WorldWideScience

Sample records for diamond-like carbon microelectrodes

  1. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells

    OpenAIRE

    Gao, Yuanfang; Chen, Xiaohui; Gupta, Sanju; Gillis, Kevin D.; Gangopadhyay, Shubhra

    2008-01-01

    Carbon electrodes are widely used in electrochemistry due to their low cost, wide potential window, and low and stable background noise. Carbon-fiber electrodes (CFE) are commonly used to electrochemically measure “quantal” catecholamine release via exocytosis from individual cells, but it is difficult to integrate CFEs into lab-on-a-chip devices. Here we report the development of nitrogen doped diamond-like carbon (DLC:N) microelectrodes on a chip to monitor quantal release of catecholamines...

  2. Diamond-like carbon coated ultracold neutron guides

    International Nuclear Information System (INIS)

    Heule, S.; Atchison, F.; Daum, M.; Foelske, A.; Henneck, R.; Kasprzak, M.; Kirch, K.; Knecht, A.; Kuzniak, M.; Lippert, T.; Meier, M.; Pichlmaier, A.; Straumann, U.

    2007-01-01

    It has been shown recently that diamond-like carbon (DLC) with a sp 3 fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp 3 fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate

  3. Biofunctionalization of diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reitinger, Andreas Adam; Lud, Simon Quartus; Stutzmann, Martin; Garrido, Jose Antonio [Walter Schottky Institut, TU Muenchen (Germany); Hutter, Naima Aurelia; Richter, Gerhard; Jordan, Rainer [WACKER-Chair of Macromolecular Chemistry, TU Muenchen (Germany)

    2010-07-01

    In this work we present two main routes for the biofunctionalization of nanocrystalline diamond films, aiming at the application of diamond microelectrodes as amperometric biosensors. We report on direct covalent grafting of biomolecules on nanocrystalline diamond films via diazonium monophenyls and biphenyls as well as other linker molecules, forming self-assembled monolayers on the diamond surface. Monolayers with different functional head groups have been characterized. Patterning of the available functional groups using electron beam-induced chemical lithography allows the selective preparation of well-localized docking sites for the immobilization of biomolecules. Furthermore, polymer brushes are expected to enable novel paths for designing more advanced biosensing schemes, incorporating multifunctional groups and a higher loading capacity for biomolecules. Here, we focus on the preparation of polymer grafts by self-initiated photografting and photopolymerization. Further chemical modification of the grafted polymer brushes results in the introduction of additional functional molecules, paving the way for the incorporation of more complex molecular structures such as proteins. In a comparative study we investigate the advantages and disadvantages of both approaches.

  4. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  5. Screening metal nanoparticles using boron-doped diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Rangkuti, Prasmita K. [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University (Japan); JST ACCEL, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  6. Screening metal nanoparticles using boron-doped diamond microelectrodes

    International Nuclear Information System (INIS)

    Ivandini, Tribidasari A.; Rangkuti, Prasmita K.; Einaga, Yasuaki

    2016-01-01

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  7. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    Abstract. The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, ...

  8. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    Science.gov (United States)

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Progress of Diamond-like Carbon Films

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yun

    2017-03-01

    Full Text Available Diamond-like carbon(DLC films had many unique and outstanding properties such as high thermal conductivity, high hardness, excellent chemical inertness, low friction coefficients and wear coefficients. The properties and combinations were very promising for heat sink, micro-electromechanical devices, radiation hardening, biomedical devices, automotive industry and other technical applications, more research and a lot of attention were attracted in recent years. The research progress of diamond-like films and the nucleation mechanism of film were summarized, and application prospect of DLC films were demonstrated. The aim of this paper is to provide insights on the research trend of DLC films and the industry applications.

  10. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@cea.fr [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Warnking, Jan; Depaulis, Antoine [INSERM, U836, Grenoble Institut des Neurosciences, Grenoble (France); Garçon, Laurie Amandine [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); CEA/INAC/SPrAM/CREAB, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Mermoux, Michel [Université Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Eon, David [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Mailley, Pascal [CEA-LETI-DTBS Minatec, 17 rue des Martyres, 38054 Grenoble (France); Omnès, Franck [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. - Highlights: • Microfabrication of all-diamond microelectrode array • Evaluation of as-grown nanocrystalline boron-doped diamond for electrical neural interfacing • MRI compatibility of nanocrystalline boron-doped diamond.

  11. Panel 2 - properties of diamond and diamond-like-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Clausing, R.E. [Oak Ridge National Lab., TN (United States); Ajayi, O.O.; Liu, Y.Y.; Purohit, A. [Argonne National Lab., IL (United States); Bartelt, P.F. [Deere & Co., Moline, IL (United States); Baughman, R.H. [Allied Signal, Morristown, NJ (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Cooper, C.V. [United Technologies Research Center, East Hartford, CT (United States); Dugger, M.T. [Sandia National Laboratories, Albuquerque, NM (United States); Freedman, A. [Aerodyne Research, Inc., Billerica, MA (United States); Larsen-Basse, J. [National Science Foundation, Washington, DC (United States); McGuire, N.R. [Caterpillar, Peoria, IL (United States); Messier, R.F. [Pennsylvania State Univ., University Park (United States); Noble, G.L.; Ostrowki, M.H. [John Crane, Inc., Morton Grove, IL (United States); Sartwell, B.D. [Naval Research Lab., Washington, DC (United States); Wei, R. [Colorado State Univ., Fort Collins (United States)

    1993-01-01

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  12. Preparation of diamond like carbon thin film on stainless steel and ...

    Indian Academy of Sciences (India)

    Diamond-like carbon; buffer layer; plasma CVD; surface characterization; biomedical applications. Abstract. We report the formation of a very smooth, continuous and homogeneous diamond-like carbon DLC thin coating over a bare stainless steel surface without the need for a thin Si/Cr/Ni/Mo/W/TiN/TiC interfacial layer.

  13. Method for producing fluorinated diamond-like carbon films

    Science.gov (United States)

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  14. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang

    2011-08-01

    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  15. Room-temperature deposition of diamond-like carbon field emitter on flexible substrates

    International Nuclear Information System (INIS)

    Chen, H.; Iliev, M.N.; Liu, J.R.; Ma, K.B.; Chu, W.-K.; Badi, N.; Bensaoula, A.; Svedberg, E.B.

    2006-01-01

    Room-temperature fabrication of diamond-like carbon electron field emitters on flexible polyimide substrate is reported. These thin film field emitters are made using an Ar gas cluster ion beam assisted C 6 vapor deposition method. The bond structure of the as-deposited diamond-like carbon film was studied using Raman spectroscopy. The field emission characteristics of the deposited films were also measured. Electron current densities over 15 mA/cm 2 have been recorded under an electrical field of about 65 V/μm. These diamond-like carbon field emitters are easy and inexpensive to fabricate. The results are promising for flexible field-emission fabrication without the need of complex patterning and tip shaping as compared to the Spindt-type field emitters

  16. Measurement of the Fermi potential of diamond-like carbon and other materials

    International Nuclear Information System (INIS)

    Atchison, F.; Blau, B.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Gupta, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Knecht, A.; Kuzniak, M.; Kirch, K.; Meier, M.; Pichlmaier, A.; Reiser, R.; Theiler, B.; Zimmer, O.; Zsigmond, G.

    2007-01-01

    The Fermi potential V f of diamond-like carbon (DLC) coatings produced with laser-controlled vacuum arc deposition and that of diamond, Al, Si, Be, Cu, Fe and Ni was measured using two different methods, (i) transmission of slow neutrons through foils in a time-of-flight experiment and (ii) cold neutron reflectometry (CNR). For diamond-like carbon in transmission we obtain V f = (249 ± 14) neV. This is approximately the same as for beryllium and consistent with the theoretical expectations for the measured diamond (sp 3 ) content of 45%. For an sp 3 -content of 67%, we find V f (271 ± 13) neV from reflectometry, again in agreement with theory. These findings open new perspectives in using DLC as storage volume and neutron guide coatings for ultracold neutron sources

  17. Flexible diamond-like carbon film coated on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Pal, J.P. van der; Martinez-Martinez, D.; Hosson, J.Th.M. De

    2013-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 70% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin films by which the coefficient of friction is reduced to less than one tenth. Coating

  18. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Czech Academy of Sciences Publication Activity Database

    Mikšovský, Jan; Voss, A.; Kozarova, R.; Kocourek, Tomáš; Písařík, Petr; Ceccone, G.; Kulisch, W.; Jelínek, Miroslav; Apostolova, M.D.; Reithmaier, J.P.; Popov, C.

    2014-01-01

    Roč. 297, APR (2014), s. 95-102 ISSN 0169-4332 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : ultrananocrystalline diamond films * diamond -like carbon films * surface modification * direct contact cell tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169433214001251

  19. Diamond-like carbon layers grown by electrochemical method-structural study

    International Nuclear Information System (INIS)

    Kulesza, S.; Szatkowski, J.; Lulinska, E.; Kozanecki, M.

    2008-01-01

    A simple method of production of diamond-like carbon (DLC) thin films on various substrates by means of electrolysis of liquid hydrocarbons under ambient conditions is described in the paper. The amount of sp 3 -hybridized carbon clusters within deposited films is a key parameter of their structural quality, and is investigated using scanning electron microscopy (SEM), and Raman spectroscopy. Obtained results indicate that although the electrolysis generally leads to granular DLC films contaminated with graphitic inclusions, providing current density larger than 520 mA cm -2 at 1700 V, sp 3 -rich microcrystals with sharp edges can be found as well. Micro-Raman spectroscopic data strongly suggest that these microcrystals are minute diamonds, which eventually opens up a new perspective for a low-temperature synthesis of diamond-related materials

  20. Plasmon-Organic Fiber Interactions in Diamond-Like Carbon Coated Nanostructured Gold Films

    DEFF Research Database (Denmark)

    Cielecki, Pawel Piotr; Sobolewska, Elżbieta Karolina; Kostiučenko, Oksana

    2017-01-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such p......Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence...

  1. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.

    Science.gov (United States)

    Hébert, Clément; Warnking, Jan; Depaulis, Antoine; Garçon, Laurie Amandine; Mermoux, Michel; Eon, David; Mailley, Pascal; Omnès, Franck

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  3. Diamond-like carbon films deposited on polycarbonates by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.T. [Department of Computer and Communication, Diwan College of Management, 72141 Taiwan (China)], E-mail: ctguo@dwu.edu.tw

    2008-04-30

    Diamond-like carbon films were coated on optical polycarbonate using plasma-enhanced chemical vapor deposition. A mixture of SiH{sub 4} and CH{sub 4}/H{sub 2} gases was utilized to reduce the internal compressive stress of the deposited films. The structure of the DLC films was characterized as a function of film thickness using Raman spectroscopy. The dependence of G peak positions and the intensity ratio of I{sub D}/I{sub G} on the DLC film thicknesses was analyzed in detail. Other studies involving atomic force microscopy, ultraviolet visible spectrometry, and three adhesion tests were conducted. Good transparency in the visible region, and good adhesion between diamond-like carbon films and polycarbonate were demonstrated. One-time recordings before and after a DLC film was coated on compact rewritable disc substrates were analyzed as a case study. The results reveal that the diamond-like carbon film overcoating the optical polycarbonates effectively protects the storage media.

  4. Effect of substrates on tribological properties of diamond-like carbon coating

    Directory of Open Access Journals (Sweden)

    Renhui ZHANG

    2017-06-01

    Full Text Available In order to well investigate the effect of different substrates on the friction and wear of diamond-like carbon (DLC coating, the DLC coatings are deposited on substrates like the high-speed steel (HSS, SiC and 304 stainless steel by using plasma enhanced chemical vapor deposition method. The diamond-like carbon is prepared. The microstructure of the coatings is characterized using SEM, TEM and Raman. The SEM results exhibit that the total thickness of the coatings is about 6.5 μm, and there's apparent interfaces between layers. The TEM results imply that the coatings have an amorphous structure. Raman spectrum exhibits that G and D peaks are observed, which implies that the deposition coatings are diamond-like carbon coating. The results of tribological tests show that the substrates have a significant effect on the friction and wear of the coating. For different substrates, the transfer film is found on the steel counterpart surface, the wear track of the HSS has a lowest width, and the DLC coating that deposited on HSS exhibits the lowest wear and low friction coefficient (about 0.1.The microstructure of different substrates wear track surfaces is analyzed by using Raman spectrum, and the lowest wear of the HSS is attributed to the lower degree of the graphitization. The research provides reference for preparing the DLC coating with excellent tribological properties.

  5. Structural Analysis of Planar sp3 and sp2 Films: Diamond-Like Carbon and Graphene Overlayers

    KAUST Repository

    Mansour, Ahmed

    2011-01-01

    pure sp2 as in graphene, carbon nanotubes and fullerenes, to pure sp3 as in diamond. Amorphous and diamond-like carbon consists of a mixture of both hybridizations. This variation in hybridization in carbon materials enables a wide spectrum

  6. Optical and mechanical properties of diamond like carbon films ...

    Indian Academy of Sciences (India)

    Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13.56 MHz rf power.

  7. Plasma spraying method for forming diamond and diamond-like coatings

    Science.gov (United States)

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  8. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    with cyclic voltammetry (CV) and impedance spectroscopy (EIS) using potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. Different 3D pyrolytic carbon microelectrodes were compared and the optimal design displayed twice the peak current and half the charge transfer......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  9. Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application

    Science.gov (United States)

    Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro

    2018-04-01

    Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.

  10. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  11. Elastic nano-structure of diamond-like carbon (DLC)

    International Nuclear Information System (INIS)

    Ogiso, Hisato; Yoshida, Mikiko; Nakano, Shizuka; Yasui, Haruyuki; Awazu, Kaoru

    2006-01-01

    This research discusses the elastic nano-structure of diamond-like carbon (DLC) films. Two DLC film samples deposited by plasma based ion implantation (PBII) were prepared. The plasma generated by microwave (MW) was applied to one sample and the plasma by radio frequency (RF) to the other sample. The samples were evaluated for the elastic property image with nanometer resolution using scanning probe microscopy (SPM). The film surface deposited by RF-PBII was very flat and homogeneous in elastic property. In contrast, the film surface by MW-PBII was more uneven than that by RF-PBII and both the locally hard and the locally soft regions were found at the film surface. The size of the structure in elastic property is several tens nanometer. We conclude that the film probably contains nano-scale diamond phase

  12. Elastic nano-structure of diamond-like carbon (DLC)

    Energy Technology Data Exchange (ETDEWEB)

    Ogiso, Hisato [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Yoshida, Mikiko [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Nakano, Shizuka [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Yasui, Haruyuki [Industrial Research Institute of Ishikawa (IRII), Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-0233 (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa (IRII), Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-0233 (Japan)

    2006-01-15

    This research discusses the elastic nano-structure of diamond-like carbon (DLC) films. Two DLC film samples deposited by plasma based ion implantation (PBII) were prepared. The plasma generated by microwave (MW) was applied to one sample and the plasma by radio frequency (RF) to the other sample. The samples were evaluated for the elastic property image with nanometer resolution using scanning probe microscopy (SPM). The film surface deposited by RF-PBII was very flat and homogeneous in elastic property. In contrast, the film surface by MW-PBII was more uneven than that by RF-PBII and both the locally hard and the locally soft regions were found at the film surface. The size of the structure in elastic property is several tens nanometer. We conclude that the film probably contains nano-scale diamond phase.

  13. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...

  14. Bacterial Adhesion to Diamond-like Carbon as Compared to Stainless Steel

    NARCIS (Netherlands)

    Soininen, Antti; Tiainen, Veli-Matti; Konttinen, Yrjo T.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    Recent studies suggest that diamond-like carbon (DLC) coatings are suitable candidates for application on biomedical devices and implants, due to their high hardness, low friction, high wear and corrosion resistance, chemical inertness, smoothness, and tissue and blood compatibility. However, most

  15. Characterization of the Diamond-like Carbon Based Functionally Gradient Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their goodphysical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasmaimmersion ion implantation (PIll) was adopted to fabricate diamond-like carbon-based functionally gradient film,N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopyand glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed usingAFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surfaceroughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness andinterfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa,3.75 MPa.m1/2 and 5.68 MPa@m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer,this DLC gradient film has better qualities as a solid lubricating coating.

  16. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    Science.gov (United States)

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  17. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition

  18. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    This work presents the fabrication and characterization of suspended three-dimensional (3D) pyrolytic carbon microelectrodes for electrochemical applications. For this purpose, an optimized process with multiple steps of UV photolithography with the negative tone photoresist SU-8 followed...... by pyrolysis at 900ºC for 1h was developed. With this process, microelectrode chips with a three electrode configuration were fabricated and characterized with cyclic voltammetry (CV) using a 10mM potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. The 3D pyrolytic...... carbon microelectrodes displayed twice the higher peak current compared to 2D....

  19. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    International Nuclear Information System (INIS)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung; Pan, Szu-Jung; Tsai, Wen-Ta; Tai, Chen-Yi; Shih, Chuan-Feng

    2013-01-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test

  20. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    Energy Technology Data Exchange (ETDEWEB)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Pan, Szu-Jung [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tsai, Wen-Ta, E-mail: wttsai@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tai, Chen-Yi [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Shih, Chuan-Feng [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Department of Electrical Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China)

    2013-02-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test.

  1. The system of quantum structures coated with the diamond-like carbon for silicon solar cells

    International Nuclear Information System (INIS)

    Efimov, V.P.; Abyzov, A.S.; Luchaninov, A.A.; Omarov, A.O.; Strel'nitskij, V.E.

    2010-01-01

    The peculiarity of the process of amorphous diamond-like carbon coating deposition on the surface of Si photoelectric cell with quantum filaments, which was irradiated by the electrons and heavy multi-charge ions, have been investigated. The experimental results on the investigations of the optical characteristics of the nitrogen doped hydrogenated diamond-like carbon a-C:(H,N) coatings were presented. The parameters of the process of a-C:(H,N) coating deposition on the surfaces of disordered Si semiconductors structures were optimized for the purpose of minimizing optical reflection coefficient from the front surface of the crystal and supplying its mechanical durability.

  2. Flexible diamond-like carbon thin film coated rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Y.T.

    2015-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 75% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin film, by which the coefficient of friction is reduced to less than one tenth. Coating

  3. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  4. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    Science.gov (United States)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  5. Fabrication of three-dimensional carbon microelectrodes for electrochemical sensing

    DEFF Research Database (Denmark)

    Hemanth, Suhith

    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. The aim of the research work carried out in this thesis was to develop three-dimensional (3D) carbon microelectrodes for electrochemical applications. Three different fabrica...

  6. Development of Diamond-like Carbon Fibre Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口勝美; 洞口巌; 竹内雅之

    2004-01-01

    A unique diamond-like carbon (DLC) grinding wheel was developed, in which the DLC fibres were made by rolling Al sheets coated with DLC films and aligned normally to the grinding wheel surface by laminating Al sheets together with DLC fibres. In this paper, the formation process of DLC fibres and the fabrication process of a DLC fibre wheel were investigated. Many grinding experiments were also carried out on a precision NC plane milling machine using a newly developed DLC wheel. Grinding of specimens of silicon wafers, optical glasses, quartz, granites and hardened die steel SKD11 demonstrated the capabilities of nanometer surface finish. A smooth surface with a roughness value of Ra2.5nm (Ry26nm) was achieved.

  7. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88 ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  8. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  9. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  10. Flexible diamond-like carbon thin film coated on rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Yutao

    2015-01-01

    Dynamic rubber seals are the major source of friction in lubrication systems and bearings, which may take up to 70% of the total friction. Our solution is to coat rubbers with flexible diamond-like carbon (DLC) thin film by which the coefficient of friction is reduced from above 1.5 to below 0.15.

  11. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    Science.gov (United States)

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  13. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai [Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Iyer, Ajai; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto (Finland)

    2015-11-21

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  14. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  15. Glass pipette-carbon fiber microelectrodes for evoked potential recordings

    Directory of Open Access Journals (Sweden)

    Moraes M.F.D.

    1997-01-01

    Full Text Available Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials

  16. Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target

    DEFF Research Database (Denmark)

    Meškinis, Šaru Nas; Gudaitis, Rimantas; Šlapikas, Kęstutis

    2018-01-01

    deposited by either reactive HIPIMS or dc magnetron sputtering of Ni target was explained by possible clustering of the sp2-bonded carbon and/or formation of areas with the decreased hydrogen content. It was suggested that the tensile stress-induced rearrangements of these conglomerations have resulted......Piezoresistive properties of hydrogenated diamond-like carbon (DLC) and DLC-based nickel nanocomposite (DLC:Ni) films were studied in the range of low concentration of nickel nanoparticles. The films were deposited by reactive high power pulsed magnetron sputtering (HIPIMS) of Ni target, and some...... samples were deposited by direct current (dc) reactive magnetron sputtering for comparison purposes. Raman scattering spectroscopy, energy-dispersive X-ray spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) were used to study the structure and chemical composition of the films. A four...

  17. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  18. Nanostructured titanium/diamond-like carbon multilayer films: deposition, characterization, and applications.

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Malik, Hitendra K

    2011-11-01

    Titanium/diamond-like carbon multilayer (TDML) films were deposited using a hybrid system combining radio frequency (RF)-sputtering and RF-plasma enhanced chemical vapor deposition (PECVD) techniques under a varied number of Ti/diamond-like carbon (DLC) bilayers from 1 to 4, at high base pressure of 1 × 10(-3) Torr. The multilayer approach was used to create unique structures such as nanospheres and nanorods in TDML films, which is confirmed by scanning electron microscopy (SEM) analysis and explained by a hypothetical model. Surface composition was evaluated by X-ray photoelectron spectroscopy (XPS), whereas energy dispersive X-ray analysis (EDAX) and time-of-flight secondary ion mass spectrometer (ToF-SIMS) measurements were performed to investigate the bulk composition. X-ray diffraction (XRD) was used to evaluate the phase and crystallinity of the deposited TDML films. Residual stress in these films was found to be significantly low. These TDML films were found to have excellent nanomechanical properties with maximum hardness of 41.2 GPa. In addition, various nanomechanical parameters were calculated and correlated with each other. Owing to metallic interfacial layer of Ti in multilayer films, the optical properties, electrical properties, and photoluminescence were improved significantly. Due to versatile nanomechanical properties and biocompatibility of DLC and DLC based films, these TDML films may also find applications in biomedical science.

  19. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  20. Laser Raman microprobe spectroscopy as a diagnostic for the characterisation of diamond and diamond like carbon (DLC) thin films

    International Nuclear Information System (INIS)

    Johnston, C.

    1990-10-01

    Invariably when manufacturing an artificial diamond film a mixture of carbon is deposited - tetragonally bonded (diamond), trigonally bonded (graphite) and other allotropic crystalline forms and amorphous carbons. This imposes a need for careful analysis to determine exactly what carbon types constitute the films. Raman spectroscopy is particularly sensitive to crystal and atomic structure and has a number of advantages which make it one of the most useful techniques for interrogating diamond and DLC thin films. Although Raman spectroscopy alone cannot fully characterise the film, it can give more information than simply what particular form of carbon or other impurities are present in the film. It can be used to determine the ratio of sp 2 to sp 3 bonding within the film, and to some extent the crystallite or domain size and the internal stress of the film. The use of laser Raman microprobe spectroscopy as a diagnostic tool in the analysis of diamond and DLC thin films is demonstrated for a variety of carbon films on various substrates and the characterisation of these films is discussed. (author)

  1. Raman and EPR spectroscopic studies of chromium-doped diamond-like carbon films

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Vorlíček, Vladimír; Prokhorov, Andriy; Kalabukhova, E.; Lančok, Ján; Jelínek, Miroslav

    2018-01-01

    Roč. 83, Mar (2018), s. 30-37 ISSN 0925-9635 R&D Projects: GA MŠk(CZ) LO1409; GA MŠk(CZ) LM2015088; GA ČR(CZ) GA15-05864S Institutional support: RVO:68378271 Keywords : EPR * micro-Raman spectroscopy * diamond-like films * carbon-related defects * chromium Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.561, year: 2016

  2. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  3. Development of a new neutron mirror made of deuterated Diamond-like carbon

    International Nuclear Information System (INIS)

    Sakurai, Dai; Chiba, Junsei; Shimizu, Hirohiko M; Nishimura, Daiki; Ino, Takashi; Kaneko, Naokatsu; Muto, Suguru; Kakusho, Nobunori; Seki, Yoshichika; Katayama, Ryo; Kitaguchi, Masaaki; Mishima, Kenji; Yamashita, Satoru; Ozeki, Kazuhide; Yoshioka, Tamaki

    2014-01-01

    We developed a new neutron mirror made of Diamond-like carbon (DLC). DLC is a film of amorphous carbon that has characteristics of both diamond and graphite. We produced DLC mirrors by ionization deposition method which is one of the chemical vapor deposition (CVD). Generally, DLC made by CVD contents a few tens of percentages of hydrogen. It decreases the Fermi potential of the DLC coating because hydrogen has negative Fermi potential. In order to increase the Fermi potential of the coating, we deuterated the DLC by using deuterated benzene for the source gas. The characteristics of the deuterated DLC(DDLC) coating was evaluated by RBS, ERDA, x-ray reflectivity, AFM. As a result, DDLC coating has 243 neV due to deuteration, which is the same level as Ni. The RMS of height of the DDLC was 0.6nm so that the DDLC coating can be applied for a focusing mirror or specular transportation of pulsed neutron. Besides, we also develop Hydrogen/Deuterium DLC multiple layer mirror. So far, 4 layers mirror has been succeeded.

  4. Carbon-Ring Microelectrode Arrays for Electrochemical Imaging of Single Cell Exocytosis: Fabrication and Characterization

    Science.gov (United States)

    Lin, Yuqing; Trouillon, Raphaël; Svensson, Maria I.; Keighron, Jacqueline D.; Cans, Ann-Sofie; Ewing, Andrew G.

    2012-01-01

    Fabrication of carbon microelectrode arrays, with up to 15 electrodes in total tips as small as 10 to 50 μm, is presented. The support structures of microelectrodes were obtained by pulling multiple quartz capillaries together to form hollow capillary arrays before carbon deposition. Carbon ring microelectrodes were deposited by pyrolysis of acetylene in the lumen of these quartz capillary arrays. Each carbon deposited array tip was filled with epoxy, followed by beveling of the tip of the array to form a deposited carbon-ring microelectrode array (CRMA). Both the number of the microelectrodes in the array and the tip size are independently tunable. These CRMAs have been characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and electrogenerated chemiluminescence. Additionally, the electrochemical properties were investigated with steady-state voltammetry. In order to demonstrate the utility of these fabricated microelectrodes in neurochemistry, CRMAs containing eight microring electrodes were used for electrochemical monitoring of exocytotic events from single PC12 cells. Subcellular temporal heterogeneities in exocytosis (ie. cold spots vs. hot spots) were successfully detected with the CRMAs. PMID:22339586

  5. Status and applications of diamond and diamond-like materials: An emerging technology

    Science.gov (United States)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  6. Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Corbella, C.; Pascual, E.; Oncins, G.; Canal, C.; Andujar, J.L.; Bertran, E.

    2005-01-01

    The addition of metal atoms within the matrix of diamond-like carbon films leads to the improvement of their mechanical properties. The present paper discusses the relationship between the composition and morphology of metal-containing (W, Nb, Mo, Ti) diamond-like carbon thin films deposited at room temperature by reactive magnetron sputtering from a metal target in an argon and methane atmosphere. Composition was measured either by electron microprobe technique or by X-ray photoelectron spectroscopy and shows a smooth variation with relative methane flow. High relative methane flows lead to a bulk saturation of carbon atoms, which leads to a lack of homogeneity in the films as confirmed by secondary ion mass spectrometry. Cross-section micrographs were observed by transmission electron microscopy and revealed a structure strongly influenced by the metal inserted and its abundance. The surface pattern obtained by scanning electrochemical potential microscopy provided the metallicity distribution. These measurements were completed with atomic force microscopy of the surface. Selected area electron diffraction and X-ray diffraction measurements provided data of the crystalline structure along with nano-crystallite size. High-resolution transmission electron microscopy provided images of these crystallites

  7. Synthesis of diamond-like carbon via PECD using a streaming neutral gas injection hollow cathode

    International Nuclear Information System (INIS)

    Pacho, A.; Pares, E.; Ramos, H.; Mendenilla, A.; Malapit, G.

    2009-01-01

    A streaming neutral gas injection hollow cathode system was used to deposit diamond-like carbon films via plasma enhanced chemical vapor deposition on silicon and nickel-coated silicon substrates with acetylene and hydrogen as reactant gases. Samples were characterized using SEM and Raman spectroscopy. The work presented here aims to demonstrate the capability of the system to synthesize carbonaceous films and is starting point towards work on formation of carbon nanostructures. (author)

  8. Surface hardening of optic materials by deposition of diamond like carbon coatings from separated plasma of arc discharge

    Science.gov (United States)

    Osipkov, A. S.; Bashkov, V. M.; Belyaeva, A. O.; Stepanov, R.; Mironov, Y. M.; Galinovsky, A. L.

    2015-02-01

    This article considers the issue of strengthening of optic materials used in the IR spectrum by deposition of diamond like carbon coatings from separated plasma arc discharge. The report shows results of tests of bare and strengthened optical materials such as BaF2, MgF2, Si, Ge, including the testing of their strength and spectral characteristics. Results for the determination of optical constants for the DLC coatings deposited on substrates of Ge and Si, by using separated plasma, are also presented. Investigations showed that surface hardening of optical materials operable in the IR range, by the deposition of diamond like carbon coating onto their surface, according to this technology, considerably improves operational properties and preserves or improves their optic properties.

  9. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    International Nuclear Information System (INIS)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-01-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films

  10. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-23

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 C. Film surfaces roughen upon annealing to 300 C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  11. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  12. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  13. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    Science.gov (United States)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  14. Nanostructural study of the thermal transformation of diamond-like amorphous carbon into an ultrahard carbon nanocomposite

    Science.gov (United States)

    Martínez-Miranda, L. J.; Siegal, M. P.; Provencio, P. P.

    2001-07-01

    We studied the structural transformation of diamond-like amorphous carbon (a-C) films into ultrahard carbon nanocomposites via postannealing to 600 °C using transmission electron microscopy, x-ray reflectivity, and small-angle scattering. Film density decreases monotonically above 200 °C. Film surfaces roughen upon annealing to 300 °C; however, a-C recovers its smoothness with higher temperature annealing. Finally, there exists some quasiperiodic nanostructural feature with a lattice spacing that increases with annealing, correlating well with purely a-C nanocomposite structures imaged from samples annealed at 600 °C. We propose that these annealing-induced nanostructural changes are a derivative of localized stress fields in as-grown a-C films.

  15. Optical properties of diamond like carbon nanocomposite thin films

    Science.gov (United States)

    Alam, Md Shahbaz; Mukherjee, Nillohit; Ahmed, Sk. Faruque

    2018-05-01

    The optical properties of silicon incorporated diamond like carbon (Si-DLC) nanocomposite thin films have been reported. The Si-DLC nanocomposite thin film deposited on glass and silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Fourier transformed infrared spectroscopic analysis revealed the presence of different bonding within the deposited films and deconvolution of FTIR spectra gives the chemical composition i.e., sp3/sp2 ratio in the films. Optical band gap calculated from transmittance spectra increased from 0.98 to 2.21 eV with a variation of silicon concentration from 0 to 15.4 at. %. Due to change in electronic structure by Si incorporation, the Si-DLC film showed a broad photoluminescence (PL) peak centered at 467 nm, i.e., in the visible range and its intensity was found to increase monotonically with at. % of Si.

  16. Graphene diamond-like carbon films heterostructure

    International Nuclear Information System (INIS)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-01-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  17. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  18. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    International Nuclear Information System (INIS)

    Marciano, F.R.; Bonetti, L.F.; Pessoa, R.S.; Massi, M.; Santos, L.V.; Trava-Airoldi, V.J.

    2009-01-01

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  19. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, F.R., E-mail: fernanda@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil); Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Bonetti, L.F. [Clorovale Diamantes Industria e Comercio Ltda, Estr. do Torrao de Ouro, 500-Sao Jose dos Campos, 12229-390, SP (Brazil); Pessoa, R.S.; Massi, M. [Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Santos, L.V.; Trava-Airoldi, V.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil)

    2009-08-03

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  20. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient

    Science.gov (United States)

    Basso, L.; Gorrini, F.; Bazzanella, N.; Cazzanelli, M.; Dorigoni, C.; Bifone, A.; Miotello, A.

    2018-01-01

    Nanodiamonds have attracted considerable interest for their potential applications in quantum computation, sensing, and bioimaging. However, synthesis of nanodiamonds typically requires high pressures and temperatures, and is still a challenge. Here, we demonstrate production of nanodiamonds by pulsed laser ablation of graphite and diamond-like carbon in water. Importantly, this technique enables production of nanocrystalline diamonds at room temperature and standard pressure conditions. Moreover, we propose a method for the purification of nanodiamonds from graphitic and amorphous carbon phases that do not require strong acids and harsh chemical conditions. Finally, we present a thermodynamic model that describes the formation of nanodiamonds during pulsed laser ablation. We show that synthesis of the crystalline phase is driven by a graphite-liquid-diamond transition process that occurs at the extreme thermodynamic conditions reached inside the ablation plume.

  1. Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo.

    Science.gov (United States)

    Xiang, Ling; Yu, Ping; Hao, Jie; Zhang, Meining; Zhu, Lin; Dai, Liming; Mao, Lanqun

    2014-04-15

    Using as-synthesized vertically aligned carbon nanotube-sheathed carbon fibers (VACNT-CFs) as microelectrodes without any postsynthesis functionalization, we have developed in this study a new method for in vivo monitoring of ascorbate with high selectivity and reproducibility. The VACNT-CFs are formed via pyrolysis of iron phthalocyanine (FePc) on the carbon fiber support. After electrochemical pretreatment in 1.0 M NaOH solution, the pristine VACNT-CF microelectrodes exhibit typical microelectrode behavior with fast electron transfer kinetics for electrochemical oxidation of ascorbate and are useful for selective ascorbate monitoring even with other electroactive species (e.g., dopamine, uric acid, and 5-hydroxytryptamine) coexisting in rat brain. Pristine VACNT-CFs are further demonstrated to be a reliable and stable microelectrode for in vivo recording of the dynamic increase of ascorbate evoked by intracerebral infusion of glutamate. Use of a pristine VACNT-CF microelectrode can effectively avoid any manual electrode modification and is free from person-to-person and/or electrode-to-electrode deviations intrinsically associated with conventional CF electrode fabrication, which often involves electrode surface modification with randomly distributed CNTs or other pretreatments, and hence allows easy fabrication of highly selective, reproducible, and stable microelectrodes even by nonelectrochemists. Thus, this study offers a new and reliable platform for in vivo monitoring of neurochemicals (e.g., ascorbate) to largely facilitate future studies on the neurochemical processes involved in various physiological events.

  2. High energy ion beam induced modifications in diamond and diamond like carbon thin films

    International Nuclear Information System (INIS)

    Dilawar, N.; Sah, S.; Mehta, B.R.; Vankar, V.D.

    1996-01-01

    Diamond and DLC films deposited using hot-filament chemical vapour deposition technique at various parameters were irradiated with 50 MeV Si 4+ ions. The resulting microstructural changes were studied using X-ray diffraction and scanning electron microscopy. All the samples showed the development of β-SiC and hexagonal carbon phases at the expense of the diamond/DLC phase. The ERD analysis was carried out to determine the hydrogen concentration and its distribution in DLC films. The absolute hydrogen concentration in DLC samples is of the order of 10 22 atoms/cm 3 which gets depleted on irradiation. The DLC samples show a clear dependence of hydrogen content on the deposition parameters. (author)

  3. Influence of thermal heating on diamond-like carbon film properties prepared by filtered cathodic arc

    International Nuclear Information System (INIS)

    Khamnualthong, N.; Siangchaew, K.; Limsuwan, P.

    2013-01-01

    Tetrahedral amorphous diamond-like carbon (ta-DLC) films were deposited on magnetic recording heads using the filtered cathodic arc method. The deposited film thickness was on the order of several nanometers. The DLC films were then annealed to 100 °C–300 °C for 30 and 60 min, and the structure of the ta-DLC films was investigated using Raman spectroscopy, where the gross changes were observed in the Raman D and G peaks. Detailed interpretation concluded that there was sp 2 clustering as a function of temperature, and there was no sp 3 -to-sp 2 conversion after heating up to 300 °C. Furthermore, X-ray photoelectron spectroscopy suggested that oxidation of both the ta-DLC film and the adhesion layer occurs at 300 °C. Additionally, more film wear was observed with heating as measured by a nanoindenter. - Highlights: • Tetrahedral-amorphous diamond-like carbon (ta-DLC) by filtered cathodic arc • ta-DLC used in magnetic recording head as head overcoat • ta-DLC thickness range of less than 2 nm • ta-DLC property dependence on heating • Temperature effect range of up to 300 °C

  4. Study of hard diamond-like carbon films deposited in an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Yu Shiji; Ma Tengcai

    2003-01-01

    Chemical vapor deposition of the hard diamond-like carbon (DLC) films was achieved using an inductively coupled plasma source (ICPS). The microscopy, microhardness, deposition rate and structure characteristic of the DLC films were analyzed. It is shown that the ICPS is suitable for the hard DLC film deposition at relatively low substrate negative bias voltage, and the substrate negative bias voltage greatly affects chemical vapor deposition of the DLC film and its quality

  5. Carbon fiber on polyimide ultra-microelectrodes

    Science.gov (United States)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  6. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    Science.gov (United States)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  7. Diamond-like carbon films deposited by a hybrid ECRCVD system

    International Nuclear Information System (INIS)

    Guo, C.T.; Dittrich, K.-H.

    2007-01-01

    A novel hybrid technique for diamond-like carbon (DLC) film deposition has been developed. This technique combines the electron cyclotron resonance chemical vapor deposition (ECRCVD) of C 2 H 2 and metallic magnetron sputtering. Here we described how DLC film is used for a variety of applications such as stamper, PCB micro-tools, and threading form-tools by taking advantage of hybrid ECRCVD system. The structure of the DLC films is delineated by a function of bias voltages by Raman spectroscopy. This function includes parameters such as dependence of G peak positions and the intensity ratio (I D /I G ). Atomic force microscope (AFM) examines the root-mean-square (R.M.S.) roughness and the surface morphology. Excellent adhesion and lower friction coefficients of a DLC film were also assessed

  8. Novel phase of carbon, ferromagnetism, and conversion into diamond

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp 3 (75%–85%) with the rest being threefold sp 2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g −1 . From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times

  9. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  10. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films

    Science.gov (United States)

    Sokolowski-Tinten, Klaus; Ziegler, Wolfgang; von der Linde, Dietrich; Siegal, Michael P.; Overmyer, D. L.

    2005-03-01

    Short-pulse-laser-induced damage and ablation of thin films of amorphous, diamond-like carbon have been investigated. Material removal and damage are caused by fracture of the film and ejection of large fragments. The fragments exhibit a delayed, intense and broadband emission of microsecond duration. Both fracture and emission are attributed to the laser-initiated relaxation of the high internal stresses of the pulse laser deposition-grown films.

  11. Deposition and microstructure of Ti-containing diamond-like carbon nanocomposite films

    International Nuclear Information System (INIS)

    Yang, Won Jae; Sekino, Tohru; Shim, Kwang Bo; Niihara, Koichi; Auh, Keun Ho

    2005-01-01

    Ti-containing diamond-like carbon (DLC) films were deposited by plasma decomposition of CH 4 /Ar gas mixtures with an introduction of tetrakis(dimethylamino)titanium (TDMAT, Ti[(CH 3 ) 2 N] 4 ), which was used as a precursor of titanium. The films deposited were found to be nanocomposite coatings consisting of TiN nanocrystalline clusters and amorphous hydrocarbon (a-C:H), indicating that the nanocrystalline clusters were embedded in the DLC matrix. The crystallinity of TiN clusters, as well as the Ti atomic concentrations in the films, increased with an increase of substrate temperature. The substrate temperature applied to form a crystalline phase in the DLC matrix induced a graphitization of amorphous hydrocarbon matrix. The increase of volume fraction of TiN nanocrystalline clusters in the DLC matrix enhanced the mechanical properties of nanostructured coatings, although the graphite-like structural transition of DLC matrix happened due to the applied heating

  12. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    OpenAIRE

    Zhaoxiang Chen; Xipeng Ren; Limei Ren; Tengchao Wang; Xiaowen Qi; Yulin Yang

    2018-01-01

    Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC) was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC ...

  13. A diamond-like carbon film for wear protection of steel

    International Nuclear Information System (INIS)

    Harris, S.J.; Weiner, A.M.; Tung, S.C.; Simko, S.J.; Militello, M.C.

    1993-01-01

    We have deposited diamond-like carbon (DLC) and amorphous SiN films on a tool steel coupon. In order to make the DLC adhere to the metal, we used an interlayer of amorphous SiN, taking advantage of the fact that the SiN coating adheres to the metal and the DLC adheres to the SiN. The DLC/SiN-coated substrate showed a significant reduction in friction compared with either uncoated or SiN-coated substrates in our laboratory bench tester after lubricated sliding for 30 h. In addition, on the basis of surface profilometry analysis, the DLC/SiN-coated plate showed less wear and a much smoother surface. The films were analyzed using X-ray photo-electron spectroscopy and sputter depth profiling. Our results suggest that DLC is a promising coating for wear protection. (orig.)

  14. Characterization of diamond-like carbon thin film synthesized by RF atmospheric pressure plasma Ar/CH4 jet

    Science.gov (United States)

    Sohbatzadeh, Farshad; Safari, Reza; Etaati, G. Reza; Asadi, Eskandar; Mirzanejhad, Saeed; Hosseinnejad, Mohammad Taghi; Samadi, Omid; Bagheri, Hanieh

    2016-01-01

    The growth of diamond like carbon (DLC) on a Pyrex glass was investigated by a radio frequency (RF) atmospheric pressure plasma jet (APPJ). The plasma jet with capacitive configuration ran by a radio frequency power supply at 13.56 MHz. Alumina ceramic was used as dielectric barrier. Ar and CH4 were used in atmospheric pressure as carrier and precursor gases, respectively. Diamond like carbon thin films were deposited on Pyrex glass at substrate temperature and applied power of 130 °C and 250 Watts, respectively. Performing field emission scanning electron microscope (FE-SEM) and laser Raman spectroscopy analysis resulted in deposition rate and the ID/IG ratio of 21.31 nm/min and 0.47, respectively. The ID/IG ratio indicated that the coating possesses relative high sp3 content The optical emission spectroscopy (OES) diagnostic was applied to diagnose plasma jet species. Estimating electron temperature and density of the RF-APPJ resulted in 1.36 eV and 2.75 × 1014 cm-3 at the jet exit, respectively.

  15. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    OpenAIRE

    Fierro, St?phane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-01-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the result...

  16. The irradiation studies on diamond-like carbon films

    CERN Document Server

    LiuGuIang; Xie Er Qin

    2002-01-01

    Diamond-like carbon (DLC) films have been deposited on glass substrates using radio-frequency (r.f.) plasma deposition method. gamma-ray, ultraviolet (UV) ray and neutron beam were used to irradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were used to characterize the changing characteristics of SP sup 3 C-H bond and hydrogen content in the films due to the irradiations. It showed that, the damage degrees of the gamma-ray, UV ray and neutron beam on the SP sup 3 C-H bonds are different. Among them, the damage of gamma-ray on the SP sup 3 C-H bond is the weakest. When the irradiation dose of gamma-ray reaches 10x10 sup 4 Gy, the SP sup 3 C-H bond reduces about 50% in number. The square resistance of the films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of the films. Compared with that of the as-deposited one, the IR transmittance of the films irradiated by both gamma-ray and neutron beam is increased to some extent. By using the results on optical...

  17. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  18. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Jones, B J; Nelson, N

    2016-01-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp 2 /sp 3 ratio (graphitic/diamond-like bonding ratio) and sp 2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions. (paper)

  19. Electrodeposition of diamond-like carbon films on titanium alloy using organic liquids: Corrosion and wear resistance

    International Nuclear Information System (INIS)

    Falcade, Tiago; Shmitzhaus, Tobias Eduardo; Gomes dos Reis, Otávio; Vargas, André Luis Marin; Hübler, Roberto; Müller, Iduvirges Lourdes; Fraga Malfatti, Célia de

    2012-01-01

    Highlights: ► The electrodeposition may be conducted at room temperature. ► The DLC films have good resistance to corrosion in saline environments. ► The films have lower coefficient of friction than the uncoated substrate. ► The abrasive wear protection is evident in coated systems. - Abstract: Diamond-like carbon (DLC) films have been studied as coatings for corrosion protection and wear resistance because they have excellent chemical inertness in traditional corrosive environments, besides presenting a significant reduction in coefficient of friction. Diamond-like carbon (DLC) films obtained by electrochemical deposition techniques have attracted a lot of interest, regarding their potential in relation to the vapor phase deposition techniques. The electrochemical deposition techniques are carried out at room temperature and do not need vacuum system, making easier this way the technological transfer. At high electric fields, the organic molecules polarize and react on the electrode surface, forming carbon films. The aim of this work was to obtain DLC films onto Ti6Al4V substrate using as electrolyte: acetonitrile (ACN) and N,N-dimethylformamide (DMF). The films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, potentiodynamic polarization and wear tests. The results show that these films can improve, significantly, the corrosion resistance of titanium and its alloys and their wear resistance.

  20. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation.

    Science.gov (United States)

    Lopes, F S; Oliveira, J R; Milani, J; Oliveira, L D; Machado, J P B; Trava-Airoldi, V J; Lobo, A O; Marciano, F R

    2017-12-01

    Recently, the development of coatings to protect biomedical alloys from oxidation, passivation and to reduce the ability for a bacterial biofilm to form after implantation has emerged. Diamond-like carbon films are commonly used for implanted medical due to their physical and chemical characteristics, showing good interactions with the biological environment. However, these properties can be significantly improved when titanium dioxide nanoparticles are included, especially to enhance the bactericidal properties of the films. So far, the deposition of hydroxyapatite on the film surface has been studied in order to improve biocompatibility and bioactive behavior. Herein, we developed a new route to obtain a homogeneous and crystalline apatite coating on diamond-like carbon films grown on 304 biomedical stainless steel and evaluated its antibacterial effect. For this purpose, films containing two different concentrations of titanium dioxide (0.1 and 0.3g/L) were obtained by chemical vapor deposition. To obtain the apatite layer, the samples were soaked in simulated body fluid solution for up to 21days. The antibacterial activity of the films was evaluated by bacterial eradication tests using Staphylococcus aureus biofilm. Scanning electron microscopy, X-ray diffraction, Raman scattering spectroscopy, and goniometry showed that homogeneous, crystalline, and hydrophilic apatite films were formed independently of the titanium dioxide concentration. Interestingly, the diamond-like films containing titanium dioxide and hydroxyapatite reduced the biofilm formation compared to controls. A synergism between hydroxyapatite and titanium dioxide that provided an antimicrobial effect against opportunistic pathogens was clearly observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application.

    Science.gov (United States)

    Liao, T T; Zhang, T F; Li, S S; Deng, Q Y; Wu, B J; Zhang, Y Z; Zhou, Y J; Guo, Y B; Leng, Y X; Huang, N

    2016-12-01

    Diamond-like carbon (DLC) films are potential candidates for artificial joint surface modification in biomedical applications, and the influence of the structural features of DLC surfaces on cell functions has attracted attention in recent decades. Here, the biocompatibility of DLC films with different structures was investigated using macrophages, osteoblasts and fibroblasts. The results showed that DLC films with a low ratio of sp(2)/sp(3), which tend to have a structure similar to that of diamond, led to less inflammatory, excellent osteogenic and fibroblastic reactions, with higher cell viability, better morphology, lower release of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6), and higher release of IL-10 (interleukin-10). The results also demonstrated that the high-density diamond structure (low ratio of sp(2)/sp(3)) of DLC films is beneficial for cell adhesion and growth because of better protein adsorption without electrostatic repulsion. These findings provide valuable insights into the mechanisms underlying inhibition of an inflammatory response and the promotion of osteoblastogenesis and fibrous propagation, and effectively build a system for evaluating the biocompatibility of DLC films. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    Science.gov (United States)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  3. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NARCIS (Netherlands)

    Martinez, D. Martinez; Nohava, Jiri; De Hosson, J. Th. M.

    2015-01-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond- like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the

  4. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Mizoguchi, Itaru

    2011-01-01

    To test the hypothesis that a diamond-like carbon coating does not affect the frictional properties of orthodontic wires. Two types of wires (nickel-titanium and stainless steel) were used, and diamond-like carbon (DLC) films were deposited on the wires. Three types of brackets, a conventional stainless steel bracket and two self-ligating brackets, were used for measuring static friction. DLC layers were observed by three-dimensional scanning electron microscopy (3D-SEM), and the surface roughness was measured. Hardness and elastic modulus were obtained by nanoindentation testing. Frictional forces and surface roughness were compared by the Kruskal-Wallis and Mann-Whitney U-tests. The hardness and elastic modulus of the wires were compared using Student's t-test. When angulation was increased, the DLC-coated wires showed significantly less frictional force than the as-received wires, except for some wire/bracket combinations. Thin DLC layers were observed on the wire surfaces by SEM. As-received and DLC-coated wires had similar surface morphologies, and the DLC-coating process did not affect the surface roughness. The hardness of the surface layer of the DLC-coated wires was much higher than for the as-received wires. The elastic modulus of the surface layer of the DLC-coated stainless steel wire was less than that of the as-received stainless steel wire, whereas similar values were found for the nickel-titanium wires. The hypothesis is rejected. A DLC-coating process does reduce the frictional force.

  5. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amit, E-mail: erdd@iacs.res.in; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2014-04-24

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  6. Diamond-like carbon layers modified by ion bombardment during growth and researched by Resonant Ultrasound Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Jelínek, Miroslav; Písařík, Petr; Remsa, Jan; Janovská, Michaela; Landa, Michal; Zemek, Josef; Havránek, Vladimír

    2017-01-01

    Roč. 417, Sep (2017), s. 213-217 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GA15-05864S Institutional support: RVO:68378271 ; RVO:61388998 ; RVO:61389005 Keywords : in-situ ion bombardment * pulsed laser deposition * diamond-like carbon * hybrid technology * flm modification Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.387, year: 2016

  7. Diamond carbon sources: a comparison of carbon isotope models

    International Nuclear Information System (INIS)

    Kirkley, M.B.; Otter, M.L.; Gurney, J.J.; Hill, S.J.

    1990-01-01

    The carbon isotope compositions of approximately 500 inclusion-bearing diamonds have been determined in the past decade. 98 percent of these diamonds readily fall into two broad categories on the basis of their inclusion mineralogies and compositions. These categories are peridotitic diamonds and eclogitic diamonds. Most peridotitic diamonds have δ 13 C values between -10 and -1 permil, whereas eclogitic diamonds have δ 13 C values between -28 and +2 permil. Peridotitic diamonds may represent primordial carbon, however, it is proposed that initially inhomogeneous δ 13 C values were subsequently homogenized, e.g. during melting and convection that is postulated to have occurred during the first billion years of the earth's existence. If this is the case, then the wider range of δ 13 C values exhibited by eclogitic diamonds requires a different explanation. Both the fractionation model and the subduction model can account for the range of observed δ 13 C values in eclogitic diamonds. 16 refs., 2 figs

  8. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  9. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  10. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  11. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  12. Characteristics of diamondlike carbon(DLC film deposited by PACVD process

    Directory of Open Access Journals (Sweden)

    Krzysztof Lukaszkowicz

    2016-10-01

    Full Text Available Diamondlike carbon (DLC film is promising materials for many technical and engineering applications. DLC films are used in many different industries for example: in medicine, in electronics, in optics and the automotive industry. They have excellent tribological properties (low friction coefficient, chemical inertness and high mechanical hardness. This paper provides an analysis of the microstructure, mechanical and tribological properties of DLC films. In the study of the coating used several surface sensitive techniques and methods, i.e. High Resolution Transmission Electron Microscopy (HRTEM, Scanning Electron Microscopy (SEM, Raman spectroscopy and tribological tests like ball-on-disc. HRTEM investigation shows an amorphous character of DLC layer. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.02-0.03. The investigated coating reveals high wear resistance. The coating demonstrated a good adhesion to the substrate.

  13. The semi-empirical tight-binding model for carbon allotropes “between diamond and graphite”

    Energy Technology Data Exchange (ETDEWEB)

    Lytovchenko, V.; Kurchak, A.; Strikha, M., E-mail: maksym-strikha@hotmail.com [Institute of Semiconductor Physics, NAS of Ukraine, Pr. Nauky 41, Kyiv 03028 (Ukraine)

    2014-06-28

    The new carbon allotropes “between diamond and graphite” have come under intensive examination during the last decade due to their numerous technical applications. The modification of energy gap in thin films of these allotropes was studied experimentally using optical methods. The proposed simple model of carbon clusters with variable lengths of chemical bonds allows us to imitate the transfer from diamond and diamond-like to graphite-like structures, as well as the corresponding modification of hybridization sp{sup 3}/sp{sup 2} for diamond-like and sp{sub z} for graphite-like phases. This enables us to estimate various allotropes parameters, like the gap E{sub g}, energies of valence E{sub v}, and conduction E{sub c} band edges, and the value of electronic affinity, i.e., optical work function X, which are all of practical importance. The obtained estimations correspond to the experimental data.

  14. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed...... carbon [2]. This process enables fabrication of 2D and 3D electrodes with possibility for tailoring ad-hoc designs and unique sensitivities for specific applications. Due to this, pyrolysed carbon is becoming increasingly attractive for numerous applications, such as novel sensors and scaffolds for cell...

  15. Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Backfish, Michael [Fermilab; Kato, Shigeki [KEK, Tsukuba; Tan, Cheng-Yang [Fermilab; Zwaska, Robert [Fermilab

    2017-05-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Main Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\\% of that measured in the uncoated stainless steel beampipe.

  16. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  17. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  18. Biomedical applications of diamond-like carbon coatings: a review.

    Science.gov (United States)

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices.

  19. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  20. Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Dongping; Zhang, Sam; Ong, S.-E.; Benstetter, Guenther; Du Hejun

    2006-01-01

    In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5-2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp 2 -configured nanoclusters inside the films

  1. Characterization and development of diamond-like carbon coatings for storing ultracold neutrons

    CERN Document Server

    Grinten, M G D; Shiers, D; Baker, C A; Green, K; Harris, P G; Iaydjiev, P S; Ivanov, S N; Geltenbort, P

    1999-01-01

    In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now successfully being used in an experiment to measure the EDM of the neutron.

  2. Characterization and development of diamond-like carbon coatings for storing ultracold neutrons

    International Nuclear Information System (INIS)

    Grinten, M.G.D. van der; Pendlebury, J.M.; Shiers, D.; Baker, C.A.; Green, K.; Harris, P.G.; Iaydjiev, P.S.; Ivanov, S.N.; Geltenbort, P.

    1999-01-01

    In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now successfully being used in an experiment to measure the EDM of the neutron

  3. Electrochemical Performances of Diamond Like Carbon Films for Pb(II) Detection in Tap Water Using Differential Pulse Anodic Stripping Voltammetry Technique

    Czech Academy of Sciences Publication Activity Database

    Sbartai, A.; Namour, F.; Barbier, F.; Krejčí, J.; Kučerová, R.; Krejčí, T.; Neděla, Vilém; Sobota, Jaroslav; Jaffrezic-Renault, N.

    2013-01-01

    Roč. 11, č. 8 (2013), s. 1524-1529 ISSN 1546-198X Institutional support: RVO:68081731 Keywords : Diamond Like Carbon DLC * Lead Detection * Differential Pulse Anodic Stripping * Voltammetry * Tap Water Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.558, year: 2013

  4. Study of the diamond and diamond like films formation and technology development for the films precipitation on solid surface for wear resistance increasing of tools, machine and mechanism parts

    International Nuclear Information System (INIS)

    Imanbekov, Z.; Bekmuhambetov, E.

    1996-01-01

    Purpose of the project: The purpose of the project is a development and a creation of an effective technology of the diamond and diamond like films precipitation on materials, including refractory metals, semiconductors and composite on the carbon fibers base. The study method includes the experimental investigation of the base surface structure and properties, preparation of the surface for diamond and diamond like coats growing. The precipitation of above mentioned films will be carried out from the plasma being formed from carbon gas medium at low pressure. The main purposes of the project are: - development of the technology for obtaining the films with specified properties; provision of required rate -of the precipitation; - decreasing of temperature; - manufacturing of the functioning laboratory stand with further developing of a pilot- - commercial plant for diamond and diamond like coating. It is supposed to develop a method of the monocrystal diamond films growing, that are useful for semiconductor devices manufacturing The methods: A thermo-emission and ECR methods will be used for investigation of the diamond and diamond like films formation and growth processes. The plant that will be used for the first method is a two electrode construction. Refractory metals (W,Re) being heated up to 2500 Kelvin degrees, are usually used as an actuating electrode. The second one is a base on which the precipitation is carrying out. Refractory metals, steel, silicon can be used as the base. Actuating medium is a mixture of carbon and inert gases. The second method is based on a principle of a plasma formation with use of 2.45 GHz Shf radiation power. An ECR-plasma is formed in conjunction with magnetic field in the actuating chamber. This method allows to precipitate high quality films at lower pressure. Expected results: The main purpose of the project is to assimilate the high effective technology of the diamond and diamond like films precipitation on different

  5. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    International Nuclear Information System (INIS)

    Zhang, C.Z.; Tang, Y.; Li, Y.S.; Yang, Q.

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking

  6. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.Z.; Tang, Y. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada); Li, Y.S. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK, Canada S7N 5E2 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada)

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking.

  7. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  8. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  9. Fabrication and field emission study of novel rod-shaped diamond-like carbon nanostructures

    International Nuclear Information System (INIS)

    Varshney, Deepak; Makarov, Vladimir I; Saxena, Puja; Weiner, Brad R; Morell, Gerardo; Gonzalez-BerrIos, Adolfo; Scott, James F

    2010-01-01

    Novel sp 3 rich diamond-like carbon nanorod films were fabricated by a hot filament chemical vapour deposition technique. The results are indicative of a bottom-up synthesis process, which results in a hierarchical structure that consists of microscale papillae comprising numerous nanorods. The papillae have diameters ranging from 2 to 4 μm and the nanorods have diameters in the 35-45 nm range. A growth mechanism based on the vapour-liquid-solid mechanism is proposed that accounts for the morphological aspects at the microscale and nanoscale. Investigation of field emission properties of fabricated nanorods reveals a low turn-on field of about 4.9 V μm -1 at 1 nA and a high field-enhancement factor.

  10. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  11. Deposition of diamond-like carbon films by plasma source ion implantation with superposed pulse

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    2003-01-01

    Diamond-like carbon (DLC) films were prepared on silicon wafer substrate by plasma source ion implantation with superposed negative pulse. Methane and acetylene gases were used as working gases for plasma. A negative DC voltage and a negative pulse voltage were superposed and applied to the substrate holder. The DC voltage was changed in the range from 0 to -4 kV and the pulse voltage was changed from 0 to -18 kV. The surface of DLC films was very smooth. The deposition rate of DLC films increased with increasing in superposed DC bias voltage. Carbon ion implantation was confirmed for the DLC film deposited from methane plasma with high pulse voltage. I D /I G ratios of Raman spectroscopy were around 1.5 independent on pulse voltage. The maximum hardness of 20.3 GPa was observed for the film prepared with high DC and high pulse voltage

  12. Gas Permeation, Mechanical Behavior and Cytocompatibility of Ultrathin Pure and Doped Diamond-Like Carbon and Silicon Oxide Films

    Directory of Open Access Journals (Sweden)

    Juergen M. Lackner

    2013-12-01

    Full Text Available Protective ultra-thin barrier films gather increasing economic interest for controlling permeation and diffusion from the biological surrounding in implanted sensor and electronic devices in future medicine. Thus, the aim of this work was a benchmarking of the mechanical oxygen permeation barrier, cytocompatibility, and microbiological properties of inorganic ~25 nm thin films, deposited by vacuum deposition techniques on 50 µm thin polyetheretherketone (PEEK foils. Plasma-activated chemical vapor deposition (direct deposition from an ion source was applied to deposit pure and nitrogen doped diamond-like carbon films, while physical vapor deposition (magnetron sputtering in pulsed DC mode was used for the formation of silicon as well as titanium doped diamond-like carbon films. Silicon oxide films were deposited by radio frequency magnetron sputtering. The results indicate a strong influence of nanoporosity on the oxygen transmission rate for all coating types, while the low content of microporosity (particulates, etc. is shown to be of lesser importance. Due to the low thickness of the foil substrates, being easily bent, the toughness as a measure of tendency to film fracture together with the elasticity index of the thin films influence the oxygen barrier. All investigated coatings are non-pyrogenic, cause no cytotoxic effects and do not influence bacterial growth.

  13. Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors.

    Science.gov (United States)

    Silva, Tiago A; Zanin, Hudson; May, Paul W; Corat, Evaldo J; Fatibello-Filho, Orlando

    2014-12-10

    Porous diamond-like carbon (DLC) electrodes have been prepared, and their electrochemical performance was explored. For electrode preparation, a thin DLC film was deposited onto a densely packed forest of highly porous, vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the carbon nanotubes to clump together to form a microstructured surface with an enlarged surface area. DLC:VACNT electrodes show fast charge transfer, which is promising for several electrochemical applications, including electroanalysis. DLC:VACNT electrodes were applied to the determination of targeted molecules such as dopamine (DA) and epinephrine (EP), which are neurotransmitters/hormones, and acetaminophen (AC), an endocrine disruptor. Using simple and low-cost techniques, such as cyclic voltammetry, analytical curves in the concentration range from 10 to 100 μmol L(-1) were obtained and excellent analytical parameters achieved, including high analytical sensitivity, good response stability, and low limits of detection of 2.9, 4.5, and 2.3 μmol L(-1) for DA, EP, and AC, respectively.

  14. Mechanism behind the formation of self-assembled nano-sized clusters in diamond-like carbon nanocomposite.

    Science.gov (United States)

    Foong, Yuan Mei; Koh, Angel Ting Ting; Niu, Lifang; Chua, Daniel Hock Chuan

    2011-12-01

    Many studies have shown that Diamond-like carbon (DLC) films with diversified material properties are obtainable through doping process but the presence of the dopants were reported to form independent nanoclusters within the carbon matrix. Using combined analysis from theoretical estimations (Saha's equation and coefficient of absorption, alpha(p)), Transport of Ions In Matter (TRIM) simulation and experimental results, this work examined the mechanism behind the formation of self-assembled nanoclusters in DLC nanocomposite. We showed that the presence of metal dopants increased the heat dissipation on DLC, which allowed the energetic metal species to diffuse and enhance the formation of nanoclusters that increased the surface roughness of the films. In addition, TRIM and X-ray Photoelectron Spectroscopy (XPS) hinted the presence of energetic species may force the carbon ions to react with the interface to form silicon carbide bonds, which may be a more dominant factor compared to internal stress reduction in improving the adhesion strength of DLC.

  15. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  16. Friction force microscopy study of annealed diamond-like carbon film

    International Nuclear Information System (INIS)

    Choi, Won Seok; Joung, Yeun-Ho; Heo, Jinhee; Hong, Byungyou

    2012-01-01

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH 4 ) and hydrogen (H 2 ) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp 3 content is decreased from 75.2% to 24.1% while the sp 2 content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  17. Friction force microscopy study of annealed diamond-like carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Seok; Joung, Yeun-Ho [School of Electrical Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Heo, Jinhee [Materials Safety Evaluation Group, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Hong, Byungyou, E-mail: byhong@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  18. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

    2005-01-01

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 ∼ 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies

  19. The Polypyrrole/Multiwalled Carbon Nanotube Modified Au Microelectrode for Sensitive Electrochemical Detection of Trace Levels of Pb2+

    Directory of Open Access Journals (Sweden)

    Xuxing Zhu

    2017-03-01

    Full Text Available The sensitive detection of trace levels of heavy metal ions such as Pb2+ is of significant importance due to the health hazard they pose. In this paper, we present a polypyrrole (PPy/multiwalled carbon nanotube (MWCNT-modified Au microelectrode. The PPy/MWCNT composite film was electrochemically deposited on the microelectrode by cyclic voltammetry (CV. The composite film was investigated by scanning electron microscope (SEM, CV, and electrochemical impedance spectroscopy (EIS, and the results show that this film presents a uniformly distributed and web-like entangled structure and good conductivity. Differential pulse stripping voltammetry (DPSV was applied to determine trace levels of Pb2+. Experimental conditions including accumulation time and deposition potential were optimized. In optimal conditions, the PPy/MWCNT-modified microelectrode performed sensitive detection of Pb2+ within a concentration range from 1 to 100 μg·L−1, and the limit of detection was 0.65 μg·L−1 at the signal-to-noise ratio of three.

  20. Wear of ultra-high molecular weight polyethylene against damaged and undamaged stainless steel and diamond-like carbon-coated counterfaces.

    Science.gov (United States)

    Firkins, P; Hailey, J L; Fisher, J; Lettington, A H; Butter, R

    1998-10-01

    The wear of ultra-high molecular weight polyethylene (UHMWPE) in artificial joints and the resulting wear debris-induced osteolysis remains a major clinical concern in the orthopaedic sector. Third-body damage of metallic femoral heads is often cited as a cause of accelerated polyethylene wear, and the use of ceramic femoral heads in the hip is gaining increasing favour. In the knee prostheses and for smaller diameter femoral heads, the application of hard surface coatings, such as diamond-like carbon, is receiving considerable attention. However, to date, there has been little or no investigation of the tribology of these coatings in simulated biological environments. In this study, diamond-like carbon (DLC) has been compared to stainless steel in its undamaged form and following simulated third-body damage. The wear of UHMWPE was found to be similar when sliding against undamaged DLC and stainless steel counterfaces. DLC was found to be much more damage resistant than DLC. Under test conditions that simulate third-body damage to the femoral head, the wear of UHMWPE was seven times lower against DLC than against stainless steel (P < 0.05). The study shows DLC has considerable potential as a femoral bearing surface in artificial joints.

  1. Rapid growth of diamond-like-carbon films by copper vapor laser ablation

    International Nuclear Information System (INIS)

    McLean, W.; Warner, B.E.; Havstad, M.A.

    1995-04-01

    Visible light from a copper vapor laser (CVL) operating with 510 and 578 nm radiation (intensity ratio approximately 2:1), an average power of 100 W, a pulse duration of 50 ns, and a repetition frequency of 4.4 kHz has been shown to produce high quality diamond-like-carbon (DLC) films at fluences between 2x10 8 and 5x10 10 W/cm 2 . Maximum deposition rates of 2000 μm·cm 2 /h were obtained at 5x10 8 W/cm 2 . DLC films with hardness values of approximately 60 GPa were characterized by a variety of techniques to confirm DLC character, hydrogen content, and surface morphology. The presence of C 2 in the vapor plume was confirmed by the presence of the C 2 Swan bands in emission spectra obtained during the process. Economic implications of process scale-up to industrially meaningful component sizes are presented

  2. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2015-01-01

    Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  3. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    International Nuclear Information System (INIS)

    Liu Ai-Ping; Liu Min; Yu Jian-Can; Qian Guo-Dong; Tang Wei-Hua

    2015-01-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. (paper)

  4. Adhesion of staphylococcal and Caco-2 cells on diamond-like carbon polymer hybrid coating.

    Science.gov (United States)

    Kinnari, Teemu J; Soininen, Antti; Esteban, Jaime; Zamora, Nieves; Alakoski, Esa; Kouri, Vesa-Petteri; Lappalainen, Reijo; Konttinen, Yrjö T; Gomez-Barrena, Enrique; Tiainen, Veli-Matti

    2008-09-01

    Staphylococci cause the majority of the nosocomial implant-related infections initiated by adhesion of planktonic bacteria to the implant surface. It was hypothesized that plasma accelerating filtered pulsed arc discharge method enables combination of the advantageous properties of diamond with the antisoiling properties of polymers. Diamond-like carbon polytetrafluoroethylene hybrid (DLC-PTFE-h) coating was produced. The adhesion of S. aureus ATCC 25923 (10(8) colony-forming units/mL) to surfaces diminished from 2.32%, 2.35%, and 2.57% of high quality DLC, titanium, and oxidized silicon, respectively, to 1.93% of DLC-PTFE-h. For S. epidermidis ATCC 35984 the corresponding figures were 3.90%, 3.32%, 3.47%, and 2.57%. Differences in bacterial adhesion between recombinant DLC-PTFE-h and other materials were statistically significant (p DLC-PTFE-h as to DLC, titanium, or silicon, which were all in the MTT test found to be cytocompatible. DLC-PTFE-h coating can be used to modify the surface properties of any surgical implants and is an unfavorable substrate for staphylococcal cells, but compatible with human Caco-2 cells. DLC-PTFE-h coating may help in the combat against Staphylococcus-related implant infections which usually require both antibiotics and surgical removal of the implant for cure.

  5. Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process

    International Nuclear Information System (INIS)

    Kim, Sung Hoon

    2001-01-01

    Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices

  6. High performance diamond-like carbon layers obtained by pulsed laser deposition for conductive electrode applications

    Science.gov (United States)

    Stock, F.; Antoni, F.; Le Normand, F.; Muller, D.; Abdesselam, M.; Boubiche, N.; Komissarov, I.

    2017-09-01

    For the future, one of the biggest challenge faced to the technologies of flat panel display and various optoelectronic and photovoltaic devices is to find an alternative to the use of transparent conducting oxides like ITO. In this new approach, the objective is to grow high conductive thin-layer graphene (TLG) on the top of diamond-like carbon (DLC) layers presenting high performance. DLC prepared by pulsed laser deposition (PLD) have attracted special interest due to a unique combination of their properties, close to those of monocrystalline diamond, like its transparency, hardness and chemical inertia, very low roughness, hydrogen-free and thus high thermal stability up to 1000 K. In our future work, we plane to explore the synthesis of conductive TLG on top of insulating DLC thin films. The feasibility and obtained performances of the multi-layered structure will be explored in great details in the short future to develop an alternative to ITO with comparable performance (conductivity of transparency). To select the best DLC candidate for this purpose, we focus this work on the physicochemical properties of the DLC thin films deposited by PLD from a pure graphite target at two wavelengths (193 and 248 nm) at various laser fluences. A surface graphenization process, as well as the required efficiency of the complete structure (TLG/DLC) will clearly be related to the DLC properties, especially to the initial sp3/sp2 hybridization ratio. Thus, an exhaustive description of the physicochemical properties of the DLC layers is a fundamental step in the research of comparable performance to ITO.

  7. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes

    DEFF Research Database (Denmark)

    Dimaki, Maria; Bøggild, Peter

    2008-01-01

    Networks of single-walled carbon nanotubes were assembled onto microelectrodes by dielectrophoresis. The dependence of the obtained networks on several assembly parameters such as bias voltage, field application time, frequency, electrode geometry and the nanotube solvent were investigated both s...

  8. Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure

    Science.gov (United States)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2004-12-01

    A normally closed microgripper with a radius of curvature of 18-50 μm using a diamond-like carbon (DLC) and stress free electroplated Ni bimorph structure has been demonstrated. The large curvature in the fingers of the microgrippers is due to the high compressive stress of the DLC layer. The radius of curvature of the figures can be adjusted by the thickness ratio, and the closure of the devices can also be adjusted by varying the finger length. This device works much more efficiently than other bimorph structures due to the large difference in thermal expansion coefficients between the DLC and the Ni layers. Preliminary electrical tests have shown these microgrippers can be opened by 60°-90° at an applied power of <20mW.

  9. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Villalpando, I. [Centro de Investigacion de los Recursos Naturales, Antigua Normal Rural, Salaices, Lopez, Chihuahua (Mexico); John, P.; Wilson, J. I. B., E-mail: isaelav@hotmail.com [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14-4AS (United Kingdom)

    2017-11-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  10. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    International Nuclear Information System (INIS)

    Villalpando, I.; John, P.; Wilson, J. I. B.

    2017-01-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  11. Concentration and electrode material dependence of the voltammetric response of iodide on platinum, glassy carbon and boron-doped diamond in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

    International Nuclear Information System (INIS)

    Bentley, Cameron L.; Bond, Alan M.; Hollenkamp, Anthony F.; Mahon, Peter J.; Zhang, Jie

    2013-01-01

    The electro-oxidation of iodide has been investigated as a function of concentration using steady-state microelectrode voltammetry, transient cyclic voltammetry and linear-sweep semi-integral voltammetry on platinum, glassy carbon and boron-doped diamond electrodes in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Two oxidation processes are observed on all of the investigated electrode materials, with the first being assigned to the oxidation of iodide to triiodide (confirmed by UV/visible spectroscopy) and the second being attributed to the oxidation of triiodide to iodine. Iodide oxidation is kinetically more facile on platinum compared to glassy carbon or boron-doped diamond. At elevated bulk iodide concentrations, the nucleation and growth of sparingly soluble electrogenerated iodine at the electrode surface was observed and imaged in situ using optical microscopy. The diffusion coefficient of iodide was determined to be 2.59 (±0.04) × 10 −7 cm 2 s −1 and independent of the bulk concentration of iodide. The steady-state iodide oxidation current measured at a platinum microelectrode was found to be a linear function of iodide concentration, as expected if there are no contributions from non-Stokesian mass-transport processes (electron hopping and/or Grotthuss-type exchange) under the investigated conditions

  12. Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate

    International Nuclear Information System (INIS)

    Lin Zeng; Gao Ding; Ba Dechun; Wang Feng; Liu Chunming

    2013-01-01

    In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced chemical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp 2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp 3 content of the coatings

  13. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  14. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    International Nuclear Information System (INIS)

    Ozel, Rifat Emrah; Wallace, Kenneth N.; Andreescu, Silvana

    2011-01-01

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/μM, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  15. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Rifat Emrah [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States); Wallace, Kenneth N. [Department of Biology, Clarkson University, Potsdam, NY 136995810 (United States); Andreescu, Silvana, E-mail: eandrees@clarkson.edu [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States)

    2011-06-10

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/{mu}M, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  16. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading

    International Nuclear Information System (INIS)

    Kim, Hyun-Jong; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Seok, Hyun-Kwang; Han, Seung-Hee; Ryu, Jae-Woo; Shin, Kyong-Min; Oh, Kyu Hwan

    2008-01-01

    The mechanical stability of diamond-like carbon (DLC) films coated on nitinol vascular stents was investigated under cyclic loading condition by employing a stent crimping system. DLC films were coated on the vascular stent of a three dimensional structure by using a hybrid ion beam system with rotating jig. The cracking or delamination of the DLC coating occurred dominantly near the hinge connecting the V-shaped segments of the stent where the maximum strain was induced by a cyclic loading of contraction and extension. However the failures were significantly suppressed as the amorphous Si (a-Si) buffer layer thickness increased. Interfacial adhesion strength was estimated from the spalled crack size in the DLC coating for various values of the a-Si buffer layer thickness

  17. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    Science.gov (United States)

    Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-11-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.

  18. Friction and wear performance of diamond-like carbon films grown in various source gas plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Nilufer, I.B.; Eryilmaz, O.L.; Beschliesser, M.; Fenske, G.R. [Argonne National Lab., IL (United States). Energy Technology Div.

    1999-11-01

    In this study, we investigated the effects of various source gases (methane, ethane, ethylene, and acetylene) on the friction and wear performance of diamond-like carbon (DLC) films prepared in a plasma-enhanced chemical vapor deposition (PECVD) system. Films were deposited on AISI H13 steel substrates and tested in a pin-on-disk machine against DLC-coated M50 balls in dry nitrogen. We found a close correlation between friction coefficient and source gas composition. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios exhibited lower friction coefficients and a higher wear resistance than films grown in source gases with lower hydrogen-to-carbon (H/C) ratios. The lowest friction coefficient (0.014) was achieved with a film derived from methane with an H/C ratio of 4, whereas the coefficient of films derived from acetylene (H/C=1) was 0.15. Similar correlations were observed for wear rates. Specifically, films derived from gases with lower H/C values were worn out, and the substrate material was exposed, whereas films from methane and ethane remained intact and wore at rates that were almost two orders of magnitude lower than films obtained from acetylene. (orig.)

  19. Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study

    International Nuclear Information System (INIS)

    Li, Xiaowei; Ke, Peiling; Zheng, He; Wang, Aiying

    2013-01-01

    Structural properties and growth evolution of diamond-like carbon (DLC) films with different incident energies were investigated systematically by the molecular dynamics simulation using a Tersoff interatomic potential for carbon-carbon interaction. The results revealed that the density, sp 3 fraction and residual compressive stress as a function of incident energy increased firstly and then decreased; when the incident energy was 70 eV/atom, the density could reach to 3.0 g/cm 3 with the maximal compressive stress of 15.5 GPa. Structure analysis indicated that the deviation of both bond angles and lengths from the equilibrium position led to the generation of a large residual stress, while the high compressive stress mainly attributed to the decrease of both bond angles and lengths among carbon atoms. The growth of DLC films underwent a formation process of “Line-Net” structure accompanied with the interaction of many atomic motion mechanisms, and the “Point” stage was only found for DLC films with low incident energy.

  20. Nm-scale diamond-like-carbon (DLC) templates for use in soft lithography

    International Nuclear Information System (INIS)

    Watson, G.S.; Myhra, S.; Brown, C.L.; Watson, J.A.

    2005-01-01

    An emerging set of methods known collectively as soft lithography is now being utilised for a large variety of applications including micromolding, microfluidic networks and microcontact printing. In particular stamps and elastomeric elements can be formed by exposure of a polymer to a template. Established lithographic techniques used in the microelectronic industry, such as photolithography, are generally used to fabricate such master templates at the micron scale. In this study we demonstrate the use of diamond-like-carbon (DLC) as a template for producing polymer micro/nano stamps and 3D polymer structures. Intricate surface relief patterns can be formed on the DLC surface from lithographic techniques by atomic force microscopy (AFM) operated in the electrical conductivity mode. A number of polymers can be used to transfer patterns. One of the most widely used polymers for pattern transfer has been polydimethylsiloxane (PDMS). The elastomer is chemically resistant, has a low surface energy and readily conforms to different surface topographies. Obtaining a master is the limiting factor in the production of PDMS replicas. (author). 2 refs., 4 figs

  1. Tribological behavior of diamond-like carbon: effects of preparation conditions and annealing

    International Nuclear Information System (INIS)

    Grill, A.; Patel, V.; Meyerson, B.

    1991-01-01

    Diamond-like carbon (DLC) films are characterized by, among other properties, very low friction coefficients, high wear resistance, and high corrosion resistance. Depending upon the testing environment, the coefficient of friction can be as low as 0.01. As-deposited films are wear resistant in vacuum as well as in atmospheric ambient. This paper will discuss the general tribological behavior, in different environments, of DLC films deposited under a variety of conditions, and proposed mechanisms explaining the very low friction coefficients observed. The specific properties of DLC films deposited from acetylene by r.f. plasma-enhanced chemical vapor deposition will then be presented. The films were deposited at substrate temperatures between 100degC and 250degC, at various substrate biases. The films were annealed in vacuum at temperatures up to 590degC. The tribological properties of the as-deposited as well as annealed DLC films will be presented as a function of the deposition parameters. The observed behavior will be discussed and related to other physical properties of the films. (orig.)

  2. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES) Membrane

    Science.gov (United States)

    Prihandana, Gunawan S.; Sanada, Ippei; Ito, Hikaru; Noborisaka, Mayui; Kanno, Yoshihiko; Suzuki, Tetsuya; Miki, Norihisa

    2013-01-01

    A nano porous polyethersulfone (PES) membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC) onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems. PMID:28788333

  3. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Ruth, A. A., E-mail: a.ruth@ucc.ie [Physics Department and Environmental Research Institute, University College Cork, Cork (Ireland); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333-CA Leiden (Netherlands)

    2016-07-14

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles’ spectroscopic and optical properties with those of carbonaceous materials indicate a sp{sup 3}/sp{sup 2} hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  4. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.

    Science.gov (United States)

    Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L

    2010-06-15

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.

  5. Modifying surface properties of diamond-like carbon films via nanotexturing

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Portal-Marco, S; Rubio-Roy, M; Bertran, E; Andujar, J L [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain); Oncins, G [Serveis CientIfico-Tecnics, Universitat de Barcelona, c/ Marti i Franques s/n, 08028 Barcelona (Spain); Vallve, M A; Ignes-Mullol, J, E-mail: corberoc@hotmail.com [SOC and SAM Group, IN2UB, Departament de Quimica Fisica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain)

    2011-10-05

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres ({approx}300 nm) on monocrystalline silicon ({approx}5 cm{sup 2}) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  6. Durable diamond-like carbon templates for UV nanoimprint lithography

    International Nuclear Information System (INIS)

    Tao, L; Ramachandran, S; Nelson, C T; Overzet, L J; Goeckner, M; Lee, G; Hu, W; Lin, M; Willson, C G; Wu, W

    2008-01-01

    The interaction between resist and template during the separation process after nanoimprint lithography (NIL) can cause the formation of defects and damage to the templates and resist patterns. To alleviate these problems, fluorinated self-assembled monolayers (F-SAMs, i.e. tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane or FDTS) have been employed as template release coatings. However, we find that the FDTS coating undergoes irreversible degradation after only 10 cycles of UV nanoimprint processes with SU-8 resist. The degradation includes a 28% reduction in surface F atoms and significant increases in the surface roughness. In this paper, diamond-like carbon (DLC) films were investigated as an alternative material not only for coating but also for direct fabrication of nanoimprint templates. DLC films deposited on quartz templates in a plasma enhanced chemical vapor deposition system are shown to have better chemical and physical stability than FDTS. After the same 10 cycles of UV nanoimprints, the surface composition as well as the roughness of DLC films were found to be unchanged. The adhesion energy between the DLC surface and SU-8 is found to be smaller than that of FDTS despite the slightly higher total surface energy of DLC. DLC templates with 40 nm features were fabricated using e-beam lithography followed by Cr lift-off and reactive ion etching. UV nanoimprinting using the directly patterned DLC templates in SU-8 resist demonstrates good pattern transfer fidelity and easy template-resist separation. These results indicate that DLC is a promising material for fabricating durable templates for UV nanoimprint lithography

  7. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    International Nuclear Information System (INIS)

    Bouchet, M I De Barros; Matta, C; Le-Mogne, Th; Martin, J Michel; Zhang, Q; III, W Goddard; Kano, M; Mabuchi, Y; Ye, J

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13 C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp 3 ) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp 2 and sp 1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp 1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  8. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  9. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  10. Tribological performance of ultrathin diamond-like carbon films prepared by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Liao, J X; Li, E Q; Tian, Z; Pan, X F; Xu, J; Jin, L; Yang, H G

    2008-01-01

    Ultrathin diamond-like carbon (DLC) films with thicknesses of 5-60 nm have been prepared on Si by plasma-based ion implantation. Raman spectrum and x-ray photoelectron spectroscopy (XPS) show that these DLC films present high sp 3 /sp 2 ratios. XPS also displays that each DLC film firmly adheres to the Si substrate owing to a C-Si transition layer. Atomic force microscopy shows that the DLC films are smooth and compact with average roughness (R a ) of about 0.25 nm. Sliding friction experiments reveal that these DLC films show significantly improved tribological performance. With increase of DLC film thickness, the sp 3 /sp 2 ratio increases, the roughness decreases, the hardness increases, the adhesive wear lightens and thereby the tribological performance becomes enhanced. Also, the effects of the applied load and the reciprocating frequency on the tribological performance are discussed

  11. Gas barrier properties of diamond-like carbon films coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Nagashima, I.; Ohgoe, Y.; Hirakuri, K.K.; Mukaibayashi, H.; Masuzawa, T.

    2009-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using radio frequency (RF) plasma-enhanced chemical vapour deposition (PE-CVD). Before the DLC coating, the PTFE substrate was modified with a N 2 plasma pre-treatment to enhance the adhesive strength of the DLC to the substrate. The influences of the N 2 plasma pre-treatment and process pressure on the gas permeation properties of these DLC-coated PTFE samples were investigated. In the Raman spectra, the G peak position shifted to a lower wave number with increasing process pressure. With scanning electron microscopy (SEM), a network of microcracks was observed on the surface of the DLC film without N 2 plasma pre-treatment. The density of these cracks decreased with increasing process pressure. In the film subjected to a N 2 plasma pre-treatment, no cracks were observed at any process pressure. In the gas barrier test, the gas permeation decreased drastically with increasing film thickness and saturated at a thickness of 0.2 μm. The DLC-coated PTFE with the N 2 plasma pre-treatment exhibited a greater reduction in gas permeation than did the samples without pre-treatment. For both sample types, gas permeation decreased with increasing process pressure.

  12. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity.

    Science.gov (United States)

    Rahmawan, Yudi; Moon, Myoung-Woon; Kim, Kyung-Suk; Lee, Kwang-Ryeol; Suh, Kahp-Yang

    2010-01-05

    We present a simple two-step method to fabricate dual-scale superhydrophobic surfaces by using replica molding of poly(dimethylsiloxane) (PDMS) micropillars, followed by deposition of a thin, hard coating layer of a SiO(x)-incorporated diamond-like carbon (DLC). The resulting surface consists of microscale PDMS pillars covered by nanoscale wrinkles that are induced by residual compressive stress of the DLC coating and a difference in elastic moduli between DLC and PDMS without any external stretching or thermal contraction on the PDMS substrate. We show that the surface exhibits superhydrophobic properties with a static contact angle over 160 degrees for micropillar spacing ratios (interpillar gap divided by diameter) less than 4. A transition of the wetting angle to approximately 130 degrees occurs for larger spacing ratios, changing the wetting from a Cassie-Cassie state (C(m)-C(n)) to a Wenzel-Cassie state (W(m)-C(n)), where m and n denote micro- and nanoscale roughness, respectively. The robust superhydrophobicity of the Cassie-Cassie state is attributed to stability of the Cassie state on the nanoscale wrinkle structures of the hydrophobic DLC coating, which is further explained by a simple mathematical theory on wetting states with decoupling of nano- and microscale roughness in dual scale structures.

  13. Micro-fabrication of three dimensional pyrolysed carbon microelectrodes

    DEFF Research Database (Denmark)

    2017-01-01

    ; soft baking the photoresist layer; performing a full depth exposure with UV light through a first mask; performing a partial depth exposure with UV light through a second mask; wherein the full depth exposure and the partial depth exposure are aligned to ensure that the first and second latent images...... are connected to each other; post-exposure baking the photoresist layer; and developing the microscale patterned resist template as a free-standing structure of cross-linked resist with lateral hanging structures that are supported by vertical support structures at a free height above the substrate. The method...... is characterized by a soft baking temperature below 70 °C. Repetitive coating and partial depth exposure allows for the fabrication of multiple level laterally interconnected structures. Carbonization of the resist template provides truly three-dimensional carbon microelectrode structures....

  14. Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films production

    International Nuclear Information System (INIS)

    Corbella, C.; Polo, M.C.; Oncins, G.; Pascual, E.; Andujar, J.L.; Bertran, E.

    2005-01-01

    Amorphous hydrogenated carbon (a-C:H) thin films were obtained at room temperature via asymmetric bipolar pulsed-dc methane glow discharge. The power frequency values were varied from 100 to 200 kHz and the maximum amplitude voltage from -600 to -1400 V. Such films present diamond-like carbon (DLC) properties [J.L. Andujar, M. Vives, C. Corbella, E. Bertran, Diamond Relat. Mater. 12 (2003) 98]. The plasma, powered by a pulse frequency of 100 kHz, was electrically studied by a Langmuir probe. The next parameters were calculated within the pulse cycle from I-V measurements with 1 μs resolution: plasma and floating potentials, electron temperature, and electron and ion densities. The presence of a population of hot electrons (10 eV) was detected at high bias voltage region. The density of cold electrons grows one order of magnitude after each negative pulse, whereas the ion density suffers a prompt increase during each positive pulse. The surface topography of DLC films was scanned by atomic force microscopy (AFM). A smoothly varying friction coefficient (between 0.2 and 0.3) was measured by AFM in contact mode. X-ray reflectivity (XRR) analysis provided a wide characterization of the films, involving density, thickness and roughness. The C/H ratio, as directly obtained by elemental analysis (EA), shows an increase at higher bias voltages. All these features are discussed in terms of process parameters varied in film growth

  15. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  16. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    Science.gov (United States)

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films.

  17. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  18. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    International Nuclear Information System (INIS)

    Nakaya, Masaki; Shimizu, Mari; Uedono, Akira

    2014-01-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  19. Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties

    Science.gov (United States)

    Písařík, P.; Mikšovský, J.; Remsa, J.; Zemek, J.; Tolde, Z.; Jelínek, M.

    2018-01-01

    Diamond-like carbon (DLC) and titanium-doped DLC thin films were prepared by unique hybrid system consisting of pulsed laser deposition, ion source (bombardment) and magnetron sputtering. The influence of deposition parameters (ion energies, deposition pressures and magnetron power) on composition and physical properties was studied. Composition and sp 3/ sp 2 ratio were determined by XPS. sp 3/ sp 2 ratio was in the range from 1.4 to 2.2 for undoped DLC and from 3.4 to 4.8 for Ti-DLC. AFM showed that the layers were smooth, but with small amounts of random droplets. The measurements of the contact angle and determination of surface free energy were made for water, diiodomethane and ethylene glycol. Hardness and reduced Young's modulus varied from 20 to 31 GPa and from 182 to 276 GPa, respectively. Film adhesion was determined by scratch test; L C3 reached 23 N for DLC and 27 N for TiDLC. Optimization of sp 3/ sp 2 ratio, hardness and adhesion to biomedical alloys will advance the DLC coatings usability in the field of implantology.

  20. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications

    Directory of Open Access Journals (Sweden)

    C. C. Wachesk

    2016-01-01

    Full Text Available The physical and chemical characteristics of diamond-like carbon (DLC films make them suitable for implantable medical and odontological interests. Despite their good interactions with biological environment, incorporated nanoparticles can significantly enhance DLC properties. This manuscript studies the potential of titanium dioxide (TiO2 incorporated-DLC films in dental applications. In this scene, both osteoblasts attachment and spreading on the coatings and their corrosion characteristics in artificial saliva were investigated. The films were grown on 304 stainless steel substrates using plasma enhanced chemical vapor deposition. Raman scattering spectroscopy characterized the film structure. As the concentration of TiO2 increased, the films increased the osteoblast viability (MTT assay, becoming more thermodynamically favorable to cell spreading (WAd values became more negative. The increasing number of osteoblast nuclei indicates a higher adhesion between the cells and the films. The potentiodynamic polarization test in artificial saliva shows an increase in corrosion protection when TiO2 are present. These results show the potential use of TiO2-DLC films in implantable surfaces.

  1. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  2. Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Kaunas University of Technology, Institute of Materials Science, 51423 Kaunas (Lithuania); Cadarso, V.J.; Kirchner, R. [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Stankevičius, L.; Tamulevičius, T.; Tamulevičius, S. [Kaunas University of Technology, Institute of Materials Science, 51423 Kaunas (Lithuania); Schift, H., E-mail: helmut.schift@psi.ch [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland)

    2016-11-01

    Highlights: • Nanopatterning of thin diamond-like carbon (DLC) films and silver containing DLC composites. • Nanoimprint lithography with thermoplastic silicon containing resist. • Zero-residual layer imprinting and pattern transfer by reactive ion etching. • Robust leaky waveguide sensors with sensitivity up to 319 nm/RIU. - Abstract: Patterning of diamond-like carbon (DLC) and DLC:metal nanocomposites is of interest for an increasing number of applications. We demonstrate a nanoimprint lithography process based on silicon containing thermoplastic resist combined with plasma etching for straightforward patterning of such films. A variety of different structures with few hundred nanometer feature size and moderate aspect ratios were successfully realized. The quality of produced patterns was directly investigated by the means of optical and scanning electron microscopy (SEM). Such structures were further assessed by employing them in the development of gratings for guided mode resonance (GMR) effect. Optical characterization of such leaky waveguide was compared with numerical simulations based on rigorous coupled wave analysis method with good agreement. The use of such structures as refractive index variation sensors is demonstrated with sensitivity up to 319 nm/RIU, achieving an improvement close to 450% in sensitivity compared to previously reported similar sensors. This pronounced GMR signal fully validates the employed DLC material, the technology to pattern it and the possibility to develop DLC based gratings as corrosion and wear resistant refractometry sensors that are able to operate under harsh conditions providing great value and versatility.

  3. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Schwarz, Florian P.

    2010-01-01

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  4. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  5. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    Science.gov (United States)

    Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua

    2015-05-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).

  6. Performance test of diamond-like carbon films for lubricating ITER blanket maintenance equipment under GPa-level high contact stress

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2007-01-01

    Diamond-like carbon (DLC) coating was tested as a candidate solid lubricant for transmission gears of the maintenance equipment of the blanket of the ITER instead of an oil lubricant. The wear tests using the pin-on-disk method were performed on disks with SCM440 and SNCM420 as the base materials and coated with soft, layered, and hard DLCs. All cases satisfied the required allowable contact stress (2 GPa) and lifetime (10 4 cycles), and therefore the feasibility of the DLC coating was validated. Among the three types of DLCs, the soft DLC showed the best performance. (author)

  7. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings.

    Science.gov (United States)

    Filova, Elena; Vandrovcova, Marta; Jelinek, Miroslav; Zemek, Josef; Houdkova, Jana; Jan Remsa; Kocourek, Tomas; Stankova, Lubica; Bacakova, Lucie

    2017-01-01

    Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.

  8. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  9. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  10. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  11. Intrinsic stress modulation in diamond like carbon films with incorporation of gold nanoparticles by PLA

    Science.gov (United States)

    Panda, Madhusmita; Krishnan, R.; Krishna, Nanda Gopala; Madapu, Kishore K.; Kamruddin, M.

    2018-04-01

    Intrinsic stress modulation in the diamond-like carbon (DLC) coatings with incorporation of gold nanoparticles was studied qualitatively from Raman shift. The films were deposited on Si (1 0 0) substrates by using Pulsed laser ablation (PLA) of pure pyrolytic graphite target and with a gold foil on it. Films compositional and chemical behavior was studied by X-ray photoelectron spectroscopy (XPS) and Visible Raman spectroscopy, respectively. The sp3 content obtained from XPS shows dramatic variation in DLC, DLC-Au(100), DLC-Au(200) and DLC-Au(300) as 39%, 41%, 47% and 66% with various gold contentsas 0%, 12%, 7.3% and 4.7%, respectively. The Raman spectra of DLC/Au films showed G-peak shift towards lower wavenumber indicating the reduction of intrinsic stress (internal compressive stress). The sp2, sp3 fraction in the films are also determined from FWHM (G-Peak).

  12. Synthetic diamond in electrochemistry

    International Nuclear Information System (INIS)

    Pleskov, Yurii V

    1999-01-01

    The results of studies on the electrochemistry of diamond carried out during the last decade are reviewed. Methods for the preparation, the crystalline structure and the main electrophysical properties of diamond thin films are considered. Depending on the doping conditions, the diamond behaves as a superwide-gap semiconductor or as a semimetal. It is shown that the 'metal-like' diamond is corrosion-resistant and can be used advantageously as an electrode in the electrosynthesis (in particular, for the electroreduction of compounds that are difficult to reduce) and electroanalysis. Kinetic characteristics of some redox reactions and the impedance parameters for diamond electrodes are presented. The results of comparative studies of the electrodes made of diamond single crystals, polycrystalline diamond and amorphous diamond-like carbon, which reveal the effect of the crystalline structure (e.g., the influence of intercrystallite boundaries) on the electrochemical properties of diamond, are presented. The bibliography includes 99 references.

  13. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-01-01

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm 2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm 2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm 2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197 Au − (∼9MeV, ∼1μA) and 63 Cu − (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp 3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I D /I G ) measured by the Raman spectroscopy is 0.78

  14. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  15. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  16. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  17. Investigation of carbon near the graphite-diamond-liquid triple point

    International Nuclear Information System (INIS)

    Prawer, S.; Jamieson, D.N.

    1992-01-01

    Pulsed laser irradiation is used to heat deeply buried damage layers in diamond. Over a small range of laser powers, damage annealing, formation of buried graphitic layers, and melting of diamond followed by its conversion upon cooling into graphite are observed. The diagnostics employed are Channeling Contrast Microscopy, optical absorption, surface profilometry, and scanning and optical microscopies. The results are explained in terms of the behaviour of carbon under high internal pressures close to the diamond-graphite-liquid carbon triple point in the phase diagram. 17 refs., 3 figs

  18. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    International Nuclear Information System (INIS)

    Salvadori, M. C.; Teixeira, F. S.; Araújo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-01-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp 3 bonding for the DLC, demonstrating that some sp 3 bonds are destroyed by the gold implantation.

  19. TiO2-NT electrodes modified with Ag and diamond like carbon (DLC) for hydrogen production by alkaline water electrolysis

    Science.gov (United States)

    Baran, Evrim; Baz, Zeynep; Esen, Ramazan; Yazici Devrim, Birgül

    2017-10-01

    In present work, the two-step anodization technique was applied for synthesis of TiO2 nanotube (NT). Silver and diamond like carbon (DLC) were coated on the surface of as prepared TiO2-NT using chemical reduction method and MW ECR plasma system. The morphology, composition and structure of the electrodes were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that Ag nanoparticles, having size in the range of 48-115 nm, are evenly distributed on the top, inside and outside surface of TiO2-NT and when DLC was coated on the surface of TiO2-NT and TiO2-NT-Ag, the top of nanotubes were partially open and the pore diameter of hexagonal structure decreased from 165 nm to of 38-80 nm. On the other hand, the microhardness test and contact angle measurements revealed that additions of Ag and diamond like carbon have a positive effect on the mechanical properties of TiO2-NT film. The electrocatalytic properties of the electrodes towards the hydrogen evolution reaction (HER) were investigated by the electrochemical measurements recorded in 1 M KOH solution. In addition, long-term durability of electrodes towards HER and the energy consumption of alkaline electrolysis were investigated. The energy requirement showed that while the deposition of silver provides approximately 14.95% savings of the energy consumption, the DLC coating causes increase in energy consumption.

  20. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system

    International Nuclear Information System (INIS)

    Li, Xiaowei; Wang, Aiying; Lee, Kwang-Ryeol

    2012-01-01

    The interaction between impurity atom (Si, Ge, and Sn) and carbon atom in diamond-like carbon (DLC) system was investigated by the first principles simulation method based on the density functional theory. The tetrahedral configuration was selected as the calculation model for simplicity. When the bond angle varied in a range of 90°–130° from the equivalent state of 109.471°, the distortion energy and the electronic structures including charge density of the highest occupied molecular orbital (HOMO) and partial density of state (PDOS) in the different systems were calculated. The results showed that the addition of Si, Ge and Sn atom into amorphous carbon matrix significantly decreased the distortion energy of the system as the bond angles deviated from the equilibrium one. Further studies of the HOMO and PDOS indicated that the weak covalent bond between Si(Ge, Sn) and C atoms was formed with the decreased strength and directionality, which were influenced by the electronegative difference. These results implied that the electron transfer behavior at the junction of carbon nano-devices could be tailored by the impurity element, and the compressive stress in DLC films could be reduced by the incorporation of Si, Ge and Sn because of the formation of weaker covalent bonds. - Highlights: ►Distortion energy after bond angle distortion was decreased comparing with C-C unit. ►The weak covalent bond was formed between impurity atoms and corner carbon atoms. ►Observed electron transfer behavior affected the strength and directionality of bond. ►Reduction of strength and directionality of bond contributed to small energy change.

  1. Influence of silver incorporation on the structural and electrical properties of diamond-like carbon thin films.

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Carey, J David; Tripathi, R K; Malik, Hitendra K; Dalai, M K

    2013-04-10

    A simple approach is proposed for obtaining low threshold field electron emission from large area diamond-like carbon (DLC) thin films by sandwiching either Ag dots or a thin Ag layer between DLC and nitrogen-containing DLC films. The introduction of silver and nitrogen is found to reduce the threshold field for emission to under 6 V/μm representing a near 46% reduction when compared with unmodified films. The reduction in the threshold field is correlated with the morphology, microstructure, interface, and bonding environment of the films. We find modifications to the structure of the DLC films through promotion of metal-induced sp2 bonding and the introduction of surface asperities, which significantly reduce the value of the threshold field. This can lead to the next-generation, large-area simple and inexpensive field emission devices.

  2. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Wu Jinbao; Chang, J.-J.; Li, M.-Y.; Leu, M.-S.; Li, A.-K.

    2007-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been deposited on Si(100) and stainless steel substrates by cathodic vacuum arc plasma deposition with pulse voltage. Adherent deposits on silicon can be obtained through applying gradient Ti/TiC/DLC layers. A pulse bias of - 100 V was applied to the substrate in order to obtain a denser structure of DLC coating approximately 1 μm thick. The microstructure and hardness value of DLC films were analyzed by using X-ray photoelectron spectroscopy and nano-indenter. The experimental results show that the duty cycle strongly influenced the hardness and sp 3 content of the DLC coatings. We observed that when the duty cycle was raised from 2.5% to 12.5%, the hardness increased from 26 GPa to 49 GPa, and the sp 3 fraction of the DLC films measured by XPS increased from 39% to 50.8 % as well. But at constant duty cycle, say 12.5%, the hardness is dropped from 49 to 14 GPa in proportion to the increase of residual gas pressure from 3 x 10 -3 Pa to 1 Pa. As the residual gas pressure increased, collisional phenomenon will decrease the energy of the ions. Ions with low energy make more graphitic carbon links and result in a low hardness value

  3. Laser plasma generation of hydrogen-free diamond-like carbon thin films on Zr-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO2 laser

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Mouris, J.F.; Hoffmann, C.R.J.; Davis, R.W.

    1995-06-01

    We report the first experiments on the laser plasma deposition of hydrogen-free, diamond-like carbon (DLC) films on Zr-2.5Nb CANDU pressure-tube materials and silicon substrates, using the short-pulse, high-power, CO 2 laser in the High-Power Laser Laboratory at Chalk River Laboratories. The films were (AFM). The thin films show the characteristic signature of DLC films in the Raman spectra obtained using a krypton-ion (Kr + ) laser. The Vickers ultra-low-load microhardness tests show hardness of the coated surface of approximately 7000 Kg force mm -2 , which is consistent with the hardness associated with DLC films. AFM examination of the film morphology shows diamond-like crystals distributed throughout the film, with film thicknesses of up to 0.5 μm generated with 50 laser pulses. With significantly more laser pulses, it is expected that very uniform diamond-like films would be produced. These experiments suggest that it should be possible to deposit hydrogen-free, diamond-like films of relevance to nuclear reactor components with a high-power and high-repetition-rate laser facility. (author). 7 refs., 2 tabs., 15 figs

  4. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Klyui, N. I., E-mail: klyui@isp.kiev.ua; Semenenko, M. A.; Khatsevich, I. M.; Makarov, A. V.; Kabaldin, A. N. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine); Fomovskii, F. V. [Kremenchug National University (Ukraine); Han, Wei [Jilin University, College of Physics (China)

    2015-08-15

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment.

  5. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  6. Analyses of Biofilm on Implant Abutment Surfaces Coating with Diamond-Like Carbon and Biocompatibility.

    Science.gov (United States)

    Huacho, Patricia Milagros Maquera; Nogueira, Marianne N Marques; Basso, Fernanda G; Jafelicci Junior, Miguel; Francisconi, Renata S; Spolidorio, Denise M P

    2017-01-01

    The aim of this study was to evaluate the surface free energy (SFE), wetting and surface properties as well as antimicrobial, adhesion and biocompatibility properties of diamond-like carbon (DLC)-coated surfaces. In addition, the leakage of Escherichia coli through the abutment-dental implant interface was also calculated. SFE was calculated from contact angle values; R a was measured before and after DLC coating. Antimicrobial and adhesion properties against E. coli and cytotoxicity of DLC with human keratinocytes (HaCaT) were evaluated. Further, the ability of DLC-coated surfaces to prevent the migration of E. coli into the external hexagonal implant interface was also evaluated. A sterile technique was used for the semi-quantitative polymerase chain reaction (semi-quantitative PCR). The surfaces showed slight decreases in cell viability (p0.05). It was concluded that DLC was shown to be a biocompatible material with mild cytotoxicity that did not show changes in R a, SFE, bacterial adhesion or antimicrobial properties and did not inhibit the infiltration of E. coli into the abutment-dental implant interface.

  7. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  8. Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants.

    Science.gov (United States)

    Choudhury, Dipankar; Lackner, Juergen; Fleming, Robert A; Goss, Josh; Chen, Jingyi; Zou, Min

    2017-04-01

    Six types of diamond-like carbon (DLC) coatings with zirconium (Zr)-containing interlayers on titanium alloy (Ti-6Al-4V) were investigated for improving the biotribological performance of orthopedic implants. The coatings consist of three layers: above the substrate a layer stack of 32 alternating Zr and ZrN sublayers (Zr:ZrN), followed by a layer comprised of Zr and DLC (Zr:DLC), and finally a N-doped DLC layer. The Zr:ZrN layer is designed for increasing load carrying capacity and corrosion resistance; the Zr:DLC layer is for gradual transition of stress, thus enhancing layer adhesion; and the N-doped DLC layer is for decreasing friction, squeaking noises and wear. Biotribological experiments were performed in simulated body fluid employing a ball-on-disc contact with a Si 3 N 4 ball and a rotational oscillating motion to mimic hip motion in terms of gait angle, dynamic contact pressures, speed and body temperature. The results showed that the Zr:DLC layer has a substantial influence on eliminating delamination of the DLC from the substrates. The DLC/Si 3 N 4 pairs significantly reduced friction coefficient, squeaking noise and wear of both the Si 3 N 4 balls and the discs compared to those of the Ti-6Al-4V/Si 3 N 4 pair after testing for a duration that is equivalent to one year of hip motion in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings

    Science.gov (United States)

    Viswanathan, S.; Mohan, L.; Bera, Parthasarathi; Kumar, V. Praveen; Barshilia, Harish C.; Anandan, C.

    2017-08-01

    A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D / I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/ sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.

  10. Laser surface graphitization to control friction of diamond-like carbon coatings

    Science.gov (United States)

    Komlenok, Maxim S.; Kononenko, Vitaly V.; Zavedeev, Evgeny V.; Frolov, Vadim D.; Arutyunyan, Natalia R.; Chouprik, Anastasia A.; Baturin, Andrey S.; Scheibe, Hans-Joachim; Shupegin, Mikhail L.; Pimenov, Sergei M.

    2015-11-01

    To study the role of laser surface graphitization in the friction behavior of laser-patterned diamond-like carbon (DLC) films, we apply the scanning probe microscopy (SPM) in the lateral force mode (LFM) which allows to obtain simultaneously the lateral force and topography images and to determine local friction levels in laser-irradiated and original surface areas. Based on this approach in the paper, we report on (1) laser surface microstructuring of hydrogenated a-C:H and hydrogen-free ta-C films in the regime of surface graphitization using UV laser pulses of 20-ns duration and (2) correlation between the structure and friction properties of the laser-patterned DLC surface on micro/nanoscale using SPM/LFM technique. The SPM/LFM data obtained for the surface relief gratings of graphitized microstructures have evidenced lower friction forces in the laser-graphitized regions. For the hydrogenated DLC films, the reversible frictional behavior of the laser-graphitized micropatterns is found to take place during LFM imaging at different temperatures (20 and 120 °C) in ambient air. It is revealed that the lateral force distribution in the laser-graphitized areas is shifted to higher friction levels (relative to that of the unirradiated surface) at temperature 120 °C and returned back to the lower friction during the sample cooling to 20 °C, thus confirming an influence of adsorbed water layers on the nanofriction properties of laser-graphitized micropatterns on the film surface.

  11. Metal-doped diamond-like carbon films synthesized by filter-arc deposition

    International Nuclear Information System (INIS)

    Weng, K.-W.; Chen, Y.-C.; Lin, T.-N.; Wang, D.-Y.

    2006-01-01

    Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp 3 /sp 2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp 3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films

  12. Evaluation of resistance of diamond-like carbon coating to the corpuscular radiation in outer space conditions

    Science.gov (United States)

    Tomilova, Elizaveta; Bashkov, Valeriy; Mikhalev, Pavel; Fedorchenko, Alexander; Volkova, Yana

    2015-02-01

    The purpose of this work was to research the resistance of thin coatings to the effects of corpuscular radiation, as well as evaluation speed etching of diamond-like films with different content of diamond phase. There were two samples of monocrystalline silicon with DLC coating. To evaluate the resistance, two groups of grooves were etched on each sample. The depth was then measured to calculate a relative etching ratio of DLC coating. The resistance was determined to be four times that of silicon.

  13. Carbon isotope fractionation during diamond growth in depleted peridotite: Counterintuitive insights from modelling water-maximum CHO fluids as multi-component systems

    Science.gov (United States)

    Stachel, T.; Chacko, T.; Luth, R. W.

    2017-09-01

    relatively reduced and had methane as the dominant carbon species (XCO2 = 0.1-0.5). Application of our model to a recently published set of in-situ carbon isotope analyses for peridotitic diamonds from Marange, Zimbabwe (Smit et al., 2016), which contain CH4 fluid inclusions, allows us to perfectly match the observed co-variations in δ13 C, δ15 N and N content and at the same time explain the previously counter-intuitive observation of progressive 13C enrichment in diamonds that appear to have grown from a fluid with methane as the dominant carbon species. Similarly, the almost complete absence in the published record of progressive 13C depletion trends within diamonds likely reflects ubiquitous precipitation from CH4- and CO2-bearing water-rich fluids, rather than diamond formation exclusively by carbonate-bearing and CH4-free oxidized fluids or melts.

  14. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  15. Fabrication of High Transparency Diamond-Like Carbon Film Coating on D263T Glass at Room Temperature as an Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2013-01-01

    Full Text Available This study intends to deposit high transmittance diamond-like carbon (DLC thin films on D263T glass substrate at room temperature via a diamond powder target using the radio frequency (RF magnetron sputtering technique. Moreover, various process parameters were used to tune the properties of the thin films by using the Taguchi method. Experimental results show that the content of sp3 bonded carbon decreases in accordance with the effect of the substrate temperature. In addition, the hardness of all as-deposited single-layer DLC films ranges from 13.2 to 22.5 GPa, and the RMS surface roughness was improved significantly with the decrease in sputtering pressure. The water repellent of the deposited DLC films improved significantly with the increase of the sp3 content, and its contact angle was larger than that of the noncoated one by 1.45 times. Furthermore, the refraction index (n of all as-deposited DLC films ranges from 1.95 to 2.1 at λ = 600 nm. These results demonstrate that the thickness increased as the reflectance increased. DLC film under an RF power of 150 W possesses high transmissive ability (>81% and low average reflectance ability (<9.5% in the visible wavelengths (at λ = 400–700 nm.

  16. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  17. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in human urine and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, Z.; Riman, D. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Halouzka, V. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 275, CZ-76001 Zlin (Czech Republic); Vostalova, J.; Simanek, V. [Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, CZ-775 15 Olomouc (Czech Republic); Hrbac, J., E-mail: jhrbac@atlas.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Jirovsky, D., E-mail: david.jirovsky@upol.cz [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic)

    2016-09-07

    A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L{sup −1}) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell. - Highlights: • Novel method of carbon fiber microelectrode activation and platinization using spark discharge. • The activation procedure is efficient, fast and solvent-free. • Modification of the surface and the shape of the carbon fiber microelectrode during the process. • The spark-etched platinized carbon fiber sensors are highly sensitive. • The sensor was successfully applied to HPLC analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine in plasma and urine.

  18. Diamond-based materials for biomedical applications

    CERN Document Server

    Narayan, Roger

    2013-01-01

    Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of diamond particles and surfaces is discussed, followed by biotribology and biological behaviour of nanocrystalline diamond coatings, and blood compatibility of diamond-like carbon coatings. Part two then goes on to review biomedical applications of diamond based materials, beginning with nanostructured diamond coatings for orthopaedic applications. Topics explored include ultrananocrystalline diamond for neural and ophthalmologi...

  19. Experimental determination of dissolved CO2 content in nominally anhydrous andesitic melts at graphite/diamond saturation - Remobilization of deeply subducted reduced carbon via partial melts of MORB-like eclogite

    Science.gov (United States)

    Eguchi, J.; Dasgupta, R.

    2015-12-01

    Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions

  20. Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages

    Science.gov (United States)

    Luo, J. K.; He, J. H.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-08-01

    Normally closed microcages based on highly compressively stressed diamond-like carbon (DLC) and electroplated Ni bimorph structures have been simulated, fabricated and characterized. Finite-element and analytical models were used to simulate the device performance. It was found that the radius of curvature of the bimorph layer can be adjusted by varying the DLC film stress, the total layer thickness and the thickness ratio of the DLC to Ni layers. The angular deflection of the bimorph structures can also be adjusted by varying the finger length. The radius of curvature of the microcage was in the range of 18-50 µm, suitable for capturing and confining micro-objects with sizes of 20-100 µm. The operation of this type of device is very efficient due to the large difference in thermal expansion coefficients of the DLC and the Ni layers. Electrical tests have shown that these microcages can be opened by ~90° utilizing a power smaller than 20 mW. The operating temperatures of the devices under various pulsed currents were extracted through the change in electrical resistance of the devices. The results showed that an average temperature in the range of 400-450 °C is needed to open this type of microcage by ~90°, consistent with the results from analytical simulation and finite-element modelling.

  1. Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon

    Science.gov (United States)

    Das, Debajyoti; Banerjee, Amit

    2015-08-01

    Aiming towards a specific application as antireflection coatings (ARC) in Si solar cells, the growth of hydrogenated diamond like carbon (HDLC) films, by RF magnetron sputtering, has been optimized through comprehensive optical and structural studies. Various physical properties of the films e.g., (ID/IG) ratio in the Raman spectra, percentage of sp3 hybridization in XPS spectra, H-content in the network, etc., have been correlated with different ARC application properties e.g., transmittance, reflectance, optical band gap, refractive index, surface roughness, etc. The ARC properties have been optimized on unheated substrates, through systematic variations of RF power, gas flow rate, gas pressure and finally controlled introduction of hydrogen to the DLC network at its most favorable plasma parameters. The optimum HDLC films possess (T700)max ∼ 95.8%, (R700)min ∼ 3.87%, (n700)min ∼ 1.62 along with simultaneous (Eg)max ∼ 2.53 eV and ∼75.6% of sp3 hybridization in the C-network, corresponding to a bonded H-content of ∼23 at.%. Encouraging improvements in the ARC properties over the optimized DLC film were obtained with the controlled addition of hydrogen, and the optimum HDLC films appear quite promising for applications in Si solar cells. Systematic materials development has been performed through comprehensive understanding of the parameter space and its optimization, as elaborately discussed.

  2. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  3. Effect of sputtering power on structure, adhesion strength and corrosion resistance of nitrogen doped diamond-like carbon thin films.

    Science.gov (United States)

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on highly conductive p-Si substrates using a DC magnetron sputtering deposition system. The DLC:N films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), contact angle measurement and micro-scratch test. The XPS and Raman results indicated that the sputtering power significantly influenced the properties of the films in terms of bonding configuration in the films. The corrosion performance of the DLC:N films was investigated in a 0.6 M NaCl solution by means of potentiodynamic polarization testing. It was found that the corrosion performance of the films could be enhanced by higher sputtering powers.

  4. Temperature effect on the formation of a relief of diamond-like carbon coatings and its modification by ion bombardment

    International Nuclear Information System (INIS)

    Rubshtein, A.P.; Trakhtenberg, I.Sh.; Yugov, V.A.; Vladimirov, A.B.; Plotnikov, S.A.; Ponosov, Yu.S

    2006-01-01

    Using the method of pulsed arc sputtering of a graphite target the diamond-like coatings (DLC) ∼1.5 μm thick are deposited on a steel R6M5 substrate. The relief of the coatings obtained under various temperature conditions is investigated. Variations of carbon DLC surfaces are followed after their bombardment with accelerated argon or chemically active oxygen ions. Argon ion bombardment is established to be preferred for producing a smoothed-out DLC relief. It is shown that a DLC relief should be taken into account when measuring microhardness. It is recommended that transformation of interatomic bonds in irradiated subsurface layers be taken into consideration if information index of methods applied constitutes several monolayers [ru

  5. Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks' Solution

    Science.gov (United States)

    Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Radhika, R.; Muthamizhchelvan, C.; Ramasubramanian, K.

    2018-03-01

    Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

  6. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  7. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  8. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    Science.gov (United States)

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  9. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  10. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties.

    Science.gov (United States)

    Huang, S Y; Huang, J J; Kang, T; Diao, D F; Duan, Y Z

    2013-10-01

    This study aims to coat diamond-like carbon (DLC) films onto nickel-titanium (NiTi) orthodontic archwires. The film protects against fluoride-induced corrosion and will improve orthodontic friction. 'Mirror-confinement-type electron cyclotron resonance plasma sputtering' was utilized to deposit DLC films onto NiTi archwires. The influence of a fluoride-containing environment on the surface topography and the friction force between the brackets and archwires were investigated. The results confirmed the superior nature of the DLC coating, with less surface roughness variation for DLC-coated archwires after immersion in a high fluoride ion environment. Friction tests also showed that applying a DLC coating significantly decreased the fretting wear and the coefficient of friction, both in ambient air and artificial saliva. Thus, DLC coatings are recommended to reduce fluoride-induced corrosion and improve orthodontic friction.

  11. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  12. Morphological and electrochemical properties of boron-doped diamond films on carbon cloths with enhanced surface area

    International Nuclear Information System (INIS)

    Silva, L.L.G.; Ferreira, N.G.; Corat, E.J.

    2008-01-01

    The electrochemical properties of doped diamond electrodes (10 17 -10 19 B cm -3 ) grown on carbon fiber cloths in H 2 SO 4 0.1 mol L -1 electrolyte were investigated. Cyclic voltammograms of B-doped diamond/carbon fiber cloth and carbon fiber cloth electrodes showed that both kinds of electrodes possess similar working potential windows of about 2.0 V. The electrode capacitance was determined by impedance spectroscopy and chronopotentiometry measurements and very close values were obtained. The capacitance values of the diamond film on carbon fiber cloths were 180 times higher than the ones of diamond films on Si. In this paper we have also discussed the capacitance frequency dependence of diamond/carbon cloth electrodes

  13. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    International Nuclear Information System (INIS)

    Ray, Sekhar C.; Pong, W.F.; Papakonstantinou, P.

    2016-01-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp"3 network to sp"2 as evidenced by an increase of the sp"2 cluster and I_D/I_G ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp"2 cluster and I_D/I_G ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp"3-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp"3 and sp"2 contents are estimated from C K-edge XANES and VB-PES measurements.

  14. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.

    Science.gov (United States)

    Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S

    2016-03-23

    Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.

  15. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge

    Science.gov (United States)

    Rincón, R.; Hendaoui, A.; de Matos, J.; Chaker, M.

    2016-06-01

    An Ar/CH4 atmospheric pressure dielectric barrier discharge (AP-DBD) was used to synthesize sticky hydrophobic diamond-like carbon (DLC) films on glass surface. The film is formed with plasma treatment duration shorter than 30 s, and water contact angles larger than 90° together with contact angle hysteresis larger than 10° can be achieved. According to Fourier transform infrared spectroscopy and atomic force microscopy analysis, hydrocarbon functional groups are created on the glass substrate, producing coatings with low surface energy (˜35 mJ m-2) with no modification of the surface roughness. To infer the plasma processes leading to the formation of low energy DLC surfaces, optical emission spectroscopy was used. From the results, a direct relationship between the CH species present in the plasma and the carbon concentration in the hydrophobic layer was found, which suggests that the CH species are the precursors of DLC film growth. Additionally, the plasma gas temperature was measured to be below 350 K which highlights the suitability of using AP-DBD to treat thermo-sensitive surfaces.

  16. Study on Exploding Wire Compression for Evaluating Electrical Conductivity in Warm-Dense Diamond-Like-Carbon

    International Nuclear Information System (INIS)

    Sasaki, Toru; Takahashi, Kazumasa; Kudo, Takahiro; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.; Fujioka, Shinsuke; Horioka, Kazuhiko

    2016-01-01

    To improve a coupling efficiency for the fast ignition scheme of the inertial confinement fusion, fast electron behaviors as a function of an electrical conductivity are required. To evaluate the electrical conductivity for low-Z materials as a diamond-like-carbon (DLC), we have proposed a concept to investigate the properties of warm dense matter (WDM) by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC. (paper)

  17. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    International Nuclear Information System (INIS)

    Hébert, Clément; Cottance, Myline; Degardin, Julie; Scorsone, Emmanuel; Rousseau, Lionel; Lissorgues, Gaelle; Bergonzo, Philippe; Picaud, Serge

    2016-01-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue

  18. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@icn2.cat [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Cottance, Myline [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Degardin, Julie [INSERM, U968, Institut de la Vision, Paris (France); Scorsone, Emmanuel [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Rousseau, Lionel; Lissorgues, Gaelle [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Bergonzo, Philippe [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Picaud, Serge [INSERM, U968, Institut de la Vision, Paris (France)

    2016-12-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue.

  19. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    Science.gov (United States)

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  20. Diagnostics of capacitively-coupled hydrocarbon plasmas for deposition of diamond-like carbon films using quadrupole mass spectrometry and Langmuir probe

    Science.gov (United States)

    Oda, Akinori; Fukai, Shun; Kousaka, Hiroyuki; Ohta, Takayuki

    2015-09-01

    Diamond-like carbon (DLC) films are the hydrogenated amorphous carbon films, which contains a mixture of sp2- and sp3-bonded carbon. The DLC films have been widely used for various applications, such as automotive, semiconductors, medical devices, since have excellent material properties in lower friction, higher chemical stability, higher hardness, higher wear resistance. Until now, numerous investigations on the DLC films using plasma assisted chemical vapor deposition have been done. For precise control of coating technique of DLC films, it is enormously important to clarify the fundamental properties in hydrocarbon plasmas, as a source of hydrocarbon ions and radicals. In this paper, the fundamental properties in a low pressure radio-frequency hydrocarbon (Ar/CH4 (1 %) gas mixture) plasmas have been diagnosed using a quadrupole mass spectrometer (HIDEN ANARYTICAL Ltd., EQP-300) and Langmuir probe system (HIDEN ANARYTICAL Ltd., ESPion). This work was partly supported by KAKENHI (No.26420247), and a ``Grant for Advanced Industrial Technology Development (No.11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  1. Structural Analysis of Planar sp3 and sp2 Films: Diamond-Like Carbon and Graphene Overlayers

    KAUST Repository

    Mansour, Ahmed

    2011-07-07

    The special electronic configuration of carbon enables the existence of wide ranging allotropes taking all possible dimensionalities. The allotropes of carbon are characterized by the type of hybridized bonding forming its structure, ranging from pure sp2 as in graphene, carbon nanotubes and fullerenes, to pure sp3 as in diamond. Amorphous and diamond-like carbon consists of a mixture of both hybridizations. This variation in hybridization in carbon materials enables a wide spectrum of properties, ranging from high bulk mechanical hardness, tribological properties and chemical inertness made possible by moving towards pure sp3 bonding to the extraordinary electrical conductivity, optical properties and in-plane mechanical strength resulting from pure sp2 bonding. Two allotropes at the extremes of this spectrum, diamond like carbon (DLC) and graphene, are investigated in this thesis; the former is investigated as a protective coating in hard drive applications, while the latter is investigated in the context of chemically derived graphene as material for transparent conducting electrode applications. DLC thin films are a main component in computer hard drives, acting as a protective coating against corrosion and mechanical wear of the magnetic layer and read-write head. The thickness of DLC films greatly affects the storage density in such devices, as larger separation between the read/write head and the magnetic layer decreases the storage density. A targeted DLC thickness of 2 nm would increase the storage density towards 1 Tbits/inch2. However, difficulty achieving continuous films at such thicknesses by commonly used sputtering methods challenges the industry to investigate alternative methods. Filtered cathodic vacuum arc (FCVA) has been proposed as an efficient technique to provide continuous, smooth and ultra-thin DLC films. We investigate the influence of deposition angle, deposition time, and substrate biasing to define the optimum process window to obtain

  2. Fabrication and Characterization of ZnS/Diamond-Like Carbon Core-Shell Nanowires

    Directory of Open Access Journals (Sweden)

    Jung Han Kim

    2016-01-01

    Full Text Available We fabricated ZnS/diamond-like carbon (DLC core-shell heterostructure nanowire using a simple two-step process: the vapor-liquid-solid method combined with radio frequency plasma enhanced chemical vapor deposition (rf PECVD. As a core nanowire, ZnS nanowires with face-centered cubic structure were synthesized with a sputtered Au thin film, which exhibit a length and a diameter of ~10 μm and ~30–120 nm . After rf PECVD for DLC coating, The length and width of the dense ZnS/DLC core-shell nanowires were a range of ~10 μm  and 50–150 nm , respectively. In addition, ZnS/DLC core-shell nanowires were characterized with scanning transmission electron microscopy. From the results, the products have flat and uniform DLC coating layer on ZnS nanowire in spite of high residual stress induced by the high sp3 fraction. To further understanding of the DLC coating layer, Raman spectroscopy was employed with ZnS/DLC core-shell nanowires, which reveals two Raman bands at 1550 cm−1 (G peak and 1330 cm−1 (D peak. Finally, we investigated the optical properties from ultraviolet to infrared wavelength region using ultraviolet-visible (UV-Vis and Fourier transform infrared (FT-IR spectrometry. Related to optical properties, ZnS/DLC core-shell nanowires exhibit relatively lower absorbance and higher IR transmittance than that of ZnS nanowires.

  3. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.

  4. Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means

    Science.gov (United States)

    Feldstein, C.; Crawford, D. W.; Kanabus, E. W. (Inventor)

    1979-01-01

    An arrangement for and method of inserting a glass microelectrode having a tip in the micron range into body tissue is presented. The arrangement includes a microelectrode. The top of the microelectrode is attached to the diaphragm center of a first speaker. The microelectrode tip is brought into contact with the tissue by controlling a micromanipulator. Thereafter, an audio signal is applied to the speaker to cause the microelectrode to vibrate and thereby pierce the tissue surface without breaking the microelectrode tip. Thereafter, the tip is inserted into the tissue to the desired depth by operating the micromanipulator with the microelectrode in a vibratory or non-vibratory state.

  5. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Science.gov (United States)

    Pandey, B.; Das, D.; Kar, A. K.

    2015-05-01

    Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current-voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp2 content in DLC matrix. The magnetic moment vs. magnetic field (m-H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  6. Abutment Coating With Diamond-Like Carbon Films to Reduce Implant-Abutment Bacterial Leakage.

    Science.gov (United States)

    Cardoso, Mayra; Sangalli, Jorgiana; Koga-Ito, Cristiane Yumi; Ferreira, Leandro Lameirão; da Silva Sobrinho, Argemiro Soares; Nogueira, Lafayette

    2016-02-01

    The influence of diamond-like carbon (DLC) films on bacterial leakage through the interface between abutments and dental implants of external hexagon (EH) and internal hexagon (IH) designs was evaluated. Film deposition was performed by plasma-enhanced chemical vapor deposition. Sets of implants and abutments (n = 30 per group, sets of 180 implants) were divided according to connection design and treatment of the abutment base: 1) no treatment (control); 2) DLC film deposition; and 3) Ag-DLC film deposition. Under sterile conditions, 1 μL Enterococcus faecalis was inoculated inside the implants, and abutments were tightened. The sets were tested for immediate external contamination, suspended in test tubes containing sterile culture broth, and followed for 5 days. Turbidity of the broth indicated bacterial leakage. At the end of the period, the abutments were removed and the internal content of the implants was collected with paper points and plated in Petri dishes. After 24-hour incubation, they were assessed for bacterial viability and colony-forming unit counting. Bacterial leakage was analyzed by χ(2) and Fisher exact tests (α = 5%). The percentage of bacterial leakage was 16.09% for EH implants and 80.71% for IH implants (P DLC and Ag-DLC films do not significantly reduce the frequency of bacterial leakage and bacteria load inside the implants.

  7. Purification of carbon nanotubes through an electric field near the arranged microelectrodes

    International Nuclear Information System (INIS)

    Shim, Hyung Cheoul; Lee, Hyung Woo; Yeom, Sujin; Kwak, Yoon Keun; Lee, Seung S; Kim, Soo Hyun

    2007-01-01

    In this work, we attempt to purify multi-walled carbon nanotubes (MWNTs) using electrophoresis induced by the application of an AC electric field to a set of microelectrodes in a microliquid channel. This purifying method is different from conventional methods based on chemical processes. It was observed that most of the MWNTs could pass along the microliquid channel without attaching to the electrode under specific conditions of 1 kHz, at 0.2 V rms μm -1 . On the other hand, the majority of the carbon impurities attached to the electrodes under identical conditions. Field emission scanning electron microscopy (FESEM) images and Raman spectra confirm that this condition is beneficial for removing carbon impurities. The proposed approach has potential applicability in the development of microdevices that can simultaneously perform the purification and fabrication of MWNTs

  8. Correlation of sp{sup 3} and sp{sup 2} fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Neeraj [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, Sushil, E-mail: skumar@nplindia.org [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Malik, H.K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Govind [Surface Physics and Nano Structures Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Rauthan, C.M.S.; Panwar, O.S. [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India)

    2011-05-15

    In the present work the correlation of electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon (Ar-DLC) thin films with sp{sup 3} and sp{sup 2} fractions of carbon have been explored. These Ar-DLC thin films have been deposited, under varying C{sub 2}H{sub 2} gas pressures from 25 to 75 mTorr, by radio frequency-plasma enhanced chemical vapor deposition technique. X-ray photoelectron spectroscopy studies are performed to estimate the sp{sup 3} and sp{sup 2} fractions of carbon by deconvoluting C 1s core level spectra. Various electrical, optical and nano-mechanical parameters such as conductivity, I-V characteristics, optical band gap, stress, hardness, elastic modulus, plastic resistance parameter, elastic recovery and plastic deformation energy have been estimated and then correlated with calculated sp{sup 3} and sp{sup 2} fractions of carbon and sp{sup 3}/sp{sup 2} ratios. Observed tremendous electrical, optical and nano-mechanical properties in Ar-DLC films deposited under high base pressure conditions made it a cost effective material for not only hard and protective coating applications but also for electronic and optoelectronic applications.

  9. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  10. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    International Nuclear Information System (INIS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-01-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO 2 ) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g −1  at the scan rate of 5 mV s −1 . This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices. (paper)

  11. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Science.gov (United States)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  12. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    International Nuclear Information System (INIS)

    Zou, Y.S.; Wu, Y.F.; Yang, H.; Cang, K.; Song, G.H.; Li, Z.X.; Zhou, K.

    2011-01-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp 3 carbon content and mechanical properties of the deposited DLC films. A maximum sp 3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  13. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.S., E-mail: yshzou75@gmail.com [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Wu, Y.F.; Yang, H.; Cang, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Song, G.H. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning, 110178 (China); Li, Z.X.; Zhou, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China)

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp{sup 3} carbon content and mechanical properties of the deposited DLC films. A maximum sp{sup 3} content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  14. X-ray absorption and emission studies of diamond nanoparticles

    International Nuclear Information System (INIS)

    Van Buuren, T.; Willey, T.; Raty, J.Y.; Galli, G.; Terminello, L.J.; Bostedt, C.

    2004-01-01

    Full text: A new family of carbon nanopaticles produced in detonations, are found to have a core of diamond with a coating fullerene- like carbon. X-ray diffraction and TEM show that the nanodiamond powder is crystalline and approximately 4 nm in diameter. These nano-sized diamonds do not display the characteristic property of other group IV nanoparticles: a strong widening of the energy gap between the conduction and valence bands owing to quantum-confinement effects. For nano-sized diamond with a size distribution of 4 nm, there is no shift of the band energies relative to bulk diamond. Although the C1s core exciton feature clearly observed in the K-edge absorption edge of bulk diamond is shifted and broadening due to increased overlap of the excited electron with the core holein the small particle. Also the depth of the second gap in the nanodiamond spectra is shallower than that of bulk diamond. A feature at lower energy in the X-ray absorption spectra that is not present in the bulk samples is consistent with a fullerene like surface reconstruction. By exposing the diamond nanoparticles to an Argon /Oxygen plasma then annealing in a UHV environment we have obtained a hydrogen free surface. The nanodiamonds processed in this manner show an increase fullerene type contribution in the carbon x-ray absorption pre-edge. High spatial resolution EELS measurements of the empty states of a single nanodiamond particle acquired with a ld emission TEM also show the core of the particle is bulk diamond like where as the surface has a fullerene like structure. Standard density-functional calculations on clusters in which the diamond surface bonds are terminated with hydrogen atoms, show that the bandgap begins to increase above the bulk value only for clusters smaller than 1 nm. Surface hydrogen atoms are found to be about as close as they do in molecular hydrogen and can escape as H 2 , forcing the respective carbon atoms to rearrange. A series of such rearrangements can

  15. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH{sub 4} dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, R., E-mail: rocio.rincon@emt.inrs.ca, E-mail: chaker@emt.inrs.ca; Matos, J. de; Chaker, M., E-mail: rocio.rincon@emt.inrs.ca, E-mail: chaker@emt.inrs.ca [Institut National de la Recherche Scientifique, 1650 Boulevard Lionel Boulet, Varennes, Québec J3X1S2 (Canada); Hendaoui, A. [Institut National de la Recherche Scientifique, 1650 Boulevard Lionel Boulet, Varennes, Québec J3X1S2 (Canada); Department of Physics, College of Science and General Studies, Alfaisal University, Takhasusi Road, Riyadh 11533 (Saudi Arabia)

    2016-06-14

    An Ar/CH{sub 4} atmospheric pressure dielectric barrier discharge (AP-DBD) was used to synthesize sticky hydrophobic diamond-like carbon (DLC) films on glass surface. The film is formed with plasma treatment duration shorter than 30 s, and water contact angles larger than 90° together with contact angle hysteresis larger than 10° can be achieved. According to Fourier transform infrared spectroscopy and atomic force microscopy analysis, hydrocarbon functional groups are created on the glass substrate, producing coatings with low surface energy (∼35 mJ m{sup −2}) with no modification of the surface roughness. To infer the plasma processes leading to the formation of low energy DLC surfaces, optical emission spectroscopy was used. From the results, a direct relationship between the CH species present in the plasma and the carbon concentration in the hydrophobic layer was found, which suggests that the CH species are the precursors of DLC film growth. Additionally, the plasma gas temperature was measured to be below 350 K which highlights the suitability of using AP-DBD to treat thermo-sensitive surfaces.

  16. Synthesis and tribological behaviors of diamond-like carbon films by electrodeposition from solution of acetonitrile and water

    International Nuclear Information System (INIS)

    Zhang Jisheng; Huang Lina; Yu Laigui; Zhang Pingyu

    2008-01-01

    Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp 3 /sp 2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed

  17. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  18. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.; Masuzawa, T.

    2011-01-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO 2 ) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO 2 films and DLC/TiO 2 /DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO 2 -coated and the DLC/TiO 2 /DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO 2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO 2 /DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO 2 /DLC film had a photocatalytic effect even though the TiO 2 film was covered with the DLC film.

  19. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sekhar C., E-mail: Raysc@unisa.ac.za [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg (South Africa); Pong, W.F. [Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan (China); Papakonstantinou, P. [Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster, Shore Road, Newtownabbey BT37 0QB (United Kingdom)

    2016-07-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp{sup 3} network to sp{sup 2} as evidenced by an increase of the sp{sup 2} cluster and I{sub D}/I{sub G} ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp{sup 2} cluster and I{sub D}/I{sub G} ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp{sup 3}-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp{sup 3} and sp{sup 2} contents are estimated from C K-edge XANES and VB-PES measurements.

  20. Effect of working pressure on corrosion behavior of nitrogen doped diamond-like carbon thin films deposited by DC magnetron sputtering.

    Science.gov (United States)

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon thin films were deposited on highly conductive p-silicon(100) substrates using a DC magnetron sputtering deposition system by varying working pressure in the deposition chamber. The bonding structure, adhesion strength, surface roughness and corrosion behavior of the films were investigated by using X-ray photoelectron spectroscopy, micro-Raman spectroscopy, micro-scratch test, atomic force microscopy and potentiodynamic polarization test. A 0.6 M NaCl electrolytic solution was used for the corrosion tests. The optimum corrosion resistance of the films was found at a working pressure of 7 mTorr at which a good balance between the kinetics of the sputtered ions and the surface mobility of the adatoms promoted a microstructure of the films with fewer porosities.

  1. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  2. A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater

    Science.gov (United States)

    Ye, Yewei; Jia, Shujuan; Zhang, Dawei; Liu, Wei; Zhao, Haichao

    2018-03-01

    The thin and thick diamond-like carbon (DLC) films were prepared by unbalanced magnetron sputtering technique on 304L stainless steels and (100) silicon wafers. Microstructure, mechanical, corrosion and tribological properties were systematically investigated by SEM, Raman, nanoindenter, scratch tester, modulab electrochemical workstation and R-tec multifunctional tribological tester. Results showed that the adhesion force presented a descending trend with the growth in soaking time. The adhesion force of the thin DLC film with high residual compressive stress (‑3.72 GPa) was higher than that of the thick DLC film (‑2.96 GPa). During the corrosion test, the thick DLC film showed a higher impendence and a lower corrosion current density than the thin DLC film, which is attributed to the barrier action of large thickness. Compared to bare 304L substrate, the friction coefficients and wear rates of DLC films in seawater were obviously decreased. Meanwhile, the thin DLC film with ideal residual compressive stress, super adhesion force and good plastic deformation resistance revealed an excellent anti-wear ability in seawater.

  3. Tribological behavior of diamond-like carbon film with different tribo-pairs: A size effect study

    International Nuclear Information System (INIS)

    Xie Guoxin; Zheng Beirong; Li Wei; Xue Wei

    2008-01-01

    A friction force microscope (FFM) with different probes and a ball-on-disk (BOD) tribo-meter were used to investigate the tribological properties of diamond-like carbon (DLC) films. DLC films were prepared by chemical vapor deposition (CVD) method by altering the deposition parameters, and their morphologies and structural information were examined with an atomic force microscope (AFM) and the Raman spectrum. The wear traces of the DLC films after frictional tests were analyzed by an optical microscope. It is found that surface roughness and adhesion play important roles in characterizing the tribological properties of DLC films using FFM. Moreover, the debris accumulation is another significant factor affecting the frictional behavior of DLC films, especially for the sharp tip. The difference in coefficients of friction (COFs) obtained by the BOD method among different DLC films under water lubrication is much smaller than the case without water lubrication. The variation trends in COF for the flat tip and the BOD test are similar in comparison with the result obtained with the sharp tip. The wear traces after frictional tests suggest that DLC films under water lubrication are prone to be damaged more readily

  4. Tribological behavior of diamond-like carbon film with different tribo-pairs: A size effect study

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoxin [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)], E-mail: xie-gx@163.com; Zheng Beirong [College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 323035 (China); Li Wei [School of Science, Zhejiang University of Science and Technology, Hangzhou 310023 (China); Xue Wei [College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 323035 (China)

    2008-08-30

    A friction force microscope (FFM) with different probes and a ball-on-disk (BOD) tribo-meter were used to investigate the tribological properties of diamond-like carbon (DLC) films. DLC films were prepared by chemical vapor deposition (CVD) method by altering the deposition parameters, and their morphologies and structural information were examined with an atomic force microscope (AFM) and the Raman spectrum. The wear traces of the DLC films after frictional tests were analyzed by an optical microscope. It is found that surface roughness and adhesion play important roles in characterizing the tribological properties of DLC films using FFM. Moreover, the debris accumulation is another significant factor affecting the frictional behavior of DLC films, especially for the sharp tip. The difference in coefficients of friction (COFs) obtained by the BOD method among different DLC films under water lubrication is much smaller than the case without water lubrication. The variation trends in COF for the flat tip and the BOD test are similar in comparison with the result obtained with the sharp tip. The wear traces after frictional tests suggest that DLC films under water lubrication are prone to be damaged more readily.

  5. Wear and Friction Characteristics of AlN/Diamond-Like Carbon Hybrid Coatings on Aluminum Alloy

    Science.gov (United States)

    Nakamura, Masashi; Kubota, Sadayuki; Suzuki, Hideto; Haraguchi, Tadao

    2015-10-01

    The use of diamond-like carbon (DLC) coatings has the potential to greatly improve the wear resistance and friction of aluminum alloys, but practical application has so far been limited by poor adhesion due to large difference in hardness and elasticity between the two materials. This study investigates the deposition of DLC onto an Al-alloy using an intermediate AlN layer with a graded hardness to create a hybrid coating. By controlling the hardness of the AlN film, it was found that the wear life of the DLC film could be improved 80-fold compared to a DLC film deposited directly onto Al-alloy. Furthermore, it was demonstrated through finite element simulation that creating a hardness gradient in the AlN intermediate layer reduces the distribution of stress in the DLC film, while also increasing the force of adhesion between the DLC and AlN layers. Given that both the DLC and AlN films were deposited using the same unbalanced magnetron sputtering method, this process is considered to represent a simple and effective means of improving the wear resistance of Al-alloy components commonly used within the aerospace and automotive industries.

  6. Structure and Properties of Diamond-Like Carbon Films Deposited by PACVD Technique on Light Alloys

    Directory of Open Access Journals (Sweden)

    Tański T.

    2016-09-01

    Full Text Available The investigations presented in this paper describe surface treatment performed on samples of heat-treated cast magnesium and aluminium alloy. The structure and chemical composition as well as the functional and mechanical properties of the obtained gradient/monolithic films were analysed by high resolution transmission electron microscopy and scanning electron microscopy, Raman spectroscopy, the ball-on-disk tribotester and scratch testing. Moreover, investigation of the electrochemical corrosion behaviour of the samples was carried out by means of potentiodynamic polarisation curves in 1-M NaCl solution. The coatings produced by chemical vapour deposition did not reveal any delamination or defects and they adhere closely to the substrate. The coating thickness was in a range of up to 2.5 microns. Investigations using Raman spectra of the DLC films confirmed a multiphase character of the diamond-like carbon layer, revealing the sp2 and sp3 electron hybridisation responsible for both the hardness and the friction coefficient. The best wear resistance test results were obtained for the magnesium alloy substrate - AZ61, for which the measured value of the friction path length was equal to 630 m.

  7. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    Li, Xiaowei; Ke, Peiling; Lee, Kwang-Ryeol; Wang, Aiying

    2014-01-01

    The influence of incident angles of energetic carbon atoms (0–60°) on the structure and properties of diamond-like carbon (DLC) films was investigated by the molecular dynamics simulation using a Tersoff interatomic potential. The present simulation revealed that as the incident angles increased from 0 to 60°, the surface roughness of DLC films increased and the more porous structure was generated. Along the growth direction of DLC films, the whole system could be divided into four regions including substrate region, transition region, stable region and surface region except the case at the incident angle of 60°. When the incident angle was 45°, the residual stress was significantly reduced by 12% with little deterioration of mechanical behavior. The further structure analysis using both the bond angles and bond length distributions indicated that the compressive stress reduction mainly resulted from the relaxation of highly distorted C–C bond length. - Highlights: • The dependence of films properties on different incident angles was investigated. • The change of incident angles reduced the stress without obvious damage of density. • The stress reduction attributed to the relaxation of highly distorted bond length

  8. Effect of diamond-like carbon coating on corrosion rate of machinery steel HQ 805

    Science.gov (United States)

    Slat, Winda Sanni; Malau, Viktor; Iswanto, Priyo Tri; Sujitno, Tjipto; Suprapto

    2018-04-01

    HQ 805 is known as a super strength alloys steel and widely applied in military equipment and, aircraft components, drilling device and so on. It is due to its excellent behavior in wear, fatigue, high temperature and high speed operating conditions. The weakness of this material is the vulnerablality to corrosion when employed in sour environments where hydrogen sulfide and chlorides are present. To overcome the problems, an effort should be made to improve or enhance the surface properties for a longer service life. There are varieties of coatings developed and used to improve surface material properties. There are several kinds of coating methods; chemical vapour deposition (CVD), physical vapour deposition (PVD), thermochemical treatment, oxidation, or plasma spraying. This paper presents the research result of the influence of Diamond-Like Carbon (DLC) coating deposited using DC plasma enhanced chemical vapor deposition (DC-PECVD) on corrosion rate (by potentiodynamic polarization method) of HQ 805 machinery steel. As a carbon sources, a mixture of argon (Ar) and methane (CH4) with ratio 76% : 24% was used in this experiment. The conditions of experiment were 400 °C of temperature, 1.2 mbar, 1.4 mbar, 1.6 mbar and 1.8 mbar of pressure of process. Investigated surface properties were hardness (microhardness tester), roughness (roughness test), chemical composition (Spectrometer), microstructure (SEM) and corrosion rate (potentiodynamic polarization). It has been found that the optimum condition with the lowest corrosion rate is at a pressure of 1.4 mbar with a deposition duration of 4 hours at a constant temperature of 400 °C. In this condition, the corrosion rate decreases from 12.326 mpy to 4.487 mpy.

  9. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, F. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Neto, M.M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal) and Departamento de Quimica Agricola e Ambiental, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon (Portugal)]. E-mail: mm.neto@netcabo.pt; Rocha, M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Fonseca, I.T.E. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal)

    2006-10-10

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode.

  10. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    International Nuclear Information System (INIS)

    Ribeiro, F.; Neto, M.M.M.; Rocha, M.M.; Fonseca, I.T.E.

    2006-01-01

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode

  11. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of program package for investigation and modeling of carbon nanostructures in diamond like carbon films with the help of Raman scattering and infrared absorption spectra line resolving

    Science.gov (United States)

    Hayrapetyan, David B.; Hovhannisyan, Levon; Mantashyan, Paytsar A.

    2013-04-01

    The analysis of complex spectra is an actual problem for modern science. The work is devoted to the creation of a software package, which analyzes spectrum in the different formats, possesses by dynamic knowledge database and self-study mechanism, performs automated analysis of the spectra compound based on knowledge database by application of certain algorithms. In the software package as searching systems, hyper-spherical random search algorithms, gradient algorithms and genetic searching algorithms were used. The analysis of Raman and IR spectrum of diamond-like carbon (DLC) samples were performed by elaborated program. After processing the data, the program immediately displays all the calculated parameters of DLC.

  13. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  14. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...... is not only mechanically stable but also electrical conducting. This method could be used to fabricate nanoelectromechanical systems based on suspended double clamped CNTs depending only on photolithography and standard Cleanroom processes....

  15. Carbon based nanostructures: diamond clusters structured with nanotubes

    Directory of Open Access Journals (Sweden)

    O.A. Shenderova

    2003-01-01

    Full Text Available Feasibility of designing composites from carbon nanotubes and nanodiamond clusters is discussed based on atomistic simulations. Depending on nanotube size and morphology, some types of open nanotubes can be chemically connected with different facets of diamond clusters. The geometrical relation between different types of nanotubes and different diamond facets for construction of mechanically stable composites with all bonds saturated is summarized. Potential applications of the suggested nanostructures are briefly discussed based on the calculations of their electronic properties using environment dependent self-consistent tight-binding approach.

  16. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa

    International Nuclear Information System (INIS)

    Deines, P.

    1984-01-01

    The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher delta 13 C P-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , Cr 2 O 3 , MgO, Mg/(Mg + Fe) and higher in FeO and CaO. Higher delta 13 C E-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , MgO, Mg/(Mg + Fe), Na 2 O, K 2 O, TiO 2 and higher in CaO, Ca/(Ca + Mg). Consideration of a number of different models that have been proposed for the genesis of kimberlites, their zenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions. (author)

  17. Structural and mechanical properties of diamond-like carbon films deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Broitman, E.; Hellgren, N.; Czigany, Zs.; Twesten, R.D.; Luning, J.; Petrov, I.; Hultman, L.; Holloway, B.C.

    2003-01-01

    The microstructure, morphology, and mechanical properties of diamond-like carbon (DLC) films deposited by direct current magnetron sputtering were investigated for microelectromechanical systems applications. Film properties were found to vary markedly with the ion energy (E ion ) and ion-to-carbon flux ratio (J ion /J C ). Cross-sectional high-resolution transmission electron microscopy revealed an amorphous microstructure. However, the presence of nanometer-sized domains at E ion ∼85 eV was detected. Film stresses, σ, which were compressive in all cases, ranged from 0.5 to 3.5 GPa and depended on the flux ratio as well as ion energy. The hardness (H), Young's moduli (ε), and elastic recovery (R) increased with E ion to maximum values of H=27 GPa, ε=250 GPa, and R=68% at E ion =85 eV and J ion /J C =4.4. However, near edge x-ray absorption fine structure and electron energy-loss spectrum analysis showed that the sp 2 /sp 3 content of the films does not change with E ion or J ion /J C . The measured change in mechanical properties without a corresponding change in sp 2 /sp 3 ratio is not consistent with any previously published models. We suggest that, in the ranges 5 eV ≤E ion ≤85 eV and 1.1 ≤J ion /J C ≤6.8, the presence of defective graphite formed by subplanted C and Ar atoms has the dominant influence on the mechanical properties of DLC films

  18. The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle

    Science.gov (United States)

    Beyer, Christopher; Frost, Daniel J.

    2017-03-01

    respectively. Macroscopic diamond formation in rocks with pyroxenite compositions are likely facilitated in the deep mantle by higher average oxidation states and low mineral H2 O solubility compared to the surrounding mantle, which aid the mobility of C-O-H volatile species. The apparent lack of inclusions with a peridotite affinity may result from generally low oxygen fugacities in such lithologies, which reduces carbon mobility, and the lack of a suitable oxidising agent to allow diamonds to form from CH4. This glimpse of deep carbon cycle processes implies that heterogeneities in the carbon content, redox state and chemical composition of the mantle may be strongly coupled.

  19. Thermal Characteristics of InGaN/GaN Flip-Chip Light Emitting Diodes with Diamond-Like Carbon Heat-Spreading Layers

    Directory of Open Access Journals (Sweden)

    Pai-Yang Tsai

    2014-01-01

    Full Text Available The temperature-dependent optical, electrical, and thermal properties of flip-chip light emitting diodes (FCLEDs with diamond-like carbon (DLC heat-spreading layers were investigated. On the basis of the measured results in the 20°C to 100°C temperature range, a significant performance improvement can be achieved for FCLEDs with DLC heat-spreading layers (DLC-FCLED compared with FCLEDs without DLC heat-spreading layers (non-DLC-FCLED. The external quantum efficiency (EQE of the DLC-FCLED improves by 9% at an injection current of 1000 mA and a temperature of 100°C. The forward voltage and spectra variations are smaller than those of non-DLC-FCLEDs. The DLC-FCLED provides high efficiency and high stability performance for high-power and high-temperature applications.

  20. Reciprocating sliding behaviour of self-mated amorphous diamond-like carbon coatings on Si3N4 ceramics under tribological stress

    International Nuclear Information System (INIS)

    Vila, M.; Abreu, C.S.; Salgueiredo, E.; Almeida, F.A.; Fernandes, A.J.S.; Costa, F.M.; Gomes, J.R.; Silva, R.F.

    2006-01-01

    Amorphous diamond-like carbon films grown by magnetron sputtering have been deposited on silicon nitride based substrates for tribological purposes. A conductive Si 3 N 4 /30% vol.TiN composite was produced for bias substrate application. Friction and wear properties of carbon coated self-mated pairs were assessed using a reciprocal motion ball-on-flat setup in unlubricated conditions with applied normal loads of 3 N and 5 N. The worn surfaces were studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) in order to identify the prevalent wear mechanism. Unbiased and biased substrates behaved differently, the former undergoing premature delamination while the latter endured the tribological test conditions (3 N, ∼ 43 m). Very low friction coefficient values of ∼ 0.015 were sustained assuring remarkable wear behaviour. Surface grooving and wear debris accumulation in the sliding track lead to a roughness increase from the nominal rms value of ∼ 12 nm to ∼ 97 nm, although no weight loss and surface profile modification was quantifiable

  1. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Longsheng Lu

    2017-03-01

    Full Text Available Carbon fiber microelectrode (CFME has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs, denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF monofilaments grafted with CNTs (simplified as CNTs/CFs were fabricated in two key steps: (i nickel electroless plating, followed by (ii chemical vapor deposition (CVD. Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN6, by using a cyclic voltammetry (CV and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility.

  2. Fabrication and characterization of an all-diamond tubular flow microelectrode for electroanalysis.

    Science.gov (United States)

    Hutton, Laura A; Vidotti, Marcio; Iacobini, James G; Kelly, Chris; Newton, Mark E; Unwin, Patrick R; Macpherson, Julie V

    2011-07-15

    The development of the first all-diamond hydrodynamic flow device for electroanalytical applications is described. Here alternate layers of intrinsic (insulating), conducting (heavily boron doped), and intrinsic polycrystalline diamond are grown to create a sandwich structure. By laser cutting a hole through the material, it is possible to produce a tubular flow ring electrode of a characteristic length defined by the thickness of the conducting layer (for these studies ∼90 μm). The inside of the tube can be polished to 17 ± 10 nm surface roughness using a diamond impregnanted wire resulting in a coplanar, smooth, all-diamond surface. The steady-state limiting current versus volume flow rate characteristics for the one electron oxidation of FcTMA(+) are in agreement with those expected for laminar flow in a tubular electrode geometry. For dopamine detection, it is shown that the combination of the reduced fouling properties of boron doped diamond, coupled with the flow geometry design where the products of electrolysis are washed away downstream of the electrode, completely eradicates fouling during electrolysis. This paves the way for incorporation of this flow design into online electroanalytical detection systems. Finally, the all diamond tubular flow electrode system described here provides a platform for future developments including the development of ultrathin ring electrodes, multiple apertures for increased current response, and multiple, individually addressable ring electrodes incorporated into the same flow tube.

  3. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    Science.gov (United States)

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparative study of the tribological behavior under hybrid lubrication of diamond-like carbon films with different adhesion interfaces

    Science.gov (United States)

    Costa, R. P. C.; Lima-Oliveira, D. A.; Marciano, F. R.; Lobo, A. O.; Corat, E. J.; Trava-Airoldi, V. J.

    2013-11-01

    This paper reports the influence of the adhesion interlayer between stainless steel and diamond-like carbon (DLC) films in two different contact conditions: in dry air and deionized water. The water was the liquid used to understand the mechanism and chemical reactions of the tribolayer formation under boundary lubrication. The effect of silicon and carbonitride adhesion interlayer was investigated on uncoated and coated DLC films. The results show that DLC/DLC pairs using carbonitride in air (30% RH) showed 60% less friction coefficient and wear less than three orders of magnitude than DLC/DLC pairs using silicon as interlayer. In deionized water, DLC/DLC pairs using carbonitride as interlayer showed 31% less friction coefficient when compared to DLC/DLC pairs with silicon. Raman related the chemical and structural changes in the DLC films during sliding in air and in the presence of water. Scratch tests showed a critical load of 14 N and 33 N in DLC films with silicon and carbonitride, respectively.

  5. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  6. Low-macroscopic field emission from silicon-incorporated diamond-like carbon film synthesized by dc PECVD

    International Nuclear Information System (INIS)

    Ahmed, Sk.F.; Mitra, M.K.; Chattopadhyay, K.K.

    2007-01-01

    Silicon-incorporated diamond-like carbon (Si-DLC) films were deposited via dc plasma-enhanced chemical vapor deposition (PECVD), on glass and alumina substrates at a substrate temperature 300 deg. C. The precursor gas used was acetylene and for Si incorporation, tetraethyl orthosilicate dissolved in methanol was used. Si atomic percentage in the films was varied from 0% to 19.3% as measured from energy-dispersive X-ray analysis (EDX). The binding energies of C 1s, Si 2s and Si 2p were determined from X-ray photoelectron spectroscopic studies. We have observed low-macroscopic field electron emission from Si-DLC thin films deposited on glass substrates. The emission properties have been studied for a fixed anode-sample separation of 80 μm for different Si atomic percentages in the films. The turn-on field was also found to vary from 16.19 to 3.61 V/μm for a fixed anode-sample separation of 80 μm with a variation of silicon atomic percentage in the films 0% to 19.3%. The turn-on field and approximate work function are calculated and we have tried to explain the emission mechanism there from. It was found that the turn-on field and effective emission barrier were reduced by Si incorporation than undoped DLC

  7. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  8. Influence of deposition parameters on the refractive index and growth rate of diamond-like carbon films

    International Nuclear Information System (INIS)

    Zhang, G.F.; Zheng, X.; Guo, L.J.; Liu, Z.T.; Xiu, N.K.

    1994-01-01

    In order to use diamond-like carbon (DLC) films as protective and antireflection coatings for IR optical materials exposed to hostile environments, an investigation has been systematically conducted on the influence of the deposition parameters on the refractive index and growth rate of DLC films, which are two of the most important parameters in evaluating optical characteristics of antireflection coatings. The experimental results show that both the refractive index and growth rate of DLC films depend strongly on the negative d.c. bias voltage. The refractive index increases with increasing bias voltage and decreases with increasing partial pressure of the hydrocarbon gas and total flow rate of the mixture. The growth rate increases greatly when the bias voltage is larger than a threshold value. The various parameters which influence the structure and properties of DLC films are interrelated. Fourier transform IR spectroscopy results show that the strength of the C-H stretching absorption band in the range 3300-2850 cm -1 is gradually weakened with increasing negative bias voltage and argon concentration. High energy bombardment of the growing film plays an important role in the structure and hence the properties of DLC films. (orig.)

  9. Cu incorporated amorphous diamond like carbon (DLC) composites: An efficient electron field emitter over a wide range of temperature

    Science.gov (United States)

    Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit

    2018-03-01

    The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.

  10. Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.J.G., E-mail: francisco.silva@eu.ipp.pt [Departamento de Engenharia Mecânica do Instituto Superior de Engenharia do Porto do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Martinho, R.P. [Departamento de Engenharia da Escola Superior de Estudos Industriais e de Gestão do Instituto Politécnico do Porto, Rua D. Sancho I, 981, 4480-876 Vila do Conde (Portugal); Baptista, A.P.M. [Departamento de Engenharia Mecânica da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2014-01-01

    This work reports on laboratorial and experimental wear behaviour studies about a multi-layered film deposited by PVD (Physical Vapour Deposition) unbalanced magnetron sputtering. The film consists of three different layers: CrN in the bottom, CrCN as intermediate layer and DLC (diamond-like carbon) on the top. Film characterization was done using techniques such as Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Atomic Force Microscopy and X-ray diffraction. Scratch-tests, nanoindentation analysis and ball-cratering wear tests were used in order to measure the adhesion critical load, hardness and wear coefficient, respectively. Experimental tests were developed letting one to realise the suitability of this film for mould cavities used on injection moulding machines that produce automotive parts in polypropylene reinforced with 30% (wt.) glass fibres, because this composite material performs severe abrasion on injection moulding which brings important challenges to surface wear resistance. Experimental tests revealed that, after 135,000 injection cycles, multi-layer coating improved significantly the performance previously revealed by uncoated samples. The good results achieved by this film can be partially assigned to DLC top layer due to its low friction coefficient. This paper discusses these results, comparing them with some other PVD coatings already tested in the same conditions. - Highlights: • This coating presents a very good adhesion to the P20 steel substrate. • Surface wear performance is largely improved by the use of this coating. • Coating wear resistance is about 58.2 times higher than the uncoated substrate. • This film presents high suitability for application in mould cavities.

  11. All-diamond functional surface micro-electrode arrays for brain-slice neural analysis

    Czech Academy of Sciences Publication Activity Database

    Vahidpour, F.; Curley, L.; Biró, I.; McDonald, M.; Croux, D.; Pobedinskas, P.; Haenen, K.; Giugliano, M.; Vlčková Živcová, Zuzana; Kavan, Ladislav; Nesládek, M.

    2017-01-01

    Roč. 214, č. 2 (2017), č. článku 1532347. ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : impedance spectroscopy * microelectrode arrays * surface termination Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.775, year: 2016

  12. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  13. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  14. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  15. Surface treatment of diamond-like carbon films by reactive Ar/CF{sub 4} high-power pulsed magnetron sputtering plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Takashi, E-mail: t-kimura@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishimura, Ryotaro [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Azuma, Kingo [Department of Electrical Engineering and Computer Sciences, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Nakao, Setsuo; Sonoda, Tsutomu; Kusumori, Takeshi; Ozaki, Kimihiro [National Institute of Advanced Industrial Science and Technology (AIST) - Chubu, 2266-98 Anagahora, Moriyama, Nagoya 463-8560 (Japan)

    2015-12-15

    Surface modification of diamond-like carbon films deposited by a high-power pulsed magnetron sputtering (HPPMS) of Ar was carried out by a HPPMS of Ar/CF{sub 4} mixture, changing a CF{sub 4} fraction from 2.5% to 20%. The hardness of the modified films markedly decreased from about 13 to about 3.5 GPa with increasing CF{sub 4} fraction, whereas the water contact angle of the modified films increased from 68° to 109° owing to the increase in the CF{sub x} content on the film surface. C 1s spectra in X-ray photoelectron spectroscopy indicated that a graphitic structure of modified films was formed at CF{sub 4} fractions less than 5%, above which the modified films possessed a polymer-like structure. Influence of treatment time on the properties of the modified films was also investigated in the range of treatment time from 5 to 30 min. The properties of the modified films did not depend on the treatment time in the range of treatment time longer than 10 min, whereas the water contact angle was not sensitive to the treatment time at any treatment time.

  16. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    Directory of Open Access Journals (Sweden)

    Zhaoxiang Chen

    2018-02-01

    Full Text Available Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC composite coating were investigated and compared with the anodic TiO2 mono-film and DLC mono-film. Results show that the DLC deposition significantly decreased the surface roughness and porosity of spark-anodized titanium. The fabricated TiO2/DLC composite coating exhibited a more stable and much lower friction coefficient than anodic TiO2 mono-film. Although the friction coefficient of the composite coating and the DLC mono-film was similar under both light load and heavy load conditions, the wear life of the composite coating was about 43% longer than that of DLC mono-film under heavy load condition. The wear rate of titanium with protective composite coating was much lower than that of titanium with DLC mono-film. The superior low friction coefficient and wear rate of the TiO2/DLC composite coating make it a good candidate as protective coating on titanium alloys.

  17. Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank's solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2011-01-01

    Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study. Highlights: → DLC thin films were deposited on Si substrates via dc magnetron sputtering. → Some DLC films were doped with N and/or Pt/Ru. → The film corrosion behavior was studied in a Hank solution with polarization test. → The PtRu-DLC film showed the highest corrosion potential among the films studied.

  18. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications.

    Science.gov (United States)

    Allen, M; Myer, B; Rushton, N

    2001-05-01

    Diamond-like carbon (DLC) shows great promise as a durable, wear- and corrosion-resistant coating for biomedical implants. The effects of DLC coatings on the musculoskeletal system have not been investigated in detail. In this study, DLC coatings were deposited on polystyrene 24-well tissue culture plates by fast-atom bombardment from a hexane precursor. Two osteoblast-like cell lines were cultured on uncoated and DLC-coated plates for periods of up to 72 h. The effects of DLC coatings on cellular metabolism were investigated by measuring the production of three osteoblast-specific marker proteins: alkaline phosphatase, osteocalcin, and type I collagen. There was no evidence that the presence of the DLC coating had any adverse effect on any of the parameters measured in this study. In a second series of experiments, DLC-coated cobalt-chromium cylinders were implanted in intramuscular locations in rats and in transcortical sites in sheep. Histologic analysis of specimens retrieved 90 days after surgery showed that the DLC-coated specimens were well tolerated in both sites. These data indicate that DLC coatings are biocompatible in vitro and in vivo, and further investigations into their long-term biological and tribological performance are now warranted. Copyright 2001 John Wiley & Sons, Inc.

  19. Thermodynamic properties of the amorphous and crystalline modifications of carbon and the metastable synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Guencheva, V.; Grantscharova, E.; Gutzow, I. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Physical Chemistry

    2001-07-01

    The temperature dependencies of the thermodynamic properties of the little known (or even hypothetical) undercooled carbon melt and of the glasses that could be obtained from it at appropriate cooling rates are constructed. This is done using both a general thermodynamic formalism to estimate equilibrium properties of undercooled glass-forming melts and the expected analogy in properties of Fourth Group Elements. A comparison of the hypothetical carbon glasses with amorphous materials, obtained by the pyrolisis of organic resins, usually called vitreous (or glassy) carbon, is made. It turns out that from a thermodynamic point of view existing vitreous carbon materials, although characterized by an amorphous, frozen-in structure, differ significantly from the carbon glasses, which could be obtained by a splat-cool-quench of the carbon melt. It is shown also that the hypothetical carbon glasses should have at any temperature a thermodynamic potential, significantly higher than that of diamond. Thus they could be used as a source of constant supersaturation in metastable diamond synthesis. Existing amorphous carbon materials, although showing considerably lower thermodynamic potentials than the hypothetical carbon glasses, could also be used as sources of constant supersaturation in a process of isothermal diamond synthesis if their thermodynamic potential is additionally increased (e.g. by mechano-chemical treatment or by dispersion into nano-size scale). Theoretical estimates made in terms of Ostwald's Rule of Stages indicate that in processes of metastable isothermal diamond synthesis additional kinetic factors (e.g. influencing the formation of sp{sup 3} - carbon structures in the ambient phase) and the introduction of active substrates (e.g. diamond powder) are to be of significance in the realization of this thermodynamic possibility. (orig.)

  20. Phase diagram of carbon and the factors limiting the quantity and size of natural diamonds

    Science.gov (United States)

    Blank, Vladimir D.; Churkin, Valentin D.; Kulnitskiy, Boris A.; Perezhogin, Igor A.; Kirichenko, Alexey N.; Denisov, Viktor N.; Erohin, Sergey V.; Sorokin, Pavel B.; Popov, Mikhail Yu

    2018-03-01

    Phase diagrams of carbon, and those focusing on the graphite-to-diamond transitional conditions in particular, are of great interest for fundamental and applied research. The present study introduces a number of experiments carried out to convert graphite under high-pressure conditions, showing a formation of stable phase of fullerene-type onions cross-linked by sp3-bonds in the 55-115 GPa pressure range instead of diamonds formation (even at temperature 2000-3000 K) and the already formed diamonds turn into carbon onions. Our results refute the widespread idea that diamonds can form at any pressure from 2.2 to 1000 GPa. The phase diagram built within this study allows us not only to explain the existing numerous experimental data on the formation of diamond from graphite, but also to make assumptions about the conditions of its growth in Earth’s crust.

  1. Fabrication and electrochemistry characteristics of nickel-doped diamond-like carbon film toward applications in non-enzymatic glucose detection

    Science.gov (United States)

    Liu, Chi-Wen; Chen, Wei-En; Sun, Yin Tung Albert; Lin, Chii-Ruey

    2018-04-01

    This research work focused on the fabrication of nickel-doped diamond-like carbon (DLC) films and their characteristics including of surface morphology, microstructure, and electrochemical aiming at applications in non-enzymatic glucose detection. Novel nanodiamond target was employed in unbalanced magnetron radio-frequency co-sputtering process to prepared high quality Ni-doped DLC thin film at room temperature. TEM analysis reveals a highly uniform distribution of Ni crystallites in amorphous carbon matrix with fraction ranged from 3 to 11.5 at.% which is considered as active sites for the glucose detection. Our cyclic voltammetry measurements using 0.1 M H2SO4 solution demonstrated that the as-prepared Ni-doped DLC films possess large electrochemical potential window of 2.12 V, and this was also observed to be significantly reduced at high Ni doping level owing to lower sp3 fraction. The non-enzymatic glucose detection investigation indicates that the Ni-doped DLC thin film electrode prepared under 7 W of DC sputtering power on Ni target possesses good detecting performance, high stability, and high sensitivity to glucose concentration up to 10 mM, even with the existence of uric acid and ascorbic acid. The peak current was observed to be proportional to glucose concentration and scanning rate, demonstrating highly reversibility redox process of the film electrode and glucose.

  2. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    Science.gov (United States)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  3. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    International Nuclear Information System (INIS)

    Ghosh, Subir; Roy, Taposh; Pingguan-Murphy, Belinda; Choudhury, Dipankar; Bin Mamat, Azuddin; Masjuki, H H

    2015-01-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy. (paper)

  4. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Mamat, Azuddin Bin; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-06-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.

  5. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    Science.gov (United States)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  6. Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms

    Directory of Open Access Journals (Sweden)

    Stuart D. Collyer

    2010-05-01

    Full Text Available The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm–2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes.

  7. Carbon and nitrogen in Type 2 supernova diamonds

    Science.gov (United States)

    Clayton, Donald D.; Eleid, Mounib; Brown, Lawrence E.

    1993-03-01

    Abundant diamonds found in meteorites seem either to have condensed within supernova interiors during their expansions and coolings or to have been present around those explosions. Either alternative allows implantation of Xe-HL prior to interstellar mixing. A puzzling feature is the near normalcy of the carbon isotopes, considering that the only C-rich matter, the He-burning shell, is pure C-12 in that region. That last fact has caused many to associate supernova carbon with C-12 carbon, so that its SUNOCONS have been anticipated as very C-12-rich. We show that this expectation is misleading because the C-13-rich regions of Type 2's have been largely overlooked in this thinking. We here follow the idea that the diamonds nucleated in the C-12-rich He shell, the only C-rich site for nucleation, but then attached C-13-rich carbon during turbulent encounters with overlying C-13-rich matter. That is, the initial diamonds continued to grow during the same collisional encounters that cause the Xe-HL implantation. Instead of interacting with the small carbon mass having 13/12 = 0.2 in the upper He zone, however, we have calculated the remnants of the initial H-burning core, which left behind C-13-rich matter as it receded during core hydrogen burning. Howard et al. described why the velocity mixing would be essential to understanding the implantation of both the Xe-H and Xe-L components. Velocity mixing is now known to occur from the X-ray and gamma-ray light curves of supernova 1987A. Using the stellar evolution code developed at Goettingen, we calculated at Clemson the evolution of a grid of massive stars up to the beginning of core He burning. We paid attention to all H-burning reactions throughout the star, to the treatment of both convection and semiconvection, and to the recession of the outer boundary of the convective H-burning core as the star expands toward a larger redder state. This program was to generate a careful map of the CNO isotope distribution as He

  8. Diamond-like nanoparticles influence on flavonoids transport: molecular modelling

    Science.gov (United States)

    Plastun, Inna L.; Agandeeva, Ksenia E.; Bokarev, Andrey N.; Zenkin, Nikita S.

    2017-03-01

    Intermolecular interaction of diamond-like nanoparticles and flavonoids is investigated by numerical simulation. Using molecular modelling by the density functional theory method, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and nanodiamonds surrounded with carboxylic groups. Enriched adamantane (1,3,5,7 - adamantanetetracarboxylic acid) is used as an example of diamond-like nanoparticles. Intermolecular forces and structure of hydrogen bonds are investigated. IR - spectra and structure parameters of quercetin - adamantanetetracarboxylic acid molecular complex are obtained by numerical simulation using the Gaussian software complex. Received data coincide well with experimental results. Intermolecular interactions and hydrogen bonding structure in the obtained molecular complex are examined. Possibilities of flavonoids interaction with DNA at the molecular level are also considered.

  9. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  10. Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing

    International Nuclear Information System (INIS)

    Rose, Franck; Wang, Na; Smith, Robert; Xiao, Qi-Fan; Dai, Qing; Marchon, Bruno; Inaba, Hiroshi; Matsumura, Toru; Saito, Yoko; Matsumoto, Hiroyuki; Mangolini, Filippo; Carpick, Robert W.

    2014-01-01

    We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamond-like carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 °C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp 3 fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp 2 clustering rather than hydrogen diffusion in the film.

  11. Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Franck, E-mail: franck.rose@hgst.com; Wang, Na; Smith, Robert; Xiao, Qi-Fan; Dai, Qing; Marchon, Bruno [HGST, A Western Digital Company, San Jose Research Center, 3403, Yerba Buena Rd, San Jose, California 95135 (United States); Inaba, Hiroshi; Matsumura, Toru; Saito, Yoko; Matsumoto, Hiroyuki [HGST, A Western Digital Company, Japan Research Laboratory, 2880 Kozu, Odawara, Kanagawa 256-8510 (Japan); Mangolini, Filippo [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Carpick, Robert W. [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6315 (United States)

    2014-09-28

    We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamond-like carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 °C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp³ fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp² clustering rather than hydrogen diffusion in the film.

  12. Effect of tetramethylsilane flow on the deposition and tribological behaviors of silicon doped diamond-like carbon rubbed against poly(oxymethylene)

    Science.gov (United States)

    Deng, Xingrui; Lim, Yankuang; Kousaka, Hiroyuki; Tokoroyama, Takayuki; Umehara, Noritsugu

    2014-11-01

    In this study, silicon doped diamond-like carbon (Si-DLC) was deposited on stainless steel (JIS SUS304) by using surface wave-excited plasma (SWP). The effects of tetramethylsilane (TMS) flow on the composition, topography, mechanical properties and tribological behavior were investigated. Pin-on-disc tribo-meter was used to investigate the tribological behavior of the Si-DLC coating rubbed against poly(oxymethylene) (POM). The results show that the deposition rate, roughness of Si-DLC increased and the hardness of Si-DLC decreased with the increase of TMS flow rate from 2 to 4 sccm; the roughness increase therein led to the increase of ploughing term of friction. The increase of adhesion term was also seen with the increase of TMS flow rate, being attributed to the decrease of hydrogen concentration in the coating. It was considered that more POM transferred onto the Si-DLC deposited at higher TMS flow rate due to larger heat generation by friction.

  13. Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources

    International Nuclear Information System (INIS)

    Dai Wei; Wang Aiying

    2011-01-01

    Research highlights: → Weak carbide former, Al element, was incorporated into DLC films using a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. → The structure disorder of the films tended to decrease with Al atoms doping, which resulted in the distinct reduction of the film internal stress and hardness, but the internal stress dropped faster than the hardness. → The DLC films with low internal stress and high hardness can be acquired by Al incorporation. - Abstract: Metal incorporation is one of the most effective methods for relaxing internal stress in diamond-like carbon (DLC) films. It was reported that the chemical state of the incorporated metal atoms has a significant influence on the film internal stress. The doped atoms embedding in the DLC matrix without bonding with C atoms can reduce the structure disorder of the DLC films through bond angle distortion and thus relax the internal stress of the films. In present paper, Al atoms, which are inert to carbon, were incorporated into the DLC films deposited by a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. The film composition, microstructure and atomic bond structure were characterized using X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. The internal stress, mechanical properties and tribogoical behavior were studied as a function of Al concentration using a stress-tester, nanoindentation and ball-on-disc tribo-tester, respectively. The results indicated that the incorporated Al atoms were dissolved in the DLC matrix without bonding with C atoms and the films exhibited the feature of amorphous carbon. The structure disorder of the films tended to decrease with Al atoms incorporation. This resulted in the distinct reduction of the internal stress in the films. All Al-DLC films exhibited a lower friction coefficient compared with pure DLC film. The formation of the

  14. Structure carbon materials: clusters, nanotubes, ion-implant polymers and diamonds

    International Nuclear Information System (INIS)

    Lapchuk, N.M.; Odzhaev, V.B.; Poklonskij, N.A.; Sviridov, D.V.

    2009-01-01

    The paper summarizes the series of research works dealing with the physics of nanostructured carbon materials, which were awarded a Sevchenko Prize in 2008. The paper considers the mechanism of synthesis of 3D carbon nanospecies and their nanomechanics, magnetic properties of ion-implanted diamonds, as well as the regularities of formation of novel forms of amorphous hydrogenated carbon and metal-carbon nanocomposites via ion bombardment of polymers, as well as electronic, magnetic, and structural properties of ion-implanted polymers an their possible applications in micro- and nanoelectronics. (authors)

  15. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment

    International Nuclear Information System (INIS)

    Li Hongxuan; Xu Tao; Wang Chengbing; Chen Jianmin; Zhou Huidi; Liu Huiwen

    2005-01-01

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si (100) wafers by a plasma enhanced chemical vapour deposition technique using CH 4 plus Ar as the feedstock. The friction and wear properties of the resulting films under different relative humidities, ranging from 5% to 100%, in a nitrogen environment, were measured using a ball-on-disc tribometer, with Si 3 N 4 balls as the counterparts. The friction surfaces of the films and Si 3 N 4 balls were observed on a scanning electron microscope, and investigated by x-ray photoelectron spectroscopy. The results showed that the friction coefficient increased continuously from 0.025 to 0.09 with increase in relative humidity from 5% to 100%, while the wear rate of the films sharply decreased and reached a minimum at a relative humidity of 40%, then it increased with further increase of the relative humidity. The interruption of the transferred carbon-rich layer on the Si 3 N 4 ball, and the friction-induced oxidation of the films at higher relative humidity were proposed as the main reasons for the increase in the friction coefficient. Moreover, the oxidation and hydrolysis of the Si 3 N 4 ball at higher relative humidity, leading to the formation of a tribochemical film, which mainly consists of silica gel, on the friction surface, are also thought to influence the friction and wear behaviour of the hydrogenated DLC films

  16. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B., E-mail: pandey.beauty@yahoo.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Das, D. [UGC-DAE CSR, Sector III/LB-8, Bidhan Nagar, Kolkata 700098 (India); Kar, A.K. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2015-05-15

    Highlights: • Electrical and magnetic properties of DLC and Ni-DLC thin films are studied. • The ohmicity and conductivity of DLC films rise with nickel addition. • The ohmicity of Ni-DLC is enhanced with increase in dilution of electrolyte. • Dielectric loss is high for Ni-DLC and decreases with frequency till 100 kHz. • (m–H) and (m–T) curves of Ni-DLC indicate superparamagnetic behavior. - Abstract: Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current–voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp{sup 2} content in DLC matrix. The magnetic moment vs. magnetic field (m–H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  17. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  18. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds

    Science.gov (United States)

    Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.

    Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards

  19. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  20. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    Science.gov (United States)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    devices, exploiting excellent quality boron doped p-type material, can be designed [3]. Electrical contacts can be tricky to fabricate, but progress is being made here [3, 27]. Diamond is perceived as unacceptably expensive, but for a high-quality device for an exceptional environment, this is not a problem. Carbon-based electronic materials are strikingly diverse. They include diamond, graphite, nanotubes and buckyball structures, amorphous carbons, and nanodiamond. Add hydrogen and one has a range of diamond-like carbons and the wealth of organics. Such carbon-based materials include small molecules and polymers: impressive insulators, semiconducting and conducting polymers, switchable forms, superconducting and magnetic forms, and some with the highest electrical conductivities of any material. Diamond-like carbons can have controllable mechanical properties from the viscoelastic to the highly rigid. Photochemistry brings opportunities for novel processing methods. Even water-based processing may sometimes be possible (alas, not for diamond), and additional tools like self-organisation of organic molecules on surfaces have been demonstrated. The best carbons have impressive, sometimes supreme, performances, including the mobility and optical properties of diamond, spin-conserving transport in carbon nanotubes, and electron emission. For almost all measures of performance, there is some carbon-based material that performs better than silicon. Might hybrid carbon-based materials be more successful even than silicon [28]? Should we think less about 'diamond' and more about the integration of diamond as one component of carbon electronics? Device fabrication needs lithography optics and resists, and processing at the anticipated smaller scales may well exploit new electronic excitation methods. Alternative dielectrics and interconnect materials introduce new compatibility issues, and there are further varied constraints from displays, spintronic components, electron

  1. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Directory of Open Access Journals (Sweden)

    Tadas Juknius

    2016-05-01

    Full Text Available In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique. The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  2. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Science.gov (United States)

    Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile. PMID:28773494

  3. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  4. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  5. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    International Nuclear Information System (INIS)

    Smietana, M; Koba, M; Mikulic, P; Bock, W J

    2014-01-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs. (paper)

  6. Superhard behaviour, low residual stress, and unique structure in diamond-like carbon films by simple bilayer approach

    International Nuclear Information System (INIS)

    Dwivedi, Neeraj; Kumar, Sushil; Malik, Hitendra K.

    2012-01-01

    Simple bilayer approach is proposed for synthesizing hard and superhard diamond-like carbon (DLC) coatings with reduced residual stress. For this, M/DLC bilayer (M = Ti and Cu) structures are grown using hybrid system involving radio frequency (RF)-sputtering and RF-plasma enhanced chemical vapor deposition techniques. Ti/DLC bilayer deposited at negative self bias of 100 V shows superhard behaviour with hardness (H) as 49 GPa. Cu/DLC bilayer grown at self bias of 100 V exhibits hard behaviour with H as 22.8 GPa. The hardness of Ti/DLC (Cu/DLC) bilayer gets changed from superhard (hard) to hard (moderate hard) regime, when the self bias is raised to 300 V. Residual stress in Ti/DLC (Cu/DLC) bilayer is found to be significantly low that varies in the range of 1 GPa-1.65 GPa (0.8 GPa-1.6 GPa). The microstructure and morphology are studied by Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). SEM and AFM pictures reveal the creation of nanostructured features in the deposited bilayers. Raman, SEM, and AFM analyses are correlated with the nano-mechanical properties. Owing to excellent nano-mechanical properties, these bilayers can find their direct industrial applications as hard and protective coatings.

  7. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    Science.gov (United States)

    Smietana, M.; Koba, M.; Mikulic, P.; Bock, W. J.

    2014-11-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs.

  8. Diamond MEMS: wafer scale processing, devices, and technology insertion

    Science.gov (United States)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  9. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  10. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    International Nuclear Information System (INIS)

    Hnaien, M.; Bourigua, S.; Bessueille, F.; Bausells, J.; Errachid, A.; Lagarde, F.; Jaffrezic-Renault, N.

    2011-01-01

    Highlights: ► We propose an impedimetric microbial biosensor for trichloroethylene detection. ► A new transducer modified with carbon nanotubes and Pseudomonas putida is evaluated. ► Functionalization steps are controlled by impedance spectroscopy and AFM. ► The biosensor offers good sensitivity, selectivity, linear range and stability. ► The biosensor is successfully applied to spiked natural water samples. - Abstract: Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently linked to anti-Pseudomonas antibodies. The different steps of microelectrodes functionalization were characterized by electrochemical impedance and atomic force spectroscopies, and analytical performances of the developed microbial biosensor were determined. The impedimetric biosensor response was linear with TCE concentration up to 150 μg L −1 and a low limit of detection (20 μg L −1 ) was achieved. No significant loss of signal was observed after 4 weeks of storage at 4 °C in phosphate buffer saline pH 7 (three to four measurements a week). After 5 weeks, 90% of the initial value still remained. cis-1,2-Dichloroethylene and vinylchloride, the main TCE degradation products, did not significantly interfere with TCE. The microbial sensor was finally applied to the determination of TCE in natural water samples spiked at the 30, 50 and 75 μg L −1 levels. Recoveries were very good, ranging from 100 to 103%.

  11. Illumination-induced charge transfer in polypyrrole-diamond nanosystem

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan; Kromka, Alexander; Ledinský, Martin; Rezek, Bohuslav

    2009-01-01

    Roč. 18, 5-8 (2009), s. 800-803 ISSN 0925-9635. [European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide /19./. Sitges, 07.09.2008-11.09.2008] R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond * polymers * heterojunction * electronic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  12. Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W.; Liu, E., E-mail: MEJLiu@ntu.edu.sg

    2011-10-10

    Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study. Highlights: {yields} DLC thin films were deposited on Si substrates via dc magnetron sputtering. {yields} Some DLC films were doped with N and/or Pt/Ru. {yields} The film corrosion behavior was studied in a Hank solution with polarization test. {yields} The PtRu-DLC film showed the highest corrosion potential among the films studied.

  13. Mechanical and electrical properties of diamond-like carbon films deposited by plasma source ion implantation

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.; Flege, S.; Ensinger, W.

    2009-01-01

    Diamond-like carbon (DLC) films were prepared by a plasma source ion implantation method with superposed negative pulse and negative DC voltage. Acetylene gas was used as working gas for plasma formation. A negative DC voltage and a negative pulse voltage were superposed and applied to the substrate holder. The DC voltage was changed in the range from 0 to -4.8 kV and the pulse voltage was changed from -18 to -13.2 kV. The films were annealed in the range of 200-450 deg. C for 1 h. The surface morphology of the films and the film thickness were observed by atomic force microscopy and scanning electron microscopy. The film structure was characterized by Raman spectroscopy. The hardness of DLC films was evaluated by an indentation method. Measurement of the electrical resistivity was performed using a four-point probe station. Furthermore, a ball-on-disc test with 2 N load was employed to obtain information about the friction properties and sliding wear resistance of the films. The surface of the DLC films was very smooth and featureless. The deposition rate was changed with the DC voltage and pulse conditions. Integrated intensity ratios I D /I G of Raman spectroscopy and electrical resistivity of the DLC films changed with DC voltage. The electrical resistivity decreased with increasing I D /I G ratio. The I D /I G ratio was increased and the electrical resistivity was decreased with annealing temperature owing to graphitization. Very low friction coefficients around 0.05 were obtained for as-deposited films.

  14. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    Science.gov (United States)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  15. Enhancement of diffraction efficiency of laminar-type diffraction gratings overcoated with diamond-like carbon (DLC) in soft x-ray region

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Masato, E-mail: koike.masato@jaea.go.jp; Imazono, Takashi [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 Japan (Japan); Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi [Device Dept., Shimadzu Corp., 1Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 Japan (Japan); Terauchi, Masami [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 Japan (Japan); Takahashi, Hideyuki [Science Equipment Sales Dept., JEOL Ltd., 2-1-1 Ohtemachi, Chiyoda-ku, Tokyo 100-0004 Japan (Japan); Notoya, Satoshi; Murano, Takanori [SA Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 Japan (Japan)

    2016-07-27

    Boron is the critical trace element in the production of high quality steel, creating a great demand for an efficient detection method of the B-K emission band at around 6.76 nm. To meet this demand we made a simulation study and obtained a practical method to improve the diffraction efficiency of metal-coated laminar-type gratings for a grazing incidence flat-field spectrograph by overcoating a sufficiently transparent high-density material. In the simulation the diffraction efficiency in a spectral region of 3.5-8.5 nm was computed for several combinations of overcoating materials and coating metals, with various thicknesses of the overcoating layer. The result obtained are: (1) the best overcoating material is high-density diamond-like carbon (DLC) having a density of 3.1 g/cm{sup 3}, (2) its optimum thickness is 24 nm at an angle of incidence of 87.0°, and (3) with this thickness the first-order diffraction efficiency is expected to reach 29.7 %, which well exceeds 15.6 % for Ni-coated (or 14.1 % for Au-coated) grating.

  16. Raman Scattering in a New Carbon Material

    Science.gov (United States)

    Voronov, O. A.; Street, K. W., Jr.

    2010-01-01

    Samples of a new carbon material, Diamonite-B, were fabricated under high pressure from a commercial carbon black--identified as mixed fullerenes. The new material is neither graphite-like nor diamond-like, but exhibits electrical properties close to graphite and mechanical properties close to diamond. The use of Raman spectroscopy to investigate the vibrational dynamics of this new carbon material and to provide structural characterization of its short-, medium- and long-range order is reported. We also provide the results of investigations of these samples by high-resolution electron microscopy and X-ray diffraction. Hardness, electrical conductivity, thermal conductivity and other properties of this new material are compared with synthetic graphite-like and diamond-like materials, two other phases of synthetic bulk carbon.

  17. AlTiN layer effect on mechanical properties of Ti-doped diamond-like carbon composite coatings

    International Nuclear Information System (INIS)

    Pang Xiaolu; Yang Huisheng; Gao Kewei; Wang Yanbin; Volinsky, Alex A.

    2011-01-01

    Ti/Ti-doped diamond-like carbon (DLC) and Ti/AlTiN/Ti-DLC composite coatings were deposited by magnetron sputtering on W18Cr4V high speed steel substrates. The effect of the AlTiN support layer on the properties of these composite coatings was investigated through microstructure and mechanical properties characterization, including hardness, elastic modulus, coefficient of friction and wear properties measured by scanning electron microscopy, Raman spectroscopy, scratch and ball-on-disk friction tests. Ti and AlTiN interlayers have a columnar structure with 50-80 nm grains. The hardness and elastic modulus of Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings is 25.9 ± 0.4, 222.2 ± 6.3 GPa and 19.3 ± 1, 205.6 ± 6.7 GPa, respectively. Adhesion of Ti-DLC, Ti/AlTiN/Ti-DLC and AlTiN/Ti-DLC coatings expressed as the critical lateral force is 26.5 N, 38.2 N, and 47.8 N, respectively. Substrate coefficient of friction without coatings is 0.44, and it is 0.1 for Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings. Wear resistance of Ti/AlTiN/Ti-DLC composite coatings is much higher than Ti/Ti-DLC coatings based on the wear track width of 169.8 and 73.2 μm, respectively, for the same experimental conditions.

  18. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  19. Structure, adhesive strength and electrochemical performance of nitrogen doped diamond-like carbon thin films deposited via DC magnetron sputtering.

    Science.gov (United States)

    Khun, N W; Liu, E; Krishna, M D

    2010-07-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-Si (100) substrates by DC magnetron sputtering with different nitrogen flow rates at a substrate temperature of about 100 degrees C. The chemical bonding structure of the films was characterized by X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The adhesive strength and surface morphology of the films were studied using micro-scratch tester and scanning electron microscope (SEM), respectively. The electrochemical performance of the films was evaluated by potentiodynamic polarization testing and linear sweep voltammetry. The electrolytes used for the electrochemical tests were deaerated and unstirred 0.47 M KCl aqueous solution for potentiodynamic polarization testing and 0.2 M KOH and 0.1 M KCl solutions for voltammetric analysis. It was found that the DLC:N films could well passivate the underlying substrates though the corrosion resistance of the films decreased with increased nitrogen content in the films. The DLC:N films showed wide potential windows in the KOH solution, in which the detection ability of the DLC:N films to trace lead of about 1 x 10(-3) M Pb(2+) was also tested.

  20. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles.

    Science.gov (United States)

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-12-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  1. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    Science.gov (United States)

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Ižák, Tibor; Vretenár, V.; Kozak, Halyna; Holovský, Jakub; Artemenko, Anna; Hulman, M.; Skákalová, V.; Lee, D. S.; Kromka, Alexander

    2016-01-01

    Roč. 111, Jan (2016), s. 54-61 ISSN 0008-6223 R&D Projects: GA ČR GC15-22102J; GA MŠk(CZ) 7AMB14SK037 Institutional support: RVO:68378271 Keywords : diamond * carbon nanotubes * spectroscopy * Raman * FTIR * XPS Subject RIV: JI - Composite Materials Impact factor: 6.337, year: 2016

  3. Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films

    International Nuclear Information System (INIS)

    Lee, Keunhee; Ki, Hyungson

    2016-01-01

    We report a laser-based method for directly fabricating large-area, transparent conductive films with customizable electrical resistance on glass. In this method, a diamond-like carbon (DLC) film is deposited first on a glass substrate by pulsed laser deposition, which is then annealed in a helium shielding environment by a 2 kW continuous-wave fiber laser with a wavelength of 1070 nm, which is transparent to glass but is absorbed by DLC to transform the amorphous carbons to graphene. When a 510 nm thick film was annealed at a scanning speed of 1 m/s by a 200 μm top-hat laser beam, the sp 3 fraction was decreased from 43.1% to 8.1% after the annealing process, and the transformed film showed a transparency of ∼80% (at 550 nm) and a sheet resistance of ∼2050 Ω/sq. We also showed that sheet resistance and transparency can be controlled by changing processing parameters. To show the scalability of the method, a 15 mm wide line beam was used to produce a 15 mm × 15 mm film. This method is simple, fully scalable, transfer-free and catalyst-free, and we believe that the fabricated films can have many applications with further research, such as transparent heating films, electromagnetic shielding films, and transparent electrodes.

  4. Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ru Lili; Huang Jianjun; Gao Liang; Qi Bing

    2010-01-01

    Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp 3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1 x 10 9 Ω · cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.

  5. Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale

    International Nuclear Information System (INIS)

    Kavan, Ladislav; Vlckova Zivcova, Zuzana; Petrak, Vaclav; Frank, Otakar; Janda, Pavel; Tarabkova, Hana; Nesladek, Milos; Mortet, Vincent

    2015-01-01

    Highlights: • B-doped diamond is nanostructured by corrosion-driven modifications occurring at carbonaceous impurity sites (sp 2 -carbons). • The electrochemical oxidation partly transforms a hydrogen-terminated diamond surface to O-terminated one, but the electrocatalytic activity of plasmatically O-terminated diamond is not achieved. • In contrast to all usual sp 2 carbons, the Raman spectra of B-doped diamond electrodes do not change upon electrochemical charging/discharging. - Abstract: Comparative studies of boron-doped diamonds electrodes (polycrystalline, single-crystalline, H-/O-terminated, and with different sp 3 /sp 2 ratios) indicate morphological modifications of diamond which are initiated by corrosion at nanoscale. In-situ electrochemical AFM imaging evidences that the textural changes start at non-diamond carbonaceous impurity sites treated at high positive potentials (>2.2 V vs. Ag/AgCl). The primary perturbations subsequently develop into sub-micron-sized craters. Raman spectroscopy shows that the primary erosion site is graphite-like (sp 2 -carbon), which is preferentially removed by anodic oxidation. Other non-diamond impurity, viz. tetrahedral amorphous carbon (t-aC), is less sensitive to oxidative decomposition. The diamond-related Raman features, including the B-doping-assigned modes, are intact during reversible electrochemical charging/discharging, which is a salient difference from all usual sp 2 -carbons. The electrochemical oxidation partly transforms a hydrogen-terminated diamond surface to O-terminated one, but the electrocatalytic activity of plasmatically O-terminated diamond is not achieved for a model redox couple, Fe 3+/2+ . Electrochemical impedance spectra were fitted to six different equivalent circuits. The determination of acceptor concentrations is feasible even for highly-doped diamond electrodes.

  6. Graphene-on-diamond devices with increased current-carrying capacity: carbon sp2-on-sp3 technology.

    Science.gov (United States)

    Yu, Jie; Liu, Guanxiong; Sumant, Anirudha V; Goyal, Vivek; Balandin, Alexander A

    2012-03-14

    Graphene demonstrated potential for practical applications owing to its excellent electronic and thermal properties. Typical graphene field-effect transistors and interconnects built on conventional SiO(2)/Si substrates reveal the breakdown current density on the order of 1 μA/nm(2) (i.e., 10(8) A/cm(2)), which is ~100× larger than the fundamental limit for the metals but still smaller than the maximum achieved in carbon nanotubes. We show that by replacing SiO(2) with synthetic diamond, one can substantially increase the current-carrying capacity of graphene to as high as ~18 μA/nm(2) even at ambient conditions. Our results indicate that graphene's current-induced breakdown is thermally activated. We also found that the current carrying capacity of graphene can be improved not only on the single-crystal diamond substrates but also on an inexpensive ultrananocrystalline diamond, which can be produced in a process compatible with a conventional Si technology. The latter was attributed to the decreased thermal resistance of the ultrananocrystalline diamond layer at elevated temperatures. The obtained results are important for graphene's applications in high-frequency transistors, interconnects, and transparent electrodes and can lead to the new planar sp(2)-on-sp(3) carbon-on-carbon technology. © 2012 American Chemical Society

  7. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Yue, Wen; Liu, Chunyue; Fu, Zhiqiang; Wang, Chengbiao; Huang, Haipeng; Liu, Jiajun

    2014-01-01

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS 2 . • Formation of MoO x resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  8. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  9. Catalytic growth of carbon nanowires on composite diamond/silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sellam, Amine [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Miska, Patrice [Université de Lorraine, Institut Jean Lamour, Département P2M (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Ghanbaja, Jaafar [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Barrat, Silvère, E-mail: Silvere.Barrat@ijl.nancy-universite.fr [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France)

    2014-01-01

    Polycrystalline diamond (PCD) films and carbon nanowires (CNWs) provide individually highly attractive properties for science and technology applications. The possibility of carbon composite materials made from a combination of these materials remains a potential approach widely discussed in literature but modestly investigated. We report in this work an early attempt to explore this opportunity in the light of some specific experimental considerations. Carbon nanowires (CNWs) are grown at low temperature without the conventional use of external hydrocarbon vapor source on silicon substrates partially covered by a thin film of coalesced micrometric CVD diamond. Composite substrates constituted by PCD on silicon were first cleaned with H{sub 2} plasma then used for the PVD deposition of 5 nm Ni thin films. Then, samples were heat treated in a CVD reactor at 580 °C in the presence of pure H{sub 2} pressure of 60 hPa at different annealing times. Comparative effect of annealing time on the dewetting of Ni thin films and the subsequent CNWs growth process was considered in this work using systematic observations by SEM. Possible mechanisms underlying CNWs growth in pure H{sub 2} gas were proposed. The nature and structure of these CNWs have been investigated by TEM microscopy and by Raman spectroscopy on the sample showing the highest CNWs density.

  10. Noble gas studies in vapor-growth diamonds: Comparison with shock-produced diamonds and the origin of diamonds in ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Junichi; Fukunaga, Kazuya; Ito, Keisuke (Kobe Univ. (Japan))

    1991-07-01

    The authors synthesized vapor-trowth diamonds by two kinds of Chemical Vapor Deposition (CVD) using microwave (MWCVD) and hot filament (HFCVD) ionization of gases, and examined elemental abundances and isotopic compositions of the noble gases trapped in the diamonds. It is remarkable that strong differences existed in the noble gas concentrations in the two kinds of CVD diamonds: large amounts of noble gases were trapped in the MWCVD diamonds, but not in the HFCVD diamonds. The heavy noble gases (Ar to Xe) in the MWCVD diamonds were highly fractionated compared with those in the ambient atmosphere, and are in good agreement with the calculated fractionation patterns for plasma at an electron temperature of 7,000-9,000 K. These results strongly suggest that the trapping mechanism of noble gases in CVD diamonds is ion implantation during diamond growth. The degrees of fractionation of heavy noble gases were also in good agreement with those in ureilites. The vapor-growth hypothesis is discussed in comparison with the impact-shock hypothesis as a better model for the origin of diamonds in ureilites. The diamond (and graphite, amorphous carbon, too) may have been deposited on early condensates such as Re, Ir, W, etc. This model explains the chemical features of vein material in ureilites; the refractory siderophile elements are enriched in carbon and noble gases and low in normal siderophiles. The vapor-growth model is also compatible with the oxygen isotopic data of ureilites which suggests that nebular processes are primarily responsible for the composition of ureilites.

  11. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    Science.gov (United States)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  12. Quantum chemical simulation of hydrogen like states in silicon and diamond

    International Nuclear Information System (INIS)

    Gel'fand, R.B.; Gordeev, V.A.; Gorelkinskij, Yu.V.

    1989-01-01

    The quantum-chemical methods of the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) are used to calculate the electronic structure of atomic hydrogen (muonium) located at different interstital sites of the silicon and diamond crystal lattices. The electronic g- and hyperfine interaction tensors of the impure atom are determined.The results obtained are compared with the experimental data on the 'normal' (Mu') and 'anomalous' (Mu * ) muonium centers as well as on the hydrogen-bearing Si-AA9 EPR center which is a hydrogen-bearing analogue of (Mu * ). The most likely localization sites for hydrogen (muonium) atoms in silicon and diamond crystals are established. 22 refs

  13. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    Science.gov (United States)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  14. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  15. Negative-ion production on carbon materials in hydrogen plasma : influence of the carbon hybridization state and the hydrogen content on H- yield

    NARCIS (Netherlands)

    Ahmad, A.; Pardanaud, C.; Carrère, M.; Layet, J.M.; Gicquel, A.; Kumar, P.; Eon, D.; Jaoul, C.; Engeln, R.A.H.; Cartry, G.

    2014-01-01

    Highly oriented polycrystalline graphite (HOPG), boron-doped diamond (BDD), nanocrystalline diamond, ultra-nanocrystalline diamond and diamond-like carbon surfaces are exposed to low-pressure hydrogen plasma in a 13.56 MHz plasma reactor. Relative yields of surface-produced H- ions due to

  16. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  17. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves

    2013-01-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  18. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Directory of Open Access Journals (Sweden)

    William de Melo Silva

    2013-06-01

    Full Text Available Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment.

  19. Friction mechanisms of silicon wafer and silicon wafer coated with diamond-like carbon film and two monolayers

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Yoon, Eui Sung; Han, Hung Gu; Kong, Ho Sung

    2006-01-01

    The friction behaviour of Si-wafer, Diamond-Like Carbon (DLC) and two Self-Assembled Monolayers(SAMs) namely DiMethylDiChlorosilane (DMDC) and DiPhenyl-DiChlorosilane (DPDC) coated on Si-wafer was studied under loading conditions in milli-Newton (mN) range. Experiments were performed using a ball-on-flat type reciprocating micro-tribo tester. Glass balls with various radii 0.25 mm, 0.5 mm and 1 mm were used. The applied normal load was in the range of 1.5 mN to 4.8 mN. Results showed that the friction increased with the applied normal load in the case of all the test materials. It was also observed that friction was affected by the ball size. Friction increased with the increase in the ball size in the case of Si-wafer. The SAMs also showed a similar trend, but had lower values of friction than those of Si-wafer. Interestingly, for DLC it was observed that friction decreased with the increase in the ball size. This distinct difference in the behavior of friction in DLC was attributed to the difference in the operating mechanism. It was observed that Si-wafer and DLC exhibited wear, whereas wear was absent in the SAMs. Observations showed that solid-solid adhesion was dominant in Si-wafer, while plowing in DLC. The wear in these two materials significantly influenced their friction. In the case of SAMs their friction behaviour was largely influenced by the nature of their molecular chains

  20. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  1. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi [Department of 702, Beihang University, Beijing (China); Li, Liuhe, E-mail: liliuhe@buaa.edu.cn [Department of 702, Beihang University, Beijing (China); Luo, Sida [Department of 702, Beihang University, Beijing (China); International Research Institute for Multidisciplinary Science, Beihang University, Beijing (China); Lu, Qiuyuan [Dong Feng Commercial Vehicle Technical Center, Dong Feng Commercial Vehicle Co., LTD, Wuhan (China); Gu, Jiabin; Lei, Ning [Department of 702, Beihang University, Beijing (China); Huo, Chunqin [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Guangdong (China)

    2017-01-30

    Highlights: • Effect of inner surface materials of tubes on plasma discharge is examined. • Electron mean free path is used to analyze the films deposition. • Secondary electrons emitted from inner surface of tube enhance plasma discharge. - Abstract: Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  2. Peculiarities of both light and beta-particles scattering by ultrathin diamond-like semiconductor film.

    Science.gov (United States)

    Rumyantsev, Vladimir V; Shtaerman, Esfir Y

    2008-02-01

    Peculiarities of scattering of TM-polarized light wave by a diamond-like crystalline nano-layer are studied. They are due to specific dispersion of n-phonon polaritons localized in the layer. The IR polaritons discussed here (relating to diamond and Si crystals which are nonpolar materials) will only appear if some of the vibration modes become polar, e.g., due to the presence of the surface. As a result of mixing of g- and u-modes of ion oscillations along the (111)-direction in the near-surface layer, it is possible to observe additional (with respect to bulk) scattering of coherent electromagnetic waves of the Stokes and anti-Stokes frequencies. beta-particles can be utilized as an independent tool of study of new semiconductors, in particular thin diamond films. The effect associated with response of a quasi-two-dimensional diamond-like layer to the moving electron field is considered. beta-particle field induces phonon excitation modes to arise in the material. Coupled with the beta-particle electromagnetic modes they generate polaritons. Spectral density of the radiation intensity of the flashed phonon polaritons has been estimated as a function of the layer thickness as well as of the scattering angle and the beta-particle velocity.

  3. A nanoporous alumina microelectrode array for functional cell–chip coupling

    International Nuclear Information System (INIS)

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-01-01

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. (paper)

  4. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    Science.gov (United States)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  5. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  6. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    International Nuclear Information System (INIS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-01-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO 3 2− ) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl 6 2− ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m 2 g −1 ), good catalytic activity (1.2 A mg −1 ), high current density (20.0 mA cm −2 ), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells. (paper)

  7. Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications.

    Science.gov (United States)

    Garrett, David J; Ganesan, Kumaravelu; Stacey, Alastair; Fox, Kate; Meffin, Hamish; Prawer, Steven

    2012-02-01

    Diamond is well known to possess many favourable qualities for implantation into living tissue including biocompatibility, biostability, and for some applications hardness. However, conducting diamond has not, to date, been exploited in neural stimulation electrodes due to very low electrochemical double layer capacitance values that have been previously reported. Here we present electrochemical characterization of ultra-nanocrystalline diamond electrodes grown in the presence of nitrogen (N-UNCD) that exhibit charge injection capacity values as high as 163 µC cm(-2) indicating that N-UNCD is a viable material for microelectrode fabrication. Furthermore, we show that the maximum charge injection of N-UNCD can be increased by tailoring growth conditions and by subsequent electrochemical activation. For applications requiring yet higher charge injection, we show that N-UNCD electrodes can be readily metalized with platinum or iridium, further increasing charge injection capacity. Using such materials an implantable neural stimulation device fabricated from a single piece of bio-permanent material becomes feasible. This has significant advantages in terms of the physical stability and hermeticity of a long-term bionic implant.

  8. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines

    DEFF Research Database (Denmark)

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz

    2015-01-01

    carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied...... carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells...

  9. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.] [Lawrence Berkeley National Lab., CA (United States); Scherson, D. [ed.] [Case Western Reserve Univ., Cleveland, OH (United States)

    1998-02-01

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  10. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  11. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Tasdemir, H., E-mail: habdullah46@gmail.com [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mabuchi, Yutaka [Nissan Motor Co. (Japan)

    2014-07-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  12. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    International Nuclear Information System (INIS)

    Abdullah Tasdemir, H.; Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu; Mabuchi, Yutaka

    2014-01-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  13. Comparison of the surface properties of DLC and ultrananocrystalline diamond films with respect to their bio-applications

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Voss, A.; Kocourek, Tomáš; Mozafari, M.; Vymětalová, V.; Zezulová, Markéta; Písařík, Petr; Kotzianová, A.; Popov, C.; Mikšovský, Jan

    2014-01-01

    Roč. 210, č. 10 (2014), 2106-2110 ISSN 1862-6300 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : antibacterial tests * diamond-like carbon * surface properties * ultrananocrystalline diamond films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.616, year: 2014

  14. Band-type microelectrodes for amperometric immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ga-Yeon; Chang, Young Wook; Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kang, Min-Jung [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-07-20

    A band-type microelectrode was made using a parylene-N film as a passivation layer. A circular-type, mm-scale electrode with the same diameter as the band-type microelectrode was also made with an electrode area that was 5000 times larger than the band-type microelectrode. By comparing the amperometric signals of 3,5,3′,5′-tetramethylbenzidine (TMB) samples at different optical density (OD) values, the band-type microelectrode was determined to be 9 times more sensitive than the circular-type electrode. The properties of the circular-type and the band-type electrodes (e.g., the shape of their cyclic voltammograms, the type of diffusion layer used, and the diffusion layer thickness per unit electrode area) were characterized according to their electrode area using the COMSOL Multiphysics software. From these simulations, the band-type electrode was estimated to have the conventional microelectrode properties, even when the electrode area was 100 times larger than a conventional circular-type electrode. These results show that both the geometry and the area of an electrode can influence the properties of the electrode. Finally, amperometric analysis based on a band-type electrode was applied to commercial ELISA kits to analyze human hepatitis B surface antigen (hHBsAg) and human immunodeficiency virus (HIV) antibodies. - Highlights: • A band-type microelectrode was made using a parylene-N film as a passivation layer. • The band-type microelectrode was 14-times more sensitive than circular-type electrode. • The influence of geometry on microelectrode properties was simulated using COMSOL. • The band-type electrode was applied to ELISA kits for hHBsAg and hHIV-antibodies.

  15. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    International Nuclear Information System (INIS)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-01-01

    Ultrathin ( and lt; 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in(sup 2). These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested

  16. Desenvolvimento de superfícies com filmes de "Diamond-Like Carbon" com adesão melhorada e baixo coeficiente de atrito aplicáveis em conformação mecânica

    OpenAIRE

    Adão Felipe Oliveira Skonieski

    2013-01-01

    Diamond-like carbon (DLC) é um tipo de carbono amorfo (a-C), ou carbono amorfo hidrogenado (a-C:H), com uma alta fração de carbono com ligações sp3. Filmes de DLC vêm sendo estudados com atenção considerável devido as suas características únicas como alta dureza, baixo coeficiente de atrito (em geral menor que 0,2) bem como sua resistência à corrosão e comportamento hidrofóbico. Mesmo que filmes DLC tenham uma larga gama de aplicações, a melhoria da adesão entre o filme e o substrato é uma qu...

  17. Tl and OSL dosimetry of diamond films CVD pure and unpurified with boron-carbon

    International Nuclear Information System (INIS)

    Melendrez, R.; Pedroza M, M.; Chernov, V.; Ochoa N, J.D.; Bernal, R.; Barboza F, M.; Castaneda, B.; Goncalves, J.A.N.; Sandonato, G.M.; Cruz Z, E.; Preciado F, S.; Cruz V, C.; Brown, F.; Schreck, M.

    2004-01-01

    The diamond is a material that possesses extreme physical properties, such as its hardness to the radiation, its low chemical reactivity besides its equivalence to the human tissue, which qualify him as an ideal material for radiation dosimetry. In this work, it was studied the thermal and optically stimulated response (Tl and OSL) of polycrystalline diamond films grown by the technique of CVD pure and contaminated with Boron-carbon (B/C) with the intention of characterizing their efficiency like a dosemeter for radiation in a range of 0 - 3000 Gy. For the case of the films without impurities, the Tl curve presents four main peaks, two of them in an interval of temperatures of 150-200 C and other two additional around of 250-400 C. The dependence of the response of integrated Tl and that of OSL always maintained a lineal relationship with the exhibition dose up to 100 Gy. The behavior of the films contaminated with B/C (2000 - 20000 ppm) was established through experiments that involved the signal of OSL and their relationship with the Tl response. It was found that this processes are correlated, since the electrons caught in the traps of low temperature (50 - 250 C) of the Tl they are the electrons that recombining with more probability to provide the signal of OSL. According to these results it is possible to propose the diamond films as a good candidate for dosimetry to, using the traditional technique of Tl so much as well as the but recent of OSL. (Author)

  18. Undoped CVD diamond films for electrochemical applications

    International Nuclear Information System (INIS)

    Mosinska, Lidia; Fabisiak, Kazimierz; Paprocki, Kazimierz; Kowalska, Magdalena; Popielarski, Pawel; Szybowicz, Miroslaw

    2013-01-01

    By using different deposition conditions, the CVD diamond films with different qualities and orientation were grown by the hot-filament CVD technique. The object of this article is to summarize and discuss relation between structural, physical and electrochemical properties of different diamond electrodes. The physical properties of the Hot Filament CVD microcrystalline diamond films are analyzed by scanning electron microscopy and Raman spectroscopy. In presented studies two different electrodes were used of the diamond grain sizes around 200 nm and 10 μm, as it was estimated from SEM picture. The diamond layers quality was checked on basis of FWHM (Full width at Half Maximum) of 1332 cm −1 diamond Raman peak. The ratio of sp 3 /sp 2 carbon bonds was determined by 1550 cm −1 G band and 1350 cm −1 D band in the Raman spectrum. The electrochemical properties were analyzed using (CV) cyclic voltammetry measurements in aqueous solutions. The sensitivity of undoped diamond electrodes depends strongly on diamond film quality and concentration of amorphous carbon phase in the diamond layer

  19. Failure Mechanisms of a Gold Microelectrode in Bioelectronics Applications

    Directory of Open Access Journals (Sweden)

    Jonghun Kim

    2015-01-01

    Full Text Available The generation, growth, and collapse of tiny bubbles are inevitable for a microelectrode working in aqueous environment, thus resulting in physical damages on the microelectrode. The failure mechanisms of a microelectrode induced by tiny bubble collapsing are investigated by generating tiny hydrogen bubbles on a gold microelectrode through deionized water electrolysis. The surface of the microelectrode is modified with a thiol-functionalized arginine-glycine-aspartic acid peptide to generate perfectly spherical bubbles in proximity of the surface. The failure of an Au microelectrode is governed by two damage mechanisms, depending on the thickness of the microelectrode: a water-hammer pressure due to the violent collapse of a single large bubble, formed through merging of small bubbles, for ultrathin Au microelectrodes of 40–60 nm in thickness, and an energy accumulation resulting from the repetitive collapse of tiny bubbles for thick Au microelectrodes of 100–120 nm.

  20. Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility

    International Nuclear Information System (INIS)

    Mochizuki, Akira; Ogawa, Tatsuhisa; Okamoto, Keishi; Nakatani, Tatsuyuki; Nitta, Yuki

    2011-01-01

    From the knowledge that zwitterion-type polymers show good blood compatibility, the introduction of both cationic and anionic functional groups onto diamond-like carbon (DLC) surface is expected to improve blood compatibility. Thus, DLC films were treated with oxygen and ammonia gas plasmas. The surfaces were characterized in terms of chemical composition by XPS, contact angle, and zeta potential. XPS analysis showed the introductions of a carboxyl group by oxygen plasma treatment and nitrogen atoms by ammonia plasma treatment. The evaluation of blood compatibility for the DLC surfaces was carried out in terms of platelets and the coagulation system. Excellent improvement of platelet compatibility was observed by the treatment with the gas plasmas, regardless of the plasma species. As for the compatibility with the coagulation system, DLC surfaces with a high concentration of carboxyl groups (COOH) markedly activated the system via the intrinsic pathway. However, the surfaces treated with ammonia plasma did not activate the system even though they had high COOH concentration. Measurement of the zeta potential revealed that the ammonia plasma treatment raised the potential from a negative value to a positive one. Though the introduction of amino groups to the surface was not detected directly, the treatment of ammonia plasma changed the electrical state of the DLC surface having COOH group, causing a difference in blood compatibility among the DLCs obtained by various plasma conditions.

  1. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    Science.gov (United States)

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. (c) 2008 Wiley Periodicals, Inc.

  2. Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties

    International Nuclear Information System (INIS)

    Shalini, Jayakumar; Lin, Yi-Chieh; Chang, Ting-Hsun; Sankaran, Kamatchi Jothiramalingam; Chen, Huang-Chin; Lin, I.-Nan; Lee, Chi-Young; Tai, Nyan-Hwa

    2013-01-01

    The effects of N 2 incorporation in Ar/CH 4 plasma on the electrochemical properties and microstructure of ultra-nanocrystalline diamond (UNCD) films are reported. While the electrical conductivity of the films increased monotonously with increasing N 2 content (up to 25%) in the plasma, the electrochemical behavior was optimized for UNCD films grown in (Ar–10% N 2 )/CH 4 plasma. Transmission electron microscopy showed that the main factor resulting in high conductivity in the films was the formation of needle-like nanodiamond grains and the induction graphite layer encapsulating these grains. The electrochemical process for N 2 -incorporated UNCD films can readily be activated due to the presence of nanographite along the grain boundaries of the films. The formation of needle-like diamond grains was presumably due to the presence of CN species that adhered to the existing nanodiamond clusters, which suppressed radial growth of the nanodiamond crystals, promoting anisotropic growth and the formation of needle-like nanodiamond. The N 2 -incorporated UNCD films outperformed other electrochemical electrode materials, such as boron-doped diamond and glassy carbon, in that the UNCD electrodes could sense dopamine, urea, and ascorbic acid simultaneously in the same mixture with clear resolution

  3. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, we made prototype sliding bearings from functionally-graded, diamond-coated carbon-fiber reinforced composite. In dry-sliding experiments, the friction...

  4. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    Science.gov (United States)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  5. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  6. Thermal stability of diamond-like carbon–MoS{sub 2} thin films in different environments

    Energy Technology Data Exchange (ETDEWEB)

    Niakan, H., E-mail: hamid.niakan@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y. [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Szpunar, J.A.; Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada)

    2014-07-01

    Diamond-like carbon (DLC) based coatings are ideal for low friction and wear resistant applications. For those tribological applications, the coatings may expose to high temperature environments. Therefore, the thermal stability of the coating is very important for its long-term performance. In this work, DLC–MoS{sub 2} composite thin films were synthesized using biased target ion beam deposition technique in which MoS{sub 2} was produced by sputtering a MoS{sub 2} target using Ar ion beams while DLC was deposited by an ion source with CH{sub 4} gas as carbon source. DLC films without MoS{sub 2} deposited under similar conditions were used as reference samples. After the deposition, DLC and DLC–MoS{sub 2} thin films were heat-treated in ambient air and low pressure environments at different temperatures ranging from 100 to 600 °C for 2 h. The effect of annealing on the structure, mechanical and tribological properties of the resulting films were studied by means of Raman spectroscopy, X-ray absorption near edge structure, scanning electron microscopy, nanoindentation, and ball-on-disk testing. The results showed that the structure, hardness, Young's modulus, friction coefficient and wear coefficient of the DLC films were stable up to 200 °C annealing in air and 300 °C in low pressure. At higher temperature, the annealing led to the transformation of sp{sup 3} to sp{sup 2}, which degraded the mechanical and tribological properties of the thin films. Comparing with the DLC films, the DLC–MoS{sub 2} thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability. - Highlights: • Thermal stability of diamond-like carbon (DLC) and DLC–MoS{sub 2} films were evaluated. • DLC–MoS{sub 2} films can be synthesized by biased target ion beam deposition technique. • Comparing with DLC films, the DLC–MoS{sub 2} thin films showed higher

  7. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  8. Nucleation of diamond by pure carbon ion bombardment--a transmission electron microscopy study

    International Nuclear Information System (INIS)

    Yao, Y.; Liao, M.Y.; Wang, Z.G.; Lifshitz, Y.; Lee, S.

    2005-01-01

    A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 deg. C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht et al. [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model

  9. Pyrolytic carbon microelectrodes for impedance based cell sensing

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2016-01-01

    Electrically conductive glass-like carbon structures can be obtained from a polymer template through a pyrolysis process. These structures can be used as electrodes for bio sensing applications such as electrochemical evaluation of cell adhesion and proliferation. This study focuses on the optimi...... to decrease the resistivity of the resulting carbon material and improve the performance in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Finally, EIS was used to monitor adhesion and proliferation of HeLa cells....

  10. On Interlayer Stability and High-Cycle Simulator Performance of Diamond-Like Carbon Layers for Articulating Joint Replacements

    Directory of Open Access Journals (Sweden)

    Kerstin Thorwarth

    2014-06-01

    Full Text Available Diamond like carbon (DLC coatings have been proven to be an excellent choice for wear reduction in many technical applications. However, for successful adaption to the orthopaedic field, layer performance, stability and adhesion in physiologically relevant setups are crucial and not consistently investigated. In vitro wear testing as well as adequate corrosion tests of interfaces and interlayers are of great importance to verify the long term stability of DLC coated load bearing implants in the human body. DLC coatings were deposited on articulating lumbar spinal disks made of CoCr28Mo6 biomedical implant alloy using a plasma-activated chemical vapor deposition (PACVD process. As an adhesion promoting interlayer, tantalum films were deposited by magnetron sputtering. Wear tests of coated and uncoated implants were performed in physiological solution up to a maximum of 101 million articulation cycles with an amplitude of ±2° and −3/+6° in successive intervals at a preload of 1200 N. The implants were characterized by gravimetry, inductively coupled plasma optical emission spectrometry (ICP-OES and cross section scanning electron microscopy (SEM analysis. It is shown that DLC coated surfaces with uncontaminated tantalum interlayers perform very well and no corrosive or mechanical failure could be observed. This also holds true in tests featuring overload and third-body wear by cortical bone chips present in the bearing pairs. Regarding the interlayer tolerance towards interlayer contamination (oxygen, limits for initiation of potential failure modes were established. It was found that mechanical failure is the most critical aspect and this mode is hypothetically linked to the α-β tantalum phase switch induced by increasing oxygen levels as observed by X-ray diffraction (XRD. It is concluded that DLC coatings are a feasible candidate for near zero wear articulations on implants, potentially even surpassing the performance of ceramic vs

  11. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings

    International Nuclear Information System (INIS)

    Xie, Z.W.; Wang, L.P.; Wang, X.F.; Huang, L.; Lu, Y.; Yan, J.C.

    2011-01-01

    Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si 3 N 4 , a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 °C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 °C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 °C has a similar friction coefficient to the as-deposited coating.

  12. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghane-Motlagh, Bahareh, E-mail: bahar.ghane@gmail.com [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada); Javanbakht, Taraneh; Shoghi, Fatemeh; Wilkinson, Kevin J.; Martel, Richard [Department of Chemistry, University of Montreal, QC H3C 3J7 (Canada); Sawan, Mohamad [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada)

    2016-11-01

    Silicon micromachined neural electrode arrays, which act as an interface between bioelectronic devices and neural tissues, play an important role in chronic implants, in vivo. The biological compatibility of chronic microelectrode arrays (MEA) is an essential factor that must be taken into account in their design and fabrication. In order to improve biocompatibility of the MEAs, the surface of the electrodes was coated with polyethylene glycol (PEG) and parylene-C, which are biocompatible polymers. An in vitro study was performed to test the capacity of poly-D-lysine (PDL) to improve neural-cell adhesion and proliferation. Increased proliferation of the neuroblast cells on the microelectrodes was observed in the presence of the PDL. The presence of the peptide on the electrode surface was confirmed using Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). The impedance of the electrodes was not changed significantly before and after PDL deposition. Mouse neuroblast cells were seeded and cultured on the PDL coated and uncoated neural MEAs with different tip-coatings such as platinum, molybdenum, gold, sputtered iridium oxide, and carbon nanotubes. The neuroblast cells grew preferentially on and around peptide coated-microelectrode tips, as compared to the uncoated microelectrodes. - Highlights: • A novel high-density microelectrode array (MEA) for intracortical 3D recording and stimulation was designed and fabricated. • In order to improve neural-cell adhesion and proliferation, the surface of the electrodes was coated with poly-D-lysine (PDL). • An in vitro study was performed to test the capacity of PDL to improve cell adhesion and proliferation. • The neuroblast cells grew preferentially on peptide-coated microelectrode tips compared to the uncoated microelectrodes.

  13. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  14. Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2

    International Nuclear Information System (INIS)

    Cheng, C H; Yang, Y; Munroe, P; Zhao, Y

    2007-01-01

    Doping effects of nano-diamond and carbon nanotubes (CNTs) on critical current density of bulk MgB 2 have been studied. CNTs are found prone to be doped into the MgB 2 lattice whereas nano-diamond tends to form second-phase inclusions in the MgB 2 matrix, leading to a more significant improvement of J c (H) by doping by nano-diamond than by CNTs in MgB 2 . TEM reveals tightly packed MgB 2 nanograins (50-100 nm) with a dense distribution of diamond nanoparticles (10-20 nm) inside MgB 2 grains in nano-diamond-doped samples. Such a unique microstructure leads to a flux pinning behaviour different from that in CNTs-doped MgB 2

  15. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Simič, R. [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia)

    2013-04-15

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  16. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    International Nuclear Information System (INIS)

    Kalin, M.; Simič, R.

    2013-01-01

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  17. Coating dental implant abutment screws with diamondlike carbon doped with diamond nanoparticles: the effect on maintaining torque after mechanical cycling.

    Science.gov (United States)

    Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette

    2015-01-01

    To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.

  18. A novel combinational pH-PCO2 microelectrode.

    Science.gov (United States)

    Rao, X; Ma, Y

    1993-07-01

    A novel combinational pH-PCO2 microelectrode based on a neutral carrier hydrogen ion exchanger is described. It is easy to fabricate and allows pH and PCO2 to be measured simultaneously. The microelectrode has a 5-microns tip. The PCO2 microelectrode exhibits a linear response in the range 1.75 x 10(-5)-10(-2) mol/liter with a Nernstian slope of 57.0 mV/decade at 25 degrees C. The detection limit is 10(-5) mol/liter. The pH microelectrode exhibits a linear response in the range pH 4-12 with a Nernstian slope of 60.0 mV/decade at 25 degrees C. The 95% steady-state response time of the PCO2 microelectrode is about 2 min, while it is about 10 s for pH microelectrode. The electromotive force drift is 4.3 mV/h (PCO2) and 2.6 mV/h (pH), respectively. The lifetime is 3 to 4 days. The microelectrode can measure pH and PCO2 in body fluids simultaneously with satisfactory results. It is also a good basic electrode for enzyme microelectrolysis.

  19. Carbon based prosthetic devices

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  20. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Hoffman, A.; Heiman, A.; Akhvlediani, R.; Lakin, E.; Zolotoyabko, E.; Cyterman, C.

    2003-01-01

    Nanocrystalline carbon films possessing a prevailing diamond or graphite character, depending on substrate temperature, can be deposited from a methane hydrogen mixture by the direct current glow discharge plasma chemical vapor deposition method. While at a temperature of ∼880 deg. C, following the formation of a thin precursor graphitic film, diamond nucleation occurs and a nanodiamond film grows, at higher and lower deposition temperatures the films maintain their graphitic character. In this study the hydrogen content, density and nanocrystalline phase composition of films deposited at various temperatures are investigated. We aim to elucidate the role of hydrogen in nanocrystalline films with a predominant diamond character. Secondary ion mass spectroscopy revealed a considerable increase of the hydrogen concentration in the films that accompanies the growth of nanodiamond. It correlates with near edge x-ray adsorption spectroscopy measurements, that showed an appearance of spectroscopic features associated with the diamond structure, and with a substantial increase of the film density detected by x-ray reflectivity. Electron energy loss spectroscopy showed that nanocrystalline diamond films can be deposited from a CH 4 /H 2 mixture with hydrogen concentration in the 80%-95% range. For a deposition temperature of 880 deg. C, the highest diamond character of the films was found for a hydrogen concentration of 91% of H 2 . The deposition temperature plays an important role in diamond formation, strongly influencing the content of adsorbed hydrogen with an optimum at 880 deg. C. It is suggested that diamond nucleation and growth of the nanodiamond phase is driven by densification of the deposited graphitic films which results in high local compressive stresses. Nanodiamond formation is accompanied by an increase of hydrogen concentration in the films. It is suggested that hydrogen retention is critical for stabilization of nanodiamond crystallites. At lower

  1. A sandwich-like differential B-dot based on EACVD polycrystalline diamond slice

    Science.gov (United States)

    Xu, P.; Yu, Y.; Xu, L.; Zhou, H. Y.; Qiu, C. J.

    2018-06-01

    In this article, we present a method of mass production of a standardized high-performance differential B-dot magnetic probe together with the magnetic field measurement in a pulsed current device with the current up to hundreds of kilo-Amperes. A polycrystalline diamond slice produced in an Electron Assisted Chemical Vapor Deposition device is used as the base and insulating material to imprint two symmetric differential loops for the magnetic field measurement. The SP3 carbon bond in the cubic lattice structure of diamond is confirmed by Raman spectra. The thickness of this slice is 20 μm. A gold loop is imprinted onto each surface of the slice by using the photolithography technique. The inner diameter, width, and thickness of each loop are 0.8 mm, 50 μm, and 1 μm, respectively. It provides a way of measuring the pulsed magnetic field with a high spatial and temporal resolution, especially in limited space. This differential magnetic probe has demonstrated a very good common-mode rejection rate through the pulsed magnetic field measurement.

  2. Diamond-like carbon coatings on a CoCrMo implant alloy: A detailed XPS analysis of the chemical states at the interface

    International Nuclear Information System (INIS)

    Mueller, U.; Falub, C.V.; Thorwarth, G.; Voisard, C.; Hauert, R.

    2011-01-01

    Low friction and wear resistant coatings have a long history of successful applications in industry. It has long been hoped that these coatings, especially diamond-like carbon (DLC), could also be used successfully in load-bearing joint implants, extending implant life time considerably. However, despite several medical studies carried out so far, no regular DLC-coated implants are available on the market. In most cases, failure was due to insufficient long-term stability of the adhesion of such coatings on implants in vivo. That is because introducing a coated implant not only brings the coating into contact with the body environment but also the interface that controls the adhesion. This usually reactively formed interface must be considered to be at least one additional material which must be not only biocompatible, but also unsusceptible to corrosive attack. The aim of this paper is to analyze in detail the interface, i.e., the transition region between the substrate and the coating. This knowledge is necessary in order to find the right measures to ensure the long-term stability of the adhesion. Results for DLC coatings on a cobalt-chromium-molybdenum alloy are presented. It is shown that a very thin interface layer is formed, with the alloy on one side and the carbon film on the other side. This layer consists of a mixture of carbides from all the metals of the base material. This result is obtained by means of measuring depth profiles using X-ray photoelectron spectroscopy because these spectra yield not only the chemical composition of the interface but a detailed analysis provides information on the chemical states across the interface.

  3. Cyclic voltammetry response of an undoped CVD diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fabisiak, K., E-mail: kfab@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Torz-Piotrowska, R. [Faculty of Chemical Technology and Engineering, UTLS Seminaryjna 3, 85-326 Bydgoszcz (Poland); Staryga, E. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Paprocki, K.; Popielarski, P.; Bylicki, F. [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Wrzyszczynski, A. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Correlation was found between diamond quality and its electrochemical performance. Black-Right-Pointing-Pointer The electrode sensitivity depends on the content of sp{sup 2} carbon phase in diamond layer. Black-Right-Pointing-Pointer The sp{sup 2} carbon phase content has little influence on the CV peak separation ({Delta}E{sub p}). - Abstract: The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide-ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance.

  4. The best features of diamond nanothread for nanofibre applications.

    Science.gov (United States)

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B C; Gu, Yuantong

    2017-03-17

    Carbon fibres have attracted interest from both the scientific and engineering communities due to their outstanding physical properties. Here we report that recently synthesized ultrathin diamond nanothread not only possesses excellent torsional deformation capability, but also excellent interfacial load-transfer efficiency. Compared with (10,10) carbon nanotube bundles, the flattening of nanotubes is not observed in diamond nanothread bundles, which leads to a high-torsional elastic limit that is almost three times higher. Pull-out tests reveal that the diamond nanothread bundle has an interface transfer load of more than twice that of the carbon nanotube bundle, corresponding to an order of magnitude higher in terms of the interfacial shear strength. Such high load-transfer efficiency is attributed to the strong mechanical interlocking effect at the interface. These intriguing features suggest that diamond nanothread could be an excellent candidate for constructing next-generation carbon fibres.

  5. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  6. Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates

    International Nuclear Information System (INIS)

    Zhang Dongcan; Shen Bin; Sun Fanghong

    2010-01-01

    The tribological behaviors of diamond and diamond-like carbon (DLC) films play a major role on their machining and mechanical applications. In this study, diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode, and their friction properties are evaluated on a reciprocating ball-on-plate tribometer with counterfaces of silicon nitride (Si 3 N 4 ) ceramic, cemented tungsten carbide (WC) and ball-bearing steel materials, under the ambient air without lubricating condition. Moreover, to evaluate their cutting performance, comparative turning tests are conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The as-deposited HFCVD diamond and DLC films are characterized with energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and 3D surface topography based on white-light interferometry. Furthermore, Rocwell C indentation tests are conducted to evaluate the adhesion of HFCVD diamond and DLC films grown onto WC-Co substrates. SEM and 3D surface topography based on white-light interferometry are also used to investigate the worn region on the surfaces of diamond and DLC films. The friction tests suggest that the obtained friction coefficient curves that of various contacts exhibit similar evolution tendency. For a given counterface, DLC films present lower stable friction coefficients than HFCVD diamond films under the same sliding conditions. The cutting tests results indicate that flank wear of the HFCVD diamond coated insert is lower than that of DLC coated insert before diamond films peeling off.

  7. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    Carbon nanostructures, especially carbon nanotubes (CNTs), have been envisaged to be the building blocks of a variety of nanoscale devices and materials. The inherent nanometer-size and ability of being either metallic or semiconductive of CNTs lead to their application in nanoelectronics. Excellent mechanical characteristics of CNTs suggest their use as structural reinforcements. However, to fully exploit the potential applications, effective means of tailoring CNT properties must be developed. Irradiation of materials with energetic particles beams (ions and electrons) is a standard and important tool for modifying material properties. Irradiation makes it possible to dope the samples, to create local amorphous region or vice versa, recrystallize the lattice and even drive a phase transition. In this paper, we report our results of (1) phase transfromation from carbon nanotubes to nanocrystalline diamond driven by hydrogen plasma, (2) onion-like nanostructure from carbon nanotubes driven by ion beams of several tens keV, and (3) amorphous carbon nanowire network formation by ion beam irradiation. Structural phase transformation from multiwalled carbon nanotubes to nanocrystalline diamond by hydrogen plasma post-treatment was carried out. Ultrahigh equivalent diamond nucleation density of more than 1011 nuclei/cm 2 was obtained. The diamond formation and growth mechanisms were proposed to be the consequence of the formation of sp3 bonded amorphous carbon clusters. The hydrogen chemisorption on curved graphite network and the energy deposited on CNTs by continuous impingement of activated molecular or atomic hydrogen are responsible for the formation of amorphous carbon matrix. Diamond nucleates and grows in the way similar to that of diamond chemical vapor deposition processes on amorphous carbon films. Furthermore, single crystalline diamond nanorods of 4-8 nm in diameter and up to 200 nm in length have been successfully synthesized by hydrogen plasma post

  8. Ion implantation and diamond-like coatings of aluminum alloys

    Science.gov (United States)

    Malaczynski, G. W.; Hamdi, A. H.; Elmoursi, A. A.; Qiu, X.

    1997-04-01

    In an attempt to increase the wear resistance of some key automotive components, General Motors Research and Development Center initiated a study to determine the potential of surface modification as a means of improving the tribological properties of automotive parts, and to investigate the feasibility of mass producing such parts. This paper describes the plasma immersion ion implantation system that was designed for the study of various options for surface treatment, and it discusses bench testing procedures used for evaluating the surface-treated samples. In particular, both tribological and microstructural analyses are discussed for nitrogen implants and diamond-like hydrocarbon coatings of some aluminum alloys.

  9. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    International Nuclear Information System (INIS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-01-01

    Highlights: • Diamond-like carbon films with Al and Cr doping were deposited. • Alternate multilayered structure consisted of Al-poor layer and Al-rich layer was formed. • The periodic Al-rich layers can greatly improve the residual stress and elastic resilience of the films. - Abstract: DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C 2 H 2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C 2 H 2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C 2 H 2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C 2 H 2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus

  10. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.

    Science.gov (United States)

    Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan

    2015-06-17

    In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  11. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses

    Directory of Open Access Journals (Sweden)

    Sangmin Lee

    2015-06-01

    Full Text Available In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  12. Operation of microstrip gas chambers manufactured on glass coated with high resistivity diamond-like layers

    CERN Document Server

    Boimska, B; Dominik, Wojciech; Hoch, M; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe recent observations and measurements realized with micro-strip gas chambers (MSGCs) manufactured on boro-silicate glass coated with a thin layer of diamond-like carbon (DLC) having a surface resistivity around 4.10$^{16}\\Omega/\\Box$. The role of the back-pla electrode configuration and potential in the detector performance has been studied. Even for this very high resistivity of the coatings, MSGCs operate differently from those manufactured on bare boro-silicate glass; the charge gain increases with the radiation flux for counting rates above 103 Hz/mm2, reaching a value 60% higher for 105 Hz/mm2. This behavior does not depend on the presence and potential of the back plane electrode; however, both maximum gain and rate capability are influenced by the drift field. From this study, compared with measurements realized previously with other detectors, we deduce that for stable high rate operation of MSGCs the resistivity of the coating should not exceed ~10$^{15}\\Omega/\\Box$.

  13. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction

    Science.gov (United States)

    de Barros Bouchet, Maria Isabel; Martin, Jean Michel; Avila, José; Kano, Makoto; Yoshida, Kentaro; Tsuruda, Takeshi; Bai, Shandan; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji; Asensio, Maria C.

    2017-04-01

    The achievement of the superlubricity regime, with a friction coefficient below 0.01, is the Holy Grail of many tribological applications, with the potential to have a remarkable impact on economic and environmental issues. Based on a combined high-resolution photoemission and soft X-ray absorption study, we report that superlubricity can be realized for engineering applications in bearing steel coated with ultra-smooth tetrahedral amorphous carbon (ta-C) under oleic acid lubrication. The results show that tribochemical reactions promoted by the oil lubrication generate strong structural changes in the carbon hybridization of the ta-C hydrogen-free carbon, with initially high sp3 content. Interestingly, the macroscopic superlow friction regime of moving mechanical assemblies coated with ta-C can be attributed to a few partially oxidized graphene-like sheets, with a thickness of not more than 1 nm, formed at the surface inside the wear scar. The sp2 planar carbon and oxygen-derived species are the hallmark of these mesoscopic surface structures created on top of colliding asperities as a result of the tribochemical reactions induced by the oleic acid lubrication. Atomistic simulations elucidate the tribo-formation of such graphene-like structures, providing the link between the overall atomistic mechanism and the macroscopic experimental observations of green superlubricity in the investigated ta-C/oleic acid tribological systems.

  14. A quantitative in vitro method to predict the adhesion lifetime of diamond-like carbon thin films on biomedical implants.

    Science.gov (United States)

    Falub, Claudiu Valentin; Thorwarth, Götz; Affolter, Christian; Müller, Ulrich; Voisard, Cyril; Hauert, Roland

    2009-10-01

    A quantitative method using Rockwell C indentation was developed to study the adhesion of diamond-like carbon (DLC) protective coatings to the CoCrMo biomedical implant alloy when immersed in phosphate-buffered saline (PBS) solution at 37 degrees C. Two kinds of coatings with thicknesses ranging from 0.5 up to 16 microns were investigated, namely DLC and DLC/Si-DLC, where Si-DLC denotes a 90 nm thick DLC interlayer containing Si. The time-dependent delamination of the coating around the indentation was quantified by means of optical investigations of the advancing crack front and calculations of the induced stress using the finite element method (FEM). The cause of delamination for both types of coatings was revealed to be stress-corrosion cracking (SCC) of the interface material. For the DLC coating a typical SCC behavior was observed, including a threshold region (60J m(-2)) and a "stage 1" crack propagation with a crack-growth exponent of 3.0, comparable to that found for ductile metals. The DLC/Si-DLC coating exhibits an SCC process with a crack-growth exponent of 3.3 and a threshold region at 470 Jm(-2), indicating an adhesion in PBS at 37 degrees C that is about eight times better than that of the DLC coating. The SCC curves were fitted to the reaction controlled model typically used to explain the crack propagation in bulk soda lime glass. As this model falls short of accurately describing all the SCC curves, limitations of its application to the interface between a brittle coating and a ductile substrate are discussed.

  15. Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    Directory of Open Access Journals (Sweden)

    Resto Oscar

    2008-01-01

    Full Text Available AbstractIron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  16. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes

    Science.gov (United States)

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-08-01

    Objective. Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach. Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg-1. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main results. Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance. Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.

  17. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.

    Science.gov (United States)

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2009-10-01

    In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.

  18. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  19. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  20. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  1. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  2. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa

    2015-05-18

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  3. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa; Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2015-01-01

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. A guide to and review of the use of Multiwavelength Raman Spectroscopy for characterizing defective aromatic carbon solids : From graphene to amorphous carbons

    NARCIS (Netherlands)

    Merlen, A.; Buijnsters, J.G.; Pardanaud, C.

    2017-01-01

    sp2 hybridized carbons constitute a broad class of solid phases composed primarily of elemental carbon and can be either synthetic or naturally occurring. Some examples are graphite, chars, soot, graphene, carbon nanotubes, pyrolytic carbon, and diamond-like carbon. They vary from highly ordered to

  5. Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry

    International Nuclear Information System (INIS)

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Bergonzo, P.; Bassinet, C.; Huet, C.; Derreumaux, S.; Chea, M.; Cristina, K.; Boisserie, G.; Buchheit, I.; Marchesi, V.; Gaudaire-Josset, S.; Lisbona, A.; Lazaro, D.; Hugon, R.

    2015-01-01

    Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector, namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm 3 , with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm 2 with a deviation of 2.6%. This new study showed the high performance of this

  6. Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette (France); Bassinet, C.; Huet, C. [IRSN, PRP-HOM/SDE/LDRI, 31 Av. de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Derreumaux, S. [IRSN, PRP-HOM/SER/UEM, 31 Av. de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Chea, M.; Cristina, K.; Boisserie, G. [Pitié Salpêtrière Hospital, 47-83 Blvd de l' Hôpital, 75013 Paris (France); Buchheit, I.; Marchesi, V. [Institut de Cancérologie de Lorraine, 6 Av. de Bourgogne, 54500 Vandoeuvre-lès-Nancy (France); Gaudaire-Josset, S.; Lisbona, A. [Institut de Cancérologie de l' Ouest, Blvd Prof. Jacques Monod, 44805 Saint-Herblain (France); Lazaro, D.; Hugon, R. [CEA, LIST, LM2S, 91191 Gif-sur-Yvette (France)

    2015-12-21

    Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector, namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm{sup 3}, with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm{sup 2} with a deviation of 2.6%. This new study showed the high performance

  7. Dual-opposite multi-walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip-capillary electrophoresis determination of methyl parathion metabolites in human urine.

    Science.gov (United States)

    Du, Fuying; Fung, Ying-Sing

    2018-03-03

    Methyl parathion (MP) is a highly toxic organophosphate and its exposure may lead to substantial adverse effects to human health. The existence of 4-nitrophenol (4-NP) in the form of free phenol, glucuronide (4-NP-G) or as a sulfate ester (4-NP-S) can be used as biomarkers to assess the duration and extent of MP exposure. In this work, a MC-CE device incorporating post-CE amperometric detection using multi-walled carbon nanotubes (MWNTs) modified carbon fiber microelectrode (CFME) was fabricated and assessed for simultaneous determination of 4-NP, 4-NP-G, and 4-NP-S in human urine. The detection sensitivity and stability was greatly enhanced by the modification of MWNTs. The capability of the MC-CE device with dual MWNTs modified CFME for detecting impurity was assessed and reliability established by high recoveries from 95 to 97% for spiked MP biomarkers. The method developed is shown to provide a simple, sensitive, and reliable means for monitoring 4-NP, 4-NP-G, and 4-NP-S in human urine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Effect of Bias Voltage and Gas Pressure on the Structure, Adhesion and Wear Behavior of Diamond Like Carbon (DLC Coatings With Si Interlayers

    Directory of Open Access Journals (Sweden)

    Liam Ward

    2014-04-01

    Full Text Available In this study diamond like carbon (DLC coatings with Si interlayers were deposited on 316L stainless steel with varying gas pressure and substrate bias voltage using plasma enhanced chemical vapor deposition (PECVD technology. Coating and interlayer thickness values were determined using X-ray photoelectron spectroscopy (XPS which also revealed the presence of a gradient layer at the coating substrate interface. Coatings were evaluated in terms of the hardness, elastic modulus, wear behavior and adhesion. Deposition rate generally increased with increasing bias voltage and increasing gas pressure. At low working gas pressures, hardness and modulus of elasticity increased with increasing bias voltage. Reduced hardness and modulus of elasticity were observed at higher gas pressures. Increased adhesion was generally observed at lower bias voltages and higher gas pressures. All DLC coatings significantly improved the overall wear resistance of the base material. Lower wear rates were observed for coatings deposited with lower bias voltages. For coatings that showed wear tracks considerably deeper than the coating thickness but without spallation, the wear behavior was largely attributed to deformation of both the coating and substrate with some cracks at the wear track edges. This suggests that coatings deposited under certain conditions can exhibit ultra high flexible properties.

  9. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    Science.gov (United States)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  10. Diamond Growth in the Subduction Factory

    Science.gov (United States)

    Bureau, H.; Frost, D. J.; Bolfan-Casanova, N.; Leroy, C.; Estève, I.

    2014-12-01

    Natural diamonds are fabulous probes of the deep Earth Interior. They are the evidence of the deep storage of volatile elements, carbon at first, but also hydrogen and chlorine trapped as hydrous fluids in inclusions. The study of diamond growth processes in the lithosphere and mantle helps for our understanding of volatile elements cycling between deep reservoirs. We know now that inclusion-bearing diamonds similar to diamonds found in nature (i.e. polycrystalline, fibrous and coated diamonds) can grow in hydrous fluids or melts (Bureau et al., GCA 77, 202-214, 2012). Therefore, we propose that the best environment to promote such diamonds is the subduction factory, where highly hydrous fluids or melts are present. When oceanic plates are subducted in the lithosphere, they carry an oceanic crust soaked with seawater. While the slabs are traveling en route to the mantle, dehydration processes generate saline fluids highly concentrated in NaCl. In the present study we have experimentally shown that diamonds can grow from the saline fluids (up to 30 g/l NaCl in water) generated in subducted slabs. We have performed multi-anvil press experiments at 6-7 GPa and from 1300 to 1400°C during 6:00 hours to 30:00 hours. We observed large areas of new diamond grown in epitaxy on pure diamond seeds in salty hydrous carbonated melts, forming coated gems. The new rims are containing multi-component primary inclusions. Detailed characterizations of the diamonds and their inclusions have been performed and will be presented. These experimental results suggest that multi-component salty fluids of supercritical nature migrate with the slabs, down to the deep mantle. Such fluids may insure the first stage of the deep Earth's volatiles cycling (C, H, halogen elements) en route to the transition zone and the lower mantle. We suggest that the subduction factory may also be a diamond factory.

  11. Effect of magnetic and electric coupling fields on micro- and nano- structure of carbon films in the CVD diamond process and their electron field emission property

    Science.gov (United States)

    Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao

    2018-03-01

    In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.

  12. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  14. Electrochemical Characteristics of a Diamond-Like-Carbon-Coated LiV3O8 Cathode When Used in a Li-Metal Battery with a Li-Powder Anode

    Science.gov (United States)

    Lee, Jae Ha; Lee, Jun Kyu; Yoon, Woo Young

    2013-10-01

    A diamond-like-carbon (DLC)-coated LiV3O8 cathode was synthesized for use in a rechargeable 2032-coin-type cell with a Li-powder electrode (LPE) as the anode. The LPE anode was produced using the droplet emulsion technique and was compacted by pressing. The initial discharge capacity of the LPE/DLC-coated LiV3O8 (LVO) cell was 238 mAh g-1 at a C-rate of 0.5, while that of a LPE/bare-LVO cell was 236 mAh g-1. After 50 cycles, the capacity retention rate of the DLC-coated-electrode-containing cell (92%) was higher than that of the uncoated-electrode-containing cell (77%). Results of electron probe microanalysis and Raman spectroscopy confirmed that the electrode had been coated with DLC. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to determine the sequence of formation of byproducts on the electrode after charging/discharging and to determine its surface composition. The voltage profile and impedance of the DLC-coated-electrode-containing cell were analyzed to determine the electrochemical characteristics of the DLC-coated cathode.

  15. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Science.gov (United States)

    Hatada, R.; Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C.; Baba, K.; Sawase, T.; Watamoto, T.; Matsutani, T.

    2014-08-01

    Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  16. Influence of duty ratio of pulsed bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition

    International Nuclear Information System (INIS)

    Nakazawa, Hideki; Kamata, Ryosuke; Miura, Soushi; Okuno, Saori

    2013-01-01

    We have investigated the influence of the duty ratio of pulsed substrate bias on the structure and properties of Si-doped diamond-like carbon (Si-DLC) films deposited by radio frequency plasma-enhanced chemical vapor deposition using CH 4 , Ar, and monomethylsilane (CH 3 SiH 3 ) as the Si source. The Si/(Si + C) ratios in the Si-DLC films deposited using pulsed bias were higher than that of the dc-biased Si-DLC film, and the Si fraction increased with decreasing pulse duty ratio. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that Si-C, Si-H n , and C-H n bonds in the Si-DLC films increased with decreasing duty ratio. The internal stress decreased as the duty ratio decreased, which is probably due to the increase in Si-C, Si-H n , and C-H n bonds in the films. The Si-DLC films deposited using pulsed bias had higher adhesion strength than the dc-biased Si-DLC film because of the further reduction of internal stress. At higher duty ratios, although the Si fractions of the pulse-biased Si-DLC films were higher than that of the dc-biased Si-DLC film, the wear rates of the former were less than that of the latter. - Highlights: • The internal stress of Si-doped films was lowered at lower duty ratios. • The adhesion of pulse-biased films was improved compared with that of dc films. • The tribological properties of Si-doped films were improved by the use of pulse bias

  17. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  18. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  19. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  20. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Paterson, P.J.K.

    1993-01-01

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs

  1. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  2. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei, E-mail: popdw@126.com [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Liu, Jingmao; Geng, Dongsen [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Guo, Peng [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zheng, Jun [Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Qimin, E-mail: qmwang@gdut.edu.cn [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-12-01

    Highlights: • Diamond-like carbon films with Al and Cr doping were deposited. • Alternate multilayered structure consisted of Al-poor layer and Al-rich layer was formed. • The periodic Al-rich layers can greatly improve the residual stress and elastic resilience of the films. - Abstract: DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C{sub 2}H{sub 2} and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C{sub 2}H{sub 2} fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C{sub 2}H{sub 2} fraction. The results show that the Al and Cr contents in the films increased continuously as the C{sub 2}H{sub 2} fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would

  3. Short-range order in irradiated diamonds

    International Nuclear Information System (INIS)

    Agafonov, S.S.; Glazkov, V.P.; Nikolaenko, V.A.; Somenkov, V.A.

    2005-01-01

    Structural changes in irradiated diamond with a change in its density were studied. Natural diamond powders with average particle size from 14-20 μm to 0.5 mm, irradiated in beryllium block of the MR reactor up to a fluence of 1.51 x 10 21 were used as samples. Using the neutron-diffraction method, it has been established that, when density in irradiated diamonds varies, a transition from a diamond-like amorphous structure to a graphite-like structure occurs. The transition occurs at a density ρ ∼ 2.7-2.9 g/cm 3 and is accompanied by a sharp change in resistivity [ru

  4. Modeling and Simulation of Microelectrode-Retina Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M

    2002-11-30

    The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how best to stimulate, and communicate with, cells in the retina using implanted microelectrodes.

  5. A Single Platinum Microelectrode for Identifying Soft Drink Samples

    Directory of Open Access Journals (Sweden)

    Lígia Bueno

    2012-01-01

    Full Text Available Cyclic voltammograms recorded with a single platinum microelectrode were used along with a non-supervised pattern recognition, namely, Principal Component Analysis, to conduct a qualitative analysis of sixteen different brands of carbonated soft drinks (Kuat, Soda Antarctica, H2OH!, Sprite 2.0, Guarana Antarctica, Guarana Antarctica Zero, Coca-Cola, Coca-Cola Zero, Coca-Cola Plus, Pepsi, Pepsi Light, Pepsi Twist, Pepsi Twist Light, Pepsi Twist 3, Schin Cola, and Classic Dillar’s. In this analysis, soft drink samples were not subjected to pre-treatment. Good differentiation among all the analysed soft drinks was achieved using the voltammetric data. An analysis of the loading plots shows that the potentials of −0.65 V, −0.4 V, 0.4 V, and 0.750 V facilitated the discrimination process. The electrochemical processes related to this potential are the reduction of hydrogen ions and inhibition of the platinum oxidation by the caffeine adsorption on the electrode surface. Additionally, the single platinum microelectrode was useful for the quality control of the soft drink samples, as it helped to identify the time at which the beverage was opened.

  6. Diamond and diamond-like carbon MEMS

    Science.gov (United States)

    Luo, J. K.; Fu, Y. Q.; Le, H. R.; Williams, J. A.; Spearing, S. M.; Milne, W. I.

    2007-07-01

    To generate complex cartilage/bone tissues, scaffolds must possess several structural features that are difficult to create using conventional scaffold design/fabrication technologies. Successful cartilage/bone regeneration depends on the ability to assemble chondrocytes/osteoblasts into three-dimensional (3D) scaffolds. Therefore, we developed a 3D scaffold fabrication system that applies the axiomatic approach to our microstereolithography system. The new system offers a reduced machine size by minimizing the optical components, and shows that the design matrix is decoupled. This analysis identified the key factors affecting microstructure fabrication and an improved scaffold fabrication system was constructed. The results demonstrate that precise, predesigned 3D structures can be fabricated. Using this 3D scaffold, cell adhesion behavior was observed. The use of 3D scaffolds might help determine key factors in the study of cell behavior in complex environments and could eventually lead to the optimal design of scaffolds for the regeneration of various tissues, such as cartilage and bone.

  7. Micro-raman and tip-enhanced raman spectroscopy of carbon allotropes

    NARCIS (Netherlands)

    Hoffmann, G.G.; With, de G.; Loos, J.

    2008-01-01

    Raman spectroscopic data are obtained on various carbon allotropes like diamond, amorphous carbon, graphite, graphene and single wall carbon nanotubes by micro-Raman spectroscopy, tip-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy imaging, and the potentials of these techniques for

  8. Influence of sulfidation treatment on the structure and tribological properties of nitrogen-doped diamond-like carbon films

    International Nuclear Information System (INIS)

    Zeng Qunfeng; Dong Guangneng; Xie Youbai

    2008-01-01

    The nitrogen-doped diamond-like carbon (DLC) films were deposited on high speed steel (HSS) substrates in the direct current unbalanced magnetron sputtering system. Sulphurized layer was formed on the surface of DLC films by means of liquid sulfidation in the intermixture of urea and thiourea solution in order to improve the tribological properties of DLC films. The influence of sulfidation treatment on the structure and tribological properties of DLC films was investigated in this work. The structure and wear surface morphology of DLC films were analyzed by Raman spectroscopy, XPS and SEM, respectively. It reveals that the treated films are smooth and uniform; and sulfur atoms are bonded chemically. The treated films have broader distribution of Raman spectra in the range of 1000-1800 cm -1 and higher I D /I G ratio than the untreated films as a result of the appearance of the crystalline graphite structure after the sulfidation treatment. It is showed that the sp 2 relative content increase in the treated films from the XPS measurement. The Raman results are consistent with the XPS results. The tribological properties of DLC films were investigated using a ball-on-disk rotating friction and wear tester under dry friction conditions. It is found that the sulfidation concentration plays an important part in the tribological properties of the treated DLC films. The results showed the treated films with low sulfidation concentration have a lower friction coefficient (0.1) than the treated films with high sulfidation concentration (0.26) and the untreated films (0.27) under the same friction testing conditions, which can be attributed to both the presence of sulfur-containing materials and the forming of the mechanical alloyed layer on the wear surface. Adding the dry nitrogen to the sliding surface in the testing system helps the friction coefficient of the treated films with low sulfidation concentration to decrease to 0.04 further in this work. On the basis of the

  9. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  10. Thick Nano-Crystalline Diamond films for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Dawedeit, Christoph [Technical Univ. of Munich (Germany)

    2010-06-30

    This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuer Nukleartechnik at Technical University of Germany supported the work.

  11. Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Manory, R.R.; Paterson, P.J.K.; Stuart, Sue-Anne

    1992-01-01

    Auger Electron Spectroscopy has been employed to investigate the effectiveness of thin films of TiN as barriers to carbon diffusion during Chemical Vapor Deposition (CVD) of diamond onto Fe substrates. Auger Depth Profiling was used to monitor the C concentration in the TiN layer, through the interface and into the substrate both before and after CVD diamond deposition. The results show that a layer of TiN only 250 Angstroems thick is sufficient to inhibit soot formation on the Fe surface and C diffusion into the Fe bulk. 14 refs., 4 figs

  12. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  13. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  14. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  15. Pressure-induced transition in the grain boundary of diamond

    Science.gov (United States)

    Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.

    2017-12-01

    Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature

  16. Rapid Detection of Ascorbic Acid Based on a Dual-Electrode Sensor System Using a Powder Microelectrode Embedded with Carboxyl Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    He, Bao-Shan; Zhang, Jun-Xia

    2017-07-02

    In this paper, carboxyl groups were introduced by liquid oxidation methods onto multi-walled carbon nanotubes (MWCNTs) to improve the MWCNTs' electrocatalytic properties. A platinum wire microelectrode (ME) was corroded using aqua regia and subsequently embedded with MWCNTs to achieve more active sites, producing a so-called powder microelectrode (PME). Compared with conventional MEs, the PME has a larger specific surface area and more active sites. When PME was used to detect ascorbic acid (AA), the AA oxidation potential shifted negatively and current peak was visibly increased. The calibration curve obtained for AA was in a range of 5.00 × 10 -6 ~9.50 × 10 -4 mol·L -1 : I pa (μA) = 3.259 × 10 -2 + 1.801 × 10² C (mol·L -1 ) under the optimum testing conditions. Moreover, the detection and quantitation limits were confirmed at 4.89 × 10 -7 mol·L -1 and 1.63 × 10 -7 mol·L -1 , respectively. When the fabricated PME was practically applied to detect AA, it was shown a recovery rate of 94~107% with relative standard deviation (RSD) <5%. The proposed strategy thus offers a promising, rapid, selective and low-cost approach to effective analysis of AA.

  17. The effect of nitrogen and oxygen plasma on the wear properties and adhesion strength of the diamond-like carbon film coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.

    2008-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O 2 and N 2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE. In the N 2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O 2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N 2 plasma pre-treatment was more effective than the O 2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N 2 plasma pre-treatment showed good wear resistance, compared with that with O 2 plasma pre-treatment

  18. Effect of Nano-Ni Catalyst on the Growth and Characterization of Diamond Films by HFCVD

    Directory of Open Access Journals (Sweden)

    Chien-Chung Teng

    2010-01-01

    Full Text Available Four different catalysts, nanodiamond seed, nano-Ni, diamond powder, and mixture of nano-Ni/diamond powder, were used to activate Si wafers for diamond film growth by hot-filament CVD (HFCVD. Diamond crystals were shown to grow directly on both large diamond powder and small nanodiamond seed, but a better crystallinity of diamond film was observed on the ultrasonicated nanodiamond seeded Si substrate. On the other hand, nano-Ni nanocatalysts seem to promote the formation of amorphous carbon but suppress transpolyacetylene (t-PA phases at the initial growth of diamond films. The subsequent nucleation and growth of diamond crystals on the amorphous carbon layer leads to generation of the spherical diamond particles and clusters prior to coalescence into continuous diamond films based on the CH3 addition mechanism as characterized by XRD, Raman, ATR/FT-IR, XPS, TEM, SEM, and AFM techniques. Moreover, a 36% reduction in surface roughness of diamond film assisted by nano-Ni catalyst is quite significant.

  19. Spallation Neutron Source SNS Diamond Stripper Foil Development

    International Nuclear Information System (INIS)

    Shaw, Robert W.; Plum, Michael A.; Wilson, Leslie L.; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I.; Takagi, A.

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 (micro)g/cm 2 foils as large as 17 x 25 mm 2 have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 (micro)C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H - ) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  20. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Junhua; Wang, Xinying; Zhang, Lei

    2013-01-01

    Highlights: • A green chemistry method for producing nanoporous gold microelectrode was studied. • An ionic liquid plating bath was utilized for electrochemical alloying–dealloying. • Nanostructures of gold surface layers can be tuned by modulating potential. • Nanoporous gold microelectrode has high surface area and merit of a microelectrode. • Nitrite oxidation and reduction on nanoporous gold microelectrode were studied. -- Abstract: Nanoporous gold (NPG) microelectrodes with high surface area and open pore network were successfully prepared by applying modulated potential to a polycrystalline Au-disk microelectrode in ionic liquid electrolyte containing ZnCl 2 at elevated temperature. During cathodic process, Zn is electrodeposited and interacted with Au microdisk substrate to form a AuZn alloy phase. During subsequent anodic process, Zn is selectively dissolved from the alloy phase, leading to the formation of a NPG layer which can grow with repetitive potential modulation. Scanning-electron microscope and energy dispersive X-ray microscope measurements show that the NPG microelectrodes possessing nanoporous structures can be tuned via potential modulation, and chemically contain a small amount of Zn whose presence has no obvious influence on electrochemical responses of the electrodes. Steady-state and cyclic voltammetric studies suggest that the NPG microelectrodes have high surface area and keep diffusional properties of a microelectrode. Electrochemical nitrite reduction and oxidation are studied as model reactions to demonstrate potential applications of the NPG microelectrodes in electrocatalysis and electroanalysis. These facts suggest that the potential-modulated electrochemical alloying/dealloying in ionic liquid electrolyte offers a convenient green-chemistry method for the preparation of nanoporous microelectrodes

  1. Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance

    Science.gov (United States)

    Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.

    2017-10-01

    Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.

  2. Modulation polarimetry of full internal reflection, broken by diamond-like films

    Directory of Open Access Journals (Sweden)

    Maksimenko L. S.

    2013-02-01

    Full Text Available This article presents research results on diamond-like films produced under different technological conditions. The parameter ρ — polarization difference — has been introduced. It has been found from spectral features of the parameter ρ that the interaction of electromagnetic radiation with the electronic system of specimens, which occurs in the used spectral range, consists of local and polariton surface resonances, differing in frequencies and times of relaxations. The autors concluded that the correlation in resonance intensity is defined by the structural characteristics of the specimens. These results show that modulation polarimetry is a perspective technique for diagnostics of the structural homogeneity of composite nanocluster films.

  3. Ultimate Atomic Bling: Nanotechnology of Diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  4. Ultimate Atomic Bling: Nanotechnology of Diamonds

    International Nuclear Information System (INIS)

    Dahl, Jeremy

    2010-01-01

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  5. Study of Electron Transport and Amplification in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States); Muller, Erik [Stony Brook Univ., NY (United States)

    2015-01-05

    The development of the Diamond Amplified Photocathode (DAP) has produced significant results under our previous HEP funded efforts both on the fabrication of working devices and the understanding of the underlying physics governing its performance. The results presented here substantiate the use of diamond as both a secondary electron amplifier for high-brightness, high-average-current electron sources and as a photon and particle detector in harsh radiation environments. Very high average current densities (>10A/cm2) have been transported through diamond material. The transport has been measured as a function of incident photon energy and found to be in good agreement with theoretical models. Measurements of the charge transport for photon energies near the carbon K-edge (290 eV for sp3 bonded carbon) have provided insight into carrier loss due to diffusion; modeling of this aspect of charge transport is underway. The response of diamond to nanosecond x-ray pulses has been measured; in this regime the charge transport is as expected. Electron emission from hydrogenated diamond has been measured using both electron and x-ray generated carriers; a gain of 178 has been observed for electron-generated carriers. The energy spectrum of the emitted electrons has been measured, providing insight into the electron affinity and ultimately the thermal emittance. The origin of charge trapping in diamond has been investigated for both bulk and surface trapping

  6. Long-term neural recordings using MEMS based moveable microelectrodes in the brain

    Directory of Open Access Journals (Sweden)

    Nathan Jackson

    2010-06-01

    Full Text Available One of the critical requirements of the emerging class of neural prosthetic devices is to maintain good quality neural recordings over long time periods. We report here a novel (Micro-ElectroMechanical Systems based technology that can move microelectrodes in the event of deterioration in neural signal to sample a new set of neurons. Microscale electro-thermal actuators are used to controllably move microelectrodes post-implantation in steps of approximately 9 µm. In this study, a total of 12 moveable microelectrode chips were individually implanted in adult rats. Two of the 12 moveable microelectrode chips were not moved over a period of 3 weeks and were treated as control experiments. During the first three weeks of implantation, moving the microelectrodes led to an improvement in the average SNR from 14.61 ± 5.21 dB before movement to 18.13 ± 4.99 dB after movement across all microelectrodes and all days. However, the average RMS values of noise amplitudes were similar at 2.98 ± 1.22 µV and 3.01 ± 1.16 µV before and after microelectrode movement. Beyond three weeks, the primary observed failure mode was biological rejection of the PMMA (dental cement based skull mount resulting in the device loosening and eventually falling from the skull. Additionally, the average SNR for functioning devices beyond three weeks was 11.88 ± 2.02 dB before microelectrode movement and was significantly different (p<0.01 from the average SNR of 13.34 ± 0.919 dB after movement. The results of this study demonstrate that MEMS based technologies can move microelectrodes in rodent brains in long-term experiments resulting in improvements in signal quality. Further improvements in packaging and surgical techniques will potentially enable movable microelectrodes to record cortical neuronal activity in chronic experiments.

  7. Structures, origin and evolution of various carbon phases in the ureilite Northwest Africa 4742 compared with laboratory-shocked graphite

    Science.gov (United States)

    Le Guillou, C.; Rouzaud, J. N.; Remusat, L.; Jambon, A.; Bourot-Denise, M.

    2010-07-01

    of chondritic-like organic matter could have produced the graphite, which was then transformed by shock processes into polycrystalline nanodiamond aggregates. The formation of the disordered carbon occurred by diamond post-shock back-transformation during post-shock heating. The noble gases in the first generation diamond could then be incorporated directly into the disordered carbon during the transformation.

  8. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  9. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    Science.gov (United States)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  10. Environmental conditions to achieve low adhesion and low friction on diamond surfaces

    International Nuclear Information System (INIS)

    Guo, Haibo; Qi, Yue

    2010-01-01

    The adhesion and friction of both diamond and diamond-like carbon coatings can be dramatically changed by active gases in the environment, such as hydrogen, water vapor and humid air, due to tribochemical reactions. To understand the atmospheric effects and to predict the optimized environmental conditions (gas species, pressure and temperature), the tribochemical reactions on diamond surfaces are modeled from first principles thermodynamics. The results show that both H 2 and a mixture of H 2 O plus O 2 (such as humid air) can effectively achieve low adhesion and low friction with a fully –H or –OH passivated surface at very low partial pressures. Water vapor itself can passivate diamond (1 1 1) and (1 0 0) surfaces into half –H and half –OH terminated surfaces, but only at unrealistically high partial pressures. Even a trace amount of oxygen combined with water vapor can significantly reduce the water partial pressure for passivation. In all tribochemical reactions considered, the partial pressure required to reach low adhesion and low friction increases rapidly with temperature, and diamond (1 0 0) surface requires less partial pressures than (1 1 1) surface for surface passivation

  11. Indigenous development of diamond detectors for monitoring neutrons

    International Nuclear Information System (INIS)

    Singh, Arvind; Amit Kumar; Topkar, Anita; Pithawa, C.K.

    2013-01-01

    High purity synthetic chemically vapor deposited (CVD) diamond has several outstanding characteristics that make it as an important material for detector applications specifically for extreme environmental conditions like high temperature, high radiation, and highly corrosive environments. Diamond detectors are especially considered promising for monitoring fast neutrons produced by the D-T nuclear fusion reactions in next generation fusion facilities such as ITER. When fast neutrons interact with carbon, elastic, inelastic and (n,α) type reactions can occur. These reactions can be employed for the detection of fast neutrons using diamond. We have initiated the development of diamond detectors based on synthetic CVD substrates. In this paper, the first test of a polycrystalline CVD diamond detector with fast neutrons is reported. The test results demonstrate that this detector can be used for monitoring fast neutrons. The diamond detectors have been fabricated using 5 mm x 5 mm, 300 μm polycrystalline diamond substrates. Aluminum metallization has been used on both sides of the detector to provide electrical contacts. The performance of fabricated detectors was first evaluated using current and capacitance measurements. The leakage current was observed to be stable and about a few pAs for voltages up to 300V. The capacitance-voltage characteristics showed a constant capacitance which is as expected. To confirm the response of the detector to charged particles, the pulse height spectrum (PHS) was obtained using 238 Pu- 239 Pu dual α- source. The PHS showed a continuum without any peak due to polycrystalline nature of diamond film. The response of the detector to fast neutrons has been studied using the fast neutron facility at NXF, BARC. The PHS obtained for a neutron yield of 4 x 10 8 n/s is shown. The average counts per second (cps) measured for diamond detector for different neutron yields is shown. The plot shows linearity with coefficient of determination R

  12. Low-temperature (200 C or below) fabrication of diamond films for electronic application

    International Nuclear Information System (INIS)

    Hiraki, A.

    2003-01-01

    Fabrication of Diamond (including Diamond Like Carbon: DLC) films as electronic materials, for example: to be used as electron-emitter, requires several following conditions. They are: 1 ) Low temperature fabrication (or deposition on several substrates and sometimes ones with low melting point, like glasses) below 400 C, 2) Wide area film deposition onto wide substrates of several square inches, like Si wafer and glass substrate, 3) Reproducible deposition of well defined film quality, 4) others. In these respects, we have initiated, in the author's laboratories at Osaka University and Kochi University of Technology, a quite new approach to satisfy the above requirements by using microwave plasma CVD under a magnetic field to be called as m agneto-active plasma CVD . The films fabricated by the magnets-active plasma CVD and also recently by cathodic arc methods combined with cur special nano-seeding method, have been utilized for electron emitter to exhibit very high efficiency. (Author)

  13. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Trouillon, Raphael, E-mail: raphael.trouillon06@imperial.ac.u [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom); O' Hare, Danny [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom)

    2010-09-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp{sup 3} structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  14. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    International Nuclear Information System (INIS)

    Trouillon, Raphael; O'Hare, Danny

    2010-01-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp 3 structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  15. Fractional surface termination of diamond by electrochemical oxidation.

    Science.gov (United States)

    Hoffmann, René; Obloh, Harald; Tokuda, Norio; Yang, Nianjun; Nebel, Christoph E

    2012-01-10

    The crystalline form of sp(3)-hybridized carbon, diamond, offers various electrolyte-stable surface terminations. The H-termination-selective attachment of nitrophenyl diazonium, imaged by AFM, shows that electrochemical oxidation can control the fractional hydrogen/oxygen surface termination of diamond on the nanometer scale. This is of particular interest for all applications relying on interfacial electrochemistry, especially for biointerfaces.

  16. Novel morphology of chemical vapor deposited diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Tang, C.J. [I3N and Department of Physics, University of Aveiro (Portugal); Jiangsu Key Laboratory for Advanced Functional Materials and Department of Physics, Changshu Institute of Technology, Changshu (China); TEMA and Department of Mechanical Engineering, University of Aveiro (Portugal); Fernandes, A.J.S.; Abe, I.; Pinto, J.L. [I3N and Department of Physics, University of Aveiro (Portugal); Gracio, J. [TEMA and Department of Mechanical Engineering, University of Aveiro (Portugal); Buijnsters, J.G. [Institute for Molecules and Materials (IMM), Radboud University Nijmegen (Netherlands)

    2010-04-15

    We have obtained simultaneously nanocrystalline and {l_brace}100{r_brace} faceted large-grained polycrystalline diamond films not only on different substrates but also on the same substrate in only one deposition run using a novel approach for substrate arrangement. Furthermore, interesting unusual morphologies and microstructures composed by non-faceted nanostructures and terminated with large smooth {l_brace}100{r_brace} facet-like belt are found near the edges of the top square sample. The morphology variation is likely caused by the so called edge effect, where a strong variation in temperature is also present. We have modelled the temperature distribution on the substrates by computer simulations using the finite element method. The novel feature, namely the coexistence of oval non-faceted nanocrystalline diamond grains and large smooth {l_brace}100{r_brace} facet-like belt in one diamond grain, is in the transition from {l_brace}100{r_brace} faceted polycrystalline diamond to cauliflower-like nanocrystalline diamond. The formation mechanism is discussed based on the temperature analysis and other simulation results described in the literature. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. On-Chip Quantum Repeater in Diamond for Space-Based Quantum Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of my research is on the optical properties of diamond. A diamond is composed of a crystal arrangement of carbon atoms and it is this structure that gives...

  18. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve

    Science.gov (United States)

    Caravaca, A. S.; Tsaava, T.; Goldman, L.; Silverman, H.; Riggott, G.; Chavan, S. S.; Bouton, C.; Tracey, K. J.; Desimone, R.; Boyden, E. S.; Sohal, H. S.; Olofsson, P. S.

    2017-12-01

    Objective. Neural reflexes regulate immune responses and homeostasis. Advances in bioelectronic medicine indicate that electrical stimulation of the vagus nerve can be used to treat inflammatory disease, yet the understanding of neural signals that regulate inflammation is incomplete. Current interfaces with the vagus nerve do not permit effective chronic stimulation or recording in mouse models, which is vital to studying the molecular and neurophysiological mechanisms that control inflammation homeostasis in health and disease. We developed an implantable, dual purpose, multi-channel, flexible ‘microelectrode’ array, for recording and stimulation of the mouse vagus nerve. Approach. The array was microfabricated on an 8 µm layer of highly biocompatible parylene configured with 16 sites. The microelectrode was evaluated by studying the recording and stimulation performance. Mice were chronically implanted with devices for up to 12 weeks. Main results. Using the microelectrode in vivo, high fidelity signals were recorded during physiological challenges (e.g potassium chloride and interleukin-1β), and electrical stimulation of the vagus nerve produced the expected significant reduction of blood levels of tumor necrosis factor (TNF) in endotoxemia. Inflammatory cell infiltration at the microelectrode 12 weeks of implantation was limited according to radial distribution analysis of inflammatory cells. Significance. This novel device provides an important step towards a viable chronic interface for cervical vagus nerve stimulation and recording in mice.

  19. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  20. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    Science.gov (United States)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  1. Spectral analysis of the structure of ultradispersed diamonds

    Science.gov (United States)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  2. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations

    Science.gov (United States)

    Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan

    2015-04-01

    Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.

  3. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  4. Investigation of structure, adhesion strength, wear performance and corrosion behavior of platinum/ruthenium/nitrogen doped diamond-like carbon thin films with respect to film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, E., E-mail: MEJLiu@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2011-03-15

    Research highlights: {yields} Sputtered PtRuN-DLC thin films were fabricated with different film thicknesses. {yields} The graphitization of the films increased with increased film thickness. {yields} The wear resistance of the films increased though their adhesion strength decreased. {yields} The corrosion potentials of the films shifted to more negative values. {yields} However, the corrosion currents of the films decreased. - Abstract: In this study, the corrosion performance of platinum/ruthenium/nitrogen doped diamond-like carbon (PtRuN-DLC) thin films deposited on p-Si substrates using a DC magnetron sputtering deposition system in a 0.1 M NaCl solution was investigated using potentiodynamic polarization test in terms of film thickness. The effect of the film thickness on the chemical composition, bonding structure, surface morphology, adhesion strength and wear resistance of the PtRuN-DLC films was studied using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), micro-scratch test and ball-on-disc tribotest, respectively. It was found that the wear resistance of the PtRuN-DLC films apparently increased with increased film thickness though the adhesion strength of the films decreased. The corrosion results revealed that the increased concentration of sp{sup 2} bonds in the PtRuN-DLC films with increased film thickness shifted the corrosion potentials of the films to more negative values but the decreased porosity density in the films significantly decreased the corrosion currents of the films.

  5. Investigation of structure, adhesion strength, wear performance and corrosion behavior of platinum/ruthenium/nitrogen doped diamond-like carbon thin films with respect to film thickness

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2011-01-01

    Research highlights: → Sputtered PtRuN-DLC thin films were fabricated with different film thicknesses. → The graphitization of the films increased with increased film thickness. → The wear resistance of the films increased though their adhesion strength decreased. → The corrosion potentials of the films shifted to more negative values. → However, the corrosion currents of the films decreased. - Abstract: In this study, the corrosion performance of platinum/ruthenium/nitrogen doped diamond-like carbon (PtRuN-DLC) thin films deposited on p-Si substrates using a DC magnetron sputtering deposition system in a 0.1 M NaCl solution was investigated using potentiodynamic polarization test in terms of film thickness. The effect of the film thickness on the chemical composition, bonding structure, surface morphology, adhesion strength and wear resistance of the PtRuN-DLC films was studied using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), micro-scratch test and ball-on-disc tribotest, respectively. It was found that the wear resistance of the PtRuN-DLC films apparently increased with increased film thickness though the adhesion strength of the films decreased. The corrosion results revealed that the increased concentration of sp 2 bonds in the PtRuN-DLC films with increased film thickness shifted the corrosion potentials of the films to more negative values but the decreased porosity density in the films significantly decreased the corrosion currents of the films.

  6. Impact of modified diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates.

    Science.gov (United States)

    Gomes, L C; Deschamps, J; Briandet, R; Mergulhão, F J

    2018-07-20

    This work investigated the effects of diamond-like carbon (DLC) coatings on the architecture and biocide reactivity of dual-species biofilms mimicking food processing contaminants. Biofilms were grown using industrial isolates of Escherichia coli and Pantoea agglomerans on bare stainless steel (SST) and on two DLC surface coatings (a-C:H:Si:O designated by SICON® and a-C:H:Si designated by SICAN) in order to evaluate their antifouling activities. Quantification and spatial organization in single- and dual-species biofilms were examined by confocal laser scanning microscopy (CLSM) using a strain specific labelling procedure. Those assays revealed that the E. coli isolate exhibited a higher adhesion to the modified surfaces and a decreased susceptibility to disinfectant in presence of P. agglomerans than alone in axenic culture. While SICON® reduced the short-term growth of E. coli in axenic conditions, both DLC surfaces increased the E. coli colonization in presence of P. agglomerans. However, both modified surfaces triggered a significantly higher log reduction of E. coli cells within mixed-species biofilms, thus the use of SICON® and SICAN surfaces may be a good approach to facilitate the disinfection process in critical areas of food processing plants. This study presents a new illustration of the importance of interspecies interactions in surface-associated community functions, and of the need to evaluate the effectiveness of hygienic strategies with relevant multi-species consortia. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The characteristics of ESR and 3-D TL spectra of diamonds

    International Nuclear Information System (INIS)

    Liu Shunsheng; Lu Xu; Fu Huifang

    2003-01-01

    Electron Spin Resonance (ESR) and 3-dimensional Thermoluminescence (3-D TL) spectra of natural diamond, high temperature-high pressure artificial diamond and high temperature-low pressure chemical vapor deposited (CVD) diamond were determined. The characteristics of spectra have been studied. It is found that isolated nitrogen, nitrogen exchange pair and nitrogen atom pair (S=1) are main forms of electron spin resonance nitrogen in natural and high temperature-high pressure artificial diamonds. The spectrum of CVD diamond is sampler, and contains only one peak caused by suspended bond of unsaturated carbon ones. For 3-D TL spectra, natural diamond has two peaks (∼370 nm and ∼510 nm) in 100-200 degree C temperature range, high temperature-high pressure artificial diamond only has ∼370 nm peak, and CVD diamond only has ∼500 nm peak. These characteristics would be useful for the quality inspection and classification of diamonds, as well as for the study of geologic actions associated with natural diamond

  8. The mechanism of transforming diamond nanowires to carbon nanostructures

    International Nuclear Information System (INIS)

    Sorkin, Anastassia; Su, Haibin

    2014-01-01

    The transformation of diamond nanowires (DNWs) with different diameters and geometries upon heating is investigated with density-functional-based tight-binding molecular dynamics. DNWs of 〈100〉 and 〈111〉 oriented cross-section with projected average line density between 7 and 20 atoms Å −1 transform into carbon nanotubes (CNTs) under gradual heating up to 3500–4000 K. DNWs with projected average line density larger than 25 atoms Å −1 transform into double-wall CNTs. The route of transformation into CNTs clearly exhibits three stages, with the intriguing intermediate structural motif of a carbon nanoscroll (CNS). Moreover, the morphology plays an important role in the transformation involving the CNS as one important intermediate motif to form CNTs. When starting with 〈 2-bar 11〉 oriented DNWs with a square cross-section consisting of two {111} facets facing each other, one interesting structure with ‘nano-bookshelf’ shape emerges: a number of graphene ‘shelves’ located inside the CNT, bonding to the CNT walls with sp 3 hybridized atoms. The nano-bookshelf structures exist in a wide range of temperatures up to 3000 K. The further transformation from nano-bookshelf structures depends on the strength of the joints connecting shelves with CNT walls. Notably, the nano-bookshelf structure can evolve into two end products: one is CNT via the CNS pathway, the other is graphene transformed directly from the nano-bookshelf structure at high temperature. This work sheds light on the microscopic insight of carbon nanostructure formation mechanisms with the featured motifs highlighted in the pathways. (paper)

  9. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol.

    Science.gov (United States)

    Zhang, Jinying; Wang, Rui; Zhu, Xi; Pan, Aifei; Han, Chenxiao; Li, Xin; Dan Zhao; Ma, Chuansheng; Wang, Wenjun; Su, Haibin; Niu, Chunming

    2017-09-25

    Pseudo-topotactic conversion of carbon nanotubes into one-dimensional carbon nanowires is a challenging but feasible path to obtain desired diameters and morphologies. Here, a previously predicted but experimentally unobserved carbon allotrope, T-carbon, has been produced from pseudo-topotactic conversion of a multi-walled carbon nanotube suspension in methanol by picosecond pulsed-laser irradiation. The as-grown T-carbon nanowires have the same diameter distribution as pristine carbon nanotubes, and have been characterized by high-resolution transmission electron microscopy, fast Fourier transform, electron energy loss, ultraviolet-visible, and photoluminescence spectroscopies to possess a diamond-like lattice, where each carbon is replaced by a carbon tetrahedron, and a lattice constant of 7.80 Å. The change in entropy from carbon nanotubes to T-carbon reveals the phase transformation to be first order in nature. The computed electronic band structures and projected density of states are in good agreement with the optical absorption and photoluminescence spectra of the T-carbon nanowires.T-carbon is a previously predicted but so far unobserved allotrope of carbon, with a crystal structure similar to diamond, but with each atomic lattice position replaced by a carbon tetrahedron. Here, the authors produce T-carbon nanowires via laser-irradiating a suspension of carbon nanotubes in methanol.

  10. Regression Analysis of the Effect of Bias Voltage on Nano- and Macrotribological Properties of Diamond-Like Carbon Films Deposited by a Filtered Cathodic Vacuum Arc Ion-Plating Method

    Directory of Open Access Journals (Sweden)

    Shojiro Miyake

    2014-01-01

    Full Text Available Diamond-like carbon (DLC films are deposited by bend filtered cathodic vacuum arc (FCVA technique with DC and pulsed bias voltage. The effects of varying bias voltage on nanoindentation and nanowear properties were evaluated by atomic force microscopy. DLC films deposited with DC bias voltage of −50 V exhibited the greatest hardness at approximately 50 GPa, a low modulus of dissipation, low elastic modulus to nanoindentation hardness ratio, and high nanowear resistance. Nanoindentation hardness was positively correlated with the Raman peak ratio Id/Ig, whereas wear depth was negatively correlated with this ratio. These nanotribological properties highly depend on the films’ nanostructures. The tribological properties of the FCVA-DLC films were also investigated using a ball-on-disk test. The average friction coefficient of DLC films deposited with DC bias voltage was lower than that of DLC films deposited with pulse bias voltage. The friction coefficient calculated from the ball-on-disk test was correlated with the nanoindentation hardness in dry conditions. However, under boundary lubrication conditions, the friction coefficient and specific wear rate had little correlation with nanoindentation hardness, and wear behavior seemed to be influenced by other factors such as adhesion strength between the film and substrate.

  11. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  12. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  13. Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model

    Science.gov (United States)

    Kim, J H; Shin, J H; Shin, D H; Moon, M-W; Park, K; Kim, T-H; Shin, K M; Won, Y H; Han, D K; Lee, K-R

    2011-01-01

    Objective Neointimal hyperplasia is a major complication of endovascular stent placement with consequent in-stent restenosis or occlusion. Improvements in the biocompatibility of stent designs could reduce stent-associated thrombosis and in-stent restenosis. We hypothesised that the use of a diamond-like carbon (DLC)-coated nitinol stent or a polyethylene glycol (PEG)-DLC-coated nitinol stent could reduce the formation of neointimal hyperplasia, thereby improving stent patency with improved biocompatibility. Methods A total of 24 stents were implanted, under general anaesthesia, into the iliac arteries of six dogs (four stents in each dog) using the carotid artery approach. The experimental study dogs were divided into three groups: the uncoated nitinol stent group (n = 8), the DLC-nitinol stent group (n = 8) and the PEG-DLC-nitinol stent group (n = 8). Results The mean percentage of neointimal hyperplasia was significantly less in the DLC-nitinol stent group (26.7±7.6%) than in the nitinol stent group (40.0±20.3%) (p = 0.021). However, the mean percentage of neointimal hyperplasia was significantly greater in the PEG-DLC-nitinol stent group (58.7±24.7%) than in the nitinol stent group (40.0±20.3%) (p = 0.01). Conclusion Our findings indicate that DLC-coated nitinol stents might induce less neointimal hyperplasia than conventional nitinol stents following implantation in a canine iliac artery model; however, the DLC-coated nitinol stent surface when reformed with PEG induces more neointimal hyperplasia than either a conventional or DLC-coated nitinol stent. PMID:21325363

  14. Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation

    International Nuclear Information System (INIS)

    Nakao, S; Sonoda, T

    2013-01-01

    Diamond-like carbon (DLC) films are prepared by a bipolar-type plasma based ion implantation, and the structural differences between DLC films deposited on different electrical conductive substrates, i.e., conductive Si wafers and insulating glass plates are examined by Raman spectroscopy and x-ray photo emission spectroscopy (XPS). In the Raman measurements, graphite (G) and disorder (D) peaks are observed for both samples. However, the additional photo luminescence is overlapped on the spectra in the case of on-glass sample. To elucidate the structural difference, the intensity ratio of D to G peak (I(D)/I(G)), G peak position and full width at half maximum (FWHM) are obtained by curve fitting using Gaussian function and linear baseline. It is found that the I(D)/I(G) is lower, G peak position is higher and FWHM of G peak is narrower for on-glass sample than for on-Si sample. According to Robertson [1], lower I(D)/I(G) seems more sp 3 C-C bonding in amount for on-glass sample. In contrast, higher G peak position and narrower FWHM of G peak suggest less sp 3 C-C bonding in amount for on-glass sample. The results of XPS analysis with C1s spectra reveal that sp 3 ratio, i.e., the intensity ratio of sp 3 /(sp 3 +sp 2 ) is smaller for on-glass sample than for on-Si sample. The inconsistency of the trend between I(D)/I(G) and other parameters (G peak position and FWHM of G peak) might be caused by the overlap of photo luminescence signal on Raman spectrum as to on-glass sample. From these results, it is considered that sp 3 C-C bonding is reduced in amount when using insulating substrate in comparison with conductive substrate.

  15. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions

    International Nuclear Information System (INIS)

    Fu, Zhi-qiang; Wang, Cheng-biao; Zhang, Wei; Wang, Wei; Yue, Wen; Yu, Xiang; Peng, Zhi-jian; Lin, Song-sheng; Dai, Ming-jiang

    2013-01-01

    Highlights: • W-doped DLC coating with various W contents was fabricated. • Friction and wear of DLC coated sample was studied. • The lubricant additive was T307. • The influence of W content on friction under lubrication was unveiled. • The influence of W content on wear under lubrication was studied. - Abstract: The influence on tungsten content on the structure, mechanical properties and tribological performance of W-doped diamond-like carbon (DLC) coatings was studied by X-ray photoelectron spectroscopy, nano-indentation, scratch test, and ball-on-disk friction test. It was found that with increasing W content, the content of WC and free W in the coatings is increased while the content of sp 3 -C in the coatings is decreased. The effect of W content on the hardness and elastic modulus of the coatings is indistinctive, but there exists the highest critical load of scratch test of above 100 N when W content is 3.08 at.%. With the increase of W content, the friction coefficients of W-doped DLC coatings under dry friction conditions are increased while the friction coefficients of W-doped DLC coatings under polyalpha olefin (PAO) lubrication are decreased. With the increase of W content, the wear rates of the DLC-coated samples under dry friction conditions show a minimum value; under pure PAO lubrication, the influence of W content on the wear rates of the DLC-coated samples is indistinctive when the W content is below 10.73 at.% while the wear rates are increased with increasing W content from 10.73 at.% to 24.09 at.%; when lubricated by PAO + thiophosphoric acid amine (T307) salt, the samples coated with the undoped DLC or the W-doped DLC with high W content exhibit low wear rates

  16. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    International Nuclear Information System (INIS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-01-01

    We report the nanofabrication of a sulfur dioxide (SO 2 ) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO 2 , CO, H 2 , SO 2 and O 2 . Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <∼0.5 ppm for SO 2 . More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature. (paper)

  17. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...... with the microelectrode measurements. It was established, that even with a high molecular weight, non-diffusible substrate, degradation took place in the depths of the biofilm. Intrinsic enzymatic hydrolysis was not limiting and the volumetric removal rate of oxygen was zero order....

  18. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  19. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  20. Molecular dynamics simulation of radiation damage cascades in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, J. T. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Robinson, M. [Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia); Christie, H. J.; Roach, D. L.; Ross, D. K. [Physics and Materials Research Centre, School of Computing, Science and Engineering, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom); Marks, N. A. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia)

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.