-Retroviral Therapy, CD4(+) T-cell Count and Diarrhea in HIV Patients.

    Science.gov (United States)

    Khalil, Shehla; Mirdha, Bijay Ranjan; Sinha, Sanjeev; Panda, Ashutosh; Singh, Yogita; Joseph, Anju; Deb, Manorama

    2015-12-01

    Intestinal parasitic infections are one of the major causes of diarrhea in human immunodeficiency virus (HIV) seropositive individuals. Antiretroviral therapy has markedly reduced the incidence of many opportunistic infections, but parasite-related diarrhea still remains frequent and often underestimated especially in developing countries. The present hospital-based study was conducted to determine the spectrum of intestinal parasitosis in adult HIV/AIDS (acquired immunodeficiency syndrome) patients with or without diarrhea with the levels of CD4(+) T-cell counts. A total of 400 individuals were enrolled and were screened for intestinal parasitosis. Of these study population, 200 were HIV seropositives, and the remaining 200 were HIV uninfected individuals with or without diarrhea. Intestinal parasites were identified by using microscopy as well as PCR assay. A total of 130 (32.5%) out of 400 patients were positive for any kinds of intestinal parasites. The cumulative number of parasite positive patients was 152 due to multiple infections. A significant association of Cryptosporidium (P<0.001) was detected among individuals with CD4(+) T-cell counts less than 200 cells/μl.

  7. Prevalence of Hepatitis C Virus Subgenotypes 1a and 1b in Japanese Patients: Ultra-Deep Sequencing Analysis of HCV NS5B Genotype-Specific Region

    Science.gov (United States)

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Miyamura, Tatsuo; Nakatani, Sueli M.; Ono, Suzane Kioko; Takahashi-Nakaguchi, Azusa; Gonoi, Tohru; Yokosuka, Osamu

    2013-01-01

    Background Hepatitis C virus (HCV) subgenotypes 1a and 1b have different impacts on the treatment response to peginterferon plus ribavirin with direct-acting antivirals (DAAs) against patients infected with HCV genotype 1, as the emergence rates of resistance mutations are different between these two subgenotypes. In Japan, almost all of HCV genotype 1 belongs to subgenotype 1b. Methods and Findings To determine HCV subgenotype 1a or 1b in Japanese patients infected with HCV genotype 1, real-time PCR-based method and Sanger method were used for the HCV NS5B region. HCV subgenotypes were determined in 90% by real-time PCR-based method. We also analyzed the specific probe regions for HCV subgenotypes 1a and 1b using ultra-deep sequencing, and uncovered mutations that could not be revealed using direct-sequencing by Sanger method. We estimated the prevalence of HCV subgenotype 1a as 1.2-2.5% of HCV genotype 1 patients in Japan. Conclusions Although real-time PCR-based HCV subgenotyping method seems fair for differentiating HCV subgenotypes 1a and 1b, it may not be sufficient for clinical practice. Ultra-deep sequencing is useful for revealing the resistant strain(s) of HCV before DAA treatment as well as mixed infection with different genotypes or subgenotypes of HCV. PMID:24069214

  8. Evaluation and Comparison of the Pathogenicity and Host Immune Responses Induced by a G2b Taiwan Porcine Epidemic Diarrhea Virus (Strain Pintung 52) and Its Highly Cell-Culture Passaged Strain in Conventional 5-Week-Old Pigs.

    Science.gov (United States)

    Chang, Yen-Chen; Kao, Chi-Fei; Chang, Chia-Yu; Jeng, Chian-Ren; Tsai, Pei-Shiue; Pang, Victor Fei; Chiou, Hue-Ying; Peng, Ju-Yi; Cheng, Ivan-Chen; Chang, Hui-Wen

    2017-05-19

    A genogroup 2b (G2b) porcine epidemic diarrhea virus (PEDV) Taiwan Pintung 52 (PEDVPT) strain was isolated in 2014. The pathogenicity and host antibody responses elicited by low-passage (passage 5; PEDVPT-P5) and high-passage (passage 96; PEDVPT-P96) PEDVPT strains were compared in post-weaning PEDV-seronegative pigs by oral inoculation. PEDVPT-P5-inoculation induced typical diarrhea during 1-9 days post inoculation with fecal viral shedding persisting for 26 days. Compared to PEDVPT-P5, PEDVPT-P96 inoculation induced none-to-mild diarrhea and lower, delayed fecal viral shedding. Although PEDVPT-P96 elicited slightly lower neutralizing antibodies and PEDV-specific immunoglobulin G (IgG) and immunoglobulin A (IgA) titers, a reduction in pathogenicity and viral shedding of the subsequent challenge with PEDVPT-P5 were noted in both PEDVPT-P5- and PEDVPT-P96-inoculated pigs. Alignment and comparison of full-length sequences of PEDVPT-P5 and PEDVPT-P96 revealed 23 nucleotide changes and resultant 19 amino acid substitutions in non-structure proteins 2, 3, 4, 9, 14, 15, spike, open reading frame 3 (ORF3), and membrane proteins with no detectable deletion or insertion. The present study confirmed the pathogenicity of the PEDVPT isolate in conventional post-weaning pigs. Moreover, data regarding viral attenuation and potency of induced antibodies against PEDVPT-P5 identified PEDVPT-P96 as a potential live-attenuated vaccine candidate.

  9. Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state, while the truncated apo protein adopts an open conformation (active state. Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors.

  10. Identification and Biochemical Characterization of Halisulfate 3 and Suvanine as Novel Inhibitors of Hepatitis C Virus NS3 Helicase from a Marine Sponge

    Directory of Open Access Journals (Sweden)

    Atsushi Furuta

    2014-01-01

    Full Text Available Hepatitis C virus (HCV is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3 helicase is a possible target for novel drug development due to its essential role in viral replication. In this study, we identified halisulfate 3 (hal3 and suvanine as novel NS3 helicase inhibitors, with IC50 values of 4 and 3 µM, respectively, from a marine sponge by screening extracts of marine organisms. Both hal3 and suvanine inhibited the ATPase, RNA binding, and serine protease activities of NS3 helicase with IC50 values of 8, 8, and 14 µM, and 7, 3, and 34 µM, respectively. However, the dengue virus (DENV NS3 helicase, which shares a catalytic core (consisting mainly of ATPase and RNA binding sites with HCV NS3 helicase, was not inhibited by hal3 and suvanine, even at concentrations of 100 µM. Therefore, we conclude that hal3 and suvanine specifically inhibit HCV NS3 helicase via an interaction with an allosteric site in NS3 rather than binding to the catalytic core. This led to the inhibition of all NS3 activities, presumably by inducing conformational changes.

  11. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Sujuan Chen

    2017-06-01

    Full Text Available H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128 were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  12. Experimental infection of pregnant goats with bovine viral diarrhea virus (BVDV)1 or 2

    Science.gov (United States)

    Infections with bovine viral diarrhea virus (BVDV) of the genus pestivirus, family Flaviviridae, are not limited to cattle but occur in various artiodactyls. Persistently infected (PI) cattle are the main source of BVDV. Persistent infections also occur in heterologous hosts such as sheep and deer. ...

  13. Vectores recombinantes basados en el virus modificado de Ankara (MVA) com vacunas preventivas y terapeúticas contra la hepatitis C

    OpenAIRE

    Esteban, Mariano; Gómez, Carmen E.; Perdiguero, Beatriz

    2014-01-01

    [ES] Los virus recombinantes de la invención contienen secuencias que se encuentran insertadas en el mismo sitio de inserción del MVA y que permiten la expresión simultáneamente de varios antígenos del VHC, concretamente las proteínas maduras estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B). Con ello se consiguen virus recombinantes estables, que permiten el desencadenamiento de una respuesta inmune contr...

  14. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    Science.gov (United States)

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond

  15. Selection and characterization of specific nanobody against bovine virus diarrhea virus (BVDV E2 protein.

    Directory of Open Access Journals (Sweden)

    Tiansen Li

    Full Text Available Bovine viral diarrhea-mucosal disease (BVD-MD is caused by bovine viral diarrhea virus (BVDV, and results in abortion, stillbirth, and fetal malformation in cows. Here, we constructed the phage display vector pCANTAB 5E-VHH and then transformed it into Escherichia coli TG1-competent cells, to construct an initial anti-BVDV nanobody gene library. We obtained a BVDV-E2 antigen epitope bait protein by prokaryotic expression using the nucleotide sequence of the E2 gene of the BVDV-NADL strain published in GenBank. Phage display was used to screen the anti-BVDV nanobody gene library. We successfully constructed a high quality phage display nanobody library, with an initial library capacity of 4.32×105. After the rescue of helper phage, the titer of the phage display nanobody library was 1.3×1011. The BVDV-E2 protein was then expressed in Escherichia coli (DE3, and a 49.5 kDa band was observed with SDS-PAGE analysis that was consistent with the expected nanobody size. Thus, we were able to isolate one nanobody that exhibits high affinity and specificity against BVDV using phage display techniques. This isolated nanobody was then used in Enzyme Linked Immunosorbent Assay and qRT-PCR, and ELISA analyses of BVDV infection of MDBK cells indicated that the nanobodies exhibited good antiviral effect.

  16. Selection and characterization of specific nanobody against bovine virus diarrhea virus (BVDV) E2 protein.

    Science.gov (United States)

    Li, Tiansen; Huang, Meiling; Xiao, Hongran; Zhang, Guoqi; Ding, Jinhua; Wu, Peng; Zhang, Hui; Sheng, Jinliang; Chen, Chuangfu

    2017-01-01

    Bovine viral diarrhea-mucosal disease (BVD-MD) is caused by bovine viral diarrhea virus (BVDV), and results in abortion, stillbirth, and fetal malformation in cows. Here, we constructed the phage display vector pCANTAB 5E-VHH and then transformed it into Escherichia coli TG1-competent cells, to construct an initial anti-BVDV nanobody gene library. We obtained a BVDV-E2 antigen epitope bait protein by prokaryotic expression using the nucleotide sequence of the E2 gene of the BVDV-NADL strain published in GenBank. Phage display was used to screen the anti-BVDV nanobody gene library. We successfully constructed a high quality phage display nanobody library, with an initial library capacity of 4.32×105. After the rescue of helper phage, the titer of the phage display nanobody library was 1.3×1011. The BVDV-E2 protein was then expressed in Escherichia coli (DE3), and a 49.5 kDa band was observed with SDS-PAGE analysis that was consistent with the expected nanobody size. Thus, we were able to isolate one nanobody that exhibits high affinity and specificity against BVDV using phage display techniques. This isolated nanobody was then used in Enzyme Linked Immunosorbent Assay and qRT-PCR, and ELISA analyses of BVDV infection of MDBK cells indicated that the nanobodies exhibited good antiviral effect.

  17. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    Science.gov (United States)

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Preliminary mapping of non-conserved epitopes on envelope glycoprotein E2 of bovine viral diarrhea virus type 1 and 2

    NARCIS (Netherlands)

    Jelsma, H.; Loeffen, W.L.A.; Beuningen, van A.R.; Rijn, van P.A.

    2013-01-01

    Bovine viral diarrhea virus (BVDV) belongs together with Classical swine fever virus (CSFV) and Border disease virus (BDV) to the genus Pestivirus in the Flaviviridae family. BVDV has been subdivided into two different species, BVDV1 and BVDV2 based on phylogenetic analysis. Subsequent

  19. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  20. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    Science.gov (United States)

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  1. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    Science.gov (United States)

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Differential expression of miRNA-423-5p in serum from cattle challenged with bovine viral diarrhea virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that causes respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. However, microRNA profiles in cattle exposed to BVDV are currently nonexistent and few studies have been reported; therefore,...

  3. Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada

    Science.gov (United States)

    In 2013, porcine epidemic diarrhea virus (PEDV) emerged in the United States as a rapidly spreading epidemic causing dramatic death losses in suckling piglets. Neonatal piglets are most vulnerable to clinical disease and their only protection is passive immunity from their dam. At the end of the thi...

  4. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Keith P Romano

    Full Text Available Hepatitis C virus (HCV infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors--telaprevir, danoprevir, vaniprevir and MK-5172--in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.

  5. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    Science.gov (United States)

    Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Horiguchi, Tomoko; Sun, Xuedong; Deng, Lin; Shoji, Ikuo; Hotta, Hak; Sada, Kiyonao

    2012-01-01

    Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  6. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nakashima

    Full Text Available Hepatitis C virus (HCV infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV implied that NS5A was tyrosine phosphorylated by pervanadate (PV treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST-fusion proteins of various Src homology 2 (SH2 domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3 domain. Substitution of Arg(176 to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334 was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  7. The NS3 proteins of global strains of bluetongue virus evolve into regional topotypes through negative (purifying) selection.

    Science.gov (United States)

    Balasuriya, U B R; Nadler, S A; Wilson, W C; Pritchard, L I; Smythe, A B; Savini, G; Monaco, F; De Santis, P; Zhang, N; Tabachnick, W J; Maclachlan, N J

    2008-01-01

    Comparison of the deduced amino acid sequences of the genes (S10) encoding the NS3 protein of 137 strains of bluetongue virus (BTV) from Africa, the Americas, Asia, Australia and the Mediterranean Basin showed limited variation. Common to all NS3 sequences were potential glycosylation sites at amino acid residues 63 and 150 and a cysteine at residue 137, whereas a cysteine at residue 181 was not conserved. The PPXY and PS/TAP late-domain motifs were conserved in all but three of the viruses. Phylogenetic analyses of these same sequences yielded two principal clades that grouped the viruses irrespective of their serotype or year of isolation (1900-2003). All viruses from Asia and Australia were grouped in one clade, whereas those from the other regions were present in both clades. Each clade segregated into distinct subclades that included viruses from single or multiple regions, and the S10 genes of some field viruses were identical to those of live-attenuated BTV vaccines. There was no evidence of positive selection on the S10 gene as assessed by reconstruction of ancestral codon states on the phylogeny, rather the functional constraints of the NS3 protein are expressed through substantial negative (purifying) selection.

  8. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Science.gov (United States)

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  9. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  10. NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting; Ren, Xiaoming; Adams, Rebecca L.; Pyle, Anna Marie; Ou, J. -H. James

    2017-10-25

    Hepatitis C viruses (HCV) encode a helicase enzyme that is essential for viral replication and assembly (nonstructural protein 3 [NS3]). This helicase has become the focus of extensive basic research on the general helicase mechanism, and it is also of interest as a novel drug target. Despite the importance of this protein, mechanistic work on NS3 has been conducted almost exclusively on variants from HCV genotype 1. Our understanding of NS3 from the highly active HCV strains that are used to study HCV genetics and mechanism in cell culture (such as JFH-1) is lacking. We therefore set out to determine whether NS3 from the replicatively efficient genotype 2a strain JFH-1 displays novel functional or structural properties. Using biochemical assays for RNA binding and duplex unwinding, we show that JFH-1 NS3 binds RNA much more rapidly than the previously studied NS3 variants from genotype 1b. Unlike NS3 variants from other genotypes, JFH-1 NS3 binds RNA with high affinity in a functionally active form that is capable of immediately unwinding RNA duplexes without undergoing rate-limiting conformational changes that precede activation. Unlike other superfamily 2 (SF2) helicases, JFH-1 NS3 does not require long 3' overhangs, and it unwinds duplexes that are flanked by only a few nucleotides, as in the folded HCV genome. To understand the physical basis for this, we solved the crystal structure of JFH-1 NS3, revealing a novel conformation that contains an open, positively charged RNA binding cleft that is primed for productive interaction with RNA targets, potentially explaining robust replication by HCV JFH-1.

    IMPORTANCEGenotypes of HCV are as divergent as different types of flavivirus, and yet mechanistic features of HCV variants are presumed to be held in common. One of the most well-studied components of the HCV replication complex is a helicase known as nonstructural protein 3 (NS3). We set out to determine whether this important

  11. PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2014-04-01

    Full Text Available The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3 is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1 on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1 against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.

  12. Molecular characterization of viruses associated with gastrointestinal infection in HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Raquel C Silva

    Full Text Available BACKGROUND: Diarrhea is a major cause of morbidity and mortality among HIV-infected patients worldwide. OBJECTIVE: We sought to determine the frequency of viral gastrointestinal infections among Brazilian HIV-infected patients with diarrhea. METHODS: A collection of 90 fecal specimens from HIV-infected individuals with diarrhea, previously tested for the presence of bacteria and parasite was analyzed by polymerase chain reaction and sequence analysis for the presence of enteric viruses such as astrovirus, norovirus, rotavirus groups A, B and C, adenovirus, herpes simplex virus, Epstein-Barr virus, cytomegalovirus, and human bocavirus. RESULTS: Twenty patients (22.2%; n = 90 were infected with parasites (11 single infections and nine coinfected with virus. Enteropathogenic bacteria were not found. Virus infections were detected in 28.9% (26/90 of the specimens. Cytomegalovirus was the most common virus detected (24.4%; 22/90. Coinfections with viruses and/or parasite were observed in 10 (11.1% samples. CONCLUSION: Gastrointestinal virus infections were more frequent than parasitic or bacterial infections in this patient population.

  13. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  14. NS1 of H7N9 Influenza A Virus Induces NO-Mediated Cellular Senescence in Neuro2a Cells

    OpenAIRE

    Yinxia Yan; Yongming Du; Huali Zheng; Gefei Wang; Rui Li; Jieling Chen; Kangsheng Li

    2017-01-01

    Background/Aims: The novel avian H7N9 influenza A virus has been detected in brain tissues and associated with central nervous system (CNS) symptoms in infected human and mice. Roles of its virulence factor, NS1 protein in influenza virus infected neuron has yet to be explored. Methods: Nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) expression in H7N9/NS1-expressed Neuro2a cells were detected by Griess test and western blotting. Cell proliferation rate of H7N9/NS1-expres...

  15. Diagnostic evaluation of assays for detection of antibodies against porcine epidemic diarrhea virus (PEDV) in pigs exposed to different PEDV strains

    DEFF Research Database (Denmark)

    Gerber, Priscilla F.; Lelli, Davide; Zhang, Jianqiang

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) has caused economic losses in the Americas, Asia and Europe in recent years. Reliable serological assays are essential for epidemiological studies and vaccine evaluation. The objective of this study was to compare the ability of five enzyme-linked immunosorb......Porcine epidemic diarrhea virus (PEDV) has caused economic losses in the Americas, Asia and Europe in recent years. Reliable serological assays are essential for epidemiological studies and vaccine evaluation. The objective of this study was to compare the ability of five enzyme...

  16. Epimedium koreanum Nakai Water Extract Exhibits Antiviral Activity against Porcine Epidermic Diarrhea Virus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2012-01-01

    Full Text Available Porcine epidemic diarrhea virus (PEDV causes diarrhea of pigs age-independently and death of young piglets, resulting in economic loss of porcine industry. We have screened 333 natural oriental herbal medicines to search for new antiviral candidates against PEDV. We found that two herbal extracts, KIOM 198 and KIOM 124, contain significant anti-PED viral effect. KIOM 198 and KIOM 124 were identified as Epimedium koreanum Nakai and Lonicera japonica Thunberg, respectively. The further plaque and CPE inhibition assay in vitro showed that KIOM 198 has much stronger antiviral activity than KIOM 124. Additionally, KIOM 198 exhibited a similar extent of antiviral effect against other subtypes of Corona virus such as sm98 and TGE viruses. Cytotoxicity results showed that KIOM 198 is nontoxic on the cells and suggest that it can be delivered safely for therapy. Furthermore, when we orally administered KIOM 198 to piglets and then infected them with PEDV, the piglets did not show any disease symptoms like diarrhea and biopsy results showed clean intestine, whereas control pigs without KIOM 198 treatment exhibited PED-related severe symptoms. These results imply that KIOM 198 contains strong antiviral activity and has a potential to be developed as an antiviral phytomedicine to treat PEDV-related diseases in pigs.

  17. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.

    Science.gov (United States)

    Yang, Li-Yuan; Lin, Jun; Zhou, Bin; Liu, Yan-Gang; Zhu, Bao-Quan

    2016-04-01

    The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase.

    Science.gov (United States)

    Byrd, Chelsea M; Grosenbach, Douglas W; Berhanu, Aklile; Dai, Dongcheng; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Yang, Guang; Tyavanagimatt, Shanthakumar; Harver, Chris; Wineinger, Kristin A; Page, Jessica; Stavale, Eric; Stone, Melialani A; Fuller, Kathleen P; Lovejoy, Candace; Leeds, Janet M; Hruby, Dennis E; Jordan, Robert

    2013-04-01

    Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.

  19. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    International Nuclear Information System (INIS)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  20. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3.

    Science.gov (United States)

    Zheng, Fengwei; Lu, Guoliang; Li, Ling; Gong, Peng; Pan, Zishu

    2017-11-01

    The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å 2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis -cleavage event. Although this conformation is incompatible with protease trans -cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis -cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different

  1. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection

    Directory of Open Access Journals (Sweden)

    Stephen Noel Waggoner

    2012-12-01

    Full Text Available The signaling lymphocyte activation molecule (SLAM family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK cell anti-viral functions in X-linked lymphoproliferative (XLP syndrome patients with uncontrolled Epstein-Barr virus (EBV infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.

  2. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems

    Science.gov (United States)

    Petersen, Henning; Mostafa, Ahmed; Tantawy, Mohamed A.; Iqbal, Azeem A.; Hoffmann, Donata; Tallam, Aravind; Selvakumar, Balachandar; Pessler, Frank; Beer, Martin; Rautenschlein, Silke; Pleschka, Stephan

    2018-01-01

    The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species. PMID:29623073

  3. In vitro neutralization against HoBi-like viruses by antiobodies in serum of cattle immunized with inactivated or modified live vaccines of bovine viral diarrhea virus 1 and 2

    Science.gov (United States)

    HoBi-like viruses are an emerging species of pestiviruses with genetic and antigenic similarities to bovine viral diarrhea viruses 1 and 2 (BVDV1 and BVDV2). These viruses have been detected associated with respiratory and/or reproductive disease in cattle in Italy and Brazil. Vaccines for HoBi-like...

  4. Efficacy of NS5A Inhibitors Against Hepatitis C Virus Genotypes 1–7 and Escape Variants

    DEFF Research Database (Denmark)

    Gottwein, Judith M.; Pham, Long V.; Mikkelsen, Lotte S.

    2018-01-01

    , or that contained RAS previously reported from patients. Results: NS5A inhibitors had varying levels of efficacy against original and resistant viruses. Only velpatasvir and pibrentasvir had uniform high activity against all HCV genotypes tested. RAS hotspots in NS5A were found at amino acids 28, 30, 31, and 93...

  5. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping

    2013-01-01

    With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi...... to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations...

  6. PREVALENCE OF BOVINE HERPESVIRUS-1,PARAINFLUENZA-3,BOVINE ROTAVIRUS, BOVINE VIRAL DIARRHEA, BOVINE ADENOVIRUS-7,BOVINE LEUKEMIA VIRUS AND BLUETONGUE VIRUS ANTIBODIES IN CATTLE IN MEXICO

    OpenAIRE

    SUZAN, Victor M.; ONUMA, Misao; AGUILAR, Romero E.; MURAKAMI, Yosuke

    1983-01-01

    Sera were collected from dairy and beef cattle in 19 different states of Mexico. These sera were tested for bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PIV-3), bovine rotavirus (BRV), bovine leukemia virus (BLV), bovine adenovirus-7 (BAV-7), bluetongue virus (BTV) and bovine viral diarrhea virus (BVDV). Seropositive rates for each virus for dairy cattle tested were 158/277(57.0%) for BHV-1,217/286(75.0%) for PIV-3,541/1498(36.1%) for BLV, 134/144(93.1%) for BRV, 39/90(43.3%) for BTV,...

  7. Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus.

    Science.gov (United States)

    Fros, Jelke J; Geertsema, Corinne; Zouache, Karima; Baggen, Jim; Domeradzka, Natalia; van Leeuwen, Daniël M; Flipse, Jacky; Vlak, Just M; Failloux, Anna-Bella; Pijlman, Gorben P

    2015-09-17

    Chikungunya virus (CHIKV) is an arthritogenic alphavirus (family Togaviridae), transmitted by Aedes species mosquitoes. CHIKV re-emerged in 2004 with multiple outbreaks worldwide and recently reached the Americas where it has infected over a million individuals in a rapidly expanding epidemic. While alphavirus replication is well understood in general, the specific function (s) of non-structural protein nsP3 remain elusive. CHIKV nsP3 modulates the mammalian stress response by preventing stress granule formation through sequestration of G3BP. In mosquitoes, nsP3 is a determinant of vector specificity, but its functional interaction with mosquito proteins is unclear. In this research we studied the domains required for localization of CHIKV nsP3 in insect cells and demonstrated its molecular interaction with Rasputin (Rin), the mosquito homologue of G3BP. The biological involvement of Rin in CHIKV infection was investigated in live Ae. albopictus mosquitoes. In insect cells, nsP3 localized as cytoplasmic granules, which was dependent on the central domain and the C-terminal variable region but independent of the N-terminal macrodomain. Ae. albopictus Rin displayed a diffuse, cytoplasmic localization, but was effectively sequestered into nsP3-granules upon nsP3 co-expression. Site-directed mutagenesis showed that the Rin-nsP3 interaction involved the NTF2-like domain of Rin and two conserved TFGD repeats in the C-terminal variable domain of nsP3. Although in vitro silencing of Rin did not impact nsP3 localization or CHIKV replication in cell culture, Rin depletion in vivo significantly decreased the CHIKV infection rate and transmissibility in Ae.albopictus. We identified the nsP3 hypervariable C-terminal domain as a critical factor for granular localization and sequestration of mosquito Rin. Our study offers novel insight into a conserved virus-mosquito interaction at the molecular level, and reveals a strong proviral role for G3BP homologue Rin in live mosquitoes

  8. Exacerbating effects of human parvovirus B19 NS1 on liver fibrosis in NZB/W F1 mice.

    Directory of Open Access Journals (Sweden)

    Tsai-Ching Hsu

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19 is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling.

  9. Exacerbating Effects of Human Parvovirus B19 NS1 on Liver Fibrosis in NZB/W F1 Mice

    Science.gov (United States)

    Hsu, Tsai-Ching; Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Tzang, Bor-Show

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling. PMID:23840852

  10. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).

    Science.gov (United States)

    Qin, Zijian; Wang, Maolin; Yan, Aixia

    2017-07-01

    In this study, quantitative structure-activity relationship (QSAR) models using various descriptor sets and training/test set selection methods were explored to predict the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by using a multiple linear regression (MLR) and a support vector machine (SVM) method. 512 HCV NS3/4A protease inhibitors and their IC 50 values which were determined by the same FRET assay were collected from the reported literature to build a dataset. All the inhibitors were represented with selected nine global and 12 2D property-weighted autocorrelation descriptors calculated from the program CORINA Symphony. The dataset was divided into a training set and a test set by a random and a Kohonen's self-organizing map (SOM) method. The correlation coefficients (r 2 ) of training sets and test sets were 0.75 and 0.72 for the best MLR model, 0.87 and 0.85 for the best SVM model, respectively. In addition, a series of sub-dataset models were also developed. The performances of all the best sub-dataset models were better than those of the whole dataset models. We believe that the combination of the best sub- and whole dataset SVM models can be used as reliable lead designing tools for new NS3/4A protease inhibitors scaffolds in a drug discovery pipeline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Clinical approach to diarrhea.

    Science.gov (United States)

    Corinaldesi, Roberto; Stanghellini, Vincenzo; Barbara, Giovanni; Tomassetti, Paola; De Giorgio, Roberto

    2012-10-01

    Diarrhea is defined as reduced stool consistency, increased water content and number of evacuations per day. A wide array of causes and pathophysiological mechanisms underlie acute and chronic forms of diarrhea. This review focuses on the major clinical aspects which should aid clinicians to diagnose chronic diarrhea. Clinical history, physical examination and stool evaluation and the predominant stool characteristic, i.e., bloody, watery, and fatty diarrhea, may narrow the differential diagnosis. Although mainly involved in acute diarrhea, many different infectious agents, including bacteria, viruses and protozoa, can be identified in chronic bloody/inflammatory diarrhea by appropriate microbiological tests and colonoscopic biopsy analysis. Osmotic diarrhea can be the result of malabsorption or maldigestion, with a subsequent passage of fat in the stool leading to steatorrhea. Secretory diarrhea is due to an increase of fluid secretion in the small bowel lumen, a mechanism often identified in gastroenteropancreatic neuroendocrine tumors. The evaluation of the fecal osmotic gap may help to characterize whether a chronic diarrhea is osmotic or secretory. Fatty diarrhea (steatorrhea) occurs if fecal fat output exceeds the absorptive/digestive capacity of the intestine. Steatorrhea results from malabsorption or maldigestion states and tests should differentiate between these two conditions. Individualized diagnostic work ups tailored on pathophysiological and clinical features are expected to reduce costs for patients with chronic diarrhea.

  12. Knowledge Gaps Impacting the Development of Bovine Viral Diarrhea Virus Control Programs in the United States

    Science.gov (United States)

    This paper identifies knowledge gaps that impact on the design of programs to control and or eradicate bovine viral diarrhea viruses (BVDV) in the United States. Currently there are several voluntary regional BVDV control programs in place. These control programs are aimed at the removal of animals ...

  13. Proteins of bovine viral diarrhea virus: characterization, biotype-specific differences, and immunological properties

    International Nuclear Information System (INIS)

    Donis, R.O.

    1987-01-01

    Virus-specific polypeptides in bovine viral diarrhea-mucosal disease (BVD) virus-infected bovine cells were studied by radiolabeling. A total of 12 polypeptides with apparent Mr of 165, 135, 118, 80, 75, 62, 56-58, 48, 37, 32, 25 and 19 kilodaltons (k) were identified in infected cells. Five glycoproteins were detected in infected cells. Two abundant species had apparent Mr of 48 k and 56-58 k while the minor species had masses of 118, 75 and 65 k. When cells were radiolabeled with L-[ 35 S]-methionine in the presence of tunicamycin the 56-58 k migrated with apparent masses of 54 k and 48-50 K in PAGE. Endoglycosidase F digestion of virus-induced polypeptides caused a 4-6 K reduction in the apparent molecular mass of the 56-58 k yielding a 52 k digested product. Tunicamycin caused a drastic reduction in the yield of infectious virus indicating that the carbohydrate moieties serve a vital role in the infection cycle of BVD virus. The noncytopathic biotype BVD (NCB-BVD) virus isolates can be consistently differentiated from cytopathic biotype BVD (CB-BVD) isolates on the basis of unique polypeptide profiles they induce in the infected cell: the most abundant polypeptide in CB-BVD infected cells is the 80 kD polypeptide while NCB-BVD lack this polypeptide and induce a predominant 118 k polypeptide. A panel of 25 murine monoclonal antibodies (Mabs) against the two major glycoproteins of BVD virus was produced. Based on their viral polypeptide specificity and on their ability to neutralize viral infectivity the Mabs in the panel were divided into 3 classes: Class 1 Mabs reacted with the 56-58 k glycoprotein and neutralized the virus, Class 2 Mabs recognized the 56-58 k glycoprotein but were not neutralizing and Class 3 Mabs reacted with the 48 k glycoprotein and did not neutralize the virus. These results identify the 56-58 k as one of the envelope glycoproteins of BVD virus

  14. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    International Nuclear Information System (INIS)

    Engel, Amber R.; Rumyantsev, Alexander A.; Maximova, Olga A.; Speicher, James M.; Heiss, Brian; Murphy, Brian R.; Pletnev, Alexander G.

    2010-01-01

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E 315 ) and NS5 (NS5 654,655 ) proteins, and into the 3' non-coding region (Δ30) of TBEV/DEN4. The variant that contained all three mutations (vΔ30/E 315 /NS5 654,655 ) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that vΔ30/E 315 /NS5 654,655 should be further evaluated as a TBEV vaccine.

  15. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  16. Naturally occurring NS3 resistance-associated variants in hepatitis C virus genotype 1: Their relevance for developing countries.

    Science.gov (United States)

    Echeverría, Natalia; Betancour, Gabriela; Gámbaro, Fabiana; Hernández, Nelia; López, Pablo; Chiodi, Daniela; Sánchez, Adriana; Boschi, Susana; Fajardo, Alvaro; Sóñora, Martín; Moratorio, Gonzalo; Cristina, Juan; Moreno, Pilar

    2016-09-02

    Hepatitis C virus (HCV) is a major cause of global morbidity and mortality, with an estimated 130-150 million infected individuals worldwide. HCV is a leading cause of chronic liver diseases including cirrhosis and hepatocellular carcinoma. Current treatment options in developing countries involve pegylated interferon-α and ribavirin as dual therapy or in combination with one or more direct-acting antiviral agents (DAA). The emergence of resistance-associated variants (RAVs) after treatment reveals the great variability of this virus leading to a great difficulty in developing effective antiviral strategies. Baseline RAVs detected in DAA treatment-naïve HCV-infected patients could be of great importance for clinical management and outcome prediction. Although the frequency of naturally occurring HCV NS3 protease inhibitor mutations has been addressed in many countries, there are only a few reports on their prevalence in South America. In this study, we investigated the presence of RAVs in the HCV NS3 serine protease region by analysing a cohort of Uruguayan patients with chronic hepatitis C who had not been treated with any DAAs and compare them with the results found for other South American countries. The results of these studies revealed that naturally occurring mutations conferring resistance to NS3 inhibitors exist in a substantial proportion of Uruguayan treatment-naïve patients infected with HCV genotype 1 enrolled in these studies. The identification of these baseline RAVs could be of great importance for patients' management and outcome prediction in developing countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Antiviral activity of Petiveria alliacea against the bovine viral diarrhea virus.

    Science.gov (United States)

    Ruffa, M J; Perusina, M; Alfonso, V; Wagner, M L; Suriano, M; Vicente, C; Campos, R; Cavallaro, L

    2002-07-01

    Natural products are a relevant source of antiviral drugs. Five medicinal plants used in Argentina have been assayed to detect inhibition of viral growth. Antiviral activity of the infusions and methanolic extracts of Aristolochia macroura, Celtis spinosa, Plantago major, Schinus areira, Petiveria alliacea and four extracts obtained from the leaves and stems of the last plant were evaluated by the plaque assay. P. alliacea, unlike A. macroura, C. spinosa, P. major and S. areira, inhibited bovine viral diarrhea virus (BVDV) replication. Neither P. alliacea nor the assays of the other plants were active against herpes simplex virus type 1, poliovirus type 1, adenovirus serotype 7 and vesicular stomatitis virus type 1. Four extracts of P. alliacea were assayed to detect anti-BVDV activity. Ethyl acetate (EC(50) of 25 microg/ml) and dichloromethane (EC(50) of 43 microg/ml) extracts were active; moreover, promising SI (IC(50)/EC(50)) values were obtained. BVDV is highly prevalent in the cattle population, there are no antiviral compounds available; additionally, it is a viral model of the hepatitis C virus. For these reasons and in view of the results obtained, the isolation and characterization of the antiviral components present in the P. alliacea extracts is worth carrying out in the future. Copyright 2002 S. Karger AG, Basel

  18. Evaluation of bovine viral diarrhea virus in New World camelids.

    Science.gov (United States)

    Wentz, Philip A; Belknap, Ellen B; Brock, Kenneth V; Collins, James K; Pugh, David G

    2003-07-15

    To determine the effect of experimental infection with bovine viral diarrhea virus (BVDV) on llamas and their fetuses, evaluate seroprevalence of BVDV in llamas and alpacas, and genetically characterize BVDV isolates from llamas. Prospective study. 4 pregnant llamas for the experimental infection study and 223 llamas and alpacas for the seroprevalence study. Llamas (seronegative to BVDV) were experimentally infected with a llama isolate of BVDV via nasal aerosolization. After inoculation, blood samples were collected every other day for 2 weeks; blood samples were obtained from crias at birth and monthly thereafter. For the seroprevalence study, blood was collected from a convenience sample of 223 camelids. Isolates of BVDV were characterized by reverse transcription-polymerase chain reaction assay. Viremia and BVDV-specific antibody response were detected in the experimentally infected llamas, but no signs of disease were observed. No virus was detected in the crias or aborted fetus, although antibodies were evident in crias after colostrum consumption. Seroprevalence to BVDV was 0.9% in llamas and alpacas. Sequences of the llama BVDV isolates were comparable to known bovine isolates. Findings suggest that llamas may be infected with BVDV but have few or no clinical signs. Inoculation of llamas during gestation did not result in fetal infection or persistent BVDV infection of crias. Seroprevalence to BVDV in llamas and alpacas is apparently low. The most likely source for BVDV infection in camelids may be cattle.

  19. Innate immune responses of calves during transient infection with a noncytopathic strain of bovine viral diarrhea virus

    DEFF Research Database (Denmark)

    Muller-Doblies, D.; Arquint, A.; Schaller, P.

    2004-01-01

    In this study, six immunocompetent calves were experimentally infected with a noncytopathic strain of bovine viral diarrhea virus (BVDV), and the effects of the viral infection on parameters of the innate immune response of the host were analyzed. Clinical and virological data were compared...

  20. Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Emerson, S.U.; Schubert, M.

    1987-01-01

    Recombinant DNA techniques were used to delete regions of a cDNA clone of the phosphoprotein NS gene of vesicular stomatitis virus. The complete NS gene and four mutant genes containing internal or terminal deletions were inserted into a modified pGem4 vector under the transcriptional control of the page T7 promoter. Run-off transcripts were synthesized and translated in vitro to provide [ 35 S]methionine-labeled complete NS or deletion mutant NS proteins. Immune coprecipitation assays involving these proteins were developed to map the regions of the NS protein responsible for binding to the structural viral nucleocapsid protein N and the catalytic RNA polymerase protein L. The data indicate the NS protein is a bivalent protein consisting of two discrete functional domains. Contrary to previous suggestions, the negatively charged amino-terminal half of NS protein binds to L protein, while the carboxyl-terminal half of NS protein binds to both soluble recombinant nucleocapsid protein N and viral ribonucleocapsid template

  1. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein.

    Directory of Open Access Journals (Sweden)

    Dorothee A Vogt

    Full Text Available The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web and assists viral assembly in the close vicinity of lipid droplets (LDs. To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1-31, a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47 as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon, indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47--via its interaction with NS5A--serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.

  2. Construction of recombinant DNA clone for bovine viral diarrhea virus

    International Nuclear Information System (INIS)

    Yeo, S.G.; Cho, H.J.; Masri, S.A.

    1992-01-01

    Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus (BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone (No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3 -end. 32 P-labeled DNA probes of 300~1, 800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EooR I, Sst I, Hind III and Pst I restriction enzymes in the DNA fragment

  3. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    Science.gov (United States)

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  4. Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach

    Directory of Open Access Journals (Sweden)

    Galiano V

    2016-10-01

    Full Text Available Vicente Galiano,1 Pablo Garcia-Valtanen,2 Vicente Micol,3,4 José Antonio Encinar3 1Physics and Computer Architecture Department, Miguel Hernández University (UMH, Elche, Spain; 2Experimental Therapeutics Laboratory, Hanson and Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia; 3Molecular and Cell Biology Institute, Miguel Hernández University (UMH, Elche, Spain; 4CIBER: CB12/03/30038, Physiopathology of the Obesity and Nutrition, CIBERobn, Instituto de Salud Carlos III, Palma de Mallorca, Spain Abstract: The dengue virus (DENV nonstructural protein 5 (NS5 contains both an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain. Polymerase activity is responsible for viral RNA synthesis by a de novo initiation mechanism and represents an attractive target for antiviral therapy. The incidence of DENV has grown rapidly and it is now estimated that half of the human population is at risk of becoming infected with this virus. Despite this, there are no effective drugs to treat DENV infections. The present in silico study aimed at finding new inhibitors of the NS5 RNA-dependent RNA polymerase of the four serotypes of DENV. We used a chemical library comprising 372,792 nonnucleotide compounds (around 325,319 natural compounds to perform molecular docking experiments against a binding site of the RNA template tunnel of the virus polymerase. Compounds with high negative free energy variation (ΔG <-10.5 kcal/mol were selected as putative inhibitors. Additional filters for favorable druggability and good absorption, distribution, metabolism, excretion, and toxicity were applied. Finally, after the screening process was completed, we identified 39 compounds as lead DENV polymerase inhibitor candidates. Potentially, these compounds could act as efficient DENV polymerase inhibitors in vitro and in vivo. Keywords: virtual screening, molecular

  5. Improved detection of Bovine Viral Diarrhea Virus in Bovine lymphoid cell lines using PrimeFlow RNA assay

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...

  6. [Antiviral activity of different drugs in vitro against viruses of bovine infectious rhinotracheitis and bovine diarrhea].

    Science.gov (United States)

    Glotov, A G; Glotova, T I; Sergeev, A A; Belkina, T V; Sergeev, A N

    2004-01-01

    In vitro experiments studied the antiviral activity of 11 different drugs against viruses of bovine infective rhinotracheitis (BIRT) and bovine viral diarrhea (BVD). The 50% inhibiting concentrations of the test agents were determined in the monolayers of MDBK and KCT cell cultures. Only did phosprenyl show a virucidal activity against BIRT virus. All the tested drugs significantly inhibited the reproduction of BIRT virus in the sensitive MDBK cell cultures. Thus, bromuridin, acyclovir, ribavirin and methisazonum inhibited the virus by > or = 100,000 times; liposomal ribavirin, gossypolum, anandinum, polyprenolum, phosprenyl, by 1000-10,000 times; eracond and argovit, by 100 times. In experiments on BVD virus, the cultured KCT cells displayed the antiviral activity of bromuridin, phosprenil, polyprenolum, methisazonum, acyclovir, gossypolum, argovit, and ribavirin (in two variants), which caused a statistically significant (100-10,000-fold) decrease in the productive activity of this virus. Eracond and anandid proved to be ineffective.

  7. Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction.

    Science.gov (United States)

    Peterhans, Ernst; Bachofen, Claudia; Stalder, Hanspeter; Schweizer, Matthias

    2010-01-01

    Bovine viral diarrhea virus (BVDV), a Flaviviridae pestivirus, is arguably one of the most widespread cattle pathogens worldwide. Each of its two genotypes has two biotypes, non-cytopathic (ncp) and cytopathic (cp). Only the ncp biotype of BVDV may establish persistent infection in the fetus when infecting a dam early in gestation, a time point which predates maturity of the adaptive immune system. Such fetuses may develop and be born healthy but remain infected for life. Due to this early initiation of fetal infection and to the expression of interferon antagonistic proteins, persistently infected (PI) animals remain immunotolerant to the infecting viral strain. Although only accounting for some 1% of all animals in regions where BVDV is endemic, PI animals ensure the viral persistence in the host population. These animals may, however, develop the fatal mucosal disease, which is characterized by widespread lesions in the gastrointestinal tract. Cp BVD virus, in addition to the persisting ncp biotype, can be isolated from such animals. The cp viruses are characterized by unrestrained genome replication, and their emergence from the persisting ncp ones is due to mutations that are unique in each virus analyzed. They include recombinations with host cell mRNA, gene translocations and duplications, and point mutations. Cytopathic BVD viruses fail to establish chains of infection and are unable to cause persistent infection. Hence, these viruses illustrate a case of "viral emergence to extinction" - irrelevant for BVDV evolution, but fatal for the PI host. © INRA, EDP Sciences, 2010.

  8. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  9. Role of nonstructural protein NS2A in flavivirus assembly

    NARCIS (Netherlands)

    Leung, J.Y.; Pijlman, G.P.; Kondratieva, N.; Hyde, J.; Mackenzie, J.M.; Khromykh, A.A.

    2008-01-01

    Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part

  10. Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

    OpenAIRE

    Mukherjee, Sourav; Weiner, Warren S.; Schroeder, Chad E.; Simpson, Denise S.; Hanson, Alicia M.; Sweeney, Noreena L.; Marvin, Rachel K.; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J.; Frick, David N.

    2014-01-01

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previousl...

  11. Isolation and identification of a bovine viral diarrhea virus from sika deer in china.

    Science.gov (United States)

    Gao, Yugang; Wang, Shijie; Du, Rui; Wang, Quankai; Sun, Changjiang; Wang, Nan; Zhang, Pengju; Zhang, Lianxue

    2011-02-25

    Bovine viral diarrhea virus (BVDV) infections continue to cause significantly losses in the deer population. Better isolation and identification of BVDV from sika deer may contribute significantly to the development of prophylactic therapeutic, and diagnostic reagents as well as help in prevention and control of BVDV. However, isolation and identification of BVDV from sika deer is seldom reported in literature. In this study, we collected some samples according to clinical sign of BVDV to isolation and identification of BVDV from sika deer. we isolated a suspected BVDV strain from livers of an aborted fetus from sika deer in Changchun (China) using MDBK cell lines, named as CCSYD strain, and identified it by cytopathic effect (CPE), indirect immunoperoxidase test (IPX) and electron microscopy(EM). The results indicated that this virus was BVDV by a series of identification. The structural proteins E0 gene was cloned and sequenced. The obtained E0 gene sequence has been submitted to GenBank with the accession number: FJ555203. Alignment with other 9 strains of BVDV, 7 strains of classical swine fever virus (CSFV) and 3 strains of border disease virus(BDV) in the world, showed that the homology were 98.6%-84.8%, 76.0%-74.7%, 76.6%-77.0% for nucleotide sequence, respectively. The phylogenetic analysis indicated that new isolation and identification CCSYD strain belonged to BVDV1b. To the best of our knowledge, this is the first report that BVDV was isolated and identified in sika deer. This current research contributes development new BVDV vaccine to prevent and control of BVD in sika deer.

  12. Isolation and identification of a bovine viral diarrhea virus from sika deer in china

    Directory of Open Access Journals (Sweden)

    Wang Nan

    2011-02-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV infections continue to cause significantly losses in the deer population. Better isolation and identification of BVDV from sika deer may contribute significantly to the development of prophylactic therapeutic, and diagnostic reagents as well as help in prevention and control of BVDV. However, isolation and identification of BVDV from sika deer is seldom reported in literature. In this study, we collected some samples according to clinical sign of BVDV to isolation and identification of BVDV from sika deer. Results we isolated a suspected BVDV strain from livers of an aborted fetus from sika deer in Changchun (China using MDBK cell lines, named as CCSYD strain, and identified it by cytopathic effect (CPE, indirect immunoperoxidase test (IPX and electron microscopy(EM. The results indicated that this virus was BVDV by a series of identification. The structural proteins E0 gene was cloned and sequenced. The obtained E0 gene sequence has been submitted to GenBank with the accession number: FJ555203. Alignment with other 9 strains of BVDV, 7 strains of classical swine fever virus (CSFV and 3 strains of border disease virus(BDV in the world, showed that the homology were 98.6%-84.8%, 76.0%-74.7%, 76.6%-77.0% for nucleotide sequence, respectively. The phylogenetic analysis indicated that new isolation and identification CCSYD strain belonged to BVDV1b. Conclusion To the best of our knowledge, this is the first report that BVDV was isolated and identified in sika deer. This current research contributes development new BVDV vaccine to prevent and control of BVD in sika deer.

  13. Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea.

    Science.gov (United States)

    Vega, Celina G; Bok, Marina; Vlasova, Anastasia N; Chattha, Kuldeep S; Gómez-Sebastián, Silvia; Nuñez, Carmen; Alvarado, Carmen; Lasa, Rodrigo; Escribano, José M; Garaicoechea, Lorena L; Fernandez, Fernando; Bok, Karin; Wigdorovitz, Andrés; Saif, Linda J; Parreño, Viviana

    2013-01-01

    Group A Rotavirus (RVA) is the leading cause of severe diarrhea in children. The aims of the present study were to determine the neutralizing activity of VP6-specific llama-derived single domain nanoantibodies (VHH nanoAbs) against different RVA strains in vitro and to evaluate the ability of G6P[1] VP6-specific llama-derived single domain nanoantibodies (VHH) to protect against human rotavirus in gnotobiotic (Gn) piglets experimentally inoculated with virulent Wa G1P[8] rotavirus. Supplementation of the daily milk diet with 3B2 VHH clone produced using a baculovirus vector expression system (final ELISA antibody -Ab- titer of 4096; virus neutralization -VN- titer of 256) for 9 days conferred full protection against rotavirus associated diarrhea and significantly reduced virus shedding. The administration of comparable levels of porcine IgG Abs only protected 4 out of 6 of the animals from human RVA diarrhea but significantly reduced virus shedding. In contrast, G6P[1]-VP6 rotavirus-specific IgY Abs purified from eggs of hyperimmunized hens failed to protect piglets against human RVA-induced diarrhea or virus shedding when administering similar quantities of Abs. The oral administration of VHH nanoAb neither interfered with the host's isotype profiles of the Ab secreting cell responses to rotavirus, nor induced detectable host Ab responses to the treatment in serum or intestinal contents. This study shows that the oral administration of rotavirus VP6-VHH nanoAb is a broadly reactive and effective treatment against rotavirus-induced diarrhea in neonatal pigs. Our findings highlight the potential value of a broad neutralizing VP6-specific VHH nanoAb as a treatment that can complement or be used as an alternative to the current strain-specific RVA vaccines. Nanobodies could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea.

  14. Recombinant monovalent llama-derived antibody fragments (VHH to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea.

    Directory of Open Access Journals (Sweden)

    Celina G Vega

    Full Text Available Group A Rotavirus (RVA is the leading cause of severe diarrhea in children. The aims of the present study were to determine the neutralizing activity of VP6-specific llama-derived single domain nanoantibodies (VHH nanoAbs against different RVA strains in vitro and to evaluate the ability of G6P[1] VP6-specific llama-derived single domain nanoantibodies (VHH to protect against human rotavirus in gnotobiotic (Gn piglets experimentally inoculated with virulent Wa G1P[8] rotavirus. Supplementation of the daily milk diet with 3B2 VHH clone produced using a baculovirus vector expression system (final ELISA antibody -Ab- titer of 4096; virus neutralization -VN- titer of 256 for 9 days conferred full protection against rotavirus associated diarrhea and significantly reduced virus shedding. The administration of comparable levels of porcine IgG Abs only protected 4 out of 6 of the animals from human RVA diarrhea but significantly reduced virus shedding. In contrast, G6P[1]-VP6 rotavirus-specific IgY Abs purified from eggs of hyperimmunized hens failed to protect piglets against human RVA-induced diarrhea or virus shedding when administering similar quantities of Abs. The oral administration of VHH nanoAb neither interfered with the host's isotype profiles of the Ab secreting cell responses to rotavirus, nor induced detectable host Ab responses to the treatment in serum or intestinal contents. This study shows that the oral administration of rotavirus VP6-VHH nanoAb is a broadly reactive and effective treatment against rotavirus-induced diarrhea in neonatal pigs. Our findings highlight the potential value of a broad neutralizing VP6-specific VHH nanoAb as a treatment that can complement or be used as an alternative to the current strain-specific RVA vaccines. Nanobodies could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea.

  15. A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate.

    Science.gov (United States)

    Lauck, Michael; Sibley, Samuel D; Lara, James; Purdy, Michael A; Khudyakov, Yury; Hyeroba, David; Tumukunde, Alex; Weny, Geoffrey; Switzer, William M; Chapman, Colin A; Hughes, Austin L; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L

    2013-08-01

    GB virus B (GBV-B; family Flaviviridae, genus Hepacivirus) has been studied in New World primates as a model for human hepatitis C virus infection, but the distribution of GBV-B and its relatives in nature has remained obscure. Here, we report the discovery of a novel and highly divergent GBV-B-like virus in an Old World monkey, the black-and-white colobus (Colobus guereza), in Uganda. The new virus, guereza hepacivirus (GHV), clusters phylogenetically with GBV-B and recently described hepaciviruses infecting African bats and North American rodents, and it shows evidence of ancient recombination with these other hepaciviruses. Direct sequencing of reverse-transcribed RNA from blood plasma from three of nine colobus monkeys yielded near-complete GHV genomes, comprising two distinct viral variants. The viruses contain an exceptionally long nonstructural 5A (NS5A) gene, approximately half of which codes for a protein with no discernible homology to known proteins. Computational structure-based analyses indicate that the amino terminus of the GHV NS5A protein may serve a zinc-binding function, similar to the NS5A of other viruses within the family Flaviviridae. However, the 521-amino-acid carboxy terminus is intrinsically disordered, reflecting an unusual degree of structural plasticity and polyfunctionality. These findings shed new light on the natural history and evolution of the hepaciviruses and on the extent of structural variation within the Flaviviridae.

  16. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    Science.gov (United States)

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Isolation and identification of a bovine viral diarrhea virus from sika deer in china

    OpenAIRE

    Gao, Yugang; Wang, Shijie; Du, Rui; Wang, Quankai; Sun, Changjiang; Wang, Nan; Zhang, Pengju; Zhang, Lianxue

    2011-01-01

    Abstract Background Bovine viral diarrhea virus (BVDV) infections continue to cause significantly losses in the deer population. Better isolation and identification of BVDV from sika deer may contribute significantly to the development of prophylactic therapeutic, and diagnostic reagents as well as help in prevention and control of BVDV. However, isolation and identification of BVDV from sika deer is seldom reported in literature. In this study, we collected some samples according to clinical...

  18. Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells▿

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-01-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions. PMID:18684830

  19. Different types of nsP3-containing protein complexes in Sindbis virus-infected cells.

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-10-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions.

  20. Nuclear import inhibitor N-(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection.

    Science.gov (United States)

    Wang, Chunxiao; Yang, Sundy N Y; Smith, Kate; Forwood, Jade K; Jans, David A

    2017-12-02

    In the absence of approved therapeutics, Zika virus (ZIKV)'s recent prolific outbreaks in the Americas, together with impacts on unborn fetuses of infected mothers, make it a pressing human health concern worldwide. Although a key player in viral replication in the infected host cell cytoplasm, ZIKV non-structural protein 5 (NS5) appears to contribute integrally to pathogenesis by localising in the host cell nucleus, in similar fashion to NS5 from Dengue virus (DENV). We show here for the first time that ZIKV NS5 is recognized with high nanomolar affinity by the host cell importin α/β1 heterodimer, and that this interaction can be blocked by the novel DENV NS5 targeting inhibitor N-(4-hydroxyphenyl) retinamide (4-HPR). Importantly, we show that 4-HPR has potent anti-ZIKV activity at low μM concentrations. With an established safety profile for human use, 4-HPR represents an exciting possibility as an anti-ZIKV agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Human Parvovirus B19 NS1 Protein Aggravates Liver Injury in NZB/W F1 Mice

    Science.gov (United States)

    Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Hsu, Huai-Sheng; Tzang, Bor-Show; Hsu, Tsai-Ching

    2013-01-01

    Human parvovirus B19 (B19) has been associated with a variety of diseases. However, the influence of B19 viral proteins on hepatic injury in SLE is still obscure. To elucidate the effects of B19 viral proteins on livers in SLE, recombinant B19 NS1, VP1u or VP2 proteins were injected subcutaneously into NZB/W F1 mice, respectively. Significant expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected in NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Markedly hepatocyte disarray and lymphocyte infiltration were observed in livers from NZB/WF 1 mice receiving B19 NS1 as compared to those mice receiving PBS. Additionally, significant increases of Tumor Necrosis Factor –α (TNF-α), TNF-α receptor, IκB kinase –α (IKK-α), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and nuclear factor-kappa B (NF-κB) were detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Accordingly, significant increases of matrix metalloproteinase-9 (MMP9) and U-plasminogen activator (uPA) were also detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Contrarily, no significant variation on livers from NZB/W F1 mice receiving B19 VP1u or VP2 was observed as compared to those mice receiving PBS. These findings firstly demonstrated the aggravated effects of B19 NS1 but not VP1u or VP2 protein on hepatic injury and provide a clue in understanding the role of B19 NS1 on hepatic injury in SLE. PMID:23555760

  2. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection.

    Directory of Open Access Journals (Sweden)

    Indrani Das

    Full Text Available BACKGROUND: The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV emphasize the need to understand the biology of the virus for developing effective antiviral therapies. METHODS AND FINDINGS: In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90 mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27 and Indian outbreak strain of 2006 (DRDE-06. Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production. CONCLUSION: Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06

  3. NS3 protease resistance-associated substitutions in liver tissue and plasma samples from patients infected by hepatitis C virus genotype 1A or 1B.

    Science.gov (United States)

    Morsica, Giulia; Andolina, Andrea; Merli, Marco; Messina, Emanuela; Hasson, Hamid; Lazzarin, Adriano; Uberti-Foppa, Caterina; Bagaglio, Sabrina

    2017-08-01

    The presence of naturally occurring resistance-associated substitutions (RASs) in the HCV-protease domain has been poorly investigated in the liver, the main site of HCV replication. We evaluated the natural resistance of the virus to NS3 protease inhibitors in liver tissue and plasma samples taken from HCV-infected patients. RASs were investigated by means of viral population sequencing in liver tissue samples from 18 HCV-infected patients harbouring genotype 1a or genotype 1b; plasma samples from 12 of these patients were also available for virological investigation. A discordant genotype was found in two of the 12 patients (16.6%) who provided samples from both compartments. Sequence analysis of the NS3 protease domain showed the presence of RASs in four of the 18 liver tissue samples (22.2%), two of which showed cross-resistance to protease inhibitors in clinical use or phase 2-3 trials. The analysis of the 12 paired tissues and plasma samples excluded the presence of RASs in the plasma compartment. The dominance of discordant genotypes in the paired liver and plasma samples of some HCV-infected patients suggests mixed infection possibly leading to the selective advantage of different genotype in the two compartments. The presence of RASs at intra-hepatic level is not uncommon and may lead to the early emergence of cross-resistant strains.

  4. Perinatal hepatitis B virus detection by hepatitis B virus-DNA analysis.

    OpenAIRE

    De Virgiliis, S; Frau, F; Sanna, G; Turco, M P; Figus, A L; Cornacchia, G; Cao, A

    1985-01-01

    Maternal transmission of hepatitis B virus infection in relation to the hepatitis B e antigen/antibody system and serum hepatitis B virus-DNA were evaluated. Results indicate that hepatitis B virus-DNA analysis can identify hepatitis B serum antigen positive mothers who may transmit infection to their offspring.

  5. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    International Nuclear Information System (INIS)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain; Saeed, Mohammad F.

    2016-01-01

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc. The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.

  6. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain; Saeed, Mohammad F., E-mail: saeed@southernresearch.org

    2016-09-15

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc. The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.

  7. Molecular Dynamics of the ZIKA Virus NS3 Helicase

    Science.gov (United States)

    Raubenolt, Bryan; Rick, Steven; The Rick Group Team

    The recent outbreaks of the ZIKA virus (ZIKV) and its connection to microcephaly in newborns has raised its awareness as a global threat and many scientific research efforts are currently underway in attempt to create a vaccine. Molecular Dynamics is a powerful method of investigating the physical behavior of protein complexes. ZIKV is comprised of 3 structural and 7 nonstructural proteins. The NS3 helicase protein appears to play a significant role in the replication complex and its inhibition could be a crucial source of antiviral drug design. This research primarily focuses on studying the structural dynamics, over the course of few hundred nanoseconds, of NS3 helicase in the free state, as well as in complex form with human ssRNA, ATP, and an analogue of GTP. RMSD and RMSF plots of each simulation will provide details on the forces involved in the overall stability of the active and inactive states. Furthermore, free energy calculations on a per residue level will reveal the most interactive residues between states and ultimately the primary driving force behind these interactions. Together these analyses will provide highly relevant information on the binding surface chemistry and thus serve as the basis for potential drug design.

  8. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    Science.gov (United States)

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the c-erbA-1 promoter led to the identification of an upstream region that is necessary for NS1-driven transactivation. This sequence harbors a putative hormone-responsive element and is sufficient to render a minimal promoter NS1 inducible in FREJ4 but not in FR3T3 cells, and it is involved in distinct interactions with proteins from the respective cell lines. The NS1-responsive element of the c-erbA-1 promoter bears no homology with sequences that were previously reported to be necessary for NS1 DNA binding and transactivation. Altogether, our data point to a novel, cell-specific mechanism of promoter activation by NS1. PMID:8642664

  9. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    Science.gov (United States)

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Consideration of Viral Resistance for Optimization of Direct Antiviral Therapy of Hepatitis C Virus Genotype 1-Infected Patients.

    Science.gov (United States)

    Dietz, Julia; Susser, Simone; Berkowski, Caterina; Perner, Dany; Zeuzem, Stefan; Sarrazin, Christoph

    2015-01-01

    Different highly effective interferon-free treatment options for chronic hepatitis C virus (HCV) infection are currently available. Pre-existence of resistance associated variants (RAVs) to direct antiviral agents (DAAs) reduces sustained virologic response (SVR) rates by 3-53% in hepatitis C virus (HCV) genotype 1 infected patients depending on different predictors and the DAA regimen used. Frequencies of single and combined resistance to NS3, NS5A and NS5B inhibitors and consequences for the applicability of different treatment regimens are unknown. Parallel population based sequencing of HCV NS3, NS5A and NS5B genes in 312 treatment-naïve Caucasian HCV genotype 1 infected patients showed the presence of major resistant variants in 20.5% (NS3), 11.9% (NS5A), and 22.1% (NS5B) with important differences for HCV subtypes. In NS3, Q80K was observed in 34.7% and 2.1% of subtype 1a and 1b patients, respectively while other RAVs to second generation protease inhibitors were detected rarely (1.4%). Within NS5A RAVs were observed in 7.1% of subtype 1a and 17.6% in subtype 1b infected patients. RAVs to non-nucleoside NS5B inhibitors were observed in 3.5% and 44.4% of subtype 1a and 1b patients, respectively. Considering all three DAA targets all subtype 1a and 98.6% of subtype 1b infected patients were wildtype for at least one interferon free DAA regimen currently available. In conclusion, baseline resistance testing allows the selection of at least one RAVs-free treatment option for nearly all patients enabling a potentially cost- and efficacy-optimized treatment of chronic hepatitis C.

  11. Consideration of Viral Resistance for Optimization of Direct Antiviral Therapy of Hepatitis C Virus Genotype 1-Infected Patients.

    Directory of Open Access Journals (Sweden)

    Julia Dietz

    Full Text Available Different highly effective interferon-free treatment options for chronic hepatitis C virus (HCV infection are currently available. Pre-existence of resistance associated variants (RAVs to direct antiviral agents (DAAs reduces sustained virologic response (SVR rates by 3-53% in hepatitis C virus (HCV genotype 1 infected patients depending on different predictors and the DAA regimen used. Frequencies of single and combined resistance to NS3, NS5A and NS5B inhibitors and consequences for the applicability of different treatment regimens are unknown. Parallel population based sequencing of HCV NS3, NS5A and NS5B genes in 312 treatment-naïve Caucasian HCV genotype 1 infected patients showed the presence of major resistant variants in 20.5% (NS3, 11.9% (NS5A, and 22.1% (NS5B with important differences for HCV subtypes. In NS3, Q80K was observed in 34.7% and 2.1% of subtype 1a and 1b patients, respectively while other RAVs to second generation protease inhibitors were detected rarely (1.4%. Within NS5A RAVs were observed in 7.1% of subtype 1a and 17.6% in subtype 1b infected patients. RAVs to non-nucleoside NS5B inhibitors were observed in 3.5% and 44.4% of subtype 1a and 1b patients, respectively. Considering all three DAA targets all subtype 1a and 98.6% of subtype 1b infected patients were wildtype for at least one interferon free DAA regimen currently available. In conclusion, baseline resistance testing allows the selection of at least one RAVs-free treatment option for nearly all patients enabling a potentially cost- and efficacy-optimized treatment of chronic hepatitis C.

  12. Association between vitamin D deficiency and pre-existing resistance-associated hepatitis C virus NS5A variants.

    Science.gov (United States)

    Okubo, Tomomi; Atsukawa, Masanori; Tsubota, Akihito; Shimada, Noritomo; Abe, Hiroshi; Yoshizawa, Kai; Arai, Taeang; Nakagawa, Ai; Itokawa, Norio; Kondo, Chisa; Aizawa, Yoshio; Iwakiri, Katsuhiko

    2017-06-01

    Although interferon-free therapy with direct-acting antivirals has developed as a standard of care for chronic hepatitis C, the existence of resistance-associated variants (RAVs) has a negative impact on treatment results. Recently, several studies indicated a relationship between chronic hepatitis C and serum vitamin D levels. However, the relationship between RAVs at the hepatitis C virus non-structure 5A (NS5A) region and serum vitamin D level has not yet been examined. Among patients with genotype 1 chronic hepatitis C who were enrolled in a multicenter cooperative study, our subjects comprised 247 patients in whom it was possible to measure RAVs at the NS5A region. These RAVs were measured using a direct sequencing method. The median age of patients was 70 years (range, 24-87 years), and the number of female patients was 135 (54.7%). The median serum 25(OH) D3 level was 22 ng/mL (range, 6-64 ng/mL). L31 and Y93 RAVs at the NS5A region were detected in 3.7% (9/247) and 13.4% (33/247) of patients, respectively. Multivariate analysis identified vitamin D deficiency (serum 25(OH) D3 ≤ 20 ng/mL) (P = 5.91 × 10⁻ 5 , odds ratio = 5.015) and elderly age (>70 years) (P = 1.85 × 10 -3 , odds ratio = 3.364) as contributing independent factors associated with the presence of the L31 and/or Y93 RAVs. The Y93H RAV was detected in 25.9% (29/112) of patients with a vitamin D deficiency, and in 8.9% (12/135) of those with a serum 25(OH) D3 level >20 ng/mL (P = 4.90 × 10 -3 ). We showed that RAVs at the NS5A region are associated with vitamin D deficiency and elderly age, which may have a negative influence on innate/adaptive immune responses to hepatitis C virus infection. © 2016 The Japan Society of Hepatology.

  13. Evaluation of the Abbott realtime HCV genotype II RUO (GT II) assay with reference to 5'UTR, core and NS5B sequencing.

    Science.gov (United States)

    Mallory, Melanie A; Lucic, Danijela X; Sears, Mitchell T; Cloherty, Gavin A; Hillyard, David R

    2014-05-01

    HCV genotyping is a critical tool for guiding initiation of therapy and selecting the most appropriate treatment regimen. To evaluate the concordance between the Abbott GT II assay and genotyping by sequencing subregions of the HCV 5'UTR, core and NS5B. The Abbott assay was used to genotype 127 routine patient specimens and 35 patient specimens with unusual subtypes and mixed infection. Abbott results were compared to genotyping by 5'UTR, core and NS5B sequencing. Sequences were genotyped using the NCBI non-redundant database and the online genotyping tool COMET. Among routine specimens, core/NS5B sequencing identified 93 genotype 1s, 13 genotype 2s, 15 genotype 3s, three genotype 4s, two genotype 6s and one recombinant specimen. Genotype calls by 5'UTR, core, NS5B sequencing and the Abbott assay were 97.6% concordant. Core/NS5B sequencing identified two discrepant samples as genotype 6 (subtypes 6l and 6u) while Abbott and 5'UTR sequencing identified these samples as genotype 1 with no subtype. The Abbott assay subtyped 91.4% of genotype 1 specimens. Among the 35 rare specimens, the Abbott assay inaccurately genotyped 3k, 6e, 6o, 6q and one genotype 4 variant; gave indeterminate results for 3g, 3h, 4r, 6m, 6n, and 6q specimens; and agreed with core/NS5B sequencing for mixed specimens. The Abbott assay is an automated HCV genotyping method with improved accuracy over 5'UTR sequencing. Samples identified by the Abbott assay as genotype 1 with no subtype may be rare subtypes of other genotypes and thus require confirmation by another method. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Portulaca oleracea L. as a Prospective Candidate Inhibitor of Hepatitis C Virus NS3 Serine Protease.

    Science.gov (United States)

    Noreen, Sobia; Hussain, Ishtiaq; Tariq, Muhammad Ilyas; Ijaz, Bushra; Iqbal, Shahid; Qamar-ul-Zaman; Ashfaq, Usman Ali; Husnain, Tayyab

    2015-06-01

    Hepatitis C virus (HCV) infection is a worldwide health problem affecting about 300 million individuals. HCV causes chronic liver disease, liver cirrhosis, hepatocellular carcinoma, and death. Many side effects are associated with the current treatment options. Natural products that can be used as anti-HCV drugs are thus of considerable potential significance. NS3 serine protease (NS3-SP) is a target for the screening of antiviral activity against HCV. The present work explores plants with anti-HCV potential, isolating possible lead compounds. Ten plants, used for medicinal purposes against different infections in rural areas of Pakistan, were collected. The cellular toxicity effects of methanolic extracts of the plants on the viability of Huh-7 cells were studied through the Trypan blue dye exclusion method. Following this, the anti-HCV potential of phytoextracts was assessed by infecting liver cells with HCV-3a-infected serum inoculum. Only the methanolic extract of Portulaca oleracea L. (PO) exhibited more than 70% inhibition. Four fractions were obtained through bioassay-guided extraction of PO. Subsequent inhibition of all organic extract fractions against NS3 serine protease was checked to track the specific target in the virus. The results showed that the PO methanolic crude and ethyl acetate extract specifically abridged the HCV NS3 protease expression in a dose-dependent fashion. Hence, PO extract and its constituents either alone or with interferon could offer a future option to treat chronic HCV.

  15. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    Science.gov (United States)

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  16. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    Science.gov (United States)

    Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed

    2017-10-01

    Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  17. Production of infectious chimeric hepatitis C virus genotype 2b harboring minimal regions of JFH-1.

    Science.gov (United States)

    Murayama, Asako; Kato, Takanobu; Akazawa, Daisuke; Sugiyama, Nao; Date, Tomoko; Masaki, Takahiro; Nakamoto, Shingo; Tanaka, Yasuhito; Mizokami, Masashi; Yokosuka, Osamu; Nomoto, Akio; Wakita, Takaji

    2012-02-01

    To establish a cell culture system for chimeric hepatitis C virus (HCV) genotype 2b, we prepared a chimeric construct harboring the 5' untranslated region (UTR) to the E2 region of the MA strain (genotype 2b) and the region of p7 to the 3' UTR of the JFH-1 strain (genotype 2a). This chimeric RNA (MA/JFH-1.1) replicated and produced infectious virus in Huh7.5.1 cells. Replacement of the 5' UTR of this chimera with that from JFH-1 (MA/JFH-1.2) enhanced virus production, but infectivity remained low. In a long-term follow-up study, we identified a cell culture-adaptive mutation in the core region (R167G) and found that it enhanced virus assembly. We previously reported that the NS3 helicase (N3H) and the region of NS5B to 3' X (N5BX) of JFH-1 enabled replication of the J6CF strain (genotype 2a), which could not replicate in cells. To reduce JFH-1 content in MA/JFH-1.2, we produced a chimeric viral genome for MA harboring the N3H and N5BX regions of JFH-1, combined with a JFH-1 5' UTR replacement and the R167G mutation (MA/N3H+N5BX-JFH1/R167G). This chimeric RNA replicated efficiently, but virus production was low. After the introduction of four additional cell culture-adaptive mutations, MA/N3H+N5BX-JFH1/5am produced infectious virus efficiently. Using this chimeric virus harboring minimal regions of JFH-1, we analyzed interferon sensitivity and found that this chimeric virus was more sensitive to interferon than JFH-1 and another chimeric virus containing more regions from JFH-1 (MA/JFH-1.2/R167G). In conclusion, we established an HCV genotype 2b cell culture system using a chimeric genome harboring minimal regions of JFH-1. This cell culture system may be useful for characterizing genotype 2b viruses and developing antiviral strategies.

  18. DEB025 (Alisporivir inhibits hepatitis C virus replication by preventing a cyclophilin A induced cis-trans isomerisation in domain II of NS5A.

    Directory of Open Access Journals (Sweden)

    Lotte Coelmont

    2010-10-01

    Full Text Available DEB025/Debio 025 (Alisporivir is a cyclophilin (Cyp-binding molecule with potent anti-hepatitis C virus (HCV activity both in vitro and in vivo. It is currently being evaluated in phase II clinical trials. DEB025 binds to CypA, a peptidyl-prolyl cis-trans isomerase which is a crucial cofactor for HCV replication. Here we report that it was very difficult to select resistant replicons (genotype 1b to DEB025, requiring an average of 20 weeks (four independent experiments, compared to the typically <2 weeks with protease or polymerase inhibitors. This indicates a high genetic barrier to resistance for DEB025. Mutation D320E in NS5A was the only mutation consistently selected in the replicon genome. This mutation alone conferred a low-level (3.9-fold resistance. Replacing the NS5A gene (but not the NS5B gene from the wild type (WT genome with the corresponding sequence from the DEB025(res replicon resulted in transfer of resistance. Cross-resistance with cyclosporine A (CsA was observed, whereas NS3 protease and NS5B polymerase inhibitors retained WT-activity against DEB025(res replicons. Unlike WT, DEB025(res replicon replicated efficiently in CypA knock down cells. However, DEB025 disrupted the interaction between CypA and NS5A regardless of whether the NS5A protein was derived from WT or DEB025(res replicon. NMR titration experiments with peptides derived from the WT or the DEB025(res domain II of NS5A corroborated this observation in a quantitative manner. Interestingly, comparative NMR studies on two 20-mer NS5A peptides that contain D320 or E320 revealed a shift in population between the major and minor conformers. These data suggest that D320E conferred low-level resistance to DEB025 probably by reducing the need for CypA-dependent isomerisation of NS5A. Prolonged DEB025 treatment and multiple genotypic changes may be necessary to generate significant resistance to DEB025, underlying the high barrier to resistance.

  19. Analysis of Hepatitis C Virus NS5A Region in Patients with Cirrhosis Using an Ultra-Deep Pyrosequencing Method.

    Science.gov (United States)

    Keskin, Fahriye; Ciftci, Sevgi; Akyuz, Filiz; Abaci, Neslihan; Cakiris, Aris; Akyuz, Umit; Demir, Kadir; Besisik, Fatih; Ustek, Duran; Kaymakoglu, Sabahattin

    2017-09-01

    HCV (Hepatitis C Virus) is genetically more diverse than HBV and HIV (Human Immunodeficiency Virus) and exists as quasispecies within infected individuals. This is due to the lack of efficient proofreading of the viral RNA-dependent RNA polymerase. Consequently, quasispecies emerge depending on the mutation rate of the viral polymerase, which may display a high level of genetic variability in a population. In infected individuals, HCV replicates and circulates as quasispecies composed of a complex mixture of different but closely related genomes that undergoes continuous change due to competitive selection and cooperation between arising mutants. The aim of this study is to investigate mutations in the NS5A region as a whole, including ISDR, PKRBD, IRRDR, and V3 of HCV genotype 1b cirrhosis patients being naive and nonresponders, treated with IFN (interferon) + ribavirin (RBN) by using an ultra-deep pyrosequencing method (UDPS). During the study, five patients (four females, and one male, mean age 59.8 ± 11 years) with HCV related cirrhosis were analyzed. Three patients received IFN + RBN for six months, but two patients did not receive any therapy. HCV-RNA concentrations in patients' sera were determined using a COBAS AMPLICOR HCV MONITOR Test, Version 2.0. Genotyping was performed by using a commercial reverse hybridization method, Line Probe Assay. The quasispecies for the NS5A region were investigated using UDPS. All five patients were HCV genotype 1b (Mean Child-Pugh score 7.2 ± 1.9, 2 pts Child A, 2 pts Child B, and one pt Child C) but only one patient had hepatocellular carcinoma (HCC). A total of 19 different mutations were detected in each of the five patients (ranging from 3 to 6 mutations per patient). In all five patients, several mutations in the ISDR and PKR-BD regions were detected. On the other hand, mutations in the V3 and IRRDR regions were only detected in one patient. UDPS is a new sequencing technology and a very sensitive method in detection

  20. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    Science.gov (United States)

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  1. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    International Nuclear Information System (INIS)

    Russo, Andrew T.; Watowich, Stanley J.

    2006-01-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2 1 2 1 2 1 . Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way

  2. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Andrew T.; Watowich, Stanley J., E-mail: watowich@xray.utmb.edu [Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX (United States)

    2006-06-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.

  3. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    Science.gov (United States)

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Evolution of hepatitis C virus quasispecies during repeated treatment with the NS3/4A protease inhibitor telaprevir

    NARCIS (Netherlands)

    Susser, Simone; Flinders, Mathieu; Reesink, Henk W.; Zeuzem, Stefan; Lawyer, Glenn; Ghys, Anne; van Eygen, Veerle; Witek, James; de Meyer, Sandra; Sarrazin, Christoph

    2015-01-01

    In treating hepatitis B virus (HBV) and human immunodeficiency virus (HIV) infections, the rapid reselection of resistance-associated variants (RAVs) is well known in patients with repeated exposure to the same class of antiviral agents. For chronic hepatitis C patients who have experienced

  5. Sequence Analysis and Phylogenetic Profiling of the Nonstructural (NS Genes of H9N2 Influenza A Viruses Isolated in Iran during 1998-2007

    Directory of Open Access Journals (Sweden)

    Ebrahimi, M.

    2014-11-01

    Full Text Available The earliest evidences on circulation of Avian Influenza (AI virus on the Iranian poultry farms date back to 1998. Great economic losses through dramatic drop in egg production and high mortality rates are characteristically attributed to H9N2 AI virus. In the present work non-structural (NS genes of 10 Iranian H9N2 chicken AI viruses collected during 1998-2007 were fully sequenced and subjected to a phylogenetic analysis. The observations proved allele A was the single-detectable type of the NS gene within the studied isolates. All the examined Iranian isolates fell into the Korean sublineage with a relatively broad sequence homology (91.6-98% in nucleotide construction of the NS genes. The motif for PDZ ligand recognition of the group one isolates was either EDEV (N=6 or ESEV (N=1 While all viruses as group two contained a PL motif “KSEV” (N=3. The present work provides useful epidemiological data at molecular level on source and contemporary evolution of H9N2 virus population in Iran.

  6. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy

    DEFF Research Database (Denmark)

    Liang, Qiming; Luo, Zhifei; Zeng, Jianxiong

    2016-01-01

    The current widespread outbreak of Zika virus (ZIKV) infection has been linked to severe clinical birth defects, particularly microcephaly, warranting urgent study of the molecular mechanisms underlying ZIKV pathogenesis. Akt-mTOR signaling is one of the key cellular pathways essential for brain...

  7. Intrinsically Disordered Side of the Zika Virus Proteome

    Directory of Open Access Journals (Sweden)

    Rajanish Giri

    2016-11-01

    Full Text Available Over the last few decades, concepts of protein intrinsic disorder have been implicated in different biological processes. Recent studies have suggested that intrinsically disordered proteins (IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion in host cells. In case of Zika virus, the roles of protein intrinsic disorder in mechanisms of pathogenesis are not completely understood. In this study, we have analyzed the prevalence of intrinsic disorder in Zika virus proteome (strain MR 766. Our analyses revealed that Zika virus polyprotein is enriched with intrinsically disordered protein regions (IDPRs and this finding is consistent with previous reports on the involvement of IDPs in shell formation and virulence of the Flaviviridae family. We found abundant IDPRs in Capsid, NS2B, NS3, NS4A, and NS5 proteins that are involved in mature particle formation and replication. In our view, the intrinsic disorder-focused analysis of ZIKV proteins could be important for the development of new disorder-based drugs.

  8. A Single Amino Acid Substitution in the NS2A Protein of Japanese Encephalitis Virus Affects Virus Propagation In Vitro but Not In Vivo.

    Science.gov (United States)

    Takamatsu, Yuki; Morita, Kouichi; Hayasaka, Daisuke

    2015-06-01

    We identified a unique amino acid of NS2A113, phenylalanine, that affects the efficient propagation of two Japanese encephalitis virus strains, JaTH160 and JaOArS982, in neuroblastoma Neuro-2a cells but not in cell lines of extraneural origin. This amino acid did not affect viral loads in the brain or survival curves in mice. These findings suggest that virus propagation in vitro may not reflect the level of virus neuroinvasiveness in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. An NS5A single optimized method to determine genotype, subtype and resistance profiles of Hepatitis C strains.

    Directory of Open Access Journals (Sweden)

    Elisabeth Andre-Garnier

    Full Text Available The objective was to develop a method of HCV genome sequencing that allowed simultaneous genotyping and NS5A inhibitor resistance profiling. In order to validate the use of a unique RT-PCR for genotypes 1-5, 142 plasma samples from patients infected with HCV were analysed. The NS4B-NS5A partial region was successfully amplified and sequenced in all samples. In parallel, partial NS3 sequences were analyzed obtained for genotyping. Phylogenetic analysis showed concordance of genotypes and subtypes with a bootstrap >95% for each type cluster. NS5A resistance mutations were analyzed using the Geno2pheno [hcv] v0.92 tool and compared to the list of known Resistant Associated Substitutions recently published. In conclusion, this tool allows determination of HCV genotypes, subtypes and identification of NS5A resistance mutations. This single method can be used to detect pre-existing resistance mutations in NS5A before treatment and to check the emergence of resistant viruses while undergoing treatment in major HCV genotypes (G1-5 in the EU and the US.

  10. Resistance-Associated NS5A Variants of Hepatitis C Virus Are Susceptible to Interferon-Based Therapy.

    Directory of Open Access Journals (Sweden)

    Jun Itakura

    Full Text Available The presence of resistance-associated variants (RAVs of hepatitis C virus (HCV attenuates the efficacy of direct acting antivirals (DAAs. The objective of this study was to characterize the susceptibility of RAVs to interferon-based therapy.Direct and deep sequencing were performed to detect Y93H RAV in the NS5A region. Twenty nine genotype 1b patients with detectable RAV at baseline were treated by a combination of simeprevir, pegylated interferon and ribavirin. The longitudinal changes in the proportion of Y93H RAV during therapy and at breakthrough or relapse were determined.By direct sequencing, Y93H RAV became undetectable or decreased in proportion at an early time point during therapy (within 7 days in 57% of patients with both the Y93H variant and wild type virus at baseline when HCV RNA was still detectable. By deep sequencing, the proportion of Y93H RAV against Y93 wild type was 52.7% (5.8%- 97.4% at baseline which significantly decreased to 29.7% (0.16%- 98.3% within 7 days of initiation of treatment (p = 0.023. The proportion of Y93H RAV was reduced in 21 of 29 cases (72.4% and a marked reduction of more than 10% was observed in 14 cases (48.7%. HCV RNA reduction was significantly greater for Y93H RAV (-3.65±1.3 logIU/mL/day than the Y93 wild type (-3.35±1.0 logIU/mL/day (p<0.001.Y93H RAV is more susceptible to interferon-based therapy than the Y93 wild type.

  11. Resistance-Associated NS5A Variants of Hepatitis C Virus Are Susceptible to Interferon-Based Therapy.

    Science.gov (United States)

    Itakura, Jun; Kurosaki, Masayuki; Higuchi, Mayu; Takada, Hitomi; Nakakuki, Natsuko; Itakura, Yoshie; Tamaki, Nobuharu; Yasui, Yutaka; Suzuki, Shoko; Tsuchiya, Kaoru; Nakanishi, Hiroyuki; Takahashi, Yuka; Maekawa, Shinya; Enomoto, Nobuyuki; Izumi, Namiki

    2015-01-01

    The presence of resistance-associated variants (RAVs) of hepatitis C virus (HCV) attenuates the efficacy of direct acting antivirals (DAAs). The objective of this study was to characterize the susceptibility of RAVs to interferon-based therapy. Direct and deep sequencing were performed to detect Y93H RAV in the NS5A region. Twenty nine genotype 1b patients with detectable RAV at baseline were treated by a combination of simeprevir, pegylated interferon and ribavirin. The longitudinal changes in the proportion of Y93H RAV during therapy and at breakthrough or relapse were determined. By direct sequencing, Y93H RAV became undetectable or decreased in proportion at an early time point during therapy (within 7 days) in 57% of patients with both the Y93H variant and wild type virus at baseline when HCV RNA was still detectable. By deep sequencing, the proportion of Y93H RAV against Y93 wild type was 52.7% (5.8%- 97.4%) at baseline which significantly decreased to 29.7% (0.16%- 98.3%) within 7 days of initiation of treatment (p = 0.023). The proportion of Y93H RAV was reduced in 21 of 29 cases (72.4%) and a marked reduction of more than 10% was observed in 14 cases (48.7%). HCV RNA reduction was significantly greater for Y93H RAV (-3.65±1.3 logIU/mL/day) than the Y93 wild type (-3.35±1.0 logIU/mL/day) (p<0.001). Y93H RAV is more susceptible to interferon-based therapy than the Y93 wild type.

  12. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs.

    Science.gov (United States)

    Panthu, Baptiste; Terrier, Olivier; Carron, Coralie; Traversier, Aurélien; Corbin, Antoine; Balvay, Laurent; Lina, Bruno; Rosa-Calatrava, Manuel; Ohlmann, Théophile

    2017-10-27

    The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Generation of the bovine viral diarrhea virus e0 protein in transgenic astragalus and its immunogenicity in sika deer.

    Science.gov (United States)

    Gao, Yugang; Zhao, Xueliang; Zang, Pu; Liu, Qun; Wei, Gongqing; Zhang, Lianxue

    2014-01-01

    The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR), transcription was verified by reverse transcription- (RT-) PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.

  14. Generation of the Bovine Viral Diarrhea Virus E0 Protein in Transgenic Astragalus and Its Immunogenicity in Sika Deer

    Directory of Open Access Journals (Sweden)

    Yugang Gao

    2014-01-01

    Full Text Available The bovine viral diarrhea virus (BVDV, a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR, transcription was verified by reverse transcription- (RT- PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.

  15. Characterization of pseudorabies viruses produced in mammalian ...

    African Journals Online (AJOL)

    Yomi

    2012-02-28

    Feb 28, 2012 ... for influenza A and B viruses (Govorkova et al., 1996). In addition, the propagation of porcine epidemic diarrhea virus (PEDV), a porcine coronavirus had been unsuccessful until serial passage of the virus in Vero cells. (Hofmann and Wyler, 1988; Song et al., 2003). There- fore, this cell line is being widely ...

  16. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment.

    Science.gov (United States)

    Paul, David; Hoppe, Simone; Saher, Gesine; Krijnse-Locker, Jacomine; Bartenschlager, Ralf

    2013-10-01

    Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses.

  17. In Vitro and In Vivo Characterization of a Typical and a High Pathogenic Bovine Viral Diarrhea Virus Type II Strains

    Directory of Open Access Journals (Sweden)

    Dario Amilcar Malacari

    2018-04-01

    Full Text Available Non-cytopathic (ncp type 2 bovine viral diarrhea virus (BVDV-2 is widely prevalent in Argentina causing high mortality rates in cattle herds. In this study, we characterized an Argentinean ncp BVDV-2 field isolate (98-124 compared to a high-virulence reference strain (NY-93, using in silico analysis, in vitro assays, and in vivo infections of colostrum-deprived calves (CDC to compare pathogenic characters and virulence. In vitro infection of bovine peripheral blood mononuclear cells (PBMC with BVDV 98-124 induced necrosis shortly after infection while NY-93 strain increased the apoptotic rate in infected cells. Experimental infection of CDC (n = 4 each with these strains caused an enteric syndrome. High pyrexia was detected in both groups. Viremia and shedding were more prolonged in the CDC infected with the NY-93 strain. In addition, NY-93 infection elicited a severe lymphopenia that lasted for 14 days, whereas 98-124 strain reduced the leukocyte counts for 5 days. All infected animals had a diminished lymphoproliferation activity in response to a mitogen. Neutralizing and anti-NS3 antibodies were detected 3 weeks after infection in all infected calves. Virulence was associated with a more severe clinical score, prolonged immune-suppression, and a greater window for transmission. Studies of apoptosis/necrosis performed after in vitro PBMC infection also revealed differences between both strains that might be correlated to the in vivo pathogenesis. Our results identified 98-124 as a low-virulence strain.

  18. Hepatitis C virus NS3 protease genotyping and drug concentration determination during triple therapy with telaprevir or boceprevir for chronic infection with genotype 1 viruses, southeastern France.

    Science.gov (United States)

    Aherfi, Sarah; Solas, Caroline; Motte, Anne; Moreau, Jacques; Borentain, Patrick; Mokhtari, Saadia; Botta-Fridlund, Danielle; Dhiver, Catherine; Portal, Isabelle; Ruiz, Jean-Marie; Ravaux, Isabelle; Bregigeon, Sylvie; Poizot-Martin, Isabelle; Stein, Andreas; Gérolami, René; Brouqui, Philippe; Tamalet, Catherine; Colson, Philippe

    2014-11-01

    Telaprevir and boceprevir, the two first hepatitis C virus (HCV) NS3 protease inhibitors (PIs), considerably increase rates of sustained virologic response in association with pegylated interferon and ribavirin in chronic HCV genotype 1 infections. The 30 first patients treated by telaprevir or boceprevir including anti-HCV therapies since 2011 in Marseille University hospitals, France, were monitored. HCV loads and plasmatic concentrations of telaprevir and boceprevir were determined on sequential blood samples. HCV NS3 protease gene population sequencing was performed at baseline of treatment and in case of treatment failure. Fifteen patients (including 7 co-infected with HIV) received telaprevir and the other 15 patients (including 4 co-infected with HIV) received boceprevir. At baseline, HCV NS3 protease from six patients harbored amino acid substitutions associated with PI-resistance. Treatment failure occurred at week 12 for 7 patients. Amino acid substitutions associated with PI-resistance were observed in six of these cases. HCV NS3 R155K and T54A/S mutants, all of genotype 1a, were found from four patients. Median (interquartile range) plasma concentrations were 3,092 ng/ml (2,320-3,525) for telaprevir and 486 ng/ml (265-619) for boceprevir. For HIV-HCV co-infected patients, median concentrations were 3,162 ng/ml (2,270-4,232) for telaprevir and 374 ng/ml (229-519) for boceprevir. Plasma drug concentration monitoring revealed undetectable concentrations for two patients at week 4, and probable non-adherence to therapy for another patient. These findings indicate that routine HCV NS3 protease sequencing and plasma PI concentration monitoring might be helpful to characterize cases of therapy failure, at a cost dramatically low compared to that of anti-HCV therapy. © 2014 Wiley Periodicals, Inc.

  19. Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith Margarete; Jensen, Tina Birk

    2008-01-01

    in serial passages. Sequence analysis of recovered viruses and subsequent reverse genetic studies revealed a vital dependence on one or two NS2 mutations, depending on the 4a/2a junction. Infectivity of ED43/JFH1 viruses was CD81 dependent. The genotype 4 cell culture systems permit functional analyses...... as well as drug and vaccine research on an increasingly important genotype in the Middle East, Africa, and Europe. We also developed genotype 1a intergenotypic recombinants from H77C with vital mutations in NS3. Using H77C/JFH1 and ED43/JFH1 viruses, we demonstrated high homologous neutralizing antibody...... titers in 1a and 4a patient sera, respectively. Furthermore, availability of JFH1 viruses with envelope proteins of the six major HCV genotypes permitted cross-neutralization studies; 1a and 4a serum cross-neutralized 1a, 4a, 5a, and 6a but not 2a and 3a viruses. Thus, the JFH1 intergenotypic...

  20. The Genetic Diversity and Phylogenetic Characteritics of Rotavirus VP4(P Genotypes in Children With Acute Diarrhea

    Directory of Open Access Journals (Sweden)

    Haghshenas Z

    2011-11-01

    Full Text Available Background: Acute gastroenteritis is a major cause of morbidity and mortality among children in developing countries. Rotaviruses are recognized as the most common etiologic factors of gastroenteritis. In this study, we determined the epidemiologic features, clinical symptoms and molecular structure of rotavirus VP4(P genotypes in children with acute diarrhea in Bahrami Hospital in Tehran Iran, during 2009 for justifying the routine use of rotavirus vaccines in children. Methods: One hundred fifty fecal samples from 150 children with acute diarrhea in Bahrami Pediatric Hospital in Tehran, Iran were collected from January to December 2009. The patients’ mean age was 20.90+18.19 years (ranging from 1 month to 14 years. Fecal samples were transported on ice to the laboratory of virology department of Pasture Institute of Iran. The demographic and clinical data for each case were entered in an author-devised questionnaire. Group A rotavirus was detected by dsRNA-PAGE. Subsequently, rotavirus genotyping (VP4 was performed by semi-nested multiple RT-PCR and the phylogenetic tree of the Rotavirus nucleotides was constructed. The data were analyzed by statistical tests including Wilcoxon signed and Mann-Whitney U. Results: Rotavirus was isolated in 19.3% of the samples, more than 90% of which had long RNA patterns. The predominant genotype (VP4 was P[8] (86% and other genotypes respectively were P[6] (6.9% and P[4] (6.9%. Conclusion: A high prevalence of the P[8] genotype was found to be the cause of acute diarrhea. The analysis of P[8] genotype sequence showed a high level of similarity of the virus in this study with those of other Asian countries.

  1. Prevalence of polymorphisms with significant resistance to NS5A inhibitors in treatment-naive patients with hepatitis C virus genotypes 1a and 3a in Sweden.

    Science.gov (United States)

    Lindström, Ida; Kjellin, Midori; Palanisamy, Navaneethan; Bondeson, Kåre; Wesslén, Lars; Lannergard, Anders; Lennerstrand, Johan

    2015-08-01

    The future treatment of hepatitis C virus (HCV) infection will be combinations of direct-acting antivirals (DAAs) that not only target multiple viral targets, but are also effective against different HCV genotypes. Of the many drug targets in HCV, one promising target is the non-structural 5A protein (NS5A), against which inhibitors, namely daclatasvir, ledipasvir and ombitasvir, have shown potent efficacy. However, since HCV is known to have very high sequence diversity, development of resistance is a problem against but not limited to NS5A inhibitors (i.e. resistance also found against NS3-protease and NS5B non-nucleoside inhibitors), when used in suboptimal combinations. Furthermore, it has been shown that natural resistance against DAAs is present in treatment-naïve patients and such baseline resistance will potentially complicate future treatment strategies. A pan-genotypic population-sequencing method with degenerated primers targeting the NS5A region was developed. We have investigated the prevalence of baseline resistant variants in 127 treatment-naïve patients of HCV genotypes 1a, 1b, 2b and 3a. The method could successfully sequence more than 95% of genotype 1a, 1b and 3a samples. Interpretation of fold resistance data against the NS5A inhibitors was done with the help of earlier published phenotypic data. Baseline resistance variants associated with high resistance (1000-50,000-fold) was found in three patients: Q30H or Y93N in genotype 1a patients and further Y93H in a genotype 3a patient. Using this method, baseline resistance can be examined and the data could have a potential role in selecting the optimal and cost-efficient treatment for the patient.

  2. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Directory of Open Access Journals (Sweden)

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  3. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    Science.gov (United States)

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-12-01

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro . These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  4. Detection of Immune-Complex Dissociated Nonstructural-1 (NS-1) Antigen in Patients with Acute Dengue Virus Infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  5. Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets.

    Science.gov (United States)

    Hou, Yixuan; Lin, Chun-Ming; Yokoyama, Masaru; Yount, Boyd L; Marthaler, Douglas; Douglas, Arianna L; Ghimire, Shristi; Qin, Yibin; Baric, Ralph S; Saif, Linda J; Wang, Qiuhong

    2017-07-15

    We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region

  6. Elimination of Porcine Epidemic Diarrhea Virus in an Animal Feed Manufacturing Facility.

    Directory of Open Access Journals (Sweden)

    Anne R Huss

    Full Text Available Porcine Epidemic Diarrhea Virus (PEDV was the first virus of wide scale concern to be linked to possible transmission by livestock feed or ingredients. Measures to exclude pathogens, prevent cross-contamination, and actively reduce the pathogenic load of feed and ingredients are being developed. However, research thus far has focused on the role of chemicals or thermal treatment to reduce the RNA in the actual feedstuffs, and has not addressed potential residual contamination within the manufacturing facility that may lead to continuous contamination of finished feeds. The purpose of this experiment was to evaluate the use of a standardized protocol to sanitize an animal feed manufacturing facility contaminated with PEDV. Environmental swabs were collected throughout the facility during the manufacturing of a swine diet inoculated with PEDV. To monitor facility contamination of the virus, swabs were collected at: 1 baseline prior to inoculation, 2 after production of the inoculated feed, 3 after application of a quaternary ammonium-glutaraldehyde blend cleaner, 4 after application of a sodium hypochlorite sanitizing solution, and 5 after facility heat-up to 60°C for 48 hours. Decontamination step, surface, type, zone and their interactions were all found to impact the quantity of detectable PEDV RNA (P < 0.05. As expected, all samples collected from equipment surfaces contained PEDV RNA after production of the contaminated feed. Additionally, the majority of samples collected from non-direct feed contact surfaces were also positive for PEDV RNA after the production of the contaminated feed, emphasizing the potential role dust plays in cross-contamination of pathogen throughout a manufacturing facility. Application of the cleaner, sanitizer, and heat were effective at reducing PEDV genomic material (P < 0.05, but did not completely eliminate it.

  7. Favorable outcome of Epstein-Barr virus-associated B-cell lymphoproliferative disorder complicated by immunoglobulin G4-related disease treated with rituximab-based therapy: a case report.

    Science.gov (United States)

    Ueda, Koki; Ikeda, Kazuhiko; Ogawa, Kazuei; Sukegawa, Masumi; Sano, Takahiro; Kimura, Satoshi; Suzuki, Osamu; Hashimoto, Yuko; Takeishi, Yasuchika

    2016-08-24

    After acute infection of Epstein-Barr virus, Epstein-Barr virus-infected B cells survive but usually do not show clonal proliferation. However, Epstein-Barr virus-infected B cells occasionally acquire a proliferative capacity that provokes clonal lymphoproliferative disorders. We herein present a case with Epstein-Barr virus-infected CD30+ B cell and immunoglobulin G4+ plasmacytoid cell proliferation in the lymph nodes, suggesting a pathological and clinical interaction between Epstein-Barr virus-associated B-cell lymphoproliferative disorders and immunoglobulin G4-related disease. Immunoglobulin G4-related disease has been recognized as a benign disease with proliferation of IgG4-related disease+ plasmacytoid cells. Several studies have recently reported the coexistence of immunoglobulin G4-related disease+ plasmacytoid cells with Epstein-Barr virus-infected B cells in lymph nodes in some immunoglobulin G4-related disease cases. However, the pathogenic role of the clonal proliferation of Epstein-Barr virus-infected B cells in immunoglobulin G4-related disease, as well as the treatments for patients with both Epstein-Barr virus-infected B cells and immunoglobulin G4-related disease, have never been discussed. A 50-year-old Japanese man was referred to us for persistent fatigue and lymphadenopathy. His blood examination showed elevated IgG4, and detected high levels of Epstein-Barr virus DNA. A lymph node biopsy revealed IgG4+ plasmacytoid cells and infiltration of large lymphoid cells, which were positive for CD20, CD30, Epstein-Barr virus-related late membrane protein 1, and Epstein-Barr virus-encoded RNA, and were negative for IgG4. Based on the diagnosis of both Epstein-Barr virus-associated B-cell lymphoproliferative disorder and IgG4-related disease, the patient received eight cycles of rituximab combined with cyclophosphamide and prednisolone, which resulted in the complete disappearance of lymphadenopathy. Moreover, his serum IgG4 level was significantly

  8. Resistance analysis and characterization of NITD008 as an adenosine analog inhibitor against hepatitis C virus.

    Science.gov (United States)

    Qing, Jie; Luo, Rui; Wang, Yaxin; Nong, Junxiu; Wu, Ming; Shao, Yan; Tang, Ruoyi; Yu, Xi; Yin, Zheng; Sun, Yuna

    2016-02-01

    Hepatitis disease caused by hepatitis C virus (HCV) is a severe threat to global public health, affecting approximately 3% of the world's population. Sofosbuvir (PSI-7977), a uridine nucleotide analog inhibitor targeting the HCV NS5B polymerase, was approved by FDA at the end of 2013 and represents a key step towards a new era in the management of HCV infection. Previous study identified NITD008, an adenosine nucleoside analog, as the specific inhibitor against dengue virus and showed good antiviral effect on other flaviviruses or enteroviruses. In this report, we systematically analyzed the anti-HCV profile of NITD008, which was discovered to effectively suppress the replication of different strains of HCV in human hepatoma cells with a low nanomolar activity. On genotype 2a virus, or 2a, 1a, and 1b replicon cells, EC50 values were 8.7 nM, 93.3 nM, 60.0 nM and 67.2 nM, and selective index values were >2298.9, >214.4, >333.3, >298.5 respectively. We demonstrated that resistance to NITD008 was conferred by mutation in NS5B (S282T) in the HCV infectious virus genotype 2a (JFH-1). Then, we compared the resistant profiles of NITD008 and PSI-7977, and found that the folds change of EC50 of NITD008 to full replicon cells containing mutation S282T was much bigger than PSI-7977(folds 76.50 vs. 4.52). Analysis of NITD008 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of NITD008 was not completely similar to PSI-7977, and meanwhile, S282T resistant mutation to NITD008 emerge more easily in cell culture than PSI-7977. Interestingly, NITD008 displayed significant synergistic effects with the NS5B polymerase inhibitor PSI-7977, however, only additive effects with alpha interferon (IFNα-2b), ribavirin, and an NS3 protease inhibitor. These results verify that NITD008 is an effective analog inhibitor against hepatitis C virus and a good research tool as a supplement to other types of nucleoside analogs. Copyright

  9. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication

    NARCIS (Netherlands)

    Cleef, K.W.R. van; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.; Davidson, A.D.; Jacobs, M.; Neyts, J.; Kuppeveld, F.J.M. van; Rij, R.P. van

    2013-01-01

    Dengue virus (DENV) is an important human arthropod-borne virus with a major impact on public health. Nevertheless, a licensed vaccine or specific treatment is still lacking. We therefore screened the NIH Clinical Collection (NCC), a library of drug-like small molecules, for inhibitors of DENV

  10. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2017-03-01

    Full Text Available Human parvovirus B19 (B19V infection of primary human erythroid progenitor cells (EPCs arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2 within NS1 is responsible for G2-phase arrest. To fully understand the mechanism underlying B19V NS1-induced G2-phase arrest, we established two doxycycline-inducible B19V-permissive UT7/Epo-S1 cell lines that express NS1 or NS1mTAD2, and examined the function of the TAD2 domain during G2-phase arrest. The results confirm that the NS1 TAD2 domain plays a pivotal role in NS1-induced G2-phase arrest. Mechanistically, NS1 transactivated cellular gene expression through the TAD2 domain, which was itself responsible for ATR (ataxia-telangiectasia mutated and Rad3-related activation. Activated ATR phosphorylated CDC25C at serine 216, which in turn inactivated the cyclin B/CDK1 complex without affecting nuclear import of the complex. Importantly, we found that the ATR-CHK1-CDC25C-CDK1 pathway was activated during B19V infection of EPCs, and that ATR activation played an important role in B19V infection-induced G2-phase arrest.

  11. Serological and Molecular Biological Studies of Parvovirus B19, Coxsackie B Viruses, and Adenoviruses as Potential Cardiotropic Viruses in Bulgaria.

    Science.gov (United States)

    Ivanova, Stefka Kr; Angelova, Svetla G; Stoyanova, Asya P; Georgieva, Irina L; Nikolaeva-Glomb, Lubomira K; Mihneva, Zafira G; Korsun, Neli St

    2016-12-01

    Inflammatory diseases of the heart (myocarditis, pericarditis) are commonly caused by viruses. Among the human cardiotropic viruses, parvovirus B19, Coxsackie B viruses, and adenoviruses play a leading role. The aim of the present study was to determine the presumptive causative role of parvovirus B19, Coxsackie B viruses, and adenoviruses in the development of myocarditis, pericarditis and dilated cardiomyopathy by demonstrating the presence of specific antiviral antibodies or viral DNA in patients' serum samples. We tested serum samples collected between 2010 and 2014 from 235 patients with myocarditis (n=108), pericarditis (n=79), myopericarditis (n=19), dilated cardiomyopathy (n=7), and fever of unknown origin accompanied by cardiac complaints (n=22). The mean age of patients with the standard deviation was 33 ± 18 years. Serological and molecular methods (ELISA for specific IgM/IgG antibodies to parvovirus B19 and IgM antibodies to Coxsackie B viruses and adenoviruses, and PCR for detection of parvovirus B19 in serum samples, respectively) were used in the study. Of all tested 235 serum samples, in 60 (25.5%) positive results for at least one of the three tested viruses were detected. Forty out of these 235 serum samples (17%) were Coxsackie B virus IgM positive. They were found in 17% (18/108) of the patients with myocarditis, in 15% (12/79) of those with pericarditis, in 16% (3/19) of those with myopericarditis and in 32% (7/22) in those with fever of unknown origin. The 63 Coxsackie B virus IgM negative patient's serum samples were tested by ELISA for presence of adenovirus IgM antibodies. Such were found in 4 patients with pericarditis and in 2 patients with fever of unknown origin. Every IgM negative sample (n=189) for Coxsackie B and adenovirus was further tested by ELISA for parvovirus B19 IgM/IgG antibodies. B19-IgM antibodies were detected in 14 patients (7.4%). The percentages for B19-IgM antibodies was 8% (7/90), 5% (3/63) and 31% (4/13) in the

  12. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  13. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-01-01

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  14. Molecular Epidemiology and Phylogenetic Analyses of Influenza B Virus in Thailand during 2010 to 2014

    Science.gov (United States)

    Tewawong, Nipaporn; Suwannakarn, Kamol; Prachayangprecha, Slinporn; Korkong, Sumeth; Vichiwattana, Preeyaporn; Vongpunsawad, Sompong; Poovorawan, Yong

    2015-01-01

    Influenza B virus remains a major contributor to the seasonal influenza outbreak and its prevalence has increased worldwide. We investigated the epidemiology and analyzed the full genome sequences of influenza B virus strains in Thailand between 2010 and 2014. Samples from the upper respiratory tract were collected from patients diagnosed with influenza like-illness. All samples were screened for influenza A/B viruses by one-step multiplex real-time RT-PCR. The whole genome of 53 influenza B isolates were amplified, sequenced, and analyzed. From 14,418 respiratory samples collected during 2010 to 2014, a total of 3,050 tested positive for influenza virus. Approximately 3.27% (471/14,418) were influenza B virus samples. Fifty three isolates of influenza B virus were randomly chosen for detailed whole genome analysis. Phylogenetic analysis of the HA gene showed clusters in Victoria clades 1A, 1B, 3, 5 and Yamagata clades 2 and 3. Both B/Victoria and B/Yamagata lineages were found to co-circulate during this time. The NA sequences of all isolates belonged to lineage II and consisted of viruses from both HA Victoria and Yamagata lineages, reflecting possible reassortment of the HA and NA genes. No significant changes were seen in the NA protein. The phylogenetic trees generated through the analysis of the PB1 and PB2 genes closely resembled that of the HA gene, while trees generated from the analysis of the PA, NP, and M genes showed similar topology. The NS gene exhibited the pattern of genetic reassortment distinct from those of the PA, NP or M genes. Thus, antigenic drift and genetic reassortment among the influenza B virus strains were observed in the isolates examined. Our findings indicate that the co-circulation of two distinct lineages of influenza B viruses and the limitation of cross-protection of the current vaccine formulation provide support for quadrivalent influenza vaccine in this region. PMID:25602617

  15. Ringers lactate vs Normal saline for children with acute diarrhea and severe dehydration- a double blind randomized controlled trial.

    Science.gov (United States)

    Mahajan, Vidushi; Sajan, Shiv Saini; Sharma, Amit; Kaur, Jasbinder

    2012-12-01

    WHO recommends Ringers lactate (RL) and Normal Saline (NS) for rapid intravenous rehydration in childhood diarrhea and severe dehydration. We compared these two fluids for improvement in pH over baseline during rapid intravenous rehydration in children with acute diarrhea. Double-blind randomized controlled trial Pediatric emergency facilities at a tertiary-care referral hospital. Children with acute diarrhea and severe dehydration received either RL (RL-group) or NS (NS-group), 100 mL/kg over three or six hours. Children were reassessed after three or six hours. Rapid rehydration was repeated if severe dehydration persisted. Blood gas was done at baseline and repeated after signs of severe dehydration disappeared. Primary outcome was change in pH from baseline. Secondary outcomes included changes in serum electrolytes, bicarbonate levels, and base-deficit from baseline; mortality, duration of hospital stay, and fluids requirement. Twenty two children, 11 each were randomized to the two study groups. At primary end point (disappearance of signs of severe dehydration), the improvement in pH from baseline was not significant in RL-group [from 7.17 (0.11) to 7.28 (0.09)] as compared to NS-group [7.09 (0.11) to 7.21 (0.09)], P=0.17 (after adjusting for baseline serum Na/ Cl). Among this limited sample size, children in RL group required less fluids [median 310 vs 530 mL/kg, P=0.01] and had shorter median hospital stay [38 vs 51 hours, P=0.03]. There was no difference in improvement in pH over baseline between RL and NS among children with acute diarrhea and severe dehydration.

  16. Clinical and virological characteristics of calves experimentally infected with a Brazilian isolate of bovine viral diarrhea virus type 1a

    Directory of Open Access Journals (Sweden)

    Luana Marchi Quadros

    Full Text Available ABSTRACT: To study the pathogenicity of the Brazilian bovine viral diarrhea virus (BVDV type 1a 241.10 isolate, four calves were intranasally inoculated with a viral suspension containing 107.2 TCID50 mL-1. One calf was left uninoculated and kept in contact with the other calves to investigate viral transmissibility. After inoculation, the animals were monitored daily for clinical signs of infection. The presence of the virus in the blood and nasal secretions was confirmed by virus isolation in cell culture. White blood cells were quantified prior to and every 3 days after infection, and the presence of antibodies was checked every 7 days, starting at day 0 until day 42 post-inoculation (pi. After infection, nasal and ocular serous secretions were observed between days 1 and 5 pi, along with a mild cough from days 2 to 4 pi; however, no severe clinical signs were present. Body temperature was slightly elevated between days 4 and 6 pi. The control calf did not develop any of the signs observed in the infected animals. Cell culture-mediated virus isolation confirmed viremia between days 4 and 8 pi and the presence of the virus in the nasal secretions between days 1 and 10 pi. All infected animals showed a decrease in white blood cell count. Antibodies could be detected from day 14 pi, and these levels remained high until day 35 pi. The control calf had no viremia, viral presence in nasal secretions, or positive serology, indicating the absence of viral transmission. Thus, isolate BVDV 1a 241.10 has low pathogenicity and transmissibility but retains immunosuppressive capacity.

  17. Survivability of porcine epidemic diarrhea virus (PEDV) in bovine plasma submitted to spray drying processing and held at different time by temperature storage conditions.

    Science.gov (United States)

    Pujols, Joan; Segalés, Joaquim

    2014-12-05

    Bovine plasma was inoculated with porcine epidemic diarrhea virus (PEDV) at an average final titer of 4.2 log10 TCID50/mL to determine the effect of spray drying on viral inactivation. Using a laboratory scale drier, inoculated plasma was spray dried at 200 °C inlet temperature and either 70 or 80 °C throughout substance. Both liquid and dried samples were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. Results indicated liquid samples contained infective virus, but none of the spray dried samples were infectious. Also, survivability of PEDV inoculated on spray dried bovine plasma (SDBP) and stored at 4, 12 or 22 °C was determined for 7, 14 and 21 days. Commercial SDBP powder was inoculated with PEDV to an average final titer of 2.8 log10 TCID50/g. Five samples per time and temperature conditions were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. The virus was non-infectious for all samples stored at 22 °C at 7, 14 and 21 days. PEDV was infective in 1 out of 5 samples stored at 12 °C at 7 days, but none of the samples stored for 14 and 21 days were infectious in cell culture. For samples stored at 4 °C, 4 out of 5 samples were infectious at 7 days, 1 out of 5 samples were infectious at 14 days, but none were infectious at 21 days. In summary, PEDV was not infectious on cell culture within 7 days when stored at room temperature and within 21 days when stored at refrigerated temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A sensitive duplex nanoparticle-assisted PCR assay for identifying porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus from clinical specimens.

    Science.gov (United States)

    Zhu, Yu; Liang, Lin; Luo, Yakun; Wang, Guihua; Wang, Chunren; Cui, Yudong; Ai, Xia; Cui, Shangjin

    2017-02-01

    In this study, a novel duplex nanoparticle-assisted polymerase chain reaction (nanoPCR) assay was developed to detect porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV). Two pairs of primers were designed based on the conserved region within the N gene of PEDV and TGEV. In a screening of 114 clinical samples from four provinces in China for PEDV and TGEV, 48.2 and 3.5 % of the samples, respectively, tested positive. Under optimized conditions, the duplex nanoPCR assay had a detection limit of 7.6 × 10 1 and 8.5 × 10 1 copies μL -1 for PEDV and TGEV, respectively. The sensitivity of the duplex nanoPCR assay was ten times higher than that of a conventional PCR assay. Moreover, no fragments were amplified when the duplex nanoPCR assay was used to test samples containing other porcine viruses. Our results indicate that the duplex nanoPCR assay described here is useful for the rapid detection of PEDV and TGEV and can be applied in clinical diagnosis.

  19. Prevalence of hepatitis C virus-resistant association substitutions to direct-acting antiviral agents in treatment-naïve hepatitis C genotype 1b-infected patients in western China

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-10-01

    Full Text Available Zhao Li,* Zhi-wei Chen,* Hu Li, Hong Ren, Peng Hu Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China *These authors contributed equally to this work. Background: Direct-acting antivirals (DAAs against hepatitis C virus (HCV are potent and highly efficacious. However, resistance-associated substitutions (RASs relevant to DAAs can impair treatment effectiveness even at baseline. Moreover, the prevalence of baseline RASs in HCV genotype 1b-infected patients in western China is still unclear. Materials and methods: Direct sequencing of the HCV NS3, NS5A, and NS5B regions was performed in baseline serum samples of 70 DAAs treatment-naïve HCV 1b-infected patients in western China. The sequences were analyzed with MEGA version 5.05 software. Evolutionary patterns of RASs and amino-acid covariance patterns in the NS3, NS5A, and NS5B genes were analyzed by MEGA and Cytoscape (version 3.2.1, respectively.Results: The presence of at least one RAS in the NS3 region (C16S, T54S, Q80R/L, A87T, R117H, S122G, V132I, V170I was observed in 85.48% (53 of 62 of patients, RASs in the NS5A region (L28M, R30Q, Q54H, P58S/T, Q62H/R, Y93H were observed in 42.42% (28 of 66 of patients, and RASs in the NS5B region (N142S, A300T, C316N, A338V, S365A, L392I, M414L, I424V, A442T, V499A, S556G were observed in 100% (44 of 44 of patients. Evolutionary patterns of RASs and amino-acid covariance patterns for the NS3, NS5A, and NS5B genes are reported.Conclusion: The prevalence of RASs relevant to DAAs detected in the NS3, NS5A, and NS5B regions of HCV 1b from DAA treatment-naïve patients is high. Therefore, more attention should be paid to RASs associated with DAAs in the upcoming DAA-treatment era in China. Keywords: hepatitis C virus, unstructured proteins, resistance

  20. Synthesis and Evaluation of in Vitro Biological Activity of 4-Substituted Arylpiperazine Derivatives of 1,7,8,9-Tetrachloro-10,10-dimethoxy-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione

    Directory of Open Access Journals (Sweden)

    David Collu

    2009-12-01

    Full Text Available A series of twenty arylpiperazine derivatives of 1,7,8,9-tetrachloro-10,10-dimethoxy-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione have been prepared. These derivatives were tested in vitro with the aim of identifying novel lead compounds active against emergent and re-emergent human and cattle infectious diseases (AIDS, hepatitis B and C, tuberculosis, bovine viral diarrhea. In particular, these compounds were evaluated in vitro against representatives of different virus classes, such as a HIV-1 (Retrovirus, a HBV (Hepadnavirus and the single-stranded RNA+ viruses Yellow fever virus (YFV and Bovine viral diarrhea virus (BVDV, both belonging to the Flaviridae. Compounds 2c, 2g and 3d showed a modest activity against CVB-2. The molecular structures of the starting imide 1 and one of propyl-piperazine derivatives, 3b, have been determined by an X-ray crystallography study.

  1. Caracterização preliminar de amostras do vírus da Diarréia Viral Bovina (BVDV isoladas no Brasil Preliminary characterization of brazilian isolates of bovine viral diarrhea virus (BVDV

    Directory of Open Access Journals (Sweden)

    Sônia A. Botton

    1998-04-01

    ção contra o vírus.This article reports the preliminary characterization of 19 Brazilian bovine viral diarrhea virus (BVDV isolates, regarding the biological, antigenic and molecular properties. Eleven viruses were isolated from bovine fetuses, six were obtained from blood of animals from herds with reproductive problems, and two were isolated from clinical cases of gastroenteric disease. The clinical cases affected young animals and were characterized by diarrhea, oronasal and digestive erosions and ulceration, and occasional digestive bleeding and vulvar petechial hemorrhage. Sixteen isolates (84.2%, including those obtained from fetuses and clinical cases, were of the non-cytopathic (ncp biotype. Replication of three isolates (15.8% in tissue culture was characterized by appearance of cellular vacuolation and progressive destruction of the monolayers. Analysis of these isolates after cloning revealed a mixed population of cytopathic (cp and non-cytopathic viruses. Analysis of viral polypeptides by SDS-PAGE followed by "Western immunoblot" revealed the production of the non-structural protein NS3/p80 in cells infected with the cp viruses. In contrast, generation of NS3/p80 was not observed in cells infected with the ncp isolates, which only expressed the precursor polypeptide NS23/p125. Analysis of reactivity with a panel of 15 monoclonal antibodies (MAbs revealed a marked antigenic variability among the isolates, mainly in the envelope glycoprotein E2/gp53. Although one MAb to this glycoprotein recognized 18 isolates (94.7%, the other nine E2/gp53 MAbs recognized zero to 57.9% of the isolates. The marked antigenic diversity observed among the brazilian BVDV isolates may have important implications on diagnosis and immunization strategies.

  2. What variables are important in predicting bovine viral diarrhea virus? A random forest approach.

    Science.gov (United States)

    Machado, Gustavo; Mendoza, Mariana Recamonde; Corbellini, Luis Gustavo

    2015-07-24

    Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors and found some new and hard to control practices that may lead to the spread of this disease within and among farms, mainly regarding poor or neglected reproduction management, which should be considered for disease control and eradication.

  3. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    Directory of Open Access Journals (Sweden)

    Markus M. Knodel

    2018-01-01

    Full Text Available Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  4. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    Science.gov (United States)

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  5. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    Science.gov (United States)

    Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-01

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722

  6. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    KAUST Repository

    Knodel, Markus

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  7. Genetic diversity of ORF3 and spike genes of porcine epidemic diarrhea virus in Thailand.

    Science.gov (United States)

    Temeeyasen, Gun; Srijangwad, Anchalee; Tripipat, Thitima; Tipsombatboon, Pavita; Piriyapongsa, Jittima; Phoolcharoen, Waranyoo; Chuanasa, Taksina; Tantituvanont, Angkana; Nilubol, Dachrit

    2014-01-01

    Porcine epidemic diarrhea virus (PEDV) has become endemic in the Thai swine industry, causing economic losses and repeated outbreaks since its first emergence in 2007. In the present study, 69 Thai PEDV isolates were obtained from 50 swine herds across Thailand during the period 2008-2012. Both partial and complete nucleotide sequences of the spike (S) glycoprotein and the nucleotide sequences of ORF3 genes were determined to investigate the genetic diversity and molecular epidemiology of Thai PEDV. Based on the analysis of the partial S glycoprotein genes, the Thai PEDV isolates were clustered into 2 groups related to Korean and Chinese field isolates. The results for the complete spike genes, however, demonstrated that both groups were grouped in the same cluster. Interestingly, both groups of Thai PEDV isolates had a 4-aa (GENQ) insertion between positions 55 and 56, a 1-aa insertion between positions 135 and 136, and a 2-aa deletion between positions 155 and 156, making them identical to the Korean KNU series and isolates responsible for outbreaks in China in recent years. In addition to the complete S sequences, the ORF3 gene analyses suggested that the isolates responsible for outbreaks in Thailand are not vaccine related. The results of this study suggest that the PEDV isolates responsible for outbreaks in Thailand since its emergence represent a variant of PEDV that was previously reported in China and Korea. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Recombinant HCV variants with NS5A from genotypes 1-7 have different sensitivities to an NS5A inhibitor but not interferon-a

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Gottwein, Judith M; Mikkelsen, Lotte S

    2011-01-01

    Heterogeneity in the hepatitis C virus (HCV) protein NS5A influences its sensitivity to interferon-based therapy. Furthermore, NS5A is an important target for development of HCV-specific inhibitors. We aimed to develop recombinant infectious cell culture systems that express NS5A from isolates...

  9. Illustrating and homology modeling the proteins of the Zika virus [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-09-01

    Full Text Available The Zika virus (ZIKV is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening.

  10. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  11. Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation.

    Science.gov (United States)

    Pan, Dabo; Sun, Huijun; Shen, Yulin; Liu, Huanxiang; Yao, Xiaojun

    2011-12-01

    The frequent outbreak of influenza pandemic and the limited available anti-influenza drugs highlight the urgent need for the development of new antiviral drugs. The dsRNA-binding surface of nonstructural protein 1 of influenza A virus (NS1A) is a promising target. The detailed understanding of NS1A-dsRNA interaction will be valuable for structure-based anti-influenza drug discovery. To characterize and explore the key interaction features between dsRNA and NS1A, molecular dynamics simulation combined with MM-GBSA calculations were performed. Based on the MM-GBSA calculations, we find that the intermolecular van der Waals interaction and the nonpolar solvation term provide the main driving force for the binding process. Meanwhile, 17 key residues from NS1A were identified to be responsible for the dsRNA binding. Compared with the wild type NS1A, all the studied mutants S42A, T49A, R38A, R35AR46A have obvious reduced binding free energies with dsRNA reflecting in the reduction of the polar and/or nonpolar interactions. In addition, the structural and energy analysis indicate the mutations have a small effect to the backbone structures but the loss of side chain interactions is responsible for the decrease of the binding affinity. The uncovering of NS1A-dsRNA recognition mechanism will provide some useful insights and new chances for the development of anti-influenza drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Implementation of immunohistochemistry on frozen ear notch tissue samples in diagnosis of bovine viral diarrhea virus in persistently infected cattle

    Directory of Open Access Journals (Sweden)

    Bedeković Tomislav

    2011-12-01

    Full Text Available Abstract Background Bovine viral diarrhea is a contagious disease of domestic and wild ruminants and one of the most economically important diseases in cattle. Bovine viral diarrhea virus belongs to the genus Pestivirus, within the family Flaviviridae. The identification and elimination of the persistently infected animals from herds is the initial step in the control and eradication programs. It is therefore necessary to have reliable methods for diagnosis of bovine viral diarrhea virus. One of those methods is immunohistochemistry. Immunohistochemistry on formalin fixed, paraffin embedded tissue is a routine technique in diagnosis of persistently infected cattle from ear notch tissue samples. However, such technique is inappropriate due to complicated tissue fixation process and it requires more days for preparation. On the contrary, immunohistochemistry on frozen tissue was usually applied on organs from dead animals. In this paper, for the first time, the imunohistochemistry on frozen ear notch tissue samples was described. Findings Seventeen ear notch tissue samples were obtained during the period 2008-2009 from persistently infected cattle. Samples were fixed in liquid nitrogen and stored on -20°C until testing. Ear notch tissue samples from all persistently infected cattle showed positive results with good section quality and possibility to determinate type of infected cells. Conclusions Although the number of samples was limited, this study indicated that immunohistochemistry on formalin fixed paraffin embedded tissue can be successfully replaced with immunohistochemistry on frozen ear notch tissue samples in diagnosis of persistently infected cattle.

  13. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    Science.gov (United States)

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  14. Seroprevalence and factors associated with bovine viral diarrhea virus (BVDV) infection in dairy cattle in three milksheds in Ethiopia.

    Science.gov (United States)

    Aragaw, Kassaye; Sibhat, Berhanu; Ayelet, Gelagay; Skjerve, Eystein; Gebremedhin, Endrias Z; Asmare, Kassahun

    2018-05-31

    This work was conducted to estimate the seroprevalence, to identify potential factors that influence seroprevalence of bovine viral diarrhea virus (BVDV), and to investigate the association between BVDV serostatus and occurrence of reproductive disorders in dairy cattle in three milksheds in Ethiopia. A total of 1379 serum samples were obtained from cattle randomly selected from 149 herds from three milksheds representing central, southern, and western Ethiopia. Sera samples were examined for bovine viral diarrhea virus (BVDV) antibodies using commercial competitive enzyme-linked immunosorbent assay (ELISA) kit. Logistic regression analysis was employed to investigate associations between risk factors and the risk of BVDV seroprevalence, and BVDV serostatus and reproductive disorders. Seroreaction to BVDV antigens was detected in 32.6% of the 1379 cattle and 69.8% of the 149 herds sampled. Factors associated with BVDV seroplevalence were age, breed, and herd size (P  0.05). Risk of reproductive disorders was not affected by BVDV serostatus, except for repeat breeding (P > 0.05). The present study demonstrated that BVDV has wide distribution in the country being detected in all the 15 conurbations and 69.8% of herds involved in the study.

  15. Sequence evolution of the hypervariable region in the putative envelope region E2/NS1 of hepatitis C virus is correlated with specific humoral immune responses.

    OpenAIRE

    van Doorn, L J; Capriles, I; Maertens, G; DeLeys, R; Murray, K; Kos, T; Schellekens, H; Quint, W

    1995-01-01

    Sequence evolution of the hypervariable region 1 (HVR1) in the N terminus of E2/NS1 of hepatitis C virus (HCV) was studied retrospectively in six chimpanzees inoculated with the same genotype 1b strain, containing a unique predominant HVR1 sequence. Immediately after inoculation, all animals contained the same HVR predominant sequence. Two animals developed an acute self-limiting infection. Anti-HVR1 immunoglobulin G (IgG) was produced 40 to 60 days after inoculation and rapidly disappeared a...

  16. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    International Nuclear Information System (INIS)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-01-01

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5 binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis

  17. Successful retreatment with sofosbuvir plus ledipasvir for cirrhotic patients with hepatitis C virus genotype 1b, who discontinued the prior treatment with asunaprevir plus daclatasvir: A case series and review of the literature

    Science.gov (United States)

    Haga, Yuki; Kanda, Tatsuo; Yasui, Shin; Nakamura, Masato; Ooka, Yoshihiko; Takahashi, Koji; Wu, Shuang; Nakamoto, Shingo; Arai, Makoto; Chiba, Tetsuhiro; Maruyama, Hitoshi; Yokosuka, Osamu; Takada, Nobuo; Moriyama, Mitsuhiko; Imazeki, Fumio; Kato, Naoya

    2018-01-01

    Background Interferon-free treatment results in higher sustained virologic response (SVR) rates, with no serious adverse events in hepatitis C virus (HCV)-infected patients. However, in some patients with treatment-failure in HCV NS5A inhibitor-including interferon-free regimens, the treatment-emergent HCV NS5A resistance-associated variants (RAVs), which are resistant to interferon-free retreatment including HCV NS5A inhibitors, are observed. In HCV-infected Japanese patients with daclatasvir and asunaprevir treatment failure, retreatment with sofosbuvir and ledipasvir could lead to only ∼70% SVR rates. Case summary Three HCV genotype (GT)-1b-infected cirrhotic patients who discontinued the combination of daclatasvir and asunaprevir due to adverse drug reactions within 4 weeks; retreatment with sofosbuvir and ledipasvir combination could result in SVR in these patients without RAVs. One HCV GT-1b-infected cirrhotic patient who discontinued the combination of daclatasvir and asunaprevir due to viral breakthrough at week 10; retreatment with sofosbuvir and ledipasvir combination for this patient with the treatment-emergent HCV NS5A RAV-Y93H resulted in viral relapse at week 4 after the end of the treatment. Conclusion Retreatment with sofosbuvir and ledipasvir is effective for HCV GT-1b patients who discontinue the combination of daclatasvir and asunaprevir within 4 weeks. The treatment response should be related to the existence of treatment-emergent HCV NS5A RAVs, but may not be related to the short duration of treatment. PMID:29435197

  18. [Characterisation of viral agents with potential to cause diarrhea in Djibouti].

    Science.gov (United States)

    Maslin, J; Kohli, E; Leveque, N; Chomel, J J; Nicand, E; Fouet, C; Haus, R; Depina, J J; Mathecowitsch, P; Dampierre, H

    2007-06-01

    Due to limited laboratory facilities in the tropics, the exact role of enteric viruses in causing diarrhea among adults in the tropics is unknown. The purpose of this report is to describe a multicenter study undertaken in Djibouti to determine the prevalence of a large panel of enteric viruses using immunochromatography; antigenic detection by ELISA, RT-PCR cellular inoculation, sequence analysis; and indirect serology. Study samples were collected from 108 patients presenting acute and sporadic diarrhea. Although they are well known causes of diarrhea in children, rotavirus and adenovirus were identified in only 2 and 5% of adults respectively. In contrast human caliciviruses (HuCVs) and enterovirus were identified in 25 and 42% of adult cases respectively. Uncommon genotypes of HuCVs and recombinant forms (junction pol/l cap) as well as a significant number of sapovirus (30%) were identified. Further study is needed to clarify the role of enterovirus (echovirus) in the etiology of acute diarrhea in adults. No polivirus was identified. These new data from the Horn of Africa increase our knowledge about the epidemiology of acute infectious diarrhea that is a major public health problem and potential danger for travelers.

  19. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    Science.gov (United States)

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  20. Bovine viral diarrhea virus type 2 impairs macrophage responsiveness to toll-like receptor ligation with the exception of toll-like receptor 7

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is a member of the Flaviviradae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. In addition, BVDV isolates are further separated into species, BVDV1 and 2...

  1. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    International Nuclear Information System (INIS)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with 32 P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus

  2. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection.

    Science.gov (United States)

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry A F; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. © 2013 John Wiley & Sons Ltd.

  3. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope.

    Directory of Open Access Journals (Sweden)

    Nathalie Callens

    2016-03-01

    Full Text Available The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV, a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.

  4. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection.

    Science.gov (United States)

    Tan, Wei-Lian; Lee, Yean Kee; Ho, Yen Fong; Yusof, Rohana; Abdul Rahman, Noorsaadah; Karsani, Saiful Anuar

    2018-01-01

    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda ) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  5. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Lian Tan

    2018-01-01

    Full Text Available Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  6. Coinfections of Sudanese dairy cattle with bovine herpes virus 1, bovine viral diarrhea virus, bluetongue virus and bovine herpes virus 4 and their relation to reproductive disorders

    Directory of Open Access Journals (Sweden)

    Amira M. Elhassan

    2016-12-01

    Reults: The meta-analysis of the data indicated high seroprevalence of coinfections with various combinations of these agents; only few animals were singly infected. An infection with BHV-1 was observed to be higher than the prevalence of associations between BHV-1 and the other three viral agents. Prevalence of seropositivities to coinfection with BHV-1/BTV; BHV-1/BVD; BHV-1/BTV/BVD were the highest while seropositivities prevalences that involved BHV-4 were much lower. The highest abortion rates were encountered in coinfections with BHV-1/BVD/BTV (31% and BHV-1/BVD/BTV/BHV-4 (30% while most infertility cases were noticed in coinfection with BHV-1/BVD/BTV (44% and BHV-1/BVD/BTV/BHV-4 (21%, and coinfections with the four viruses were encountered in most of the death after birth cases (25%. Overall mixed infections with BHV-1/BVD/BTV (34% and BHV-1/BVD/BTV/BHV-4 (22.5% were involved in the majority of reproductive problems studied. Conclusion: Mixed infections constitutes the vast majority of cases and are involved in the majority of reproductive disorders investigated. The high prevalence of seropositivity to all of the four viruses should call for an intervention strategy to reduce the impact of these viruses. [J Adv Vet Anim Res 2016; 3(4.000: 332-337

  7. Potent Inhibitors of the Hepatitis C Virus NS3 Protease: Design and Synthesis of Macrocyclic Substrate-Based [beta]-Strand Mimics

    Energy Technology Data Exchange (ETDEWEB)

    Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.; Duceppe, Jean-Simon; Faucher, Anne-Marie; Ferland, Jean-Marie; Grand-Maître, Chantal; Poirier, Martin; Simoneau, Bruno; Tsantrizos, Youla S. (Boehringer)

    2008-06-30

    The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.

  8. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase.

    Science.gov (United States)

    Heck, Julie A; Meng, Xiao; Frick, David N

    2009-04-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B [Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19:111-22]. We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis.

  9. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E.

    Directory of Open Access Journals (Sweden)

    Panisadee Avirutnan

    2007-11-01

    Full Text Available Dengue virus (DENV nonstructural protein-1 (NS1 is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.

  10. Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase.

    Science.gov (United States)

    Sun, Pei; Wu, Haoyang; Huang, Jiali; Xu, Ying; Yang, Feng; Zhang, Qi; Xu, Xingang

    2018-05-22

    Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Retention and topology of the bovine viral diarrhea virus glycoprotein E2.

    Science.gov (United States)

    Radtke, Christina; Tews, Birke Andrea

    2017-10-01

    Pestiviruses are enveloped viruses that bud intracellularly. They have three envelope glycoproteins, E rns , E1, and E2. E2 is the receptor binding protein and the main target for neutralizing antibodies. Both E rns and E2 are retained intracellularly. Here, E2 of the bovine viral diarrhea virus (BVDV) strain CP7 was used to study the membrane topology and intracellular localization of the protein. E2 is localized in the ER and there was no difference between E2 expressed alone or in the context of the viral polyprotein. The mature E2 protein was found to possess a single span transmembrane anchor. For the mapping of a retention signal CD72-E2 fusion proteins, as well as E2 alone were analysed. This confirmed the importance of the transmembrane domain and arginine 355 for intracellular retention, but also revealed a modulating effect on retention through the cytoplasmic tail of the E2 protein, especially through glutamine 370. Mutants with a strong impact on retention were tested in the viral context and we were able to rescue BVDV with certain mutations that in E2 alone impaired intracellular retention and lead to export of E2 to the cells surface.

  12. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    OpenAIRE

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2010-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-tra...

  13. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    Science.gov (United States)

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role

  14. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes.

    Science.gov (United States)

    Suzich, J A; Tamura, J K; Palmer-Hill, F; Warrener, P; Grakoui, A; Rice, C M; Feinstone, S M; Collett, M S

    1993-01-01

    Sequence motifs within the nonstructural protein NS3 of members of the Flaviviridae family suggest that this protein possesses nucleoside triphosphatase (NTPase) and RNA helicase activity. The RNA-stimulated NTPase activity of this protein from prototypic members of the Pestivirus and Flavivirus genera has recently been established and enzymologically characterized. Here, we experimentally demonstrate that the NS3 protein from a member of the third genus of Flaviviridae, human hepatitis C virus (HCV), also possesses a polynucleotide-stimulated NTPase activity. Characterization of the purified HCV NTPase activity showed that it exhibited reaction condition optima with respect to pH, MgCl2, and salt identical to those of the representative pestivirus and flavivirus enzymes. However, each NTPase also possessed several unique properties when compared with one another. Notably, the profile of polynucleotide stimulation of the NTPase activity was distinct for the three enzymes. The HCV NTPase was the only one whose activity was significantly enhanced by a deoxyribopolynucleotide. Additional distinguishing features among the three enzymes relating to the kinetic properties of their NTPase activities are discussed. These studies provide a foundation for investigation of the putative RNA helicase activity of these proteins and for further study of the role of the NS3 proteins of members of the Flaviviridae in the replication cycle of these viruses. Images PMID:8396675

  15. Influence of border disease virus (BDV) on serological surveillance within the bovine virus diarrhea (BVD) eradication program in Switzerland.

    Science.gov (United States)

    Kaiser, V; Nebel, L; Schüpbach-Regula, G; Zanoni, R G; Schweizer, M

    2017-01-13

    In 2008, a program to eradicate bovine virus diarrhea (BVD) in cattle in Switzerland was initiated. After targeted elimination of persistently infected animals that represent the main virus reservoir, the absence of BVD is surveilled serologically since 2012. In view of steadily decreasing pestivirus seroprevalence in the cattle population, the susceptibility for (re-) infection by border disease (BD) virus mainly from small ruminants increases. Due to serological cross-reactivity of pestiviruses, serological surveillance of BVD by ELISA does not distinguish between BVD and BD virus as source of infection. In this work the cross-serum neutralisation test (SNT) procedure was adapted to the epidemiological situation in Switzerland by the use of three pestiviruses, i.e., strains representing the subgenotype BVDV-1a, BVDV-1h and BDSwiss-a, for adequate differentiation between BVDV and BDV. Thereby the BDV-seroprevalence in seropositive cattle in Switzerland was determined for the first time. Out of 1,555 seropositive blood samples taken from cattle in the frame of the surveillance program, a total of 104 samples (6.7%) reacted with significantly higher titers against BDV than BVDV. These samples originated from 65 farms and encompassed 15 different cantons with the highest BDV-seroprevalence found in Central Switzerland. On the base of epidemiological information collected by questionnaire in case- and control farms, common housing of cattle and sheep was identified as the most significant risk factor for BDV infection in cattle by logistic regression. This indicates that pestiviruses from sheep should be considered as a source of infection of domestic cattle and might well impede serological BVD surveillance.

  16. Baseline NS5A resistance associated substitutions may impair DAA response in real-world hepatitis C patients.

    Science.gov (United States)

    Carrasco, Itzíar; Arias, Ana; Benítez-Gutiérrez, Laura; Lledó, Gemma; Requena, Silvia; Cuesta, Miriam; Cuervas-Mons, Valentín; de Mendoza, Carmen

    2018-03-01

    Oral DAA have demonstrated high efficacy as treatment of hepatitis C. However, the presence of resistance-associated substitutions (RAS) at baseline has occasionally been associated with impaired treatment response. Herein, we examined the impact of baseline RAS at the HCV NS5A gene region on treatment response in a real-life setting. All hepatitis C patients treated with DAA including NS5A inhibitors at our institution were retrospectively examined. The virus NS5A gene was analyzed using population sequencing at baseline and after 24 weeks of completing therapy in all patients that failed. All changes recorded at positions 28, 29, 30, 31, 32, 58, 62, 92, and 93 were considered. A total of 166 patients were analyzed. HCV genotypes were as follows: G1a (31.9%), G1b (48.2%), G3 (10.2%), and G4 (9.6%). Overall, 69 (41.6%) patients were coinfected with HIV and 46.7% had advanced liver fibrosis (Metavir F3-F4). Sixty (36.1%) patients had at least one RAS at baseline, including M28A/G/T (5), Q30X (12), L31I/F/M/V (6), T58P/S (25), Q/E62D (1), A92 K (7), and Y93C/H (15). Overall, 4.8% had two or more RAS, being more frequent in G4 (12.5%) followed by G1b (6.3%) and G1a (1.9%). Of 10 (6%) patients that failed DAA therapy, five had baseline NS5A RAS. No association was found for specific baseline RAS, although changes at position 30 were more frequent in failures than cures (22.2% vs 6.4%, P = 0.074). Moreover, the presence of two or more RAS at baseline was more frequent in failures (HR: 7.2; P = 0.029). Upon failure, six patients showed emerging RAS, including Q30C/H/R (3), L31M (1), and Y93C/H (2). Baseline NS5A RAS are frequently seen in DAA-naïve HCV patients. Two or more baseline NS5A RAS were found in nearly 5% and were significantly associated to DAA failure. Therefore, baseline NS5A testing should be considered when HCV treatment is planned with NS5A inhibitors. © 2017 Wiley Periodicals, Inc.

  17. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle through interaction with core protein and microtubules during intracellular transport.

    Directory of Open Access Journals (Sweden)

    Chao-Kuen Lai

    Full Text Available Nonstructural protein 5A (NS5A of hepatitis C virus (HCV serves dual functions in viral RNA replication and virus assembly. Here, we demonstrate that HCV replication complex along with NS5A and Core protein was transported to the lipid droplet (LD through microtubules, and NS5A-Core complexes were then transported from LD through early-to-late endosomes to the plasma membrane via microtubules. Further studies by cofractionation analysis and immunoelectron microscopy of the released particles showed that NS5A-Core complexes, but not NS4B, were present in the low-density fractions, but not in the high-density fractions, of the HCV RNA-containing virions and associated with the internal virion core. Furthermore, exosomal markers CD63 and CD81 were also detected in the low-density fractions, but not in the high-density fractions. Overall, our results suggest that HCV NS5A is associated with the core of the low-density virus particles which exit the cell through a preexisting endosome/exosome pathway and may contribute to HCV natural infection.

  18. Antigenic variability in bovine viral diarrhea virus (BVDV) isolates from alpaca (Vicugna pacos), llama (Lama glama) and bovines in Chile.

    Science.gov (United States)

    Aguirre, I M; Quezada, M P; Celedón, M O

    2014-01-31

    Llamas and alpacas are domesticated South American camelids (SACs) important to ancestral population in the Altiplano region, and to different communities where they have been introduced worldwide. These ungulates have shown to be susceptible to several livestock viral pathogens such as members of the Pestivirus genus and mainly to bovine viral diarrhea virus (BVDV). Seventeen Chilean BVDV isolates were analyzed by serum cross neutralization with samples obtained from five llama, six alpacas, three bovines, plus three reference strains belonging to different subgroups and genotypes. The objective was to describe antigenic differences and similarities among them. Antigenic comparison showed significant differences between different subgroups. Consequently, antigenic similarities were observed among isolates belonging to the same subgroup and also between isolates from different animal species belonging the same subgroup. Among the analyzed samples, one pair of 1b subgroup isolates showed significant antigenic differences. On the other hand, one pair of isolates from different subgroups (1b and 1j) shared antigenic similarities indicating antigenic relatedness. This study shows for the first time the presence of antigenic differences within BVDV 1b subgroup and antigenic similarities within 1j subgroup isolates, demonstrating that genetic differences within BVDV subgroups do not necessary corresponds to differences on antigenicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Persistent Bovine Viral Diarrhea Virus infection in domestic and wild small ruminants and camelids including the mountain goat (Oreamnos americanus

    Directory of Open Access Journals (Sweden)

    Danielle Darracq Nelson

    2016-01-01

    Full Text Available Bovine viral diarrhea virus (BVDV is a Pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus.

  20. Detection and phylogenetic analyses of spike genes in porcine epidemic diarrhea virus strains circulating in China in 2016-2017.

    Science.gov (United States)

    Zhang, Qiaoling; Liu, Xinsheng; Fang, Yuzhen; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2017-10-10

    Large-scale outbreaks of porcine epidemic diarrhea (PED) have re-emerged in China in recent years. However, little is known about the genetic diversity and molecular epidemiology of field strains of PED virus (PEDV) in China in 2016-2017. To address this issue, in this study, 116 diarrhea samples were collected from pig farms in 6 Chinese provinces in 2016-2017 and were detected using PCR for main porcine enteric pathogens, including PEDV, porcine deltacoronavirus (PDCoV), porcine transmissible gastroenteritis virus (TGEV) and porcine kobuvirus (PKV). In addition, the complete S genes from 11 representative PEDV strains were sequenced and analyzed. PCR detection showed that 52.6% (61/116) of these samples were positive for PEDV. Furthermore, sequencing results for the spike (S) genes from 11 of the epidemic PEDV strains showed 93-94% nucleotide identity and 92-93% amino acid identity with the classical CV777 strain. Compared with the CV777 vaccine strain, these strains had an insertion (A 133 ), a deletion (G 155 ), and a continuous 4-amino-acid insertion ( 56 NNTN 59 ) in the S1 region. Phylogenetic analysis based on the S gene indicated that the 11 assessed PEDV strains were genetically diverse and clustered into the G2 group. These results demonstrate that the epidemic strains of PEDV in China in 2016-2017 are mainly virulent strains that belong to the G2 group and genetically differ from the vaccine strain. Importantly, this is the first report that the samples collected in Hainan Province were positive for PEDV (59.2%, 25/42). To our knowledge, this article presents the first report of a virulent PEDV strain isolated from Hainan Island, China. The results of this study will contribute to the understanding of the epidemiology and genetic characteristics of PEDV in China.

  1. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    Sato, Yoshiko; Yoshioka, Kenichi; Suzuki, Chie; Awashima, Satoshi; Hosaka, Yasuhiro; Yewdell, Jonathan; Kuroda, Kazumichi

    2003-01-01

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  2. Murid herpesvirus-4 exploits dendritic cells to infect B cells.

    Directory of Open Access Journals (Sweden)

    Miguel Gaspar

    2011-11-01

    Full Text Available Dendritic cells (DCs play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4, infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells.

  3. Identification and characterization of a novel non-structural protein of bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Maxime Ratinier

    2011-12-01

    Full Text Available Bluetongue virus (BTV is the causative agent of a major disease of livestock (bluetongue. For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4 encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77-79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell.

  4. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  5. An investigation of the etiology of a mild diarrhea observed in a group of grower/finisher pigs.

    Science.gov (United States)

    Johnston, W T; Dewey, C E; Friendship, R M; Smart, N; McEwen, B J; Stalker, M; de Lange, C F

    2001-01-01

    An investigation into a mild diarrhea in a group of grower/finisher pigs was carried out in order to determine the etiology. A tiamulin injection and a carbadox-medicated ration were given to pens of pigs in a 2 x 2 factorial experimental design. Pens of pigs were assessed a score, based on the consistency of the feces in the pen, each week. The clinical investigation looked for the intestinal pathogens Brachyspira pilosicoli, B. hyodysenteriae, Lawsonia intracellularis, Salmonella spp., Yersinia spp., transmissible gastroenteritis virus, and rotavirus. Despite a rigorous investigation, the diarrhea was not attributed to any pathogen. A mild colitis was noted among pigs necropsied while affected with diarrhea. Improved diagnostic tools may allow a more effective response to an outbreak of mild disease, while at the same time reducing the amount of antimicrobials used in swine production. PMID:11195519

  6. Feed Intake and Weight Changes in Bos indicus-Bos taurus Crossbred Steers Following Bovine Viral Diarrhea Virus Type 1b Challenge Under Production Conditions

    Directory of Open Access Journals (Sweden)

    Chase A. Runyan

    2017-12-01

    Full Text Available Bovine viral diarrhea virus (BVDV has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366 that were challenged with BVDV Type 1b, and where family lines were stratified across three vaccine treatments of modified live (MLV, killed, (KV or no vaccine (NON. Pyrexia classification based on 40.0 °C threshold following challenge and vaccine treatment were investigated for potential interactions with sire for weight change and feed intake following challenge. Pyrexia classification affected daily feed intake (ADFI, p = 0.05, and interacted with day (p < 0.001 for ADFI. Although low incidence of clinical signs was observed, there were marked reductions in average daily gain (ADG and cumulative feed intake during the first 14 day post-challenge; ADG (CV of 104% and feed efficiency were highly variable in the 14-day period immediately post-challenge as compared to the subsequent 14-day periods. A sire × vaccine strategy interaction affected ADFI (p < 0.001, and a sire by time period interaction affected ADG (p = 0.03 and total feed intake (p = 0.03. This study demonstrates that different coping responses may exist across genetic lines to the same pathogen, and that subclinical BVDV infection has a measurable impact on cattle production measures.

  7. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV through an animal food manufacturing facility.

    Directory of Open Access Journals (Sweden)

    Loni L Schumacher

    Full Text Available New regulatory and consumer demands highlight the importance of animal feed as a part of our national food safety system. Porcine epidemic diarrhea virus (PEDV is the first viral pathogen confirmed to be widely transmissible in animal food. Because the potential for viral contamination in animal food is not well characterized, the objectives of this study were to 1 observe the magnitude of virus contamination in an animal food manufacturing facility, and 2 investigate a proposed method, feed sequencing, to decrease virus decontamination on animal food-contact surfaces. A U.S. virulent PEDV isolate was used to inoculate 50 kg swine feed, which was mixed, conveyed, and discharged into bags using pilot-scale feed manufacturing equipment. Surfaces were swabbed and analyzed for the presence of PEDV RNA by quantitative real-time polymerase chain reaction (qPCR. Environmental swabs indicated complete contamination of animal food-contact surfaces (0/40 vs. 48/48, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05 and near complete contamination of non-animal food-contact surfaces (0/24 vs. 16/18, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05. Flushing animal food-contact surfaces with low-risk feed is commonly used to reduce cross-contamination in animal feed manufacturing. Thus, four subsequent 50 kg batches of virus-free swine feed were manufactured using the same system to test its impact on decontaminating animal food-contact surfaces. Even after 4 subsequent sequences, animal food-contact surfaces retained viral RNA (28/33 positive samples/total samples, with conveying system being more contaminated than the mixer. A bioassay to test infectivity of dust from animal food-contact surfaces failed to produce infectivity. This study demonstrates the potential widespread viral contamination of

  8. A retrospective case-control study of hepatitis C virus infection and oral lichen planus in Japan: association study with mutations in the core and NS5A region of hepatitis C virus

    Science.gov (United States)

    2012-01-01

    Background The aims of this study were to assess the prevalence of hepatitis C virus (HCV) infection in Japanese patients with oral lichen planus and identify the impact of amino acid (aa) substitutions in the HCV core region and IFN-sensitivity-determining region (ISDR) of nonstructural protein 5A (NS5A) associated with lichen planus. Methods In this retrospective study, 59 patients (group 1-A) with oral lichen planus among 226 consecutive patients who visited our hospital and 85 individuals (group 1-B, controls) with normal oral mucosa were investigated for the presence of liver disease and HCV infection. Risk factors for the presence of oral lichen planus were assessed by logistic regression analysis. We compared aa substitutions in the HCV core region (70 and/or 91) and ISDR of NS5A of 12 patients with oral lichen planus (group 2-A) and 7 patients who did not have oral lichen planus (group 2-B) among patients (high viral loads, genotype 1b) who received interferon (IFN) therapy in group1-A. Results The prevalence of anti-HCV and HCV RNA was 67.80% (40/59) and 59.32% (35/59), respectively, in group 1-A and 31.76% (27/85) and 16.47% (14/85), respectively, in group 1-B. The prevalence of anti-HCV (P oral lichen planus. The adjusted odds ratios for these three factors were 6.58, 3.53 and 2.58, respectively, and each was statistically significant. No significant differences in viral factors, such as aa substitutions in the core region and ISDR of NS5A, were detected between the two groups (groups 2-A and -B). Conclusion We observed a high prevalence of HCV infection in patients with oral lichen planus. Longstanding HCV infection, hypoalbuminemia, and smoking were significant risk factors for the presence of oral lichen planus in patients. It is advisable for Japanese patients with lichen planus to be tested for HCV infection during medical examination. PMID:22490000

  9. Profile of paritaprevir/ritonavir/ombitasvir plus dasabuvir in the treatment of chronic hepatitis C virus genotype 1 infection

    Directory of Open Access Journals (Sweden)

    Smith MA

    2015-11-01

    Full Text Available Michael A Smith, Alice LimDepartment of Pharmacy Practice and Pharmacy Administration, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USAAbstract: Over the last several years, many advances have been made in the treatment of chronic hepatitis C virus (HCV infection with the development of direct-acting antivirals. Paritaprevir/ritonavir/ombitasvir with dasabuvir (PrOD is a novel combination of a nonstructural (NS 3/4A protein inhibitor boosted by ritonavir, an NS5A protein inhibitor, and an NS5B nonnucleoside polymerase inhibitor. This review aims to discuss the pharmacology, efficacy, safety, drug interactions, and viral drug resistance of PrOD in the treatment of HCV genotype 1 infections. Phase I, II, and III human and animal studies that describe the pharmacology, pharmacokinetics, efficacy, and safety of PrOD for HCV were identified and included. Studies that evaluated patients without cirrhosis (n=2,249 and with cirrhosis (n=422 demonstrated that PrOD for 12 or 24 weeks was effective at achieving sustained virologic response rates (>90% in patients with genotype 1a or 1b HCV infection. Although indicated for the treatment of HCV genotype 1 infection, PrOD is also recommended for the treatment of HCV in patients coinfected with HIV. Additionally, promising data exist for the use of PrOD in liver-transplant recipients. The most common adverse drug events associated with PrOD included nausea, pruritus, insomnia, diarrhea, asthenia, dry skin, vomiting, and anemia. The high efficacy rates seen coupled with a favorable side effect profile seen with PrOD with or without ribavirin have led to its addition as a recommended treatment regimen for HCV genotype 1 infection.Keywords: direct-acting antiviral, interferon-free, ribavirin-free

  10. Robust translocation along a molecular monorail: the NS3 helicase from hepatitis C virus traverses unusually large disruptions in its track.

    Science.gov (United States)

    Beran, Rudolf K F; Bruno, Michael M; Bowers, Heath A; Jankowsky, Eckhard; Pyle, Anna Marie

    2006-05-12

    The NS3 helicase is essential for replication of the hepatitis C virus. This multifunctional Superfamily 2 helicase protein unwinds nucleic acid duplexes in a stepwise, ATP-dependent manner. Although kinetic features of its mechanism are beginning to emerge, little is known about the physical determinants for NS3 translocation along a strand of nucleic acid. For example, it is not known whether NS3 can traverse covalent or physical discontinuities on the tracking strand. Here we provide evidence that NS3 translocates with a mechanism that is different from its well-studied relative, the Vaccinia helicase NPH-II. Like NPH-II, NS3 translocates along the loading strand (the strand bearing the 3'-overhang) and it fails to unwind substrates that contain nicks, or covalent discontinuities in the loading strand. However, unlike NPH-II, NS3 readily unwinds RNA duplexes that contain long stretches of polyglycol, which are moieties that bear no resemblance to nucleic acid. Whether located on the tracking strand, the top strand, or both, long polyglycol regions fail to disrupt the function of NS3. This suggests that NS3 does not require the continuous formation of specific contacts with the ribose-phosphate backbone as it translocates along an RNA duplex, which is an observation consistent with the large NS3 kinetic step size (18 base-pairs). Rather, once NS3 loads onto a substrate, the helicase can translocate along the loading strand of an RNA duplex like a monorail train following a track. Bumps in the track do not significantly disturb NS3 unwinding, but a break in the track de-rails the helicase.

  11. Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.

    Science.gov (United States)

    Jaru-Ampornpan, Peera; Jengarn, Juggragarn; Wanitchang, Asawin; Jongkaewwattana, Anan

    2017-01-15

    Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality rates in newborn piglets, leading to massive losses to the swine industry worldwide during recent epidemics. Intense research efforts are now focusing on defining viral characteristics that confer a growth advantage, pathogenicity, or cell adaptability in order to better understand the PEDV life cycle and identify suitable targets for antiviral or vaccine development. Here, we report a unique phenomenon of PEDV nucleocapsid (N) cleavage by the PEDV-encoded 3C-like protease (3Cpro) during infection. The identification of the 3Cpro cleavage site at the C terminus of N supported previous observations that PEDV 3Cpro showed a substrate requirement slightly different from that of severe acute respiratory syndrome coronavirus (SARS-CoV) 3Cpro and revealed a greater flexibility in its substrate recognition site. This cleavage motif is present in the majority of cell culture-adapted PEDV strains but is missing in emerging field isolates. Remarkably, reverse-genetics-derived cell culture-adapted PEDV AVCT12 harboring uncleavable N displayed growth retardation in Vero E6-APN cells compared to the wild-type virus. These observations altogether shed new light on the investigation and characterization of the PEDV nucleocapsid protein and its possible link to cell culture adaptation. Recurrent PEDV outbreaks have resulted in enormous economic losses to swine industries worldwide. To gain the upper hand in combating this disease, it is necessary to understand how this virus replicates and evades host immunity. Characterization of viral proteins provides important clues to mechanisms by which viruses survive and spread. Here, we characterized an intriguing phenomenon in which the nucleocapsids of some PEDV strains are proteolytically processed by the virally encoded main protease. Growth retardation in recombinant PEDV carrying uncleavable N suggests a replication advantage provided by the cleavage

  12. Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples.

    Directory of Open Access Journals (Sweden)

    Subhamoy Pal

    Full Text Available Early diagnosis of dengue virus (DENV infection can improve clinical outcomes by ensuring close follow-up, initiating appropriate supportive therapies and raising awareness to the potential of hemorrhage or shock. Non-structural glycoprotein-1 (NS1 has proven to be a useful biomarker for early diagnosis of dengue. A number of rapid diagnostic tests (RDTs and enzyme-linked immunosorbent assays (ELISAs targeting NS1 antigen (Ag are now commercially available. Here we evaluated these tests using a well-characterized panel of clinical samples to determine their effectiveness for early diagnosis.Retrospective samples from South America were used to evaluate the following tests: (i "Dengue NS1 Ag STRIP" and (ii "Platelia Dengue NS1 Ag ELISA" (Bio-Rad, France, (iii "Dengue NS1 Detect Rapid Test (1st Generation" and (iv "DENV Detect NS1 ELISA" (InBios International, United States, (v "Panbio Dengue Early Rapid (1st generation" (vi "Panbio Dengue Early ELISA (2nd generation" and (vii "SD Bioline Dengue NS1 Ag Rapid Test" (Alere, United States. Overall, the sensitivity of the RDTs ranged from 71.9%-79.1% while the sensitivity of the ELISAs varied between 85.6-95.9%, using virus isolation as the reference method. Most tests had lower sensitivity for DENV-4 relative to the other three serotypes, were less sensitive in detecting secondary infections, and appeared to be most sensitive on Day 3-4 post symptom onset. The specificity of all evaluated tests ranged from 95%-100%.ELISAs had greater overall sensitivity than RDTs. In conjunction with other parameters, the performance data can help determine which dengue diagnostics should be used during the first few days of illness, when the patients are most likely to present to a clinic seeking care.

  13. Pilot study of whole-blood gamma interferon response to the Vibrio cholerae toxin B subunit and resistance to enterotoxigenic Escherichia coli-associated diarrhea.

    Science.gov (United States)

    Flores, Jose; DuPont, Herbert L; Paredes-Paredes, Mercedes; Aguirre-Garcia, M Magdalena; Rojas, Araceli; Gonzalez, Alexei; Okhuysen, Pablo C

    2010-05-01

    Enterotoxigenic Escherichia coli (ETEC), which produces heat-labile toxin (LT), is a common cause of travelers' diarrhea (TD). The B subunit of ETEC LT is immunologically related to the B subunit of Vibrio cholerae toxin (CT). In this pilot study we evaluated the whole-blood gamma interferon response to CT B in 17 U.S. adults traveling to Mexico. Only one of nine subjects who demonstrated a cellular immune response as determined by whole-blood gamma interferon production to CT B on arrival to Mexico developed diarrhea, whereas five of eight without a cellular response developed diarrhea. Markers of the cellular immune response to ETEC LT could help in identifying individuals immune to ETEC LT, and these markers deserve additional study.

  14. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    Science.gov (United States)

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Natural prevalence of resistance-associated variants in hepatitis C virus NS5A in genotype 3a-infected people who inject drugs in Germany.

    Science.gov (United States)

    Walker, Andreas; Siemann, Holger; Groten, Svenja; Ross, R Stefan; Scherbaum, Norbert; Timm, Jörg

    2015-09-01

    People who inject drugs (PWID) are the most important risk group for incident Hepatitis C virus (HCV) infection. In PWID in Europe HCV genotype 3a is highly prevalent. Unfortunately, many of the recently developed directly acting antiviral drugs against HCV (DAAs) are suboptimal for treatment of this genotype. Detection of resistance-associated variants (RAV) in genotype 3a may help to optimize treatment decisions, however, robust protocols for amplification and sequencing of HCV NS5A as an important target for treatment of genotype 3a are currently lacking. The aim of this study was to establish a protocol for sequencing of HCV NS5A in genotype 3a and to determine the frequency of RAVs in treatment-naïve PWID living in Germany. The full NS5A region was amplified and sequenced from 110 HCV genotype 3a infected PWID using an in-house PCR protocol. With the established protocol the complete NS5A region was successfully amplified and sequenced from 110 out of 112 (98.2%) genotype 3a infected PWID. Phylogenetic analysis of sequences from PWID together with unrelated genotype 3a sequences from a public database showed a scattered distribution without geographic clustering. Viral polymorphisms A30K and Y93H known to confer resistance in a GT3a replication model were present in 8 subjects (7.2%). A protocol for amplification of nearly all GT3a samples was successfully established. Substitutions conferring resistance to NS5A inhibitors were detected in a few treatment-naive PWID. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    OpenAIRE

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the...

  17. Adaptive mutations allow establishment of JFH1-based cell culture systems for hepatitis C virus genotype 4A

    DEFF Research Database (Denmark)

    2013-01-01

    transmembrane domain (.alpha.), in the cytoplasmic part (.beta.) or at the NS2/NS3 cleavage site (y). Following transfection of Huh7.5 cells with RNA transcripts, infectious viruses were produced in the ED43/JFH1-.beta. and -y cultures only. Compared to the 2a control virus, production of infectious viruses...... studies and functional analyses of an increasingly important genotype in the Middle East and Europe...

  18. Autophagy in Negative-Strand RNA Virus Infection

    Directory of Open Access Journals (Sweden)

    Yupeng Wang

    2018-02-01

    Full Text Available Autophagy is a homoeostatic process by which cytoplasmic material is targeted for degradation by the cell. Viruses have learned to manipulate the autophagic pathway to ensure their own replication and survival. Although much progress has been achieved in dissecting the interplay between viruses and cellular autophagic machinery, it is not well understood how the cellular autophagic pathway is utilized by viruses and manipulated to their own advantage. In this review, we briefly introduce autophagy, viral xenophagy and the interaction among autophagy, virus and immune response, then focus on the interplay between NS-RNA viruses and autophagy during virus infection. We have selected some exemplary NS-RNA viruses and will describe how these NS-RNA viruses regulate autophagy and the role of autophagy in NS-RNA viral replication and in immune responses to virus infection. We also review recent advances in understanding how NS-RNA viral proteins perturb autophagy and how autophagy-related proteins contribute to NS-RNA virus replication, pathogenesis and antiviral immunity.

  19. Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Scheel, Troels K H; Jensen, Tanja B

    2009-01-01

    strains, as well as subtype 1b and 2b strains, we have completed a panel of culture systems for all major HCV genotypes. Efficient growth in Huh7.5 cells depended on adaptive mutations for HK6a/JFH1 (6a/2a, in E1 and E2) and J4/JFH1 (1b/2a, in NS2 and NS3); viability of J8/JFH1 (2b/2a) and QC69/JFH1 (7a/2......a) did not require adaptation. To facilitate comparative studies, we generated virus stocks of genotype 1-7 recombinants with infectivity titers of 10(3.7) to 10(5.2) 50% tissue culture infectious dose/mL and HCV RNA titers of 10(7.0) to 10(7.9) IU/mL. Huh7.5 cultures infected with genotype 1....... Recently, HCV research has been accelerated by cell culture systems based on the unique growth capacity of strain JFH1 (genotype 2a). By development of JFH1-based intergenotypic recombinants containing Core, envelope protein 1 and 2 (E1, E2), p7, and nonstructural protein 2 (NS2) of genotype 6a and 7a...

  20. Thiopurines inhibit bovine viral diarrhea virus production in a thiopurine methyltransferase-dependent manner.

    Science.gov (United States)

    Hoover, Spencer; Striker, Rob

    2008-04-01

    The family Flaviviridae comprises positive-strand RNA viral pathogens of humans and livestock with few treatment options. We have previously shown that azathioprine (AZA) has in vitro activity against bovine viral diarrhea virus (BVDV). While the mechanism of inhibition is unknown, AZA and related thiopurine nucleoside analogues have been used as immunosuppressants for decades and both AZA metabolites and cellular genes involved in AZA metabolism have been extensively characterized. Here, we show that only certain riboside metabolites have antiviral activity and identify the most potent known antiviral AZA metabolite as 6-methylmercaptopurine riboside (6MMPr). The antiviral activity of 6MMPr is antagonized by adenosine, and is specific to BVDV and not to the related yellow fever virus. An essential step in the conversion of AZA to 6MMPr is the addition of a methyl group onto the sulfur atom attached to position six of the purine ring. Intracellularly, the methyl group is added by thiopurine methyltransferase (TPMT), an S-adenosyl methionine-dependent methyltransferase. Either chemically bypassing or inhibiting TPMT modulates antiviral activity of AZA metabolites. TPMT exists in several variants with varying levels of activity and since 6MMPr is a potent antiviral, the antiviral activity of AZA may be modulated by host genetics.

  1. Effects of interferon-tau on cattle persistently infected with bovine viral diarrhea virus.

    Science.gov (United States)

    Kohara, Junko; Nishikura, Yumiko; Konnai, Satoru; Tajima, Motoshi; Onuma, Misao

    2012-08-01

    In this study, the antiviral effects of bovine interferon-tau (boIFN-tau) on bovine viral diarrhea virus (BVDV) were examined in vitro and in vivo. In the in vitro experiments, the replication of cytopathic and non-cytopathic BVDV was inhibited in the bovine cells treated with boIFN-tau. The replication of BVDV was completely suppressed by boIFN-tau at a concentration higher than 10(2) U/ml. In order to examine the effect of boIFN-tau on virus propagation in cattle persistently infected (PI) with non-cytopathic BVDV, boIFN-tau was subcutaneously administered to PI cattle at 10(5) U/kg or 10(6) U/kg body weight 5 times per week for 2 weeks. No physical abnormality such as depression was observed in the cattle during the experiment. The mean BVDV titers in the serum of the PI cattle decreased slightly during the boIFN-tau administration period with the dose of 10(6) U/kg. However, the BVDV titers in the serum returned to the pre-administration level after the final boIFN-tau administration. These results suggest that boIFN-tau demonstrates an anti-BVDV effect, reducing the BVDV level in serum transiently when injected into PI cattle.

  2. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-01-01

    AIM To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). METHODS The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. RESULTS The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of

  3. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database.

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-10-28

    To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of genotype 1b sequences

  4. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  5. NS19504

    DEFF Research Database (Denmark)

    Nausch, Bernhard; Rode, Frederik; Jørgensen, Susanne

    2014-01-01

    channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization......19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µ......M) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K(+) concentration consistent with a K(+) channel-mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels...

  6. Rapid emergence of hepatitis C virus protease inhibitor resistance is expected

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Approximately 170 million people worldwide are infected with hepatitis C virus (HCV). Current therapy, consisting of pegylated interferon (PEG-IFN) and ribavirin (RBV), leads to sustained viral elimination in only about 45% of patients treated. Telaprevir (VX-950), a novel HCV NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients with chronic hepatitis C genotype 1 infection. However, some patients experience viral breakthrough during dosing, with drug resistant variants being 5%-20% of the virus population as early as day 2 after treatment initiation. Why viral variants appear such a short time after the start of dosing is unclear, especially since this has not been seen with monotherapy for either human immunodeficiency virus or hepatitis B virus. Here, using a viral dynamic model, we explain why such rapid emergence of drug resistant variants is expected when potent HCV protease inhibitors are used as monotherapy. Surprisingly, our model also shows that such rapid emergence need not be the case with some potent HCV NS5B polymerase inhibitors. Examining the case of telaprevir therapy in detail, we show the model fits observed dynamics of both wild-type and drug-resistant variants during treatment, and supports combination therapy of direct antiviral drugs with PEG-IFN and/or RBV for hepatitis C.

  7. Identification of halosalicylamide derivatives as a novel class of allosteric inhibitors of HCV NS5B polymerase.

    Science.gov (United States)

    Liu, Yaya; Donner, Pamela L; Pratt, John K; Jiang, Wen W; Ng, Teresa; Gracias, Vijaya; Baumeister, Steve; Wiedeman, Paul E; Traphagen, Linda; Warrior, Usha; Maring, Clarence; Kati, Warren M; Djuric, Stevan W; Molla, Akhteruzzaman

    2008-06-01

    Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.

  8. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling.

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2016-08-01

    Full Text Available Flaviviruses comprise major emerging pathogens such as dengue virus (DENV or Zika virus (ZIKV. The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp domain of non-structural protein 5 (NS5. This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket". Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.

  9. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Munir Iqbal

    2009-06-01

    Full Text Available The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked alpha2-6 to galactose. The neuraminidase (NA of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84, a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP, and matrix (M genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.

  10. Hydrolysable chestnut tannins for reduction of postweaning diarrhea: Efficacy on an experimental ETEC F4 model.

    Science.gov (United States)

    Girard, Marion; Thanner, Sophie; Pradervand, Nicolas; Hu, Dou; Ollagnier, Catherine; Bee, Giuseppe

    2018-01-01

    An experimental model for postweaning diarrhea with enterotoxigenic Escherichia coli F4 (ETEC F4) was set up in piglets, and the efficacy of 1% chestnut-tannin extract in preventing diarrhea was subsequently assessed. In a first trial (infection model), 32 Swiss Large White piglets (age: 24 days; average BW: 7.8 ± 0.8 kg) were randomly assigned to two experimental groups (infected [INF], noninfected [NINF]). In a subsequent trial, 72 Swiss Large White piglets (age: 26 days; average BW: 7.4 ± 1.5 kg) were blocked by BW and assigned within block to four experimental groups: NINF-CO: not infected and fed a standard control starter diet (CO); INF-CO: infected and fed the CO diet; NINF-TA: not infected and fed the CO diet supplemented with 1% chestnut extract containing 54% of hydrolysable tannins (TA); and INF-TA: infected and fed the TA diet. Both diets (TA and CO) were formulated to be isocaloric and isoproteic and to meet or surpass the nutritional requirements. In both trials, four days after weaning, piglets assigned to the INF group received an oral suspension of ETEC F4. Fecal score, ETEC shedding in feces (only in trial 2), and growth performance traits were measured for the following 14 days post infection. In both trials, more than 50% of the INF piglets developed diarrhea within six days post infection. Tannins reduced (P < 0.05) the average fecal score, the percentage of piglets in diarrhea, and the duration of diarrhea, whereas feed intake and the average daily gain were unaffected.

  11. A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus.

    Science.gov (United States)

    Chen, Can; Fan, Wenhui; Li, Jing; Zheng, Weinan; Zhang, Shuang; Yang, Limin; Liu, Di; Liu, Wenjun; Sun, Lei

    2018-01-01

    Interferon (IFN)-sensitive and replication-incompetent influenza viruses are likely to be the alternatives to inactivated and attenuated virus vaccines. Some IFN-sensitive influenza vaccine candidates with modified non-structural protein 1 (NS1) are highly attenuated in IFN-competent hosts but induce robust antiviral immune responses. However, little research has been done on the manufacturability of these IFN-sensitive vaccine viruses. Here, RIG-I-knockout 293T cells were used to package the IFN-sensitive influenza A/WSN/33 (H1N1) virus expressing the mutant NS1 R38A/K41A. We found that the packaging efficiency of the NS1 R38A/K41A virus in RIG-I-knockout 293T cells was much higher than that in 293T cells. Moreover, the NS1 R38A/K41A virus almost lost its IFN antagonist activity and could no longer replicate in A549, MDCK, and Vero cells after 3-6 passages. This indicated that the replication of NS1 R38A/K41A virus is limited in conventional cells. Therefore, we further established a stable Vero cell line expressing the wild-type (WT) NS1 of the WSN virus, based on the Tet-On 3G system. The NS1 R38A/K41A virus was able to steadily propagate in this IFN-deficient cell line for at least 20 passages. In a mouse model, the NS1 R38A/K41A virus showed more than a 4-log reduction in lung virus titers compared to the WT virus at 3 and 5 days post infection. Furthermore, we observed that the NS1 R38A/K41A virus triggered high-level of IFN-α/β production in lung tissues and was eliminated from the host in a relatively short period of time. Additionally, this virus induced high-titer neutralizing antibodies against the WT WSN, A/Puerto Rico/8/1934 (PR8), or A/California/04/2009 (CA04) viruses and provided 100% protection against the WT WSN virus. Thus, we found that the replication of the NS1 R38A/K41A virus was limited in IFN-competent cells and mice. We also presented a promising IFN-deficient system, involving a RIG-I-knockout 293T cell line to package the IFN

  12. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex

    Science.gov (United States)

    2012-01-01

    Background Influenza A viruses are well characterized to antagonize type I IFN induction in infected mammalian cells. However, limited information is available for avian cells. It was hypothesised that avian influenza viruses (AIV) with distinct virulence may interact differently with the avian innate immune system. Therefore, the type I IFN responses induced by highly virulent and low virulent H5N1 AIV and reassortants thereof were analysed in chicken cells. Results The highly pathogenic (HP) AIV A/chicken/Yamaguchi/7/04 (H5N1) (Yama) did not induce type I IFN in infected chicken HD-11 macrophage-like cells. This contrasted with an NS1 mutant Yama virus (Yama-NS1A144V) and with the attenuated H5N1 AIV A/duck/Hokkaido/Vac-1/04 (Vac) carrying the haemagglutinin (HA) of the Yama virus (Vac-Yama/HA), that both induced type I IFN in these cells. The substitution of the NS segment from Yama with that from Vac in the Yama backbone resulted in induction of type I IFN secretion in HD-11 cells. However, vice versa, the Yama NS segment did not prevent type I IFN induction by the Vac-Yama/HA virus. This was different with the PB1/PB2/PA segment reassortant Yama and Vac-Yama/HA viruses. Whereas the Yama virus with the Vac PB1/PB2/PA segments induced type I IFN in HD-11 cells, the Vac-Yama/HA virus with the Yama PB1/PB2/PA segments did not. As reported for mammalian cells, the expression of H5N1 PB2 inhibited the activation of the IFN-β promoter in chicken DF-1 fibroblast cells. Importantly, the Yama PB2 was more potent at inhibiting the IFN-β promoter than the Vac PB2. Conclusions The present study demonstrates that the NS1 protein and the polymerase complex of the HPAIV Yama act in concert to antagonize chicken type I IFN secretion in HD-11 cells. PB2 alone can also exert a partial inhibitory effect on type I IFN induction. In conclusion, the control of type I IFN induction by H5N1 HPAIV represents a complex phenotype that involves a particular viral gene constellation

  13. Cell culture-adaptive mutations of NS5A affect replication of hepatitis C virus differentially depending on the viral genotypes.

    Science.gov (United States)

    Chung, Aeri; Jin, Bora; Han, Kwang-Hyub; Ahn, Sang Hoon; Kim, Seungtaek

    2017-01-01

    Most of HCV RNAs require cell culture-adaptive mutations for efficient replication in cell culture and a number of such mutations have been described including a well-known S2204I substitution mutation in NS5A protein. In contrast, the replication of genotype 2a JFH1 RNA in cell culture does not require any cell culture-adaptive mutation. Rather, the presence of S2204I mutation impaired the JFH1 RNA replication. In this study, we examined the effect of reversions and substitutions of NS5A cell culture-adaptive mutations on virus replication in different genotypic backgrounds after either placing genotype 1a NS5A in the genotype 2a JFH1 or vice versa. The results from this investigation suggest that the S2204I mutation affects HCV RNA replication differentially depending on the viral genotypes but that the effect was not simply explained by the genotypic background. Perhaps, the effect of the S2204I mutation on HCV replication reflects both intra- and intergenic interactions of NS5A protein. J. Med. Virol. 89:146-152, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Diarréia por parasitas Parasites induced diarrheas

    Directory of Open Access Journals (Sweden)

    Maria Eugênia Farias Almeida Motta

    2002-08-01

    Full Text Available A diarréia é uma causa importante de morbimortalidade nos países em desenvolvimento. Os agentes etiológicos mais comuns são os vírus e as bactérias. Este artigo tem o objetivo de analisar a ocorrência de diarréia como manifestação clínica de parasitose. Discute-se quais os protozoários e os helmintos que podem causar diarréia, as bases científicas atuais que explicam os mecanismos fisiopatológicos que desencadeiam a diarréia, bem como os exames complementares e o tratamento adequado para cada parasita implicado.Diarrhea is an important cause of morbidity and mortality in developing countries. The most common etiological agents are viruses and bacteria. This article has the objective of analyzing diarrhea as a clinical symptom of parasitosis. Protozoa and helminthes that may cause diarrhea are discussed, current scientific basis clarifying the pathological and physiological mechanisms causing diarrhea as well as supplementary tests and adequate treatment for each parasite involved are focused.

  15. An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with Chrysanthemum virus B coat protein.

    Directory of Open Access Journals (Sweden)

    Aiping Song

    Full Text Available BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E plays an important role in plant virus infection as well as the regulation of gene translation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe the isolation of a cDNA encoding CmeIF(iso4E (GenBank accession no. JQ904592, an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso4E and the Chrysanthemum virus B coat protein (CVBCP. Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso4E with other reported plant eIF(iso4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso4E belongs to the eIF(iso4E subfamily of the eIF4E family. CmeIF(iso4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. CONCLUSIONS/SIGNIFICANCE: These results inferred that CmeIF(iso4E as the cap-binding subunit eIF(iso4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.

  16. Synthesis, antiviral evaluation and molecular docking studies of N4-aryl substituted/unsubstituted thiosemicarbazones derived from 1-indanones as potent anti-bovine viral diarrhea virus agents.

    Science.gov (United States)

    Soraires Santacruz, María C; Fabiani, Matías; Castro, Eliana F; Cavallaro, Lucía V; Finkielsztein, Liliana M

    2017-08-01

    A series of N 4 -arylsubstituted thiosemicarbazones derived from 1-indanones and a set of compounds lacking such substitution in the N 4 position of the thiosemicarbazone moiety were synthesized and evaluated for their anti-bovine viral diarrhea virus (BVDV) activity. Among these, derivatives 2 and 15 displayed high activity (EC 50 =2.7±0.4 and 0.7±0.1µM, respectively) as inhibitors of BVDV replication. Novel key structural features related to the anti-BVDV activity were identified by structure-activity relationship (SAR) analysis. In a previous study, the thiosemicarbazone of 5,6-dimethoxy-1-indanone (5,6-TSC) was characterized as a non-nucleoside inhibitor (NNI) of the BVDV RNA-dependent RNA polymerase. In the present work, cross-resistance assays were performed with the most active compounds. Such studies were carried out on 5,6-TSC resistant BVDV (BVDV-TSC r T1) carrying mutations in the viral polymerase. This BVDV mutant was also resistant to compound 15. Molecular docking studies and MM/PBSA calculations were performed to assess the most active derivatives at the 5,6-TSC viral polymerase binding site. The differences in the interaction pattern and the binding affinity of derivative 15 either to the wild type or BVDV-TSC r T1 polymerase were key factors to define the mode of action of this compound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. New Inhibitors of the DENV-NS5 RdRp from Carpolepis laurifolia as Potential Antiviral Drugs for Dengue Treatment

    Directory of Open Access Journals (Sweden)

    Paul Coulerie

    2014-05-01

    Full Text Available Since a few decades the dengue virus became a major public health concern and no treatment is available yet. In order to propose potential antidengue compounds for chemotherapy we focused on DENV RNA polymerase (DENV-NS5 RdRp which is specific and essential for the virus replication. Carpolepis laurifolia belongs to the Myrtaceae and is used as febrifuge in traditional kanak medicine. Leaf extract of this plant has been identified as a hit against the DENV-NS5 RdRp. Here we present a bioguided fractionation of the leaf extract of C. laurifolia which is also the first phytochemical evaluation of this plant. Five flavonoids, namely quercetin (1, 6-methyl-7-methoxyapigenin (2, avicularin (3, quercitrin (4 and hyperoside (5, together with betulinic acid (6, were isolated from the leaf extract of C. laurifolia. All isolated compounds were tested individually against the DENV-NS5 RdRp and compared with four other commercial flavonoids: isoquercitrin (7, spiraeoside (8, quercetin-3,4’-di-O-glucoside (9 and rutine (10. Compounds 3, 4, 6, 8 and 10 displayed IC 50 ranging from 1.7 to 2.1 µM, and were the most active against the DENV-NS5 RdRp.

  18. Diarrhea following whole pelvis irradiation in female pelvic cancer

    International Nuclear Information System (INIS)

    Sakurai, Tomoyasu; Moriya, Hiroshi; Hareyama, Masato; Nishio, Masamichi

    1975-01-01

    Investigations were made on the following points which were possible factors in the appearance of diarrhea during irradiation of the whole pelvis for uterine cancer: (a) daily dose of 200 and 180 rads, (b) age, (c) radical operation for uterine cancer, (d) previous history of abdominal operation, (e) disease stage of II or III, and (f) grade of infiltration of the rectum with cancer cells. Results thereby obtained are summarized as follows: 1) A significant difference between the dose of 200 and 180 rads in causing diarrhea was found only in patients receiving radiation therapy alone, without a previous history of abdominal operation. 2) Patients who underwent a radical operation for uterine cancer showed a significantly higher incidence of diarrhea than those without such an operation. 3) The age of patients, previous history of abdominal operation, and grade of infiltration of cancer cells into the rectum had almost no effect on the incidence of diarrhea. 4) There was no significant difference in the frequency of diarrhea between stage II and III, although the higher incidence recorded for the latter group was between a 10 and 20% level of significance. (auth.)

  19. Expression of the rice hoja blanca virus (RHBV non-structural protein 3 (NS3 in Escherichia coli and its in situ localization in RHBV-infected rice tissues

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz

    2004-09-01

    Full Text Available The non-structural NS3 protein gene from the rice hoja blanca virus (RHBV was fused to the glutathione- S-transferase carboxilic end and expressed in Escherichia coli strain JM83. Large quantities of fusion protein were produced in insoluble form. The fusion protein was fractionated in SDS-PAGE and purified by electroelution, polyclonal antibodies were raised in rabbit and the antiserum was absorbed with bacterial crude extract. A band of similar size as that of NS3 protein was observed in Western blots using extracts from RHBV-infected rice plants. Immunoelectron microscopy with colloidal gold-labeled antibodies against NS3 protein and the viral nucleocapsid protein revealed in situ accumulation of NS3 protein in the cytoplasm but not in the viral inclusion bodies, vacuoles or chloroplasts of RHBV-infected plants, following the same pattern of distribution as the RHBV nucleocapsid protein. Rev. Biol. Trop. 52(3: 765-775. Epub 2004 Dic 15.El gen que codifica por la proteína no estructural NS3 del virus de la hoja blanca de arroz (RHBV se fusionó al extremo carboxilo del gen de la glutationa-S-transferasa y se expresó en la cepa JM83 de Escherichia coli. Se obtuvieron altas concentraciones de la proteína de fusion (GST-NS3 en forma insoluble. La proteína de fusión se fraccionó en geles de SDS-PAGE, se purificó por electroelución, y se utilizó para producir anticuerpos policlonales en conejo . El antisuero producido se absorbió con extractos crudos de E. coli. Extractos crudos de plantas de arroz sanas e infectadas con el RHBV se evaluaron por Western blots detectándose una banda de peso molecular similar al estimado para la proteína NS3 (23KDa en las plantas infectadas con el virus. Los tejidos provenientes de plantas infectadas con el RHBV se analizaron por medio de microscopia inmunoelectrónica con oro colloidal marcado con anticuerpos contra la proteína NS3 y la nucleoproteína viral N. Se observó una acumulación in situ de la

  20. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    Science.gov (United States)

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  1. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    Science.gov (United States)

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo

    Directory of Open Access Journals (Sweden)

    Victoria A. Meliopoulos

    2016-11-01

    Full Text Available The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1 capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2 capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3 from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction.

  3. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Directory of Open Access Journals (Sweden)

    Encheng Sun

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1 of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24 were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV, Newcastle Disease Virus (NDV, Duck Plague Virus (DPV and Goose Parvovirus (GPV antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and

  4. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    Science.gov (United States)

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  5. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  6. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Shirley Lam

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection. METHODS: Plasmid-based small hairpin RNA (shRNA was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection. RESULTS: Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1. CONCLUSION: Taken together, these

  7. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro

    Directory of Open Access Journals (Sweden)

    Zhengyang Zeng

    2016-04-01

    Full Text Available Hepatitis B virus (HBV infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC. Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel–modulating activities in the future.

  8. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    Science.gov (United States)

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  9. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    Directory of Open Access Journals (Sweden)

    Kengo Morohashi

    Full Text Available BACKGROUND: Cyclosporin A (CsA is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL, possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB, known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  10. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    Science.gov (United States)

    Morohashi, Kengo; Sahara, Hiroeki; Watashi, Koichi; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-04-29

    Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  11. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    Science.gov (United States)

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection.

  12. Primary surveys on molecular epidemiology of bovine viral diarrhea virus 1 infecting goats in Jiangsu province, China.

    Science.gov (United States)

    Mao, Li; Li, Wenliang; Yang, Leilei; Wang, Jianhui; Cheng, Suping; Wei, Yong; Wang, Qiusheng; Zhang, Wenwen; Hao, Fei; Ding, Yonglong; Sun, Yinhua; Jiang, Jieyuan

    2016-09-05

    Bovine viral diarrhea virus (BVDV) is a pathogen of domestic and wildlife animals worldwide and is associated with several diseases. In China, there are many reports about genotyping of BVDV strains originated from cattle and pigs, and some of them focused on the geographical distributions of BVDV. Currently, the goat industry in Jiangsu province of China is under going a rapid expansion. Most of these goat farms are backyard enterprises and in close proximity to pig and cattle farms. However, there was very limited information about BVDV infections in goats. The objective of this study was to assess the frequency of BVDV infections of goats, the relationship of these infections to clinical signs and determine what BVDV genotypes are circulating in Jiangsu province. From 236 goat sera collected from six regions in Jiangsu province between 2011 and 2013, BVDV-1 was identified in 29 samples from the five regions by RT-PCR. The BVDV-1 infections occurred with/without clinical signs. Eight different BVDV-1 strains were identified from these positive samples based on the 5'-untranslated region (5'-UTR) sequences, and further clustered into four BVDV-1 subtypes on the phylogenetic analysis. Three were BVDV-1b, two BVDV-1m, two BVDV-1o, and one BVDV-1p, respectively. To our knowledge, this is the first report to investigate the occurrence of BVDV and the genotypes of BVDV infecting goats in China. The results indicated that BVDV-1 infections were indeed present and the viruses were with genetic variations in Chinese goat herds. The information would be very useful for prevention and control of BVDV-1 infections in China.

  13. AIDS Diarrhea and Antiretroviral Drug Concentrations: A Matched-Pair Cohort Study in Port au Prince, Haiti

    Science.gov (United States)

    Dillingham, Rebecca; Leger, Paul; Beauharnais, Carole-Anne; Miller, Erica; Kashuba, Angela; Jennings, Steven; Dupnik, Kathryn; Samie, Amidou; Eyma, Etna; Guerrant, Richard; Pape, Jean; Fitzgerald, Daniel

    2011-01-01

    Diarrhea in patients with acquired immunodeficiency syndrome (AIDS) may cause malabsorption of medications and failure of antiretroviral therapy (ART). We prospectively evaluated human immunodeficiency virus-1 (HIV-1)-infected patients with and without chronic diarrhea initiating ART in Haiti. We report mean plasma antiretroviral concentrations at 2 and 4 weeks. We measured plasma HIV-1 RNA levels at four points. Fifty-two HIV-1-infected patients (26 matched pairs) were enrolled. No differences in antiretroviral concentrations were detected. At week 24, 18/25 (72%) cases and 16/24 (68%) controls had undetectable plasma HIV-1 RNA levels (P = 0.69). Patients with plasma HIV-1 RNA levels > 50 copies/mL at week 24 had lower early efavirenz concentrations than patients with undetectable HIV-1 RNA (2,621 ng/mL versus 5,278 ng/mL; P = 0.02). Diarrhea at ART initiation does not influence plasma concentrations of the medications evaluated. Virologic outcome at Week 24 does correlate with efavirenz concentrations early in therapy but not with the presence of chronic diarrhea. PMID:21633022

  14. Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein.

    Directory of Open Access Journals (Sweden)

    Tsubasa Munakata

    2007-09-01

    Full Text Available Hepatitis C virus (HCV is a positive-strand RNA virus that frequently causes persistent infections and is uniquely associated with the development of hepatocellular carcinoma. While the mechanism(s by which the virus promotes cancer are poorly defined, previous studies indicate that the HCV RNA-dependent RNA polymerase, nonstructural protein 5B (NS5B, forms a complex with the retinoblastoma tumor suppressor protein (pRb, targeting it for degradation, activating E2F-responsive promoters, and stimulating cellular proliferation. Here, we describe the mechanism underlying pRb regulation by HCV and its relevance to HCV infection. We show that the abundance of pRb is strongly downregulated, and its normal nuclear localization altered to include a major cytoplasmic component, following infection of cultured hepatoma cells with either genotype 1a or 2a HCV. We further demonstrate that this is due to NS5B-dependent ubiquitination of pRb and its subsequent degradation via the proteasome. The NS5B-dependent ubiquitination of pRb requires the ubiquitin ligase activity of E6-associated protein (E6AP, as pRb abundance was restored by siRNA knockdown of E6AP or overexpression of a dominant-negative E6AP mutant in cells containing HCV RNA replicons. E6AP also forms a complex with pRb in an NS5B-dependent manner. These findings suggest a novel mechanism for the regulation of pRb in which the HCV NS5B protein traps pRb in the cytoplasm, and subsequently recruits E6AP to this complex in a process that leads to the ubiquitination of pRb. The disruption of pRb/E2F regulatory pathways in cells infected with HCV is likely to promote hepatocellular proliferation and chromosomal instability, factors important for the development of liver cancer.

  15. A double-blind, randomized, multiple-dose, parallel-group study to characterize the occurrence of diarrhea following two different dosing regimens of neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor.

    Science.gov (United States)

    Abbas, Richat; Hug, Bruce A; Leister, Cathie; Sonnichsen, Daryl

    2012-07-01

    Neratinib, a potent, low-molecular-weight, orally administered, irreversible, pan-ErbB receptor tyrosine kinase inhibitor has antitumor activity in ErbB2 + breast cancer. The objective of this study was to characterize the onset, severity, and duration of diarrhea after administration of neratinib 240 mg once daily (QD) and 120 mg twice daily (BID) for ≤14 days in healthy subjects. A randomized, double-blind, parallel-group, inpatient study was conducted in 50 subjects given oral neratinib either 240 mg QD or 120 mg BID with food for ≤14 days. The primary endpoint was the proportion of subjects with diarrhea of at least moderate severity (grade 2; 5-7 loose stools/day). In subjects with grade 2 diarrhea, fecal analytes were determined. Pharmacokinetic profiles were characterized for neratinib on Days 1 and 7. No severe (grade 3) diarrhea was reported. By Day 4, all subjects had grade 1 diarrhea. Grade 2 diarrhea occurred in 11/22 evaluable subjects (50 % [90 % confidence interval (CI): 28-72 %]) in the QD group and 17/23 evaluable subjects (74 % [90 % CI: 52-90 %]) in the BID group (P = 0.130). In fecal analyses, 18 % tested positive for hemoglobin and 46 % revealed fecal lactoferrin. Specimen pH was neutral to slightly alkaline. In pharmacokinetic analyses, Day 1 peak plasma concentration and Day 7 steady-state exposure were higher with the QD regimen than the BID regimen. In an exploratory analysis, ABCG2 genotype showed no correlation with severity or onset of diarrhea. Incidences and onsets of at least grade 1 and at least grade 2 diarrhea were not improved on BID dosing compared with QD dosing.

  16. Intractable diarrhea in hyperthyroidism: management with beta-adrenergic blockade.

    Science.gov (United States)

    Bricker, L A; Such, F; Loehrke, M E; Kavanaugh, K

    2001-01-01

    To describe a patient with intractable diarrhea and thyrotoxic Graves' disease, for whom b-adrenergic blockade ultimately proved to be effective therapy for the diarrhea, and to review the types of hyperthyroidism-associated diarrhea. We present the clinical course of a young man with a prolonged siege of diarrhea that proved elusive to diagnostic inquiries and resistant to all means of management until its endocrine basis was discovered. Control of such cases with b-adrenergic blockade is discussed, as are the pathophysiologic bases of intestinal hypermotility in hyperthyroidism. A 26-year-old man with Down syndrome, and no prior gastrointestinal disorder, had insidious, chronic, constant diarrhea, which was associated with loss of 14 kg during a 5-month period. Numerous laboratory and imaging studies and endoscopic examinations failed to disclose the cause of the diarrhea. Furthermore, a broad range of antibiotics and other empiric remedies failed to control the problem. No other symptoms of hyperthyroidism were reported, but when the endocrinopathy was suspected and identified, the diarrhea was promptly controlled by treatment with propranolol. In patients with hyperthyroidism, two types of diarrheal disorders have been described-secretory diarrhea and steatorrhea; bile acid malabsorption may have a role in either of these settings. In addition to its capacity for blocking the peripheral effects of thyroid hormone on the heart and central nervous system, b-adrenergic blockade is effective in slowing intestinal transit time and ameliorating the uncommon diarrhea associated with hyperthyroidism. Thyroid hormone in excess, among its other possible effects on the gastrointestinal tract, may exert a stimulatory effect by means of intermediary sympathetic activation, as it does with the heart. Thus, sympathetic blockade can mimic the salutary effects on the gastrointestinal tract conventionally brought about by direct antithyroid therapy, and well before the

  17. Influenza B viruses : not to be discounted

    NARCIS (Netherlands)

    van de Sandt, Carolien E; Bodewes, Rogier; Rimmelzwaan, Guus F; de Vries, Rory D

    2015-01-01

    In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and

  18. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging.

    Science.gov (United States)

    Pijlman, Gorben P; Kondratieva, Natasha; Khromykh, Alexander A

    2006-11-01

    Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.

  19. Detection and Molecular Characterization of Human Adenovirus Infections among Hospitalized Children with Acute Diarrhea in Shanghai, China, 2006–2011

    Directory of Open Access Journals (Sweden)

    Lijuan Lu

    2017-01-01

    Full Text Available Background: Human adenovirus (HAdV is considered a significant enteropathogen associated with sporadic diarrhea in children. However, limited data are available regarding the epidemiology of HAdV in hospitalized children with viral diarrhea in Shanghai. The aim of this study was to characterize the epidemiology of HAdVs and describe their association with acute diarrhea in hospitalized children. Methods: A total of 674 fecal samples were subjected to PCR or RT-PCR to detect RVA, HuCV, HAstV, and HAdV. Results: HAdV infections were detected in 4.7% (32/674 of specimens, with detection rates of 13.4% (11/82, 4.6% (8/174, 3.2% (4/124, 4.1% (3/74, 2.0% (2/100, and 3.3% (4/120 from 2006 to 2011, respectively. Comprehensive detection of the four viruses revealed the presence of a high percentage (90.6% of coinfections among HAdV-positive samples, where HAdV+RVA was the most prevalent coinfection. Of the 32 HAdV-positive samples, 50.0% (16/32 were classified as HAdV-41, and 18.8% (6/32 were classified as HAdV-3. Almost 94.0% of children infected with HAdV were less than 24 months of age. Conclusions: These results clearly indicated diversity across the HAdV genotypes detected in inpatient children with acute diarrhea in Shanghai and suggested that HAdVs play a role in children with acute diarrhea.

  20. X-ray structure of the pestivirus NS3 helicase and its conformation in solution.

    Science.gov (United States)

    Tortorici, M Alejandra; Duquerroy, Stéphane; Kwok, Jane; Vonrhein, Clemens; Perez, Javier; Lamp, Benjamin; Bricogne, Gerard; Rümenapf, Till; Vachette, Patrice; Rey, Félix A

    2015-04-01

    Pestiviruses form a genus in the Flaviviridae family of small enveloped viruses with a positive-sense single-stranded RNA genome. Viral replication in this family requires the activity of a superfamily 2 RNA helicase contained in the C-terminal domain of nonstructural protein 3 (NS3). NS3 features two conserved RecA-like domains (D1 and D2) with ATPase activity, plus a third domain (D3) that is important for unwinding nucleic acid duplexes. We report here the X-ray structure of the pestivirus NS3 helicase domain (pNS3h) at a 2.5-Å resolution. The structure deviates significantly from that of NS3 of other genera in the Flaviviridae family in D3, as it contains two important insertions that result in a narrower nucleic acid binding groove. We also show that mutations in pNS3h that rescue viruses from which the core protein is deleted map to D3, suggesting that this domain may be involved in interactions that facilitate particle assembly. Finally, structural comparisons of the enzyme in different crystalline environments, together with the findings of small-angle X-ray-scattering studies in solution, show that D2 is mobile with respect to the rest of the enzyme, oscillating between closed and open conformations. Binding of a nonhydrolyzable ATP analog locks pNS3h in a conformation that is more compact than the closest apo-form in our crystals. Together, our results provide new insight and bring up new questions about pNS3h function during pestivirus replication. Although pestivirus infections impose an important toll on the livestock industry worldwide, little information is available about the nonstructural proteins essential for viral replication, such as the NS3 helicase. We provide here a comparative structural and functional analysis of pNS3h with respect to its orthologs in other viruses of the same family, the flaviviruses and hepatitis C virus. Our studies reveal differences in the nucleic acid binding groove that could have implications for understanding the

  1. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    Directory of Open Access Journals (Sweden)

    Denise Maciel Carvalho

    2014-01-01

    Full Text Available Background. During dengue virus (DV infection, monocytes produce tumor necrosis factor alpha (TNF-α and nitric oxide (NO which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1 on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1 serum levels and innate immune response (TLR4 expression and TNF-α/NO production of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA, TNF-α production by peripheral blood mononuclear cells (PBMCs, and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF was detected compared to patients with dengue hemorrhagic fever (DHF. Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.

  2. Adenosine A2B Receptors: An Optional Target for the Management of Irritable Bowel Syndrome with Diarrhea?

    Directory of Open Access Journals (Sweden)

    Teita Asano

    2017-11-01

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal disorder, with the characteristic symptoms of chronic abdominal pain and altered bowel habits (diarrhea, constipation, or both. IBS is a highly prevalent condition, which negatively affects quality of life and is a significant burden on global healthcare costs. Although many pharmacological medicines have been proposed to treat IBS, including those targeting receptors, channels, and chemical mediators related to visceral hypersensitivity, successful pharmacotherapy for the disease has not been established. Visceral hypersensitivity plays an important role in IBS pathogenesis. Immune activation is observed in diarrhea-predominant patients with IBS and contributes to the development of visceral hypersensitivity. Adenosine is a chemical mediator that regulates many physiological processes, including inflammation and nociception. Among its receptors, the adenosine A2B receptor regulates intestinal secretion, motor function, and the immune response. We recently demonstrated that the adenosine A2B receptor is involved in visceral hypersensitivity in animal models of IBS. In this review, we discuss the possibility of the adenosine A2B receptor as a novel therapeutic target for IBS.

  3. Stark broadening of potassium ns-4p and nd-4p lines in a wall-stabilized arc

    International Nuclear Information System (INIS)

    Hohimer, J.P.

    1984-01-01

    Stark-width measurements are reported for lines in the ns-4p (n = 7--10) and nd-4p (n = 5--8) series in neutral potassium (K I). These measurements were made by observing the end-on emission from a low pressure (20 Torr) potassium-argon wall-stabilized arc source. The on-axis electron density and temperature in the 20-A arc were (2.0 +- 0.2) x 10 15 cm -3 and 2955 +- 100 K, respectively. The experimentally determined Stark widths were compared with the theoretical values calculated by Griem. The measured Stark widths agreed with theory to within 30% for lines in the ns-4p series; while the measured Stark widths of the nd-4p series lines were only one-third of the theoretical values

  4. Molecular status of Human Immunodeficiency Virus, Hepatitis B virus, and Hepatitis C virus among injecting drug male commercial sex workers in Surakarta, Indonesia

    Science.gov (United States)

    Agung Prasetyo, Afiono; Marwoto; Arifin Adnan, Zainal; Hartono

    2018-05-01

    Male commercial sex workers are one of the high-risk community for blood-borne viruses. However, there are no data concerning the molecular status of Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus (HCV) circulated among male commercial sex workers with injecting drug habits in Surakarta, Indonesia. Blood samples obtained from injecting drug male commercial sex workers in Surakarta were examined for HIV antibodies, HBsAg, and HCV antibodies, respectively, by immunological assays. Blood samples were also subjected to viral nucleic acid extraction and molecular detection of HIV, HBV, and HCV by nested (RT) PCRs. The PCR products were purified from agarose gels, and the nucleotide sequences were retrieved and molecular analyzed. HIV, HBV, and HCV were detected in 29.4% (10/34), 17.6% (6/34), and 52.9% (18/34), respectively. HIV CRF01_AE and B were found to be circulating in the community. HBV genotype B3 was predominated, followed by C1. HCV genotype 1a was predominated, followed by 1c, 3a, 1b, and 4a. HIV, HBV, and HCV were found circulating in the male commercial sex workers with injecting drug habits in Surakarta, Indonesia.

  5. Early diagnosis of dengue in travelers: comparison of a novel real-time RT-PCR, NS1 antigen detection and serology.

    Science.gov (United States)

    Huhtamo, Eili; Hasu, Essi; Uzcátegui, Nathalie Y; Erra, Elina; Nikkari, Simo; Kantele, Anu; Vapalahti, Olli; Piiparinen, Heli

    2010-01-01

    The increased traveling to dengue endemic regions and the numerous epidemics have led to a rise in imported dengue. The laboratory diagnosis of acute dengue requires several types of tests and often paired samples are needed for obtaining reliable results. Although several diagnostic methods are available, proper comparative data on their performance are lacking. To compare the performance of novel methods including a novel pan-DENV real-time RT-PCR and a commercially available NS1 capture-EIA in regard to IgM detection for optimizing the early diagnosis of DENV in travelers. A panel of 99 selected early phase serum samples of dengue patients was studied by real-time RT-PCR, NS1 antigen ELISA, IgM-EIA, IgG-IFA and cell culture virus isolation. The novel real-time RT-PCR was shown specific and sensitive for detection of DENV-1-4 RNA and suitable for diagnostic use. The diagnostic rate using combination of RNA and IgM detection was 99% and using NS1 and IgM detection 95.9%. The results of RNA and NS1 antigen detection disagreed in 15.5% of samples that had only RNA or NS1 antigen detected. The diagnostic rates of early samples are higher when either RNA or NS1 antigen detection is combined with IgM detection. Besides the differences in the RNA and NS1 detection assays, the observed discrepancy of results could suggest individual variation or differences in timing of these markers in patient serum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae.

    Directory of Open Access Journals (Sweden)

    Takasuke Fukuhara

    2017-06-01

    Full Text Available Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1 as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB and ApoE double-knockout Huh7 (BE-KO, and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene.

  7. Mechanism of action of a pestivirus antiviral compound

    Science.gov (United States)

    Baginski, Scott G.; Pevear, Daniel C.; Seipel, Marty; Sun, Siu Chi Chang; Benetatos, Christopher A.; Chunduru, Srinivas K.; Rice, Charles M.; Collett, Marc S.

    2000-01-01

    We report here the discovery of a small molecule inhibitor of pestivirus replication. The compound, designated VP32947, inhibits the replication of bovine viral diarrhea virus (BVDV) in cell culture at a 50% inhibitory concentration of approximately 20 nM. VP32947 inhibits both cytopathic and noncytopathic pestiviruses, including isolates of BVDV-1, BVDV-2, border disease virus, and classical swine fever virus. However, the compound shows no activity against viruses from unrelated virus groups. Time of drug addition studies indicated that VP32947 acts after virus adsorption and penetration and before virus assembly and release. Analysis of viral macromolecular synthesis showed VP32947 had no effect on viral protein synthesis or polyprotein processing but did inhibit viral RNA synthesis. To identify the molecular target of VP32947, we isolated drug-resistant (DR) variants of BVDV-1 in cell culture. Sequence analysis of the complete genomic RNA of two DR variants revealed a single common amino acid change located within the coding region of the NS5B protein, the viral RNA-dependent RNA polymerase. When this single amino acid change was introduced into an infectious clone of drug-sensitive wild-type (WT) BVDV-1, replication of the resulting virus was resistant to VP32947. The RNA-dependent RNA polymerase activity of the NS5B proteins derived from WT and DR viruses expressed and purified from recombinant baculovirus-infected insect cells confirmed the drug sensitivity of the WT enzyme and the drug resistance of the DR enzyme. This work formally validates NS5B as a target for antiviral drug discovery and development. The utility of VP32947 and similar compounds for the control of pestivirus diseases, and for hepatitis C virus drug discovery efforts, is discussed. PMID:10869440

  8. Secretory diarrhea.

    Science.gov (United States)

    Schiller, L R

    1999-10-01

    Diarrhea, defined as loose stools, occurs when the intestine does not complete absorption of electrolytes and water from luminal contents. This can happen when a nonabsorbable, osmotically active substance is ingested ("osmotic diarrhea") or when electrolyte absorption is impaired ("secretory diarrhea"). Most cases of acute and chronic diarrhea are due to the latter mechanism. Secretory diarrhea can result from bacterial toxins, reduced absorptive surface area caused by disease or resection, luminal secretagogues (such as bile acids or laxatives), circulating secretagogues (such as various hormones, drugs, and poisons), and medical problems that compromise regulation of intestinal function. Evaluation of patients with secretory diarrhea must be tailored to find the likely causes of this problem. Specific and nonspecific treatment can be valuable.

  9. Hepatitis B virus (image)

    Science.gov (United States)

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  10. Variability and resistance mutations in the hepatitis C virus NS3 protease in patients not treated with protease inhibitors

    Directory of Open Access Journals (Sweden)

    Luciana Bonome Zeminian

    2013-02-01

    Full Text Available The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3 have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.

  11. Neutralization resistance of hepatitis C virus can be overcome by recombinant human monoclonal antibodies

    DEFF Research Database (Denmark)

    Pedersen, Jannie L; Carlsen, Thomas H R; Prentoe, Jannick

    2013-01-01

    Immunotherapy and vaccine development for hepatitis C virus (HCV) will depend on broadly reactive neutralizing antibodies (NAbs). However, studies in infectious strain JFH1-based culture systems expressing patient-derived Core-NS2 proteins have suggested neutralization resistance for specific HCV...... demonstrated that the novel genotype 2 viruses as well as prototype strains J6/JFH1(2a) and J8/JFH1(2b), all with authentic envelope proteins, were resistant to neutralization by genotype 2a, 2b, 2c, 2j, 2i, and 2q patient sera. However, these patient sera had high titers of HCV-specific NAbs, because...... they efficiently reduced the infectivity of J6(2a) and J8(2b) with deleted hypervariable region 1. The genotype 2a, 2b, and 2c viruses, found resistant to polyclonal patient sera neutralization, were efficiently neutralized by two lead HMAbs (AR4A and HC84.26). Conclusion: Using novel 2a, 2b, and 2c cell...

  12. Anti-diarrhea activity of the aqueous root bark extract of Byrsocarpus coccineus on castor oil-induced diarrhea in Wistar rats.

    Science.gov (United States)

    Ejeh, Sunday A; Onyeyili, Patrick; Abalaka, Samson E

    2017-07-01

    The use of traditional medicine as an alternative source of cure for many ailments has played an important role in health care delivery in both developing and developed countries. Byrsocarpus coccineus Schum and Thonn ( Connaraceae ) is used in traditional medicine for treatment of various disease conditions, including diarrhea. The anti-diarrhea activity of the root bark aqueous extract of B. coccineus was investigated in this study. Acute toxicity evaluation of the aqueous extract of B. coccineus root bark was performed in exposed rats. Diarrhea was induced in exposed rats with castor oil, and the effect of the extract on castor oil-induced gastrointestinal motility and enteropooling was consequently investigated. In the acute toxicity study, the extract caused no death in treated rats nor produced signs of delayed toxicity, even at 5000 mg/kg. The aqueous root bark extract of B. coccineus also decreased the distance travelled by activated charcoal in the gastrointestinal tract of treated rats when compared to control rats. Results of castor oil-induced enteropooling revealed slight reduction in the weight of intestinal contents of treated rats compared to control rats. There was significant (pcastor oil-induced diarrhea at 100 mg/kg dose with 74.96% inhibition of defecation. The study demonstrated the anti-diarrheic property of the aqueous extract of B. coccineus root bark as currently exploited in our traditional herbal therapy.

  13. New hepatitis C virus genotype 1 subtype naturally harbouring resistance-associated mutations to NS5A inhibitors.

    Science.gov (United States)

    Ordeig, Laura; Garcia-Cehic, Damir; Gregori, Josep; Soria, Maria Eugenia; Nieto-Aponte, Leonardo; Perales, Celia; Llorens, Meritxell; Chen, Qian; Riveiro-Barciela, Mar; Buti, Maria; Esteban, Rafael; Esteban, Juan Ignacio; Rodriguez-Frias, Francisco; Quer, Josep

    2018-01-01

    Hepatitis C virus (HCV) is a highly divergent virus currently classified into seven major genotypes and 86 subtypes (ICTV, June 2017), which can have differing responses to therapy. Accurate genotyping/subtyping using high-resolution HCV subtyping enables confident subtype identification, identifies mixed infections and allows detection of new subtypes. During routine genotyping/subtyping, one sample from an Equatorial Guinea patient could not be classified into any of the subtypes. The complete genomic sequence was compared to reference sequences by phylogenetic and sliding window analysis. Resistance-associated substitutions (RASs) were assessed by deep sequencing. The unclassified HCV genome did not belong to any of the existing genotype 1 (G1) subtypes. Sliding window analysis along the complete genome ruled out recombination phenomena suggesting that it belongs to a new HCV G1 subtype. Two NS5A RASs (L31V+Y93H) were found to be naturally combined in the genome which could limit treatment possibilities in patients infected with this subtype.

  14. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    International Nuclear Information System (INIS)

    Asafi, M S; Tekpinar, M; Yildirim, A

    2016-01-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated. (paper)

  15. Analysis of functional differences between hepatitis C virus NS5A of genotypes 1-7 in infectious cell culture systems

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Prentoe, Jannick; Carlsen, Thomas H R

    2012-01-01

    , but ED43(4a) and SA13(5a) also displayed impaired particle assembly. Compared to the original H77C(1a) NS5A recombinant, the changes in LCSII and domain III reduced the amounts of NS5A present. For H77C(1a) and TN(1a) NS5A recombinants, we observed a genetic linkage between NS5A and p7, since introduced...

  16. Cyclophilin B facilitates the replication of Orf virus

    OpenAIRE

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-01-01

    Background Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the f...

  17. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Frobert, Emilie [Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, F-69677 Bron Cedex, Lyon (France); Yver, Matthieu; Traversier, Aurelien [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Wolff, Thorsten [Division of Influenza/Respiratory Viruses, Robert Koch Institute, Nordufer 20, D-13353 Berlin (Germany); Riteau, Beatrice [Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Naffakh, Nadia [Institut Pasteur, Unite de Genetique Moleculaire des Virus Respiratoires, URA CNRS 3015, EA302 Universite Paris Diderot, Paris (France); and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  18. In Silico Screening, Alanine Mutation, and DFT Approaches for Identification of NS2B/NS3 Protease Inhibitors

    Directory of Open Access Journals (Sweden)

    R. Balajee

    2016-01-01

    Full Text Available To identify the ligand that binds to a target protein with high affinity is a nontrivial task in computer-assisted approaches. Antiviral drugs have been identified for NS2B/NS3 protease enzyme on the mechanism to cleave the viral protein using the computational tools. The consequence of the molecular docking, free energy calculations, and simulation protocols explores the better ligand. It provides in-depth structural insights with the catalytic triad of His51, Asp75, Ser135, and Gly133. The MD simulation was employed here to predict the stability of the complex. The alanine mutation has been performed and its stability was monitored by using the molecular dynamics simulation. The minimal RMSD value suggests that the derived complexes are close to equilibrium. The DFT outcome reveals that the HOMO-LUMO gap of Ligand19 is 2.86 kcal/mol. Among the considered ligands, Ligand19 shows the lowest gap and it is suggested that the HOMO of Ligand19 may transfer the electrons to the LUMO in the active regions. The calculated binding energy of Ligand19 using the DFT method is in good agreement with the docking studies. The pharmacological activity of ligand was performed and satisfies Lipinski rule of 5. Moreover, the computational results are compared with the available IC50 values of experimental results.

  19. Diarrhea in infants

    Science.gov (United States)

    When your infant has diarrhea; When your baby has diarrhea; BRAT diet; Diarrhea in children ... Children who have diarrhea may have less energy, dry eyes, or a dry, sticky mouth. They may also not wet their diaper as ...

  20. QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR).

    Science.gov (United States)

    Rafiei, Hamid; Khanzadeh, Marziyeh; Mozaffari, Shahla; Bostanifar, Mohammad Hassan; Avval, Zhila Mohajeri; Aalizadeh, Reza; Pourbasheer, Eslam

    2016-01-01

    Quantitative structure-activity relationship (QSAR) study has been employed for predicting the inhibitory activities of the Hepatitis C virus (HCV) NS5B polymerase inhibitors . A data set consisted of 72 compounds was selected, and then different types of molecular descriptors were calculated. The whole data set was split into a training set (80 % of the dataset) and a test set (20 % of the dataset) using principle component analysis. The stepwise (SW) and the genetic algorithm (GA) techniques were used as variable selection tools. Multiple linear regression method was then used to linearly correlate the selected descriptors with inhibitory activities. Several validation technique including leave-one-out and leave-group-out cross-validation, Y-randomization method were used to evaluate the internal capability of the derived models. The external prediction ability of the derived models was further analyzed using modified r(2), concordance correlation coefficient values and Golbraikh and Tropsha acceptable model criteria's. Based on the derived results (GA-MLR), some new insights toward molecular structural requirements for obtaining better inhibitory activity were obtained.

  1. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  2. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  3. Immune reconstitution syndrome in a human immunodeficiency virus infected child due to giardiasis leading to shock

    Directory of Open Access Journals (Sweden)

    Sneha Nandy

    2015-01-01

    Full Text Available Human immunodeficiency virus (HIV-associated immune reconstitution inflammatory syndrome has been reported in association with tuberculosis, herpes zoster (shingles, Cryptococcus neoformans, Kaposi′s sarcoma, Pneumocystis pneumonia, hepatitis B virus, hepatitis C virus, herpes simplex virus, Histoplasma capsulatum, human papillomavirus, and Cytomegalovirus. However, it has never been documented with giardiasis. We present a 7-year-old HIV infected girl who developed diarrhea and shock following the initiation of antiretroviral therapy, and her stool showed the presence of giardiasis.

  4. Functional analyses of GB virus B p13 protein: development of a recombinant GB virus B hepatitis virus with a p7 protein

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Emerson, Suzanne U

    2006-01-01

    GB virus B (GBV-B), which infects tamarins, is the virus most closely related to hepatitis C virus (HCV). HCV has a protein (p7) that is believed to form an ion channel. It is critical for viability. In vitro studies suggest that GBV-B has an analogous but larger protein (p13). We found...... plus part of p7) was nonviable. However, a mutant lacking amino acid 614-669 (p6) produced high titer viremia and acute resolving hepatitis; viruses recovered from both animals lacked the deleted sequence and had no other mutations. Thus, p6 was dispensable but p7 was essential for infectivity...... processing at both sites, suggesting that p13 is processed into two components (p6 and p7). Mutants with substitution at amino acid 669 or 681 were viable in vivo, but the recovered viruses had changes at amino acid 669 and 681, respectively, which restored cleavage. A mutant lacking amino acid 614-681 (p6...

  5. Functional analyses of GB virus B p13 protein: Development of a recombinant GB virus B hepatitis virus with a p7 protein

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Emerson, Suzanne U

    2006-01-01

    GB virus B (GBV-B), which infects tamarins, is the virus most closely related to hepatitis C virus (HCV). HCV has a protein (p7) that is believed to form an ion channel. It is critical for viability. In vitro studies suggest that GBV-B has an analogous but larger protein (p13). We found...... plus part of p7) was nonviable. However, a mutant lacking amino acid 614-669 (p6) produced high titer viremia and acute resolving hepatitis; viruses recovered from both animals lacked the deleted sequence and had no other mutations. Thus, p6 was dispensable but p7 was essential for infectivity...... processing at both sites, suggesting that p13 is processed into two components (p6 and p7). Mutants with substitution at amino acid 669 or 681 were viable in vivo, but the recovered viruses had changes at amino acid 669 and 681, respectively, which restored cleavage. A mutant lacking amino acid 614-681 (p6...

  6. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.

    Science.gov (United States)

    Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E

    2008-01-18

    Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.

  7. The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum.

    Science.gov (United States)

    Zhuang, Jun; Coates, Christopher J; Mao, Qianzhuo; Wu, Zujian; Xie, Lianhui

    2016-06-01

    The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  8. Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization*

    Science.gov (United States)

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D.

    2013-01-01

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes. PMID:23770669

  9. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization.

    Science.gov (United States)

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D

    2013-08-02

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.

  10. Viruses Causing Gastroenteritis: The Known, The New and Those Beyond

    NARCIS (Netherlands)

    Oude Munnink, Bas B.; van der Hoek, Lia

    2016-01-01

    The list of recently discovered gastrointestinal viruses is expanding rapidly. Whether these agents are actually involved in a disease such as diarrhea is the essential question, yet difficult to answer. In this review a summary of all viruses found in diarrhea is presented, together with the

  11. [Antitumor effects of matrix protein of vesicular stomatic virus on EL4 lymphoma mice].

    Science.gov (United States)

    Lin, Shi-jia; Yu, Qin-mei; Meng, Wen-tong; Wen, Yan-jun; Chen, Li-juan; Niu, Ting

    2011-03-01

    To explore antitumor effects of plasmid pcDNA3. 1-MP encoding matrix protein of vesicular stomatitis virus (VSV) complexed with cationic liposome (DOTAP:CHOL) in mice with EL4 lymphoma. C57BL/6 mouse model with EL4 lymphoma was established. Sixty mice bearing EL4 lymphoma were divided randomly into five groups including Lip-MP, Lip-pVAX, Lip, ADM and NS groups, which were intravenously injected with liposome-pcDNA 3. 1-MP complex, liposome-pVAX complex, empty liposome, Adriamycin and normal saline respectively every three days. Tumor volumes and survival time were monitored. Microvessel density and tumor proliferative index in tumor tissues were determined by CD31, Ki-67 immunohistochemistry staining, meanwhile the tumor apoptosis index was measured by TUNEL method. From 6 days after treatments on, the tumor volume in Lip-MP group was much smaller than that in Lip-pVAX, Lip and NS group (P EL4 tumor cells in vivo (P EL4 lymphoma, which may be related to the induction of tumor cell apoptosis, inhibition of tumor angiogenesis, and suppression of tumor cell proliferation.

  12. Respiratory syncytial virus mechanisms to interfere with type 1 interferons.

    Science.gov (United States)

    Barik, Sailen

    2013-01-01

    Respiratory syncytial virus (RSV) is a member of the Paramyxoviridae family that consists of viruses with nonsegmented negative-strand RNA genome. Infection by these viruses triggers the innate antiviral response of the host, mainly type I interferon (IFN). Essentially all other viruses of this family produce IFN suppressor functions by co-transcriptional RNA editing. In contrast, RSV has evolved two unique nonstructural proteins, NS1 and NS2, to effectively serve this purpose. Together, NS1 and NS2 degrade or sequester multiple signaling proteins that affect both IFN induction and IFN effector functions. While the mechanism of action of NS1 and NS2 is a subject of active research, their effect on adaptive immunity is also being recognized. In this review, we discuss various aspects of NS1 and NS2 function with implications for vaccine design.

  13. Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Jincheng Chen

    2015-07-01

    Full Text Available Dengue virus (DV infection is the most prevalent mosquito-borne viral disease and its manifestation has been shown to be contributed in part by the host immune responses. In this study, pathogen recognition receptors, Toll-like receptor (TLR 2 and TLR6 were found to be up-regulated in DV-infected human PBMC using immunofluorescence staining, flow cytometry and Western blot analyses. Using ELISA, IL-6 and TNF-α, cytokines downstream of TLR2 and TLR6 signaling pathways were also found to be up-regulated in DV-infected PBMC. IL-6 and TNF-α production by PBMC were reduced when TLR2 and TLR6 were blocked using TLR2 and TLR6 neutralizing antibodies during DV infection. These results suggested that signaling pathways of TLR2 and TLR6 were activated during DV infection and its activation contributed to IL-6 and TNF-α production. DV NS1 protein was found to significantly increase the production of IL-6 and TNF-α when added to PBMC. The amount of IL-6 and TNF-α stimulated by DV NS1 protein was reduced when TLR2 and TLR6 were blocked, suggesting that DV NS1 protein is the viral protein responsible for the activation of TLR2 and TLR6 during DV infection. Secreted alkaline phosphatase (SEAP reporter assay was used to further confirm activation of TLR2 and TLR6 by DV NS1 protein. In addition, DV-infected and DV NS1 protein-treated TLR6-/- mice have higher survivability compared to DV-infected and DV NS1 protein-treated wild-type mice. Hence, activation of TLR6 via DV NS1 protein could potentially play an important role in the immunopathogenesis of DV infection.

  14. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    Science.gov (United States)

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  15. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  16. Monitoring survivability and infectivity of porcine epidemic diarrhea virus (PEDv in the infected on-farm earthen manure storages (EMS

    Directory of Open Access Journals (Sweden)

    Hein Min Tun

    2016-03-01

    Full Text Available In recent years, porcine epidemic diarrhea virus (PEDv has caused major epidemics, which has been a burden to North America's swine industry. Low infectious dose and high viability in the environment are major challenges in eradicating this virus. To further understand the survivability and infectivity of PEDv in the infected manure, we performed longitudinal monitoring in two open earthen manure storages (EMSs; previously referred to as lagoon from two different infected swine farms identified in the province of Manitoba, Canada. Our study revealed that PEDv could survive up to nine months in the infected EMS after the initial outbreak in the farm. The viral load varied among different layers of the EMS with an average of 1.1 × 105 copies/ml of EMS, independent of EMS temperature and pH. In both studied EMSs, the evidence of viral replication was observed through increased viral load in the later weeks of the samplings while there was no new influx of infected manure into the EMSs, which was suggestive of presence of potential alternative hosts for PEDv within the EMSs. Decreasing infectivity of virus over time irrespective of increased viral load suggested the possibility of PEDv evolution within the EMS and perhaps in the new host that negatively impacted virus infectivity. Viral load in the top layer of the EMS was low and mostly non-infective suggesting that environmental factors, such as UV and sunlight, could diminish the replicability and infectivity of the virus. Thus, frequent agitation of the EMS that could expose virus to UV and sunlight might be a potential strategy for reduction of PEDv load and infectivity in the infected EMSs.

  17. Thermal behavior of neutron shielding material, NS-4-FR, under long term storage conditions

    International Nuclear Information System (INIS)

    Yamada, N.; O-iwa, A.; Asano, R.; Horita, R.; Kusunoki, K.

    2004-01-01

    NS-4-FR, Epoxy-Resin, has been widely used as a neutron shielding material for casks. It is recognized that the resin will degrade during storage and loose weight under high temperature conditions. Most of the examinations for the resin degrading behavior were conducted with rather small bare resin specimens. However, the actual quantity of neutron shielding is quite large and is covered by the cask body. To confirm the degrading behavior of the resin under the long-term storage conditions, we performed the test on the specimen with the same cross-section as the actual design, Hitz B69. The resin test vessels were made out of stainless steel and equipped with flange

  18. Granzyme B mediated function of Parvovirus B19-specific CD4+ T cells

    Science.gov (United States)

    Kumar, Arun; Perdomo, Maria F; Kantele, Anu; Hedman, Lea; Hedman, Klaus; Franssila, Rauli

    2015-01-01

    A novel conception of CD4+ T cells with cytolytic potential (CD4+ CTL) is emerging. These cells appear to have a part in controlling malignancies and chronic infections. Human parvovirus B19 can cause a persistent infection, yet no data exist on the presence of B19-specific CD4+ CTLs. Such cells could have a role in the pathogenesis of some autoimmune disorders reported to be associated with B19. We explored the cytolytic potential of human parvovirus B19-specific T cells by stimulating peripheral blood mononuclear cell (PBMC) with recombinant B19-VP2 virus-like particles. The cytolytic potential was determined by enzyme immunoassay-based quantitation of granzyme B (GrB) and perforin from the tissue culture supernatants, by intracellular cytokine staining (ICS) and by detecting direct cytotoxicity. GrB and perforin responses with the B19 antigen were readily detectable in B19-seropositive individuals. T-cell depletion, HLA blocking and ICS experiments showed GrB and perforin to be secreted by CD4+ T cells. CD4+ T cells with strong GrB responses were found to exhibit direct cytotoxicity. As anticipated, ICS of B19-specific CD4+ T cells showed expected co-expression of GrB, perforin and interferon gamma (IFN-γ). Unexpectedly, also a strong co-expression of GrB and interleukin 17 (IL-17) was detected. These cells expressed natural killer (NK) cell surface marker CD56, together with the CD4 surface marker. To our knowledge, this is the first report on virus-specific CD4+ CTLs co-expressing CD56 antigen. Our results suggest a role for CD4+ CTL in B19 immunity. Such cells could function within both immune regulation and triggering of autoimmune phenomena such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. PMID:26246896

  19. Human immunodeficiency virus and hepatitus B virus co-infection ...

    African Journals Online (AJOL)

    Human immunodeficiency virus and hepatitus B virus co-infection amog patients in Kano Nigeria. EE Nwokedi, MA Emokpae, AI Dutse. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 15(3) July-September 2006: 227-229. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  20. [Persistent diarrhea

    Science.gov (United States)

    Andrade, J A; Moreira, C; Fagundes Neto, U

    2000-07-01

    INTRODUCTION: Persistent diarrhea has high impact on infantile morbidity and mortality rates in developing countries. Several studies have shown that 3 to 20% of acute diarrheal episodes in children under 5 years of age become persistent. DEFINITION: Persistent diarrhea is defined as an episode that lasts more than 14 days. ETIOLOGY: The most important agents isolated in persistent diarrhea are: Enteropathogenic E. coli (EPEC), Salmonella, Enteroaggregative E. coli (EAEC), Klebisiella and Cryptosporidium. CLINICAL ASPECTS: In general, the clinical characteristics of patients with persistent diarrhea do not change with the pathogenic agent. Persistent diarrhea seems to represent the final result of a several insults a infant suffers that predisposes to a more severe episode of diarrhea due to a combination of host factors and high rates of enviromental contamination. Therefore, efforts should be made to promptly treat all episodes of diarrhea with apropriate follow-up. THERAPY: The aim of the treatment is to restore hydroelectrolytic deficits and to replace losses until the diarrheal ceases. It is possible in the majority of the cases, using oral rehydration therapy and erly an appropriate type of diet. PREVENTION: It is imperative that management strategies also focus on preventive aspects. The most effective diarrheal prevention strategy in young infants worldwide is promotion of exclusive breast feeding.

  1. Morphologic and Molecular Characterization of a Strain of Zika Virus Imported into Guangdong, China.

    Directory of Open Access Journals (Sweden)

    Shufen Li

    Full Text Available The recent outbreaks of Zika virus (ZIKV disease have caused worldwide concerns. Guangdong province is one of the commercial centers in China and communicates frequently with the epidemic areas. To date, 65.2% of the ZIKV infection cases in China were imported via port of entry in Guangdong. The continuous surveillance of imported cases is crucial for the prevention and control of potential ZIKV infection outbreak in China. In this study, a strain of ZIKV was isolated from the serum of a 6-year-old child returning from Venezuela. The morphology of the ZIKV was analyzed in vivo and in vitro by electron microscopy, and clusters of virus particles were found in the loose cytoplasmic membrane structures. The genomic sequence of the isolated ZIKV was determined, and the alignment and phylogenetic analysis identified one unique amino acid substitution occurring in the non-structural protein 4B (NS4B, and the isolated virus belonged to the Asian lineage.

  2. Cleft analysis of Zika virus non-structural protein 1

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-strctural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered.There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  3. Cleft analysis of Zika virus non-structural protein 1

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-structural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered. There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  4. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay.

    Science.gov (United States)

    Pabbaraju, Kanti; Wong, Sallene; Gill, Kara; Fonseca, Kevin; Tipples, Graham A; Tellier, Raymond

    2016-10-01

    In the recent past, arboviruses such as Chikungunya (CHIKV) and Zika (ZIKV) have increased their area of endemicity and presented as an emerging global public health threat. To design an assay for the simultaneous detection of ZIKV, CHIKV and Dengue (DENV) 1-4 from patients with symptoms of arboviral infection. This would be advantageous because of the similar clinical presentation typically encountered with these viruses and their co-circulation in endemic areas. In this study we have developed and validated a triplex real time reverse transcription PCR assay using hydrolysis probes targeting the non-structural 5 (NS5) region of ZIKV, non-structural protein 4 (nsP4) from CHIKV and 3' untranslated region (3'UTR) of DENV 1-4. The 95% LOD by the triplex assay was 15 copies/reaction for DENV-1 and less than 10 copies/reaction for all other viruses. The triplex assay was 100% specific and did not amplify any of the other viruses tested. The assay was reproducible and adaptable to testing different specimen types including serum, plasma, urine, placental tissue, brain tissue and amniotic fluid. This assay can be easily implemented for diagnostic testing of patient samples, even in a high throughput laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Prevalence of hepatitis B virus among immunocompromised ...

    African Journals Online (AJOL)

    Hepatitis B is an infectious inflammatory illness of the liver caused by the hepatitis B virus (HBV) which is transmitted to a large population through blood transfusion or by exposure to other body fluids. HBV is a member of the family Hepadnaviridae and also a DNA virus. In this study, the prevalence of hepatitis B infection ...

  6. Amplification and pyrosequencing of near-full-length hepatitis C virus for typing and monitoring antiviral resistant strains.

    Science.gov (United States)

    Trémeaux, P; Caporossi, A; Ramière, C; Santoni, E; Tarbouriech, N; Thélu, M-A; Fusillier, K; Geneletti, L; François, O; Leroy, V; Burmeister, W P; André, P; Morand, P; Larrat, S

    2016-05-01

    Directly acting antiviral drugs have contributed considerable progress to hepatitis C virus (HCV) treatment, but they show variable activity depending on virus genotypes and subtypes. Therefore, accurate genotyping including recombinant form detection is still of major importance, as is the detection of resistance-associated mutations in case of therapeutic failure. To meet these goals, an approach to amplify the HCV near-complete genome with a single long-range PCR and sequence it with Roche GS Junior was developed. After optimization, the overall amplification success rate was 73% for usual genotypes (i.e. HCV 1a, 1b, 3a and 4a, 16/22) and 45% for recombinant forms RF_2k/1b (5/11). After pyrosequencing and subsequent de novo assembly, a near-full-length genomic consensus sequence was obtained for 19 of 21 samples. The genotype and subtype were confirmed by phylogenetic analysis for every sample, including the suspected recombinant forms. Resistance-associated mutations were detected in seven of 13 samples at baseline, in the NS3 (n = 3) or NS5A (n = 4) region. Of these samples, the treatment of one patient included daclatasvir, and that patient experienced a relapse. Virus sequences from pre- and posttreatment samples of four patients who experienced relapse after sofosbuvir-based therapy were compared: the selected variants seem too far from the NS5B catalytic site to be held responsible. Although tested on a limited set of samples and with technical improvements still necessary, this assay has proven to be successful for both genotyping and resistance-associated variant detection on several HCV types. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus.

    Science.gov (United States)

    Rothan, Hussin A; Bahrani, Hirbod; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-05-31

    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells. The Ltc 1 peptide showed a significantly inhibitory effect against the dengue protease NS2B-NS3pro at 37°C, a physiological human temperature, (IC50, 12.68 ± 3.2 μM), and greater inhibitory effect was observed at 40°C, a temperature similar to a high fever (IC50, 6.58 ± 4.1 μM). A greater reduction in viral load (p.f.u./ml) was observed at simultaneous (0.7 ± 0.3 vs. 7.2 ± 0.5 control) and post-treatment (1.8 ± 0.7 vs. 6.8 ± 0.6 control) compared to the pre-treatment (4.5 ± 0.6 vs. 6.9 ± 0.5 control). Treatment with the Ltc 1 peptide reduced the viral RNA in a dose-dependent manner with EC50 values of 8.3 ± 1.2, 7.6 ± 2.7 and 6.8 ± 2.5 μM at 24, 48 and 72 h, respectively. The Ltc 1 peptide exhibited significant inhibitory effects against dengue NS2B-NS3pro and virus replication in the infected cells. Therefore, further investigation is necessary to develop the Ltc 1 peptide as a new anti-dengue therapeutic.

  8. How Hepatitis D Virus Can Hinder the Control of Hepatitis B Virus

    NARCIS (Netherlands)

    Xiridiou, M.; Borkent-Raven, B.; Hulshof, J.; Wallinga, J.

    2009-01-01

    Background: Hepatitis D (or hepatitis delta) virus is a defective virus that relies on hepatitis B virus (HBV) for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control

  9. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  10. The reliability of DIVA test based on M2e peptide exceed those based on HA2 or NS1 peptides

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2015-06-01

    Full Text Available One of the most important disadvantage of vaccination against avian influenza is that it cannot protect vaccinated birds against infection. When vaccinated poultry are heavily exposed to the virus, prolonged, unrecognised, subclinical infection may persist on the farm. The condition can only be serologically monitored by a DIVA (differentiation of infected from vaccinated animals test, whereas conventional diagnostic tests cannot be used. The DIVA tests based on an antibody response following virus replication is the most appropriate approach. For H5N1 influenza such antibodies includes those to the M2e and NS1 proteins and an epitope on the HA2 subunit (HA_488-516. The purpose of this study was to compare the magnitude of the antibody response in chickens vaccinated and infected with an H5N1 virus strain. For that purpose, sera collected from naïve, vaccinated and infected birds, at 1, 2-3, ≥4 weeks post challenge were used. Antibodies were measured by ELISA using biotinylated synthetic peptides as coating antigens. The peptides used include four NS1 peptides corresponding to different regions of the NS1 protein and HA_488-516and M2e peptides. Peptides were coated onto microtitre plates either directly or via a streptavidin bridge. The results showed that vaccination did not cause antibody conversion to any of the peptides, where as challenged birds developed a high antibody response to M2e but, low response to the NS1 and HA2 peptides. Antibodies to the later peptides were detected only by the streptavidin-peptide ELISA. The ELISA based on NS1 or HA_488-516 peptides, therefore, are not reliable for use as DIVA test in H5N1 avian influenza virus infection

  11. Pharmacokinetics of amoxicillin administered in drinking water to recently weaned 3- to 4-week-old pigs with diarrhea experimentally induced by Escherichia coli O149 : F4

    DEFF Research Database (Denmark)

    Jensen, G.M.; Lykkesfeldt, J.; Frydendahl, K.

    2006-01-01

    Objective-To measure effects of Escherichia coli 0149:F4-induced diarrhea on water consumption and pharmacokinetics of amoxicillin after administration in drinking water. Animals-24 recently weaned 24- to 28-day-old crossbred pigs. Procedure-10 pigs were inoculated with E coli O149:F4; all 10 pigs...... of amoxicillin may be appropriate for administration in drinking water during a 4-hour period on the first day that pigs have diarrhea attributable to E coli 0149:F4....

  12. Genotype X/C recombinant (putative genotype I) of hepatitis B virus is rare in Hanoi, Vietnam--genotypes B4 and C1 predominate.

    Science.gov (United States)

    Phung, Thi Bich Thuy; Alestig, Erik; Nguyen, Thanh Liem; Hannoun, Charles; Lindh, Magnus

    2010-08-01

    There are eight known genotypes of hepatitis B virus, A-H, and several subgenotypes, with rather well-defined geographic distributions. HBV genotypes were evaluated in 153 serum samples from Hanoi, Vietnam. Of the 87 samples that could be genotyped, genotype B was found in 67 (77%) and genotype C in 19 (22%). All genotype C strains were of subgenotype C1, and the majority of genotype B strains were B4, while a few were B2. The genotype X/C recombinant strain, identified previously in Swedish patients of indigenous Vietnamese origin, was found in one sample. This variant, proposed to be classified as genotype I, has been found recently also by others in Vietnam and Laos. The current study indicates that the genotype X/C recombinant may represent approximately 1% of the HBV strains circulating in Vietnam. (c) 2010 Wiley-Liss, Inc.

  13. Diarrhea

    Science.gov (United States)

    ... by replacing lost fluids and electrolytes to prevent dehydration. Depending on the cause of the problem, you may need medicines to stop the diarrhea or treat an infection. Adults with diarrhea should drink water, fruit juices, sports drinks, sodas without caffeine, and salty ...

  14. Detection of antibodies against porcine parvovirus nonstructural protein NS1 may distinguish between vaccinated and infected pigs

    DEFF Research Database (Denmark)

    Madsen, Eva Smedegaard; Madsen, Knud Gert; Nielsen, Jens

    1997-01-01

    The humoral antibody response against the nonstructural protein NS1 and the structural protein VP2 of porcine parvovirus (PPV) was evaluated by immuno-peroxidase test (IPT) and enzyme linked immune sorbent assay (ELISA) using recombinant PPV antigens. The coding sequence for NS1 and VP2...... was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) genome resulting in two recombinant baculoviruses AcNPV-NS1 and AcNPV-VP2, respectively. Sf9 cells (Spodoptora frugidiperda) inoculated with AcNPV-NS1 producing recombinant nonstructural protein (rNS1) and AcNPV-VP2...... producing recombinant virion protein (rVP2) were used in IPT and ELISA to analyse serum antibodies. Pigs vaccinated with an inactivated whole virus vaccine and experimentally infected pigs were studied. Significant titers against rVP2 were obtained in both vaccinated and infected pigs. Specific antibodies...

  15. A new approach to dengue fatal cases diagnosis: NS1 antigen capture in tissues.

    Directory of Open Access Journals (Sweden)

    Monique da Rocha Queiroz Lima

    Full Text Available UNLABELLED: / BACKGROUND: Dengue is the most important arthropod borne viral disease worldwide in terms of morbidity and mortality and is caused by any of the four serotypes of dengue virus (DENV-1 to 4. Brazil is responsible for approximately 80% of dengue cases in the Americas, and since the introduction of dengue in 1986, a total of 5,944,270 cases have been reported including 21,596 dengue hemorrhagic fever and 874 fatal cases. DENV can infect many cell types and cause diverse clinical and pathological effects. The goal of the study was to investigate the usefulness of NS1 capture tests as an alternative tool to detect DENV in tissue specimens from previously confirmed dengue fatal cases (n = 23 that occurred in 2002 in Brazil. METHODOLOGY/PRINCIPAL FINDINGS: A total of 74 tissue specimens were available: liver (n = 23, lung (n = 14, kidney (n = 04, brain (n = 10, heart (n = 02, skin (n = 01, spleen (n = 15, thymus (n = 03 and lymph nodes (n = 02. We evaluated three tests for NS1 antigen capture: first generation Dengue Early ELISA (PanBio Diagnostics, Platelia NS1 (BioRad Laboratories and the rapid test NS1 Ag Strip (BioRad Laboratories. The overall dengue fatal case diagnosis based on the tissues analyzed by Dengue Early ELISA, Platelia NS1 and the NS1 Ag Strip was 34.7% (08/23, 60.8% (14/23 and 91.3% (21/23, respectively. The Dengue Early ELISA detected NS1 in 22.9% (17/74 of the specimens analyzed and the Platelia NS1 in 45.9% (34/74. The highest sensitivity (78.3%; 58/74 was achieved by the NS1 Ag Strip, and the differences in the sensitivities were statistically significant (p<0.05. The NS1 Ag Strip was the most sensitive in liver (91.3%; 21/23, lung (71.4%; 10/14, kidney (100%; 4/4, brain (80%; 8/10, spleen (66.6%, 10/15 and thymus (100%, 3/3 when compared to the other two ELISA assays. CONCLUSIONS/SIGNIFICANCE: This study shows the DENV NS1 capture assay as a rapid and valuable approach to postmortem dengue confirmation. With an

  16. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells.

    Science.gov (United States)

    Stegajev, Vasili; Kouri, Vesa-Petteri; Salem, Abdelhakim; Rozov, Stanislav; Stark, Holger; Nordström, Dan C E; Konttinen, Yrjö T

    2014-12-01

    Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10. Expression and internalization of H₄R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H₄R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H₄R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H₄R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H₄R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H₄R activation on apoptosis of human salivary gland cells. Diminished H₄R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular.

  17. Molecular diversity of bovine viral diarrhea virus in uruguay.

    Science.gov (United States)

    Maya, L; Puentes, R; Reolón, E; Acuña, P; Riet, F; Rivero, R; Cristina, J; Colina, R

    2016-03-01

    Bovine viral diarrhea (BVD) affects bovine production and reproduction causing significant economic losses all over the world. Two viral species has been recognized: BVDV-1 and BVDV-2, both distributed worldwide. Recently, novel specie of BVDV named HoBi-like pestivirus was discovered. The presence of BVDV was confirmed in 1996 in Uruguay, however, does not exist until today a schedule of compulsory vaccination along the country. Serological studies with samples from all Uruguayan herds were performed during 2000 and 2001 demonstrating that all of them were seropositive to BVDV with a mean prevalence of 69%. In addition, there have been no new studies done since those previously described and it is important to mention that the genetic diversity of BVD has never been described in Uruguay. Nowadays, there is strongly suspect that BVDV is one of the most important causes of reproductive failures in our herds. The aim of this study was to describe for the first time in Uruguay the genetic diversity of BVDV with samples collected from different regions along the country. Serological status of 390 non-vaccinated animals against BVDV with reproductive problems from farms of Rivera, Tacuarembó and Florida departments of Uruguay were studied. All herds were seropositive to BVDV and high proportion of animals were positive (298/390), while 4.1% (16/390) of the animals were positive to Antigen Capture ELISA test and Real Time PCR. Phylogenetic analysis performed with concatenated sequences from the 5'UTR and Npro genomic regions revealed that BVDV-1 and BVDV-2 are infecting our herds, being BVDV-1 the most frequently found. The major subtype was BVDV-1a, followed by BVDV-1i and BVDV-2b. This is the first study that describes the genetic diversity of BVDV in Uruguay and it will contribute to the elaboration of sanitization programs.

  18. Long-Term Follow-Up of Resistance-Associated Substitutions in Hepatitis C Virus in Patients in Which Direct Acting Antiviral-Based Therapy Failed.

    Science.gov (United States)

    Yoshida, Kanako; Hai, Hoang; Tamori, Akihiro; Teranishi, Yuga; Kozuka, Ritsuzo; Motoyama, Hiroyuki; Kawamura, Etsushi; Hagihara, Atsushi; Uchida-Kobayashi, Sawako; Morikawa, Hiroyasu; Enomoto, Masaru; Murakami, Yoshiki; Kawada, Norifumi

    2017-05-03

    We evaluated the transition of dominant resistance-associated substitutions (RASs) in hepatitis C virus during long-term follow-up after the failure of DAAs (direct acting antivirals)-based therapy. RASs in non-structure (NS)3/4A, NS5A, NS5B, and deletions in NS5A from 20 patients who failed simeprevir/pegylated-interferon/ribavirin (SMV/PEG-IFN/RBV) and 25 patients who failed daclatasvir/asunaprevir (DCV/ASV) treatment were examined by direct sequencing. With respect to SMV/PEG-IFN/RBV treatment, RAS was detected at D168 in NS3/4A but not detected in NS5A and NS5B at treatment failure in 16 of 20 patients. During the median follow-up period of 64 weeks, the RAS at D168 became less dominant in 9 of 16 patients. Among 25 DCV/ASV failures, RASs at D168, L31, and Y93 were found in 57.1%, 72.2%, and 76.9%, respectively. NS5A deletions were detected in 3 of 10 patients treated previously with SMV/PEG-IFN/RBV. The number of RASs in the breakthrough patients exceeded that in relapsers (mean 3.9 vs. 2.7, p < 0.05). RAS at D168 in NS3/4A became less dominant in 6 of 15 patients within 80 weeks. Y93H emerged at the time of relapse, then decreased gradually by 99% at 130 weeks post-treatment. Emerged RASs were associated with the clinical course of treatment and could not be detected during longer follow-up.

  19. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    International Nuclear Information System (INIS)

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaëlle; Frobert, Emilie; Yver, Matthieu; Traversier, Aurelien; Wolff, Thorsten; Riteau, Beatrice; Naffakh, Nadia

    2012-01-01

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus–host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  20. Transmission of Influenza B Viruses in the Guinea Pig

    Science.gov (United States)

    Pica, Natalie; Chou, Yi-Ying; Bouvier, Nicole M.

    2012-01-01

    Epidemic influenza is typically caused by infection with viruses of the A and B types and can result in substantial morbidity and mortality during a given season. Here we demonstrate that influenza B viruses can replicate in the upper respiratory tract of the guinea pig and that viruses of the two main lineages can be transmitted with 100% efficiency between inoculated and naïve animals in both contact and noncontact models. Our results also indicate that, like in the case for influenza A virus, transmission of influenza B viruses is enhanced at colder temperatures, providing an explanation for the seasonality of influenza epidemics in temperate climates. We therefore present, for the first time, a small animal model with which to study the underlying mechanisms of influenza B virus transmission. PMID:22301149