WorldWideScience

Sample records for diamond drilling

  1. Diamond drilling for nuclear waste QC

    International Nuclear Information System (INIS)

    Jennings, Martin.

    1990-01-01

    Specialised diamond core drilling equipment could soon have a role to play in the safe disposal of intermediate level radioactive waste (ILW). Equipment to core and extract samples for quality checking from cement-filled steel waste drums by techniques compatible with eventual remote-handling operations in a 'hot-cell' is being developed. All coring tests carried out to date have been on simulant waste: 200 litre drums containing mixtures of Ordinary Portland Cement, Ground Granulated Blast Furnace Slag and Pulverised Fuel Ash. No radioactive materials have yet been used for the coring trials. The coring equipment and the diamond coring bits are described. (author)

  2. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  3. Drilling of optical glass with electroplated diamond tools

    Science.gov (United States)

    Wang, A. J.; Luan, C. G.; Yu, A. B.

    2010-10-01

    K9 optical glass drilling experiments were carried out. Bright nickel electroplated diamond tools with small slots and under heat treatment in different temperature were fabricated. Scan electro microscope was applied to analyze the wear of electroplated diamond tool. The material removal rate and grinding ratio were calculated. Machining quality was observed. Bond coating hardness was measured. The experimental results show that coolant is needed for the drilling processes of optical glasses. Heat treatment temperature of diamond tool has influence on wearability of diamond tool and grinding ratio. There were two wear types of electroplated diamond tool, diamond grit wear and bond wear. With the machining processes, wear of diamond grits included fracture, blunt and pull-out, and electroplated bond was gradually worn out. High material removal rates could be obtained by using diamond tool with suitable slot numbers. Bright nickel coating bond presents smallest grains and has better mechanical properties. Bright nickel electroplated diamond tool with slot structure and heat treatment under 200°C was suitable for optical glass drilling.

  4. Novel diamond-coated tools for dental drilling applications.

    Science.gov (United States)

    Jackson, M J; Sein, H; Ahmed, W; Woodwards, R

    2007-01-01

    The application of diamond coatings on cemented tungsten carbide (WC-Co) tools has been the subject of much attention in recent years in order to improve cutting performance and tool life in orthodontic applications. WC-Co tools containing 6% Co metal and 94% WC substrate with an average grain size of 1 - 3 microm were used in this study. In order to improve the adhesion between diamond and WC substrates it is necessary to etch cobalt from the surface and prepare it for subsequent diamond growth. Alternatively, a titanium nitride (TiN) interlayer can be used prior to diamond deposition. Hot filament chemical vapour deposition (HFCVD) with a modified vertical filament arrangement has been employed for the deposition of diamond films to TiN and etched WC substrates. Diamond film quality and purity has been characterized using scanning electron microscopy (SEM) and micro Raman spectroscopy. The performances of diamond-coated WC-Co tools, uncoated WC-Co tools, and diamond embedded (sintered) tools have been compared by drilling a series of holes into various materials such as human tooth, borosilicate glass, and acrylic tooth materials. Flank wear has been used to assess the wear rates of the tools when machining biomedical materials such as those described above. It is shown that using an interlayer such as TiN prior to diamond deposition provides the best surface preparation for producing dental tools.

  5. Diamond bits for directional drilling of wells and technology of using them

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V P; Steblev, B Ye; Sumaneyev, N N

    1979-01-01

    Characteristics are presented for a diamond bit for directional drilling ADN-08. Technology of using it is described, as well as cutter bits for directional drilling. Based on specially developed technique, the economic effect of using the diamond bits is calculated. This indicates that the use of the diamond bits in rocks of the VIII category significantly improves the quality of directional drilling.

  6. The new designs of diamond drill bits for composite polymers tooling

    Directory of Open Access Journals (Sweden)

    Ruslan Yu. Melentiev

    2015-12-01

    Full Text Available The author explores the drilling operation of some new engineering materials such as carbon fiber reinforced plastics (CFRP and other polymers that have an anisotropic structure, high-strength and elastic properties combined with low heat endurance. Such combination of properties makes impossible the simple transfer of the existing technologies for classic materials working to considered new class. At the same time, the existing tools cannot assure the specified quality of tooled products at the current productivity and tool life. Aim: The aim of this research is to increase the process efficiency of diamond drilling in composite polymers by developing the new designs of diamond drill bits. Materials and Methods: One of the most promising directions to solve this problem is the diamond coated abrasive type tool. This paper addresses and classifies the existing types of diamond drill bits according to their application and operation. The literature data analysis of known disadvantages during drilling operation, the quality of surface and joining face was performed. Results: The experimental researches of the author prove the negative meaning of the already known but kept out fact – the drill core blocking. The most important factors and structural features affecting the CFRP drilling process are revealed. The accounting of these factors allowed creating the set of unique designs of diamond drill bits for different purposes. The presented patented models has different allowance distribution schemes and cutting forces, thus satisfy the mechanical requirements of quality, productivity, tool life and hole geometry in the tooling of the specified material class.

  7. Diamond-set drill bits: savings achieved at Cominak

    International Nuclear Information System (INIS)

    Artru, P.; Bibert, F.X.; Croisat, G.

    1988-01-01

    Rotary instead of percussion adoption of drilling in the underground Akouta mine (Niger) has been the cause of important savings in blasting and bolting operations. Other savings affect capital expenditures and indirect savings are coming from better working conditions. For blast holes drilling and bolting, spare parts expenditures are 2.4 times lower with rotary drilling. Drilling rods are cheaper and last longer with rotary drilling. A rotary equipped Jumbos fleet is cheaper to maintain and is 18% more available, due to less mechanical and other breakdowns. Total savings for the mine owner and operator Cominak reach more than a billion of CFA francs [fr

  8. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  9. Diamonds are forever: drill bit advances may offer cheaper and stronger alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-02-01

    The rise to prominence of polycrystalline diamond compact (PDC) and diamond-impregnated drill bits, slowly providing stiff competition to the roller-cone type bits that for many years was the standard in the drilling industry, is discussed. A roller-cone drill bit, although much improved by heat treatment of the metal and the addition of tungsten carbide, is still mostly steel. It works by crushing the rock by overcoming its compressive strength, whereas PDC drill bits shear the rock away in a manner similar to scraping ice from a car windshield. PDC bits typically have three to six cutting surfaces, each one edged with a row of polycrystalline diamond cutters, bonded to a tungsten carbide base by a process called microwave sintering. Compared to roller cones, PDCs drill at least twice as fast, especially in the soft rock and clay where they have been used principally. In addition to saving rig time, PDC bits can handle longer runs; in the right application it is possible to drill the total depth of a well with only one bit. The microwave-sintered tungsten carbide also has higher corrosion resistance than the same material bonded under high pressure; PDCs are also less subject to mechanical failure than roller cones which use moveable bearings, seals and rotating cones. 1 photo.

  10. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    Science.gov (United States)

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different

  11. Ideas to Design an in situ Diamond Drilling Core Splitter within Soft ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... the wireline system of core barrel assembly and the device used in splitting of core ... Keywords: Design, In situ, Diamond drilling, Core splitter, Wireline system .... This is the most complex part of the core barrel and has many.

  12. Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining

    Science.gov (United States)

    Lei, X. L.; He, Y.; Sun, F. H.

    2016-12-01

    The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.

  13. Laboratory Investigations for the Role of Flushing Media in Diamond Drilling of Marble

    Science.gov (United States)

    Bhatnagar, A.; Khandelwal, Manoj; Rao, K. U. M.

    2011-05-01

    Marble is used as a natural stone for decorative purposes from ages. Marble is a crystalline rock, composed predominantly of calcite, dolomite or serpentine. The presence of impurities imparts decorative pattern and colors. The diamond-based operations are extensively used in the mining and processing of marble. Marble is mined out in the form of blocks of cuboids shape and has to undergo extensive processing to make it suitable for the end users. The processing operation includes slabbing, sizing, polishing, etc. Diamond drilling is also commonly used for the exploration of different mineral deposits throughout the world. In this paper an attempt has been made to enhance the performance of diamond drilling on marble rocks by adding polyethylene-oxide (PEO) in the flushing water. The effect of PEO added with the drilling water was studied by varying different machine parameters and flushing media concentration in the laboratory. The responses were rate of penetration and torque at bit-rock interface. Different physico-mechanical properties of marble were also determined. It was found that flushing water added with PEO can substantially enhance the penetration rates and reduce the torque developed at the bit-rock interface as compared to plain flushing water.

  14. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    Science.gov (United States)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  15. Research on electrodischarge drilling of polycrystalline diamond with increased gap voltage

    Science.gov (United States)

    Skoczypiec, Sebastian; Bizoń, Wojciech; Żyra, Agnieszka

    2018-05-01

    This paper presents an experimental investigation of the machining characteristics of polycrystalline diamond (PCD). Machining of PCD by conventional technologies is not an effective solution. Due to presence of cobalt this material can be machined by application of electrical discharges. On the other side, electrical conductivity of PCD is on the limit of electrodischarge machining (EDM) possibilities. Proposed paper reports experimental investigation on electrodischarge drilling of PCD samples. The test were carried out with application on of high-voltage (up to 550 V) pulse power unit for two kinds of dielectrics: carbon based (Exxsol D80) and de-ionized water. As output parameters machining accuracy (side gap), material removal rate were selected. Also, based on SEM photographs and energy dispersive X-ray spectroscopy (EDS) analysis, a qualitative evaluation of the obtained results was presented.

  16. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    Science.gov (United States)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  17. Steel, hard metal and diamonds. The history of drilling blast holes in mining and tunneling; Stahl, Hartmetall und Diamanten. Zur Geschichte des Sprenglochbohrens im Berg- und Tunnelbau

    Energy Technology Data Exchange (ETDEWEB)

    Feistkorn, E. [Inst. fuer Vortrieb und Gewinnung, DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1997-12-31

    Beginning of the blasting technique in mining and tunneling during the 17th century required drilling holes to take the explosive. Following the use of hammer and wedge, drilling was done over a long period of time by hand with mallet and drillsteel. Continuously, during the 19th century the handwork was replaced by drilling machines. Technically, the evolution of drilling equipment is marked by electrohydraulic control and automatization with the assistance of microelectronics. Regarding the material, the introduction of hard metal and - in addition for rotary drilling - the development of synthetic diamond material are the main features. (orig.) [Deutsch] Mit der Einfuehrung der Sprengtechnik im Bergbau und Tunnelbau im 17. Jahrhundert mussten verfahrensbedingt Bohrloecher zur Aufnahme des Sprengstoffes hergestellt werden. In Anlehnung an die Arbeit mit Schlaegel und Eisen erfolgte dies lange Zeit manuell mit dem Bohrfaeustel und Stahlbohrern. Die Handarbeit wurde waehrend der 2. Haelfte des 19. Jahrhunderts kontinuierlich durch Bohrmaschinen verdraengt. Maschinentechnisch ist die weitere Entwicklung durch elektrohydraulische Steuerungen und die Automatisierung der Bohrgeraete mit Hilfe der Mikroelektronik gekennzeichnet. Materialtechnisch stellen die Einfuehrung des Hartmetalls und beim drehenden Bohren zusaetzlich die Entwicklung synthetischer Diamantwerkstoffe die herausragenden Marksteine dar. (orig.)

  18. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  19. Testing methodology of diamond composite inserts to be used in the drilling of petroleum wells; Metodologia de testes de insertos compositos diamantados a serem usados na perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovnitchii, G.S.; Filgueira, M.; Skury, A.L.D.; Tardim, R.C. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil)], e-mail: rtardim@terra.com.br

    2006-07-01

    The useful life of the inserts used in the cutters of the drills for perforation of oil wells determines the quality of the perforation as well as the productivity. Therefore, the research of the wear of insert is carried through with the objective to foretell the most important properties of the inserts. Due to the fact of the UENF to be developing the processes of composites sintering to the synthetic diamond base, it is interesting to define the testing methodology of the gotten inserts. The proposed methodology is based on the evaluation of the wear suffered by de sample. For this end a micro processed 'Abrasimeter', model AB800-E, manufactured for the Contenco Company was used. The instrument capacity is 1,36 kVA; axial load applied in the cutter up to 50 kgf; rotation of table speed 20 rpm; course of the tool in radial direction speed before 2 m/min; dimensions of the granite block D = 808 mm, d = 484 mm, h = 50 mm. The gotten results show that the proposed methodology can be used for the evaluation of the inserts of the cutters applied in perforation drills. (author)

  20. Diamond identifaction

    International Nuclear Information System (INIS)

    1976-01-01

    X-ray topography on diamonds allows for unique identification of diamonds. The method described consists of the registration of crystal defects, inclusions etc. of a diamond, resulting in a 'finger print' of the individual jewel which can only be changed by its complete destruction

  1. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  2. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  3. Diamond identification

    International Nuclear Information System (INIS)

    Lang, A.R.

    1979-01-01

    Methods of producing sets of records of the internal defects of diamonds as a means of identification of the gems by x-ray topography are described. To obtain the records one can either use (a) monochromatic x-radiation reflected at the Bragg angle from crystallographically equivalent planes of the diamond lattice structure, Bragg reflections from each such plane being recorded from a number of directions of view, or (b) white x-radiation incident upon the diamond in directions having a constant angular relationship to each equivalent axis of symmetry of the diamond lattice structure, Bragg reflections being recorded for each direction of the incident x-radiation. By either method an overall point-to-point three dimensional representation of the diamond is produced. (U.K.)

  4. Drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Umanchik, N P; Demin, A V; Khrustalev, N N; Linnik, G N; Lovchev, S V; Rozin, M M; Sidorov, R V; Sokolov, S I; Tsaregradskiy, Yu P

    1981-01-01

    A drilling unit is proposed which includes a hydraulic lifter, hydraulic multiple-cylinder pump with valve distribution and sectional drilling pump with separators of the working and flushing fluid. In order to reduce metal consumption and the overall dimensions of the drilling unit, the working cavity of each cylinder of the hydraulic multiple-cylinder pump is equipped with suction and injection valves and is hydraulically connected to the working cavity by one of the sections of the drilling pump.

  5. Diamond nanophotonics

    Directory of Open Access Journals (Sweden)

    Katja Beha

    2012-12-01

    Full Text Available We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

  6. Study on the Effect of Diamond Grain Size on Wear of Polycrystalline Diamond Compact Cutter

    Science.gov (United States)

    Abdul-Rani, A. M.; Che Sidid, Adib Akmal Bin; Adzis, Azri Hamim Ab

    2018-03-01

    Drilling operation is one of the most crucial step in oil and gas industry as it proves the availability of oil and gas under the ground. Polycrystalline Diamond Compact (PDC) bit is a type of bit which is gaining popularity due to its high Rate of Penetration (ROP). However, PDC bit can easily wear off especially when drilling hard rock. The purpose of this study is to identify the relationship between the grain sizes of the diamond and wear rate of the PDC cutter using simulation-based study with FEA software (ABAQUS). The wear rates of a PDC cutter with a different diamond grain sizes were calculated from simulated cuttings of cutters against granite. The result of this study shows that the smaller the diamond grain size, the higher the wear resistivity of PDC cutter.

  7. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    International Nuclear Information System (INIS)

    Sein, Htet; Ahmed, Waqar; Jackson, Mark; Woodwards, Robert; Polini, Riccardo

    2004-01-01

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 μm were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools

  8. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  9. An electrical conductivity inspection methodology of polycrystalline diamond cutters

    Science.gov (United States)

    Bogdanov, G.; Wiggins, J.; Bertagnolli, K.; Ludwig, R.

    2012-05-01

    The polycrystalline diamond cutter (PDC) is widely used in oil and gas drilling operations. It is manufactured by sintering diamond powder onto a tungsten carbide substrate at 6 GPa and 1500 C. During sintering, molten cobalt from the substrate infiltrates the diamond table. The residual metal content correlates with cutter performance. We present an instrument that employs electrical impedance tomography capable of imaging the 3D metal content distribution in the diamond table. These images can be used to predict cutter performance as well as detect flaws.

  10. Drilling reorganizes

    Science.gov (United States)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  11. Superhard nanophase materials for rock drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadangi, R.K.; Voronov, O.A.; Tompa, G.S. [Diamond Materials Inc., Pisctaway, NJ (United States); Kear, B.H. [Rutgers Univ., Piscataway, NJ (United States)

    1997-12-31

    Diamond Materials Incorporated is developing new class of superhard materials for rock drilling applications. In this paper, we will describe two types of superhard materials, (a) binderless polycrystalline diamond compacts (BPCD), and (b) functionally graded triphasic nanocomposite materials (FGTNC). BPCDs are true polycrystalline diamond ceramic with < 0.5 wt% binders and have demonstrated to maintain their wear properties in a granite-log test even after 700{degrees}C thermal treatment. FGTNCs are functionally-graded triphasic superhard material, comprising a nanophase WC/Co core and a diamond-enriched surface, that combine high strength and toughness with superior wear resistance, making FGTNC an attractive material for use as roller cone stud inserts.

  12. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  13. Drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Galiopa, A A; Yegorov, E K

    1981-01-04

    A drilling rig is proposed which contains a tower, lifter in the form of n infinite chain, and mobile rotator with holding device connected to the chain, and pipe holder. In order to accelerate the auxiliary operations to move the drilling string and unloaded rotator, the rotator is equipped with a clamp with means for transverse connection of it to both branches of the chain, while the pipe holders equipped with a clamp with means of connecting it to one of the branches of the chain.

  14. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Rusayev, A A; Bibikov, K V; Simonenkov, I D; Surkova, K I

    1982-01-01

    Drilling mud is proposed which contains clay, water, water output reducer, pH regulator, viscosity reducer and hydrogen sulfide absorber. In order to improve the absorbing capacity of the drilling mud with pH 8-11 and simultaneously preservation of the technological properties of the mud, it contains as the absorber of hydrogen sulfide pyrite cinders with the following ratio of components, % by mass: clay 5.0-35.0; water output reducer 0.2-2.0; pH regulator 0.05-0.25; viscosity reducer 0.1-1.0; pyrite cinders 0.5-4.0; water--the rest.

  15. Drilling equipment for difficult coring conditions: a new type of core lifter and triple tube core barrel

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J B

    1968-08-01

    Although considerable improvements in diamond drilling equipment have been made since the early 1950's, deficiencies in existing equipment led to the development of a new type core lifter and special 20 ft triple tube core barrel designed to operate in bad coring conditions. It is claimed that although developed essentially for coal drilling, the new equipment could be adapted to other fields of diamond drilling with the cost advantage of increased life of the core lifter.

  16. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Babets, M A; Nechayev, N D; Vinogradova, G P

    1982-01-01

    A drilling mud is proposed which contains clay, alkali, water and stabilizer reagent. It is distinguished by the fact that in order to improve the viscosity and static shear stress, the stabilizer reagent contained is composted solid general wastes with the following ratio of components (% by weight): clay 10-15, alkali 0.1-0.2; composted solid general wastes 2-5; water--the rest.

  17. An all optical system for studying temperature induced changes in diamond

    CSIR Research Space (South Africa)

    Masina, B

    2010-01-01

    Full Text Available .csir.co.za An all optical system for studying temperature induced changes in diamond Bathusile Masina and Andrew Forbes 1 September 2010 © CSIR 2010 Slide 2 It is acknowledged that temperature induces damage in the diamond bits due to friction during the drilling...

  18. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, G.; Ludwig, R. [Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 (United States); Wiggins, J.; Bertagnolli, K. [US Synthetic, 1260 South 1600 West, Orem, UT 84058 (United States)

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  19. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.

    1983-01-01

    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  20. Drilling mortar

    Energy Technology Data Exchange (ETDEWEB)

    Theodorescu, V; Ditulescu, E

    1979-01-30

    A method is proposed for producing stable drilling mortar from drilled rock which makes it possible to stabilize the walls of the borehole and to maintain producing horizons of oil and gas wells in an undisturbed state. The proposed drilling mortar includes 5-12 wt.-% dry modified calcium lignosulfonate in the form of a solution containing about 30% dry matter with the addition of 0.1 wt.-% anti-foaming agent consisting of C/sub 19/-C/sub 20/ alcohol dissolved in a light petroleum product; cream of milk with about 10 wt.-% Ca(OH)/sub 2/ in a quantity sufficient for reducing the pH value of the ions down to 10.5; sodium chloride in amounts from 5 mg to 100 ml (aqueous phase); ordinarily used agents for ensuring the necessary density, viscosity, and filterability. For example, the preparation of the drilling fluid begins with the processing under laboratory conditions of lignosulfonic pulp obtained in the production of yeast fodder with the following characteristics: specific density, 1.15 kgf/dm/sup 3/; water content, 67% (according to the Dean and Stark method); pH 4.0. In the vessel is placed 1000 cm/sup 3/ lignosulfonic pulp containing 33% dry matter, and the pulp is heated to 90-95/sup 0/C by means of a water bath. To the heated pulp 33 cm/sup 3/ formic acid at a 40-% concentration is added by mixing. The specific temperature of the pulp is maintained in the constant mixing process for two hours. Then the cream of milk containing 10 wt.-% Ca(OH)/sub 2/ is added to raise the pH to 10.5. The cooled product is calcium lignosulfonate. To produce a stable form of the drilling mortar, 750 g clay and 10 g trass gel are added to a vessel containing 1500 cm/sup 3/ fresh water by means of mixing. The resulting dispersed mass remains at rest for 12 hours for purposes of hydration. Then 2 g of an anti-foaming agent dissolved in 6 cm/sup 3/ benzene is introduced to 1000 cm/sup 3/ modified calcium lignosulfonate produced by the above method.

  1. Synthetic diamond in electrochemistry

    International Nuclear Information System (INIS)

    Pleskov, Yurii V

    1999-01-01

    The results of studies on the electrochemistry of diamond carried out during the last decade are reviewed. Methods for the preparation, the crystalline structure and the main electrophysical properties of diamond thin films are considered. Depending on the doping conditions, the diamond behaves as a superwide-gap semiconductor or as a semimetal. It is shown that the 'metal-like' diamond is corrosion-resistant and can be used advantageously as an electrode in the electrosynthesis (in particular, for the electroreduction of compounds that are difficult to reduce) and electroanalysis. Kinetic characteristics of some redox reactions and the impedance parameters for diamond electrodes are presented. The results of comparative studies of the electrodes made of diamond single crystals, polycrystalline diamond and amorphous diamond-like carbon, which reveal the effect of the crystalline structure (e.g., the influence of intercrystallite boundaries) on the electrochemical properties of diamond, are presented. The bibliography includes 99 references.

  2. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Baranovskiy, V D; Brintsev, A I; Gusev, V G; Katenev, Ye P; Pokhorenko, I V

    1979-10-25

    A drilling mud is proposed, which contains a dispersion medium, a dispersion phase, for instance, clay, a stabilizer reagent, for instance, carboxymethylcellulose and a weighter. In order to reduce the viscosity and to increase the stability of the mud it contains as the dispersion medium a 75% aqueous solution of the L-7 reagent. To increase the salt resistance of the mud, it additionally contains sodium chloride in a volume of 4.04.5 percent by weight, and to regulate the alkalinity, it additionally contains sodium hydroxide in a volume of 1.1 to 1.3 percent by weight.

  3. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  4. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  5. Superior quality diamond heel inserts improve cutting structure and seal life in abrasive and directional applications

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Tyler; Scott, Dan; Nelms, Derek [Society of Petroleum Engineers (United States)

    2011-07-01

    In the oil and gas industry, continuous improvements over the last century have led to the development of increasingly efficient drilling equipment. Among the new technologies is the polycrystalline diamond compact bit which has become more efficient than roller cone bits for several applications; the utilization of roller cone bits is now restricted to tough applications such as directional drilling and drilling through hard and abrasive formations. The aim of this paper is to present the development of improved roller cone bits using new designs and diamond inserts of superior quality. Two case studies on the use of improved roller cone bits are presented herein. Results showed that the novel diamond inserts combined with the design improvements provide better wear resistance. This paper demonstrated that roller cone bits have achieved greater reliability and longevity thanks to the new generation of diamond inserts and to design improvements.

  6. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  7. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  8. Diamond semiconducting devices

    International Nuclear Information System (INIS)

    Polowczyk, M.; Klugmann, E.

    1999-01-01

    Many efforts to apply the semiconducting diamond for construction of electronic elements: resistors, thermistors, photoresistors, piezoresistors, hallotrons, pn diodes, Schottky diodes, IMPATT diodes, npn transistor, MESFETs and MISFETs are reviewed. Considering the possibilities of acceptor and donor doping, electrical resistivity and thermal conductivity of diamond as well as high electric-field breakdown points, that diamond devices could be used at about 30-times higher frequency and more then 8200 times power than silicon devices. Except that, due to high heat resistant of diamond, it is concluded that diamond devices can be used in environment at high temperature, range of 600 o C. (author)

  9. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  10. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  11. Thermally stable diamond brazing

    Science.gov (United States)

    Radtke, Robert P [Kingwood, TX

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  12. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  13. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  14. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  15. Advanced Drilling through Diagnostics-White-Drilling

    International Nuclear Information System (INIS)

    FINGER, JOHN T.; GLOWKA, DAVID ANTHONY; LIVESAY, BILLY JOE; MANSURE, ARTHUR J.; PRAIRIE, MICHAEL R.

    1999-01-01

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  16. Detection of diamonds

    International Nuclear Information System (INIS)

    Hansen, J.O.; Blondeel, E.J.G.; Taylor, G.T.

    1991-01-01

    Diamond particles are distinguished from non-diamond, associated particles on the basis of their higher refractive index. The particles are brought to a specific location, typically in a stream of water flowing full in a vertical duct, and a beam of collimated electromagnetic radiation is directed at them. An array of radiation detectors is provided to detect refracted and/or reflected radiation. The array is so configured that the responses of the detectors, considered collectively, will be indicative of the presence of a diamond when a diamond is in fact present. However, when a particle having a substantially lower refractive index is present, the responses of the detectors will not be so indicative. The diamond and non-diamond particles can subsequently be sorted from one another

  17. Diamond-cleaning investigations

    International Nuclear Information System (INIS)

    Derry, T.E.

    Four parcels of diamonds which either had or had not been cleaned using the usual techniques, chiefly involving etch in molten potassium nitrate were supplied by De Beers Diamond Research Laboratories. Each parcel contained about 40 stones, amounting to about 10 carats. Half the diamonds in each parcel were cleaned by a standard procedure involving half an hours ultrasonic agitation in a 20% solution of the commercial detergent 'Contrad' which is effectively a surfactant and chelating agent. Visual comparisons by a number of observers who were not told the stones' histories, established that these diamonds generally had a more sparkling appearance after the cleaning procedure had been applied

  18. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  19. Drilling trends in the nineties

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on various aspects of well drilling in the 1990s, papers were presented on drilling waste management, well completion and workovers, drilling fluids, drilling rig equipment and design, drilling mechanics, drill stem testing and materials, cementing, business management, health and safety, environmental issues, and directional drilling technology. Separate abstracts have been prepared for 46 papers from this conference

  20. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  1. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  2. Diamond Nucleation Using Polyethene

    Science.gov (United States)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  3. Diamond films: Historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Messier, R. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  4. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  5. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  6. Investing in Diamonds

    NARCIS (Netherlands)

    Renneboog, Luc

    2015-01-01

    This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual nominal USD

  7. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  8. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  9. South African drilling

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    According to the president of the South African Drilling Association, the drilling industry is meeting head-on the challenges created by the worldwide recession. The paper is a synopsis of several of the papers presented at the SADA symposium and a look at several mining-related drilling projects in South Africa. These papers include grouting techniques, the use of impregnated bits in hard rock drilling, tunnel boring for mines, surveying improvement methods and the use of explosives to increase groundwater yield

  10. Experimental study of surface quality and damage when drilling unidirectional CFRP composites

    Directory of Open Access Journals (Sweden)

    Eshetu D. Eneyew

    2014-10-01

    Full Text Available In this study, an experimental investigation on the drilling of unidirectional carbon fiber reinforced plastic (UD-CFRP composite was conducted using polycrystalline diamond (PCD tipped eight facet drill. The quality of the drilled hole surface was examined through surface roughness measurements and surface damage by scanning electron microscopy (SEM. It was found that fiber pullout occurred in two specific sectors relative to the angle between the cutting direction and the fiber orientation. The thrust force was highly influenced by the feed rate than the cutting speed and it shows a significant variation throughout the rotation of the drill.

  11. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  12. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders

    2008-01-01

    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  13. Experimental assessment of borehole wall drilling damage in basaltic rocks

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1986-06-01

    Ring tension tests, permeability tests, and microscopic fracture studies have been performed to investigate the borehole damage induced at low confining pressure by three drilling techniques (diamond, percussion and rotary). Specimens are drilled with three hole sizes (38, 76, and 102 mm diameter) in Pomona basalt and Grande basaltic andesite. The damaged zone is characterized in terms of fractures and fracture patterns around the hole, and in terms of tensile strength reduction of the rock around the holes. Experimental results show that the thickness of the damaged zone around the hole ranges from 0.0 to 1.7 mm. A larger drill bit induces more wall damage than does a smaller one. Different drilling techniques show different damage characteristics (intensity and distribution). Damage characteristics are governed not only by drilling parameters (bit size, weight on bit, rotational speed, diamond radius, and energy), but also by properties of the rock. The weaker rock tends to show more intense damage than does the stronger one. Cracks within grains or cleavage fractures are predominant in slightly coarser grained rock (larger than 0.5 mm grain size) while intergranular cracks are predominant in very fine grained rock (smaller than 0.01 mm grain size). The damaged zones play no significant role in the flow path around a borehole plug

  14. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  15. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)], E-mail: cywang@gdut.edu.cn; Zhou, Y.M.; Zhang, F.L.; Xu, Z.C. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-05-12

    The reaction mechanism of the interface among diamond, commercial Ni-Cr-P alloy and steel substrate has been studied by optical microscopy, scanning electron microscope, X-ray diffraction and Raman spectroscopy. The reaction layers formed among diamond, brazing alloy and steel substrate produced good wettability of diamond grits for achieving better quality tools. The reaction layer between diamond and brazing alloy comprised a reaction layer of brazing alloy and a reaction layer of diamond. Cr{sub 7}C{sub 3} and Cr{sub 3}C{sub 2} formed in the reaction layer of brazing alloy was the main reason for improving the bonding strength of Ni-Cr alloy to the diamond grits. A reaction layer of diamond may be a graphitization layer formed on the surface of diamond under high temperature brazing. The reaction layer of brazing alloy and steel substrate was the co-diffusion of Ni, Cr and Fe between the brazing alloy and the steel substrate. The life and sharpness of brazed diamond boring drill bits fabricated in this study were superior to the electroplated one in the market owing to its high protrusion and bonding strength.

  16. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.; El Tall, Omar; Raja, Inam U.

    2014-01-01

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  17. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  18. Diamond Jubilee Meeting

    Indian Academy of Sciences (India)

    1994-10-01

    Oct 1, 1994 ... Science, Bangalore, the Diamond Jubilee Annual. Meeting will be held in ... "The fascination of statistics" .... on post Hartree-Fock methods, highly correlated systems ..... Gold Medal of the National Institute of Social. Sciences ...

  19. Quantum Computing in Diamond

    National Research Council Canada - National Science Library

    Prawer, Steven

    2007-01-01

    The aim of this proposal is to demonstrate the key elements needed to construct a logical qubit in diamond by exploiting the remarkable quantum properties of the nitrogen-vacancy (NV) optical centre...

  20. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E; Gervais, I [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y; Pangarkar, S; Stibbs, B [Sedco Forex, Montrouge (France); McMorran, P [Sedco Forex, Pau (France); Nordquist, E [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T [Sedco Forex, Perth (Australia); Schindler, H [Sedco Forex, Dubai (United Arab Emirates); Scott, P [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1997-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  1. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  2. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  3. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    Science.gov (United States)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  4. Diamond pixel modules

    International Nuclear Information System (INIS)

    Asner, D.; Barbero, M.; Bellini, V.; Belyaev, V.; Brom, J-M.; Bruzzi, M.; Chren, D.; Cindro, V.; Claus, G.; Cristinziani, M.; Costa, S.; D'Alessandro, R.; Boer, W. de; Dobos, D.; Dolenc, I.; Dulinski, W.; Duris, J.; Eremin, V.; Eusebi, R.; Frais-Koelbl, H.

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10 16 protons/cm 2 illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  5. Diamond pixel modules

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D. [Carleton University, Ottawa (Canada); Barbero, M. [Universitaet Bonn (Germany); Bellini, V. [INFN/University of Catania (Italy); Belyaev, V. [MEPHI Institute, Moscow (Russian Federation); Brom, J-M. [IPHC, Strasbourg (France); Bruzzi, M. [INFN/University of Florence (Italy); Chren, D. [Czech Technical University, Prague (Czech Republic); Cindro, V. [Jozef Stefan Institute, Ljubljana (Slovenia); Claus, G. [IPHC, Strasbourg (France); Cristinziani, M. [Universitaet Bonn (Germany); Costa, S. [INFN/University of Catania (Italy); D' Alessandro, R. [Department of Energetics/INFN Florence (Italy); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Dobos, D. [CERN, Geneva (Switzerland); Dolenc, I. [Jozef Stefan Institute, Ljubljana (Slovenia); Dulinski, W. [IPHC, Strasbourg (France); Duris, J. [UCLA, Los Angeles, CA (United States); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Eusebi, R. [FNAL, Batavia (United States); Frais-Koelbl, H. [Fachhochschule fuer Wirtschaft und Technik, Wiener Neustadt (Austria)

    2011-04-21

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10{sup 16} protons/cm{sup 2} illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  6. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  7. Nanocrystalline diamond coatings for machining

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  8. Drilling bits for deep drilling and process for their manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, H.; Juergens, R.; Feenstra, R.; Busking, B.E.

    1978-11-30

    The invention concerns a drilling head or a drilling bit for use in deep drilling in underground formations and particularly concerns a drilling bit with a drilling bit body, which has a shank and a hollow space, which is connected with a duct extending through the shank. The drilling bit body has several separate cutting elements for removing material from the floor of a borehole and hydraulic devices for cooling and/or cleaning the cutting elements are provided.

  9. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  10. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  11. A vision for drilling

    Energy Technology Data Exchange (ETDEWEB)

    Millheim, K. [Montanuniversitaet Leoben (Austria)

    1995-12-31

    The future of drilling lies in its relationship with the oil and gas industry. This paper examines how the future of drilling is seen from the view point of the exploration manager, the drilling contractor, the drilling engineer and the company president or managing director. The various pressures on the oil and gas industry are examined, such as environmental issues, alternative energy sources, and the price of oil which determines how companies are run. Exploration activity is driven by the price of oil and gas. The development of wells with multiple horizontal wells or multiple horizontal wells with tributaries will reduce the cost of exploration. Companies will rely less and less on reservoir simulation and more on cheap well-bores, multi-lateral well-bores and will exploit oil that could not be exploited before. The cost of exploratory drilling will need to be kept down so that in the future the industry will get better at economically finding fields at the 10 million to 20 million barrel range that would not have been possible before. The future is expected to see drilling contractors tunnelling, making sewerage lines and drilling 10,000 foot wells with purpose built rigs. Franchising will become a feature of the industry as will the use of databases to answer key technical questions. Offshore platforms will be built to be moveable and disposable. The industry is capable of solving problems, meeting challenges and making ideas work, providing much hope for the future. 10 figs., 1 photo.

  12. Drilling cost analysis

    International Nuclear Information System (INIS)

    Anand, A.B.

    1992-01-01

    Drilling assumes greater importance in present day uranium exploration which emphasizes to explore more areas on the basis of conceptual model than merely on surface anomalies. But drilling is as costly as it is important and consumes a major share (50% to 60%) of the exploration budget. As such the cost of drilling has great bearing on the exploration strategy as well as on the overall cost of the project. Therefore, understanding the cost analysis is very much important when planning or intensifying an exploration programme. This not only helps in controlling the current operations but also in planning the budgetary provisions for future operations. Also, if the work is entrusted to a private party, knowledge of in-house cost analysis helps in fixing the rates of drilling in different formations and areas to be drilled. Under this topic, various factors that contribute to the cost of drilling per meter as well as ways to minimize the drilling cost for better economic evaluation of mineral deposits are discussed. (author)

  13. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  14. Biofunctionalization of diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reitinger, Andreas Adam; Lud, Simon Quartus; Stutzmann, Martin; Garrido, Jose Antonio [Walter Schottky Institut, TU Muenchen (Germany); Hutter, Naima Aurelia; Richter, Gerhard; Jordan, Rainer [WACKER-Chair of Macromolecular Chemistry, TU Muenchen (Germany)

    2010-07-01

    In this work we present two main routes for the biofunctionalization of nanocrystalline diamond films, aiming at the application of diamond microelectrodes as amperometric biosensors. We report on direct covalent grafting of biomolecules on nanocrystalline diamond films via diazonium monophenyls and biphenyls as well as other linker molecules, forming self-assembled monolayers on the diamond surface. Monolayers with different functional head groups have been characterized. Patterning of the available functional groups using electron beam-induced chemical lithography allows the selective preparation of well-localized docking sites for the immobilization of biomolecules. Furthermore, polymer brushes are expected to enable novel paths for designing more advanced biosensing schemes, incorporating multifunctional groups and a higher loading capacity for biomolecules. Here, we focus on the preparation of polymer grafts by self-initiated photografting and photopolymerization. Further chemical modification of the grafted polymer brushes results in the introduction of additional functional molecules, paving the way for the incorporation of more complex molecular structures such as proteins. In a comparative study we investigate the advantages and disadvantages of both approaches.

  15. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  16. Drilling and well technology

    Energy Technology Data Exchange (ETDEWEB)

    Milheim, K. [Mining University Leoben Institute for Drilling Technology, (Austria)

    1996-12-31

    Over a billion dollars a year is lost by exploration and production companies drilling wells because of the lack of learn curve management (LMC) practices. This paper presents the importance of the LMC concept, what it is, why LMC has not yet been recognized as a major initiative for improving drilling cost performance. The paper discusses the different types of planning, problems with implementation of plans, the use and misuse of drilling results and data bases, and the lack of post analysis practices. The major point of the paper is to show the massive savings that can be achieved by valuing LMC, learning LMC and successfully implementing LMC. . 2 refs., 5 figs.

  17. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  18. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    Science.gov (United States)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  19. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  20. Drilling rig mast

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, E.S.; Barashkov, V.A.; Lebedev, A.I.; Panin, N.M.; Sirotkin, N.V.

    1981-01-07

    A drilling rig mast is proposed that contains a portal with a carrier shaft hinged to it and struts with stays. In order to decrease the time expended in the assembly and dessembly of the drilling rig, the portal is constructed from mobile and immobile parts that are connected together by a ball pivot; the immobile section of the portal has a T-shaped recess for directing the mobile section.

  1. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    Directory of Open Access Journals (Sweden)

    Naď Milan

    2016-12-01

    Full Text Available Rotary ultrasonic machining (RUM is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  2. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    Science.gov (United States)

    Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan

    2016-12-01

    Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  3. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  4. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  5. Comparative investigation of smooth polycrystalline diamond films on dental burs by chemical vapor deposition

    Science.gov (United States)

    Sein, Htet; Ahmed, Waqar; Rego, Christopher; Jackson, Mark; Polini, Riccardo

    2006-04-01

    Depositions of hot filament chemical vapor-deposited diamond on cobalt-cemented tungsten carbide (WC-Co) rotary cutting dental burs are presented. Conventional dental tools made of sintered polycrystalline diamond have a number of problems associated with the heterogeneity of the crystallite, decreased cutting efficiency, and short life. A preferential (111) faceted diamond was obtained after 15 h of deposition at a growth rate of 1.1 µm/h. Diamond-coated WC-Co dental burs and conventional sintered burs are mainly used in turning, milling, and drilling operations for machining metal ceramic hard alloys such as CoCr, composite teeth, and aluminum alloy in the dental laboratory. The influence of structure, the mechanical characteristics of both diamond grains and hard alloys on the wear behavior, as well as the regimen of grinding on diamond wear are considered. Erosion wear properties are also investigated under air-sand erosion testing. After machining with excessive cutting performance, calculations can be made on flank and crater wear areas. Diamond-coated WC-Co dental burs offered significantly better erosion and wear resistance compared with uncoated WC-Co tools and sintered burs.

  6. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  7. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  8. Genetics Home Reference: Diamond-Blackfan anemia

    Science.gov (United States)

    ... Home Health Conditions Diamond-Blackfan anemia Diamond-Blackfan anemia Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Diamond-Blackfan anemia is a disorder of the bone marrow . The ...

  9. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  10. Fast diamond photoconductors

    International Nuclear Information System (INIS)

    Pochet, T.

    1993-01-01

    Preliminary results on the response of type Ib and IIa diamond photodetectors to fast laser pulse exposures at 265 and 530 nm are presented. The influence of the applied bias, the laser wavelengths and the light intensity on the detector sensitivity is studied. Also, recent measurements with 1.25 MeV gamma ray pulses are reported. (authors). 13 refs., 7 figs., 1 tab

  11. Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

    1990-06-01

    The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a

  12. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  13. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  14. Investigation of active vibration drilling using acoustic emission and cutting size analysis

    Directory of Open Access Journals (Sweden)

    Yingjian Xiao

    2018-04-01

    Full Text Available This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests (DOTs were conducted where the drilling rate-of-penetration (ROP was measured at a series of step-wise increasing static bit thrusts or weight-on-bits (WOBs. Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission (AE system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT (linear variable differential transformer recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP. Keywords: Active bit vibration, Diamond coring drilling, Drill

  15. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  16. Diamond Pixel Detectors and 3D Diamond Devices

    International Nuclear Information System (INIS)

    Venturi, N.

    2016-01-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  17. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  18. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  19. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  20. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available Diamond has the highest thermal conductivity among known materials, and as such finds uses as an industrial tool in areas where dissipation of excess heat is a requirement. In this investigation we set up a laser system to heat a diamond sample...

  1. Electrochemical applications of CVD diamond

    International Nuclear Information System (INIS)

    Pastor-Moreno, Gustavo

    2002-01-01

    Diamond technology has claimed an important role in industry since non-expensive methods of synthesis such as chemical vapour deposition allow to elaborate cheap polycrystalline diamond. This fact has increased the interest in the scientific community due to the outstanding properties of diamond. Since Pleskov published in 1987 the first paper in electrochemistry, many researchers around the world have studied different aspects of diamond electrochemistry such as reactivity, electrical structure, etc. As part of this worldwide interest these studies reveal new information about diamond electrodes. These studies report investigation of diamond electrodes characterized using structural techniques like scanning electrode microscopy and Raman spectroscopy. A new electrochemical theory based on surface states is presented that explains the metal and the semiconductor behaviour in terms of the doping level of the diamond electrode. In an effort to characterise the properties of diamond electrodes the band edges for hydrogen and oxygen terminated surface are located in organic solvent, hence avoiding possible interference that are present in aqueous solution. The determination of the band edges is performed by Mott-Schottky studies. These allow the calculation of the flat band potential and therefore the band edges. Additional cyclic voltammetric studies are presented for both types of surface termination. Mott-Schottky data and cyclic voltammograms are compared and explained in terms of the band edge localisation. Non-degenerately p-type semiconductor behaviour is presented for hydrogen terminated boron doped diamond. Graphitic surface states on oxidised surface boron doped diamond are responsible for the electrochemistry of redox couples that posses similar energy. Using the simple redox couple 1,4-benzoquinone effect of surface termination on the chemical behaviour of diamond is presented. Hydrogen sublayers in diamond electrodes seem to play an important role for the

  2. Drill Sergeant Candidate Transformation

    Science.gov (United States)

    2009-02-01

    leadership styles of NCOs entering Drill Sergeant School (DSS). ARI also developed and administered a prototype DS Assessment Battery to assess...preferred leadership styles . DSS training increases both the degree to which the DSC feels obligated to and identifies with the Army. DSS training...4 TABLE 3. PREFERRED LEADERSHIP STYLES DEFINITIONS .............................................6 TABLE 4. DSC CHANGE IN

  3. Measurement Space Drill Support

    Science.gov (United States)

    2015-08-30

    II) H-47 Block II (I) *H-47 Block II (II) AVN FVL Att (I) * AVN FVL Att (II) TRAC- MTRY F2025B Logistic Flow MS Drill Support FY15 Research...does not have to use other AVN /ground assets to cover the area, freeing these assets to perform other missions and potentially enhancing the

  4. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  5. Presolar Diamond in Meteorites

    OpenAIRE

    Amari, Sachiko

    2009-01-01

    Presolar diamond, the carrier of the isotopically anomalous Xe component Xe-HL, was the first mineral type of presolar dust that was isolated from meteorites. The excesses in the light, p-process only isotopes 124Xe and 126Xe, and in the heavy, r-process only isotopes 134Xe and 136Xe relative to the solar ratios indicate that Xe-HL was produced in supernovae: they are the only stellar source where these two processes are believed to take place. Although these processes occur in supernovae, th...

  6. A comprehensive literature review reflecting fifteen years of debate regarding the representativity of reverse circulation vs blast hole drill sampling

    DEFF Research Database (Denmark)

    Engström, Karin

    2017-01-01

    Blast hole sampling is widely used for grade control by the mining industry all over the world, both in precious and base metal open pit mining. Blast hole (BH) samples are often regarded as inferior in comparison to “proper drill sampling” like reverse circulation (RC) and diamond (core) drilling...... (DD), and are accused of lacking representativity by the sampling community. The present paper aims at collecting all peer reviewed publications from 2000 onwards that concern open pit mine sampling performance of BH, RC and/or DD drill sampling. This will form a comprehensive literature review...

  7. Transmission diamond imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, John, E-mail: smedley@bnl.gov; Pinelli, Don; Gaoweia, Mengjia [Brookhaven National Laboratory, Upton, NY (United States); Muller, Erik; Ding, Wenxiang; Zhou, Tianyi [Stony Brook University, Stony Brook, NY (United States); Bohon, Jen [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States)

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  8. Diamonds in the Sky

    Science.gov (United States)

    Brotherton, M.

    2004-12-01

    My first science fiction novel, Star Dragon, just recently available in paperback from Tor, features a voyage to the cataclysmic variable star system SS Cygni. My second novel, Spider Star, to appear early in 2006, takes place in and around a dark matter ``planet'' orbiting a neutron star. Both novels are ``hard'' science fiction, relying on accurate physics to inform the tales. It's possible to bring to life abstract concepts like special relativity, and alien environments like accretion disks, by using science fiction. Novels are difficult to use in a science class, but short stories offer intriguing possibilities. I'm planning to edit an anthology of hard science fiction stories that contain accurate science and emphasize fundamental ideas in modern astronomy. The working title is Diamonds in the Sky. The collection will be a mix of original stories and reprints, highlighting challenging concepts covered in a typical introductory astronomy course. Larry Niven's classic story, ``Neutron Star," is an excellent demonstration of extreme tidal forces in an astronomical context. Diamonds in the Sky will include forewards and afterwards to the stories, including discussion questions and mathematical formulas/examples as appropriate. I envision this project will be published electronically or through a print-on-demand publisher, providing long-term availabilty and keeping low cost. I encourage interested parties to suggest previously published stories, or to suggest which topics must be included.

  9. Modeling and Adhesive Tool Wear in Dry Drilling of Aluminum Alloys

    International Nuclear Information System (INIS)

    Girot, F.; Gutierrez-Orrantia, M. E.; Calamaz, M.; Coupard, D.

    2011-01-01

    One of the challenges in aeronautic drilling operations is the elimination of cutting fluids while maintaining the quality of drilled parts. This paper therefore aims to increase the tool life and process quality by working on relationships existing between drilling parameters (cutting speed and feed rate), coatings and tool geometry. In dry drilling, the phenomenon of Built-Up Layer is the predominant damage mechanism. A model fitting the axial force with the cutting parameters and the damage has been developed. The burr thickness and its dispersion decrease with the feed rate. The current diamond coatings which exhibit a strong adhesion to the carbide substrate can limit this adhesive layer phenomenon. A relatively smooth nano-structured coating strongly limits the development of this layer.

  10. Thermal applications of low-pressure diamond

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    During the last decade several applications of low-pressure diamond were developed. Main products are diamond heat-spreaders using its high thermal conductivity, diamond windows with their high transparency over a wide range of wavelengths and wear resistant tool coatings because of diamonds superhardness. A short description of the most efficient diamond deposition methods (microwave, DC-glow discharge, plasma-jet and arc discharge) is given. The production and applications of diamond layers with high thermal conductivity will be described. Problems of reproducibility of diamond deposition, the influence of impurities, the heat conductivity in electronic packages, reliability and economical mass production will be discussed. (author)

  11. Investigation of the physics of diamond MEMS : diamond allotrope lithography

    International Nuclear Information System (INIS)

    Zalizniak, I.; Olivero, P.; Jamieson, D.N.; Prawer, S.; Reichart, P.; Rubanov, S.; Petriconi, S.

    2005-01-01

    We propose a novel lithography process in which ion induced phase transfomations of diamond form sacrificial layers allowing the fabrication of small structures including micro-electromechanical systems (MEMS). We have applied this novel lithography to the fabrication of diamond microcavities, cantilevers and optical waveguides. In this paper we present preliminary experiments directed at the fabrication of suspended diamond disks that have the potential for operation as optical resonators. Such structures would be very durable and resistant to chemical attack with potential applications as novel sensors for extreme environments or high temperature radiation detectors. (author). 3 refs., 3 figs

  12. Diamond: a material for acoustic devices

    OpenAIRE

    MORTET, Vincent; WILLIAMS, Oliver; HAENEN, Ken

    2008-01-01

    Diamond has been foreseen to replace silicon for high power, high frequency electronic applications or for devices that operates in harsh environments. However, diamond electronic devices are still in the laboratory stage due to the lack of large substrates and the complexity of diamond doping. On another hand, surface acoustic wave filters based on diamond are commercially available. Diamond is especially suited for acoustic applications because of its exceptional mechanical properties. The ...

  13. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  14. Core drilling of drillholes OL-PP66-69 at Olkiluoto 2008

    International Nuclear Information System (INIS)

    Kuusirati, J.; Tarvainen, A.-M.

    2009-04-01

    Suomen Malmi Oy (Smoy) core drilled four 24.88 - 25.39 m long investigation drillholes at Olkiluoto in June 2008. The identification numbers of the holes are OL-PP66, OL-PP67, OL-PP68 and OL-PP69. The drillholes are 75.7 mm by diameter. Drillholes were core drilled with the diamond drill rig Diamec 1000. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The labelled drilling water was driven to the drilling places in a tank. In addition to drilling the drill cores were logged and reported by geologist. During geological investigation the following parameters were logged: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic and veined gneisses and pegmatitic granite. The average fracture frequency in holes varied from 3.9 pcs/m to 5.8 pcs/m. The average RQD values varied from 84 % to 93 %. In the drillhole OL-PP66 two fractured zones were penetrated and in OL-PP69 one fractured zone. The drill cores OL-PP67 and OL-PP68 showed no fractured zones. Smoy also carried out optical imaging of the drillholes. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  15. CVD diamond metallization and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fraimovitch, D., E-mail: dimitryf@mail.tau.ac.il [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Adelberd, A.; Marunko, S. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Lefeuvre, G. [Micron Semiconductor Ltd. Royal Buildings, Marlborough Road, Lancing Business Park, BN15 8SJ (United Kingdom); Ruzin, A. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2017-02-11

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  16. CVD diamond metallization and characterization

    International Nuclear Information System (INIS)

    Fraimovitch, D.; Adelberd, A.; Marunko, S.; Lefeuvre, G.; Ruzin, A.

    2017-01-01

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  17. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  18. Offset drilling obligations

    International Nuclear Information System (INIS)

    Boyd, K.D.; Kalmakoff, J.J.

    1998-01-01

    A review of the 'offset well' clause found in freehold and Crown natural gas and petroleum leases was presented. The objective was to provide lessors and lessees with a clear understanding of the rights and obligations associated with offset wells. It was noted that offset well obligations vary according to the form of lease used, the type of offsetting well, the regulatory regime and the geophysical characteristics of the producing formation. Some suggestions were made as to how current versions of the offset well clause can be amended to overcome some of the problems encountered in applying the clause to an offset horizontal well that has been drilled on adjoining lands. Failure to resolve the new issues presented by horizontal drilling technology in terms of documentation, which records respective rights and obligations on the basis of generally accepted principles, will result in large numbers of conflicts and unnecessary litigation. 144 refs., 1 fig

  19. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  20. Method of dehalogenation using diamonds

    Science.gov (United States)

    Farcasiu, Malvina; Kaufman, Phillip B.; Ladner, Edward P.; Anderson, Richard R.

    2000-01-01

    A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.

  1. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko; Faraon, Andrei

    2013-01-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has

  2. CVD diamond detectors and dosimeters

    International Nuclear Information System (INIS)

    Manfredotti, C.; Fizzotti, F.; LoGiudice, A.; Paolini, C.; Oliviero, P.; Vittone, E.; Torino Univ., Torino

    2002-01-01

    Natural diamond, because of its well-known properties of tissue-equivalence, has recorded a wide spreading use in radiotherapy planning with electron linear accelerators. Artificial diamond dosimeters, as obtained by Chemical Vapour Deposition (CVD) could be capable to offer the same performances and they can be prepared in different volumes and shapes. The dosimeter sensitivity per unit volume may be easily proved to be better than standard ionization microchamber. We have prepared in our laboratory CVD diamond microchamber (diamond tips) in emispherical shape with an external diameter of 200 μm, which can be used both as X-ray beam profilometers and as microdosimeters for small field applications like stereotaxy and also for in vivo applications. These dosimeters, which are obtained on a wire substrate that could be either metallic or SiC or even graphite, display good performances also as ion or synchrotron X-rays detectors

  3. DIAMONDS: Engineering Distributed Object Systems

    National Research Council Canada - National Science Library

    Cheng, Evan

    1997-01-01

    This report describes DIAMONDS, a research project at Syracuse University, that is dedicated to producing both a methodology and corresponding tools to assist in the development of heterogeneous distributed software...

  4. Modeling of diamond radiation detectors

    International Nuclear Information System (INIS)

    Milazzo, L.; Mainwood, A.

    2004-01-01

    We have built up a computer simulation of the detection mechanism in the diamond radiation detectors. The diamond detectors can be fabricated from a chemical vapour deposition polycrystalline diamond film. In this case, the trapping-detrapping and recombination at the defects inside the grains and at the grain boundaries degrade the transport properties of the material and the charge induction processes. These effects may strongly influence the device's response. Previous simulations of this kind of phenomena in the diamond detectors have generally been restricted to the simple detector geometries and homogeneous distribution of the defects. In our model, the diamond film (diamond detector) is simulated by a grid. We apply a spatial and time discretization, regulated by the grid resolution, to the equations describing the charge transport and, by using the Shockley-Ramo theorem, we calculate the signal induced on the electrodes. In this way, we can simulate the effects of the nonhomogeneous distributions of the trapping, recombination, or scattering centers and can investigate the differences observed when different particles, energies, and electrode configurations are used. The simulation shows that the efficiency of the detector increases linearly with the average grain size, that the charge collection distance is small compared to the dimensions of a single grain, and that for small grains, the trapping at the intragrain defects is insignificant compared to the effect of the grain boundaries

  5. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko

    2013-02-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond\\'s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments. Copyright © Materials Research Society 2013.

  6. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  7. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  8. Drill string gas data

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, E.R.

    1998-05-12

    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  9. Drilling string lifter

    Energy Technology Data Exchange (ETDEWEB)

    Shakhobalov, A B; Galiopa, A A; Ponomarev, G V; Ushakov, A M

    1981-04-28

    A drilling string lifter is suggested which includes a rotating tower installed on a fixed base, hydraulic cylinder and pipe-clamping assembly connected through a chain gear to the drive motor. In order to simplify the design of the hydraulic lifter, the drive motor is installed on a fixed base so that the axis of the outlet shaft of the drive motor coincides with the axis of rotation of the tower. In addition, the axis of rotation of the tower is made in the form of a tubular element, and the outlet shaft of the drive motor is ranged between the tubular element.

  10. Diamonds: Exploration, mines and marketing

    Science.gov (United States)

    Read, George H.; Janse, A. J. A. (Bram)

    2009-11-01

    The beauty, value and mystique of exceptional quality diamonds such as the 603 carat Lesotho Promise, recovered from the Letseng Mine in 2006, help to drive a multi-billion dollar diamond exploration, mining and marketing industry that operates in some 45 countries across the globe. Five countries, Botswana, Russia, Canada, South Africa and Angola account for 83% by value and 65% by weight of annual diamond production, which is mainly produced by four major companies, De Beers, Alrosa, Rio Tinto and BHP Billiton (BHPB), which together account for 78% by value and 72% by weight of annual diamond production for 2007. During the last twelve years 16 new diamond mines commenced production and 4 re-opened. In addition, 11 projects are in advanced evaluation and may begin operations within the next five years. Exploration for diamondiferous kimberlites was still energetic up to the last quarter of 2008 with most work carried out in Canada, Angola, Democratic Republic of the Congo (DRC) and Botswana. Many kimberlites were discovered but no new economic deposits were outlined as a result of this work, except for the discovery and possible development of the Bunder project by Rio Tinto in India. Exploration methods have benefitted greatly from improved techniques of high resolution geophysical aerial surveying, new research into the geochemistry of indicator minerals and further insights into the formation of diamonds and the relation to tectonic/structural events in the crust and mantle. Recent trends in diamond marketing indicate that prices for rough diamonds and polished goods were still rising up to the last quarter of 2008 and subsequently abruptly sank in line with the worldwide financial crisis. Most analysts predict that prices will rise again in the long term as the gap between supply and demand will widen because no new economic diamond discoveries have been made recently. The disparity between high rough and polished prices and low share prices of publicly

  11. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  12. Diamonds are forever : roller bits once ruled the roost, but PDC drillbits have emerged as oilpatch champions

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.

    2008-06-15

    Polycrystalline diamond compact (PDC) drill bits are used in over 60 per cent of wells currently being drilled. PDC bits use thumb-sized diamond-impregnated cutters fixed into the body of the bit in order to shear the rock. Certain rock formations that contain large amounts of chert or pyrite can destroy PDCs, which are ideally suited for use in offshore wells which have soft, homogenous rock sections. This article discussed recent research programs conducted to analyze the strengths and weaknesses of PDCs and improve their cutting efficiency through the analysis of cutter geometry, material composition, and processing conditions. Researchers have now discovered that diamond chips of 10 microns performed better than chips of 70 microns. Cutters were found to be more durable when cobalt was used as a binder to sinter the diamond chips. PDCs are now being used extensively by the oil sands industry due to their abrasion resistance. Research is ongoing in order to improve the performance of PDC drill bits. 2 figs.

  13. 30 CFR 57.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  14. 30 CFR 56.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  15. Control procedure for well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, J C

    1988-09-09

    A control procedure of rotary drilling operations is proposed. It uses the Drill off test. The drill-off test permits to determine the rock drill speed variation as a function of the wright applied on the top of the pipe. We can deduce from that a rock drill wear parameter. The method permits to prevent a rupture and its grave economic consequences.

  16. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  17. Are diamond nanoparticles cytotoxic?

    Science.gov (United States)

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types.

  18. Activity plan: Directional drilling and environmental measurements while drilling

    International Nuclear Information System (INIS)

    Myers, D.A.

    1998-01-01

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested

  19. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  20. A new drilling method-Earthworm-like vibration drilling.

    Science.gov (United States)

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  1. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  2. Activity plan: Directional drilling and environmental measurements while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  3. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  4. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Polycrystalline diamond coatings; hot filament CVD; high vacuum tribology. 1. Introduction .... is a characteristic of graphite. We mark the (diamond ... coefficient of friction due to changes in substrate temperature. The average coefficient of.

  5. Diamond-based materials for biomedical applications

    CERN Document Server

    Narayan, Roger

    2013-01-01

    Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of diamond particles and surfaces is discussed, followed by biotribology and biological behaviour of nanocrystalline diamond coatings, and blood compatibility of diamond-like carbon coatings. Part two then goes on to review biomedical applications of diamond based materials, beginning with nanostructured diamond coatings for orthopaedic applications. Topics explored include ultrananocrystalline diamond for neural and ophthalmologi...

  6. Ohmic contacts to semiconducting diamond

    Science.gov (United States)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  7. Organophosphonate biofunctionalization of diamond electrodes.

    Science.gov (United States)

    Caterino, R; Csiki, R; Wiesinger, M; Sachsenhauser, M; Stutzmann, M; Garrido, J A; Cattani-Scholz, A; Speranza, Giorgio; Janssens, S D; Haenen, K

    2014-08-27

    The modification of the diamond surface with organic molecules is a crucial aspect to be considered for any bioapplication of this material. There is great interest in broadening the range of linker molecules that can be covalently bound to the diamond surface. In the case of protein immobilization, the hydropathicity of the surface has a major influence on the protein conformation and, thus, on the functionality of proteins immobilized at surfaces. For electrochemical applications, particular attention has to be devoted to avoid that the charge transfer between the electrode and the redox center embedded in the protein is hindered by a thick insulating linker layer. This paper reports on the grafting of 6-phosphonohexanoic acid on OH-terminated diamond surfaces, serving as linkers to tether electroactive proteins onto diamond surfaces. X-ray photoelectron spectroscopy (XPS) confirms the formation of a stable layer on the surface. The charge transfer between electroactive molecules and the substrate is studied by electrochemical characterization of the redox activity of aminomethylferrocene and cytochrome c covalently bound to the substrate through this linker. Our work demonstrates that OH-terminated diamond functionalized with 6-phosphonohexanoic acid is a suitable platform to interface redox-proteins, which are fundamental building blocks for many bioelectronics applications.

  8. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  9. Medical applications of diamond particles & surfaces

    OpenAIRE

    Roger J Narayan; Ryan D. Boehm; Anirudha V. Sumant

    2011-01-01

    Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and...

  10. Ultimate Atomic Bling: Nanotechnology of Diamonds

    International Nuclear Information System (INIS)

    Dahl, Jeremy

    2010-01-01

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  11. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  12. Reinforcement and Drill by Microcomputer.

    Science.gov (United States)

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  13. High cost for drilling ships

    International Nuclear Information System (INIS)

    Hooghiemstra, J.

    2007-01-01

    Prices for the rent of a drilling ship are very high. Per day the rent is 1% of the price for building such a ship, and those prices have risen as well. Still, it is attractive for oil companies to rent a drilling ship [nl

  14. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  15. The Marskhod Egyptian Drill Project

    Science.gov (United States)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  16. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  17. Hospital preparation and drills

    International Nuclear Information System (INIS)

    Marshall, J.C.; Mettler, F.A. Jr.

    1990-01-01

    The authors discuss how effective management of radiation accidents requires a large amount of preparation and thought. In addition, training of the staff is absolutely essential. This is best accomplished through annual drills, but also may be accomplished through the use of videotapes. The critical points to be remembered in the handling of such accidents and in writing the procedures is that treatment of non-radiation-related injuries and medical stabilization are paramount. The second point is that it is important to be able to distinguish between a patient who has been irradiated from an external radiation source and one who is contaminated with radioactive materials. The handling of these two types of accidents is entirely different and this distinction needs to be made early. All of the items outlined in this chapter concern the care of the severely injured and radioactively contaminated

  18. Diamonds at the golden point

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Alongside the CMS Pixel Luminosity Telescope (PLT) – installed last month (see here) – lie diamond detectors. No ordinary gems, these lab-grown diamonds will be playing a vital role in Run 2: differentiating signals from collision products with those from the beam background.   The BCM detector's green "c-shaped" printed circuit board is mounted on the PLT/BCM carbon-fibre carriage ready for installation. Earlier this year, the CMS BRIL project installed beam condition monitors (BCM) at the heart of the CMS detector. Designed to measure the online luminosity and beam background as close as possible to the LHC beam pipe, the BCMs use radiation-hard diamonds to differentiate between background and collision signals. The BCM also protects the CMS silicon trackers from damaging beam losses, by aborting the beam if the signal currents measured are above an acceptable threshold. These new BCMs are designed with Run 2 bunches in mind. &ldq...

  19. Status of diamond particle detectors

    Science.gov (United States)

    Krammer, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fish, D.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Manfredi, P. F.; Meier, D.; Mishina, M.; LeNormand, F.; Pan, L. S.; Pernegger, H.; Pernicka, M.; Re, V.; Riester, G. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1998-11-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given.

  20. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  1. Drillings at Veitsivaara in Hyrynsalmi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-04-01

    According to Governmen's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Veitsivaara, Hyrynsalmi the investigation program was started in April 1987. During years 1987-1988 a deep borehole (1002 m) and 4 and 500 m deep additional boreholes were core drilled in the area. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisso's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. About 75 m deep hole was percussion drilled near the borehole KR1. The spreading of the flushing water in the upper part of bedrock and the quality off the ground of the groundwater were studied by taking watersamples from the hole. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition

  2. Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source.

    Science.gov (United States)

    McMahon, M I

    2015-03-06

    Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Graphene grown out of diamond

    Science.gov (United States)

    Gu, Changzhi; Li, Wuxia; Xu, Jing; Xu, Shicong; Lu, Chao; Xu, Lifang; Li, Junjie; Zhang, Shengbai

    2016-10-01

    Most applications of graphene need a suitable support substrate to present its excellent properties. But transferring graphene onto insulators or growing graphene on foreign substrates could cause properties diminishing. This paper reports the graphene growth directly out of diamond (111) by B doping, guided by first-principles calculations. The spontaneous graphene formation occurred due to the reconstruction of the diamond surface when the B doping density and profile are adequate. The resulting materials are defect free with high phase purity/carrier mobility, controllable layer number, and good uniformity, which can be potentially used directly for device fabrication, e.g., high-performance devices requiring good thermal conductivity.

  4. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  5. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  6. Preliminary petrographic and geophysical interpretations of the exploratory geothermal drill hole and core, Redstone, New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Hoag, R.B. Jr.; Stewart, G.W.

    1977-06-30

    A 3000 foot diamond drill hole was drilled in the Conway Granite in Redstone, New Hampshire. A comprehensive detailed petrographic and physical study of this core was made. The purpose of this study is to supply a sound data base for future geothermal and uranium-thorium studies of the drill core. An estimate of the heat flow potential of the Redstone drill hole gives a heat flow of 1.9 HFU. If only the red phase of the Conway Granite had been intersected the heat flow may have been as much as 2.7 HFU, reaching a temperature of 260/sup 0/C at 6 km. The drill hole intersected four lithologies; the green and red phase of the Conway Granite, the Albany quartz syenite and a medium-grained, hastingsite-biotite granite. The red phase has the highest and most irregular radioactivity. The irregularity is mainly due to minor variations in lithology. The drill core intersected several alteration zones up to a thickness of 150 feet. These alteration zones represent passage of low to medium temperature fluids which might have been mineralized. The Conway Granite has the physical and chemical characteristics necessary for the formation of vein type uranium deposits. The presence of unexplained radiometric anomalies lends support to the existence of such deposits.

  7. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  8. Transparent nanocrystalline diamond coatings and devices

    Science.gov (United States)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  9. Recent results on CVD diamond radiation sensors

    Science.gov (United States)

    Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration

    1998-02-01

    CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.

  10. Diamond Sensors for Energy Frontier Experiments

    CERN Document Server

    Schnetzer, Steve

    2014-01-01

    We discuss the use of diamond sensors in high-energy, high-i ntensity collider experiments. Re- sults from diamond sensor based beam conditions monitors in the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) are presented and pla ns for diamond based luminosity monitors for the upcoming LHC run are described. We describe recent measurements on single crystal diamond sensors that indicate a polarization effec t that causes a reduction of charge col- lection efficiency as a function of particle flux. We conclude by describing new developments on the promising technology of 3D diamond sensors.

  11. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  12. Drillings at Kivetty in Konginkangas

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-05-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Kivetty, Konginkangas the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1019 m) and 4 about 500 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 65 shotholes were drilled for VSP-, tubewave and seismic measurements

  13. Drillings at Syyry in Sievi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-10-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Syyry, Sievi the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1022 m) and 4 about 500-700 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 35 vertical holes were core drilled down to the depth of 10-20 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 85 shotholes were drilled for VSP-, tubewave and seismic measurements

  14. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate

    Science.gov (United States)

    Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing

    2018-05-01

    Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.

  15. CVD diamond windows for infrared synchrotron applications

    International Nuclear Information System (INIS)

    Sussmann, R.S.; Pickles, C.S.J.; Brandon, J.R.; Wort, C.J.H.; Coe, S.E.; Wasenczuk, A.; Dodge, C.N.; Beale, A.C.; Krehan, A.J.; Dore, P.; Nucara, A.; Calvani, P.

    1998-01-01

    This paper describes the attributes that make diamond a unique material for infrared synchrotron beam experiments. New developments in diamond synthesised by Chemical Vapour Deposition (CVD) promise to extend the range of applications which have been hitherto limited by the availability and cost of large-size single-crystal diamond. Polycrystalline CVD diamond components such as large (100 mm) diameter windows with extremely good transparency over a wide spectral range are now commercially available. Properties of CVD diamond of relevance to optical applications, such as mechanical strength, thermal conductivity and absolute bulk absorption, are discussed. It is shown that although some of the properties of CVD diamond (similar to other polycrystalline industrial ceramics) are affected by the grain structure, currently produced CVD diamond optical components have the quality and performance required for numerous demanding applications

  16. The Many Facets of Diamond Crystals

    Directory of Open Access Journals (Sweden)

    Yuri N. Palyanov

    2018-01-01

    Full Text Available This special issue is intended to serve as a multidisciplinary forum covering broad aspects of the science, technology, and application of synthetic and natural diamonds. This special issue contains 12 papers, which highlight recent investigations and developments in diamond research related to the diverse problems of natural diamond genesis, diamond synthesis and growth using CVD and HPHT techniques, and the use of diamond in both traditional applications, such as mechanical machining of materials, and the new recently emerged areas, such as quantum technologies. The results presented in the contributions collected in this special issue clearly demonstrate that diamond occupies a very special place in modern science and technology. After decades of research, this structurally very simple material still poses many intriguing scientific questions and technological challenges. It seems undoubted that diamond will remain the center of attraction for many researchers for many years to come.

  17. A new drilling method—Earthworm-like vibration drilling

    Science.gov (United States)

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  18. Inverted emulsion drilling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ana, I; Astanei, E; Mireanu, G; Orosz, M; Popescu, F; Vasile, I

    1979-07-28

    The subject of the invention is the method of obtaining inverted drilling fluid which is required during stripping of a productive bed and ending of a well where difficulties develop during drilling of the argillaceous rock. Example: in a reservoir with capacity 30 m/sup 3/, 10 m/sup 3/ of diesel fuel are added. A total of 1000 kg of emulsifier are added to the diesel fuel consisting of: 85 mass% of a mixture of sodium and potassium salts of fatty acids, residues of fatty acids or naphthene acids with high molecular weight taken in proportion of 10:90; 5 mass% of a mixture of polymers with hydrophilic-hydrophobic properties obtained by mixing 75 mass% of polyethylene oxide with molecular weight 10,000 and 25 mass% of propylene oxide with molecular weight 15,000, and 10 mass% of salt on alkaline earth metal (preferably calcium chloride). The mixture is mixed into complete dissolving. Then 1200 kg of filtering accelerator are added obtained from concentrated sulfuric acid serving for sulfur oxidation, asphalt substance with softening temperature 85-104/sup 0/C and fatty acids C/sub 10/-C/sub 20/ taken in a proportion of 23.70 and 7 mass% The mixture obtained in this manner is neutralized by adding calcium hydroxide and equal quantities of alumina and activated bentonite clay in a concentration of 1-10 mass%, more preferably 5 mass% in relation to the initial mixture. The obtained mass is mixed until complete dispersion, after which 200 kg of organophilic clay are added obtained from bentonite of the type montmorillonite of sodium by processing with derivate obtained from amine of the type of the quaternary base of ammonium salt, and agent of hydrophobization of the type of fatty alcohols, fatty acids, nonion surfactants of the block-polymer type. After complete dispersion of the organophilic clay, 100 kg of stabilizer of emulsion of the surfactant type was added with molecular weight of 250010,000, more preferably 5000, in concentration of 0.1-5.0 mass%, more

  19. Recent Advances in Diamond Detectors

    CERN Document Server

    Trischuk, W.

    2008-01-01

    With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2012, ATLAS and CMS are planning for detector upgrades for their innermost layers requiring radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is now planned for all LHC experiments. This material is now being considered as an alternate sensor for use very close to the interaction region of the super LHC where the most extreme radiation conditions will exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences available. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10^16 protons/cm^2 showing that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve allowing one t...

  20. A drilling rig tower

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A.A.; Barashkov, V.A.; Bulgakov, E.S.; Kuldoshin, I.P.; Lebedev, A.I.; Papin, N.M.; Rebrik, B.M.; Sirotkin, N.V.

    1981-05-23

    Presentation is made of a drilling rig tower, comprising a gantry, a support shaft with a bracing strut and drawings out, and turn buckles. In order to increase the reliability of the tower in operation, to decrease the over all dimensions in a transport position, and to decrease the amount of time taken to transfer the tower from an operational position into a transportable one, and vice versa, the tower is equipped with a rotary frame made in the form of a triangular prism, whose lateral edges are connected by hinges: the first one with the lower part of the support shaft, the second with the gantry, and the third one to the upper part of the support shaft by means of the drawings out. The large boundary of the rotary frame is connected by a hinge to the support shaft by means of a bracing strut, which is equipped with a slide block connected to it by a hinge, and the rotary frame has a guide for the slide block reinforced to it on the large boundary. Besides this, the lateral edge of the rotary frame is connected to the gantry by means of turn buckles.

  1. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  2. Computed tomography of drill cores

    International Nuclear Information System (INIS)

    Taylor, T.

    1985-08-01

    A preliminary computed tomography evaluation of drill cores of granite and sandstone has generated geologically significant data. Density variations as small as 4 percent and fractures as narrow as 0.1 mm were easily detected

  3. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  4. Synthesis of engineering designs of drilling facilities

    Science.gov (United States)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  5. Device for storing drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, A; Wedrychowicz, J

    1981-02-16

    The patented device contains a profiled arch 14 (see figure) installed in the upper part of the drilling rig 15. On base 16 of the drilling unit, there is bin 1 which is installed on frame 2 to which it is hinge connected with the help of pin 3. On the other side, the bin rests on rollers 4 which are attached to lever 5 of lifting mechanism 6. Bin 1 is a series of parallel-arranged guides rigidly connected by transverse beams. Frame 2 contains the collapsible support 10. During operation of the device, the hydraulic lifter 6 with the help of frame 5 and rollers 4 lifts bin 1 with drilling pipes installed on it, giving it an angle of 4/sup 0/ in relation to the plane of frame 2. The collapsible support 10 is installed in a vertical position and holds bin 1. This position of bin 1 is the most suitable for movement of the vertically installed drilling pipes on the guides. The distinguishing feature of the patented device is the possibility of convenient arrangement of the drilling pipes on the guides of bin 1. Because of this, the time spent on lifting and lowering the drill apparatus is considerably reduced.

  6. Drilling a better pair : new technologies in SAGD directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, C.; Richter, D. [Statoil Canada Ltd., Calgary, AB (Canada); Person, J.; Tilley, J.; Bittar, M. [Halliburton Energy Services, Calgary, AB (Canada)

    2010-07-01

    The Leismer Demonstration Project (LDP) is the first of 8 proposed major steam assisted gravity drainage (SAGD) projects for Statoil's Kai Kos Dehseh (KKD) asset in the Athabasca oil sands deposit. The bitumen resources are expected to produce approximately 2.2 billion barrels of oil over approximately 35 years with a peak production of 220,000 bbl/day. To date, 23 well pairs have been drilled on 4 drilling pads. The precise placement of well pairs is among the most important factors in a successful SAGD drilling program. The producer well must be placed in relation to the reservoir boundaries. It must also be accurately twinned with the injector well. A strong focus on technological innovation is needed in order to deliver on these high expectations in unconsolidated formations, such as the McMurray oil sands. Lateral SAGD pairs are often drilled with conventional steerable mud motors and logging-while-drilling (LWD) resistivity measurements, but this combination imposes certain limitations in terms of wellbore quality and placement. Several industry firsts were successfully implemented at the Statoil LDP, including a combination of the newest and most cutting-edge directional, measurement, and LWD technology. The keystone of these industry firsts was the use of a soft formation modified, point-the-bit rotary steerable system (RSS), used on 20 horizontal wells. The RRS was combined with an ultra deep azimuthal resistivity sensor to provide precise geosteering along the bottom bed boundary in the producer wells, resulting in improved reservoir capture and reservoir characterization. This paper described the new drilling system and its impact on the progressive future of directional drilling in SAGD. 8 refs., 1 tab., 22 figs.

  7. Rotary steerable motor system for underground drilling

    Science.gov (United States)

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  8. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  9. Copper-micrometer-sized diamond nanostructured composites

    International Nuclear Information System (INIS)

    Nunes, D; Livramento, V; Fernandes, H; Silva, C; Carvalho, P A; Shohoji, N; Correia, J B

    2011-01-01

    Reinforcement of a copper matrix with diamond enables tailoring the properties demanded for thermal management applications at high temperature, such as the ones required for heat sink materials in low activated nuclear fusion reactors. For an optimum compromise between thermal conductivity and mechanical properties, a novel approach based on multiscale diamond dispersions is proposed: a Cu-nanodiamond composite produced by milling is used as a nanostructured matrix for further dispersion of micrometer-sized diamondDiamond). A series of Cu-nanodiamond mixtures have been milled to establish a suitable nanodiamond fraction. A refined matrix with homogeneously dispersed nanoparticles was obtained with 4 at.% μDiamond for posterior mixture with microdiamond and subsequent consolidation. Preliminary consolidation by hot extrusion of a mixture of pure copper and μDiamond has been carried out to define optimal processing parameters. The materials produced were characterized by x-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

  10. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Toucan's Diamond

    Science.gov (United States)

    2006-06-01

    The Southern constellation Tucana (the Toucan) is probably best known as the home of the Small Magellanic Cloud, one of the satellite galaxies of the Milky Way. But Tucana also hosts another famous object that shines thousands of lights, like a magnificent, oversized diamond in the sky: the globular cluster 47 Tucanae. More popularly known as 47 Tuc, it is surpassed in size and brightness by only one other globular cluster, Omega Centauri. Globular clusters are gigantic families of stars, comprising several tens of thousands of stars, all thought to be born at the same time from the same cloud of gas [1]. As such, they constitute unique laboratories for the study of how stars evolve and interact. This is even more so because they are located at the same distance, so the brightness of different types of stars, at different stages in their evolution can be directly compared. The stars in globular clusters are held together by their mutual gravity which gives them their spherical shape, hence their name. Globular clusters are thought to be among the oldest objects in our Milky Way galaxy, and contain therefore mostly old, low-mass stars. ESO PR Photo 20/06 ESO PR Photo 20/06 Globular Cluster 47 Tuc 47 Tucanae is an impressive globular cluster that is visible with the unaided eye from the southern hemisphere. It was discovered in 1751 by the French astronomer Nicholas Louis de Lacaille who cataloged it in his list of southern nebulous objects. Located about 16 000 light years away, it has a total mass of about 1 million times the mass of the Sun and is 120 light years across, making it appear on the sky as big as the full moon. The colour image of 47 Tucanae presented here was taken with FORS1 on ESO's Very Large Telescope in 2001. The image covers only the densest, very central part of the cluster. The globular cluster extends in reality four times further away! As can be seen however, the density of stars rapidly drops off when moving away from the centre. The red

  12. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  13. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  14. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  15. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  16. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    Science.gov (United States)

    2014-10-27

    Diamond. Phys. Rev. Lett. 2000, 84, 5160−5163. (31) Ownby, P. D.; Yang, X.; Liu, J. Calculated X-Ray-Diffraction Data for Diamond Polytypes. J. Am. Ceram...Surfaces from Ab-Initio Calculations . Phys. Rev. B 1995, 51, 14669−14685. (39) Ferrari, A. C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured...Y.; Takami, S.; Kubo , M.; Belosludov, R. V.; Miyamoto, A.; Imamura, A.; Gamo, M. N.; Ando, T. First-Principle Study on Reactions of Diamond (100

  17. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations.

    Science.gov (United States)

    He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.

  18. Entanglement, holography and causal diamonds

    Science.gov (United States)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  19. Entanglement, holography and causal diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Heller, Michal P.; Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2016-08-29

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  20. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  1. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  2. Diamond coating in accelerator structure

    International Nuclear Information System (INIS)

    Lin, X.E.

    1998-08-01

    The future accelerators with 1 GeV/m gradient will give rise to hundreds of degrees instantaneous temperature rise on the copper surface. Due to its extraordinary thermal and electric properties, diamond coating on the surface is suggested to remedy this problem. Multi-layer structure, with the promise of even more temperature reduction, is also discussed, and a proof of principle experiment is being carried out

  3. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  4. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    Science.gov (United States)

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  5. 76 FR 37684 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model (Diamond) DA 40 Airplanes...

    Science.gov (United States)

    2011-06-28

    ... Industries GmbH Model (Diamond) DA 40 Airplanes Equipped With Certain Cabin Air Conditioning Systems AGENCY... inspections of the Diamond Model DA 40 airplanes equipped with a VCS installed per Premier Aircraft Service... GmbH Model (Diamond) DA 40 Airplanes Equipped With Certain Cabin Air Conditioning Systems: Docket No...

  6. Comparison between beryllium and diamond-backing plates in diamond-anvil cells

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Nestola, Fabrizio; Balic Zunic, Tonci

    2011-01-01

    A direct comparison between two complete intensity datasets, collected on the same sample loaded in two identical diamond-anvil pressure cells equipped, respectively, with beryllium and diamond backing plates was performed. The results clearly demonstrate that the use of diamond-backing plates...

  7. Wetting of the diamond surface

    International Nuclear Information System (INIS)

    Hansen, J.O.

    1987-01-01

    The surface conditions which lead to a wide variation in the wettability of diamond surfaces have been investigated using macroscopic surfaces to allow for the crystal anisotropy. A wetting balance method of calculating adhesion tension and hence contact angle has been used for diamonds having major faces near the [111] and [110] lattice planes. Three classes of behaviour have been identified. Surface analyses by Rutherford Backscattering of helium ions, X-ray Photoelectron Spectroscopy and Low Energy Electron Diffraction (LEED) have been used to define the role of the oxygen coverage of the surface in the transition I → O → H. Ferric ion has a hydrophilizing effect on the diamond surface, thought to be the consequence of attachment to the hydroxyl groups at the surface by a ligand mechanism. Other transition metal ions did not show this effect. The phenomenon of hydration of the surface, i.e. progressively more hydrophilic behaviour on prolonged exposure to liquid water, has been quantified. Imbibition or water penetration at microcracks are thought unlikely, and a water cluster build-up at hydrophilic sites is thought to be the best explanation. Dynamic studies indicate little dependence of the advancing contact angle on velocity for velocities up to 10 -4 m/s, and slight dependence of the receding contact angle. Hence advancing angles by this technique are similar to equilibrated contact angles found by optical techniques, but the receding angles are lower than found by other non-dynamic measurements

  8. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  9. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  10. Status of diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krammer, M.; Adam, W.; Friedl, M.; Hrubec, J.; Pernegger, H.; Pernicka, M. [Institut fuer Hochenergiephysik der Oesterr. Akademie d. Wissenschaften, Nikolsdorferg. 18, A-1050 Vienna (Austria); Bauer, C. [MPI fuer Kernphysik, D-69029 Heidelberg (Germany); Berdermann, E.; Stelzer, H. [GSI, Darmstadt (Germany); Bogani, F. [LENS, Florence (Italy); Borchi, E.; Bruzzi, M.; Sciortino, S. [University of Florence, Florence (Italy); Colledani, C.; Dulinski, W.; Husson, D.; LeNormand, F.; Riester, G.L.; Turchetta, R. [LEPSI, CRN Strasbourg (France); Conway, J.; Fish, D.; Schnetzer, S.; Stone, R.; Tesarek, R.; Thomson, G.B.; Walsh, A.M. [Rutgers University, Piscataway, NJ (United States); Dabrowski, W.; Kaplon, J.; Meier, D.; Roe, S.; Rudge, A.; Wedenig, R.; Weilhammer, P. [CERN, CH-1211 Geneva (Switzerland); Delpierre, P.; Hallewell, G. [CPPM, Marseille (France); Deneuville, A.; Cheeraert, E. [LEPES, Grenoble (France); Eijk, B.V.; Hartjes, F. [NIKHEF, Amsterdam (Netherlands); Fallou, A. [CPPM, Marseille (France); Foulon, F. [Centre d' Etudes de Saclay, 91191 Gif-Sur-Yvette (France); Gan, K.K.; Kagan, H.; Kass, R.; Trawick, M.; Zoeller, M. [The Ohio State University, Columbus, OH (United States); Grigoriev, E.; Knoepfle, K.T. [MPI fuer Kernphysik, D-69029 Heidelberg (Germany); Hall-Wilton, R. [Bristol University, Bristol (United Kingdom); Han, S.; Ziock, H. [Los Alamos National Laboratory, Research Division, Los Alamos, NM (United States); Kania, D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Manfredi, P.F.; Re, V.; Speziali, V. [Universita di Pavia, Dipartimento di Elettronica, 27100 Pavia (Italy); Mishina, M. [FNAL, Batavia, IL (United States); Pan, L.S. [Sandia National Laboratory, Albuquerque, NM (United States); Roff, D.; Tapper, R.J. [Bristol University, Bristol (United Kingdom); Trischuk, W. [University of Toronto, Toronto (Canada)

    1998-11-21

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Status of diamond particle detectors

    International Nuclear Information System (INIS)

    Krammer, M.; Adam, W.; Friedl, M.; Hrubec, J.; Pernegger, H.; Pernicka, M.; Bauer, C.; Berdermann, E.; Stelzer, H.; Bogani, F.; Borchi, E.; Bruzzi, M.; Sciortino, S.; Colledani, C.; Dulinski, W.; Husson, D.; LeNormand, F.; Riester, G.L.; Turchetta, R.; Conway, J.; Fish, D.; Schnetzer, S.; Stone, R.; Tesarek, R.; Thomson, G.B.; Walsh, A.M.; Dabrowski, W.; Kaplon, J.; Meier, D.; Roe, S.; Rudge, A.; Wedenig, R.; Weilhammer, P.; Delpierre, P.; Hallewell, G.; Deneuville, A.; Cheeraert, E.; Eijk, B.V.; Hartjes, F.; Fallou, A.; Foulon, F.; Gan, K.K.; Kagan, H.; Kass, R.; Trawick, M.; Zoeller, M.; Grigoriev, E.; Knoepfle, K.T.; Hall-Wilton, R.; Han, S.; Ziock, H.; Kania, D.; Manfredi, P.F.; Re, V.; Speziali, V.; Mishina, M.; Pan, L.S.; Roff, D.; Tapper, R.J.; Trischuk, W.

    1998-01-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  13. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  14. Ultimate Atomic Bling: Nanotechnology of Diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  15. Undoped CVD diamond films for electrochemical applications

    International Nuclear Information System (INIS)

    Mosinska, Lidia; Fabisiak, Kazimierz; Paprocki, Kazimierz; Kowalska, Magdalena; Popielarski, Pawel; Szybowicz, Miroslaw

    2013-01-01

    By using different deposition conditions, the CVD diamond films with different qualities and orientation were grown by the hot-filament CVD technique. The object of this article is to summarize and discuss relation between structural, physical and electrochemical properties of different diamond electrodes. The physical properties of the Hot Filament CVD microcrystalline diamond films are analyzed by scanning electron microscopy and Raman spectroscopy. In presented studies two different electrodes were used of the diamond grain sizes around 200 nm and 10 μm, as it was estimated from SEM picture. The diamond layers quality was checked on basis of FWHM (Full width at Half Maximum) of 1332 cm −1 diamond Raman peak. The ratio of sp 3 /sp 2 carbon bonds was determined by 1550 cm −1 G band and 1350 cm −1 D band in the Raman spectrum. The electrochemical properties were analyzed using (CV) cyclic voltammetry measurements in aqueous solutions. The sensitivity of undoped diamond electrodes depends strongly on diamond film quality and concentration of amorphous carbon phase in the diamond layer

  16. CVD diamond substrates for electronic devices

    International Nuclear Information System (INIS)

    Holzer, H.

    1996-03-01

    In this study the applicability of chemical vapor deposition (CVD) diamond as a material for heat spreaders was investigated. Economical evaluations on the production of heat spreaders were also performed. For the diamond synthesis the hot-filament and microwave method were used respectively. The deposition parameters were varied in a way that free standing diamond layers with a thickness of 80 to 750 microns and different qualities were obtained. The influence of the deposition parameters on the relevant film properties was investigated and discussed. With both the hot-filament and microwave method it was possible to deposit diamond layers having a thermal conductivity exceeding 1200 W/mK and therefore to reach the quality level for commercial uses. The electrical resistivity was greater than 10 12 Ωcm. The investigation of the optical properties was done by Raman-, IR- and cathodoluminescence spectroscopy. Because of future applications of diamond-aluminium nitride composites as highly efficient heat spreaders diamond deposition an AIN was investigated. An improved substrate pretreatment prior to diamond deposition showed promising results for better performance of such composite heat spreaders. Both free standing layers and diamond-AIN composites could be cut by a CO2 Laser in Order to get an exact size geometry. A reduction of the diamond surface roughness was achieved by etching with manganese powder or cerium. (author)

  17. Western Canada drilling cycle optimization

    International Nuclear Information System (INIS)

    2003-06-01

    The oil and gas industry in western Canada operates in annual and seasonal cycles with peak activity periods that require a large skilled labour force for short periods of time. This study examines why seismic and drilling activity is greatest during the first quarter of the year instead of being distributed evenly over the year. The objective of the study was to provide recommendations that would help optimize the industry cycle. The study includes an analysis of historical trends that validate the industry first quarter peaking activity. It also includes interviews with 36 industry representatives and provides insight and validation of trends. The final phase of the report includes recommendations that both industry and governments may wish to implement. The study includes financial, operational and environmental considerations. It was shown that natural gas directed drilling activity is strongly correlated with changes in natural gas prices. In the case of oil drilling activity, peak activity responds to oil prices from the prior quarter. In general, drilling and seismic costs are higher in the winter months because of increased demand for equipment and services. In addition winter drilling operations require a diesel fired boiler to generate steam. 36 refs., 2 tabs., 52 figs

  18. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  19. Reconsidering Volcanic Ocean Island Hydrology: Recent Geophysical and Drilling Results

    Science.gov (United States)

    Thomas, D. M.; Pierce, H. A.; Lautze, N. C.

    2017-12-01

    Recent results of geophysical surveys and exploratory drilling in Hawaii have suggested that Hawaii's hydrogeology may be more complex than has been generally recognized. Instead of a more-or-less homogeneous pile of highly permeable eruptive basalts that are intermittently punctuated by volcanic dikes confined to calderas and rift zones, we are finding that dike compartmentalization is occurring outside of recognized rift zones, leading to significantly higher volumes of stored groundwater within the island. Analysis of recent geophysical surveys have shown local water table elevations that are substantially higher than can be accounted for by the high hydraulic conductivities of Hawaiian basalts. Recent diamond wireline drilling results have also shown that sub-horizontal variations in permeability, associated with significant changes in eruptive character (e.g. explosive vs effusive activity) are acting as significant perching and confining bodies over significant aerial extents and suggest that these features also contribute to increased storage of recharge. Not only is storage much higher than previously assumed, these features appear to impact subsurface groundwater flow in ways that are not accounted for in traditional methods of computing sustainable yields for near shore aquifers: where buried confining formations extend to depths well below sea level, higher elevation recharge is being intercepted and diverted to deep submarine groundwater discharge well below depths that are typically investigated or quantified. We will provide a summary of the recent geophysical survey results along with a revised conceptual model for groundwater circulation within volcanic ocean islands.

  20. Fabrication of a miniature diamond grinding tool using a hybrid process of micro-EDM and co-deposition

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Lai, Yun-Cheng; Liu, Ching-Chang

    2008-01-01

    A novel miniature diamond grinding tool usable for the precise micro-grinding of miniature parts is presented. A hybrid process that combines 'micro-EDM' with 'precision co-deposition' is proposed. The metal substrate is micro-EDMed to a 50 µm diameter and micro diamonds with 0–2 µm grains are 'electroformed' on the substrate surface, producing a miniature multilayered grinding tool. Nickel and diamond act as binders and cutters, respectively. A partition plate with an array of drilled holes is designed to ensure good convection in the electroforming solution. The dispersion of diamond grains and displacement of nickel ions are noticeably improved. A miniature funnel mould enables the diamond grains to converge towards the cathode to increase their deposition probability on the substrate, thereby improving their distribution on the substrate surface. A micro ZrO 2 ceramic ferrule is finely ground by the developed grinding tool and then yields a surface roughness of R a = 0.085 µm. The proposed approach is applied during the final machining process

  1. Diamond Growth in the Subduction Factory

    Science.gov (United States)

    Bureau, H.; Frost, D. J.; Bolfan-Casanova, N.; Leroy, C.; Estève, I.

    2014-12-01

    Natural diamonds are fabulous probes of the deep Earth Interior. They are the evidence of the deep storage of volatile elements, carbon at first, but also hydrogen and chlorine trapped as hydrous fluids in inclusions. The study of diamond growth processes in the lithosphere and mantle helps for our understanding of volatile elements cycling between deep reservoirs. We know now that inclusion-bearing diamonds similar to diamonds found in nature (i.e. polycrystalline, fibrous and coated diamonds) can grow in hydrous fluids or melts (Bureau et al., GCA 77, 202-214, 2012). Therefore, we propose that the best environment to promote such diamonds is the subduction factory, where highly hydrous fluids or melts are present. When oceanic plates are subducted in the lithosphere, they carry an oceanic crust soaked with seawater. While the slabs are traveling en route to the mantle, dehydration processes generate saline fluids highly concentrated in NaCl. In the present study we have experimentally shown that diamonds can grow from the saline fluids (up to 30 g/l NaCl in water) generated in subducted slabs. We have performed multi-anvil press experiments at 6-7 GPa and from 1300 to 1400°C during 6:00 hours to 30:00 hours. We observed large areas of new diamond grown in epitaxy on pure diamond seeds in salty hydrous carbonated melts, forming coated gems. The new rims are containing multi-component primary inclusions. Detailed characterizations of the diamonds and their inclusions have been performed and will be presented. These experimental results suggest that multi-component salty fluids of supercritical nature migrate with the slabs, down to the deep mantle. Such fluids may insure the first stage of the deep Earth's volatiles cycling (C, H, halogen elements) en route to the transition zone and the lower mantle. We suggest that the subduction factory may also be a diamond factory.

  2. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  3. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  4. Drilling history of core hole DB-15

    International Nuclear Information System (INIS)

    Diediker, L.D.; Ledgerwood, R.K.

    1980-09-01

    This core hole was drilled to obtain hydrologic and chemical data on the permeable zones of the Saddle Mountains and Wanapum Formations. These data were obtained by testing the zones that were penetrated during drilling. This testing-as-drilled method reduced the potential problems of interflow and water contamination. This report summarizes the drilling and coring operations; geologic logging, hydrologic testing, and geophysical logging activities; and cementing operations of DB-15 during drilling. The successful completion of DB-15 demonstrated that hydrologic testing can be conducted during core drilling operations. More reliable head measurements and uncontaminated representative water samples from isolated permeable zones, which have not been exposed to potential open borehole cross-flow and head equilibration problems, were benefits derived from the testing-as-drilled method. Disadvantages of the technique were a longer time to complete the borehole caused by time required for testing and increased drilling costs due to rig standby time during testing. Extension of the testing-as-drilled method to the drilling of future core holes is recommended. An evaluation should be made of the required hydrologic data and expected borehole stratigraphy before and during drilling to allow uninterrupted drilling in zones of low permeability that can be tested after drilling is complete

  5. Intracanal temperature changes during bone preparations close to and penetrating the inferior alveolar canal: Drills versus piezosurgery.

    Science.gov (United States)

    Szalma, József; Vajta, László; Lempel, Edina; Tóth, Ákos; Jeges, Sára; Olasz, Lajos

    2017-10-01

    The aim of this in vitro study was to investigate temperature increases in the inferior alveolar canal (IAC), when different bone preparation methods approximate and penetrate the IAC. In pig mandible, buccal bone removals were performed until the neurovascular bundle became visible. Temperatures were registered with thermocouple probes and with infrared thermometer. Preparations were performed with diamond drills (DD), tungsten carbide drills (TCD), piezoelectric diamond sphere (PT_D) and saw (PT_S) tips, and a combined preparation method was also performed whereby the superficial three-fourths of the bone was removed with TCD and the deepest one-fourth of the bone with PT_D (TCD + PT_D_7 °C) or PT_S (TCD + PT_S_7 °C), using cooled irrigation (7 °C). Preparations using room temperature irrigation caused significantly less heat on the bone surface than in the IAC. Piezosurgery in the IAC produced significantly higher temperatures (>13 °C) than the drills (piezosurgery is comparable to that of the drills; however, it produces the highest, potentially nerve-harming temperatures. To eliminate the heat consequences during piezosurgery in the IAC, the use of cooled irrigation at 7 °C and predrilling is recommended. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Robust diamond meshes with unique wettability properties.

    Science.gov (United States)

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  7. Conflict diamonds — unfinished business | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-22

    Jul 22, 2011 ... ... diamonds reached this year will not be effective if it is not monitored, and if the countries ... What we do know is that 75 percent of the world's gem diamonds are mined in ... It makes the Kimberley accord weaker than any other international ... a British NGO, have been nominated for the Nobel Peace Prize.

  8. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  9. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  10. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  11. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  12. The Returns on Investment Grade Diamonds

    NARCIS (Netherlands)

    Renneboog, L.D.R.

    2013-01-01

    Abstract: This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual

  13. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  14. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    Science.gov (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  15. Additive to clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Voytenko, V.S.; Nekrasova, V.B.; Nikitinskiy, E.L.; Ponomarev, V.N.

    1984-01-01

    The purpose of the invention is to improve the lubricating and strengthening properties of clay drilling muds. This goal is achieved because the lubricating and strengthening additive used is waste from the pulp and paper industry at the stage of reprocessing crude sulfate soap into phytosterol.

  16. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  17. Development of controlled drilling system

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Miyakawa, Kimio; Suzuki, Koichi; Sunaga, Takayuki

    2008-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for the High Level Radioactive Waste (HLW) disposal. Especially, the soft sedimentary rock at the offshore, region is thought to be one of the best candidates, since there is no driving force of the underground water. The measurement and logging in the bore hole in order to check the hydro-geological and geomechanical conditions of the host rock is a very important way to examine the potentially of the disposal candidates. The CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project about the controlled drilling technology and the measurement and logging technologies in its borehole. In 2000, as the beginning year of the project, we made the conceptual design of the drilling and measuring systems, and made key tools concerning each technology on an experimental basis. We have been developing sub tools constructing drilling and measuring systems since 2000, and applying these systems to the Horonobe site recent 5 years. We will briefly report the outline of the system and the results of drilling and measurement that were carried out at the Horonobe site. (author)

  18. Hydraulics calculation in drilling simulator

    Science.gov (United States)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  19. DM Considerations for Deep Drilling

    OpenAIRE

    Dubois-Felsmann, Gregory

    2016-01-01

    An outline of the current situation regarding the DM plans for the Deep Drilling surveys and an invitation to the community to provide feedback on what they would like to see included in the data processing and visualization of these surveys.

  20. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  1. Drill machine guidance using natural occurring radiation

    International Nuclear Information System (INIS)

    Dahl, H.D.; Schroeder, R.L.; Williams, B.J.

    1980-01-01

    A drilling machine guidance system is described which uses only the naturally occuring radiation within the seam or stratum of interest. The apparatus can be used for guiding horizontal drilling machines through coal seams and the like. (U.K.)

  2. Economic environmental management of drilling operations

    International Nuclear Information System (INIS)

    Longwell, H.J.; Akers, T.J.

    1992-01-01

    This paper presents significant environmental and regulatory initiatives developed by Exxon's New Orleans Drilling Organization. Specifically, the paper will cover drilling waste minimization techniques and disposal options, recycling of drilling waste streams, and environmentally managed drilling location design considerations. The implementation of some of these initiatives at Exxon's Chalkley field land locations have resulted in a fifty percent reduction in drilling location waste management costs. Some of these same initiatives have been successfully applied to Exxon's barge drilling locations. For operations at the environmentally sensitive Mobile Bay, Exxon contracted with a local company and assisted in the development of an economically and environmentally superior drilling waste disposal and treatment system. In summary, it is possible for drilling operators to pro-actively manage escalating environmental and regulatory challenges through the implementation of economic and practical initiatives

  3. Catamaran type semisubmersible platform for offshore drilling

    Energy Technology Data Exchange (ETDEWEB)

    Pouget, G; Chevallier, J; Hampton, G

    1988-06-10

    A semi-submersible oil rig which allows the vertical storage of drilling tubes and drill pipes is presented. The structure which links the floaters to the bridge consists of hollow columns forming caissons and containing means for storing tubes.

  4. Diamond sensors for future high energy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bachmair, Felix, E-mail: bachmair@phys.ethz.ch

    2016-09-21

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  5. Diamond electrophoretic microchips-Joule heating effects

    International Nuclear Information System (INIS)

    Karczemska, Anna T.; Witkowski, Dariusz; Ralchenko, Victor; Bolshakov, Andrey; Sovyk, Dmitry; Lysko, Jan M.; Fijalkowski, Mateusz; Bodzenta, Jerzy; Hassard, John

    2011-01-01

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare TM was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  6. Engineering NV centres in Synthetic Diamond

    International Nuclear Information System (INIS)

    Matthew Markham

    2014-01-01

    The quantum properties of the nitrogen vacancy (NV) centre in diamond has prompted rapid growth in diamond research. This initial growth was driven by the fact the NV centre provides an 'easy' to manipulate quantum system along with opening up the possibility of a new material to deliver a solid state quantum computer. The NV defect is now moving from a quantum curiosity to a commercial development platform for a range of application such as as gyroscopes, timing and magnetometry as well as the more traditional quantum technologies such as quantum encryption and quantum simulation. These technologies are pushing the development needs of the material, and the processing of that material. The paper will describes the advances in CVD diamond synthesis with special attention to getting NV defects close to the surface of the diamond and how to process the material for diamond quantum optical applications. (author)

  7. Diamond detector technology: status and perspectives

    CERN Document Server

    Kagan, Harris; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H P; Bellini,, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; De Boer, W; Dehning, B; Dorfer, C; Dunser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Mcfadden, N; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Reichmann, M; Riley, G; Roe, S; Sanz, D; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Schreiner, T; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Taylor, Aaron; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, Stephen; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2017-01-01

    The status of material development of poly-crystalline chemical vapor deposition (CVD) diamond is presented. We also present beam test results on the independence of signal size on incident par-ticle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition the first beam test results from 3D detectors made with poly-crystalline CVD diamond are presented. Finally the first analysis of LHC data from the ATLAS Diamond Beam Monitor (DBM) which is based on pixelated poly-crystalline CVD diamond sensors bump-bonded to pixel readout elec-tronics is shown.

  8. Nanostructured Diamond Device for Biomedical Applications.

    Science.gov (United States)

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  9. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  10. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  11. Surface Modification of AISI 440B Stainless Steel and its Influence on Surgical Drill Bits Performance

    Directory of Open Access Journals (Sweden)

    Łępicka M.

    2016-09-01

    Full Text Available The development of modern invasive surgery is highly dependent on the performance of surgical instruments, understood as long-term efficiency arising from high resistance to wear and corrosion. In order to maintain sufficient reliability, surgical cutting instruments are often made of martensitic stainless steels. Nevertheless, the use of ferrous alloys in medical applications is still a concern due to their questionable corrosion and wear resistance. To extend their biocompatibility, improve stability in variable environmental conditions, improve ease of handling, and maximize their performance, diffusion layers and coatings are applied to the surface. The aim of this work was to evaluate the effect of TiN and diamond-like carbon (DLC surface modification on the performance of surgical drill bits, that is, wear and corrosion resistance, measured in model and field tests. Based on the findings presented, DLC layers can be recommended as anti-wear and anti-corrosion coatings for surgical drill bits.

  12. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  14. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  15. A bit faster : ReedHycalog focuses new drill bit technology on the needs of western Canadian drillers

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2009-06-15

    ReedHycalog, a division of National Oilwell Varco Inc., is advancing its drill bit technology and is setting performance records in an effort to meet the needs of drillers in western Canada. This article described the company's new drill bit technology. Through its motor series polycrystalline diamond cutter (PDC) bits, ReedHycalog developed and commercialized several unique and proprietary drill bit features that reduced variations in torque. This lowered the risk of stick-slip while improving lateral stability, directional control and drilling efficiency. The design of the motor series bits was reviewed along with laboratory and field testing. Smooth torque was identified as one of the greatest challenges when drilling with a drill bit on a directional assembly. Test results revealed that there are 4 distinct characteristics for optimal steerable motor performance, such as smooth torque control components (TCC) that were specifically positioned in the cone of the bit to prevent cutter over engagement reducing in torque fluctuations for optimal tool face control; optimized cutter backrakes that provided high penetration rates in rotating mode, while TCCs were optimized to control torque when sliding; gauge inserts for lateral control that provided a low-friction bearing surface; and laterally exposed gauge cutters that cleaned up the hole in rotating mode, and a tapered upper section that reduced gauge pad interference while in sliding mode. The motor series bits performed extremely well in the vertical, build and horizontal intervals with multiple operators. 1 ref., 3 figs.

  16. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    Science.gov (United States)

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P drilling protocol proposed herein may represent a safe approach for implant site preparation.

  17. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  18. 25 CFR 226.33 - Line drilling.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  19. 30 CFR 256.71 - Directional drilling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Directional drilling. 256.71 Section 256.71... drilling. In accordance with an approved exploration plan or development and production plan, a lease may be maintained in force by directional wells drilled under the leased area from surface locations on...

  20. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  1. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... deposit. (2) Inclinational surveys shall be obtained on all vertical wells at intervals not exceeding 1... to that leaseholder. (f) Fixed drilling platforms. Applications for installation of fixed drilling... removed or have been otherwise immobilized are classified as fixed bottom founded drilling platforms. (g...

  2. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    Science.gov (United States)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  3. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  4. Cold cathodes on ultra-dispersed diamond base

    International Nuclear Information System (INIS)

    Alimova, A.N.; Zhirnov, V.V.; Chubun, N.N.; Belobrov, P.I.

    1998-01-01

    Prospects of application of nano diamond powders for fabrication of cold cathodes are discussed.Cold cathodes based on silicon pointed structures with nano diamond coatings were prepared.The deposition technique of diamond coating was dielectrophoresis from suspension of nano diamond powder in organic liquids.The cathodes were tested in sealed prototypes of vacuum electronic devices

  5. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  6. A drilling mud for drilling wells in collapsing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, G P; Anderson, B A; Minkhayrov, K A; Sharipov, A U

    1982-01-01

    In a known drilling mud for drilling wells in collapsing rocks, which contains clay, sodium silicate and polyacrylamide (PAA), in order to increase its specific electrical resistance and to increase the strengthening properties, a silicoorganic liquid is additionally introduced into its composition with the following component ratio (percent): clay, 5 to 7; sodium silicate, 5 to 7; polyacrylamide, 0.3 to 0.5; silicoorganic liquid, GKZh-94, 0.5 to 1.5 and water, the remainder. The GKZh-94 is a chemical compound based on alkylphenylchlorsilanes and substituted ethers of orthosilicic acid, used for waterproofing fabrics and soils. The addition of GKZh-94 provides the required values of the specific electric resistance of the mud and does not distort the gas logging indications. The proposed mud has low water production (4 to 6 cubic centimeters), optimal viscosity (25 to 31 seconds) and high structural and mechanical properties. Its strengthening properties are substantially above those of the known mud.

  7. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  8. High-tech hammer : BBJ Tools transforms the traditional fluid hammer into a revolutionary drilling tool

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-12-15

    This article described BBJ Tools' patent-pending fluid hammer that enhances drilling rate of penetration. The technology was awarded the 2010 winner for best drilling technology for a company with fewer than 100 employees. The fluid hammer features several improvements in terms of maintaining drill-bit integrity, steering ability, and operating flexibility. The hammer incorporates a positive displacement motor and adjustable housing that uniquely allow the driller to steer the drill bit. The fluid hammer works with both polycrystalline diamond compact bits and roller cones. The unique weight-to-bit-transfer design allows the operator to have diversified percussion control. More weight on the bit results in more force, and hammering stops when weight is taken off the bit. The major components of the mud motor are incorporated into the fluid hammer, allowing the tool to compete in every application in which a mud motor is used. The percussion mechanism transmits left-hand reactive torque to the housing. The rate of penetration is substantially better than other similar tools on the market. 2 figs.

  9. The Geopolitical Setting of Conflict Diamonds.

    Science.gov (United States)

    Haggerty, S. E.

    2002-05-01

    September 11, 2001 will live in infamy. Ideological differences have also led to senseless atrocities in Angola, Congo Republic, Sierra Leone, and Liberia. Hundreds of thousands have died, scores mutilated, and millions displaced. These have gone virtually unnoticed for decades. Unnoticed that is until it became evident that these barbaric acts were fueled by the sale or bartering of diamonds for arms, or by more ingenious ways that are less traceable. There is no end in sight. Industry has long recognized that about 20% of diamonds reaching the open market are smuggled from operating mines, and more recently that an additional 4% originates from conflict diamond sources. Diamond identification by laser inscription, ion implantation, or certification protocols are subject to fraudulent tampering. And these applied methods are thwarted if cutting and polishing centers are infiltrated, or if terrorist facilities are independently established. Mark ups are substantial (40-60%) from raw material to finished product. Tracking the paths of rough stones from mines to faceted gems is impractical because some 30-50 million cts of top quality material, or about 100 million stones, would require branding each year. Moreover, the long standing tradition of site-holdings and the bourse system of mixing or matching diamonds, inadvertently ensures regional anonymity. Conflict diamonds are mined in primary kimberlites and from widely dispersed alluvial fields in tropical jungle. Landscapes, eroded by 1-5 vertical km over 100 Ma, have transformed low grade primary deposits into unconsolidated sedimentary bonanzas. The current value of stones retrieved, by motivated diggers and skillful jiggers, in rebel held territories, is impossible to determine, but in 1993 amounted to tens of millions USD. Diamonds over 100 cts continue to surface at premier prices. Borders are porous, diamonds flow easily, and armed networks are permeable and mobile. Diamonds form at great depths (over 200 km

  10. Advanced control strategies for a drill rig

    International Nuclear Information System (INIS)

    Banerjee, A.; Hiller, M.; Fink, B.

    1996-01-01

    The construction of tunnels is usually undertaken using a combination of blasting and drilling to achieve rock excavation. Easy handling and high accuracy, and thus greater efficiency, in drilling rigs is an essential ingredient of successful competition in the market place. This article describes a cartesian control concept used for a twin boom drill rig. This simplifies the handling of a drilling boom, reduces the duration of a working cycle and increases security. A remote control system has been added to the drill rig to support the operator working in complicated environments. (UK)

  11. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  12. Thin diamond films for tribological applications

    International Nuclear Information System (INIS)

    Wong, M.S.; Meilunas, R.; Ong, T.P.; Chang, R.P.H.

    1989-01-01

    Diamond films have been deposited on Si, Mo and many other substrates by microwave and radio frequency plasma enhanced chemical vapor deposition. Although the adhesion between the diamond film and most of the metal substrates is poor due to residual thermal stress from the mismatch of thermal expansion coefficients, the authors have developed processes to promote the growth of uniform and continuous diamond films with enhanced adhesion to metal substrates for tribological applications. The tribological properties of these films are measured using a ring-on-block tribotester. The coefficients of friction of diamond films sliding against a 52100 steel ring under the same experimental conditions are found to be significantly different depending on the morphology, grain size and roughness of the diamond films. However, under all cases tested, it is found that for uniform and continuous diamond films with small grain size of 1-3 micrometers, the coefficient of friction of the diamond film sliding against a steel ring under lubrication of a jet of mineral oil is about 0.04

  13. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Bergonzo, P.; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F.

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  14. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  15. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    Science.gov (United States)

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  16. Diamond-Based Supercapacitors: Realization and Properties.

    Science.gov (United States)

    Gao, Fang; Nebel, Christoph E

    2016-10-26

    In this Spotlight on Applications, we describe our recent progress on the fabrication of surface-enlarged boron-doped polycrystalline diamond electrodes, and evaluate their performance in supercapacitor applications. We begin with a discussion of the fabrication methods of porous diamond materials. The diamond surface enlargement starts with a top-down plasma etching method. Although the extra surface area provided by surface roughening or nanostructuring provides good outcome for sensing applications, a capacitance value <1 mF cm -2 or a surface-enlargement factor <100 fail to meet the requirement of a practical supercapacitor. Driven by the need for large surface areas, we recently focused on the tempated-growth method. We worked on both supported and free-standing porous diamond materials to enhance the areal capacitance to the "mF cm -2 " range. With our newly developed free-standing diamond paper, areal capacitance can be multiplied by stacking multilayers of the electrode material. Finally, considering the fact that there is no real diamond-based supercapacitor device up to now, we fabricated the first prototype pouch-cell device based on the free-standing diamond paper to evaluate its performance. The results reveal that the diamond paper is suitable for operation in high potential windows (up to 2.5 V) in aqueous electrolyte with a capacitance of 0.688 mF cm -2 per layer of paper (or 0.645 F g -1 ). Impedance spectroscopy revealed that the operation frequency of the device exceeds 30 Hz. Because of the large potential window and the ability to work at high frequency, the specific power of the device reached 1 × 10 5 W kg -1 . In the end, we made estimations on the future target performance of diamond supercapacitors based on the existing information.

  17. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M

    2003-01-01

    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  18. Innovative techniques cut costs in wetlands drilling

    International Nuclear Information System (INIS)

    Navarro, A.R.

    1991-01-01

    This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential

  19. Chemical Speciation of Chromium in Drilling Muds

    International Nuclear Information System (INIS)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-01-01

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility

  20. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  1. Physics and applications of CVD diamond

    CERN Document Server

    Koizumi, Satoshi; Nesladek, Milos

    2008-01-01

    Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs.Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is e

  2. Residual radioactivity of treated green diamonds.

    Science.gov (United States)

    Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel

    2017-08-01

    Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.

  3. Amorphous Diamond MEMS and Sensors

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater

  4. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  5. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  6. Experimental Investigation on the Performance of Grinding Assisted Electrochemical Discharge Drilling of Glass

    Directory of Open Access Journals (Sweden)

    Ladeesh V G

    2016-01-01

    Full Text Available Grinding assisted electrochemical discharge drilling (G-ECDD is a novel technique for producing micro and macro holes in brittle materials including advanced ceramics and glass, both efficiently and economically. G-ECDD involves the use of a rotating diamond core drill as the tool in a normal electrochemical discharge machine setup. The material removal happens by a combination of thermal melting due to electric discharges, followed by grinding action of diamond grits and chemical etching action. In this study, the effect of process parameters like voltage, duty cycle, cycle time and electrolyte concentration on material removed (MR was investigated systematically using response surface methodology. Analysis of variance was performed to identify the significant factors and their percentage contribution. The most significant factor was found to be duty cycle followed by voltage, cycle time and concentration. A quadratic mathematical model was developed to predict MR. Tool wear was found for different frequencies and voltages. Higher tool wear was observed for high frequency above 5kHz pulsed DC supply at high voltage of 110V. Tool wear at the end face of the tool was found to be a significant problem affecting the tool life.

  7. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  8. Astronomers debate diamonds in space

    Science.gov (United States)

    1999-04-01

    This is not the first time the intriguing carbonaceous compound has been detected in space. A peculiar elite of twelve stars are known to produce it. The star now added by ISO to this elite is one of the best representatives of this exclusive family, since it emits a very strong signal of the compound. Additionally ISO found a second new member of the group with weaker emission, and also observed with a spectral resolution never achieved before other already known stars in this class. Astronomers think these ISO results will help solve the mystery of the true nature of the compound. Their publication by two different groups, from Spain and Canada, has triggered a debate on the topic, both in astronomy institutes and in chemistry laboratories. At present, mixed teams of astrophysicists and chemists are investigating in the lab compounds whose chemical signature or "fingerprint" matches that detected by ISO. Neither diamonds nor fullerenes have ever been detected in space, but their presence has been predicted. Tiny diamonds of pre-solar origin --older than the Solar System-- have been found in meteorites, which supports the as yet unconfirmed theory of their presence in interstellar space. The fullerene molecule, made of 60 carbon atoms linked to form a sphere (hence the name "buckyball"), has also been extensively searched for in space but never found. If the carbonaceous compound detected by ISO is a fullerene or a diamond, there will be new data on the production of these industrially interesting materials. Fullerenes are being investigated as "capsules" to deliver new pharmaceuticals to the body. Diamonds are commonly used in the electronics industry and for the development of new materials; if they are formed in the dust surrounding some stars, at relatively low temperatures and conditions of low pressure, companies could learn more about the ideal physical conditions to produce them. A textbook case The latest star in which the compound has been found is

  9. Ultra-fast calculations using diamond

    NARCIS (Netherlands)

    Van Dijk, T.

    2011-01-01

    TU Delft researchers have managed to use a piece of diamond to hold four quantum bits that can be spun, flipped and entangled with each other. This is an important step towards a working quantum computer

  10. Short-range order in irradiated diamonds

    International Nuclear Information System (INIS)

    Agafonov, S.S.; Glazkov, V.P.; Nikolaenko, V.A.; Somenkov, V.A.

    2005-01-01

    Structural changes in irradiated diamond with a change in its density were studied. Natural diamond powders with average particle size from 14-20 μm to 0.5 mm, irradiated in beryllium block of the MR reactor up to a fluence of 1.51 x 10 21 were used as samples. Using the neutron-diffraction method, it has been established that, when density in irradiated diamonds varies, a transition from a diamond-like amorphous structure to a graphite-like structure occurs. The transition occurs at a density ρ ∼ 2.7-2.9 g/cm 3 and is accompanied by a sharp change in resistivity [ru

  11. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Science.gov (United States)

    Khanaliloo, Behzad; Jayakumar, Harishankar; Hryciw, Aaron C.; Lake, David P.; Kaviani, Hamidreza; Barclay, Paul E.

    2015-10-01

    Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200 nm . The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7 ×105 and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm /√{Hz } sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  12. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Directory of Open Access Journals (Sweden)

    Behzad Khanaliloo

    2015-12-01

    Full Text Available Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200  nm. The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7×10^{5} and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5  fm/sqrt[Hz] sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  13. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  14. Diamond detectors for high energy physics experiments

    Science.gov (United States)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  15. Diamond Detector Technology: Status and Perspectives

    CERN Document Server

    Reichmann, M; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H; Bellini, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; Dauvergne, D; de Boer, W; Dorfer, C; Dünser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gallin-Martel, L; Gallin-Martel, M L; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kagan, H; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Konovalov, V; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Riley, G; Roe, S; Sanz-Becerra, D A; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Smith, S; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Tannenwald, B; Taylor, A; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, S; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2018-01-01

    The planned upgrade of the LHC to the High-Luminosity-LHC will push the luminosity limits above the original design values. Since the current detectors will not be able to cope with this environment ATLAS and CMS are doing research to find more radiation tolerant technologies for their innermost tracking layers. Chemical Vapour Deposition (CVD) diamond is an excellent candidate for this purpose. Detectors out of this material are already established in the highest irradiation regimes for the beam condition monitors at LHC. The RD42 collaboration is leading an effort to use CVD diamonds also as sensor material for the future tracking detectors. The signal behaviour of highly irradiated diamonds is presented as well as the recent study of the signal dependence on incident particle flux. There is also a recent development towards 3D detectors and especially 3D detectors with a pixel readout based on diamond sensors.

  16. Modified diamond dies for laser applications

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, R.A.

    1978-06-21

    A modified wire drawing die for spatial filtering techniques is described. It was designed for use in high power laser systems. The diamond aperture is capable of enduring high intensity laser frequency without damaging the laser beam profile. The diamond is mounted at the beam focus in a vacuum of 1 x 10/sup -5/ Torr. The vacuum prevents plasma forming at the diamond aperture, thus enabling the beam to pass through without damaging the holder or aperture. The spatial filters are fitted with a manipulator that has three electronic stepping motors, can position the aperture in three orthogonal directions, and is capable of 3.2 ..mu..m resolution. Shiva laser system is using 105 diamond apertures for shaping the High Energy Laser Beam.

  17. The DIAMOND Model of Peace Support Operations

    National Research Council Canada - National Science Library

    Bailey, Peter

    2005-01-01

    DIAMOND (Diplomatic And Military Operations in a Non-warfighting Domain) is a high-level stochastic simulation developed at Dstl as a key centerpiece within the Peace Support Operations (PSO) 'modelling jigsaw...

  18. CFPL installs products pipeline with directional drilling

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland number-sign 70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line

  19. Dosimetry in radiotherapy with natural diamond detectors

    International Nuclear Information System (INIS)

    De Angelis, C.; Onori, S.; Pacilio, M.; Cirrone, G.A.P.; Cuttone, G.; Raffaele, L.; Bucciolini, M.; Mazzocchi, S.

    2002-01-01

    There is wide interest in the use of diamond detectors for dosimetry in radiotherapy mainly because of the small dimensions, radiation hardness, nearly tissue equivalence of sensitive material and capability to deliver the dosimetric response 'on line'. In order to assess the dosimetric properties of PTW Riga diamond detectors type 60003, experiments were performed in conventional (high energy photon and electron) therapy beams as well as in proton therapy beams. The main detector features investigated were reproducibility of response, dose-signal relationship, temperature dependence, dose-rate dependence, energy dependence and angular dependence. High energy photons (6-25 MV) and electrons (6-22 MeV), available at the Radiotherapy Department of the Florence University, were used for investigating the general properties. Two different PTW diamond detectors of the same type were used to evidence inter-sample differences. The beam quality dependence of the detector response is probably the most critical point and this statement is of particular relevance for proton dosimetry since the proton LET changes with depth in the medium. Mainly because of the little information available on detector sensitivity variations with beam energy, the use of diamonds for clinical proton dosimetry is not widespread. In two recent papers a sensitivity dependence on proton energy of a natural PTW diamond detector has been reported. Due to the necessity to characterise each diamond detector individually the PTW Riga natural diamond detector in operation at the LNS-INFN, Catania, Italy was tested with the local proton beam line. This experiment is of main concern because this proton beam, produced by a superconducting cyclotron and used for ocular melanoma treatment, is available only since 2001 (CATANA beam). The first patient has been treated in February 2002. Proton irradiations were performed with non modulated and modulated 62 MeV beams. Attention was focused on diamond sensitivity

  20. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  1. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    Science.gov (United States)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  2. Growth and optical spectroscopy of synthetic diamonds

    International Nuclear Information System (INIS)

    Mudryj, A.V.; Larionova, T.P.; Shakin, I.A.; Gysakov, G.A.; Dubrov, G.A.; Tikhonov, V.V.

    2003-01-01

    It is studied the growth and optical properties of synthetic diamonds, which may be used for detection of ionizing radiation, optical windows, heat removal, ultraviolet and thermo sensors, optoelectronic devices. Optical properties of diamonds (grown in different technological conditions) were studied in temperature range 78 - 300 K by means of measuring transmission in spectral band 0.2 - 25 μm, photoluminescence and registration of luminescence excitation spectra in spectral band 0.2 - 2 μm

  3. Long-term data storage in diamond

    OpenAIRE

    Dhomkar, Siddharth; Henshaw, Jacob; Jayakumar, Harishankar; Meriles, Carlos A.

    2016-01-01

    The negatively charged nitrogen vacancy (NV?) center in diamond is the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Although most work so far has focused on the NV? optical and spin properties, control of the charge state promises complementary opportunities. One intriguing possibility is the long-term storage of information, a notion we hereby introduce using NV-rich, type 1b diamond. As a proof of principle, we use multic...

  4. Diamond nanostructured devices for chemical sensing applications

    OpenAIRE

    Ahmad, R. K.

    2011-01-01

    Research in the area of CVD single crystal diamond plates of which only recently has been made commercially available saw significant advancements during the last decade. In parallel to that, detonation nanodiamond (DND) particles also now widely made accessible for requisition are provoking a lot of scientific investigations. The remarkable properties of diamond including its extreme hardness, low coefficient of friction, chemical inertness, biocompatibility, high thermal c...

  5. Diamond carbon sources: a comparison of carbon isotope models

    International Nuclear Information System (INIS)

    Kirkley, M.B.; Otter, M.L.; Gurney, J.J.; Hill, S.J.

    1990-01-01

    The carbon isotope compositions of approximately 500 inclusion-bearing diamonds have been determined in the past decade. 98 percent of these diamonds readily fall into two broad categories on the basis of their inclusion mineralogies and compositions. These categories are peridotitic diamonds and eclogitic diamonds. Most peridotitic diamonds have δ 13 C values between -10 and -1 permil, whereas eclogitic diamonds have δ 13 C values between -28 and +2 permil. Peridotitic diamonds may represent primordial carbon, however, it is proposed that initially inhomogeneous δ 13 C values were subsequently homogenized, e.g. during melting and convection that is postulated to have occurred during the first billion years of the earth's existence. If this is the case, then the wider range of δ 13 C values exhibited by eclogitic diamonds requires a different explanation. Both the fractionation model and the subduction model can account for the range of observed δ 13 C values in eclogitic diamonds. 16 refs., 2 figs

  6. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello

    2010-01-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  7. Detection and analysis of diamond fingerprinting feature and its application

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin; Huang Guoliang; Li Qiang; Chen Shengyi, E-mail: tshgl@tsinghua.edu.cn [Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing, 100084 (China)

    2011-01-01

    Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the 'Diamond ID' and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.

  8. Diamond growth in oxygen-acetylene flame

    International Nuclear Information System (INIS)

    Haga, Mario S.; Nagai, Y. Ernesto; Suzuki, Carlos K.

    1995-01-01

    What was supposed to be a laboratory curiosity in the 80's, in recent years the low pressure process for the production of man-made diamond turned out to be a major target for research and development of many high-tech companies. The main reason for such an interest stems on the possibility of coating many materials with a diamond film possessing the same amazing properties of the bulk natural diamond. Polycrystalline diamond film has been deposited on Mo substrate by using oxygen-acetylene flame of a welding torch. The substrate temperature has been held constant about 700 d eg C by means of a water cooled mount designed properly. Precision flowmeters have been used to control the flow ratio oxygen/acetylene, a key parameter for the success in diamond growth. Diamond has been detected by X-ray diffraction, a fast foolproof technique for crystal identification. Another method of analysis often used in Raman spectroscopy, which is able to exhibit amorphous structure besides crystalline phase. (author)

  9. CVD diamond deposition onto dental burs

    International Nuclear Information System (INIS)

    Ali, N.; Sein, H.

    2001-01-01

    A hot-filament chemical vapor deposition (HFCVD) system has been modified to enable non-planar substrates, such as metallic wires and dental burs, to be uniformly coated with thin polycrystalline diamond films. Initially, diamond deposition was carried out on titanium and tantalum wires in order to test and optimize the system. High growth rates of the order of approx. 8 /hr were obtained when depositing diamond on titanium wires using the vertical filament arrangement. However, lower growth rates of the order of 4-5meu m/hr were obtained with diamond deposition on tantalum wires. To extend the work towards a practical biomedical application tungsten carbide dental burs were coated with diamond films. The as-grown films were found to be polycrystalline and uniform over the cutting tip. Finally, the costs relating to diamond CVD onto dental burs have been presented in this paper. The costs relating to coating different number of burs at a time and the effect of film thickness on costs have been included in this investigation. (author)

  10. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  11. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, O [VBB VIAK AB, Malmoe (Sweden)

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs.

  12. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  13. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  14. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  15. PDVSA INTEVEP Technologies in oil well drilling

    International Nuclear Information System (INIS)

    Bolivar, C.; Rafael, A.; Davila, Manuel A.

    1998-01-01

    The orimulsion, the generation of catalytic technologies and the development of HDH (process which transform heavy crudes in light crudes), are examples of some of the well known technologies developed by PDVSA INTEVEP. But the drilling oil wells technologies developed by the same entreprise, even though are very important, are less known all around the world. This document describes some products developed through those technologies: THIXOGAS T M which is an antimigratory aditive; INTEFLOW T M which is a fluid for drilling, complementation and rehabilitation of oil drills; INTERCAB T M which is an aditive for fluids in drilling; orimatita which is a denser for drilling fluids; CARBOLIG T M which is an aditive for drilling fluids; and many other products and technologies in development, impacted considerably the venezuelan economy by preserving the environment and saving quite an important amount of money in 1997 (Bs. 3.000 M M)

  16. Boron doped diamond electrode for the wastewater treatment

    International Nuclear Information System (INIS)

    Quiroz Alfaro, Marco Antonio; Ferro, Sergio; Martinez-Huitle, Carlos Alberto; Vong, Yunny Meas

    2006-01-01

    Electrochemical studies of diamond were started more than fifteen years ago with the first paper on diamond electrochemistry published by Pleskov. After that, work started in Japan, United States of America, France, Switzerland and other countries. Over the last few years, the number of publications has increased considerably. Diamond films have been the subject of applications and fundamental research in electrochemistry, opening up a new branch known as the electrochemistry of diamond electrodes. Here, we first present a brief history and the process of diamond film synthesis. The principal objective of this work is to summarize the most important results in the electrochemical oxidation using diamond electrodes. (author)

  17. Optimizing biosensing properties on undecylenic Acid-functionalized diamond.

    Science.gov (United States)

    Zhong, Yu Lin; Chong, Kwok Feng; May, Paul W; Chen, Zhi-Kuan; Loh, Kian Ping

    2007-05-08

    The optimization of biosensing efficiency on a diamond platform depends on the successful coupling of biomolecules on the surface, and also on effective signal transduction in the biorecognition events. In terms of biofunctionalization of diamond surfaces, surface electrochemical studies of diamond modified with undecylenic acid (UA), with and without headgroup protection, were performed. The direct photochemical coupling method employing UA was found to impart a higher density of carboxylic acid groups on the diamond surface compared to that using trifluoroethyl undecenoate (TFEU) as the protecting group during the coupling process. Non-faradic impedimetric DNA sensing revealed that lightly doped diamond gives better signal transduction sensitivity compared to highly doped diamond.

  18. Boron doped diamond electrode for the wastewater treatment

    Directory of Open Access Journals (Sweden)

    Alfaro Marco Antonio Quiroz

    2006-01-01

    Full Text Available Electrochemical studies of diamond were started more than fifteen years ago with the first paper on diamond electrochemistry published by Pleskov. After that, work started in Japan, United States of America, France, Switzerland and other countries. Over the last few years, the number of publications has increased considerably. Diamond films have been the subject of applications and fundamental research in electrochemistry, opening up a new branch known as the electrochemistry of diamond electrodes. Here, we first present a brief history and the process of diamond film synthesis. The principal objective of this work is to summarize the most important results in the electrochemical oxidation using diamond electrodes.

  19. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  20. Recognition of diamond grains on surface of fine diamond grinding wheel

    Institute of Scientific and Technical Information of China (English)

    Fengwei HUO; Zhuji JIN; Renke KANG; Dongming GUO; Chun YANG

    2008-01-01

    The accurate evaluation of grinding wheel sur-face topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simu-lation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distri-bution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturb-ance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteris-tics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface pro-filer based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective.

  1. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  2. Replacement team of mining drilling rigs

    OpenAIRE

    Hamodi, Hussan; Lundberg, Jan

    2014-01-01

    This paper presents a practical model to calculate the optimal replacement time (ORT) of drilling rigs used in underground mining. As a case study, cost data for drilling rig were collected over four years from a Swedish mine. The cost data include acquisition, operating, maintenance and downtime costs when using a redundant rig. A discount rate is used to determine the value of these costs over time. The study develops an optimisation model to identify the ORT of a mining drilling rig which ...

  3. Test plan for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    The objective of this testing is to determine if ignition occurs while core drilling in a flammable gas environment. Drilling parameters are chosen so as to provide bounding conditions for the core sampling environment. If ignition does not occur under the conditions set forth in this test, then a satisfactory level of confidence will be obtained which would allow field operations under the normal drilling conditions

  4. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  5. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  6. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.

    1990-01-01

    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  7. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  8. Status and applications of diamond and diamond-like materials: An emerging technology

    Science.gov (United States)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  9. Diamond growth on an array of seeds: The revolution of diamond production

    Energy Technology Data Exchange (ETDEWEB)

    Sung, James C. [KINIK Company, 64, Chung-San Rd., Ying-Kuo, Taipei Hsien 239, Taiwan (China) and National Taiwan University, Taipei 106, Taiwan (China) and National Taipei University of Technology, Taipei 106, Taiwan (China)]. E-mail: sung@kinik.com.tw; Sung, Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Sung, Emily [Johnson and Johnson, Freemont, CA (United States)

    2006-03-01

    The consumption of saw diamond grits is a measure of a nation's constructional activities. The per capita consumption for the world is about 0.7 carats in 2004, and in China, about 3 carats. The manufacture of large saw diamond grits requires stringent control of pressure and temperature that only a few companies can master. However, with the implementation of a novel diamond seeding technology, large saw diamond grits of extreme quality can be mass produced. With this breakthrough, the prices of saw grit will plummet in the near future that should benefit the constructional industry worldwide. Moreover, electronic or thermal grade of large diamond crystals may be produced for applications in semiconductor, electronic or optical industry.

  10. Diamond growth on an array of seeds: The revolution of diamond production

    International Nuclear Information System (INIS)

    Sung, James C.; Sung, Michael; Sung, Emily

    2006-01-01

    The consumption of saw diamond grits is a measure of a nation's constructional activities. The per capita consumption for the world is about 0.7 carats in 2004, and in China, about 3 carats. The manufacture of large saw diamond grits requires stringent control of pressure and temperature that only a few companies can master. However, with the implementation of a novel diamond seeding technology, large saw diamond grits of extreme quality can be mass produced. With this breakthrough, the prices of saw grit will plummet in the near future that should benefit the constructional industry worldwide. Moreover, electronic or thermal grade of large diamond crystals may be produced for applications in semiconductor, electronic or optical industry

  11. Plasma spraying method for forming diamond and diamond-like coatings

    Science.gov (United States)

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  12. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then

  13. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  14. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  15. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  16. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  17. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  18. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  19. The Diamond machine protection system

    International Nuclear Information System (INIS)

    Heron, M.T.; Lay, S.; Chernousko, Y.; Hamadyk, P.; Rotolo, N.

    2012-01-01

    The Diamond Light Source Machine Protection System (MPS) manages the hazards from high power photon beams and other hazards to ensure equipment protection on the booster synchrotron and storage ring. The system has a shutdown requirement, on a beam mis-steer of under 1 msec and has to manage in excess of a thousand interlocks. This is realised using a combination of bespoke hardware and programmable logic controllers. The MPS monitors a large number of interlock signals from diagnostics instrumentation, vacuum instrumentation, photon front ends and plant monitoring subsystems. Based on logic it can then remove the source of the energy to ensure protection of equipment. Depending on requirements, interlocks are managed on a Local or a Global basis. The Global system is structured as two layers, and supports fast- and slow-response-time interlock requirements. A Global MPS module takes the interlock permits for a given interlock circuit from each of the cells of the accelerator, and, subject to all interlocks being good, produces a permit to operate the source of energy: the RF amplifier for vessel protection and the PSU for magnet protection. The Local MPS module takes fast Interlock inputs from one cell of the Storage Ring or one quadrant of the Booster. Fast interlocks are those that must drop the beam in under 400 μsec (the maximum speed of the interlock) in the event of failure. EPIC provides the user interface to the MPS system

  20. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds

    Science.gov (United States)

    Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.

    Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards

  1. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    Greentree, Andrew D; Olivero, Paolo; Draganski, Martin; Trajkov, Elizabeth; Rabeau, James R; Reichart, Patrick; Gibson, Brant C; Rubanov, Sergey; Huntington, Shane T; Jamieson, David N; Prawer, Steven

    2006-01-01

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  2. Prospects for the synthesis of large single-crystal diamonds

    International Nuclear Information System (INIS)

    Khmelnitskiy, R A

    2015-01-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)

  3. Architecting boron nanostructure on the diamond particle surface

    International Nuclear Information System (INIS)

    Bai, H.; Dai, D.; Yu, J.H.; Nishimura, K.; Sasaoka, S.; Jiang, N.

    2014-01-01

    The present study provides an efficient approach for nano-functionalization of diamond powders. Boron nanostructure can be grown on diamond particle entire surface by a simple heat-treatment process. After treatment, various boron nanoforms were grown on the diamond particle surface at different processing temperature. High-density boron nanowires (BNWs) grow on the diamond particle entire surface at 1333 K, while nanopillars cover diamond powders when the heat treatment process is performed at 1393 K. The influence of the pretreatment temperature on the microstructure and thermal conductivity of Cu/diamond composites were investigated. Cu/diamond composites with high thermal conductivity of 670 W (m K) −1 was obtained, which was achieved by the formation of large number of nanowires and nanopillars on the diamond particle surface.

  4. Development of diamond coated tool and its performance in ...

    Indian Academy of Sciences (India)

    Unknown

    Mechanical Engineering Department, Indian Institute of Technology, Kharagpur 721 302, India ... chemical inertness of diamond coating towards the work material, did not show any .... CVD diamond coated carbide tools, Ph D Thesis, Indian.

  5. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  6. The Mysteries of Diamonds: Bizarre History, Amazing Properties, Unique Applications

    International Nuclear Information System (INIS)

    Kagan, Harris

    2008-01-01

    Diamonds have been a prized material throughout history. They are scarce and beautiful, wars have been fought over them, and they remain today a symbol of wealth and power. Diamonds also have exceptional physical properties which can lead to unique applications in science. There are now techniques to artificially synthesize diamonds of extraordinarily high quality. In this talk, Professor Kagan will discuss the history of diamonds, their bizarre properties, and their manufacture and use for 21st century science.

  7. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  8. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    Science.gov (United States)

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  9. The Mysteries of Diamonds: Bizarre History, Amazing Properties, Unique Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Harris (Ohio State University)

    2008-06-24

    Diamonds have been a prized material throughout history. They are scarce and beautiful, wars have been fought over them, and they remain today a symbol of wealth and power. Diamonds also have exceptional physical properties which can lead to unique applications in science. There are now techniques to artificially synthesize diamonds of extraordinarily high quality. In this talk, Professor Kagan will discuss the history of diamonds, their bizarre properties, and their manufacture and use for 21st century science.

  10. 30 CFR 77.1007 - Drilling; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling; general. 77.1007 Section 77.1007 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1007 Drilling; general. (a) Equipment that is to be used during a shift shall be inspected...

  11. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  12. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT

    Directory of Open Access Journals (Sweden)

    Mostafa Sedaghatzadeh

    2012-11-01

    Full Text Available Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially useful for advanced designing high temperature and high pressure (HTHP drilling fluids. In the present study, the impacts of CNT volume fraction, ball milling time, functionalization, temperature, and dispersion quality (by means of scanning electron microscopy, SEM on the thermal and rheological properties of water-based mud are experimentally investigated. The thermal conductivities of the nano-based drilling fluid are measured with a transient hot wire method. The experimental results show that the thermal conductivity of the water-based drilling fluid is enhanced by 23.2% in the presence of 1 vol% functionalized CNT at room temperature; it increases by 31.8% by raising the mud temperature to 50 °C. Furthermore, significant improvements are seen in the rheological properties—such as yield point, filtration properties, and annular viscosity—of the CNTmodified drilling fluid compared to the base mud, which pushes forward their future development.

  14. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  15. Status Report A Review of Slimhole Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  16. Westinghouse GOCO conduct of casualty drills

    International Nuclear Information System (INIS)

    Ames, C.P.

    1996-02-01

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility

  17. Lifting device for drilling rods

    Energy Technology Data Exchange (ETDEWEB)

    Radzivilovich, L L; Laptev, A G; Lipkovich, V A

    1982-01-01

    A lifter is proposed for drilling rods including a spacer stand with rotating bracket, boom with by-pass rollers, spacing and lifting hydrocylinders with rods and flexible tie mechanism. In order to improve labor productivity by improving maneuverability and to increase the maintenance zone, the lifter is equipped with a hydrocylinder of advance and a cross piece which is installed with the possibility of forward and rotational movement on the stand, and in which by means of the hydrocylinder of advance a boom is attached. Within the indicated boom there is a branch of the flexible tie mechanism with end attached with the possibility of regulation over the length on a rotating bracket, while the rod of the lifting hydrocylinder is connected to the cross piece.

  18. Improvements in or relating to artefacts incorporating industrial diamonds

    International Nuclear Information System (INIS)

    Hartley, N.E.W.; Poole, M.J.

    1981-01-01

    A process for improving the wear characteristics of industrial diamonds is described which consists of implanting into the surface regions of the diamonds, ions of a material having an atomic weight greater than one and such as to affect the surface properties of the diamonds. Examples of the invention, in which N + and C + ions have been used, are cited. (U.K.)

  19. An assessment of radiotherapy dosimeters based on CVD grown diamond

    International Nuclear Information System (INIS)

    Ramkumar, S.; Buttar, C.M.; Conway, J.; Whitehead, A.J.; Sussman, R.S.; Hill, G.; Walker, S.

    2001-01-01

    Diamond is potentially a very suitable material for use as a dosimeter for radiotherapy. Its radiation hardness, the near tissue equivalence and chemical inertness are some of the characteristics of diamond, which make it well suited for its application as a dosimeter. Recent advances in the synthesis of diamond by chemical vapour deposition (CVD) technology have resulted in the improvement in the quality of material and increased its suitability for radiotherapy applications. We report in this paper, the response of prototype dosimeters based on two different types (CVD1 and CVD2) of CVD diamond to X-rays. The diamond devices were assessed for sensitivity, dependence of response on dose and dose rate, and compared with a Scanditronix silicon photon diode and a PTW natural diamond dosimeter. The diamond devices of CVD1 type showed an initial increase in response with dose, which saturates after ∼6 Gy. The diamond devices of CVD2 type had a response at low fields ( 1162.8 V/cm), the CVD2-type devices showed polarisation and dose-rate dependence. The sensitivity of the CVD diamond devices varied between 82 and 1300 nC/Gy depending upon the sample type and the applied voltage. The sensitivity of CVD diamond devices was significantly higher than that of natural diamond and silicon dosimeters. The results suggest that CVD diamond devices can be fabricated for successful use in radiotherapy applications

  20. Drilling the North Anatolian Fault

    Directory of Open Access Journals (Sweden)

    Mustafa Aktar

    2008-07-01

    Full Text Available An international workshop entitled “GONAF: A deep Geophysical Observatory at the North Anatolian Fault”, was held 23–27 April 2007 in Istanbul, Turkey. The aim of this workshop was to refine plans for a deep drilling project at the North Anatolian Fault Zone (NAFZ in northwestern Turkey. The current drilling target is located in the Marmara Sea offshore the megacity of Istanbul in the direct vicinity of the main branch of the North Anatolian Fault on the PrinceIslands (Figs. 1 and 2.The NAFZ represents a 1600-km-long plate boundary that slips at an average rate of 20–30 mm·yr-1 (McClusky et al., 2000. It has developed in the framework of the northward moving Arabian plate and the Hellenic subduction zone where the African lithosphere is subducting below the Aegean. Comparison of long-term slip rates with Holocene and GPS-derived slip rates indicate an increasing westwardmovement of the Anatolian plate with respect to stable Eurasia. During the twentieth century, the NAFZ has ruptured over 900 km of its length. A series of large earthquakes starting in 1939 near Erzincan in Eastern Anatolia propagated westward towards the Istanbul-Marmara region in northwestern Turkey that today represents a seismic gap along a ≥100-km-long segment below the Sea of Marmara. This segment did not rupture since 1766 and, if locked, may have accumulated a slip deficit of 4–5 m. It is believed being capable of generating two M≥7.4 earthquakes within the next decades (Hubert-Ferrari et al., 2000; however, it could even rupture in a large single event (Le Pichon et al., 1999.

  1. Coesite inclusions in diamonds of Yakutia

    Science.gov (United States)

    Bardukhinov, L. D.; Spetsius, Z. V.; Monkhorov, R. V.

    2016-10-01

    The results of the study of diamonds with inclusions of high-pressure modification of SiO2 (coesite) by Raman spectroscopy are reported. It is established that the octahedral crystal from the Zapolyarnaya pipe is characterized by the highest residual pressure (2.7 ± 0.07 GPa). An intermediate value of this parameter (2.1 ± 0.07 GPa) was obtained for a crystal of transitional habit from the Maiskaya pipe. The minimal Raman shift was registered for coesite in diamond from the Komsomol'skaya-Magnitnaya pipe and provided a calculated residual pressure of 1.8 ± 0.03 GPa. The residual pressures for crystals from the placer deposits of the Kuoika and Bol'shaya Kuonamka rivers are 2.7 ± 0.07 and 3.1 ± 0.1 GPa, respectively. Octahedral crystals were formed in the mantle at a higher pressure than rhombododecahedral diamonds.

  2. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  3. Recent results with CVD diamond trackers

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm{sup 2} diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 {mu}s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm{sup 2} diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  4. Recent results with CVD diamond trackers

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    We present recent results on the use of chemical vapor deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1*1 cm/sup 2/ diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 mu s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2*4 cm/sup 2/ diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch. (6 refs).

  5. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  6. CVD diamond detectors for ionizing radiation

    Science.gov (United States)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  7. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  8. Diamond as a scaffold for bone growth.

    Science.gov (United States)

    Fox, Kate; Palamara, Joseph; Judge, Roy; Greentree, Andrew D

    2013-04-01

    Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.

  9. Conductivity and superconductivity in heavily vacant diamond

    Directory of Open Access Journals (Sweden)

    S A Jafari

    2009-08-01

    Full Text Available   Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .

  10. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    Science.gov (United States)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  11. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies

    Science.gov (United States)

    Kueter, Nico; Soesilo, Joko; Fedortchouk, Yana; Nestola, Fabrizio; Belluco, Lorenzo; Troch, Juliana; Wälle, Markus; Guillong, Marcel; Von Quadt, Albrecht; Driesner, Thomas

    2016-11-01

    Diamonds in alluvial deposits in Southeast Asia are not accompanied by indicator minerals suggesting primary kimberlite or lamproite sources. The Meratus Mountains in Southeast Borneo (Province Kalimantan Selatan, Indonesia) provide the largest known deposit of these so-called "headless" diamond deposits. Proposals for the origin of Kalimantan diamonds include the adjacent Meratus ophiolite complex, ultra-high pressure (UHP) metamorphic terranes, obducted subcontinental lithospheric mantle and undiscovered kimberlite-type sources. Here we report results from detailed sediment provenance analysis of diamond-bearing Quaternary river channel material and from representative outcrops of the oldest known formations within the Alino Group, including the diamond-bearing Campanian-Maastrichtian Manunggul Formation. Optical examination of surfaces of diamonds collected from artisanal miners in the Meratus area (247 stones) and in West Borneo (Sanggau Area, Province Kalimantan Barat; 85 stones) points toward a classical kimberlite-type source for the majority of these diamonds. Some of the diamonds host mineral inclusions suitable for deep single-crystal X-ray diffraction investigation. We determined the depth of formation of two olivines, one coesite and one peridotitic garnet inclusion. Pressure of formation estimates for the peridotitic garnet at independently derived temperatures of 930-1250 °C are between 4.8 and 6.0 GPa. Sediment provenance analysis includes petrography coupled to analyses of detrital garnet and glaucophane. The compositions of these key minerals do not indicate kimberlite-derived material. By analyzing almost 1400 zircons for trace element concentrations with laser ablation ICP-MS (LA-ICP-MS) we tested the mineral's potential as an alternative kimberlite indicator. The screening ultimately resulted in a small subset of ten zircons with a kimberlitic affinity. Subsequent U-Pb dating resulting in Cretaceous ages plus a detailed chemical reflection make

  12. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  13. Electron field emission for ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E. (and others)

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1--2.4 {mu}m thick were conformally deposited on sharp single Si microtip emitters, using microwave CH{sub 4}--Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60--100 {mu}A/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond--vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  14. Clinical dosimeter based on diamond detector

    International Nuclear Information System (INIS)

    Chervjakov, A.M.; Ljalina, L.I.; Ljutina, G.J.; Khrunov, V.S.; Martynov, S.S.; Popov, S.A.

    2002-01-01

    Full text: Diamond detectors have found application in the relative dosimetry and their parameters have been described elsewhere. Today, the exclusive producer of the diamond detector is the Institute of Physical and Technical Problems, Russia, and exclusive dealer is the PTW-Freiburg. The main features of the diamond detector are good long time stability, suitable range of the energy dependence for photon and electron beams in clinical use, independence of the measured date from temperature and pressure. The high sensitivity per volume unit of the diamond detector (1500 times higher than ionization chamber) allowed using detectors with very small volume (1-5 mm 3 ) and rather simple electronics for ionization current registration. The new dosimeter consists of the diamond detector itself, 40 m registration cable, pre-amplifier, micro-processor block for data handling and absorbed dose calculation using the calibration factor of diamond detector in terms of absorbed dose to water. Dosimeter has the possibility to work with PC using standard RS-232 interface. The main features of the dosimeter are as follows: the range of dose rate measurements for photon, electron and proton beams is within 0.01-1.0 Gy/s; the energy ranges for photons are 0.08-25 MeV, and 4-25 MeV for electrons, with energy dependence no more than ±2%; the main uncertainty of the dose measurements is within ±2%; the pre-irradiation dose for diamond detector is no more than 10 Gy; the sensitive volume of the used diamond detectors is within 1-5 mm 3 ; the weight of the dosimeter no more than 2 kg. The new dosimeter was evaluated at the Central Research Institute of Roentgenology and Radiology, St. Petersburg, Russia to verify its performance. The dosimeter was used as a reference instrument for dose measurements at Cobalt-60 unit, SL75-5 and SL-20 linear accelerators and the test results have shown that the device have met the specifications. It is planned to produce dosimeter as serial device by

  15. Progress of Diamond-like Carbon Films

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yun

    2017-03-01

    Full Text Available Diamond-like carbon(DLC films had many unique and outstanding properties such as high thermal conductivity, high hardness, excellent chemical inertness, low friction coefficients and wear coefficients. The properties and combinations were very promising for heat sink, micro-electromechanical devices, radiation hardening, biomedical devices, automotive industry and other technical applications, more research and a lot of attention were attracted in recent years. The research progress of diamond-like films and the nucleation mechanism of film were summarized, and application prospect of DLC films were demonstrated. The aim of this paper is to provide insights on the research trend of DLC films and the industry applications.

  16. D.C. Arcjet Diamond Deposition

    Science.gov (United States)

    Russell, Derrek Andrew

    1995-01-01

    Polycrystalline diamond films synthesized by a D.C. (direct current) arcjet device was reported for the first time in 1988. This device is capable of higher diamond growth rates than any other form of diamond CVD (chemical vapor deposition) process due to its inherent versatility with regard to the enthalpy and fluid properties of the diamond-depositing vapor. Unfortunately, the versatility of this type of device is contrasted by many difficulties such as arc stability and large heat fluxes which make applying it toward diamond deposition a difficult problem. The purpose of this work was to convert the dc arcjet, which is primarily a metallurgical device, into a commercially viable diamond CVD process. The project was divided into two parts: process development and diagnostics. The process development effort concentrated on the certain engineering challenges. Among these was a novel arcjet design that allowed the carbon-source gas to be injected downstream of the tungsten cathode while still facilitating mixture with the main gas feed. Another engineering accomplishment was the incorporation of a water -cooled substrate cooler/spinner that maintained the substrate at the proper temperature, provided the substrate with a large thermal time constant to reduce thermal shock of the diamond film, and enabled the system to achieve a four -inch diameter growth area. The process diagnostics effort concentrated on measurements aimed at developing a fundamental understanding of the properties of the plasma jet such as temperature, plasma density, Mach number, pressure at the substrate, etc. The plasma temperature was determined to be 5195 K by measuring the rotational temperature of C _2 via optical emission spectroscopy. The Mach number of the plasma jet was determined to be ~6.0 as determined by the ratio of the stagnation pressures before and after the shock wave in the plasma jet. The C_2 concentration in the plasma jet was determined to be {~10 }^{12} cm^ {-3} by

  17. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Albin, S.; Winfree, W.P.; Crews, B.S.

    1990-01-01

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  18. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  19. Application of CVD diamond film for radiation detection

    International Nuclear Information System (INIS)

    Zhou Haiyang; Zhu Xiaodong; Zhan Rujuan

    2005-01-01

    With the development of diamond synthesis at low pressure, the CVD diamond properties including electronic characteristics have improved continuously. Now the fabrication of electronic devices based on the CVD diamond has been one of hot research subjects in this field. Due to many unique advantages, such as high signal-noise ratio, fast time response, and normal output in extremely harsh surrounding, the CVD diamond radiation detector has attracted more and more interest. In this paper, we have reviewed the development and status of the CVD diamond radiation detector. The prospect of this detector is described. (authors)

  20. The Auto-Gopher Deep Drill

    Science.gov (United States)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  1. Dewatering cuts drilling mud and disposal costs

    International Nuclear Information System (INIS)

    West, G.; Pharis, B.

    1991-01-01

    This paper reports on rig site dewatering of drilling fluids with recycling of processed water that can help an operator to comply with environmental rules by reducing volumes of waste and reducing long term liabilities. It can also reduce disposal costs and provide a cleaner drill site overall. Rig site dewatering is the process of injecting coagulants or flocculating chemicals into the mud entering a large clarifying centrifuge. This coagulates the fine, drilled particles allowing them to be separated from the fluid which can then be handled separately. Most of the environmental concerns during the 1980s involved hazardous materials and toxic wastes. Drilling fluids, many of which are chemically benign, have escaped many of the difficult-to-comply-with rules and regulations. During the 1990s, however, operators may be required to submit a written plan for liquid waste reduction for even nonhazardous materials. Many states and local agencies may institute total bans on oil field wastes. Drilling rigs typically produce about 1 bbl of liquid waste for every 1 ft of hole drilled. Thus, a typical drilling operation can produce a large quantity of waste

  2. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  3. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    Science.gov (United States)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and hence material perfection, improves. The ultimate prize for man-made diamond is surely not in the synthesis of gem stones, but in delivering technological solutions enabled by diamond to the challenges facing our society today. If the special properties are to be exploited to their full potential, at least four crucial factors must be considered. First, there must be sufficient scientific understanding of diamond to make applications effective, efficient and economical. Secondly, the means of fabrication and control of properties have to be achieved so that diamond's role can be optimised. Thirdly, it is not enough that its properties are superior to existing materials: they must be so much better that it is worth initiating new technologies to exploit them. Finally, any substantial applications will have to address the society's major needs worldwide. The clear technology drivers for the 21st century come from the biomedical technologies, the demand for energy subject to global constraints, and the information technologies, where perhaps diamond will provide the major enabling technology [1]. The papers in this volume concern the solid state physics of diamond, and primarily concern the first two factors: understanding, and control of properties. They address many of the outstanding basic problems, such as the identification of existing defects, which affect the material's properties, both desirable and less so. Regarding future substantial applications, one paper discusses

  4. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  5. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S; Nugent, K W; Bettiol, A A; Kostidis, L I; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  6. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N.

    1996-01-01

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 μm 2 . After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs

  7. X-ray topographic study of diamonds: implications for the genetic nature of inclusions in diamond

    Science.gov (United States)

    Agrosì, Giovanna; Nestola, Fabrizio; Tempesta, Gioacchino; Bruno, Marco; Scandale, Eugenio; Harris, Jeff W.

    2014-05-01

    In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them (Howell, 2012 and references therein). Nevertheless, to obtain rigorous information about chemical and physical conditions of diamond formation, it is crucial to determine if the crystallization of the inclusions occurred before (protogenetic nature), during (syngenetic nature) or after (epigenetic nature) the growth of diamond (Wiggers de Vries et al., 2011). X-ray topography (XRDT) can be a helpful tool to verify the genetic nature of inclusions in diamond. This technique characterizes the extended defects and reconstructs the growth history of the samples (Agrosì et al., 2013 and references therein) and, consequently contributes to elucidation of the relationship between the inclusions and the host-diamond. With this aim a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond crystal was the one previously studied by Nestola et al. (2011) who performed in-situ crystal structure refinement of the inclusions to obtain data about the formation pressure. The inclusions were iso-oriented olivines that did not show evident cracks and subsequently could not be considered epigenetic. Optical observations revealed an anomalous birefringence in the adjacent diamond and the inclusions had typical "diamond-imposed cubo-octahedral" shape for the largest olivine. The diffraction contrast study shows that the diamond exhibits significant deformation fields related to plastic post growth deformation. The crystallographic direction of strains was established applying the extinction criterion. Section topographs were taken to minimize the overlapping of the strain field associate with the different defects and revealed that no dislocations nucleated from the olivine inclusions. Generally, when a solid inclusion has been incorporated in the growing crystal, the associated volume distortion can be minimized by

  8. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Zhuang, Hao; Jiang, Xin, E-mail: xin.jiang@uni-siegen.de

    2015-12-30

    Graphical abstract: - Highlights: • Novel diamond/beta-silicon carbide composite gradient interlayers were synthesized. • The interlayer features a cross-sectional gradient with increasing diamond content. • Diamond top layers and the interlayers were deposited in one single process. • The adhesion of the diamond film is drastically improved by employing the interlayer. • The stress was suppressed by manipulating the distribution of diamond and silicon carbide. - Abstract: Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co{sub 2}Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  9. Diamond MEMS: wafer scale processing, devices, and technology insertion

    Science.gov (United States)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  10. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  11. Hydraulic lifter for an underwater drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  12. Hydraulic lifter of a drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  13. Mechanical pretreatment for improved adhesion of diamond coatings

    International Nuclear Information System (INIS)

    Toenshoff, H.K.; Mohlfeld, A.; Gey, C.; Winkler, J.

    1999-01-01

    Diamond coatings are mainly used in cutting processes due to their tribological characteristics. They show a high hardness, low friction coefficient, high wear resistance and good chemical inertness. In relation to polycrystalline diamond (PCD)-tipped cutting inserts, especially the advantageous chemical stability of diamond coatings is superior as no binder phases between diamond grains are used. However, the deposition of adherent high-quality diamond coatings has been found difficult. Thus, substrate pretreatment is utilised to improve film adhesion. This investigation is based on water peening of the substrate material before coating. The investigation revealed best results for diamond film adhesion on pretreated substrates compared to conventional diamond coatings on cemented carbide tools applied with the CVD hot-filament process. In final cutting tests with increased film adhesion trough water peened cutting tools an improved wear behavior was detected. (orig.)

  14. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  15. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES

    International Nuclear Information System (INIS)

    2005-01-01

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm 2 have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector

  16. Diamond particle detectors systems in high energy physics

    CERN Document Server

    Gan, Kock Kiam

    2015-01-01

    The measurement of luminosity at the Large Hadron Collider (LHC) using diamond detect or s has matured from devices based on a rather large pads to highly granular pixelated device s . The ATLAS experiment has recently installed a diamond pixel detector, the Diamond Beam Monitor (DBM), to measure the luminosity in the upgraded LHC with higher instantaneous luminosity. Polycrystalline diamonds were used to fabricate the diamond pixel modules. The design , production, and test beam result s are described. CMS also has a similar plan to construct a diamond based luminosity monitor, the Pixel Luminos ity Telescope s (PLT) . In a pilot run using single crystal diamond, the pulse height was found to depend on the luminosity . Consequently the collaboration decided to use silicon instead due to time constrain ts .

  17. Diamond Beamline I16 (Materials and Magnetism)

    International Nuclear Information System (INIS)

    Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G.

    2010-01-01

    We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

  18. Diamond Light Source: status and perspectives.

    Science.gov (United States)

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I

    2015-03-06

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Structuring of diamond films using microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Roč. 54, č. 5 (2014), s. 320-324 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanostructuring * diamond thin films * polystyrene microspheres * reactive ion etching * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. HFCVD Diamond-Coated Mechanical Seals

    Directory of Open Access Journals (Sweden)

    Raul Simões

    2018-05-01

    Full Text Available A mechanical seal promotes the connection between systems or mechanisms, preventing the escape of fluids to the exterior. Nonetheless, due to extreme working conditions, premature failure can occur. Diamond, due to its excellent properties, is heralded as an excellent choice to cover the surface of these devices and extend their lifetime. Therefore, the main objective of this work was to deposit diamond films over mechanical seals and test the coated seals on a water pump, under real working conditions. The coatings were created by hot filament chemical vapor deposition (HFCVD and two consecutive layers of micro- and nanocrystalline diamond were deposited. One of the main difficulties is the attainment of a good adhesion between the diamond films and the mechanical seal material (WC-Co. Nucleation, deposition conditions, and pre-treatments were studied to enhance the coating. Superficial wear or delamination of the film was investigated using SEM and Raman characterization techniques, in order to draw conclusions about the feasibility of these coatings in the WC-Co mechanical seals with the purpose of increasing their performance and life time. The results obtained gave a good indication about the feasibility of this process and the deposition conditions used, with the mechanical seals showing no wear and no film delamination after a real work environment test.

  1. Quantum sensors based on single diamond defects

    International Nuclear Information System (INIS)

    Jelezko Fedor

    2014-01-01

    NV centers in diamond are promising sensors able to detect electric and magnetic fields at nanoscale. Here we report on the detection of biomolecules using magnetic noise induced by their electron and nuclear spins. Presented results show first steps towards establishing novel sensing technology for visualizing single proteins and study of their dynamics. (author)

  2. Grain boundary effects in nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Nesládek, Miloš

    2008-01-01

    Roč. 205, č. 9 (2008), 2163-2168 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * grain boundary * superconductivity * noise * ballistic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.205, year: 2008

  3. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Laser systems with diamond optical elements

    International Nuclear Information System (INIS)

    Seitz, J.R.

    1975-01-01

    High power laser systems with optical elements of diamond having a thermal conductivity of at least 10 W/cm. 0 K at 300 0 K and an optical absorption at the laser beam wavelength of no more than 10 to 20 percent are described. (U.S.)

  5. Trading diamonds for guns | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-15

    Jul 15, 2011 ... ... from war zones to Belgian brokers to jewellery stores wasn't easy. ... The UN Security Council began to take a major interest in Sierra Leone and its ... and industry and government to play in the regulatory body for diamonds ...

  6. Tribology: Diamonds are forever - or are they?

    Science.gov (United States)

    Fineberg, Jay

    2011-01-01

    The friction and wear of materials is part of our everyday experience, and yet these processes are not well understood. The example of diamond highlights wear processes that result from bumping atoms, showing that the devil is indeed in the details.

  7. Point contact to single-crystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Uxa, Štěpán; Krištofik, Jozef; Kozak, Halyna

    2012-01-01

    Roč. 27, č. 6 (2012), 1-4 ISSN 0268-1242 R&D Projects: GA ČR GAP204/10/0212 Institutional research plan: CEZ:AV0Z10100521 Keywords : point-contact * diamond * space-charge–limited transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.921, year: 2012

  8. Diamond-based single-photon emitters

    International Nuclear Information System (INIS)

    Aharonovich, I; Castelletto, S; Simpson, D A; Su, C-H; Greentree, A D; Prawer, S

    2011-01-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information-thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  9. Diamond Turning Of Infra-Red Components

    Science.gov (United States)

    Hodgson, B.; Lettington, A. H.; Stillwell, P. F. T. C.

    1986-05-01

    Single point diamond machining of infra-red optical components such as aluminium mirrors, germanium lenses and zinc sulphide domes is potentially the most cost effective method for their manufacture since components may be machined from the blanks to a high surface finish, requiring no subsequent polishing, in a few minutes. Machines for the production of flat surfaces are well established. Diamond turning lathes for curved surfaces however require a high capital investment which can be justified only for research purposes or high volume production. The present paper describes the development of a low cost production machine based on a Bryant Symons diamond turning lathe which is able to machine spherical components to the required form and finish. It employs two horizontal spindles one for the workpiece the other for the tool. The machined radius of curvature is set by the alignment of the axes and the radius of the tool motion, as in conventional generation. The diamond tool is always normal to the workpiece and does not need to be accurately profiled. There are two variants of this basic machine. For machining hemispherical domes the axes are at right angles while for lenses with positive or negative curvature these axes are adjustable. An aspherical machine is under development, based on the all mechanical spherical machine, but in which a ± 2 mm aspherecity may be imposed on the best fit sphere by moving the work spindle under numerical control.

  10. Comparison of natural and synthetic diamond X-ray detectors.

    Science.gov (United States)

    Lansley, S P; Betzel, G T; Metcalfe, P; Reinisch, L; Meyer, J

    2010-12-01

    Diamond detectors are particularly well suited for dosimetry applications in radiotherapy for reasons including near-tissue equivalence and high-spatial resolution resulting from small sensitive volumes. However, these detectors have not become commonplace due to high cost and poor availability arising from the need for high-quality diamond. We have fabricated relatively cheap detectors from commercially-available synthetic diamond fabricated using chemical vapour deposition. Here, we present a comparison of one of these detectors with the only commercially-available diamond-based detector (which uses a natural diamond crystal). Parameters such as the energy dependence and linearity of charge with dose were investigated at orthovoltage energies (50-250 kV), and dose-rate dependence of charge at linear accelerator energy (6 MV). The energy dependence of a synthetic diamond detector was similar to that of the natural diamond detector, albeit with slightly less variation across the energy range. Both detectors displayed a linear response with dose (at 100 kV) over the limited dose range used. The sensitivity of the synthetic diamond detector was 302 nC/Gy, compared to 294 nC/Gy measured for the natural diamond detector; however, this was obtained with a bias of 246.50 V compared to a bias of 61.75 V used for the natural diamond detector. The natural diamond detector exhibited a greater dependency on dose-rate than the synthetic diamond detector. Overall, the synthetic diamond detector performed well in comparison to the natural diamond detector.

  11. Clay-free drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeyev, R G; Panov, V B; Simonenkov, O I

    1982-01-01

    A clay-free drilling mud is proposed which contains humate-containing substance, alkali electrolyte, gel-former, inhibitor and water. In order to reduce viscosity of the static shear stress and water output under conditions of polyvalent aggression, it additionally contains organic stabilizer with the following ratio of components, % by mass: humate-containing substance 4.0-8.0; alkali electrolyte 0.2-1.5; gel-former 1.0-3.0; organic stabilizer 0.1-1.0; inhibitor 1.0-40.0; water--the rest. The solution is also distinguished by the fact that the gel-former used is magnesium chloride or magnesium sulfate, or calcium chloride or aluminum sulfate, or iron chloride (III) or iron sulfate (II) or waste of chlorides of titanium production with average chemical composition, % by mass: Ti 1.5-7.0; Fe 5.0-15.0; Al 1.5-10.0; Na 5.0-16.0; Mg 0.5-3.0; Cl 30.0-60.0; Ca 0.2-2.0; Cr 0.2-2.0; Cu 0.2-1.5.

  12. Alteration in the IRDP drill hole compared with other drill holes in Iceland

    Science.gov (United States)

    Kristmannsdóttir, Hrefna

    1982-08-01

    The overall alteration pattern in the drill hole at Reydarfjördur is very similar to alteration patterns observed in Icelandic geothermal areas and in low-grade metamorphosed basalts in deep crustal sections elsewhere in Iceland. However more detail is obtained by the study of the IRDP drill core than by study of drill cuttings sampled in previous drill holes in Iceland. A comparatively high fossil thermal gradient is obtained at Reydarfjördur by a combination of mineral stability data and the observed occurence of secondary minerals. This high gradient is consistent with the measured dike dilation at the drill site and the location of the drill site adjacent to a central volcano.

  13. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    Science.gov (United States)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic

  14. High sensitivity thermal sensors on insulating diamond

    Energy Technology Data Exchange (ETDEWEB)

    Job, R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Denisenko, A.V. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Zaitsev, A.M. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Melnikov, A.A. [Belarussian State Univ., Minsk (Belarus). HEII and FD; Werner, M. [VDI/VDE-IT, Teltow (Germany); Fahrner, W.R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices

    1996-12-15

    Diamond is a promising material to develop sensors for applications in harsh environments. To increase the sensitivity of diamond temperature sensors the effect of thermionic hole emission (TE) over an energetic barrier formed in the interface between highly boron-doped p-type and intrinsic insulating diamond areas has been suggested. To study the TE of holes a p-i-p diode has been fabricated and analyzed by electrical measurements in the temperature range between 300 K and 700 K. The experimental results have been compared with numerical simulations of its electrical characteristics. Based on a model of the thermionic emission of carriers into an insulator it has been suggested that the temperature sensitivity of the p-i-p diode on diamond is strongly affected by the re-emission of holes from a group of donor-like traps located at a level of 0.7-1.0 eV above the valence band. The mechanism of thermal activation of the current includes a spatial redistribution of the potential, which results in the TE regime from a decrease of the immobilized charge of the ionized traps within the i-zone of the diode and the correspondent lowering of the forward biased barrier. The characteristics of the p-i-p diode were studied with regard to temperature sensor applications. The temperature coefficient of resistance (TCR=-0.05 K{sup -1}) for temperatures above 600 K is about four times larger than the maximal attainable TCR for conventional boron-doped diamond resistors. (orig.)

  15. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    OpenAIRE

    Li, Hongtao; Meng, Yingfeng; Li, Gao; Wei, Na; Liu, Jiajie; Ma, Xiao; Duan, Mubai; Gu, Siman; Zhu, Kuanliang; Xu, Xiaofeng

    2013-01-01

    Signal attenuates while Measurement-While-Drilling (MWD) mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental dat...

  16. Test report for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing

  17. Logging-while-drilling (LWD) pressure test

    Energy Technology Data Exchange (ETDEWEB)

    Thirud, Aase P.

    2003-07-01

    Statoil and Halliburton have completed a successful test of a new ground-breaking formation evaluation technology on the Norwegian shelf. An LWD formation tester, the GeoTapTM sensor, was used to quantify formation pressure during drilling operations. The inaugural job was completed by Halliburton's Sperry-Sun product service line onboard the Bideford Dolphin at the Borg Field while drilling a horizontal production well in the Vigdis Extension development. The GeoTap tool, part of Sperry-Sun's StellarTM MWD/LWT suite, was run in combination with a complete logging-while-drilling sensor package and the Geo-Pilot rotary steerable drilling system. Repeat formation pressures were taken and successfully transmitted to surface. This is the first time this type of technology has been successfully applied on the Norwegian shelf.

  18. Drilling and logging in uranium exploration

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The report reviews drilling and logging practices in exploration of uranium ores and summarizes the papers presented in the panel meeting. Recommendations for further research and development are given

  19. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  20. An elevator for locked drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R.S.; Abbasov, E.M.; Ismailov, A.A.; Mamedov, Yu.S.; Safarov, A.A.

    1983-01-01

    An elevator is proposed, which includes a body with a door. To reduce the probability of gas shows in a well with high speed lowering and lifting of the column of locked drilling pipes through providing the possibility of feeding a drilling mud in this case into the mine, the elevator is equipped with a pneumatic cylinder with a two way hollow rod, on one face of which a sealing element is mounted for sealing the drilling pipe and on the other, an adapter for feeding the drilling mud. The rod is linked with the sleeve of the pneumatic cylinder, which is rigidly linked with the body with the capability of axial movement without rotation.

  1. Environment-friendly drilling operation technology

    Science.gov (United States)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  2. Ocean Drilling Program: Web Site Access Statistics

    Science.gov (United States)

    web site ODP/TAMU Science Operator Home Ocean Drilling Program Web Site Access Statistics* Overview See statistics for JOIDES members. See statistics for Janus database. 1997 October November December

  3. Advantages and limitations of remotely operated sea floor drill rigs

    Science.gov (United States)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional

  4. Stratigraphy in Apollo 16 drill section 60002

    Science.gov (United States)

    Blanford, G. E.; Morrison, D. A.

    1976-01-01

    Contacts in drill stem 60002 which indicate layers at least several centimeters thick and with one firm age of about 2.5 x 10 to the 7th yr are observed on the basis of characteristic patterns of track density variation with depth from the contact. The patterns can be observed primarily because the drill stem has a large immature component (path II soils).

  5. A reagent for processing drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, G.A.; Khon-Pak, A.T.; Khon, A.V.; Normatov, L.N.; Telegin, B.V.

    1983-01-01

    A reagent is proposed for processing drilling muds. It contains an acrylic polymer and potassium permanganate. The reagent is distinguished by the fact that in order to improve the quality of the drilling muds by increasing their salt resistance, the reagent contains hydrolized nitron fiber as the acrylic polymer with the following component relationship (in percent by weight): potassium permanganate, 0.015 to 0.065 and hydrolyzed nitron fiber, the remainder.

  6. The Newberry Deep Drilling Project (NDDP)

    Science.gov (United States)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  7. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  8. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  9. 30 CFR 56.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 56.7013 Section 56.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  10. 30 CFR 57.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 57.7013 Section 57.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  11. 30 CFR 250.463 - Who establishes field drilling rules?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who establishes field drilling rules? 250.463... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District Manager may...

  12. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani

    2016-03-01

    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  13. 21 CFR 872.4130 - Intraoral dental drill.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  14. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  15. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  16. Applications of diamond films and related materials; Proceedings of the 1st International Conference, Auburn, AL, Aug. 17-22, 1991

    Science.gov (United States)

    Tzeng, Yonhua (Editor); Yoshikawa, Manasori (Editor); Murakawa, Masao (Editor); Feldman, Albert (Editor)

    1991-01-01

    The present conference discusses the nucleation and growth of diamond from hydrocarbons, the cutting tool performance of CVD thick-film diamond, the characterization of CVD diamond grinding powder, industrial applications of crystalline diamond-coated tools, standardized SEM tribometry of diamond-coated substrates, residual stress in CVD diamond films, the optical properties of CVD diamond films, polycrystalline diamond films for optical applications, and diamond growth on ferrous metals. Also discussed are ion beam-irradiation smoothing of diamond films, electronic circuits on diamond substrates, diamond-laminated surfaces for evaporative spray cooling, electron devices based on the unique properties of diamond, diamond cold cathodes, thin-film diamond microstructure applications, Schottky diodes from flame-grown diamond, diamond films for thermionic applications, methods of diamond nucleation and selective deposition, high-rate/large-area diamond film production, halogen-assisted diamond growth, the economics of diamond technology, and the optical and mechanical properties of diamondlike films.

  17. Drilling Automation Tests At A Lunar/Mars Analog Site

    Science.gov (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  18. Preparation of Ti-coated diamond particles by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quanchao [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yunnan Copper Smelting and Processing Complex, Yunnan Copper (Group) CO., LTD., Kunming 650102 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Peng, Jinghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); and others

    2016-12-30

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  19. Preparation of Ti-coated diamond particles by microwave heating

    International Nuclear Information System (INIS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.

    2016-01-01

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  20. Supervisory control of drilling of composite materials

    Science.gov (United States)

    Ozaki, Motoyoshi

    Composite materials have attractive features, such as high ratios of strength-to-weight and stiffness-to-weight. However, they are easily damaged when they are machined. A typical damage is delamination, which can occur when fiber reinforced composite laminates are drilled. The objective of this research is to study the drilling processes of carbon fiber reinforced laminates, and to develop and test a supervisory control strategy for their delamination-free drilling. Characterization of thrust force and torque is achieved through constant feedrate drilling experiments. The average values of thrust force and torque during the full engagement of the drill are utilized to obtain the Shaw's equations' parameters. The thrust force profile just before exit is given special attention. The Hocheng-Dharan equations, which give conservative values of delamination at the entrance and at the exit, are modified to express the influence of one lamina thickness explicitly. They are utilized not only for the characterization of thrust force but also for the determination of the thrust force reference for force control. In the design of the controllers of thrust force and torque, both thrust force and torque are assumed to be proportional to FPHR (Feed Per Half Revolution). A discrete-time dynamic model is established for the case when the time interval for a half revolution of the drill is divided by the sampling time, and the model is extended to the case of general spindle speeds. PI controllers are designed for the dynamic models of thrust force and torque. Root-locus techniques are used in the analysis. The phases of the drilling process are introduced and the control strategy at each phase is explained. The supervisory controller chooses not only the best control strategy for each phase, but also the reference value and the controller gain that are suitable at each drill position. Drilling experiments are conducted to show the usefulness of the concepts introduced in this

  1. Drilling and blasting parameters in sublevel caving in Sheregesh mine

    Science.gov (United States)

    Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA

    2018-03-01

    The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.

  2. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  3. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  4. Drill-string design for directional wells

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R; Corbett, K T [Exxon Production Research Co., Houston, TX (USA)

    1983-01-01

    This paper is concerned with predicting the tension and torsion loads on drill strings in directional wells and with adjusting the string design or well plan to provide adequate strength. Drill-string drag is the incremental force that is required to move the pipe up or down in the hole; torque is the moment required to rotate the pipe. Drag forces are usually given relative to the string weight measured with the string roating but not reciprocating. Measured from the roating string weight, the pick-up drag is usually slightly greater than the slack-off drag. The magnitudes of torque and drag are related in any particular well; high drag forced and exessive torque loads normally occur together. There are a number of phenomena wich contribute to torque and drag. Included are tight hole conditions, sloughing hole, keyseats, differential sticking, cuttings build up due to poor hole cleaning and sliding wellbore friction. With the exception of sliding friction, these causes are associated with problem conditions in the wellbore. Conversely, in wells with good hole conditions, the primary source of torque and drag is sliding friction. This paper is only concerned with the torque and drag caused by sliding friction. The cabability to predict frictional loads on drill pipe has two main benefits. First, more complete knowledge of drill-string loading allows use of improved drill-string design techniques. Drill-string components can be chosen using a systematic approach considering the force involved. Second, deep, highly-deviated wells can be planned to minimize torque and drag. Use of torque and drag as a criteria to select the most appropriate well path will help ensure successful drilling operations to total depth. 1 fig., 2 tabs. (Author).

  5. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  6. Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity

    International Nuclear Information System (INIS)

    Kriesky, J.; Goldstein, B.D.; Zell, K.; Beach, S.

    2013-01-01

    The pace of development of shale gas plays varies greatly among US states and globally. Through analysis of telephone survey responses, we explore support for natural gas drilling in residents of Washington County (WC), PA (n=502) vs. residents of Allegheny County (AC), PA (n=799). WC has had intense Marcellus Shale (MS) drilling activity, in comparison to adjacent AC, which has had little drilling activity. WC residents are marginally more supportive of MS drilling than are AC residents (p=0.0768). Residents of WC are more likely to perceive MS as an economic opportunity than are AC residents (p=0.0015); to be in a family that has signed a MS lease (p<0.0001); to follow the MS issue closely (p=0.0003); to get MS information from neighbors, friends, and relatives (p<0.0001); and are marginally less likely to perceive MS as an environmental threat (p=0.1090). WC leaseholders are significantly more supportive of MS drilling than WC non-leaseholders and AC non-leaseholders (p=0.0024). Mediation analyses show that county-based differences in support of MS drilling are due to WC residents seeing more of an economic opportunity in the MS and their greater likelihood of having a family-held lease. - Highlights: • Telephone survey analysis of sources of support for Marcellus Shale drilling. • Perceived positive economic impact of drilling drives support among respondents. • Mineral rights leaseholders are significantly more supportive than non-leaseholders

  7. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  8. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  9. Diamond detectors for synchrotron radiation X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy)], E-mail: desio@arcetri.astro.it; Pace, E. [Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy); INFN, Sezione di Firenze, v. G. Sansone 1, Sesto Fiorentino, Firenze (Italy); Cinque, G.; Marcelli, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Achard, J.; Tallaire, A. [LIMHP-CNRS, University of Paris XIII, 99 Avenue JB Clement, 93430 Villetaneuse (France)

    2007-07-15

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices.

  10. Diamond based adsorbents and their application in chromatography.

    Science.gov (United States)

    Peristyy, Anton A; Fedyanina, Olga N; Paull, Brett; Nesterenko, Pavel N

    2014-08-29

    The idea of using diamond and diamond containing materials in separation sciences has attracted a strong interest in the past decade. The combination of a unique range of properties, such as chemical inertness, mechanical, thermal and hydrolytic stability, excellent thermal conductivity with minimal thermal expansion and intriguing adsorption properties makes diamond a promising material for use in various modes of chromatography. This review summarises the recent research on the preparation of diamond and diamond based stationary phases, their properties and chromatographic performance. Special attention is devoted to the dominant retention mechanisms evident for particular diamond containing phases, and their subsequent applicability to various modes of chromatography, including chromatography carried out under conditions of high temperature and pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Vertically aligned nanowires from boron-doped diamond.

    Science.gov (United States)

    Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E

    2008-11-01

    Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.

  12. Investigation of defects in CVD diamond: Influence for radiotherapy applications

    International Nuclear Information System (INIS)

    Guerrero, M.J.; Tromson, D.; Bergonzo, P.; Barrett, R.

    2005-01-01

    In this study we present the potentialities of CVD diamond as an ionisation chamber for radiotherapy applications. Trapping levels present in CVD diamond are characterised using Thermally Stimulated Current (TSC) method with X-ray sources. The influence of the corresponding defects on the detector response is investigated and compared to those observed in natural diamond. Also, their spatial distribution across a large area polycrystalline diamond ionisation chamber is discussed. Results show the relative influence of two different populations of trapping levels in CVD diamond whose effect is crucial for radiotherapy applications. To partially overcome the defect detrimental effects, we propose to use CVD diamond ionisation chambers at moderate temperatures from 70 to 100 deg. C that could be provided by self heating of the device, for a dramatically improved stability and reproducibility

  13. Use of the diamond to the detection of particles

    International Nuclear Information System (INIS)

    Mer, C.; Tromson, D.; Brambilla, A.; Foulon, F.; Guizard, B.; Bergonzo

    2001-01-01

    Diamond synthesized by chemical vapor deposition (CVD) is a valuable material for the detection of particles: broad forbidden energy band, high mobility of electron-hole pairs, and a short life-time of charge carriers. Diamond layers have been used in alpha detectors or gamma dose ratemeters designed to be used in hostile environment. Diamond presents a high resistance to radiation and corrosion. The properties of diamond concerning the detection of particles are spoilt by the existence of crystal defects even in high quality natural or synthesized diamond. This article presents recent works that have been performed in CEA laboratories in order to optimize the use of CVD diamond in particle detectors. (A.C.)

  14. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  15. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  16. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  17. 78 FR 52363 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Diamond...

    Science.gov (United States)

    2013-08-22

    ... causes of diamond darter habitat loss. Water quality degradation and siltation also played key roles. See... quantitatively define specific water quality standards required by the diamond darter. These organizations noted... conductivity poses to the diamond [[Page 52368

  18. A study of defects in diamond

    International Nuclear Information System (INIS)

    Hunt, D.C.

    1999-01-01

    Defects, intrinsic and extrinsic, in natural and synthetic diamond, have been studied using Electron Paramagnetic Resonance (EPR) and optical absorption techniques. EPR measurements have been used in conjunction with infrared absorption to identify the defect-induced one-phonon infrared spectra produced by ionised single substitutional nitrogen, N s + . This N s + spectrum is characterised by a sharp peak at the Raman energy, 1332 cm -1 , accompanied by several broader resonances at 950(5), 1050(5), and 1095(5) cm -1 . Detailed concentration measurements show that a concentration of 5.5(5) ppm gives rise to an absorption of 1 cm -1 at 1332 cm -1 . The optical absorption band ND1, identified as the negative vacancy (V - ), is frequently used by diamond spectroscopists to measure the concentration of V - . Isoya has identified V - in the EPR spectra of irradiated diamond. The accuracy of EPR in determining concentrations, has been used to correlate the integrated absorption of the ND1 zero-phonon line to the concentration of V - centres. The parameter derived from this correlation is ∼16 times smaller than the previously accepted value obtained by indirect methods. A systematic study has been made - using EPR and optical absorption techniques - of synthetic type IIa diamonds, which have been irradiated with 2 MeV electrons in a specially developed dewar, allowing irradiation down to a measured sample temperature of 100K. Measurement of defect creation rates of the neutral vacancy and EPR defects, show a radical difference in the production rate of the EPR defect R2 between irradiation with the sample held at 100K and 350K. At 100K its production rate is 1.1(1) cm -1 , ∼10 times greater that at 350K. Observation of the di- -split interstitial (Ri) after irradiation at 100K proves the self-interstitial in diamond must be mobile at 100K, under the conditions of irradiation. Further study of the properties of the R2 defect (the most dominant EPR after electron

  19. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  20. Dislocation density and graphitization of diamond crystals

    International Nuclear Information System (INIS)

    Pantea, C.; Voronin, G.A.; Zerda, T.W.; Gubicza, J.; Ungar, T.

    2002-01-01

    Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples

  1. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  2. Diamond turning on advanced machine tool prototypes

    International Nuclear Information System (INIS)

    Arnold, J.B.; Steger, P.J.

    1975-01-01

    Specular-quality metal mirrors are being machined for use in laser optical systems. The fabrication process incorporates special quality diamond tools and specially constructed turning machines. The machines are controlled by advanced control techniques and are housed in an environmentally controlled laboratory to insure ultimate machine stability and positional accuracy. The materials from which these mirrors are primarily produced are the softer face-center-cubic structure metals, such as gold, silver, copper, and aluminum. Mirror manufacturing by the single-point diamond machining process is in an early stage of development, but it is anticipated that this method will become the most economical way for producing high-quality metal mirrors. (U.S.)

  3. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  4. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  5. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    Sochor, V.; Cechak, T.; Sopko, B.

    2008-01-01

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  6. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....

  7. Nanocrystalline diamond coatings for mechanical seals applications.

    Science.gov (United States)

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  8. Diamond window and its application to ITER gyrotron

    International Nuclear Information System (INIS)

    Sakamoto, K.

    1999-01-01

    On the background of having to reduce the overall cost for ITER to 50% it is proposed to replace conventional glass windows on gyrotrons by diamonds. The successful production and testing of such diamond windows is reported. A diamond window can transmit 5 times more power than usual double disk transmission windows while only costing 3 times as much. As a tradeoff, the gyrotrons could be replaced by more powerful ones and one would need fewer of them

  9. Diamond deposition using a planar radio frequency inductively coupled plasma

    Science.gov (United States)

    Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.

    1995-06-01

    A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.

  10. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  11. Diamond-based structures to collect and guide light

    Energy Technology Data Exchange (ETDEWEB)

    Castelletto, S [Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Mail H 34 Hawthorn, VIC 3122 (Australia); Harrison, J P; Marseglia, L; Stanley-Clarke, A C; Hadden, J P; Ho, Y-L D; O' Brien, J L; Rarity, J G [Centre for Quantum Photonics, H H Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB (United Kingdom); Gibson, B C; Fairchild, B A; Ganesan, K; Huntington, S T; Greentree, A D; Prawer, S [School of Physics, University of Melbourne, Melbourne VIC 3010 (Australia); Hiscocks, M P; Ladouceur, F, E-mail: scastelletto@swin.edu.au, E-mail: luca.marseglia@bristol.ac.uk [School of EE and T, University of New South Wales, Sydney, NSW 2052 (Australia)

    2011-02-15

    We examine some promising photonic structures for collecting and guiding light in bulk diamond. The aim of this work is to optimize single photon sources and single spin read-out from diamond color centers, specifically NV{sup -} centers. We review the modeling and fabrication (by focused ion beam and reactive ion etching) of solid immersion lenses, waveguides and photonic crystal cavities in monolithic diamond.

  12. Method to fabricate micro and nano diamond devices

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alfredo M.; Anderson, Richard J.; Yang, Nancy Y. C.; Skinner, Jack L.; Rye, Michael J.

    2017-04-11

    A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.

  13. 3D characterisation of tool wear whilst diamond turning silicon

    OpenAIRE

    Durazo-Cardenas, Isidro Sergio; Shore, Paul; Luo, X.; Jacklin, T.; Impey, S. A.; Cox, A.

    2006-01-01

    Nanometrically smooth infrared silicon optics can be manufactured by the diamond turning process. Due to its relatively low density, silicon is an ideal optical material for weight sensitive infrared (IR) applications. However, rapid diamond tool edge degradation and the effect on the achieved surface have prevented significant exploitation. With the aim of developing a process model to optimise the diamond turning of silicon optics, a series of experimental trials were devi...

  14. Nanomechanical resonant structures in single-crystal diamond

    OpenAIRE

    Burek, Michael J.; Ramos, Daniel; Patel, Parth; Frank, Ian W.; Lončar, Marko

    2013-01-01

    With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the o...

  15. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0590 TITLE: SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA PRINCIPAL INVESTIGATOR: KATHLEEN M...SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0590 SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT: Diamond Blackfan Anemia (DBA) is a disorder that results in pure red cell aplasia, congenital

  16. Photovoltage effects in polypyrrole-diamond nanosystem

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Čermák, Jan; Kromka, Alexander; Ledinský, Martin; Kočka, Jan

    2009-01-01

    Roč. 18, 2-3 (2009), 249-252 ISSN 0925-9635 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond * polymers * heterojunction * Kelvin force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  17. Influence of defects on diamond detection properties

    International Nuclear Information System (INIS)

    Tromson, Dominique

    2000-01-01

    This work focuses on the study of the influence of defects on the detection properties of diamond. Devices are fabricated using natural as well as synthetic diamond samples grown using the plasma enhanced chemical vapour deposition (CVD). Optical studies with infrared and Raman spectrometry are used to characterise the material properties as well as thermoluminescence and thermally stimulated current measurements. These thermally stimulated analyses reveal the presence of several trapping levels with emission temperatures below or near room temperature as well as an important level near 550 K. The influence of these defects on the alpha and X-ray detector responses is studied as a function of the initial state of the detectors (thermal treatment, irradiation) and of the measurement conditions (time, temperature). The results show a significant correlation between the charged state of traps, namely filled or empty and the response of the detectors. It appears that filling and emptying the traps respectively enhances the sensitivity and stability of detection devices to be used at room temperature and decreases the detection properties at higher temperature. Localised measurements are also used to study the spatial inhomogeneity of natural and CVD diamond samples from the 2D mapping of the detector responses. Non uniformity are attributed to a non-isotropic distribution of defects in natural diamonds. By comparing the detector responses to the topographical map of CVD samples a correlation appears between grains and grain boundaries with the variation of the detector sensitivity. Devices fabricated for detection applications with CVD samples are presented and namely for the monitoring and profiling of synchrotron beams as well as dose rate measurements in harsh environments. (author) [fr

  18. Application of diamond tools when decontaminating concrete

    International Nuclear Information System (INIS)

    Woods, B.L.; Gossett, R.F.

    1980-01-01

    The utilization of diamond concrete cutting tools offers new potential approaches to the recurring problems of removing contaminated concrete. Innovative techniques can provide exacting removal within a dust-free environment. Present day technology allows remote control operated equipment to perform tasks heretofore considered impossible. Experience gained from years of removing concrete within the construction industry hopefully can contribute new and improved methods to D and D projects

  19. Fermi level on hydrogen terminated diamond surfaces

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Saurer, C.; Nebel, C. E.; Stutzmann, M.; Ristein, J.; Ley, L.; Snidero, E.; Bergonzo, P.

    2003-01-01

    Roč. 82, č. 14 (2003), s. 2266-2268 ISSN 0003-6951 EU Projects: European Commission(XE) HPRN-CT-1999-00139 Grant - others:DFC(DE) NE524-2 Institutional research plan: CEZ:AV0Z1010914 Keywords : atomic force microscope (AFM) * Kelvin probe experiments * diamond surface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.049, year: 2003

  20. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region