WorldWideScience

Sample records for diamond chemical vapor

  1. Understanding the chemical vapor deposition of diamond: recent progress

    International Nuclear Information System (INIS)

    Butler, J E; Mankelevich, Y A; Cheesman, A; Ma, Jie; Ashfold, M N R

    2009-01-01

    In this paper we review and provide an overview to the understanding of the chemical vapor deposition (CVD) of diamond materials with a particular focus on the commonly used microwave plasma-activated chemical vapor deposition (MPCVD). The major topics covered are experimental measurements in situ to diamond CVD reactors, and MPCVD in particular, coupled with models of the gas phase chemical and plasma kinetics to provide insight into the distribution of critical chemical species throughout the reactor, followed by a discussion of the surface chemical process involved in diamond growth.

  2. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  3. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  4. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    Science.gov (United States)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  5. Single crystal diamond detectors grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuve, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M.G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M.E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma 'Tor Vergata' University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12 C ions produced by 15MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (100) HPHT single crystal substrate. A detector 110μm thick was tested under α-particles and under 14MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α 0 ) 9 Be12 reaction peak with an energy spread of 0.5MeV for 14.8MeV neutrons and 0.3MeV for 14.1MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams

  6. Morphology and structure of Ti-doped diamond films prepared by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Liu, Xuejie; Lu, Pengfei; Wang, Hongchao; Ren, Yuan; Tan, Xin; Sun, Shiyang; Jia, Huiling

    2018-06-01

    Ti-doped diamond films were deposited through a microwave plasma chemical vapor deposition (MPCVD) system for the first time. The effects of the addition of Ti on the morphology, microstructure and quality of diamond films were systematically investigated. Secondary ion mass spectrometry results show that Ti can be added to diamond films through the MPCVD system using tetra n-butyl titanate as precursor. The spectra from X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy and the images from scanning electron microscopy of the deposited films indicate that the diamond phase clearly exists and dominates in Ti-doped diamond films. The amount of Ti added obviously influences film morphology and the preferred orientation of the crystals. Ti doping is beneficial to the second nucleation and the growth of the (1 1 0) faceted grains.

  7. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  8. Application of Chlorine-Assisted Chemical Vapor Deposition of Diamond at Low Temperatures

    Science.gov (United States)

    Pan, Chenyu; Altemir, David A.; Margrave, John L.; Hauge, Robert H.

    1994-01-01

    Low temperature deposition of diamond has been achieved by a chlorine-assisted diamond chemical vapor deposition (CA-CVD) process. This method begins with the thermal dissociation of molecular chlorine into atomic chlorine in a resistively heated graphite furnace at temperatures between 1300 and 1500 deg. C. The atomic chlorine, upon mixing, subsequently reacts with molecular hydrogen and hydrocarbons. The rapid exchange reactions between the atomic chlorine, molecular hydrogen, and hydrocarbons give rise to the atomic hydrogen and carbon precursors required for diamond deposition. Homoepitaxial diamond growth on diamond substrates has been studied over the substrate temperature range of 100-950 C. It was found that the diamond growth rates are approximately 0.2 microns/hr in the temperature range between 102 and 300 C and that the growth rates do not decrease significantly with a decrease in substrate temperature. This is unique because the traditional diamond deposition using H2/CH4 systems usually disappears at substrate temperatures below approx. 500 deg. C. This opens up a possible route to the deposition of diamond on low-melting point materials such as aluminum and its alloys.

  9. Novel morphology of chemical vapor deposited diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Tang, C.J. [I3N and Department of Physics, University of Aveiro (Portugal); Jiangsu Key Laboratory for Advanced Functional Materials and Department of Physics, Changshu Institute of Technology, Changshu (China); TEMA and Department of Mechanical Engineering, University of Aveiro (Portugal); Fernandes, A.J.S.; Abe, I.; Pinto, J.L. [I3N and Department of Physics, University of Aveiro (Portugal); Gracio, J. [TEMA and Department of Mechanical Engineering, University of Aveiro (Portugal); Buijnsters, J.G. [Institute for Molecules and Materials (IMM), Radboud University Nijmegen (Netherlands)

    2010-04-15

    We have obtained simultaneously nanocrystalline and {l_brace}100{r_brace} faceted large-grained polycrystalline diamond films not only on different substrates but also on the same substrate in only one deposition run using a novel approach for substrate arrangement. Furthermore, interesting unusual morphologies and microstructures composed by non-faceted nanostructures and terminated with large smooth {l_brace}100{r_brace} facet-like belt are found near the edges of the top square sample. The morphology variation is likely caused by the so called edge effect, where a strong variation in temperature is also present. We have modelled the temperature distribution on the substrates by computer simulations using the finite element method. The novel feature, namely the coexistence of oval non-faceted nanocrystalline diamond grains and large smooth {l_brace}100{r_brace} facet-like belt in one diamond grain, is in the transition from {l_brace}100{r_brace} faceted polycrystalline diamond to cauliflower-like nanocrystalline diamond. The formation mechanism is discussed based on the temperature analysis and other simulation results described in the literature. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Comparative investigation of smooth polycrystalline diamond films on dental burs by chemical vapor deposition

    Science.gov (United States)

    Sein, Htet; Ahmed, Waqar; Rego, Christopher; Jackson, Mark; Polini, Riccardo

    2006-04-01

    Depositions of hot filament chemical vapor-deposited diamond on cobalt-cemented tungsten carbide (WC-Co) rotary cutting dental burs are presented. Conventional dental tools made of sintered polycrystalline diamond have a number of problems associated with the heterogeneity of the crystallite, decreased cutting efficiency, and short life. A preferential (111) faceted diamond was obtained after 15 h of deposition at a growth rate of 1.1 µm/h. Diamond-coated WC-Co dental burs and conventional sintered burs are mainly used in turning, milling, and drilling operations for machining metal ceramic hard alloys such as CoCr, composite teeth, and aluminum alloy in the dental laboratory. The influence of structure, the mechanical characteristics of both diamond grains and hard alloys on the wear behavior, as well as the regimen of grinding on diamond wear are considered. Erosion wear properties are also investigated under air-sand erosion testing. After machining with excessive cutting performance, calculations can be made on flank and crater wear areas. Diamond-coated WC-Co dental burs offered significantly better erosion and wear resistance compared with uncoated WC-Co tools and sintered burs.

  11. Real time monitoring of filament-assisted chemically vapor deposited diamond by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Yue Cong; An, I.; Vedam, K.; Collins, R.W.; Nguyen, H.V.; Messier, R.

    1991-01-01

    Spectroscopic ellipsometry over the range 1.5-4.5 eV was applied as a real time probe of the processes occurring in the initial nucleation of thin film diamond by heated-filament assisted chemical vapor deposition. Using both untreated and diamond-polished c-Si substrates, as well as both carburized and uncarburized tungsten filaments, it was possible to separate and characterize competing phenomena, including the increase in surface temperature induced by filament ignition, the formation of carbide layers, contamination of the substrate by tungsten from the filament, annealing of diamond polishing damage, and, finally, diamond nucleation. An accurate measurement of the true temperature of the substrate surface averaged over the top 500 A can be obtained from the energy position of critical points in the c-Si band structure. For diamond deposition, we operated with an initial excess flow of CH 4 to stimulate nucleation. We applied real time feedback and manual control to reduce the CH 4 flow in the first monolayers of deposition. The thickness of diamond and an estimate of its nucleation density can be obtained from real time spectra, and the latter was in good agreement with that obtained from scanning electron microscopy. (orig.)

  12. Chemical vapor deposition of diamond onto iron based substrates. The use of barrier layers

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.

    1995-01-01

    When Fe is exposed to the plasma environment suitable for the chemical vapor deposition (CVD) of diamond, the surface is rapidly covered with a thick layer graphitic soot and C swiftly diffuses into the Fe substrate. Once the soot reaches a critical thickness, diamond films nucleate and grow on top of it. However, adhesion of the film to the substrate is poor due to the lack of structural integrity of the soot layer, A thin coating of TiN on the Fe can act to prevent diffusion and soot formation. Diamond readily grows upon the TiN via an a-C interface layer, but the a-C/TiN interface is weak and delamination occurs at this interface. In order to try and improve the adhesion, the use of a high dose Ti implant was investigated to replace the TiN coating. 7 refs., 6 figs

  13. Dosimetric characterization of chemical-vapor-deposited diamond film irradiated with UV and beta radiation

    Science.gov (United States)

    Meléndrez, R.; Chernov, V.; Pedroza-Montero, M.; Barboza-Flores, M.

    2003-03-01

    Diamond is an excellent prospect for clinical radiation dosimetry due to its tissue-equivalence properties and being chemically inert. The use of diamond in radiation dosimetry has been halted by the high market price; although recently the capability of growing high quality polycrystalline has renewed the interest in using diamond films as detectors and dosimeters. In the present work we have characterized the dosimetric properties of diamond films synthesized by using chemical vapor deposition. The thermoluminescence (TL) of UV and beta exposed samples shows a glow curve composed of at least four peaks; one located around 587 K presents excellent TL properties suitable for dosimetric applications with ionizing and non ionizing radiation. The TL excitation spectrum exhibits maximum TL efficiency at 220 nm. The samples show regions of linear as well as supralinear behavior as a function or irradiation dose. The linear dose dependence was found for up to sixteen minutes of UV irradiation and 300 Gy for beta irradiated samples. The activation energy and the frequency factor were determined and found in the range of 0.32 - 0.89 eV and 1.1x10^2 - 2x10^8s_-1, respectively. The observed TL performance is reasonable appropriate to justify further investigation of diamond films as radiation dosimeters.

  14. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties

    International Nuclear Information System (INIS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.; Dolbnya, I.; Sawhney, K.; Tartoni, N.

    2010-01-01

    Recently, solid state photovoltaic Schottky diodes, able to detect ionizing radiation, in particular, x-ray and ultraviolet radiation, have been developed at the University of Rome 'Tor Vergata'. We report on a physical and electrical properties analysis of the device and a detailed study of its detection capabilities as determined by its electrical properties. The design of the device is based on a metal/nominally intrinsic/p-type diamond layered structure obtained by microwave plasma chemical vapor deposition of homoepitaxial single crystal diamond followed by thermal evaporation of a metallic contact. The device can operate in an unbiased mode by using the built-in potential arising from the electrode-diamond junction. We compare the expected response of the device to photons of various energies calculated through Monte Carlo simulation with experimental data collected in a well controlled experimental setup i.e., monochromatic high flux x-ray beams from 6 to 20 keV, available at the Diamond Light Source synchrotron in Harwell (U.K.).

  15. Diamond-like carbon films deposited on polycarbonates by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.T. [Department of Computer and Communication, Diwan College of Management, 72141 Taiwan (China)], E-mail: ctguo@dwu.edu.tw

    2008-04-30

    Diamond-like carbon films were coated on optical polycarbonate using plasma-enhanced chemical vapor deposition. A mixture of SiH{sub 4} and CH{sub 4}/H{sub 2} gases was utilized to reduce the internal compressive stress of the deposited films. The structure of the DLC films was characterized as a function of film thickness using Raman spectroscopy. The dependence of G peak positions and the intensity ratio of I{sub D}/I{sub G} on the DLC film thicknesses was analyzed in detail. Other studies involving atomic force microscopy, ultraviolet visible spectrometry, and three adhesion tests were conducted. Good transparency in the visible region, and good adhesion between diamond-like carbon films and polycarbonate were demonstrated. One-time recordings before and after a DLC film was coated on compact rewritable disc substrates were analyzed as a case study. The results reveal that the diamond-like carbon film overcoating the optical polycarbonates effectively protects the storage media.

  16. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  17. A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu; Inoue, Toru

    2009-01-01

    In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm 3 regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

  18. A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods

    Science.gov (United States)

    Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu; Inoue, Toru

    2009-06-01

    In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm3 regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

  19. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  20. Computer Simulation of Temperature Parameter for Diamond Formation by Using Hot-Filament Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chang Weon Song

    2017-12-01

    Full Text Available To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in a hot filament chemical vapor deposition (HF-CVD system. In this study, the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16, and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software ANSYS-FLUENT. To account for radiative heat-transfer in the HF-CVD reactor, the discrete ordinate (DO model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512–2802 K and 1076–1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with the experimental temperatures measured using a two-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  1. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces

    International Nuclear Information System (INIS)

    Michl, Julia; Zaiser, Sebastian; Jakobi, Ingmar; Waldherr, Gerald; Dolde, Florian; Neumann, Philipp; Wrachtrup, Jörg; Teraji, Tokuyuki; Doherty, Marcus W.; Manson, Neil B.; Isoya, Junichi

    2014-01-01

    Synthetic diamond production is a key to the development of quantum metrology and quantum information applications of diamond. The major quantum sensor and qubit candidate in diamond is the nitrogen-vacancy (NV) color center. This lattice defect comes in four different crystallographic orientations leading to an intrinsic inhomogeneity among NV centers, which is undesirable in some applications. Here, we report a microwave plasma-assisted chemical vapor deposition diamond growth technique on (111)-oriented substrates, which yields perfect alignment (94% ± 2%) of as-grown NV centers along a single crystallographic direction. In addition, clear evidence is found that the majority (74% ± 4%) of the aligned NV centers were formed by the nitrogen being first included in the (111) growth surface and then followed by the formation of a neighboring vacancy on top. The achieved homogeneity of the grown NV centers will tremendously benefit quantum information and metrology applications

  2. Synthesis of diamond films by pulsed liquid injection chemical vapor deposition using a mixture of acetone and water as precursor

    International Nuclear Information System (INIS)

    Apatiga, L.M.; Morales, J.

    2009-01-01

    A chemical vapor deposition reactor based on the flash evaporation of an organic liquid precursor was used to grow diamond films on Si substrates. An effective pulsed liquid injection mechanism consisting of an injector, normally used for fuel injection in internal combustion engines, injects micro-doses of the precursor to the evaporation zone at 280 o C and is instantly evaporated. The resulting vapor mixture is transported by a carrier gas to the high-temperature reaction chamber where the diamond nucleates and grows on the substrate surface at temperatures ranging from 750 to 850 o C. The injection frequency, opening time, number of pulses and other injector parameters are controlled by a computer-driven system. The diamond film morphology and structure were characterized by scanning electron microscopy and Raman spectroscopy. The as-deposited diamond films show a ball-shaped morphology with a grain size that varies from 100 to 400 nm, as well as the characteristic diamond Raman band at 1332 cm -1 . The effects of the experimental parameters and operation principle on the diamond films quality are analyzed and discussed in terms of crystallinity, composition, structure, and morphology.

  3. Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions

    Science.gov (United States)

    Tzeng, Yonhua (Inventor)

    2009-01-01

    Briefly described, methods of forming diamond are described. A representative method, among others, includes: providing a substrate in a reaction chamber in a non-magnetic-field microwave plasma system; introducing, in the absence of a gas stream, a liquid precursor substantially free of water and containing methanol and at least one carbon and oxygen containing compound having a carbon to oxygen ratio greater than one, into an inlet of the reaction chamber; vaporizing the liquid precursor; and subjecting the vaporized precursor, in the absence of a carrier gas and in the absence in a reactive gas, to a plasma under conditions effective to disassociate the vaporized precursor and promote diamond growth on the substrate in a pressure range from about 70 to 130 Torr.

  4. Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Manory, R.R.; Paterson, P.J.K.; Stuart, Sue-Anne

    1992-01-01

    Auger Electron Spectroscopy has been employed to investigate the effectiveness of thin films of TiN as barriers to carbon diffusion during Chemical Vapor Deposition (CVD) of diamond onto Fe substrates. Auger Depth Profiling was used to monitor the C concentration in the TiN layer, through the interface and into the substrate both before and after CVD diamond deposition. The results show that a layer of TiN only 250 Angstroems thick is sufficient to inhibit soot formation on the Fe surface and C diffusion into the Fe bulk. 14 refs., 4 figs

  5. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-01-01

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I D /I G . Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  6. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Santra, T S; Liu, C H [Institute of Nanoengineering and Microsystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Bhattacharyya, T K [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Patel, P [Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States); Barik, T K [School of Applied Sciences, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India)

    2010-06-15

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  7. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  8. Low-temperature synthesis of diamond films by photoemission-assisted plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, Mayuri, E-mail: kawata@mail.tagen.tohoku.ac.jp; Ojiro, Yoshihiro; Ogawa, Shuichi; Takakuwa, Yuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Masuzawa, Tomoaki; Okano, Ken [International Christian University, 3-10-2 Osawa, Mitaka 181-8585 (Japan)

    2014-03-15

    Photoemission-assisted plasma-enhanced chemical vapor deposition (PA-PECVD), a process in which photoelectrons emitted from a substrate irradiated with ultraviolet light are utilized as a trigger for DC discharge, was investigated in this study; specifically, the DC discharge characteristics of PA-PECVD were examined for an Si substrate deposited in advance through hot-filament chemical vapor deposition with a nitrogen-doped diamond layer of thickness ∼1 μm. Using a commercially available Xe excimer lamp (hν = 7.2 eV) to illuminate the diamond surface with and without hydrogen termination, the photocurrents were found to be 3.17 × 10{sup 12} and 2.11 × 10{sup 11} electrons/cm{sup 2}/s, respectively. The 15-fold increase in photocurrent was ascribed to negative electron affinity (NEA) caused by hydrogen termination on the diamond surfaces. The DC discharge characteristics revealed that a transition bias voltage from a Townsend-to-glow discharge was considerably decreased because of NEA (from 490 to 373 V for H{sub 2} gas and from 330 to 200 V for Ar gas), enabling a reduction in electric power consumption needed to synthesize diamond films through PA-PECVD. In fact, the authors have succeeded in growing high-quality diamond films of area 2.0 cm{sup 2} at 540 °C with a discharge power of only 1.8 W, plasma voltage of 156.4 V, and discharge current of 11.7 mA under the glow discharge of CH{sub 4}/H{sub 2}/Ar mixed gases. In addition to having only negligible amounts of graphite and amorphous carbon, the diamond films exhibit a relatively high diamond growth rate of 0.5 μm/h at temperatures as low as 540 °C, which is attributed to Ar{sup +} ions impinging on the diamond surface, and causing the removal of hydrogen atoms from the surface through sputtering. This process leads to enhanced CH{sub x} radical adsorption, because the sample was applied with a negative potential to accelerate photoelectrons in PA-PECVD.

  9. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  10. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); Patil, Sandip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Kim, Tae-Gyu [Department of Nano System and Process Engineering, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongnam, Pusan 627-706 (Korea, Republic of); Yonekura, Daisuke [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Joag, Dilip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.jp [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan)

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B{sub 2}O{sub 3} concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B{sub 2}O{sub 3} concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/{mu}m, respectively. The field emission current stability investigated at the preset value of {approx}1 {mu}A is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  11. TL and OSL studies on undoped diamond films grown by hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Anuj, E-mail: anujsoni.phy@gmail.com [Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Choudhary, R.K. [Materials Processing Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Polymeris, G.S. [Ankara University, Institute of Nuclear Sciences (Turkey); Mishra, D.R. [Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Mishra, P. [Materials Processing Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Kulkarni, M.S. [Radiation Safety Systems Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2016-09-15

    In this work, approximately 0.5 µm thick diamond films were grown on a silicon substrate by hot filament chemical vapour deposition (HFCVD) method in a gas mixture of hydrogen and methane. The batch to batch reproducibility of the sample using this technique was found to be very good. The obtained film was characterized by micro laser Raman spectroscopy (MLRS), grazing incidence X-ray diffractometry (GIXRD), scanning electron microscopy (SEM) and atomic force miscroscopy (AFM) techniques. MLRS and GIXRD results confirmed the formation of diamond whereas SEM and AFM analyses indicated uniform morphology of the film with an average grain size of 200 nm. The deposited film was studied for ionizing radiation dosimetry applications using the thermoluminescence (TL) and optically stimulated luminescence (OSL) techniques after irradiating the film by a calibrated 5 mCi, {sup 90}Sr/{sup 90}Y beta source. In the TL measurement, for a heating rate of 4 K/s, broad glow curve was obtained which was deconvoluted into seven TL peaks. The integrated TL counts were found to vary linearly with increasing the radiation dose up to 10 kGy. The characteristic TL output seen in the temperature range 200–300 °C, may be considered good for thermal stability of the film and it could also avoid TL fading during storage and non-interference of any black body radiation during the measurement. However, in comparison to TL output, the OSL response for 470 nm LED stimulation was found to be lesser. The CW–OSL decay curve has shown two components contributing to the OSL signal, having photoionization cross-section 1.5×10{sup −18} and 5.2×10{sup −19} cm{sup 2} respectively. The studies have revealed the possibility of using diamond film for high dose radiation dosimetry with TL/OSL method.

  12. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    Science.gov (United States)

    Kabadi, N. V.; Sio, H.; Glebov, V.; Gatu Johnson, M.; MacPhee, A.; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.; Forrest, C.; Knauer, J.; Rinderknecht, H. G.

    2016-11-01

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out.

  13. Fundamental studies of the chemical vapor deposition of diamond. Final technical report, April 1, 1988--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Nix, W.D.

    1995-05-01

    We submit here a final technical report for the research program entitled: Fundamental Studies of the Chemical Vapor Deposition of Diamond, DOE Grant No. DE-FG05-88ER45345-M006. This research program was initiated in 1988 under the direction of the late Professor David A. Stevenson and was renewed in 1992. Unfortunately, at the end of 1992, just as the last phase of this work was getting underway, Professor Stevenson learned that he had developed mesothelioma, a form of cancer based on asbestos. Professor Stevenson died from that disease in February of 1994. Professor William D. Nix, the Chairman of the Materials Science department at Stanford was named the Principal Investigator. Professor Nix has assembled this final technical report. Much of the work of this grant was conducted by Mr. Paul Dennig, a graduate student who will receive his Ph.D. degree from Stanford in a few months. His research findings are described in the chapters of this report and in the papers published over the past few years. The main discovery of this work was that surface topology plays a crucial role in the nucleation of diamond on silicon. Dennig and his collaborators demonstrated this by showing that diamond nucleates preferentially at the tips of asperities on a silicon surface rather than in the re-entrant comers at the base of such asperities. Some of the possible reasons for this effect are described in this report. The published papers listed on the next page of this report also describe this research. Interested persons can obtain copies of these papers from Professor Nix at Stanford. A full account of all of the research results obtained in this work is given in the regular chapters that follow this brief introduction. In addition, interested readers will want to consult Mr. Dennig`s Ph.D. dissertation when it is made available later this year.

  14. Comparison of diamond growth with different gas mixtures in microwave plasma asssited chemical vapor deposition (MWCVD

    Directory of Open Access Journals (Sweden)

    Corat Evaldo J.

    2003-01-01

    Full Text Available In this work we study the influence of oxygen addition to several halocarbon-hydrogen gas systems. Diamond growth have been performed in a high power density MWCVD reactor built in our laboratory. The growth experiments are monitored by argon actinometry as a reference to plasma temperature and atomic hydrogen production, and by mass spectrometry to compare the exhaust gas composition. Atomic hydrogen actinometry revealed that the halogen presence in the gas phase is responsible for a considerable increase of atomic hydrogen concentration in the gas phase. Mass spectrometry shows similar results for all gas mixtures tested. Growth studies with oxygen addition to CF4/H2, CCl4/H2, CCl2F2/H2 and CH3Cl/H2 reveals that oxygen increases the carbon solubility in the gas phase but no better diamond growth conditions were found. Halogens are not, per se, eligible for diamond growth. All the possible advantages, as the higher production of atomic hydrogen, have been suppressed by the low carbon solubility in the gas phase, even when oxygen is added. The diamond growth with small amount of CF4 added to CH4/H2 mixture is not aggressive to the apparatus but brings several advantages to the process.

  15. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  16. Chemically vapor deposited diamond films as dosimetric material for potential clinical applications

    Directory of Open Access Journals (Sweden)

    Kabacińska Renata

    2018-03-01

    Full Text Available Thermally stimulated luminescence (TL, cathodoluminescence (CL and Raman spectroscopy of CVD diamond films grown on silicon substrates have been studied in order to obtain information on defects created during the growth, which induce the levels within the gap. TL between 300 K and 700 K, and CL from 200 nm to 1200 nm have been teasured. The glow curves show a peak located around 610 K with different intensities, depending on the sample thickness, associated with a trap of energy, equal to 0.83 eV and with attempt-to-escape-time of the order of 108 s-1. Broad CL bands observed at 428±1 nm (2.90 ±0.01 eV and 500±1 nm (2.47±0.004 eV are attributed to closely spaced and widely separated donor-acceptor (D-A pairs, respectively. The TL and CL results were correlated with diamond quality estimated from Raman spectroscopy measurements.

  17. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Tiwari, Rajanish N.; Chang Li

    2010-01-01

    Diamond nucleation on unscratched Si surface is great importance for its growth, and detailed understanding of this process is therefore desired for many applications. The pretreatment of the substrate surface may influence the initial growth period. In this study, diamond films have been synthesized on adamantane-coated crystalline silicon {100} substrate by microwave plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases without the application of a bias voltage to the substrates. Prior to adamantane coating, the Si substrates were not pretreated such as abraded/scratched. The substrate temperature was ∼530 deg. C during diamond deposition. The deposited films are characterized by scanning electron microscopy, Raman spectrometry, x-ray diffraction, and x-ray photoelectron spectroscopy. These measurements provide definitive evidence for high-crystalline quality diamond film, which is synthesized on a SiC rather than clean Si substrate. Characterization through atomic force microscope allows establishing fine quality criteria of the film according to the grain size of nanodiamond along with SiC. The diamond films exhibit a low-threshold (55 V/μm) and high current-density (1.6 mA/cm 2 ) field-emission (FE) display. The possible mechanism of formation of diamond films and their FE properties have been demonstrated.

  18. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  19. Novel ion-molecular surface reaction to result in CH3 adsorbates on (111) surface of chemical vapor deposition diamond from ethane and surface anionic sites

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Okada, Katsuyuki; Shimizu, Yoshiki; Moriyoshi, Yusuke

    2001-01-01

    The existence of CH 3 adsorbates on (111) surface of chemical vapor deposited diamond, which was observed by scanning tunneling microscopy, was explained by the following S N 2 (bimolecular, substitutional, and nucleophilic) type surface reaction; C(s) - +C 2 H 6 ->C(s)-CH 3 +CH 3 - , where C(s) denotes a surface carbon atom. The activation energy was estimated to be 36.78 kcal/mol and the reaction proved to be exothermic with the enthalpy change of -9.250 kcal/mol, according to ab initio molecular orbital calculations at MP2/3-21+G * //RHF/3-21G * level; this result is consistent with typical substrate temperatures, namely about 900 degree C, for chemical vapor deposition of diamond. Charge transfer from the highest occupied molecular orbital of the surface anionic site to the lowest unoccupied molecular orbital of ethane, that is antibonding at the CH 3 - CH 3 bond, has been clearly visualized. A characteristic configuration of an ethane molecule which is associated with an anionic vacant site C(s) - on hydrogenated (111) surface of diamond was also found. [copyright] 2001 American Institute of Physics

  20. Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface

    International Nuclear Information System (INIS)

    Lim, P.Y.; Lin, F.Y.; Shih, H.C.; Ralchenko, V.G.; Varnin, V.P.; Pleskov, Yu.V.; Hsu, S.F.; Chou, S.S.; Hsu, P.L.

    2008-01-01

    The film quality and electrochemical properties of BDD (boron-doped diamond) thin films grown by hot-filament chemical vapor deposition technique on titanium substrates that had been subjected to a range of pre-treatment processes were evaluated. The pre-roughened Ti-substrates are shown to support more adherent BDD films. It is evident that acid-etching the Ti-substrate involves surface hydrogenation that enhances nucleation and formation of diamond thereon. The prepared BDD film exhibits wide potential window and electrochemical reversibility. It also demonstrated a better long-term electrochemical stability based on the low variation in voltametric background current upon the exposing of the electrodes to repeated cycles of electrochemical metal deposition/stripping process

  1. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  2. Study on the Microstructure and Electrical Properties of Boron and Sulfur Codoped Diamond Films Deposited Using Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2014-01-01

    Full Text Available The atomic-scale microstructure and electron emission properties of boron and sulfur (denoted as B-S codoped diamond films grown on high-temperature and high-pressure (HTHP diamond and Si substrates were investigated using atom force microscopy (AFM, scanning tunneling microscopy (STM, secondary ion mass spectroscopy (SIMS, and current imaging tunneling spectroscopy (CITS measurement techniques. The films grown on Si consisted of large grains with secondary nucleation, whereas those on HTHP diamond are composed of well-developed polycrystalline facets with an average size of 10–50 nm. SIMS analyses confirmed that sulfur was successfully introduced into diamond films, and a small amount of boron facilitated sulfur incorporation into diamond. Large tunneling currents were observed at some grain boundaries, and the emission character was better at the grain boundaries than that at the center of the crystal. The films grown on HTHP diamond substrates were much more perfect with higher quality than the films deposited on Si substrates. The local I-V characteristics for films deposited on Si or HTHP diamond substrates indicate n-type conduction.

  3. Influence of boron concentration on growth characteristic and electro-catalytic performance of boron-doped diamond electrodes prepared by direct current plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Feng Yujie; Lv Jiangwei; Liu Junfeng; Gao Na; Peng Hongyan; Chen Yuqiang

    2011-01-01

    A series of boron-doped diamond (BDD) electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) with different compositions of CH 4 /H 2 /B(OCH 3 ) 3 gas mixture. A maximum growth rate of 0.65 mg cm -2 h -1 was obtained with CH 4 /H 2 /B(OCH 3 ) 3 radio of 4/190/10 and this growth condition was also a turning point for discharge plasma stability which arose from the addition of B(OCH 3 ) 3 that changed electron energy distribution and influenced the plasma reaction. The surface coating structure and electro-catalytic performance of the BDD electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Hall test, and electrochemical measurement and electro-catalytic oxidation in phenol solution. It is suggested that the boron doping level and the thermal stress in the films are the main factors affecting the electro-catalytic characteristics of the electrodes. Low boron doping level with CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/199/1 decreased the films electrical conductivity and its electro-catalytic activity. When the carrier concentration in the films reached around 10 20 cm -3 with CH 4 /H 2 /B(OCH 3 ) 3 ratio over a range of 4/195/5-4/185/15, the thermal stress in the films was the key reason that influenced the electro-catalytic activity of the electrodes for its effect on diamond lattice expansion. Therefore, the BDD electrode with modest CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/190/10 possessed the best phenol removal efficiency.

  4. A finite element analysis of the effects of geometrical shape on the elastic properties of chemical vapor deposited diamond nanowire

    Directory of Open Access Journals (Sweden)

    Garuma Abdisa Denu

    2017-01-01

    Full Text Available We report the effect of geometrical shape of diamond nanowire on its mechanical properties. Finite element modeling using COMSOL Multiphysics software is used to simulate various diamond nanowire with circular, square, rectangular, hexagonal and triangular cross-sections. A bending test under concentrated load applied at one of the free ends is simulated using FEM. The force response of the nanowire under different loading is studied for the various cross-sections. The dimensions of each cross-section is chosen so that material properties such as Young’s modulus can be kept constant for comparison in all the cross-sections. It is found out that the bending capability of a triangular nanowire is higher compared to other cross-sections due to its lowest second moment. Circular and hexagonal cross-section show highest stiffness. The study of mechanical property of diamond nanowires is useful for optimal nanomechanical designs where the effect of cross-section has to be taken into account.

  5. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    International Nuclear Information System (INIS)

    Yater, J. E.; Shaw, J. L.; Pate, B. B.; Feygelson, T. I.

    2016-01-01

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distribution as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron

  6. Noble gas studies in vapor-growth diamonds: Comparison with shock-produced diamonds and the origin of diamonds in ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Junichi; Fukunaga, Kazuya; Ito, Keisuke (Kobe Univ. (Japan))

    1991-07-01

    The authors synthesized vapor-trowth diamonds by two kinds of Chemical Vapor Deposition (CVD) using microwave (MWCVD) and hot filament (HFCVD) ionization of gases, and examined elemental abundances and isotopic compositions of the noble gases trapped in the diamonds. It is remarkable that strong differences existed in the noble gas concentrations in the two kinds of CVD diamonds: large amounts of noble gases were trapped in the MWCVD diamonds, but not in the HFCVD diamonds. The heavy noble gases (Ar to Xe) in the MWCVD diamonds were highly fractionated compared with those in the ambient atmosphere, and are in good agreement with the calculated fractionation patterns for plasma at an electron temperature of 7,000-9,000 K. These results strongly suggest that the trapping mechanism of noble gases in CVD diamonds is ion implantation during diamond growth. The degrees of fractionation of heavy noble gases were also in good agreement with those in ureilites. The vapor-growth hypothesis is discussed in comparison with the impact-shock hypothesis as a better model for the origin of diamonds in ureilites. The diamond (and graphite, amorphous carbon, too) may have been deposited on early condensates such as Re, Ir, W, etc. This model explains the chemical features of vein material in ureilites; the refractory siderophile elements are enriched in carbon and noble gases and low in normal siderophiles. The vapor-growth model is also compatible with the oxygen isotopic data of ureilites which suggests that nebular processes are primarily responsible for the composition of ureilites.

  7. Thermoluminescent dosimetry and of optically stimulated luminescence of diamond films grown up by the chemical vapor deposition technique exposed to beta radiation

    International Nuclear Information System (INIS)

    Melendrez A, R.; Barboza F, M.

    2002-01-01

    A study of the dosimetric properties through the thermoluminescence (Tl) and Optically stimulated luminescence (Lobe) in diamond films grown up by the chemical vapor deposition (Dq) techniques was realized.The films under study have thickness of 6, 12, 180 and 500 microns. The dose range was from 0 to 1.5 KGy, observing for the case of the thermoluminescent dosimetry a linear behavior in the range 0-300 Gy and a supra linearity effect in the range from 300-1500 Gy. For the case of the dosimetry by means of LOE a linear behavior in the range (0-300 Gy) without be enough for the saturation was observed, although some samples exhibit a linear behavior until 1500 Gy (6 microns). The irradiation was realized with a source of Strontium 90 of (40 mCi) and the photoestimulation for realizing the measures of LOE was realized using diodes emitting of laser light (470 nm) which generate until 50 MW/cm 2 . The Tl peak which was used to realize the dosimetry such Tl as LOE was that located around 340 C degrees in the brilliance curve which presents another peaks centered around of 110, 190, and 340 C degrees, depending on the film. It was realized a study of the Tl signal drop and it was observed that after 3 hours the signal was stable reaching a decay of 15 %. the analysis of the drop in the Tl signal, immediately after to irradiate and after to photoestimulate with the blue light laser for observing the LOE, indicated that exists a fall in all the Tl peaks, decaying in greater proportion those of more low temperature. (Author)

  8. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  9. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  10. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  11. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  12. Diamond nanostructured devices for chemical sensing applications

    OpenAIRE

    Ahmad, R. K.

    2011-01-01

    Research in the area of CVD single crystal diamond plates of which only recently has been made commercially available saw significant advancements during the last decade. In parallel to that, detonation nanodiamond (DND) particles also now widely made accessible for requisition are provoking a lot of scientific investigations. The remarkable properties of diamond including its extreme hardness, low coefficient of friction, chemical inertness, biocompatibility, high thermal c...

  13. Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH{sub 4}/H{sub 2}/N{sub 2} plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, Mateusz, E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk (Poland); Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Sankaran, Kamatchi J.; Haenen, Ken [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Ryl, Jacek; Darowicki, Kazimierz [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Bogdanowicz, Robert [Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Lin, I-Nan [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2016-06-13

    The influence of N{sub 2} concentration (1%–8%) in CH{sub 4}/H{sub 2}/N{sub 2} plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS–NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 ± 0.25 at 550 nm) and extinction coefficient (0.05 ± 0.02 at 550 nm) with a transmittance of 60%. The optical investigation was supported by the molecular and atomic data delivered by Raman studies, bright field transmission electron microscopy imaging, and X-ray photoelectron spectroscopy diagnostics. Those results revealed that while the films grown in CH{sub 4}/H{sub 2} plasma contained micron-sized diamond grains, the films grown using CH{sub 4}/H{sub 2}/(4%)N{sub 2} plasma exhibited ultranano-sized diamond grains along with n-diamond and i-carbon clusters, which were surrounded by amorphous carbon grain boundaries.

  14. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  15. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  16. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  17. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  18. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  19. Diamond films: Historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Messier, R. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  20. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  1. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  2. Diamond nanophotonics

    Directory of Open Access Journals (Sweden)

    Katja Beha

    2012-12-01

    Full Text Available We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

  3. New luminescence lines in nanodiamonds obtained by chemical vapor deposition

    Science.gov (United States)

    Golubev, V. G.; Grudinkin, S. A.; Davydov, V. Yu.; Smirnov, A. N.; Feoktistov, N. A.

    2017-12-01

    The spectral characteristics of the photoluminescence lines detected for nanodiamonds obtained by the reactive ion etching of diamond particles in oxygen plasma, deposited by chemical vapor deposition on a silicon substrate, are studied. At room temperature, narrow lines are observed in the visible and infrared spectral regions, with a full width at half-maximum in the range of 1-2 nm at an almost complete absence of a broadband photoluminescence background signal. At decreasing temperature, the lines narrowed to 0.2-0.6 nm at T = 79 K, and the minimum line width was 0.055 nm at T = 10 K. With increasing temperature, the narrow lines shifted to the long-wavelength region of the spectrum, and their intensity decreased.

  4. Diamond Nucleation Using Polyethene

    Science.gov (United States)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  5. DuPont Chemical Vapor Technical Report

    International Nuclear Information System (INIS)

    MOORE, T.L.

    2003-01-01

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH and Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations

  6. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    Science.gov (United States)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  7. Ceramic composites by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Stinton, D.P.

    1987-01-01

    Composites consisting of silicon carbide matrices reinforced with continuous ceramic fibers are being developed for high-temperature structural applications. Chemical vapor deposition (CVD) techniques are very effective in fabricating composites with high strengths and exceptional fracture toughness. Mechanical properties of infiltrated composites are controlled by the strength of the interfacial bond between the fibers and matrix. This paper describes two CVD techniques and reviews the models being developed to better understand and control the infiltration process

  8. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    International Nuclear Information System (INIS)

    Li, X.W.; Li, J.X.; Gao, C.Y.; Chang, M.

    2011-01-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  9. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W., E-mail: lynnww@sohu.com [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China); Li, J.X. [Tianjin Polytechnic University, Tianjin 300160 (China); Gao, C.Y. [Chinese Peoples Armed Police Forces Academy, Langfang 065000 (China); Chang, M. [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China)

    2011-10-15

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  10. Atomic structure of diamond {111} surfaces etched in oxygen water vapor

    International Nuclear Information System (INIS)

    Theije, F.K. de; Reedijk, M.F.; Arsic, J.; Enckevort, W.J.P. van; Vlieg, E.

    2001-01-01

    The atomic structure of the {111} diamond face after oxygen-water-vapor etching is determined using x-ray scattering. We find that a single dangling bond diamond {111} surface model, terminated by a full monolayer of -OH fits our data best. To explain the measurements it is necessary to add an ordered water layer on top of the -OH terminated surface. The vertical contraction of the surface cell and the distance between the oxygen atoms are generally in agreement with model calculations and results on similar systems. The OH termination is likely to be present during etching as well. This model experimentally confirms the atomic-scale mechanism we proposed previously for this etching system

  11. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    Science.gov (United States)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  12. Rapid growth of diamond-like-carbon films by copper vapor laser ablation

    International Nuclear Information System (INIS)

    McLean, W.; Warner, B.E.; Havstad, M.A.

    1995-04-01

    Visible light from a copper vapor laser (CVL) operating with 510 and 578 nm radiation (intensity ratio approximately 2:1), an average power of 100 W, a pulse duration of 50 ns, and a repetition frequency of 4.4 kHz has been shown to produce high quality diamond-like-carbon (DLC) films at fluences between 2x10 8 and 5x10 10 W/cm 2 . Maximum deposition rates of 2000 μm·cm 2 /h were obtained at 5x10 8 W/cm 2 . DLC films with hardness values of approximately 60 GPa were characterized by a variety of techniques to confirm DLC character, hydrogen content, and surface morphology. The presence of C 2 in the vapor plume was confirmed by the presence of the C 2 Swan bands in emission spectra obtained during the process. Economic implications of process scale-up to industrially meaningful component sizes are presented

  13. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  14. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  15. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  16. Classification Characteristics of Carbon Nanotube Polymer Composite Chemical Vapor Detectors

    National Research Council Canada - National Science Library

    Hinshaw, Huynh A

    2006-01-01

    .... This is accomplished by the detection and identification of chemical agents. The Air Force has several instruments to detect chemical vapors, but is always looking for lighter, faster, and more accurate technology for a better capability...

  17. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  18. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  19. Diamond pixel modules

    International Nuclear Information System (INIS)

    Asner, D.; Barbero, M.; Bellini, V.; Belyaev, V.; Brom, J-M.; Bruzzi, M.; Chren, D.; Cindro, V.; Claus, G.; Cristinziani, M.; Costa, S.; D'Alessandro, R.; Boer, W. de; Dobos, D.; Dolenc, I.; Dulinski, W.; Duris, J.; Eremin, V.; Eusebi, R.; Frais-Koelbl, H.

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10 16 protons/cm 2 illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  20. Diamond pixel modules

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D. [Carleton University, Ottawa (Canada); Barbero, M. [Universitaet Bonn (Germany); Bellini, V. [INFN/University of Catania (Italy); Belyaev, V. [MEPHI Institute, Moscow (Russian Federation); Brom, J-M. [IPHC, Strasbourg (France); Bruzzi, M. [INFN/University of Florence (Italy); Chren, D. [Czech Technical University, Prague (Czech Republic); Cindro, V. [Jozef Stefan Institute, Ljubljana (Slovenia); Claus, G. [IPHC, Strasbourg (France); Cristinziani, M. [Universitaet Bonn (Germany); Costa, S. [INFN/University of Catania (Italy); D' Alessandro, R. [Department of Energetics/INFN Florence (Italy); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Dobos, D. [CERN, Geneva (Switzerland); Dolenc, I. [Jozef Stefan Institute, Ljubljana (Slovenia); Dulinski, W. [IPHC, Strasbourg (France); Duris, J. [UCLA, Los Angeles, CA (United States); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Eusebi, R. [FNAL, Batavia (United States); Frais-Koelbl, H. [Fachhochschule fuer Wirtschaft und Technik, Wiener Neustadt (Austria)

    2011-04-21

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10{sup 16} protons/cm{sup 2} illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  1. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  2. HANFORD CHEMICAL VAPORS WORKER CONCERNS and EXPOSURE EVALUATION

    International Nuclear Information System (INIS)

    ANDERSON, T.J.

    2006-01-01

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors

  3. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...

  4. Application of molecular beam mass spectrometry to chemical vapor deposition studies

    International Nuclear Information System (INIS)

    Hsu, W.L.; Tung, D.M.

    1992-01-01

    A molecular beam mass spectrometer system has been designed and constructed for the specific purpose of measuring the gaseous composition of the vapor environment during chemical vapor deposition of diamond. By the intrinsic nature of mass analysis, this type of design is adaptable to a broad range of other applications that rely either on thermal- or plasma-induced chemical kinetics. When gas is sampled at a relatively high process pressure (∼2700 Pa for our case), supersonic gas expansion at the sampling orifice can cause the detected signals to have a complicated dependence on the operating conditions. A comprehensive discussion is given on the effect of gas expansion on mass discrimination and signal scaling with sampling pressure and temperature, and how these obstacles can be overcome. This paper demonstrates that radical species can be detected with a sensitivity better than 10 ppm by the use of threshold ionization. A detailed procedure is described whereby one can achieve quantitative analysis of the detected species with an accuracy of ±20%. This paper ends with an example on the detection of H, H 2 , CH 3 , CH 4 , and C 2 H 2 during diamond growth

  5. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa

    International Nuclear Information System (INIS)

    Deines, P.

    1984-01-01

    The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher delta 13 C P-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , Cr 2 O 3 , MgO, Mg/(Mg + Fe) and higher in FeO and CaO. Higher delta 13 C E-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , MgO, Mg/(Mg + Fe), Na 2 O, K 2 O, TiO 2 and higher in CaO, Ca/(Ca + Mg). Consideration of a number of different models that have been proposed for the genesis of kimberlites, their zenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions. (author)

  6. Thermodynamic analysis of processes proceeding on (111) faces of diamond during chemical vapour deposition

    International Nuclear Information System (INIS)

    Piekarczyk, W.; Prawer, S.

    1992-01-01

    Chemically vapour deposited diamond is commonly synthesized from activated hydrogen-rich, carbon/hydrogen gas mixtures under conditions which should, from a thermodynamic equilibrium point of view, favour the production of graphite. Much remains to be understood about why diamond, and not graphite, forms under these conditions. However, it is well known that the presence of atomic hydrogen, is crucial to the success of diamond deposition. As part of an attempt to better understand the deposition process, a thermodynamic analysis of the process was performed on diamond (111) faces in hydrogen rich environments. It is shown that the key role of atomic hydrogen is to inhibit the reconstruction of the (111) face to an sp 2 -bonded structure, which would provide a template for graphite, rather than diamond formation. The model correctly predicts experimentally determined trends in growth rate and diamond film quality as a function of methane concentration in the stating gas mixture. 17 refs., 4 figs

  7. Field electron emission characteristics of chemical vapour deposition diamond films with controlled sp2 phase concentration

    International Nuclear Information System (INIS)

    Lu, X.; Yang, Q.; Xiao, C.; Hirose, A.

    2008-01-01

    Diamond films were synthesized in a microwave plasma-enhanced chemical vapour deposition reactor. The microstructure and surface morphology of deposited films were characterized by Raman spectroscope and scanning electron microscope. The sp 2 phase concentration in diamond films was varied and its effect on the field electron emission (FEE) properties was investigated. Diamond films deposited under higher methane concentration exhibit better FEE property including lower turn-on electric field and larger emission current. The predominating factor modifying the FEE property is presumed to be the increase of sp 2 phase concentration. The influence of bias voltage on the FEE property of diamond films is not monotonic. Postgrowth acid treatment reduces the sp 2 phase content in diamond films without changing diamond grain sizes. The corresponding FEE property was degraded

  8. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...

  9. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  10. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  11. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    Science.gov (United States)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  12. SAW Sensors for Chemical Vapors and Gases.

    Science.gov (United States)

    Devkota, Jagannath; Ohodnicki, Paul R; Greve, David W

    2017-04-08

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.

  13. SAW Sensors for Chemical Vapors and Gases

    Science.gov (United States)

    Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.

    2017-01-01

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760

  14. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  15. Development of polishing methods for Chemical Vapor Deposited Silicon Carbide mirrors for synchrotron radiation

    International Nuclear Information System (INIS)

    Fuchs, B.A.; Brown, N.J.

    1987-01-01

    Material properties of Chemical Vapor Deposited Silicon Carbide (CVD SiC) make it ideal for use in mirrors for synchrotron radiation experiments. We developed methods to grind and polish flat samples of CVD SiC down to measured surface roughness values as low as 1.1 Angstroms rms. We describe the processing details, including observations we made during trial runs with alternative processing recipes. We conclude that pitch polishing using progressively finer diamond abrasive, augmented with specific water based lubricants and additives, produces superior results. Using methods based on these results, a cylindrical and a toroidal mirror, each about 100 x 300mm, were respectively finished by Continental Optical and Frank Cooke, Incorporated. WYCO Interferometry shows these mirrors have surface roughness less than 5.7 Angstroms rms. These mirrors have been installed on the LLNL/UC X-ray Calibration and Standards Facility at the Stanford Synthrotron Radiation Laboratory

  16. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  17. Laser-induced chemical vapor deposition reactions

    International Nuclear Information System (INIS)

    Teslenko, V.V.

    1990-01-01

    The results of investigation of chemical reactions of deposition of different substances from the gas phase when using the energy of pulse quasicontinuous and continuous radiation of lasers in the wave length interval from 0.193 to 10.6 μm are generalized. Main attetion is paid to deposition of inorganic substances including nonmetals (C, Si, Ge and others), metals (Cu, Au, Zn, Cd, Al, Cr, Mo, W, Ni) and some simple compounds. Experimental data on the effect of laser radiation parameters and reagent nature (hydrides, halogenides, carbonyls, alkyl organometallic compounds and others) on the deposition rate and deposit composition are described in detail. Specific features of laser-chemical reactions of deposition and prospects of their application are considered

  18. Chemical Mechanical Polishing of Ruthenium, Cobalt, and Black Diamond Films

    Science.gov (United States)

    Peethala, Brown Cornelius

    Ta/TaN bilayer serves as the diffusion barrier as well as the adhesion promoter between Cu and the dielectric in 32 nm technology devices. A key concern of future technology devices (layer (vs. a bilayer of Ta/TaN) to act as a barrier. During patterning, they need to be planarized using conventional chemical mechanical polishing (CMP) to achieve a planar surface. However, CMP of these new barrier materials requires novel slurry compositions that provide adequate selectivity towards Cu and dielectric films, and minimize galvanic corrosion. Apart from the application as a barrier, Ru also has been proposed as a lower electrode material in metal-insulator-metal capacitors where high (> 50 nm/min) Ru removal rates (RRs) are required and as a stop layer in magnetic recording head fabrication where low (hydroxide (KOH). It was also determined that increased the ionic strength is not responsible for the observed increase in Ru removal rate. Benzotirazole (BTA) and ascorbic acid were added to the slurry to reduce the open circuit potential (Eoc) difference between Cu and Ru to ˜20 mV from about 550 mV in the absence of additives. A removal mechanism with KIO4 as the oxidizing agent is proposed based on the formation of several ruthenium oxides, some of which formed residues on the polishing pad below a pH of ˜7. Next, a colloidal silica-based slurry with hydrogen peroxide (H 2O2) as the oxidizer (1 wt%), and arginine (0.5 wt%) as the complexing agent was developed to polish Co at pH 10. The Eoc between Cu and Co at the above conditions was reduced to ˜20 mV compared to ˜250 mV in the absence of additives, suggestive of reduced galvanic corrosion during the Co polishing. The slurry also has the advantages of good post-polish surface quality at pH 10, and no dissolution rate. BTA at a concentration of 5mM in this slurry inhibited Cu dissolution rates and yielded a Cu/Co RR ratio of ˜0.8:1 while the open potential difference between Cu and Co was further reduced to ˜10

  19. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  20. Copper-vapor-catalyzed chemical vapor deposition of graphene on dielectric substrates

    Science.gov (United States)

    Yang, Chao; Wu, Tianru; Wang, Haomin; Zhang, Xuefu; Shi, Zhiyuan; Xie, Xiaoming

    2017-07-01

    Direct synthesis of high-quality graphene on dielectric substrates is important for its application in electronics. In this work, we report the process of copper-vapor-catalyzed chemical vapor deposition of high-quality and large graphene domains on various dielectric substrates. The copper vapor plays a vital role on the growth of transfer-free graphene. Both single-crystal domains that are much larger than previous reports and high-coverage graphene films can be obtained by adjusting the growth duration. The quality of the obtained graphene was verified to be comparable with that of graphene grown on Cu foil. The progress reported in this work will aid the development of the application of transfer-free graphene in the future.

  1. A Review on the Low-Dimensional and Hybridized Nanostructured Diamond Films

    Directory of Open Access Journals (Sweden)

    Hongdong Li

    2015-01-01

    Full Text Available In the last decade, besides the breakthrough of high-rate growth of chemical vapor deposited single-crystal diamonds, numerous nanostructured diamond films have been rapidly developed in the research fields of the diamond-based sciences and industrial applications. The low-dimensional diamonds of two-dimensional atomic-thick nanofilms and nanostructural diamond on the surface of bulk diamond films have been theoretically and experimentally investigated. In addition, the diamond-related hybrid nanostructures of n-type oxide/p-type diamond and n-type nitride/p-type diamond, having high performance physical and chemical properties, are proposed for further applications. In this review, we first briefly introduce the three categories of diamond nanostructures and then outline the current advances in these topics, including their design, fabrication, characterization, and properties. Finally, we address the remaining challenges in the research field and the future activities.

  2. Polymer-based nucleation for chemical vapour deposition of diamond

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Kromka, Alexander; Varga, Marián

    2016-01-01

    Roč. 133, č. 29 (2016), 1-7, č. článku 43688. ISSN 0021-8995 R&D Projects: GA ČR GC15-22102J Institutional support: RVO:68378271 Keywords : copolymers * composites * diamond * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.860, year: 2016

  3. Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Michalíková, Lenka; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kmoch, S.

    2008-01-01

    Roč. 245, č. 10 (2008), s. 2124-2127 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cell growth * nanocrystalline diamond * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.166, year: 2008

  4. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  5. Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Shanley, Toby W.; Martin, Aiden A.; Aharonovich, Igor, E-mail: Igor.Aharonovich@uts.edu.au; Toth, Milos, E-mail: Milos.Toth@uts.edu.au [School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)

    2014-08-11

    We present a direct-write chemical technique for controlling the charge state of near-surface nitrogen vacancy centers (NVs) in diamond by surface fluorination. Fluorination of H-terminated diamond is realized by electron beam stimulated desorption of H{sub 2}O in the presence of NF{sub 3} and verified with environmental photoyield spectroscopy (EPYS) and photoluminescence (PL) spectroscopy. PL spectra of shallow NVs in H- and F-terminated nanodiamonds show the expected dependence of the NV charge state on their energetic position with respect to the Fermi-level. EPYS reveals a corresponding difference between the ionization potential of H- and F-terminated diamond. The electron beam fluorination process is highly localized and can be used to fluorinate H-terminated diamond, and to increase the population of negatively charged NV centers.

  6. Diamond MEMS: wafer scale processing, devices, and technology insertion

    Science.gov (United States)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  7. Recent Advances in Diamond Detectors

    CERN Document Server

    Trischuk, W.

    2008-01-01

    With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2012, ATLAS and CMS are planning for detector upgrades for their innermost layers requiring radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is now planned for all LHC experiments. This material is now being considered as an alternate sensor for use very close to the interaction region of the super LHC where the most extreme radiation conditions will exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences available. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10^16 protons/cm^2 showing that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve allowing one t...

  8. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Albin, S.; Winfree, W.P.; Crews, B.S.

    1990-01-01

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  9. Characterization of chemical vapour deposited diamond films: correlation between hydrogen incorporation and film morphology and quality

    International Nuclear Information System (INIS)

    Tang, C J; Neves, A J; Carmo, M C

    2005-01-01

    In order to tailor diamond synthesized through chemical vapour deposition (CVD) for different applications, many diamond films of different colours and variable quality were deposited by a 5 kW microwave plasma CVD reactor under different growth conditions. The morphology, quality and hydrogen incorporation of these films were characterized using scanning electron microscopy (SEM), Raman and Fourier-transform infrared (FTIR) spectroscopy, respectively. From this study, a general trend between hydrogen incorporation and film colour, morphology and quality was found. That is, as the films sorted by colour gradually become darker, ranging from white through grey to black, high magnification SEM images illustrate that the smoothness of the well defined crystalline facet gradually decreases and second nucleation starts to appear on it, indicating gradual degradation of the crystalline quality. Correspondingly, Raman spectra evidence that the diamond Raman peak at 1332 cm -1 becomes broader and the non-diamond carbon band around 1500 cm -1 starts to appear and becomes stronger, confirming increase of the non-diamond component and decrease of the phase purity of the film, while FTIR spectra show that the CH stretching band and the two CVD diamond specific peaks around 2830 cm -1 rise rapidly, and this indicates that the total amount of hydrogen incorporated into the film increases significantly

  10. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  11. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  12. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  13. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  14. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  15. Influence of chemical pretreatment of hard metal substrates for diamond deposition

    International Nuclear Information System (INIS)

    Buck, V.; Kluwe, H.; Schmiler, B.; Deuerler, F.

    2001-01-01

    Diamond coated cutting tools are of increasing importance in the fields of high speed cutting, dry machining or machining of special materials such as metal-matrix-composites. A well known problem is the poor adhesion of diamond films on hard metals due to the Co- or Ni-binder that catalyzes the formation of graphite. Several methods - such as the application of intermediate layers or mechanical or chemical pretreatment of the hard metal substrate - have been developed to overcome this effect. Usually chemical pretreatment is used in order to reduce the concentration of binder phase on the surface that is to be coated. Surprisingly pretreatment with agents such as Murakami's solution result in improved adhesion and nucleation of diamond films while the concentration of the binder phase on the surface is enhanced. This 'contradiction' can be explained by proving that the surface is converted into a very thin oxide/hydroxide film. (author)

  16. Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond in Vapor of Methanol-Based Liquid Solutions

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2000-01-01

    .... Liquid solutions are prepared by mixing methanol with other carbon containing liquid compounds which contain a greater than one ratio of carbon to oxygen such as acetone, ethanol, and iso-propanol...

  17. Prospects for the synthesis of large single-crystal diamonds

    International Nuclear Information System (INIS)

    Khmelnitskiy, R A

    2015-01-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)

  18. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  19. Advances in modeling of chemical vapor infiltration for tube fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Technology

    1998-04-01

    The forced flow/thermal gradient chemical vapor infiltration process (FCVI) can be used for fabrication of tube-shaped components of ceramic matrix composites. Recent experimental work at Oak Ridge National Laboratory (ORNL) includes process and materials development studies using a small tube reactor. Use of FCVI for this geometry involves significant changes in fixturing as compared to disk-shaped preforms previously fabricated. The authors have used their computer model of the CVI process to simulate tube densification and to identify process modifications that will decrease processing time. This report presents recent model developments and applications.

  20. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  1. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  2. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, W.; Nakaanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The reaction orders with respect to the partial pressures of hydrogen and boron trichloride are one half and one third, respectively. It has been found that the outer layer of a deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB by the use of X-ray diffraction and EPMA line analysis

  3. Interfacial chemical bonding state and band alignment of CaF2/hydrogen-terminated diamond heterojunction

    International Nuclear Information System (INIS)

    Liu, J. W.; Liao, M. Y.; Cheng, S. H.; Imura, M.; Koide, Y.

    2013-01-01

    CaF 2 films are deposited on hydrogen-terminated diamond (H-diamond) by a radio-frequency sputter-deposition technique at room temperature. Interfacial chemical bonding state and band alignment of CaF 2 /H-diamond heterojunction are investigated by X-ray photoelectron spectroscopy. It is confirmed that there are only C-Ca bonds at the CaF 2 /H-diamond heterointerface. Valence and conductance band offsets of the CaF 2 /H-diamond heterojunciton are determined to be 3.7 ± 0.2 and 0.3 ± 0.2 eV, respectively. It shows a type I straddling band configuration. The large valence band offset suggests advantage of the CaF 2 /H-diamond heterojunciton for the development of high power and high frequency field effect transistors.

  4. Chemical vapor deposition of yttria stabilized zirconia in porous substrates

    International Nuclear Information System (INIS)

    Carolan, M.F.; Michaels, J.N.

    1987-01-01

    Electrochemical vapor deposition (EVD) of yttria stabilized zirconia (YSZ) is the preferred route to the production of thin films of YSZ on porous substrates. This process has been used in the construction of both fuel cells and steam electrolyzers. A critical aspect of the EVD process is an initial chemical vapor deposition phase in which the pores of a porous substrate are plugged by YSZ. In this process, water vapor and a mixture of gaseous zirconium chloride and yttrium chloride diffuse into the porous substrate from opposite sides and react to form YSZ and HCl ga. During the second stage of the process a continuous dense film of electrolyte is formed by a tarnishing-type process. Experimentally it is observed that the pores plug within a few pore diameters of the metal chloride face of the substrate. A kinetic rate expression that is first order in metal chloride but zero order in water is best able to explain this phenomenon. With this rate expression, the pores always plug near the metal chloride face. The model predicts less pore narrowing to occur as the ratio of the reaction rate to the diffusion rate of the metal chloride is increased. A kinetic rate expression that is first order in both water and metal chloride predicts that the pores plug much deeper in the substrate

  5. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  6. Nitrogen-doped graphene by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kumar, A.; Voevodin, A.A.; Paul, R.; Altfeder, I.; Zemlyanov, D.; Zakharov, D.N.; Fisher, T.S.

    2013-01-01

    Rapid synthesis of nitrogen-doped, few-layer graphene films on Cu foil is achieved by microwave plasma chemical vapor deposition. The films are doped during synthesis by introduction of nitrogen gas in the reactor. Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning tunneling microscopy reveal crystal structure and chemical characteristics. Nitrogen concentrations up to 2 at.% are observed, and the limit is linked to the rigidity of graphene films on copper surfaces that impedes further nitrogen substitutions of carbon atoms. The entire growth process requires only a few minutes without supplemental substrate heating and offers a promising path toward large-scale synthesis of nitrogen-doped graphene films. - Highlights: ► Rapid synthesis of nitrogen doped few layer graphene on Cu foil. ► Defect density increment on 2% nitrogen doping. ► Nitrogen doped graphene is a good protection to the copper metallic surface

  7. Nitrogen-doped graphene by microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: kumar50@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Paul, R. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Altfeder, I. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Zemlyanov, D.; Zakharov, D.N. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Fisher, T.S., E-mail: tsfisher@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States)

    2013-01-01

    Rapid synthesis of nitrogen-doped, few-layer graphene films on Cu foil is achieved by microwave plasma chemical vapor deposition. The films are doped during synthesis by introduction of nitrogen gas in the reactor. Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning tunneling microscopy reveal crystal structure and chemical characteristics. Nitrogen concentrations up to 2 at.% are observed, and the limit is linked to the rigidity of graphene films on copper surfaces that impedes further nitrogen substitutions of carbon atoms. The entire growth process requires only a few minutes without supplemental substrate heating and offers a promising path toward large-scale synthesis of nitrogen-doped graphene films. - Highlights: ► Rapid synthesis of nitrogen doped few layer graphene on Cu foil. ► Defect density increment on 2% nitrogen doping. ► Nitrogen doped graphene is a good protection to the copper metallic surface.

  8. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  9. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  10. Investigation of the nucleation process of chemical vapour deposited diamond films

    International Nuclear Information System (INIS)

    Katai, S.

    2001-01-01

    The primary aim of this work was to contribute to the understanding of the bias enhanced nucleation (BEN) process during the chemical vapour deposition (CVD) of diamond on silicon. The investigation of both the gas phase environment above the substrate surface, by in situ mass selective energy analysis of ions, and of the surface composition and structure by in vacuo surface analytic methods (XPS, EELS) have been carried out. In both cases, the implementation of these measurements required the development and construction of special experimental apparatus as well. The secondary aim of this work was to give orientation to our long term goal of growing diamond films with improved quality. For this reason, (1) contaminant levels at the diamond-silicon interface after growth were studied by SIMS, (2) the internal stress distribution of highly oriented free-standing diamond films were studied by Raman spectroscopy, and (3) an attempt was made to produce spatially regular oriented nuclei formation by nucleating on a pattern created by laser treatment on silicon substrates. (orig.)

  11. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  12. The development of diamond tracking detectors for the LHC

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernegger, H.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-01-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved

  13. New developments in CVD diamond for detector applications

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented.

  14. New developments in CVD diamond for detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W. [HEPHY, Vienna (Austria); Berdermann, E. [GSI, Darmstadt (Germany); Bergonzo, P.; Brambilla, A. [LETI/DEIN/SPE/CEA Saclay (France); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Bogani, F. [LENS, Florence (Italy); Borchi, E.; Bruzzi, M. [University of Florence (Italy); Colledani, C.; Dulinski, W. [LEPSI, IN2P3/CNRS-ULP, Strasbourg (France); Conway, J.; Doroshenko, J. [Rutgers University, Piscataway (United States); D' Angelo, P.; Furetta, C. [INFN, Milano (Italy); Dabrowski, W. [UMM, Cracow (Poland); Delpierre, P.; Fallou, A. [CPPM, Marseille (France); Eijk, B. van [NIKHEF, Amsterdam (Netherlands); Fischer, P. [Universitaet Bonn, Bonn (Germany); Fizzotti, F. [University of Torino (Italy); Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-07-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  15. The development of diamond tracking detectors for the LHC

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, M; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Furetta, C; Gan, K K; Ghodbane, N; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Karl, C; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, M; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Marshall, R D; Meier, D; Menichelli, D; Meuser, S; Mishina, M; Moroni, L; Noomen, J; Oh, A; Perera, L; Pernegger, H; Pernicka, M; Polesello, P; Potenza, R; Riester, J L; Roe, S; Rudge, A; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Sutera, C; Trischuk, W; Tromson, D; Tuvé, C; Vincenzo, B; Weilhammer, P; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2003-01-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  16. The development of diamond tracking detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H. E-mail: harris.kagan@cern.ch; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernegger, H.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M

    2003-11-21

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  17. New developments in CVD diamond for detector applications

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Brambilla, A.; Boer, W. de; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Dulinski, W.; Conway, J.; Doroshenko, J.; D'Angelo, P.; Furetta, C.; Dabrowski, W.; Delpierre, P.; Fallou, A.; Eijk, B. van; Fischer, P.; Fizzotti, F.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-01-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  18. The development of diamond tracking detectors for the LHC

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernegger, H.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.; RD42 Collaboration

    2003-11-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  19. Stress analysis of CVD diamond window for ECH system

    International Nuclear Information System (INIS)

    Takahashi, Koji

    2001-03-01

    The stress analysis of a chemical vapor deposition (CVD) diamond window for Electron Cyclotron Heating and Current Drive (ECH/ECCD) system of fusion reactors is described. It was found that the real size diamond window (φ aper =70mm, t=2.25mm) withstood 14.5 atm. (1.45 MPa). The calculation results of the diamond window by ABAQUS code agree well with the results of the pressure test. The design parameters of the torus diamond window for a vacuum and a safety barrier were also obtained. (author)

  20. Stress evaluation of chemical vapor deposited silicon dioxide films

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Itsumi, Manabu

    2002-01-01

    Film stress of chemical vapor deposited silicon dioxide films was evaluated. All of the deposited films show tensile intrinsic stresses. Oxygen partial pressure dependence of the intrinsic stress is very close to that of deposition rate. The intrinsic stress increases with increasing the deposition rate under the same deposition temperature, and decreases with increasing substrate temperature. Electron spin resonance (ESR) active defects in the films were observed when the films were deposited at 380 deg. C and 450 deg. C. The ESR signal intensity decreases drastically with increasing deposition temperature. The intrinsic stress correlates very closely to the intensity of the ESR-active defects, that is, the films with larger intrinsic stress have larger ESR-active defects. It is considered that the intrinsic stress was generated because the voids caused by local bond disorder were formed during random network formation among the SiO 4 tetrahedra. This local bond disorder also causes the ESR-active defects

  1. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  2. Chemical vapor infiltration of TiB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and test the materials in a static bath and lab-scale Hall cell.

  3. Characterization of tin dioxide film for chemical vapors sensor

    International Nuclear Information System (INIS)

    Hafaiedh, I.; Helali, S.; Cherif, K.; Abdelghani, A.; Tournier, G.

    2008-01-01

    Recently, oxide semiconductor material used as transducer has been the central topic of many studies for gas sensor. In this paper we investigated the characteristic of a thick film of tin dioxide (SnO 2 ) film for chemical vapor sensor. It has been prepared by screen-printing technology and deposited on alumina substrate provided with two gold electrodes. The morphology, the molecular composition and the electrical properties of this material have been characterized respectively by Atomic Force Spectroscopy (AFM), Fourier Transformed Infrared Spectroscopy (FTIR) and Impedance Spectroscopy (IS). The electrical properties showed a resistive behaviour of this material less than 300 deg. C which is the operating temperature of the sensor. The developed sensor can identify the nature of the detected gas, oxidizing or reducing

  4. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    International Nuclear Information System (INIS)

    Shin Jinhong; Waheed, Abdul; Winkenwerder, Wyatt A.; Kim, Hyun-Woo; Agapiou, Kyriacos; Jones, Richard A.; Hwang, Gyeong S.; Ekerdt, John G.

    2007-01-01

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO 2 containing ∼ 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH 2 (PMe 3 ) 4 (Me = CH 3 ) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase

  5. Chemical vapor deposition of TiB2 on graphite

    International Nuclear Information System (INIS)

    Pierson, H.O.; Randich, E.; Mattox, D.M.

    1978-01-01

    This study is an experimental investigation of the coating of graphite with TiB 2 by chemical vapor deposition (CVD) using the hydrogen reduction of BCl 3 and TiCl 4 at 925 0 C and 1 atm. Reasonable matching of the thermal expansion of TiB 2 and graphite was necessary to eliminate cracking. A suitable graphite was POCO DFP-1. Adhesion was improved by having a slightly rough graphite surface. Heat treatment at 2000 0 C and above resulted in a certain degree of diffusion. No melting or solid phases other than TiB 2 and graphite were detected up to 2400 0 C. The coatings showed no failure when repeatedly submitted to an electron beam pulse of 2 KW/cm 2 for 0.8 sec

  6. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Long, Fei; Yasaei, Poya; Yao, Wentao; Salehi-Khojin, Amin; Shahbazian-Yassar, Reza

    2017-06-21

    Wrinkle structures are commonly seen on graphene grown by the chemical vapor deposition (CVD) method due to the different thermal expansion coefficient between graphene and its substrate. Despite the intensive investigations focusing on the electrical properties, the nanotribological properties of wrinkles and the influence of wrinkle structures on the wrinkle-free graphene remain less understood. Here, we report the observation of anisotropic nanoscale frictional characteristics depending on the orientation of wrinkles in CVD-grown graphene. Using friction force microscopy, we found that the coefficient of friction perpendicular to the wrinkle direction was ∼194% compare to that of the parallel direction. Our systematic investigation shows that the ripples and "puckering" mechanism, which dominates the friction of exfoliated graphene, plays even a more significant role in the friction of wrinkled graphene grown by CVD. The anisotropic friction of wrinkled graphene suggests a new way to tune the graphene friction property by nano/microstructure engineering such as introducing wrinkles.

  7. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  8. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  9. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, H.; Nakanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The experiments were conducted at atmospheric pressure. The weight change of the sample was noted by means of a thermobalance. Molybdenum was used as the substrate. It has been found that the outer layer of the deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB, and in the stational state of the reaction, the diffusion in the solid state is considered not to be rate controlling. When mass transport limitation was absent, the reaction orders with respect to boron trichloride and hydrogen were one third and one half, respectively. By comparing these orders with those obtained from Langmuir-Hinshelwood type equations, the rate controlling mechanism is identified to be the desorption of hydrogen chloride from the substrate

  10. Preparation of hafnium carbide by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hertz, Dominique.

    1974-01-01

    Hard, adhesive coatings of single-phase hafnium carbide were obtained by chemical vapor reaction in an atmosphere containing hafnium tetrachloride, methane and a large excess of hydrogen. By varying the gas phase composition and temperature the zones of formation of the different solid phases were studied and the growth of elementary hafnium and carbon deposits evaluated separately. The results show that the mechanism of hafnium carbide deposition does not hardly involve phenomene of homogeneous-phase methane decomposition or tetrachloride reduction by hydrogen unless the atmosphere is very rich or very poor in methane with respect to tetrachloride. However, hydrogen acting inversely on these two reactions, affects the stoichiometry of the substance deposited. The methane decomposition reaction is fairly slow, the reaction leading to hafnium carbide deposition is faster and that of tetrachloride reduction by hydrogen is quite fast [fr

  11. Chemical vapor deposition (CVD) of uranium for alpha spectrometry

    International Nuclear Information System (INIS)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F.

    2015-09-01

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  12. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective

    Science.gov (United States)

    Navas, Javier; Araujo, Daniel; Piñero, José Carlos; Sánchez-Coronilla, Antonio; Blanco, Eduardo; Villar, Pilar; Alcántara, Rodrigo; Montserrat, Josep; Florentin, Matthieu; Eon, David; Pernot, Julien

    2018-03-01

    Phenomena related with the diamond surface of both power electronic and biosensor devices govern their global behaviour. In particular H- or O-terminations lead to wide variations in their characteristics. To study the origins of such aspects in greater depth, different methods to achieve oxygen terminated diamond were investigated following a multi-technique approach. DFT calculations were then performed to understand the different configurations between the C and O atoms. Three methods for O-terminating the diamond surface were performed: two physical methods with ozone at different pressures, and an acid chemical treatment. X-ray photoelectron spectroscopy, spectroscopic ellipsometry, HRTEM, and EELS were used to characterize the oxygenated surface. Periodic-DFT calculations were undertaken to understand the effect of the different ways in which the oxygen atoms are bonded to carbon atoms on the diamond surface. XPS results showed the presence of hydroxyl or ether groups, composed of simple Csbnd O bonds, and the acid treatment resulted in the highest amount of O on the diamond surface. In turn, ellipsometry showed that the different treatments led to the surface having different optical properties, such as a greater refraction index and extinction coefficient in the case of the sample subjected to acid treatment. TEM analysis showed that applying temperature treatment improved the distribution of the oxygen atoms at the interface and that this generates a thinner amount of oxygen at each position and higher interfacial coverage. Finally, DFT calculations showed both an increase in the number of preferential electron transport pathways when π bonds and ether groups appear in the system, and also the presence of states in the middle of the band gap when there are π bonds, Cdbnd C or Cdbnd O.

  13. Capillary-discharge-based portable detector for chemical vapor monitoring

    International Nuclear Information System (INIS)

    Duan Yixiang; Su Yongxuan; Jin Zhe

    2003-01-01

    Conventional portable instruments for sensing chemical vapors have certain limitations for on-site use. In this article, we develop a genuinely portable detector that is sensitive, powerful, rugged, of simple design, and with very low power needs. Such a detector is based on a dry-cell battery-powered, capillary-discharge-based, microplasma source with optical emission detection. The microscale plasma source has very special features such as low thermal temperature and very low power needs. These features make it possible for the plasma source to be powered with a small dry-cell battery. A specially designed discharge chamber with minielectrodes can be configured to enhance the plasma stability and the system performance. A very small amount of inert gas can be used as sample carrier and plasma supporting gas. Inert gases possess high excitation potentials and produce high-energy metastable particles in the plasma. These particles provide sufficient energy to excite chemical species through Penning ionization and/or energy transfer from metastable species. A molecular emission spectrum can be collected with a palm-sized spectrometer through a collimated optical fiber. The spectrum can be displayed on a notebook computer. With this design and arrangement, the new detector provides high sensitivity for organic chemical species. The advantages and features of the newly developed detector include high sensitivity, simple structure, low cost, universal response, very low power consumption, compact volume with field portable capability, and ease of operation

  14. Diamond sensors for future high energy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bachmair, Felix, E-mail: bachmair@phys.ethz.ch

    2016-09-21

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  15. Diamond detector technology: status and perspectives

    CERN Document Server

    Kagan, Harris; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H P; Bellini,, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; De Boer, W; Dehning, B; Dorfer, C; Dunser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Mcfadden, N; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Reichmann, M; Riley, G; Roe, S; Sanz, D; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Schreiner, T; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Taylor, Aaron; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, Stephen; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2017-01-01

    The status of material development of poly-crystalline chemical vapor deposition (CVD) diamond is presented. We also present beam test results on the independence of signal size on incident par-ticle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition the first beam test results from 3D detectors made with poly-crystalline CVD diamond are presented. Finally the first analysis of LHC data from the ATLAS Diamond Beam Monitor (DBM) which is based on pixelated poly-crystalline CVD diamond sensors bump-bonded to pixel readout elec-tronics is shown.

  16. Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.N. [Institute of Wide Band Gap Semiconductors, Xi' an Jiaotong University, Xi' an 710049 (China); Nation Key Laboratory of ASIC, HSRI, Shijiazhuang 050051 (China); Liu, J.W. [International Center for Young Scientists, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 3050044 (Japan); Zhang, J.W.; Wang, X.L.; Wang, W.; Liu, Z.C. [Institute of Wide Band Gap Semiconductors, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, H.X., E-mail: hxwangcn@mail.xjtu.edu.cn [Institute of Wide Band Gap Semiconductors, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    Highlights: • Metal-semiconductor contacts of Pd/hydrogen-terminated diamond and Pd/oxygen-terminated diamond have been investigated by XPS measurements. • The barrier height for Pd/hydrogen-terminated diamond (ohmic contact) has been measured to be −0.27 eV. • The barrier height for Pd/oxygen-terminated diamond (Schottky contact) has been measured to be 1.73 eV. - Abstract: Barrier height (Φ{sub BH}) values for Pd/hydrogen-terminated diamond (H-diamond) and Pd/oxygen-terminated diamond (O-diamond) have been investigated by X-ray photoelectron spectroscopy technique. H-diamond and O-diamond have been formed on the same diamond (100) layer grown by microwave plasma-enhanced chemical vapor deposition,on which Pd layers have been evaporated. The Φ{sub BH} values for Pd/H-diamond and Pd/O-diamond are determined to be −0.27 eV and 1.73 eV, respectively. It indicates that Pd is a suitable metal for ohmic and Schottky contacts on H-diamond and O-diamond, respectively. The experimental Φ{sub BH} values are in good agreement with the theoretical calculation results.

  17. Quantum chemical simulation of hydrogen like states in silicon and diamond

    International Nuclear Information System (INIS)

    Gel'fand, R.B.; Gordeev, V.A.; Gorelkinskij, Yu.V.

    1989-01-01

    The quantum-chemical methods of the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) are used to calculate the electronic structure of atomic hydrogen (muonium) located at different interstital sites of the silicon and diamond crystal lattices. The electronic g- and hyperfine interaction tensors of the impure atom are determined.The results obtained are compared with the experimental data on the 'normal' (Mu') and 'anomalous' (Mu * ) muonium centers as well as on the hydrogen-bearing Si-AA9 EPR center which is a hydrogen-bearing analogue of (Mu * ). The most likely localization sites for hydrogen (muonium) atoms in silicon and diamond crystals are established. 22 refs

  18. CVD diamond substrates for electronic devices

    International Nuclear Information System (INIS)

    Holzer, H.

    1996-03-01

    In this study the applicability of chemical vapor deposition (CVD) diamond as a material for heat spreaders was investigated. Economical evaluations on the production of heat spreaders were also performed. For the diamond synthesis the hot-filament and microwave method were used respectively. The deposition parameters were varied in a way that free standing diamond layers with a thickness of 80 to 750 microns and different qualities were obtained. The influence of the deposition parameters on the relevant film properties was investigated and discussed. With both the hot-filament and microwave method it was possible to deposit diamond layers having a thermal conductivity exceeding 1200 W/mK and therefore to reach the quality level for commercial uses. The electrical resistivity was greater than 10 12 Ωcm. The investigation of the optical properties was done by Raman-, IR- and cathodoluminescence spectroscopy. Because of future applications of diamond-aluminium nitride composites as highly efficient heat spreaders diamond deposition an AIN was investigated. An improved substrate pretreatment prior to diamond deposition showed promising results for better performance of such composite heat spreaders. Both free standing layers and diamond-AIN composites could be cut by a CO2 Laser in Order to get an exact size geometry. A reduction of the diamond surface roughness was achieved by etching with manganese powder or cerium. (author)

  19. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  20. Correlation of chemical evaporation rate with vapor pressure.

    Science.gov (United States)

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-02

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  1. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  2. Spatial distributions of H, CN, and C2 in a diamond growing oxyacetylene flame

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Meulen, ter J.J.

    1998-01-01

    Two-dimensional laser-induced fluorescence (2D-LIF) measurements are applied to the chemical vapor deposition (CVD) of diamond by an oxyacetylene flame to visualize the distributions of atomic hydrogen, C2, and CN in the gas phase during diamond growth. Experiments are carried out in laminar flames

  3. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  4. Chemically vapor deposited coatings for multibarrier containment of nuclear wastes

    International Nuclear Information System (INIS)

    Rusin, J.M.; Shade, J.W.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Chemical vapor deposition (CVD) was selected as a feasible method to coat ceramic cores, since the technology has previously been demonstrated for high-temperature gas-cooled reactor (HTGR) fuel particles. CVD coatings, including SiC, PyC (pyrolytic carbon), SiO 2 , and Al 2 O 3 were studied. This paper will discuss the development and characterization of PyC and Al 2 O 3 CVD coatings on supercalcine cores. Coatings were applied to 2 mm particles in either fluidized or vibrating beds. The PyC coating was deposited in a fluidized bed with ZrO 2 diluent from C 2 H 2 at temperatures between 1100 and 1200 0 C. The Al 2 O 3 coatings were deposited in a vibrated bed by a two-stage process to minimize loss of PyC during the overcoating operation. This process involved applying 10 μm of Al 2 O 3 using water vapor hydrolysis of AlCl 3 and then switching to the more surface-controlled hydrolysis via the H 2 + CO 2 reaction (3CO 2 + 3H 2 + 2AlCl 3 = Al 2 O 3 + 6HCl + 3CO). Typically, 50 to 80 μm Al 2 O 3 coatings were applied over 30 to 40 μm PyC coatings. The coatings were evaluated by metallographic examination, PyC oxidation tests, and leach resistance. After air oxidation for 100 hours at 750 0 C, the duplex PyC/Al 2 O 3 coated particles exhibited a weight loss of 0.01 percent. Leach resistance is being determined for temperatures from 50 to 150 0 C in various solutions. Typical results are given for selected ions. The leach resistance of supercalcine cores is significantly improved by the application of PyC and/or Al 2 O 3 coatings

  5. Graphene by one-step chemical vapor deposition from ferrocene vapors: Properties and electrochemical evaluation

    Science.gov (United States)

    Pilatos, George; Perdikaki, Anna V.; Sapalidis, Andreas; Pappas, George S.; Giannakopoulou, Tatiana; Tsoutsou, Dimitra; Xenogiannopoulou, Evangelia; Boukos, Nikos; Dimoulas, Athanasios; Trapalis, Christos; Kanellopoulos, Nick K.; Karanikolos, Georgios N.

    2016-02-01

    Growth of few-layer graphene using ferrocene as precursor by chemical vapor deposition is reported. The growth did not involve any additional carbon or catalyst source or external hydrocarbon gases. Parametric investigation was performed using different conditions, namely, varying growth temperature from 600 to1000 °C, and growth duration from 5 min to 3 h, as well as using fast quenching or gradual cooling after the thermal treatment, in order to examine the effect on the quality of the produced graphene. The growth took place on silicon wafers and resulted, under optimal conditions, in formation of graphene with 2-3 layers and high graphitic quality, as evidenced by Raman spectroscopy, with characteristic full width at half maximum of the 2D band of 49.46 cm-1, and I2D/IG and ID/IG intensity ratios of 1.15 and 0.26, respectively. Atomic force microscopy and X-ray photoelectron spectroscopy were employed to further evaluate graphene characteristics and enlighten growth mechanism. Electrochemical evaluation of the developed material was performed using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge measurements.

  6. Bone repair after osteotomy with diamond burs and CVD ultrasonic tips – histological study in rats

    OpenAIRE

    Matuda, Fábio S.; Pagani, Clovis; Miranda, Carolina B.; Crema, Aline A. S.; Brentel, Aline S.; Carvalho, Yasmin R.

    2010-01-01

    This study histologically evaluated the behavior of bone tissue of rats submitted to osteotomy with conventional diamond burs in high speed and a new ultrasonic diamond tips system (CVD – Chemical Vapor Deposition), at different study periods. The study was conducted on 24 Wistar rats. Osteotomy was performed on the posterior paws of each rat, with utilization of diamond burs in high speed under thorough water cooling at the right paw, and CVD tips at the left paw. Animals were killed a...

  7. Status and applications of diamond and diamond-like materials: An emerging technology

    Science.gov (United States)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  8. Chemical vapor deposition growth of two-dimensional heterojunctions

    Science.gov (United States)

    Cui, Yu; Li, Bo; Li, JingBo; Wei, ZhongMing

    2018-01-01

    The properties of two-dimensional (2D) layered materials with atom-smooth surface and special interlayer van der Waals coupling are different from those of traditional materials. Due to the absence of dangling bonds from the clean surface of 2D layered materials, the lattice mismatch influences slightly on the growth of 2D heterojunctions, thus providing a flexible design strategy. 2D heterojunctions have attracted extensive attention because of their excellent performance in optoelectronics, spintronics, and valleytronics. The transfer method was utilized for the fabrication of 2D heterojunctions during the early stage of fundamental research on these materials. This method, however, has limited practical applications. Therefore, chemical vapor deposition (CVD) method was recently developed and applied for the preparation of 2D heterojunctions. The CVD method is a naturally down-top growth strategy that yields 2D heterojunctions with sharp interfaces. Moreover, this method effectively reduces the introduction of contaminants to the fabricated heterojunctions. Nevertheless, the CVD-growth method is sensitive to variations in growth conditions. In this review article, we attempt to provide a comprehensive overview of the influence of growth conditions on the fabrication of 2D heterojunctions through the direct CVD method. We believe that elucidating the effects of growth conditions on the CVD method is necessary to help control and improve the efficiency of the large-scale fabrication of 2D heterojunctions for future applications in integrated circuits.

  9. Growth of graphene underlayers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu; Charlie Johnson, A. T.

    2013-01-01

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth

  10. Intelligent process control of fiber chemical vapor deposition

    Science.gov (United States)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  11. Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy

    Czech Academy of Sciences Publication Activity Database

    Kozak, Halyna; Remeš, Zdeněk; Houdková, Jana; Stehlík, Štěpán; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 15, č. 4 (2013), "1568-1"-"1568-9" ISSN 1388-0764 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : diamond nanoparticles * chemical modification * GAR-FTIR * AFM * KFM * XPS Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.278, year: 2013 http://link.springer.com/article/10.1007%2Fs11051-013-1568-7

  12. Use of the diamond to the detection of particles

    International Nuclear Information System (INIS)

    Mer, C.; Tromson, D.; Brambilla, A.; Foulon, F.; Guizard, B.; Bergonzo

    2001-01-01

    Diamond synthesized by chemical vapor deposition (CVD) is a valuable material for the detection of particles: broad forbidden energy band, high mobility of electron-hole pairs, and a short life-time of charge carriers. Diamond layers have been used in alpha detectors or gamma dose ratemeters designed to be used in hostile environment. Diamond presents a high resistance to radiation and corrosion. The properties of diamond concerning the detection of particles are spoilt by the existence of crystal defects even in high quality natural or synthesized diamond. This article presents recent works that have been performed in CEA laboratories in order to optimize the use of CVD diamond in particle detectors. (A.C.)

  13. Inclusions in diamonds constrain thermo-chemical conditions during Mesozoic metasomatism of the Kaapvaal cratonic mantle

    Science.gov (United States)

    Weiss, Yaakov; Navon, Oded; Goldstein, Steven L.; Harris, Jeff W.

    2018-06-01

    Fluid/melt inclusions in diamonds, which were encapsulated during a metasomatic event and over a short period of time, are isolated from their surrounding mantle, offering the opportunity to constrain changes in the sub-continental lithospheric mantle (SCLM) that occurred during individual thermo-chemical events, as well as the composition of the fluids involved and their sources. We have analyzed a suite of 8 microinclusion-bearing diamonds from the Group I De Beers Pool kimberlites, South Africa, using FTIR, EPMA and LA-ICP-MS. Seven of the diamonds trapped incompatible-element-enriched saline high density fluids (HDFs), carry peridotitic mineral microinclusions, and substitutional nitrogen almost exclusively in A-centers. This low-aggregation state of nitrogen indicates a short mantle residence times and/or low mantle ambient temperature for these diamonds. A short residence time is favored because, elevated thermal conditions prevailed in the South African lithosphere during and following the Karoo flood basalt volcanism at ∼180 Ma, thus the saline metasomatism must have occurred close to the time of kimberlite eruptions at ∼85 Ma. Another diamond encapsulated incompatible-element-enriched silicic HDFs and has 25% of its nitrogen content residing in B-centers, implying formation during an earlier and different metasomatic event that likely relates to the Karoo magmatism at ca. 180 Ma. Thermometry of mineral microinclusions in the diamonds carrying saline HDFs, based on Mg-Fe exchange between garnet-orthopyroxene (Opx)/clinopyroxene (Cpx)/olivine and the Opx-Cpx thermometer, yield temperatures between 875-1080 °C at 5 GPa. These temperatures overlap with conditions recorded by touching inclusion pairs in diamonds from the De Beers Pool kimberlites, which represent the mantle ambient conditions just before eruption, and are altogether lower by 150-250 °C compared to P-T gradients recorded by peridotite xenoliths from the same locality. Oxygen fugacity (fO2

  14. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.

    Science.gov (United States)

    Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří

    2016-05-03

    Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.

  15. Clinopyroxenes still trapped in diamonds: high-energy synchrotron X-ray diffraction as a chemical probe

    Science.gov (United States)

    Casati, Nicola; Nestola, Fabrizio; Alvaro, Matteo; Wilhelm, Heribert; Kleppe, Annette; Nimis, Paolo; Harris, Jeffrey W.

    2014-05-01

    Clinopyroxenes are mainly Ca-Na-Fe-Mg-silicates constituting a significant portion of the Earth's upper mantle up to 20% of such shell of our planet. They could be found as typical mineral inclusions in diamonds being diopsidic and omphacitic in composition and, together with garnets, cover a key role in providing indications concerning the source rock in which the diamond crystallize. In detail, it is well known that eclogitic diamonds are characterized by clinopyroxenes with omphacitic compositions (about Ca0.5Na0.5Mg0.5Al0.5Si2O6) whereas peridotitic diamonds show clinopyroxenes very rich in the diopside end-member (CaMgSi2O6). In order to get direct chemical composition on the inclusions, and therefore on the diamond origin source, it is obviously necessary to extract them breaking and/or polishing the diamond host. However, a non-destructive investigation of an inclusion still trapped in a diamond is useful and important for different reasons: (1) the inclusions could be under pressure and their crystal structure can be modified if the pressure is released by the extraction; (2) the residual pressure on the inclusion can provide information about the formation pressure of the diamond (e.g. Nestola et al. 2011 and references therein); (3) the morphology and growth relationships of the inclusion with the host diamond can provide indications about its protogenetic vs. syngenetic and/or epigenetic nature; and (4) preservation of the diamond surface growth features can maintain crucial information on late oxidation processes (Fedortchouk et al. 2011). However the available methods to measure the composition of the inclusions implies to destroy the sample. The aim of this work is to obtain chemical information on the inclusions still trapped in their diamond host and therefore to indicate the diamond origin without extracting the inclusions. The work was carried out by single crystal X-ray diffraction using a new experimental approach by high energy synchrotron

  16. Fabrication of Diamond Based Sensors for Use in Extreme Environments

    Directory of Open Access Journals (Sweden)

    Gopi K. Samudrala

    2015-04-01

    Full Text Available Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This method can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. We demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.

  17. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Zhuang, Hao; Jiang, Xin, E-mail: xin.jiang@uni-siegen.de

    2015-12-30

    Graphical abstract: - Highlights: • Novel diamond/beta-silicon carbide composite gradient interlayers were synthesized. • The interlayer features a cross-sectional gradient with increasing diamond content. • Diamond top layers and the interlayers were deposited in one single process. • The adhesion of the diamond film is drastically improved by employing the interlayer. • The stress was suppressed by manipulating the distribution of diamond and silicon carbide. - Abstract: Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co{sub 2}Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  18. Radiation hard diamond sensors for future tracking applications

    International Nuclear Information System (INIS)

    Adam, W.; Boer, W. de; Borchi, E.

    2006-01-01

    Progress in experimental particle physics in the coming decade depends crucially upon the ability to carry out experiments in high-radiation areas. In order to perform these complex and expensive experiments, new radiation hard technologies must be developed. This paper discusses the use of diamond detectors in future tracking applications and their survivability in the highest radiation environments. We present results of devices constructed with the newest polycrystalline and single crystal Chemical Vapor Deposition diamond and their tolerance to radiation

  19. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  20. Chemical vapor deposition based tungsten disulfide (WS2) thin film transistor

    KAUST Repository

    Hussain, Aftab M.; Sevilla, Galo T.; Rader, Kelly; Hussain, Muhammad Mustafa

    2013-01-01

    electric field. This makes them an interesting option for channel material in field effect transistors (FETs). Therefore, we show a highly manufacturable chemical vapor deposition (CVD) based simple process to grow WS2 directly on silicon oxide in a furnace

  1. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  2. Rapid Thermal Chemical Vapor Deposition for Dual-Gated Sub-100 nm MOSFET's

    National Research Council Canada - National Science Library

    Sturm, James

    2001-01-01

    ... (such as microprocessors and memory chips) is based. This project examines the scaling of MOSFET's to very small channel dimensions using a vertical structure which is defined by Rapid Thermal Chemical Vapor Deposition...

  3. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  4. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vispute, R D [Blue Wave Semiconductors; Ermer, Henry K [Blue Wave Semiconductors; Sinsky, Phillip [Blue Wave Semiconductors; Seiser, Andrew [Blue Wave Semiconductors; Shaw, Robert W [ORNL; Wilson, Leslie L [ORNL

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that

  5. Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    Directory of Open Access Journals (Sweden)

    Resto Oscar

    2008-01-01

    Full Text Available AbstractIron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  6. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  7. Electronic and physico-chemical properties of nanometric boron delta-doped diamond structures

    International Nuclear Information System (INIS)

    Chicot, G.; Fiori, A.; Tran Thi, T. N.; Bousquet, J.; Delahaye, J.; Grenet, T.; Eon, D.; Omnès, F.; Bustarret, E.; Volpe, P. N.; Tranchant, N.; Mer-Calfati, C.; Arnault, J. C.; Gerbedoen, J. C.; Soltani, A.; De Jaeger, J. C.; Alegre, M. P.; Piñero, J. C.; Araújo, D.; Jomard, F.

    2014-01-01

    Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2 nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called delta-doped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6 K  2 /Vs, independently of the layer thickness and the substrate type. Comparison with previously published data and theoretical calculations showed that scattering by ionized impurities explained only partially this low common value. None of the delta-layers showed any sign of confinement-induced mobility enhancement, even for thicknesses lower than 2 nm

  8. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    Science.gov (United States)

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  9. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    decomposition of metal oxide, is the most probable source of chemical energy, which facilitates the vaporization. Intensity of the process depends on chemical properties of the sample and substrate and efficiency of mass and heat transfer by the protective gas. The discussed mechanism of chemically assisted vapor release signifies the energy exchange between all participants of the vaporization process in ET AAS including the matrix, modifier, purge gas and analyte. The finding contributes in the ET AAS theory regarding the mechanisms of vaporization and mass transfer in the presence of matrix and modifiers

  10. Alpha particle response study of polycrstalline diamond radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Topkar, Anita [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2016-05-23

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  11. Modified diamond electrodes for electrolysis and electroanalysis applications

    International Nuclear Information System (INIS)

    Einaga, Yasuaki; Sato, Rika; Olivia, Herlambang; Shin, Dongchan; Ivandini, T.A.; Fujishima, Akira

    2004-01-01

    The outstanding properties of diamond make it a very attractive material for use in many potential applications. In particular, the superior electrochemical properties of highly boron-doped conductive diamond films, prepared by the chemical vapor deposition (CVD) process, have received attention from electrochemists. This paper reports several diversified applications of boron-doped diamond electrodes; highly sensitive and interference-free microfiber electrodes with over-oxidized polypyrrole modification, integrated electrochemical detector for microchip capillary electrophoresis (CE), and smoothing treatments of micro-polycrystalline surface. Studies have been made of the electrochemical properties of each system and their application in electroanalysis is discussed

  12. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  13. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  14. Status of the R&D activity on diamond particle detectors

    Science.gov (United States)

    Adam, W.; Bellini, B.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.; RD42 Collaboration

    2003-09-01

    Chemical Vapor Deposited (CVD) polycrystalline diamond has been proposed as a radiation-hard alternative to silicon in the extreme radiation levels occurring close to the interaction region of the Large Hadron Collider. Due to an intense research effort, reliable high-quality polycrystalline CVD diamond detectors, with up to 270 μm charge collection distance and good spatial uniformity, are now available. The most recent progress on the diamond quality, on the development of diamond trackers and on radiation hardness studies are presented and discussed.

  15. Status of the R and D activity on diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bellini, B.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M. E-mail: bruzzi@fi.infn.it; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M

    2003-09-21

    Chemical Vapor Deposited (CVD) polycrystalline diamond has been proposed as a radiation-hard alternative to silicon in the extreme radiation levels occurring close to the interaction region of the Large Hadron Collider. Due to an intense research effort, reliable high-quality polycrystalline CVD diamond detectors, with up to 270 {mu}m charge collection distance and good spatial uniformity, are now available. The most recent progress on the diamond quality, on the development of diamond trackers and on radiation hardness studies are presented and discussed.

  16. Metalorganic chemical vapor deposition of gallium nitride on sacrificial substrates

    Science.gov (United States)

    Fenwick, William Edward

    GaN-based light emitting diodes (LEDs) face several challenges if the technology is to continue to make a significant impact in general illumination, and on technology that has become known as solid state lighting (SSL). Two of the most pressing challenges for the continued penetration of SSL into traditional lighting applications are efficacy and total lumens from the device, and their related cost. The development of alternative substrate technologies is a promising avenue toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature technologies with a well-understood cost base. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. These substrates offer the ability to access both higher efficacy and lumen devices (ZnO) at a much reduced cost. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on both ZnO and Si. ZnO is a promising substrate for growth of low defect-density GaN because of its similar lattice constant and thermal expansion coefficient. The major hurdles for GaN growth on ZnO are the instability of the substrate in a hydrogen atmosphere, which is typical of nitride growth conditions, and the inter-diffusion of zinc and oxygen from the substrate into the GaN-based epitaxial layer. A process was developed for the MOCVD growth of GaN and InxGa 1-xN on ZnO that attempted to address these issues. The structural and optical properties of these films were studied using various techniques. X-ray diffraction (XRD) showed the growth of wurtzite GaN on ZnO, and room-temperature photoluminescence (RT-PL) showed near band-edge luminescence from the GaN and InxGa1-xN layers. However, high zinc and oxygen concentrations due to interdiffusion near the ZnO substrate remained an issue; therefore, the diffusion of zinc and oxygen

  17. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  18. Thin diamond films for tribological applications

    International Nuclear Information System (INIS)

    Wong, M.S.; Meilunas, R.; Ong, T.P.; Chang, R.P.H.

    1989-01-01

    Diamond films have been deposited on Si, Mo and many other substrates by microwave and radio frequency plasma enhanced chemical vapor deposition. Although the adhesion between the diamond film and most of the metal substrates is poor due to residual thermal stress from the mismatch of thermal expansion coefficients, the authors have developed processes to promote the growth of uniform and continuous diamond films with enhanced adhesion to metal substrates for tribological applications. The tribological properties of these films are measured using a ring-on-block tribotester. The coefficients of friction of diamond films sliding against a 52100 steel ring under the same experimental conditions are found to be significantly different depending on the morphology, grain size and roughness of the diamond films. However, under all cases tested, it is found that for uniform and continuous diamond films with small grain size of 1-3 micrometers, the coefficient of friction of the diamond film sliding against a steel ring under lubrication of a jet of mineral oil is about 0.04

  19. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  20. Molecular dynamics simulation of chemical vapor deposition of amorphous carbon. Dependence on H/C ratio of source gas

    International Nuclear Information System (INIS)

    Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin

    2011-01-01

    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas. (author)

  1. Chemical Vapor Detection with a Multispectral Thermal Imager

    National Research Council Canada - National Science Library

    Althouse, Mark L. G; Chang, Chein-I

    1991-01-01

    .... Real-time autonomous detection and alarm is also required. A detection system model by Warren, based on a Gaussian vapor concentration distribution is the basis for detection algorithms. Algorithms recursive in both time and spectral frequency have been derived using Kalman filter theory. Adaptive filtering is used for preprocessing clutter rejection. Various components of the detection system have been tested individually and an integrated system is now being fabricated.

  2. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent

    Directory of Open Access Journals (Sweden)

    Shichao Zhao

    2018-02-01

    Full Text Available Molybdenum disulfide (MoS2 layers show excellent optical and electrical properties and have many potential applications. However, the growth of high-quality MoS2 layers is a major bottleneck in the development of MoS2-based devices. In this paper, we report a chemical vapor transport deposition method to investigate the growth behavior of monolayer/multi-layer MoS2 using water (H2O as the transport agent. It was shown that the introduction of H2O vapor promoted the growth of MoS2 by increasing the nucleation density and continuous monolayer growth. Moreover, the growth mechanism is discussed.

  3. Surface smoothening effects on growth of diamond films

    Science.gov (United States)

    Reshi, Bilal Ahmad; Kumar, Shyam; Kartha, Moses J.; Varma, Raghava

    2018-04-01

    We have carried out a detailed study of the growth dynamics of the diamond film during initial time on diamond substrates. The diamond films are deposited using Microwave Plasma Chemical Vapor Deposition (MPCVD) method for different times. Surface morphology and its correlation with the number of hours of growth of thin films was invested using atomic force microscopy (AFM). Diamond films have smooth interface with average roughness of 48.6873nm. The initial growth dynamics of the thin film is investigated. Interestingly, it is found that there is a decrease in the surface roughness of the film. Thus a smoothening effect is observed in the grown films. The film enters into the growth regime in the later times. Our results also find application in building diamond detector.

  4. Molecular restrictions for human eye irritation by chemical vapors

    International Nuclear Information System (INIS)

    Cometto-Muniz, J. Enrique; Cain, William S.; Abraham, Michael H.

    2005-01-01

    Previous research showed a cut-off along homologous volatile organic compounds (VOCs) in their ability to produce acute human mucosal irritation. The present study sought to specify the particular cut-off homolog for sensory eye irritation in an acetate and n-alcohol series. A 1900-ml glass vessel system and a three-alternative forced-choice procedure served to test nonyl, decyl, and dodecyl acetate, and 1-nonanol, 1-decanol, and 1-undecanol. Flowrate to the eye ranged from 2 to 8 L/min and time of exposure from 3 to 24 s. Decyl acetate and 1-undecanol were the shortest homologs that failed to produce eye irritation under all conditions, producing a cut-off effect. Increasing the vapor concentration of decyl acetate and 1-undecanol by 3 and 8 times, respectively, via heating them to 37 deg C made either or both VOCs detectable to only half of the 12 subjects tested, even though the higher vapor concentration was well above a predicted eye irritation threshold. When eye irritation thresholds for homologous acetates and n-alcohols were plotted as a function of the longest unfolded length of the molecule, the values for decyl acetate and 1-undecanol fell within a restricted range of 18 to 19 A. The outcome suggests that the basis for the cut-off is biological, that is, the molecule lacks a key size or structure to trigger transduction, rather than physical, that is, the vapor concentration is too low to precipitate detection

  5. Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoriko; Furuta, Masahiro; Kuriyama, Koichi; Kuwabara, Ryosuke; Katsuki, Yukiko [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, Takeshi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Fujishima, Akira [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, Kensuke, E-mail: khonda@yamaguchi-u.ac.j [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)

    2011-01-01

    Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp{sup 3}/sp{sup 2}-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 {Omega} cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe{sup 2+/3+} and Fe(CN){sub 6}{sup 4-/3-} at N-doped DLC were sufficiently high. The redox reaction of Ce{sup 2+/3+} with standard potential higher than H{sub 2}O/O{sub 2} were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN){sub 6}{sup 3-/4-} by surface oxidation is different from that at BDD. The rate of Fe(CN){sub 6}{sup 3-/4-} was not varied before and after oxidative treatment on N-doped DLC includes sp{sup 2} carbons, which indicates high durability of the electrochemical activity against surface oxidation.

  6. Study on stability of a-SiCOF films deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Ding Shijin; Zhang Qingquan; Wang Pengfei; Zhang Wei; Wang Jitao

    2001-01-01

    Low-dielectric-constant a-SiCOF films have been prepared from TEOS, C 4 F 8 and Ar by using plasma enhanced chemical vapor deposition method. With the aid of X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), the chemical bonding configuration, thermal stability and resistance to water of the films are explored

  7. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  8. Industrialization of hot wire chemical vapor deposition for thin film applications

    NARCIS (Netherlands)

    Schropp, Ruud

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical

  9. Diamond-based electrodes for organic photovoltaic devices

    Czech Academy of Sciences Publication Activity Database

    Kovalenko, Alexander; Ashcheulov, Petr; Guerrero, A.; Heinrichová, P.; Fekete, Ladislav; Vala, M.; Weiter, M.; Kratochvílová, Irena; Garcia-Belmonte, G.

    2015-01-01

    Roč. 134, Mar (2015), s. 73-79 ISSN 0927-0248 R&D Projects: GA TA ČR TA04020156 Institutional support: RVO:68378271 Keywords : organic photovoltaic s * boron doped diamond * chemical vapor deposition Subject RIV: JI - Composite Materials Impact factor: 4.732, year: 2015

  10. A wear simulation study of nanostructured CVD diamond-on-diamond articulation involving concave/convex mating surfaces

    Science.gov (United States)

    Baker, Paul A.; Thompson, Raymond G.; Catledge, Shane A.

    2015-01-01

    Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE). PMID:26989457

  11. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    Beshkov, G.; Krastev, V.; Gogova, D.; Talik, E.; Adamies, M.

    2008-01-01

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 380 0 C and 420 0 C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  12. Effects of substrate pretreatments on diamond synthesis for Si{sub 3}N{sub 4} based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Y. [Prefectural Industrial Research Inst., Shizuoka (Japan); Takaya, M. [Chiba Institute of Technology, Tsudanuma 2-chome, Narashino-shi, 275 (Japan)

    1998-07-08

    Diamond synthesis for Si{sub 3}N{sub 4} ceramics after various substrate pretreatments has been carried out by the microwave-plasma enhanced chemical vapor deposition (CVD) method using a mixture of methane and hydrogen gases. Four types of pretreatments for various substrates were performed as follows: scratching with diamond powder (I), applying O{sub 2}-C{sub 2}H{sub 2} combustion flames (II), polishing with alumina (III), and platinum vapor deposition (IV). The products deposited on the substrate were examined with micro-Raman spectroscopy, scanning electron microscopy (SEM) and an X-ray diffractometer (XRD). It was found that the application of O{sub 2}-C{sub 2}H{sub 2} flames as a pretreatment of the substrate in diamond synthesis was suitable, because a higher density of diamond nucleation could be obtained, and a film-like diamond could be formed on the surface in a shorter time than without applying them. The diamond could be synthesized on the surface for all four types of substrate pretreatments performed in the present study. The effects of the substrate pretreatments on the surface morphology of grown diamond were that a film-like diamond for (I) or (II), a particle-like diamond for (III) and a particle and/or a film-like diamond for (IV) were formed on the surface. The surface morphology of grown diamond depended very much on the substrate temperature under deposition. (orig.) 18 refs.

  13. Phenomenological effets of tantalum incorporation into diamond films: Experimental and first principle studies

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Mahtab, E-mail: mahtabullah@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Rana, Anwar Manzoor; Ahmad, E. [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Raza, Rizwan [Department of Physics, COMSATS Institute of Information Technology, Lahore-54000 (Pakistan); Hussain, Fayyaz [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Hussain, Akhtar; Iqbal, Muhammad [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2016-09-01

    Graphical abstract: - Highlights: • Fabrication of tantalum incorporated diamonds films using HFCVD technique. • Decrease in resistivity by increasing tantalum content in diamond thin films. • Electronic structure calculations of tantalum incorporated diamonds films through VASP code. • A rise of bond length and bond angles by addition of tantalum in the diamond lattice. • Confirmation of decrease of resistivity by adding tantalum due to creation of impurity states in the bandgap. - Abstract: Tantalum (Ta) incorporated diamond films are synthesized on silicon substrate by chemical vapor deposition under gas mixture of CH{sub 4} + H{sub 2}. Characterizations of the resulting films indicate that morphology and resistivity of as-grown diamond films are significantly influenced by the process parameters and the amount of tantalum incorporated in the diamond films. XRD plots reveal that diamond films are composed of TaC along with diamond for higher concentration of tantalum and Ta{sub 2}C phases for lower concentration of tantalum. EDS spectra confirms the existence of tantalum in the diamond films. Resistivity measurements illustrate a sudden fall of about two orders of magnitude by the addition of tantalum in the diamond films. Band structure of Ta-incorporated diamond has been investigated based on density functional theory (DFT) using VASP code. Band structure calculations lead to the semiconducting behavior of Ta-incorporated diamond films because of the creation of defects states inside the band gap extending towards conduction band minimum. Present DFT results support experimental trend of resistivity that with the incorporation of tantalum into diamond lattice causes a decrease in the resistivity of diamond films so that tantalum-incorporated diamond films behave like a good semiconductor.

  14. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  15. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  16. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  17. Fabrication of Cf/SiC composite by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2003-07-01

    This technical report reviewed the fabrication process of fiber reinforced ceramic composites, characteristics of the chemical vapor infiltration process, and applications for C f /SiC composite to develop a carbon fiber reinforced silicon carbide composite. Infiltration process was performed by the chemical vapor infiltration process using methyltrichlorosilane and hydrogen gas as a source and a diluent, respectively. Infiltration behavior, phase analysis, microstructure observation were carried out. Parameter study results of C f /SiC composite fabricated with some variables such as reaction pressure, reaction temperature, input gas ratio and preform thickness were described

  18. Radiation stable, hybrid, chemical vapor infiltration/preceramic polymer joining of silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E., E-mail: hesham.khalifa@ga.com [General Atomics, 3550 General Atomics Ct., San Diego 92121, CA (United States); Koyanagi, Takaaki [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge 37831, TN (United States); Jacobsen, George M.; Deck, Christian P.; Back, Christina A. [General Atomics, 3550 General Atomics Ct., San Diego 92121, CA (United States)

    2017-04-15

    This paper reports on a nuclear-grade joining material for bonding of silicon carbide-based components. The joint material is fabricated via a hybrid preceramic polymer, chemical vapor infiltration process. The joint is comprised entirely of β-SiC and results in excellent mechanical and permeability performance. The joint strength, composition, and microstructure have been characterized before and after irradiation to 4.5 dpa at 730 °C in the High Flux Isotope Reactor. The hybrid preceramic polymer-chemical vapor infiltrated joint exhibited complete retention of shear strength and no evidence of microstructural evolution or damage was detected following irradiation.

  19. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  20. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  1. Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends.

    Science.gov (United States)

    Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-02-28

    Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes.

  2. Combined effect of nitrogen doping and nanosteps on microcrystalline diamond films for improvement of field emission

    International Nuclear Information System (INIS)

    Mengui, U.A.; Campos, R.A.; Alves, K.A.; Antunes, E.F.; Hamanaka, M.H.M.O.; Corat, E.J.; Baldan, M.R.

    2015-01-01

    Highlights: • Hot filament chemical vapor deposition using methane, hydrogen and a solution of urea in methanol produced nitrogen-doped diamond films. • Diamonds had the grain morphology changed for long growth time (28 h), and the nitrogen doping were evaluated by Raman spectroscopy. • Field emission characterization shows a decrease up to 70% in threshold field, related to reference diamond layer. - Abstract: Nitrogen-doped microcrystalline diamond (N-MCD) films were grown on Si substrates using a hot filament reactor with methanol solution of urea as N source. Electrostatic self-assembly seeding of nanocrystalline diamond were used to obtain continuous and uniform films. Simultaneous changes in grains morphology and work function of diamond by nitrogen doping decreased the threshold field and the angular coefficient of Fowler–Nordhein plots. The field emission properties of our N-MCD films are comparable to carbon nanotube films

  3. Combined effect of nitrogen doping and nanosteps on microcrystalline diamond films for improvement of field emission

    Energy Technology Data Exchange (ETDEWEB)

    Mengui, U.A., E-mail: ursulamengui@gmail.com [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil); Campos, R.A.; Alves, K.A.; Antunes, E.F. [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil); Hamanaka, M.H.M.O. [Centro de Tecnologia da Informação Renato Archer, Divisão de Superfícies de Interação e Displays, Rodovia D. Pedro I (SP 65) km 143.6, CP 6162, CEP 13089-500, Campinas, SP (Brazil); Corat, E.J.; Baldan, M.R. [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil)

    2015-04-15

    Highlights: • Hot filament chemical vapor deposition using methane, hydrogen and a solution of urea in methanol produced nitrogen-doped diamond films. • Diamonds had the grain morphology changed for long growth time (28 h), and the nitrogen doping were evaluated by Raman spectroscopy. • Field emission characterization shows a decrease up to 70% in threshold field, related to reference diamond layer. - Abstract: Nitrogen-doped microcrystalline diamond (N-MCD) films were grown on Si substrates using a hot filament reactor with methanol solution of urea as N source. Electrostatic self-assembly seeding of nanocrystalline diamond were used to obtain continuous and uniform films. Simultaneous changes in grains morphology and work function of diamond by nitrogen doping decreased the threshold field and the angular coefficient of Fowler–Nordhein plots. The field emission properties of our N-MCD films are comparable to carbon nanotube films.

  4. The adhesion and tribology analysis of polycrystalline diamond coated on Si3N4 substrate

    International Nuclear Information System (INIS)

    Hamzah, E.; Purniawan, A.

    2007-01-01

    Cauliflower and octahedral structure of polycrystalline diamond was deposited on silicon nitride (Si 3 N 4 ) substrate by microwave plasma assisted chemical vapor deposition (MPACVD). In our earlier work, the effects of deposition parameters namely, % Methane (CH 4 ) diluted in hydrogen (H 2 ), microwave power and chamber pressure on surface morphology were studied. In the present work the polycrystalline diamond coating adhesion and tribology behaviour were investigated. Rockwell C hardness tester and pin-on-disk tribometer were used to determine the adhesion and tribology properties on diamond coating, respectively. The morphology of the diamond before and after indentation was observed using field emission scanning electron microscopy (FESEM). Based on the adhesion analysis results, it was found that octahedral morphology has better adhesion than cauliflower structure. It was indicated by few cracks and less peel-off than cauliflower structure of polycrystalline diamond after indentation. Based on tribology analysis, polycrystalline diamond coated on substrate has better tribology properties than uncoated substrate. (author)

  5. Optimizing Chemical-Vapor-Deposition Diamond for Nitrogen-Vacancy Center Ensemble Magnetrometry

    Science.gov (United States)

    2017-06-01

    excited state sublevels. The NV system cannot optically cycle while in the 1 singlet state (with an average lifetime of about 250 ns [28]), hence...it is dark during this time period. Since the |0⟩ state decays mainly through optical cycling (average excited state lifetime of 12 ns [29]), it is...times: a /2 pulse that creates an equal superposition of the |0⟩ and | − 1⟩ spin states, a pulse that inverts the spin state from |0⟩ to | − 1

  6. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    Science.gov (United States)

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  7. Thermodynamic calculations for chemical vapor deposition of silicon carbide

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi

    1985-03-01

    The composition of vapor and condensed phases at equilibrium and CVD phase diagrams were calculated for the CH 3 SiCl 3 -H 2 -Ar system using a computer code SOLGASMIX-PV, which is based on the free energy minimization method. These calculations showed that β-SiC, β-SiC+C(s), β-SiC+Si(s), β-SiC+Si(l), Si(s), Si(l), or C(s) would be deposited depending on deposition parameters. In the CH 3 SiCl 3 -Ar system, condensed phase was found to be β-SiC+C(s) or C(s). Comparing the calculated CVD phase diagrams with the experimental results from the literature, β-SiC+C(s) and β-SiC+Si(s) were deposited in the experiments at the high temperature (more than 2000K) and low temperature (less than 1700K) parts of a resion, respectively, where only β-SiC would be deposited in the calculations. These are remakable results to consider the deposition mechanism of silicon carbide. (author)

  8. Remote Access Revolution: Chemical Crystallographers Enter a New Era at Diamond Light Source Beamline I19

    Directory of Open Access Journals (Sweden)

    Natalie T. Johnson

    2017-12-01

    Full Text Available Since the inception of the use of synchrotron radiation in the structural characterisation of crystalline materials by single-crystal diffraction in the late 20th century, the field has undergone an explosion of technological developments. These cover all aspects of the experiments performed, from the construction of the storage rings and insertion devices, to the end user functionalities in the experimental hutches. Developments in automation have most frequently been driven by the macromolecular crystallography community. The drive towards greater access to ever-brighter X-ray sources has benefited the entire field. Herein, we detail the revolution that is now occurring within the chemical crystallography community, utilising many of the tools developed by their more biologically oriented colleagues, along with specialised functionalities that are tailored to the small-molecule world. We discuss the benefits of utilising the advanced features of Diamond Light Source beamline I19 in the newly developed remote access mode and the step-change in productivity that can be established as a result.

  9. CVD diamond deposition onto dental burs

    International Nuclear Information System (INIS)

    Ali, N.; Sein, H.

    2001-01-01

    A hot-filament chemical vapor deposition (HFCVD) system has been modified to enable non-planar substrates, such as metallic wires and dental burs, to be uniformly coated with thin polycrystalline diamond films. Initially, diamond deposition was carried out on titanium and tantalum wires in order to test and optimize the system. High growth rates of the order of approx. 8 /hr were obtained when depositing diamond on titanium wires using the vertical filament arrangement. However, lower growth rates of the order of 4-5meu m/hr were obtained with diamond deposition on tantalum wires. To extend the work towards a practical biomedical application tungsten carbide dental burs were coated with diamond films. The as-grown films were found to be polycrystalline and uniform over the cutting tip. Finally, the costs relating to diamond CVD onto dental burs have been presented in this paper. The costs relating to coating different number of burs at a time and the effect of film thickness on costs have been included in this investigation. (author)

  10. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  11. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.

    Science.gov (United States)

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2009-10-01

    In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.

  12. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    Science.gov (United States)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Hatami, F.; Masselink, W. T.; Zhang, H.; Casalboni, M.

    2016-03-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N2) and in solvent vapours of methanol, clorophorm, acetone and water were measured. The presence of vapors of clorophorm, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed.

  13. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    International Nuclear Information System (INIS)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Casalboni, M.; Hatami, F.; Masselink, W.T.; Zhang, H.

    2016-01-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N 2 ) and in solvent vapours of methanol, chloroform, acetone and water were measured. The presence of vapors of chloroform, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed. (paper)

  14. Ballistic transport in graphene grown by chemical vapor deposition

    NARCIS (Netherlands)

    Calado, V.E.; Zhu, S.E.; Goswami, S.; Xu, Q.; Watanabe, K.; Taniguchi, T.; Janssen, G.C.A.M.; Vandersypen, L.M.K.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be

  15. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  16. Low-pressure chemical vapor deposition as a tool for deposition of thin film battery materials

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    Low Pressure Chemical Vapor Deposition was utilized for the deposition of LiCoO2 cathode materials for all-solid-state thin-film micro-batteries. To obtain insight in the deposition process, the most important process parameters were optimized for the deposition of crystalline electrode films on

  17. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  18. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  19. Metal–organic covalent network chemical vapor deposition for gas separation

    NARCIS (Netherlands)

    Boscher, N.D.; Wang, M.; Perrotta, A.; Heinze, K.; Creatore, A.; Gleason, K.K.

    2016-01-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal–organic covalent network (MOCN) layers. The resulting hyper-thin and flexible

  20. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  1. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    KAUST Repository

    Chen, Wei; Fan, Zhongli; Zeng, Gaofeng; Lai, Zhiping

    2013-01-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found

  2. Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses

    NARCIS (Netherlands)

    Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the

  3. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique

  4. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Driessen, A.; Lambeck, Paul; Hilderink, L.T.H.; Linders, Petrus W.C.; Popma, T.J.A.

    1999-01-01

    Silicon Oxynitride layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition. The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness, high homogeneity of the refractive index and good reproducibility of the layer

  5. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition

    NARCIS (Netherlands)

    Jodin, Lucie; Dupuis, Anne-Claire; Rouvière, Emmanuelle; Reiss, Peter

    2006-01-01

    The preparation of the catalyst is one of the key parameters which governs the quality of carbon nanotubes (CNTs) grown by catalyzed chemical vapor deposition (CVD). We investigated the influence of three different procedures of catalyst preparation on the type and diameter of CNTs formed under

  6. Recent results with CVD diamond trackers

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm{sup 2} diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 {mu}s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm{sup 2} diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  7. Recent results with CVD diamond trackers

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    We present recent results on the use of chemical vapor deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1*1 cm/sup 2/ diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 mu s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2*4 cm/sup 2/ diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch. (6 refs).

  8. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  9. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    Science.gov (United States)

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  10. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  11. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    Science.gov (United States)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  12. Study of hard diamond-like carbon films deposited in an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Yu Shiji; Ma Tengcai

    2003-01-01

    Chemical vapor deposition of the hard diamond-like carbon (DLC) films was achieved using an inductively coupled plasma source (ICPS). The microscopy, microhardness, deposition rate and structure characteristic of the DLC films were analyzed. It is shown that the ICPS is suitable for the hard DLC film deposition at relatively low substrate negative bias voltage, and the substrate negative bias voltage greatly affects chemical vapor deposition of the DLC film and its quality

  13. Studies of internal stress in diamond films prepared by DC plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    Wang Wanlu; Gao Jinying; Liao Kejun; Liu Anmin

    1992-01-01

    The internal stress in diamond thin films deposited by DC plasma CVD was studied as a function of methane concentration and deposited temperature. Experimental results have shown that total stress in diamond thin films is sensitive to the deposition conditions. The results also indicate that the compressive stress can be explained in terms of amorphous state carbon and hydrogen, and tensile stress is ascribed to the grain boundary relaxation model due to high internal surface area and microstructure with voids

  14. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K.; Zhu, Shou-En; Janssen, G. C. A. M.; Watanabe, K.; Taniguchi, T.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  15. Ballistic transport in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K., E-mail: l.m.k.vandersypen@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Zhu, Shou-En; Janssen, G. C. A. M. [Micro and Nano Engineering Laboratory, Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Watanabe, K.; Taniguchi, T. [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  16. Electron field emission for ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E. (and others)

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1--2.4 {mu}m thick were conformally deposited on sharp single Si microtip emitters, using microwave CH{sub 4}--Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60--100 {mu}A/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond--vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  17. Application of diamond window for infrared laser diagnostics in a tokamak device

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2004-01-01

    Chemical vapor deposited diamond disks have been successfully applied as the vacuum windows for infrared CO 2 laser interferometry and polarimetry used in electron density measurement in the JT-60U tokamak. In comparison with the conventional zinc-selenide windows, the Faraday rotation component of diamond windows was negligible. This results in an improvement of the Faraday rotation measurement of tokamak plasma by polarimetry

  18. Recent results on the development of radiation-hard diamond detectors

    CERN Document Server

    Conway, J S; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Russ, J; Schnetzer, S; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Thomson, G B; Trawick, M; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Charged particle detectors made from chemical vapor deposition (CVD) diamond have radiation hardness greatly exceeding that of silicon- based detectors. The CERN-based RD42 Collaboration has developed and tested CVD diamond microstrip and pixel detectors with an eye to their application in the intense radiation environment near the interaction region of hadron colliders. This paper presents recent results from tests of these detectors. (4 refs).

  19. A 3D tomographic EBSD analysis of a CVD diamond thin film

    International Nuclear Information System (INIS)

    Liu Tao; Raabe, Dierk; Zaefferer, Stefan

    2008-01-01

    We have studied the nucleation and growth processes in a chemical vapor deposition (CVD) diamond film using a tomographic electron backscattering diffraction method (3D EBSD). The approach is based on the combination of a focused ion beam (FIB) unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  20. Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN

    Science.gov (United States)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.

    1999-01-01

    Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.

  1. A 3D tomographic EBSD analysis of a CVD diamond thin film

    Directory of Open Access Journals (Sweden)

    Tao Liu, Dierk Raabe and Stefan Zaefferer

    2008-01-01

    Full Text Available We have studied the nucleation and growth processes in a chemical vapor deposition (CVD diamond film using a tomographic electron backscattering diffraction method (3D EBSD. The approach is based on the combination of a focused ion beam (FIB unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  2. Chemical vapor deposition (CVD) of uranium for alpha spectrometry; Deposicion quimica de vapor (CVD) de uranio para espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F., E-mail: luisalawliet@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2015-09-15

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  3. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  4. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Jones, B J; Nelson, N

    2016-01-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp 2 /sp 3 ratio (graphitic/diamond-like bonding ratio) and sp 2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions. (paper)

  5. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  6. Relationship between the evaporation rate and vapor pressure of moderately and highly volatile chemicals.

    Science.gov (United States)

    van Wesenbeeck, Ian; Driver, Jeffrey; Ross, John

    2008-04-01

    Volatilization of chemicals can be an important form of dissipation in the environment. Rates of evaporative losses from plant and soil surfaces are useful for estimating the potential for food-related dietary residues and operator and bystander exposure, and can be used as source functions for screening models that predict off-site movement of volatile materials. A regression of evaporation on vapor pressure from three datasets containing 82 pesticidal active ingredients and co-formulants, ranging in vapor pressure from 0.0001 to >30,000 Pa was developed for this purpose with a regression correlation coefficient of 0.98.

  7. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    International Nuclear Information System (INIS)

    Ndiege, Nicholas; Subramanian, Vaidyanathan; Shannon, Mark A.; Masel, Richard I.

    2008-01-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 μm using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC 2 H 5 ) 5 ) vapor on the deposition surface

  8. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  9. A quantitative infrared spectral library of vapor phase chemicals: applications to environmental monitoring and homeland defense

    Science.gov (United States)

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.

    2004-12-01

    The utility of infrared spectroscopy for monitoring and early warning of accidental or deliberate chemical releases to the atmosphere is well documented. Regardless of the monitoring technique (open-path or extractive) or weather the spectrometer is passive or active (Fourier transform or lidar) a high quality, quantitative reference library is essential for meaningful interpretation of the data. Pacific Northwest National Laboratory through the support of the Department of Energy has been building a library of pure, vapor phase chemical species for the last 4 years. This infrared spectral library currently contains over 300 chemicals and is expected to grow to over 400 chemicals before completion. The library spectra are based on a statistical fit to many spectra at different concentrations, allowing for rigorous error analysis. The contents of the library are focused on atmospheric pollutants, naturally occurring chemicals, toxic industrial chemicals and chemicals specifically designed to do damage. Applications, limitations and technical details of the spectral library will be discussed.

  10. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Petitfils, A.

    2007-09-01

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  11. THIN DIAMOND FILMS FOR SNS H INJECTIONS STRIPPING

    International Nuclear Information System (INIS)

    SHAW, R.W.; HERR, A.D.; FEIGERLE, C.S.; CUTLER, R.J.; LIAW, C.J.; LEE, Y.Y.

    2004-01-01

    We have investigated the preparation and testing of thin diamond foils for use in stripping the SNS H - Linac beam. A long useful lifetime for these foils is desirable to improve operational efficiency. Preliminary data presented at PAC 2001 indicated that diamond foils were superior to conventional evaporated carbon foils, exhibiting lifetimes approximately five-fold longer [1]. That work employed a fully supported diamond foil, a format that is not acceptable for the SNS application; at least two edges of the approximately 1 x 1 cm foils must be free standing to allow for beam rastering. Residual stress in a chemical vapor deposited (CVD) diamond foil results in film distortion (scrolling) when the film is released from its silicon growth substrate. We have attacked this problem by initially patterning the surface of CVD growth substrates with a 50 or 100 line/inch trapezoidal grating, followed by conformal diamond film growth on the patterned substrate. Then removal of the substrate by chemical etching produced a foil that possessed improved mechanical integrity due to its corrugation. The high nucleation density required to grow continuous, pinhole free diamond foils of the desired thickness (1 (micro)m, 350 (micro)g/cm 2 ) was achieved by a combination of substrate surface scratching and seeding. A variety of diamond foils have been tested using the BNL 750 keV Radio Frequency Quadrupole H - beam to simulate energy loss in the SNS. Those include flat, corrugated, microcrystalline, and nanocrystalline foils. Foil lifetimes are reported

  12. Spectroscopic ellipsometry characterization of nano-crystalline diamondfilms prepared at various substrate temperatures and pulsed plasma frequencies using microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery

    Czech Academy of Sciences Publication Activity Database

    Mistrík, J.; Janíček, P.; Taylor, Andrew; Fendrych, František; Fekete, Ladislav; Jäger, Aleš; Nesládek, M.

    2014-01-01

    Roč. 571, č. 1 (2014), s. 230-237 ISSN 0040-6090 R&D Projects: GA ČR GA13-31783S; GA MŠk(CZ) LM2011026 Grant - others: COST Nano TP(XE) MP0901; OP VK(XE) CZ.1.07/2.3.00/20.0306 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * thin films * microwave plasma-enhanced chemical vapor deposition * pulsed plasma * low deposition temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.759, year: 2014

  13. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  14. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  15. Selective data analysis for diamond detectors in neutron fields

    Directory of Open Access Journals (Sweden)

    Weiss Christina

    2017-01-01

    Full Text Available Detectors based on synthetic chemical vapor deposition diamond gain importance in various neutron applications. The superior thermal robustness and the excellent radiation hardness of diamond as well as its excellent electronic properties make this material uniquely suited for rough environments, such as nuclear fission and fusion reactors. The intrinsic electronic properties of single-crystal diamond sensors allow distinguishing various interactions in the detector. This can be used to successfully suppress background of γ-rays and charged particles in different neutron experiments, such as neutron flux measurements in thermal nuclear reactors or cross-section measurements in fast neutron fields. A novel technique of distinguishing background reactions in neutron experiments with diamond detectors will be presented. A proof of principle will be given on the basis of experimental results in thermal and fast neutron fields.

  16. The characteristics of ESR and 3-D TL spectra of diamonds

    International Nuclear Information System (INIS)

    Liu Shunsheng; Lu Xu; Fu Huifang

    2003-01-01

    Electron Spin Resonance (ESR) and 3-dimensional Thermoluminescence (3-D TL) spectra of natural diamond, high temperature-high pressure artificial diamond and high temperature-low pressure chemical vapor deposited (CVD) diamond were determined. The characteristics of spectra have been studied. It is found that isolated nitrogen, nitrogen exchange pair and nitrogen atom pair (S=1) are main forms of electron spin resonance nitrogen in natural and high temperature-high pressure artificial diamonds. The spectrum of CVD diamond is sampler, and contains only one peak caused by suspended bond of unsaturated carbon ones. For 3-D TL spectra, natural diamond has two peaks (∼370 nm and ∼510 nm) in 100-200 degree C temperature range, high temperature-high pressure artificial diamond only has ∼370 nm peak, and CVD diamond only has ∼500 nm peak. These characteristics would be useful for the quality inspection and classification of diamonds, as well as for the study of geologic actions associated with natural diamond

  17. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  18. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    Science.gov (United States)

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-01-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  20. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  1. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    Science.gov (United States)

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  2. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  3. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    International Nuclear Information System (INIS)

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work

  4. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  5. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Complete long-term corrosion protection with chemical vapor deposited graphene

    DEFF Research Database (Denmark)

    Yu, Feng; Camilli, Luca; Wang, Ting

    2018-01-01

    Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer-graphene......Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer......-graphene hybrid coating, comprising two single layers of CVD graphene sandwiched by three layers of polyvinyl butyral, which provides complete corrosion protection of commercial aluminum alloys even after 120 days of exposure to simulated seawater. The essential role played by graphene in the hybrid coating...

  8. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, M. [University of California Irvine, Irvine, CA 92697 (United States); Burchat, P. [Stanford University, Stanford, CA 94305-4060 (United States); Curry, S. [University of California Irvine, Irvine, CA 92697 (United States)], E-mail: scurry@slac.stanford.edu; Edwards, A.J. [Stanford University, Stanford, CA 94305-4060 (United States); Kagan, H.; Kass, R. [Ohio State University, Columbus, OH 43210 (United States); Kirkby, D. [University of California Irvine, Irvine, CA 92697 (United States); Majewski, S.; Petersen, B.A. [Stanford University, Stanford, CA 94305-4060 (United States)

    2007-12-11

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  9. High-Density Near-Field Readout Using Diamond Solid Immersion Lens

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Yamamoto, Masanobu; Schaich, Thomas J.; van Oerle, Bart M.; Godfried, Herman P.; Kriele, Paul A. C.; Houwman, Evert P.; Nelissen, Wim H. M.; Pels, Gert J.; Spaaij, Paul G. M.

    2006-02-01

    We investigated high-density near-field readout using a diamond solid immersion lens (SIL). A synthetic single-crystal chemical vapor deposition diamond provides a high refractive index and a high transmission for a wide wavelength range. Since the refractive index at a wavelength of 405 nm is 2.458, we could design a solid immersion lens with an effective numerical aperture of 2.34. Using the diamond SIL, we observed the eye pattern of a 150-GB-capacity (104.3 Gbit/in.2) disk with a track pitch of 130 nm and a bit length of 47.6 nm.

  10. Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Phillips, W.

    1992-01-01

    Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows

  11. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  12. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  13. Finite Element Analysis Modeling of Chemical Vapor Deposition of Silicon Carbide

    Science.gov (United States)

    2014-06-19

    concentrations. This is the method by which species adsorb to the surface of the substrate. The movement resulting from diffusion is governed by...itself. This can be treacherous, however. The mesh is what the entire finite element method is built upon. If the movement of the backbone has... Brownian Motion Algorithm for Tow Scale Modeling of Chemical Vapor Infiltration. Computational Materials Science, 1871-1878. !178 23. Wang, C. & D

  14. Electronic and Mechanical Properties of GrapheneGermanium Interfaces Grown by Chemical Vapor Deposition

    Science.gov (United States)

    2015-10-27

    that graphene acts as a diffusion barrier to ambient contaminants, as similarly prepared bare Ge exposed to ambient conditions possesses a much...in-plane order underneath the graphene (Figure 1b,f). The stabilization of Ge terraces with half-step heights indicates that the graphene modifies the...Electronic and Mechanical Properties of Graphene −Germanium Interfaces Grown by Chemical Vapor Deposition Brian Kiraly,†,‡ Robert M. Jacobberger

  15. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  16. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates

    OpenAIRE

    Fechine, Guilhermino J. M.; Martin-Fernandez, Inigo; Yiapanis, George; de Oliveira, Ricardo V. Bof; Hu, Xiao; Yarovsky, Irene; Neto, Antonio H. Castro; Ozyilmaz, Barbaros

    2014-01-01

    We demonstrate the direct dry transfer of large area Chemical Vapor Deposition graphene to several polymers (low density polyethylene, high density polyethylene, polystyrene, polylactide acid and poly(vinylidenefluoride-co-trifluoroethylene) by means of only moderate heat and pressure, and the later mechanical peeling of the original graphene substrate. Simulations of the graphene-polymer interactions, rheological tests and graphene transfer at various experimental conditions show that contro...

  17. Chemically vapor-deposited tungsten: its high temperature strength and ductility

    International Nuclear Information System (INIS)

    Bryant, W.A.

    1977-01-01

    The high temperature tensile ductility (as measured by total elongation normal to the growth direction) of chemically vapor-deposited tungsten was found to be significantly greater than previously reported. A correlation was found between ductility and void content. However, voids were found to have essentially no effect on the high temperature strength of this material, which is considerably weaker than powder metallurgy tungsten. (Auth.)

  18. Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals

    International Nuclear Information System (INIS)

    Poet, Torka S.; Timchalk, Chuck

    2006-01-01

    A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupational Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals

  19. Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Poet, Torka S.; Timchalk, Chuck

    2006-03-24

    A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupational Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals.

  20. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  1. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, Nicola, E-mail: nicola.lisi@enea.it [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Buonocore, Francesco; Dikonimos, Theodoros; Leoni, Enrico [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Faggio, Giuliana; Messina, Giacomo [Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria (Italy); Morandi, Vittorio; Ortolani, Luca [CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna (Italy); Capasso, Andrea [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy)

    2014-11-28

    The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors. - Highlights: • Graphene films were grown by fast chemical vapor deposition of ethanol on copper. • High-temperature/short-time growth produced highly crystalline graphene. • The copper substrate was entirely covered by a graphene film in just 20 s. • Addition of H{sub 2} had a negligible effect on the crystalline quality.

  2. Cyclic voltammetry response of an undoped CVD diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fabisiak, K., E-mail: kfab@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Torz-Piotrowska, R. [Faculty of Chemical Technology and Engineering, UTLS Seminaryjna 3, 85-326 Bydgoszcz (Poland); Staryga, E. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Paprocki, K.; Popielarski, P.; Bylicki, F. [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Wrzyszczynski, A. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Correlation was found between diamond quality and its electrochemical performance. Black-Right-Pointing-Pointer The electrode sensitivity depends on the content of sp{sup 2} carbon phase in diamond layer. Black-Right-Pointing-Pointer The sp{sup 2} carbon phase content has little influence on the CV peak separation ({Delta}E{sub p}). - Abstract: The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide-ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance.

  3. Response of CVD diamond detectors to alpha radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souw, E.-K. [Brookhaven National Lab., Upton, NY (United States); Meilunas, R.J. [Northrop-Grumman Corporation, Bethpage, NY 11714-3582 (United States)

    1997-11-21

    This article describes some results from an experiment with CVD diamond films used as {alpha} particle detectors. It demonstrates that bulk polarization can be effectively stopped within a reasonable time interval. This will enable detector calibration and quantitative measurement. A possible mechanism for the observed polarization quenching is discussed. It involves two types of carrier traps and a tentative band-gap model derived from the results of photoconductive current measurements. The experiment was set up mainly to investigate {alpha} detection properties of polycrystalline diamond films grown by the technique of microwave plasma enhanced chemical vapor deposition. For comparison, two commercially purchased diamond wafers were also investigated, i.e., one grown by the DC arc jet method, and the other, a type-IIa natural diamond wafer (not preselected). The best response to {alpha} particles was obtained using diamond thin-films grown by the microwave PECVD method, followed by the type-IIa natural diamond, and finally, the CVD diamond grown by the DC arc jet technique. (orig.). 43 refs.

  4. Conformal coverage of poly(3,4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition

    NARCIS (Netherlands)

    Im, S.G.; Kusters, D.J.N.; Choi, W.; Baxamusa, S.H.; Sanden, van de M.C.M.; Gleason, K.K.

    2008-01-01

    Novel nanoporous poly(3,4-ethylenedioxythiophene) (PEDOT) films with basalt-like surface morphology are successfully obtained via a one-step, vapor phase process of oxidative chemical vapor deposition (oCVD) by introducing a new oxidant, CuCl2, The substrate temperature of the oCVD process is a

  5. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  6. Metalorganic chemical vapor deposition and characterization of ZnO materials

    Science.gov (United States)

    Sun, Shangzu; Tompa, Gary S.; Hoerman, Brent; Look, David C.; Claflin, Bruce B.; Rice, Catherine E.; Masaun, Puneet

    2006-04-01

    Zinc oxide is attracting growing interest for potential applications in electronics, optoelectronics, photonics, and chemical and biochemical sensing, among other applications. We report herein our efforts in the growth and characterization of p- and n-type ZnO materials by metalorganic chemical vapor deposition (MOCVD), focusing on recent nitrogen-doped films grown using diethyl zinc as the zinc precursor and nitric oxide (NO) as the dopant. Characterization results, including resistivity, Hall measurements, photoluminescence, and SIMS, are reported and discussed. Electrical behavior was observed to be dependent on illumination, atmosphere, and heat treatment, especially for p-type material.

  7. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Johnson, Kyle W.; Guruvenket, Srinivasan; Sailer, Robert A.; Ahrenkiel, S. Phillip; Schulz, Douglas L.

    2013-01-01

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H 2 O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF 2 . • Carbonaceous contamination from the precursor was minimal

  8. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  9. Growing of synthetic diamond boron-doped films for analytical applications

    International Nuclear Information System (INIS)

    Barros, Rita de Cassia Mendes de; Suarez-Iha, Maria Encarnacion Vazquez; Corat, Evaldo Jose; Iha, Koshun

    1999-01-01

    Chemical vapor deposition (CVD) technology affords the possibility of producing synthetic diamond film electrodes, with several advantageous properties due the unique characteristics of diamond. In this work, we present the study of boron-doped diamond films growth on molybdenum and silicon substrates, using boron trioxide as dopant in a filament assisted CVD reactor. The objective was to obtain semiconductor diamond for use as electrode. The samples were characterized by scanning electron microscopy and Raman spectroscopy to confirm morphology and doping levels. We have assembled electrodes with the various samples, Pt, Mo, Si and diamond, by utilizing brass and left as base materials. The electrodes were tested in neutralization potentiometric titrations for future use in electroanalysis. Boron-doped electrodes have very good performance compared with Pt, widely used in analytical chemistry. (author)

  10. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  11. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...

  12. Influence of gas chemistry on Si-V color centers in diamond films

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Ižák, Tibor; Varga, Marián; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2580-2584 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GA14-04790S Institutional support: RVO:68378271 Keywords : chemical vapor deposition * diamond * photoluminescence * plasma * silicon optical centers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  13. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  14. Epithelial cells morphology and adhesion on diamonds films deposited and chemically modified by plasma processes

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, František; Mandys, V.

    2014-01-01

    Roč. 9, č. 3 (2014), "031012-1"-"031012-8" ISSN 1934-8630 R&D Projects: GA ČR GAP108/12/0996; GA AV ČR KAN400100701 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond (NCD) * AFM * surface s * DNA Subject RIV: BO - Biophysics Impact factor: 3.374, year: 2014 http://scitation.aip.org/content/avs/journal/bip/9/3/10.1116/1.4890471

  15. Facile synthesis of graphene on single mode fiber via chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang, C.; Man, B.Y.; Jiang, S.Z.; Yang, C.; Liu, M.; Chen, C.S.; Xu, S.C.; Feng, D.J.; Bi, D.; Liu, F.Y.; Qiu, H.W.

    2014-01-01

    Direct deposition of graphene film on the standard single mode fiber is offered using a Cu-vapor-assisted chemical vapor deposition system. The gas flow of H 2 and Ar before the growth process plays a crucial role for the direct deposition of the graphene film and the layers of the graphene can be controlled by the growth time. With a large gas flow, Cu atoms are carried off with the gas flow and hard to deposit on the surface of the single mode fiber before the growth process. Consequently, uniform graphene film is obtained in this case. On the contrary, with a lower one, Cu atoms is facile to deposit on the surface of the single mode fiber and form nanodots acting as active catalytic sites for the growth of carbon nanotubes. This method presents us a promising transfer-free technique for fabrication of the photonic applications.

  16. Vaporization of chemical species and the production of aerosols during a core debris/concrete interaction

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Mignanelli, M.A.; Potter, P.E.; Smith, P.N.

    1987-01-01

    The equilibrium chemical composition within gas bubbles sparging through isothermal molten corium-concrete mixtures has been evaluated theoretically. A series of sensitivity calculations gives some insight into a number of factors which are of importance in determining the radionuclide and non-radioactive releases during core-concrete interaction. The degree of mixing or layering of the pool has turned out to be of paramount importance in determining the magnitudes of the releases. The presence of unoxidized zirconium in the melt tends to enhance the release of a number of species and the type of concrete used for the base mat can have a significant effect. The predictions can be sensitive to the thermodynamic data used in the calculations. The vaporization of various species into the gas bubbles can require large amounts of heat; the loss of this heat from the melt can have an effect on the extent of the vaporization

  17. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  18. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication

    International Nuclear Information System (INIS)

    Tai, N.H.; Chou, T.W.

    1990-01-01

    A quasi-steady-state approach is applied to model the pressure-driven, temperature-gradient chemical vapor infiltration (improved CVI process) for ceramic matrix composites fabrication. The deposited matrix in this study is SiC which is converted from the thermal decomposition of methyltrichlorosilane gas under excess hydrogen. A three-dimensional unit cell is adopted to simulate the spatial arrangements of reinforcements in discontinuous fiber mats and three-dimensionally woven fabrics. The objectives of this paper are to predict the temperature and density distributions in a fibrous preform during processing, the advancement of the solidified front, the total fabrication period, and the vapor inlet pressure variation for maintaining a constant flow rate

  19. Controllable growth of nanostructured carbon from coal tar pitch by chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuguang; Yang Yongzhen; Ji Weiyun; Liu Hongyan; Zhang Chunyi; Xu Bingshe

    2007-01-01

    The direct synthesis of vapor grown carbon fibers with different diameters was achieved by the pyrolysis of coal tar pitch by chemical vapor deposition. The products were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The experimental results demonstrated that ferrocene content, reaction temperature and Ar flow rate strongly influenced the yield and nature of nanostructured carbon materials, pure carbon microbeads, with diameter distribution ranging from 450 to 650 nm, were also obtained in the absence of catalyst, uniform and straight carbon nanofibers with the outer diameter of about 115 nm were obtained and curl and thick carbon fibers with narrow diameter distribution of 300-350 nm were produced

  20. MgB2 thin films by hybrid physical-chemical vapor deposition

    International Nuclear Information System (INIS)

    Xi, X.X.; Pogrebnyakov, A.V.; Xu, S.Y.; Chen, K.; Cui, Y.; Maertz, E.C.; Zhuang, C.G.; Li, Qi; Lamborn, D.R.; Redwing, J.M.; Liu, Z.K.; Soukiassian, A.; Schlom, D.G.; Weng, X.J.; Dickey, E.C.; Chen, Y.B.; Tian, W.; Pan, X.Q.; Cybart, S.A.; Dynes, R.C.

    2007-01-01

    Hybrid physical-chemical vapor deposition (HPCVD) has been the most effective technique for depositing MgB 2 thin films. It generates high magnesium vapor pressures and provides a clean environment for the growth of high purity MgB 2 films. The epitaxial pure MgB 2 films grown by HPCVD show higher-than-bulk T c due to tensile strain in the films. The HPCVD films are the cleanest MgB 2 materials reported, allowing basic research, such as on magnetoresistance, that reveals the two-band nature of MgB 2 . The carbon-alloyed HPCVD films demonstrate record-high H c2 values promising for high magnetic field applications. The HPCVD films and multilayers have enabled the fabrication of high quality MgB 2 Josephson junctions

  1. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    Jany, Ch.

    1998-01-01

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp 2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  2. Development of a templated approach to fabricate diamond patterns on various substrates.

    Science.gov (United States)

    Shimoni, Olga; Cervenka, Jiri; Karle, Timothy J; Fox, Kate; Gibson, Brant C; Tomljenovic-Hanic, Snjezana; Greentree, Andrew D; Prawer, Steven

    2014-06-11

    We demonstrate a robust templated approach to pattern thin films of chemical vapor deposited nanocrystalline diamond grown from monodispersed nanodiamond (mdND) seeds. The method works on a range of substrates, and we herein demonstrate the method using silicon, aluminum nitride (AlN), and sapphire substrates. Patterns are defined using photo- and e-beam lithography, which are seeded with mdND colloids and subsequently introduced into microwave assisted chemical vapor deposition reactor to grow patterned nanocrystalline diamond films. In this study, we investigate various factors that affect the selective seeding of different substrates to create high quality diamond thin films, including mdND surface termination, zeta potential, surface treatment, and plasma cleaning. Although the electrostatic interaction between mdND colloids and substrates is the main process driving adherence, we found that chemical reaction (esterification) or hydrogen bonding can potentially dominate the seeding process. Leveraging the knowledge on these different interactions, we optimize fabrication protocols to eliminate unwanted diamond nucleation outside the patterned areas. Furthermore, we have achieved the deposition of patterned diamond films and arrays over a range of feature sizes. This study contributes to a comprehensive understanding of the mdND-substrate interaction that will enable the fabrication of integrated nanocrystalline diamond thin films for microelectronics, sensors, and tissue culturing applications.

  3. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  4. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  5. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  6. Microwave PECVD of nanocrystalline diamond with rf induced bias nucleation

    Czech Academy of Sciences Publication Activity Database

    Frgala, Z.; Jašek, O.; Karásková, M.; Zajíčková, L.; Buršíková, V.; Franta, D.; Matějková, Jiřina; Rek, Antonín; Klapetek, P.; Buršík, Jiří

    2006-01-01

    Roč. 56, Suppl. B (2006), s. 1218-1223 ISSN 0011-4626 R&D Projects: GA ČR(CZ) GA202/05/0607 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z20410507 Keywords : nanocrystalline diamond * plasma enhanced chemical vapor deposition * self-bias Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  7. Si-related color centers in nanocrystalline diamond thin films

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Holovský, Jakub; Remeš, Zdeněk; Müller, Martin; Kočka, Jan; Kromka, Alexander

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2603-2606 ISSN 0370-1972 R&D Projects: GA TA ČR TA01011740; GA ČR(CZ) GA14-04790S; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : chemical vapor deposition * color center * diamond * photoluminescence * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.489, year: 2014

  8. D.C. Arcjet Diamond Deposition

    Science.gov (United States)

    Russell, Derrek Andrew

    1995-01-01

    Polycrystalline diamond films synthesized by a D.C. (direct current) arcjet device was reported for the first time in 1988. This device is capable of higher diamond growth rates than any other form of diamond CVD (chemical vapor deposition) process due to its inherent versatility with regard to the enthalpy and fluid properties of the diamond-depositing vapor. Unfortunately, the versatility of this type of device is contrasted by many difficulties such as arc stability and large heat fluxes which make applying it toward diamond deposition a difficult problem. The purpose of this work was to convert the dc arcjet, which is primarily a metallurgical device, into a commercially viable diamond CVD process. The project was divided into two parts: process development and diagnostics. The process development effort concentrated on the certain engineering challenges. Among these was a novel arcjet design that allowed the carbon-source gas to be injected downstream of the tungsten cathode while still facilitating mixture with the main gas feed. Another engineering accomplishment was the incorporation of a water -cooled substrate cooler/spinner that maintained the substrate at the proper temperature, provided the substrate with a large thermal time constant to reduce thermal shock of the diamond film, and enabled the system to achieve a four -inch diameter growth area. The process diagnostics effort concentrated on measurements aimed at developing a fundamental understanding of the properties of the plasma jet such as temperature, plasma density, Mach number, pressure at the substrate, etc. The plasma temperature was determined to be 5195 K by measuring the rotational temperature of C _2 via optical emission spectroscopy. The Mach number of the plasma jet was determined to be ~6.0 as determined by the ratio of the stagnation pressures before and after the shock wave in the plasma jet. The C_2 concentration in the plasma jet was determined to be {~10 }^{12} cm^ {-3} by

  9. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    Science.gov (United States)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  10. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H. [Materials Synthesis Laboratory, Departments of Physics and Chemistry, and Center for Advanced Photonic and Electronic Materials (CAPEM), State University of New York at Buffalo, Buffalo, New York 14260 (United States); Siegal, M.P.; Provencio, P.N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  11. Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition

    Science.gov (United States)

    Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.

    2002-03-01

    We grow multiwall carbon nanotube (CNT) films using thermal chemical vapor deposition at atmospheric pressure using a mixture of acetylene and nitrogen from a 4-nm-thick Ni film catalyst. CNTs are characterized using electron microscopy and Rutherford backscattering spectrometry. CNTs grown with this method are extremely uniform in diameter, both throughout the sample and within the lengths of individual tubes. Nanotube outer diameters, ranging from 5-350 nm, and the total deposition of carbon material, increase exponentially with growth temperature from 630 °C-790 °C.

  12. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mbar....... According to the model, the predominant tantalum growth species is TaCl3. The temperature is shown to have a pronounced effect onthe morphology and rate of deposition of the tantalum and an apparent change in deposition mechanism occurs between 850–900 °C, resulting in the deposition rate at 900 °C being...

  13. Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system

    International Nuclear Information System (INIS)

    Wang Zhipeng; Shoji, Mao; Ogata, Hironori

    2011-01-01

    We employ a new gas mixture of CH 4 -Ar to fabricate carbon nanosheets by microwave plasma enhanced chemical vapor deposition at the growth temperature of less than 500 deg. C. The catalyst-free nanosheets possess flower-like structures with a large amount of sharp edges, which consist of a few layers of graphene sheets according to the observation by transmission electron microscopy. These high-quality carbon nanosheets demonstrated a faster electron transfer between the electrolyte and the nanosheet surface, due to their edge defects and graphene structures.

  14. Room-temperature plasma-enhanced chemical vapor deposition of SiOCH films using tetraethoxysilane

    International Nuclear Information System (INIS)

    Yamaoka, K.; Yoshizako, Y.; Kato, H.; Tsukiyama, D.; Terai, Y.; Fujiwara, Y.

    2006-01-01

    Carbon-doped silicon oxide (SiOCH) thin films were deposited by room-temperature plasma-enhanced chemical vapor deposition (PECVD) using tetraethoxysilane (TEOS). The deposition rate and composition of the films strongly depended on radio frequency (RF) power. The films deposited at low RF power contained more CH n groups. The SiOCH films showed high etch rate and low refractive index in proportion to the carbon composition. The deposition with low plasma density and low substrate temperature is effective for SiOCH growth by PECVD using TEOS

  15. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  16. Test Operations Procedure (TOP) 08-2-188 Chemical Point Detector Vapor Testing

    Science.gov (United States)

    2018-04-27

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 08-2-188 Chemical Point Detector Vapor Testing 5a. CONTRACT...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Dugway Proving Ground West Desert Test Center (TEDT-DPW) Dugway, UT 84022-5000 8. PERFORMING ORGANIZATION

  17. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD Method

    Directory of Open Access Journals (Sweden)

    Yehia M. Manawi

    2018-05-01

    Full Text Available Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs, carbon nanofibers (CNFs, graphene, carbide-derived carbon (CDC, carbon nano-onion (CNO and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  18. The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Ledinský, Martin; Stuchlík, Jiří; Stuchlíková, The-Ha; Bakardjieva, Snejana; Hruška, Karel; Fejfar, Antonín; Kočka, Jan

    2010-01-01

    Roč. 21, č. 41 (2010), 415604/1-415604/7 ISSN 0957-4484 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40320502 Keywords : nanoneedles * nanowires * silicon * plasma * chemical vapor deposition * crystal structure * growth * phonon * SEM * Raman Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  19. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method

    Science.gov (United States)

    Manawi, Yehia M.; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A.

    2018-01-01

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research. PMID:29772760

  20. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  1. ZnO nanowall network grown by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Amrita, E-mail: but.then.perhaps@gmail.com; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2015-06-24

    Network of wedge shaped ZnO nanowalls are grown on c-sapphire by Chemical Vapor Deposition (CVD) technique. Structural studies using x-ray diffraction show much better crystallinity in the nanowall sample as compared to the continuous film. Moreover, the defect related broad green luminescence is found to be suppressed in the nanowall sample. The low temperature photoluminescence study also suggests the quantum confinement of carriers in nanowall sample. Electrical studies performed on the nanowalls show higher conductivity, which has been explained in terms of the reduction of scattering cross-section as a result of 1D quantum confinement of carriers on the tip of the nanowalls.

  2. An Investigation on the Formation of Carbon Nanotubes by Two-Stage Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. S. Shamsudin

    2012-01-01

    Full Text Available High density of carbon nanotubes (CNTs has been synthesized from agricultural hydrocarbon: camphor oil using a one-hour synthesis time and a titanium dioxide sol gel catalyst. The pyrolysis temperature is studied in the range of 700–900°C at increments of 50°C. The synthesis process is done using a custom-made two-stage catalytic chemical vapor deposition apparatus. The CNT characteristics are investigated by field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results showed that structural properties of CNT are highly dependent on pyrolysis temperature changes.

  3. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Directory of Open Access Journals (Sweden)

    Narendra Acharya

    2016-08-01

    Full Text Available In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc and high critical current density (Jc. The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  4. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  5. Dispersion of carbon nanotubes in hydroxyapatite powder by in situ chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Haipeng; Wang Lihui; Liang, Chunyong; Wang Zhifeng; Zhao Weimin

    2010-01-01

    In the present work, we use chemical vapor deposition of methane to disperse carbon nanotubes (CNTs) within hydroxyapatite (HA) powder. The effect of different catalytic metal particles (Fe, Ni or Co) on the morphological and structural development of the powder and dispersion of CNTs in HA powder was investigated. The results show that the technique is effective in dispersing the nanotubes within HA powder, which simultaneously protects the nanotubes from damage. The results can have important and promising speculations for the processing of CNT-reinforced HA-matrix composites in general.

  6. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor.

    Science.gov (United States)

    Olcese, Roberto Nicolas; Lardier, George; Bettahar, Mohammed; Ghanbaja, Jaafar; Fontana, Sébastien; Carré, Vincent; Aubriet, Frédéric; Petitjean, Dominique; Dufour, Anthony

    2013-08-01

    Lignin is a potential renewable material for the production of bio-sourced aromatic chemicals. We present the first hydrotreatment of lignin pyrolysis vapors, before any condensation, using inexpensive and sustainable iron-silica (Fe/SiO2 ) and iron-activated carbon (Fe/AC) catalysts. Lignin pyrolysis was conducted in a tubular reactor and vapors were injected in a fixed bed of catalysts (673 K, 1 bar) with stacks to investigate the profile of coke deposit. More than 170 GC-analyzable compounds were identified by GCxGC (heart cutting)/flame ionization detector mass spectrometry. Lignin oligomers were analyzed by very high resolution mass spectrometry, called the "petroleomic" method. They are trapped by the catalytic fixed bed and, in particular, by the AC. The catalysts showed a good selectivity for the hydrodeoxygenation of real lignin vapors to benzene, toluene, xylenes, phenol, cresols, and alkyl phenols. The spent catalysts were characterized by temperature-programmed oxidation, transmission electron microscopy (TEM), and N2 sorption. Micropores in the Fe/AC catalyst are completely plugged by coke deposits, whereas the mesoporous structure of Fe/SiO2 is unaffected. TEM images reveal two different types of coke deposit: 1) catalytic coke deposited in the vicinity of iron particles and 2) thermal coke (carbonaceous particles ≈1 μm in diameter) formed from the gas-phase growth of lignin oligomers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  8. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    International Nuclear Information System (INIS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-01-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis

  9. Controlling physical and chemical bonding of polypyrrole to boron doped diamond by surface termination

    Czech Academy of Sciences Publication Activity Database

    Ukraintsev, Egor; Kromka, Alexander; Janssen, W.; Haenen, K.; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 1 (2013), s. 17-26 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Grant - others:EU FP7 Marie Curie ITN MATCON(XE) PITN-GA-2009-238201 Institutional support: RVO:68378271 Keywords : electrochemical growth * polypyrrole * boron doped diamond * scanning electron microscopy * Kelvin force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/papers/vol8/80100017.pdf

  10. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  11. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    Science.gov (United States)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive

  12. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kada, W., E-mail: kada.wataru@gunma-u.ac.jp [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kambayashi, Y.; Ando, Y. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Onoda, S. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Umezawa, H.; Mokuno, Y. [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Shikata, S. [Kwansei Gakuin Univ., 2-1, Gakuen, Mita, Hyogo 669-1337 (Japan); Makino, T.; Koka, M. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Hanaizumi, O. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kamiya, T.; Ohshima, T. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  13. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  14. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan

    2016-10-31

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer the advantages of better electronic contact and easier band offset tuning. Here, we demonstrate a photoresist-free focused ion beam (FIB) method to pattern as-grown TMDC monolayers by chemical vapor deposition, where the exposed edges from FIB etching serve as the seeds for growing a second TMDC material to form desired lateral heterostructures with arbitrary layouts. The proposed lithographic and growth processes offer better controllability for fabrication of the TMDC heterostrucuture, which enables the construction of devices based on heterostructural monolayers. © 2016 American Chemical Society.

  15. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  16. High speed dry machining of MMCs with diamond tools

    International Nuclear Information System (INIS)

    Collins, J.L.

    2001-01-01

    The increasing use of metal matrix composites (MMCs) has raised new issues in their machining. Industrial demands for higher speed and dry machining of MMCs with improved component production to closer tolerances have driven the development of new tool materials. In particular, the wear characteristics of synthetic diamond tooling satisfy many of the requirements imposed in cutting these highly abrasive workpieces. The use of diamond tool materials, such as polycrystalline diamond (PCD), has resulted in tool life improvements which, allied with environmental considerations, show great potential for the development of dry cutting. This paper explores the wear characteristics of PCD, which is highly suited to the dry machining of particulate silicon carbide MMCs. Also, two further diamond tool materials are evaluated - chemical vapor deposition (CVD) thick layer diamond and synthetic single crystal diamond. Their suitability for the efficient machining of high volume fraction MMC materials is shown and their potential impact an the subsequent acceptance and integration of MMCs into engineering components is discussed. (author)

  17. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng

    2012-01-28

    Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.

  18. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  19. Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Park, Eunsil; Kim, Jongwon; Lee, Changseop

    2014-01-01

    This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of 110 .deg. C in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at 700 .deg. C of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as 292 m 2 g -1 high specific surface area

  20. Understanding the reaction kinetics to optimize graphene growth on Cu by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Juergen; Boebel, Lena; Zwaschka, Gregor; Guenther, Sebastian [Technische Universitaet Muenchen, Zentralinstitut fuer Katalyseforschung, Chemie Department, Physikalische Chemie mit Schwerpunkt Katalyse, Garching (Germany)

    2017-11-15

    Understanding and controlling the growth kinetics of graphene is a prerequisite to synthesize this highly wanted material by chemical vapor deposition on Cu, e.g. for the construction of ultra-stable electron transparent membranes. It is reviewed that Cu foils contain a considerable amount of carbon in the bulk which significantly exceeds the expected amount of thermally equilibrated dissolved carbon in Cu and that this carbon must be removed before any high quality graphene may be grown. Starting with such conditioned Cu foils, systematic studies of the graphene growth kinetics in a reactive CH{sub 4}/H{sub 2} atmosphere allow to extract the following meaningful data: prediction of the equilibrium constant of the graphene formation reaction within a precision of a factor of two, the confirmation that the graphene growth proceeds from a C(ad)-phase on Cu which is in thermal equilibrium with the reactive gas phase, its apparent activation barrier and finally the prediction of the achievable growth velocity of the growing graphene flakes during chemical vapor deposition. As a result of the performed study, growth parameters are identified for the synthesis of high quality monolayer graphene with single crystalline domains of 100-1000 μm in diameter within a reasonable growth time. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Carbonized tantalum catalysts for catalytic chemical vapor deposition of silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shimin [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Gao Huiping; Ren Tong; Ying Pinliang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Li Can, E-mail: canli@dicp.ac.cn [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China)

    2012-06-01

    Catalytic chemical vapor deposition (Cat-CVD) has been demonstrated as a promising way to prepare device-quality silicon films. However, catalyst ageing due to Si contamination is an urgency to be solved for the practical application of the technique. In this study, the effect of carbonization of tantalum catalyst on its structure and performance was investigated. The carbonized Ta catalyst has a TaC surface layer which is preserved over the temperature range between 1450 and 1750 Degree-Sign C and no Si contamination occurs on the catalyst after long-term use. Si film prepared using the carbonized Ta catalyst has a similar crystal structure to that prepared by uncarbonized Ta catalyst. Formation of the TaC surface layer can alleviate the ageing problem of the catalyst, which shows great potential as a stable catalyst for Cat-CVD of Si films. - Highlights: Black-Right-Pointing-Pointer Si films prepared by catalytic chemical vapor deposition. Black-Right-Pointing-Pointer Carbonized Ta with a TaC surface layer used as catalyst. Black-Right-Pointing-Pointer TaC surface structure preserved after long-term use in a wide temperature range. Black-Right-Pointing-Pointer Help to solve the ageing problem of metal catalysts. Black-Right-Pointing-Pointer Si film obtained has a similar crystal structure to that prepared by Ta catalyst.

  2. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  3. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  5. Chemical vapor deposition. Volume 2. 1975--July, 1978 (a bibliography with abstracts). Report for 1975--July 1978

    International Nuclear Information System (INIS)

    Smith, M.F.

    1978-07-01

    Research on chemical vapor deposition of carbon, carbides, ceramics, metals, and glasses are cited. Applications of this process include optical coatings, semiconducting films, laser materials, solar cells, composite fabrication, and nuclear reactor material fabrication. The physical, mechanical, and chemical properties of these coatings are covered

  6. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    Science.gov (United States)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  7. Chemical vapor deposition of Si/SiC nano-multilayer thin films

    International Nuclear Information System (INIS)

    Weber, A.; Remfort, R.; Woehrl, N.; Assenmacher, W.; Schulz, S.

    2015-01-01

    Stoichiometric SiC films were deposited with the commercially available single source precursor Et_3SiH by classical thermal chemical vapor deposition (CVD) as well as plasma-enhanced CVD at low temperatures in the absence of any other reactive gases. Temperature-variable deposition studies revealed that polycrystalline films containing different SiC polytypes with a Si to carbon ratio of close to 1:1 are formed at 1000 °C in thermal CVD process and below 100 °C in the plasma-enhanced CVD process. The plasma enhanced CVD process enables the reduction of residual stress in the deposited films and offers the deposition on temperature sensitive substrates in the future. In both deposition processes the film thickness can be controlled by variation of the process parameters such as the substrate temperature and the deposition time. The resulting material films were characterized with respect to their chemical composition and their crystallinity using scanning electron microscope, energy dispersive X-ray spectroscopy (XRD), atomic force microscopy, X-ray diffraction, grazing incidence X-ray diffraction, secondary ion mass spectrometry and Raman spectroscopy. Finally, Si/SiC multilayers of up to 10 individual layers of equal thickness (about 450 nm) were deposited at 1000 °C using Et_3SiH and SiH_4. The resulting multilayers features amorphous SiC films alternating with Si films, which feature larger crystals up to 300 nm size as measured by transmission electron microscopy as well as by XRD. XRD features three distinct peaks for Si(111), Si(220) and Si(311). - Highlights: • Stoichiometric silicon carbide films were deposited from a single source precursor. • Thermal as well as plasma-enhanced chemical vapor deposition was used. • Films morphology, crystallinity and chemical composition were characterized. • Silicon/silicon carbide multilayers of up to 10 individual nano-layers were deposited.

  8. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  9. HFCVD Diamond-Coated Mechanical Seals

    Directory of Open Access Journals (Sweden)

    Raul Simões

    2018-05-01

    Full Text Available A mechanical seal promotes the connection between systems or mechanisms, preventing the escape of fluids to the exterior. Nonetheless, due to extreme working conditions, premature failure can occur. Diamond, due to its excellent properties, is heralded as an excellent choice to cover the surface of these devices and extend their lifetime. Therefore, the main objective of this work was to deposit diamond films over mechanical seals and test the coated seals on a water pump, under real working conditions. The coatings were created by hot filament chemical vapor deposition (HFCVD and two consecutive layers of micro- and nanocrystalline diamond were deposited. One of the main difficulties is the attainment of a good adhesion between the diamond films and the mechanical seal material (WC-Co. Nucleation, deposition conditions, and pre-treatments were studied to enhance the coating. Superficial wear or delamination of the film was investigated using SEM and Raman characterization techniques, in order to draw conclusions about the feasibility of these coatings in the WC-Co mechanical seals with the purpose of increasing their performance and life time. The results obtained gave a good indication about the feasibility of this process and the deposition conditions used, with the mechanical seals showing no wear and no film delamination after a real work environment test.

  10. Zero bias thermally stimulated currents in synthetic diamond

    Science.gov (United States)

    Mori, R.; Miglio, S.; Bruzzi, M.; Bogani, F.; De Sio, A.; Pace, E.

    2009-06-01

    Zero bias thermally stimulated currents (ZBTSCs) have been observed in single crystal high pressure high temperature (HPHT) and polycrystalline chemical vapor deposited (pCVD) diamond films. The ZBTSC technique is characterized by an increased sensitivity with respect to a standard TSC analysis. Due to the absence of the thermally activated background current, new TSC peaks have been observed in both HPHT and pCVD diamond films, related to shallow activation energies usually obscured by the emission of the dominant impurities. The ZBTSC peaks are explained in terms of defect discharge in the nonequilibrium potential distribution created by a nonuniform traps filling at the metal-diamond junctions. The electric field due to the charged defects has been estimated in a quasizero bias TSC experiment by applying an external bias.

  11. Thick Nano-Crystalline Diamond films for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Dawedeit, Christoph [Technical Univ. of Munich (Germany)

    2010-06-30

    This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuer Nukleartechnik at Technical University of Germany supported the work.

  12. Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode

    International Nuclear Information System (INIS)

    Wang Chengxin; Yang Guowei; Liu Hongwu; Han Yonghao; Luo Jifeng; Gao Chunxiao; Zou Guangtian

    2004-01-01

    High-quality heterojunctions between p-type diamond single-crystalline films and highly oriented n-type ZnO films were fabricated by depositing the p-type diamond single-crystal films on the I o -type diamond single crystal using a hot filament chemical vapor deposition, and later growing a highly oriented n-type ZnO film on the p-type diamond single-crystal film by magnetron sputtering. Interestingly, anomalously high ideality factors (n>>2.0) in the prepared ZnO/diamond p-n junction diode in the interim bias voltage range were measured. For this, detailed electronic characterizations of the fabricated p-n junction were conducted, and a theoretical model was proposed to clarify the much higher ideality factors of the special heterojunction diode

  13. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  14. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A., E-mail: poulon@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Faure, C.; Teulé-Gay, L.; Manaud, J.P. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2015-03-15

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  15. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    Science.gov (United States)

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different

  16. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  17. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    International Nuclear Information System (INIS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-01-01

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH)_2. Ba(OH)_2 is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO_2/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH)_2. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO_2/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)_2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and

  18. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    Science.gov (United States)

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Application of the chemical vapor-etching in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ben Rabha, M.; Saadoun, M.; Boujmil, M.F.; Bessais, B.; Ezzaouia, H.; Bennaceur, R.

    2005-01-01

    This paper reports a study of the application of chemical vapor-etching (CVE) for the rear surface and in the emitter of polycrystalline silicon (pc-Si) solar cells. The CVE technique consists of exposing pc-Si wafers to a mixture of HF/HNO 3 . This technique is used to groove the rear surface of the pc-Si wafers for acid vapors rich in HNO 3 (HNO 3 /HF > 1/4), in order to realize rear-buried metallic contacts (RBMC) and the formation of a porous silicon (PS) layer on the frontal surface of the cell for volume ratio of HNO 3 /HF = 1/7. A significant increase of the spectral response in the long wavelength range was observed when a RBMC is formed. This increase was attributed to the reduction of the effective thickness of the base of the cells and grain boundary Al gettering. The achievement of a PS layer on the emitter of the pc-Si cells passivates the surface and reduces the reflectivity. The dark I-V characteristics of pc-Si cells with emitter-based PS show an important reduction of the reverse current together with an improvement of the rectifying behaviour. The I-V characteristic under AM1.5 illumination shows an enhancement of both short circuit current density and fill factor. The internal quantum efficiency is improved, particularly in the short wavelengths region

  20. Liquid and vapor phase fluids visualization using an exciplex chemical sensor

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Kim, Guang Hoon; Kim, Chang Bum; Suk, Hyyong

    2001-01-01

    Two dimensional slices of the cross-sectional distributions of fuel images in the combustion chamber were visualized quantitatively using a laser-induced exciplex (excited state complex) fluorescence technique. A new exciplex visualization system consisting of 5%DMA (N, N-dimethylaniline) · 5%1, 4,6-TMN (trimethylnaphthalene) in 90% isooctane (2,2,4-trimethylpentane) fuel was employed. In this method, the vapor phase was tagged by the monomer fluorescence while the liquid phase was tracked by the red-shifted exciplex fluorescence with good spectral and spatial resolution. The direct calibration of the fluorescence intensity as a function of the fluorescing dopant concentrations then permitted the determination of quantitative concentration maps of liquid and vapor phases in the fuel. The 308 nm (XeCl) line of the excimer laser was used to excite the doped molecules in the fuel and the resulting fluorescence images were obtained with an ICCD detector as a function time. In this paper, the spectroscopy of the exciplex chemical sensors as well as the optical diagnostic method of the fluid distribution is discussed in detail.

  1. Application of heat treatment and dispersive strengthening concept in interlayer deposition to enhance diamond film adherence

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chiiruey [Tatung Inst. of Technol., Taipei (Taiwan, Province of China). Dept. of Mech. Eng.; Kuo Chengtzu; Chang Rueyming [Institute of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050 (Taiwan, Province of China)

    1997-10-31

    Two different deposition processes were carried out to enhance adherence of diamond films on WC+3-5%Co substrate with Ti-Si as the interlayer. One process can be called two-step diamond deposition process. Another process can be called interlayer heat treatment process. Diamond films were deposited by a microwave plasma chemical vapor deposition system. Ti and Si interlayer are deposited by DC sputter and an E-gun, respectively. Film morphologies, interface structure and film quality were examined by SEM, XRD, Auger electron spectroscopy and Raman spectroscopy. The residual stresses and adhesion strengths of the films were determined by Raman spectroscopy and indentation adhesion testing, respectively. Comparing the regular one-step diamond deposition process with the present two different new processes, the average dP/dX values, which are a measure of the adherence of the film, are 354 kgf/mm, 494 kgf/mm and 787 kgf/mm, respectively. In other words, the interlayer heat treatment process gives the best film adherence on average. For the two-step diamond deposition process, the interlayer thickness and the percent diamond surface coverage of the first diamond deposition step are the main parameters, and there exists an optimum Ti thickness and percent diamond coverage for the best film adherence. The main contribution to better film adherence is not a large difference in residual stress, but is due to the following reasons. The interlayer heat treatment can transform amorphous Si to polycrystalline Si, and may form strong TiC and SiC bonding. The polycrystalline Si and the diamond particles from the first diamond deposition step can be an effective seeds to enhance diamond nucleation. (orig.) 11 refs.

  2. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  3. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shengwang, E-mail: bkdysw@yahoo.cn; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-11-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH{sub 3}){sub 4}) diluted in H{sub 2} as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co{sub 2}Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  4. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    International Nuclear Information System (INIS)

    Yu Shengwang; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-01-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH 3 ) 4 ) diluted in H 2 as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co 2 Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  5. A predictive model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Trachtenberg, I.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1994-06-01

    The chemical vapor deposition of polysilicon from thermally activated silane in a cold wall, single-wafer rapid thermal system was studied by experimentation at a variety of low pressure conditions, including very high temperatures. The effect of diluent gas on polysilicon deposition rates was examined using hydrogen, helium, and krypton. A mass-transfer model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system was developed. This model was used to produce an empirical rate expression for silicon deposition from silane by regressing kinetic parameters to fit experimental data. The resulting model provided accurate predictions over widely varying conditions in the experimental data.

  6. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  7. Chemical-vapor-infiltrated silicon nitride, boron nitride, and silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Ventri, R.D.; Galasso, F.S.

    1990-01-01

    This paper reports composites of carbon/chemical-vapor-deposited (CVD) Si 3 N 4 , carbon/CVD BN, mullite/CVD SiC, and SiC yarn/CVD SiC prepared to determine if there were inherent toughness in these systems. The matrices were deposited at high enough temperatures to ensure that they were crystalline, which should make them more stable at high temperatures. The fiber-matrix bonding in the C/Si 3 N 4 composite appeared to be too strong; the layers of BN in the matrix of the C/BN were too weakly bonded; and the mullite/SiC composite was not as tough as the SiC/SiC composites. Only the SiC yarn/CVD SiC composite exhibited both strength and toughness

  8. Spiral growth of few-layer MoS{sub 2} by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X.; Yan, C.; Tomer, D.; Li, L., E-mail: lianli@uwm.edu [Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Li, C. H. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-08-01

    Growth spirals exhibit appealing properties due to a preferred layer stacking and lack of inversion symmetry. Here, we report spiral growth of MoS{sub 2} during chemical vapor deposition on SiO{sub 2}/Si and epitaxial graphene/SiC substrates, and their physical and electronic properties. We determine the layer-dependence of the MoS{sub 2} bandgap, ranging from 2.4 eV for the monolayer to a constant of 1.3 eV beyond the fifth layer. We further observe that spirals predominantly initiate at the step edges of the SiC substrate, based on which we propose a growth mechanism driven by screw dislocation created by the coalescence of two growth fronts at steps.

  9. Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system

    International Nuclear Information System (INIS)

    Lim, Sung Hoon; Park, Kyu Chang; Moon, Jong Hyun; Yoon, Hyun Sik; Pribat, Didier; Bonnassieux, Yvan; Jang, Jin

    2006-01-01

    We report on the growth mechanism and density control of vertically aligned carbon nanotubes using a triode plasma enhanced chemical vapor deposition system. The deposition reactor was designed in order to allow the intermediate mesh electrode to be biased independently from the ground and power electrodes. The CNTs grown with a mesh bias of + 300 V show a density of ∼ 1.5 μm -2 and a height of ∼ 5 μm. However, CNTs do not grow when the mesh electrode is biased to - 300 V. The growth of CNTs can be controlled by the mesh electrode bias which in turn controls the plasma density and ion flux on the sample

  10. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  11. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Mohamed, N. M., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Shaharun, M. S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Yasar, M., E-mail: Muhammad.yasar@ieee.org [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  12. Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device

    Directory of Open Access Journals (Sweden)

    W. J. Liu

    2016-01-01

    Full Text Available We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.

  13. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kaatz, F.H.; Siegal, M.P.; Overmyer, D.L.; Provencio, P.P.; Jackson, J.L

    2003-01-15

    We grow multiwalled carbon nanotubes (CNTs) via thermal chemical vapor deposition from a sputtered 4-nm-thick nickel catalyst film on a tungsten-coated silicon substrate. CNTs grow from a mixture of nitrogen and acetylene gases at temperatures ranging from 630 to 790 deg. C, resulting in CNT outer diameters of 5-350 nm. CNT diameters increase exponentially with temperature. These results define regimes for template growth fabricated in catalytically active anodized aluminum oxide (AAO) with controlled pinhole sizes ranging from 10 to 50 nm. We measure a threshold electron emission field of 3 V/{mu}m and a field enhancement factor {beta}=5230 on randomly oriented 10-nm diameter CNTs.

  14. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition

    International Nuclear Information System (INIS)

    Kaatz, F.H.; Siegal, M.P.; Overmyer, D.L.; Provencio, P.P.; Jackson, J.L.

    2003-01-01

    We grow multiwalled carbon nanotubes (CNTs) via thermal chemical vapor deposition from a sputtered 4-nm-thick nickel catalyst film on a tungsten-coated silicon substrate. CNTs grow from a mixture of nitrogen and acetylene gases at temperatures ranging from 630 to 790 deg. C, resulting in CNT outer diameters of 5-350 nm. CNT diameters increase exponentially with temperature. These results define regimes for template growth fabricated in catalytically active anodized aluminum oxide (AAO) with controlled pinhole sizes ranging from 10 to 50 nm. We measure a threshold electron emission field of 3 V/μm and a field enhancement factor β=5230 on randomly oriented 10-nm diameter CNTs

  15. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    International Nuclear Information System (INIS)

    Dangbegnon, J.K.; Talla, K.; Roro, K.T.; Botha, J.R.

    2009-01-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  16. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K., E-mail: JulienKouadio.Dangbegnon@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Talla, K.; Roro, K.T.; Botha, J.R. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  17. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    Science.gov (United States)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  18. Characterization of photoluminescent europium doped yttrium oxide thin-films prepared by metallorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    McKittrick, J.; Bacalski, C.F.; Hirata, G.A.; Hubbard, K.M.; Pattillo, S.G.; Salazar, K.V.; Trkula, M.

    1998-01-01

    Europium doped yttrium oxide, (Y 1-x Eu x ) 2 O 3 , thin-films were deposited on silicon and sapphire substrates by metallorganic chemical vapor deposition (MOCVD). The films were grown in a MOCVD chamber reacting yttrium and europium tris(2,2,6,6-tetramethyl-3,5,-heptanedionates) precursors in an oxygen atmosphere at low pressures (5 Torr) and low substrate temperatures (500--700 C). The films deposited at 500 C were flat and composed of nanocrystalline regions of cubic Y 2 O 3 , grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600 C developed from the flat, nanocrystalline morphology into a plate-like growth morphology oriented in the [111] with increasing deposition time. Monoclinic Y 2 O 3 :Eu 3+ was observed in x-ray diffraction for deposition temperatures ≥600 C on both (111) Si and (001) sapphire substrates. This was also confirmed by the photoluminescent emission spectra

  19. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  20. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm2. The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs.

  1. Chemical vapor deposition polymerization the growth and properties of parylene thin films

    CERN Document Server

    Fortin, Jeffrey B

    2004-01-01

    Chemical Vapor Deposition Polymerization - The Growth and Properties of Parylene Thin Films is intended to be valuable to both users and researchers of parylene thin films. It should be particularly useful for those setting up and characterizing their first research deposition system. It provides a good picture of the deposition process and equipment, as well as information on system-to-system variations that is important to consider when designing a deposition system or making modifications to an existing one. Also included are methods to characterizae a deposition system's pumping properties as well as monitor the deposition process via mass spectrometry. There are many references that will lead the reader to further information on the topic being discussed. This text should serve as a useful reference source and handbook for scientists and engineers interested in depositing high quality parylene thin films.

  2. Monatomic chemical-vapor-deposited graphene membranes bridge a half-millimeter-scale gap.

    Science.gov (United States)

    Lee, Choong-Kwang; Hwangbo, Yun; Kim, Sang-Min; Lee, Seoung-Ki; Lee, Seung-Mo; Kim, Seong-Su; Kim, Kwang-Seop; Lee, Hak-Joo; Choi, Byung-Ik; Song, Chang-Kyu; Ahn, Jong-Hyun; Kim, Jae-Hyun

    2014-03-25

    One of the main concerns in nanotechnology is the utilization of nanomaterials in macroscopic applications without losing their extreme properties. In an effort to bridge the gap between the nano- and macroscales, we propose a clever fabrication method, the inverted floating method (IFM), for preparing freestanding chemical-vapor-deposited (CVD) graphene membranes. These freestanding membranes were then successfully suspended over a gap a half-millimeter in diameter. To understand the working principle of IFM, high-speed photography and white light interferometry were used to characterize and analyze the deformation behaviors of the freestanding graphene membranes in contact with a liquid during fabrication. Some nanoscale configurations in the macroscopic graphene membranes were able to be characterized by simple optical microscopy. The proposed IFM is a powerful approach to investigating the macroscopic structures of CVD graphene and enables the exploitation of freestanding CVD graphene for device applications.

  3. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  4. Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.; Kamarajugadda, Mallika; Bozeman, Steven P.; Stearns, Laura C.

    2004-02-01

    A comprehensive survey is described of the responses of three plasma-enhanced chemical vapor deposited dielectric film systems to thermal cycling and indentation contact. All three films—silicon oxide, silicon nitride, and silicon oxy-nitride—exhibited significant nonequilibrium permanent changes in film stress on thermal cycling or annealing. The linear relationship between stress and temperature changed after the films were annealed at 300 °C, representing a structural alteration in the film reflecting a change in coefficient of thermal expansion or biaxial modulus. A double-substrate method was used to deduce both thermoelastic properties before and after the anneal of selected films and the results were compared with the modulus deconvoluted from small-scale depth-sensing indentation experiments (nanoindentation). Rutherford backscattering spectrometry and hydrogen forward scattering were used to deduce the composition of the films and it was found that all the films contained significant amounts of hydrogen.

  5. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    Science.gov (United States)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  6. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    Science.gov (United States)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  7. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-01-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 deg. C down to 450 deg. C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  8. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-06-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  9. Response of the ionosphere to the injection of chemically reactive vapors

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1976-05-01

    As a gas released in the ionosphere expands, it is rapidly cooled. When the vapor becomes sufficiently tenuous, it is reheated by collisions with the ambient atmosphere, and its flow is then governed by diffusive expansion. As the injected gas becomes well mixed with the plasma, a hole is created by chemical processes. In the case of diatomic hydrogen release, depression of the electron concentrations is governed by the charge exchange reaction between oxygen ions and hydrogen, producing positive hydroxyl ions. Hydroxyl ions rapidly react with the electron gas to produce excited oxygen and hydrogen atoms. Enhanced airglow emissions result from the transition of the excited atoms to lower energy states. The electron temperature in the depleted region rises sharply and this rise causes a thermal expansion of the plasma and a further reduction in the local plasma concentration

  10. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  11. Characterization of Cr2O3 thin films obtained by chemical vapor deposition

    International Nuclear Information System (INIS)

    Pillis, M.F.; Galego, E.; Serna, M.M.; Correa, O.V.; Ramanathan, L.V.; Franco, A.C.

    2010-01-01

    The goal of this work was the synthesis and characterization of Cr 2 O 3 thin films, obtained by chemical vapor deposition, using chromium acetylacetonate as chromium precursor. The growth of the films was carried out in a conventional horizontal MOCVD equipment, under pressures varying from 2 to 10 mbar, and temperature of 600 deg C. It was observed that the growth of the films only occurs when oxygen is present in the atmosphere. Under growth pressures of 2 and 5 mbar the growth takes place but under 10 mbar of pressure the precursor is dragged and the growth does not occur. The characterization of the films was performed by using scanning electron microscopy and X-ray diffraction. The films presented a columnar structure, and thickness varying from 40 to 250 nm. The influence of some process parameters is discussed. (author)

  12. Structured nanocarbon on various metal foils by microwave plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Rius, G; Yoshimura, M

    2013-01-01

    We present a versatile process for the engineering of nanostructures made of crystalline carbon on metal foils. The single step process by microwave plasma-enhance chemical vapor deposition is demonstrated for various substrate materials, such as Ni or Cu. Either carbon nanotubes (CNT) or carbon nanowalls (CNW) are obtained under same growth conditions and without the need of additional catalyst. The use of spacer and insulator implies a certain control over the kind of allotropes that are obtained. High density and large surface area are morphological characteristics of the thus obtained C products. The possibility of application on many metals, and in the alloy composition, on as-delivered commercially available foils indicates that this strategy can be adapted to a bunch of specific applications, while the production of C nanostructures is of remarkable simplicity.

  13. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  14. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  15. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    KAUST Repository

    Chen, Wei

    2013-03-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found that the capacitive properties of graphene films are related to the number of graphene layers. Owing to the close attachment of graphene films on the nickel substrate and the low charge-transfer resistance, the specific capacitance of thinner graphene films is almost twice that of the thicker ones and remains stable up to 1000 cycles. These results illustrate the potential for developing high-performance graphene-based electrical energy storage devices. © 2012 Elsevier B.V. All rights reserved.

  16. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    Science.gov (United States)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  17. Observation of Zn vacancies in ZnO grown by chemical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F.; Saarinen, K. [Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 TKK (Finland); Grasza, K.; Mycielski, A. [Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw (Poland)

    2006-03-15

    We have used positron annihilation spectroscopy to study the vacancy defects in ZnO crystals grown by both the conventional and contactless chemical vapor transport (CVT and CCVT). Our results show that Zn vacancies or Zn vacancy related defects are present in as-grown ZnO, irrespective of the growth method. Zn vacancies are observed in CVT-grown undoped ZnO and (Zn,Mn)O. The Zn vacancies present in undoped CCVT-ZnO are the dominant negatively charged point defect in the material. Doping the material with As introduces also Zn vacancy-related defect complexes with larger open volume. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Effects of etchants in the transfer of chemical vapor deposited graphene

    Science.gov (United States)

    Wang, M.; Yang, E. H.; Vajtai, R.; Kono, J.; Ajayan, P. M.

    2018-05-01

    The quality of graphene can be strongly modified during the transfer process following chemical vapor deposition (CVD) growth. Here, we transferred CVD-grown graphene from a copper foil to a SiO2/Si substrate using wet etching with four different etchants: HNO3, FeCl3, (NH4)2S2O8, and a commercial copper etchant. We then compared the quality of graphene after the transfer process in terms of surface modifications, pollutions (residues and contaminations), and electrical properties (mobility and density). Our tests and analyses showed that the commercial copper etchant provides the best structural integrity, the least amount of residues, and the smallest doping carrier concentration.

  19. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    M. A. Wolak

    2014-01-01

    Full Text Available We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD. To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB_{2} films on these substrates showed uniformly good superconducting properties including T_{c} of 37–40 K, residual resistivity ratio of up to 14, and root-mean-square roughness R_{q} of 20–30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB_{2} by the HPCVD technique, an important step towards superconducting rf cavities with MgB_{2} coating.

  20. Chemical vapor infiltration of TiB{sub 2} fibrous composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This process produces high purity matrix TiB{sub 2} without damaging the relatively fragile fibers. The program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and scale the process to provide demonstration components.

  1. Mass-Spectrometric Studies of Catalytic Chemical Vapor Deposition Processes of Organic Silicon Compounds Containing Nitrogen

    Science.gov (United States)

    Morimoto, Takashi; Ansari, S. G.; Yoneyama, Koji; Nakajima, Teppei; Masuda, Atsushi; Matsumura, Hideki; Nakamura, Megumi; Umemoto, Hironobu

    2006-02-01

    The mechanism of catalytic chemical vapor deposition (Cat-CVD) processes for hexamethyldisilazane (HMDS) and trisdimethylaminosilane (TDMAS), which are used as source gases to prepare SiNx or SiCxNy films, was studied using three different mass spectrometric techniques: ionization by Li+ ion attachment, vacuum-ultraviolet radiation and electron impact. The results for HMDS show that Si-N bonds dissociate selectively, although Si-C bonds are weaker, and (CH3)3SiNH should be one of the main precursors of deposited films. This decomposition mechanism did not change when NH3 was introduced, but the decomposition efficiency was slightly increased. Similar results were obtained for TDMAS.

  2. Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Purwins, Hendrik; Barak, Bernd; Nagi, Ahmed

    2014-01-01

    The quality of wafer production in semiconductor manufacturing cannot always be monitored by a costly physical measurement. Instead of measuring a quantity directly, it can be predicted by a regression method (Virtual Metrology). In this paper, a survey on regression methods is given to predict...... average Silicon Nitride cap layer thickness for the Plasma Enhanced Chemical Vapor Deposition (PECVD) dual-layer metal passivation stack process. Process and production equipment Fault Detection and Classification (FDC) data are used as predictor variables. Various variable sets are compared: one most...... algorithm, and Support Vector Regression (SVR). On a test set, SVR outperforms the other methods by a large margin, being more robust towards changes in the production conditions. The method performs better on high-dimensional multivariate input data than on the most predictive variables alone. Process...

  3. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    Science.gov (United States)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  4. Diameter Tuning of β-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique.

    Science.gov (United States)

    Kumar, Mukesh; Kumar, Vikram; Singh, R

    2017-12-01

    Diameter tuning of [Formula: see text]-Ga 2 O 3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown [Formula: see text]-Ga 2 O 3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.

  5. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    Science.gov (United States)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  6. Synthesis of Y-Tip Graphitic Nanoribbons from Alcohol Catalytic Chemical Vapor Deposition on Piezoelectric Substrate

    Directory of Open Access Journals (Sweden)

    Zainab Yunusa

    2015-01-01

    Full Text Available We report the synthesis of Graphitic Nanoribbons (GNRs using Alcohol Catalytic Chemical Vapor Deposition (ACCVD. Bulk GNR was synthesized directly on a piezoelectric substrate using one-step ACCVD. The synthesized GNRs were characterized by X-Ray Diffraction (XRD, Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM, Energy Dispersive X-Ray (EDX, Atomic Force Microscopy (AFM, and Raman spectroscopy. The characterization results showed Y-tip morphology of bulk and filamentous as-grown GNR having varying width that lies between tens and hundreds of nm and length of several microns. Based on the thickness obtained from the AFM and the analysis from the Raman spectroscopy, it was concluded that the synthesized GNRs are multiple-layered and graphitic in nature. With the direct synthesis of GNR on a piezoelectric substrate, it could have applications in the sensor industries, while the Y-tip GNR could have potentialities in semiconductor applications.

  7. Macrokinetics of carbon nanotubes synthesis by the chemical vapor deposition method

    Science.gov (United States)

    Rukhov, Artem; Dyachkova, Tatyana; Tugolukov, Evgeny; Besperstova, Galina

    2017-11-01

    A new approach to studying and developing basic processes which take place on the surface of a metal catalyst during the thermal decomposition of carbonaceous substances in the carbon nanotubes synthesis by the chemical vapor deposition method was proposed. In addition, an analysis was made of the interrelationships between these thermal, diffusion, hydrodynamic and other synthesis processes. A strong effect of the catalyst regeneration stage on the stage of nanotube formation has been shown. Based on the developed approach, a mathematical model was elaborated. Comparison of the calculation and the experiment carried out with the NiO-MgO catalyst at propane flow rate of 50 mL/min (standard conditions) and ethanol flow rate 0.3 mL/min (liq.) has revealed a discrepancy of less than 10%.

  8. Large-scale Fabrication of 2D Materials by Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Shivayogimath, Abhay

    . This thesis aims to address some of the challenges associated with materials fabrication in order to lay the groundwork for commercial implementation of 2D materials. To improve graphene implementation in electronic applications, copper catalyst foils were engineered to reduce surface roughness, wrinkles...... this vast range of materials - without the lattice mismatch constraints of conventional 3D materials - into atomically engineered, artificial 3D crystals that pave the way for new physics, and subsequently, for new applications. 2D materials are expected to disrupt a number of industries in the future......, such as electronics, displays, energy, and catalysis. The key bottleneck for commercial implementation is in large-scale synthesis and subsequent fabrication of high quality devices. Chemical vapor deposition is considered to be the most economically feasible synthesis method to this end. In the case of graphene...

  9. Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tian, F.; Li, H.P.; Zhao, N.Q.; He, C.N.

    2009-01-01

    Catalytic effects of the fabrication of carbon nanotubes (CNTs) by chemical vapor deposition of methane were investigated by thermogravimetric analysis. More specifically, the total yield and thermal stability characteristics of the product were examined with respect to physicochemical characteristics of the catalyst. Three kinds of Ni/Al catalysts with 5 wt%, 10 wt% and 15 wt% Ni, respectively were employed to synthesize CNTs. It was determined that an optimal Ni content of the catalyst resulted in maximum yield and most stable product. With increasing the Ni content, the CNT yield increased but they became less stable during heat treatment in air. According to transmission electron microscopy observations, the defect sites along the walls and at the ends of the raw CNTs facilitated the thermal oxidative destruction of the CNTs.

  10. Catalyst-free growth of InN nanorods by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Min Hwa; Moon, Dae Young; Park, Jinsub; Nanishi, Yasushi; Yi, Gyu-Chul; Yoon, Euijoon

    2012-01-01

    We demonstrated the growth of catalyst-free InN nanostructures including nanorods on (0001) Al 2 O 3 substrates using metal-organic chemical vapor deposition. As the growth time increased, growth rate along c-direction increased superlinearly with decreasing c-plane area fractions and increasing side wall areas. It was also found that desorption from the sidewalls of InN nanostructures during the InN nanorods formation was one of essential key parameters of the growth mechanism. We propose a growth model to explain the InN nanostructure evolution by considering the side wall desorption and re-deposition of indium at top c-plane surfaces. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Fabrication of thin-wall, freestanding inertial confinement fusion targets by chemical vapor deposition

    International Nuclear Information System (INIS)

    Carroll, D.W.; McCreary, W.J.

    1982-01-01

    To meet the requirements for plasma physics experiments in the inertial confinement fusion (ICF) program, chemical vapor deposition (CVD) in fluid beds was used to fabricate freestanding tungsten spheres and cylinders with wall thicknesses less than 5.0 μm. Molybdenum and molybdenum alloy (TZM) mandrels of the desired geometry were suspended in a carrier bed of dense microspheres contained in an induction-heated fluid-bed reactor. The mandrels were free to float randomly through the bed, and using the reaction WF 6 +3H 2 →/sub /KW +6HF, very fine-grained tungsten was deposited onto the surface at a rate and in a grain size determined by temperature, gas flow rate, system pressure, and duration of the reaction. After coating, a portion of each mandrel was exposed by hole drilling or grinding. The mandrel was then removed by acid leaching, leaving a freestanding tungsten shape. Experimental procedures, mandrel preparation, and results obtained are discussed

  12. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  13. Polycrystalline AlN films with preferential orientation by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Sanchez, G.; Wu, A.; Tristant, P.; Tixier, C.; Soulestin, B.; Desmaison, J.; Bologna Alles, A.

    2008-01-01

    AlN thin films for acoustic wave devices were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition under different process conditions, employing Si (100) and Pt (111)/SiO 2 /Si (100) substrates. The films were characterized by X-ray diffraction, Fourier transform infrared transmission spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. The values of the distance between the plasma and the tri-methyl-aluminum precursor injector, the radiofrequency bias potential, and the substrate temperature were central in the development of polycrystalline films. The choice of the chamber total pressure during deposition allowed for the development of two different crystallographic orientations, i.e., or . The film microstructures exhibited in general a column-like growth with rounded tops, an average grain size of about 40 nm, and a surface roughness lower than 20 nm under the best conditions

  14. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Shukrullah, S.; Mohamed, N. M.; Shaharun, M. S.; Yasar, M.

    2014-01-01

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure

  15. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, R.E.I., E-mail: r.e.i.schropp@tue.nl

    2015-11-30

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  16. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    International Nuclear Information System (INIS)

    Schropp, R.E.I.

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  17. Chemical vapor deposition of refractory ternary nitrides for advanced diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth; Smith, Paul Martin

    1998-09-22

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturing of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.

  18. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  19. Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); Jory, H. [Communications and Power Industries, Palo Alto, CA (United States); Vikharov, A. L. [Russian Academy of Sciences (RAS), Moscow (Russian Federation)

    2017-09-08

    This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this project uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)

  20. Diamond films on stainless steel substrates with an interlayer applied by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Andre; Alves, Kenya Aparecida; Damm, Djoille Denner; Trava-Airoldi, Vladimir Jesus; Corat, Evaldo Jose, E-mail: andrecontin@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (LAS/INPE), Sao Jose dos Campos, SP (Brazil). Laboratorio Associado de Sensores e Materiais; Campos, Raonei Alves [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Maraba, PA (Brazil); Vasconcelos, Getulio de [Instituto de Estudos Avancados (DedALO/IEAv), Sao Jose dos Campos, SP (Brazil). Laboratorio de Desenvolvimento de Aplicacoes de Lasers e Optica

    2017-03-15

    The objective of this work is the Hot Filament Chemical Vapor Deposition (HFCVD) of diamond films on stainless steel substrates using a new technique for intermediate barrier forming, made by laser cladding process. In this technique, a powder layer is irradiated by a laser beam to melt the powder layer and the substrate surface layer to create the interlayer. The control of the laser beam parameters allows creating homogeneous coating layers, in rather large area in few seconds. In this work, the silicon carbide powder (SiC) was used to create an intermediate layer. Before the diamond growth, the samples were subjected to the seeding process with diamond powder. The diamond deposition was performed using Hot-Filament CVD reactor and the characterizations were Scanning Electron Microscopy, X-ray diffraction, Raman Scattering Spectroscopy and Scratch Test. (author)

  1. Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Dychalska Anna

    2015-09-01

    Full Text Available Evolution of residual stress and its components with increasing temperature in chemical vapor deposited (CVD diamond films has a crucial impact on their high temperature applications. In this work we investigated temperature dependence of stress in CVD diamond film deposited on Si(100 substrate in the temperature range of 30 °C to 480 °C by Raman mapping measurement. Raman shift of the characteristic diamond band peaked at 1332 cm-1 was studied to evaluate the residual stress distribution at the diamond surface. A new approach was applied to calculate thermal stress evolution with increasing tempera­ture by using two commonly known equations. Comparison of the residts obtained from the two methods was presented. The intrinsic stress component was calculated from the difference between average values of residual and thermal stress and then its temperature dependence was discussed.

  2. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    Science.gov (United States)

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method.

  3. Development of Y-BA-CU-O Coated Conductor Using Metal Organic Chemical Vapor Deposition

    National Research Council Canada - National Science Library

    Selvamanickam, V

    2003-01-01

    .... The program includes a study of the a) influence of MOCVD processing conditions such as the flow rate of precursor vapors, precursor vaporization temperatures, oxygen partial pressure, reactor pressure, and the deposition temperature...

  4. The effect of ion-beam induced strain on the nucleation density of chemical vapour deposited diamond

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N.

    1995-01-01

    The effect of ion implantation on the nucleation of CVD diamond on silicon and diamond substrates has been investigated. The strategy employed is to create laterally confined regions of strain in the substrates by focused MeV implantation of light ions. Raman Microscopy has been employed to obtain spatially resolved maps of the strain in these implanted regions. On diamond substrates a homo-epitaxial CVD diamond film was grown on top of both the implanted and unimplanted regions of the substrate. Raman analysis of the film grown on top of the implanted region revealed it to be under slightly tensile strain as compared to that grown on the unimplanted diamond substrate. The film deposited on the implanted portion of the diamond showed a lower fluorescence background; indicating a lower concentration of incorporated defects. These results suggest that the strain and defects in the diamond substrate material have an important influence on the quality of the homo-epitaxially grown diamond films. 6 refs., 5 figs

  5. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...

  6. Chemical interactions between aerosols and vapors in the primary circuit of an LWR during a severe accident

    International Nuclear Information System (INIS)

    Wheatley, C.J.

    1988-01-01

    Aerosol formation, agglomeration, convection and deposition within the primary circuit of an LWR during a severe accident significantly affect the transport of fission products, even though they may compose only a small fraction of the aerosol material. Intra-particle and vapor chemical interactions are important to this through mass transfer between the aerosol and vapor. The authors will describe a model that attempts to account for these processes and of the two-way coupling that exists with the thermal hydraulics. They will discuss what agglomeration and deposition mechanisms must be included, alternatives for treating intra-particle chemical interactions, mechanisms of aerosol formation, and methods for solving the resulting equations. Results will be presented that illustrate the importance of treating the two-way coupling and the extent to which disequilibrium between the aerosol and vapor affects fission product behavior

  7. Physical, chemical, and other data from bottle and XBT casts from the DIAMOND SHOALS and other platforms as part of the Outer Continental Shelf - South Atlantic project from 1958-01-01 to 1975-10-18 (NODC Accession 7700635)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and other data from CTD and XBT casts from the DIAMOND SHOALS and other platforms. Data were collected by the United States Coast Guard and other...

  8. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  9. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    International Nuclear Information System (INIS)

    Jiang Hao; Hong Lianggou; Venkatasubramanian, N.; Grant, John T.; Eyink, Kurt; Wiacek, Kevin; Fries-Carr, Sandra; Enlow, Jesse; Bunning, Timothy J.

    2007-01-01

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant (ε r ) and dielectric loss (tan δ) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F b ) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F b of 610 V/μm, an ε r of 3.07, and a tan δ of 7.0 x 10 -3 at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss

  10. Diamond identifaction

    International Nuclear Information System (INIS)

    1976-01-01

    X-ray topography on diamonds allows for unique identification of diamonds. The method described consists of the registration of crystal defects, inclusions etc. of a diamond, resulting in a 'finger print' of the individual jewel which can only be changed by its complete destruction

  11. Controlling the resistivity gradient in aluminum-doped zinc oxide grown by plasma-enhanced chemical vapor deposition

    NARCIS (Netherlands)

    Ponomarev, M.; Verheijen, M.A.; Keuning, W.; Sanden, van de M.C.M.; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO:Al layers by focusing on the control

  12. Electrical Transport and Low-Frequency Noise in Chemical Vapor Deposited Single-Layer MoS2 Devices

    Science.gov (United States)

    2014-03-18

    PERSON 19b. TELEPHONE NUMBER Pullickel Ajayan Deepak Sharma, Matin Amani, Abhishek Motayed, Pankaj B. Shah, A. Glen Birdwell, Sina Najmaei, Pulickel...in chemical vapor deposited single-layer MoS2 devices Deepak Sharma1,2, Matin Amani3, Abhishek Motayed2,4, Pankaj B Shah3, A Glen Birdwell3, Sina

  13. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition

    NARCIS (Netherlands)

    Morassutto, M.; Tiggelaar, Roald M.; Smithers, M.A.; Smithers, M.A.; Gardeniers, Johannes G.E.

    2016-01-01

    Abstract In this study, dense arrays of aligned carbon nanotubes are obtained by thermal catalytic chemical vapor deposition, using Fe catalyst dispersed on a thin Ta layer. Alignment of the carbon nanotubes depends on the original Fe layer thickness from which the catalyst dispersion is obtained by

  14. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition

    NARCIS (Netherlands)

    Saeed, S.; Buters, F.; Dohnalova, K.; Wosinski, L.; Gregorkiewicz, T.

    2014-01-01

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO2. Optical characterization

  15. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  16. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  17. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  18. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  19. Chemical vapor deposition growth of boron-carbon-nitrogen layers from methylamine borane thermolysis products

    Science.gov (United States)

    Leardini, Fabrice; Flores, Eduardo; Galvis E, Andrés R.; Ferrer, Isabel J.; Ramón Ares, José; Sánchez, Carlos; Molina, Pablo; van der Meulen, Herko P.; Gómez Navarro, Cristina; López Polin, Guillermo; Urbanos, Fernando J.; Granados, Daniel; García-García, F. Javier; Demirci, Umit B.; Yot, Pascal G.; Mastrangelo, Filippo; Grazia Betti, Maria; Mariani, Carlo

    2018-01-01

    This work investigates the growth of B-C-N layers by chemical vapor deposition using methylamine borane (MeAB) as the single-source precursor. MeAB has been synthesized and characterized, paying particular attention to the analysis of its thermolysis products, which are the gaseous precursors for B-C-N growth. Samples have been grown on Cu foils and transferred onto different substrates for their morphological, structural, chemical, electronic and optical characterizations. The results of these characterizations indicate a segregation of h-BN and graphene-like (Gr) domains. However, there is an important presence of B and N interactions with C at the Gr borders, and of C interacting at the h-BN-edges, respectively, in the obtained nano-layers. In particular, there is a significant presence of C-N bonds, at Gr/h-BN borders and in the form of N doping of Gr domains. The overall B:C:N contents in the layers is close to 1:3:1.5. A careful analysis of the optical bandgap determination of the obtained B-C-N layers is presented, discussed and compared with previous seminal works with samples of similar composition.

  20. Synthesis of Monolayer MoS2 by Chemical Vapor Deposition

    Science.gov (United States)

    Withanage, Sajeevi; Lopez, Mike; Dumas, Kenneth; Jung, Yeonwoong; Khondaker, Saiful

    Finite and layer-tunable band gap of transition metal dichalcogenides (TMDs) including molybdenum disulfide (MoS2) are highlighted over the zero band gap graphene in various semiconductor applications. Weak interlayer Van der Waal bonding of bulk MoS2 allows to cleave few to single layer MoS2 using top-down methods such as mechanical and chemical exfoliation, however few micron size of these flakes limit MoS2 applications to fundamental research. Bottom-up approaches including the sulfurization of molybdenum (Mo) thin films and co-evaporation of Mo and sulfur precursors received the attention due to their potential to synthesize large area. We synthesized monolayer MoS2 on Si/SiO2 substrates by atmospheric pressure Chemical Vapor Deposition (CVD) methods using sulfur and molybdenum trioxide (MoO3) as precursors. Several growth conditions were tested including precursor amounts, growth temperature, growth time and flow rate. Raman, photoluminescence (PL) and atomic force microscopy (AFM) confirmed monolayer islands merging to create large area were observed with grain sizes up to 70 μm without using any seeds or seeding promoters. These studies provide in-depth knowledge to synthesize high quality large area MoS2 for prospective electronics applications.

  1. Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance

    Science.gov (United States)

    He, Chenye; Bu, Xiuming; Yang, Siwei; He, Peng; Ding, Guqiao; Xie, Xiaoming

    2018-04-01

    Direct growth of high quality graphene on the surface of SrTiO3 (STO) was realized through chemical vapor deposition (CVD), to construct few-layer 'graphene shell' on every STO nanoparticle. The STO/graphene composite shows significantly enhanced UV light photocatalytic activity compared with the STO/rGO reference. Mechanism analysis confirms the role of special core-shell structure and chemical bond (Tisbnd C) for rapid interfacial electron transfer and effective electron-hole separation.

  2. Spallation Neutron Source SNS Diamond Stripper Foil Development

    International Nuclear Information System (INIS)

    Shaw, Robert W.; Plum, Michael A.; Wilson, Leslie L.; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I.; Takagi, A.

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 (micro)g/cm 2 foils as large as 17 x 25 mm 2 have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 (micro)C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H - ) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  3. CVD Diamond Sensors In Detectors For High Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00334150; Trischuk, William

    At the end of the next decade an upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC (HL-LHC) is planned which requires the development of new radiation tolerant sensor technology. Diamond is an interesting material for use as a particle detector in high radiation environments. The large band gap ($5.47\\,\\text{eV}$) and the large displacement energy suggest that diamond is a radiation tolerant detector material. In this Thesis the capability of Chemical Vapor Deposition (CVD) diamond as such a sensor technology is investigated. The radiation damage constant for $800\\,\\text{MeV}$ protons is measured using single crystalline CVD (scCVD) and polycrystalline CVD (pCVD) diamonds irradiated to particle fluences up to $12 \\times 10^{15}\\,\\text{p/cm}^2$. In addition the signal response of a pCVD diamond detector after an irradiation to $12 \\times 10^{15}\\,\\text{p/cm}^2$ is investigated to determine if such a detector can be operated efficiently in the expected HL-LHC environment. By using electrodes em...

  4. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  5. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  6. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  7. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    International Nuclear Information System (INIS)

    Liu, Chian; Shu, D.; Kuzay, T.M.; Wen, L.; Melendres, C.A.; Argonne National Lab., IL

    1996-01-01

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds

  8. RF characteristic of MESFET on H-terminated DC arc jet CVD diamond film

    International Nuclear Information System (INIS)

    Liu, J.L.; Li, C.M.; Zhu, R.H.; Guo, J.C.; Chen, L.X.; Wei, J.J.; Hei, L.F.; Wang, J.J.; Feng, Z.H.; Guo, H.; Lv, F.X.

    2013-01-01

    Diamond has been considered to be a potential material for high-frequency and high-power electronic devices due to the excellent electrical properties. In this paper, we reported the radio frequency (RF) characteristic of metal-semiconductor field effect transistor (MESFET) on polycrystalline diamond films prepared by direct current (DC) arc jet chemical vapor deposition (CVD). First, 4 in polycrystalline diamond films were deposited by DC arc jet CVD in gas recycling mode with the deposition rate of 14 μm/h. Then the polished diamond films were treated by microwave hydrogen plasma and the 0.2 μm-gate-length MESFET was fabricated by using Au mask photolithography and electron beam (EB) lithography. The surface conductivity of the H-terminated diamond film and DC and RF performances of the MESFET were characterized. The results demonstrate that, the carrier mobility of 24.6 cm 2 /V s and the carrier density of 1.096 × 10 13 cm −2 are obtained on the surface of H-terminated diamond film. The FET shows the maximum transition frequency (f T ) of 5 GHz and the maximum oscillation frequency (f max ) of 6 GHz at V GS = −0.5 V and V DS = −8 V, which indicates that H-terminated DC arc jet CVD polycrystalline diamond is suitable for the development of high frequency devices.

  9. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  10. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico); Pérez-García, S.A. [Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Apodaca, Nuevo León 66600 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico)

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  11. Limitations of patterning thin films by shadow mask high vacuum chemical vapor deposition

    International Nuclear Information System (INIS)

    Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik

    2014-01-01

    A key factor in engineering integrated devices such as electro-optic switches or waveguides is the patterning of high quality crystalline thin films into specific geometries. In this contribution high vacuum chemical vapor deposition (HV-CVD) was employed to grow titanium dioxide (TiO 2 ) patterns onto silicon. The directed nature of precursor transport – which originates from the high vacuum environment during the process – allows shading certain regions on the substrate by shadow masks and thus depositing patterned thin films. While the use of such masks is an emerging field in stencil or shadow mask lithography, their use for structuring thin films within HV-CVD has not been reported so far. The advantage of the employed technique is the precise control of lateral spacing and of the distance between shading mask and substrate surface which is achieved by manufacturing them directly on the substrate. As precursor transport takes place in the molecular flow regime, the precursor impinging rates (and therefore the film growth rates) on the surface can be simulated as function of the reactor and shading mask geometry using a comparatively simple mathematical model. In the current contribution such a mathematical model, which predicts impinging rates on plain or shadow mask structured substrates, is presented. Its validity is confirmed by TiO 2 -deposition on plain silicon substrates (450 °C) using titanium tetra isopropoxide as precursor. Limitations of the patterning process are investigated by the deposition of TiO 2 on structured substrates and subsequent shadow mask lift-off. The geometry of the deposits is according to the mathematical model. Shading effects due to the growing film enables to fabricate deposits with predetermined variations in topography and non-flat top deposits which are complicated to obtain by classical clean room processes. As a result of the enhanced residual pressure of decomposition products and titanium precursors and the

  12. Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers

    International Nuclear Information System (INIS)

    Bogumilowicz, Y.; Hartmann, J.M.

    2014-01-01

    We have studied the in-situ boron (B) doping of germanium (Ge) and silicon (Si) in Reduced Pressure-Chemical Vapor Deposition. Three growth temperatures have been investigated for the B-doping of Ge: 400, 600 and 750 °C at a constant growth pressure of 13300 Pa (i.e. 100 Torr). The B concentration in the Ge:B epilayer increases linearly with the diborane concentration in the gaseous phase. Single-crystalline Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. For the in-situ B doping of Si at 850 °C, two dichlorosilane mass flow ratios (MFR) have been assessed: F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0025 and F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0113 at a growth pressure of 2660 Pa (i.e. 20 Torr). Linear boron incorporation with the diborane concentration in the gas phase has been observed and doping levels in-between 3.5 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. We almost kept the same ratio of B versus Si atoms in the gas phase and in the Si epilayer. By contrast, roughly half of the B atoms present in the gas phase were incorporated in the Ge:B layers irrespective of the growth temperature. X-Ray Diffraction (XRD) allowed us to extract from the angular position of the Ge:B layer diffraction peak the substitutional B concentration. Values close to the B concentrations obtained by 4-probe resistivity measurements were obtained. Ge:B layers were smooth (< 1 m root mean square roughness associated with 20 × 20 μm 2 Atomic Force Microscopy images). Only for high F[B 2 H 6 ]/F[GeH 4 ] MFR (3.2 10 −3 ) did the Ge:B layers became rough; they were however still mono-crystalline (XRD). Above this MFR value, Ge:B layers became polycrystalline. - Highlights: • Boron doping of germanium and silicon in Reduced Pressure-Chemical Vapor Deposition • Linear boron incorporation in Ge:B and Si:B with the diborane flow • Single-crystal Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 • Single-crystal Si

  13. The potential use of diamond coated tungsten tips as a field ionisation source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Prawer, S.; Legge, G.J.F.; Kostidis, L.I. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Tungsten tips are convenient for use in a high brightness gaseous phase field ionisation source. However, the lifetime of these tips is not adequate for practical use. The authors are investigating whether coating tungsten tips with diamond using Chemical Vapor Deposition (CVD) will improve the practicality of using these tips by an improvement in longevity of the source and/or an improvement in brightness due to the effects of the property of negative electron affinity which has been observed on CVD diamond. 1 ref.

  14. The potential use of diamond coated tungsten tips as a field ionisation source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Prawer, S; Legge, G J.F.; Kostidis, L I [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Tungsten tips are convenient for use in a high brightness gaseous phase field ionisation source. However, the lifetime of these tips is not adequate for practical use. The authors are investigating whether coating tungsten tips with diamond using Chemical Vapor Deposition (CVD) will improve the practicality of using these tips by an improvement in longevity of the source and/or an improvement in brightness due to the effects of the property of negative electron affinity which has been observed on CVD diamond. 1 ref.

  15. Regeneration of FBGs during the HFCVD diamond-fiber coating process

    Science.gov (United States)

    Alberto, Nélia J.; Kalinowski, Hypolito J.; Neto, Victor F.; Nogueira, Rogério N.

    2014-08-01

    In this work, the regeneration of saturated fiber Bragg gratings during the diamond coating of the fiber is presented. Due to the high temperatures characteristic of the hot filament chemical vapor deposition (HFCVD) process (around 800 ºC), uniform fiber Bragg gratings (FBGs) are not appropriate to be coated. Nevertheless, regenerated Bragg gratings are a suitable solution for this drawback. Its production process involves the inscription of a saturated FBG followed by a time consuming heat treatment. Here it is proposed to take advantage of the high temperatures characteristic of the HFCVD process to simultaneous regenerate the grating and coat the fiber with diamond.

  16. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  17. Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC, HL-LHC and Beyond

    CERN Document Server

    Kagan, Harris (Ohio State)

    2018-01-01

    The RD42 collaboration at CERN is leading the effort to develop radiation tolerant devices based on polycrystalline Chemical Vapor Deposition (pCVD) diamond as a material for tracking detectors operating in harsh radiation environments. Diamond has properties that make it suitable for such detector applications. During the last few years the RD42 group has succeeded in producing and characterising a number of devices to address specific issues related to their use at the LHC and HL-LHC. Herein we present the status of the RD42 project with emphasis on recent beam test results and our proposed three year research plan. In particular, we review recent results on the stability of signal size on incident particle rate in diamond detectors over a range of particle fluxes up to 20 MHz/cm2, on the radiation tolerance of CVD diamond, on the diamond work with ATLAS and CMS, on the results of 3D diamond detectors fabricated in pCVD diamond and on the work with diamond manufacturers. In addition, we present the details ...

  18. Chemical vapour deposition diamond. Charge carrier movement at low temperatures and use in time-critical applications

    International Nuclear Information System (INIS)

    Jansen, Hendrik

    2013-09-01

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, over laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  19. Chemical Vapour Deposition Diamond - Charge Carrier Movement at Low Temperatures and Use in Time-Critical Applications

    CERN Document Server

    Jansen, Hendrik; Pernegger, Heinz

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, to laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  20. Substrate Effect on Plasma Clean Efficiency in Plasma Enhanced Chemical Vapor Deposition System

    Directory of Open Access Journals (Sweden)

    Shiu-Ko JangJian

    2007-01-01

    Full Text Available The plasma clean in a plasma-enhanced chemical vapor deposition (PECVD system plays an important role to ensure the same chamber condition after numerous film depositions. The periodic and applicable plasma clean in deposition chamber also increases wafer yield due to less defect produced during the deposition process. In this study, the plasma clean rate (PCR of silicon oxide is investigated after the silicon nitride deposited on Cu and silicon oxide substrates by remote plasma system (RPS, respectively. The experimental results show that the PCR drastically decreases with Cu substrate compared to that with silicon oxide substrate after numerous silicon nitride depositions. To understand the substrate effect on PCR, the surface element analysis and bonding configuration are executed by X-ray photoelectron spectroscopy (XPS. The high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS is used to analyze microelement of metal ions on the surface of shower head in the PECVD chamber. According to Cu substrate, the results show that micro Cu ion and the CuOx bonding can be detected on the surface of shower head. The Cu ion contamination might grab the fluorine radicals produced by NF3 ddissociation in the RPS and that induces the drastic decrease on PCR.

  1. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.

    Science.gov (United States)

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W; Ryu, Koungmin; Thompson, Mark E; Zhou, Chongwu

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness ( approximately 0.9 nm) and offered sheet resistance down to 230 Omega/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (eta) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138 degrees , whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60 degrees . Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications.

  2. Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications

    International Nuclear Information System (INIS)

    Dillon, A.C.; Mahan, A.H.; Deshpande, R.; Alleman, J.L.; Blackburn, J.L.; Parillia, P.A.; Heben, M.J.; Engtrakul, C.; Gilbert, K.E.H.; Jones, K.M.; To, R.; Lee, S-H.; Lehman, J.H.

    2006-01-01

    Hot-wire chemical vapor deposition (HWCVD) has been demonstrated as a simple economically scalable technique for the synthesis of a variety of nano-materials in an environmentally friendly manner. For example we have employed HWCVD for the continuous production of both carbon single- and multi-wall nanotubes (SWNTs and MWNTs). Unanticipated hydrogen storage on HWCVD-generated MWNTs has led insight into the adsorption mechanism of hydrogen on metal/carbon composites at near ambient temperatures that could be useful for developing a vehicular hydrogen storage system. Recent efforts have been focused on growing MWNT arrays on thin nickel films with a simple HWCVD process. New data suggests that these MWNT arrays could replace the gold black coatings currently used in pyroelectric detectors to accurately measure laser power. Finally, we have very recently employed HWCVD for the production of crystalline molybdenum and tungsten oxide nanotubes and nanorods. These metal oxide nanorods and nanotubes could have applications in catalysis, batteries and electrochromic windows or as gas sensors. A summary of the techniques for growing these novel materials and their various potential applications is provided

  3. Advances in silicon carbide Chemical Vapor Deposition (CVD) for semiconductor device fabrication

    Science.gov (United States)

    Powell, J. Anthony; Petit, Jeremy B.; Matus, Lawrence G.

    1991-01-01

    Improved SiC chemical vapor deposition films of both 3C and 6H polytypes were grown on vicinal (0001) 6H-SiC wafers cut from single-crystal boules. These films were produced from silane and propane in hydrogen at one atmosphere at a temperature of 1725 K. Among the more important factors which affected the structure and morphology of the grown films were the tilt angle of the substrate, the polarity of the growth surface, and the pregrowth surface treatment of the substrate. With proper pregrowth surface treatment, 6H films were grown on 6H substrates with tilt angles as small as 0.1 degrees. In addition, 3C could be induced to grow within selected regions on a 6H substrate. The polarity of the substrate was a large factor in the incorporation of dopants during epitaxial growth. A new growth model is discussed which explains the control of SiC polytype in epitaxial growth on vicinal (0001) SiC substrates.

  4. Photoinitiated chemical vapor deposition of cytocompatible poly(2-hydroxyethyl methacrylate) films.

    Science.gov (United States)

    McMahon, Brian J; Pfluger, Courtney A; Sun, Bing; Ziemer, Katherine S; Burkey, Daniel D; Carrier, Rebecca L

    2014-07-01

    Poly(2-hydroxyethyl methacrylate) (pHEMA) is a widely utilized biomaterial due to lack of toxicity and suitable mechanical properties; conformal thin pHEMA films produced via chemical vapor deposition (CVD) would thus have broad biomedical applications. Thin films of pHEMA were deposited using photoinitiated CVD (piCVD). Incorporation of ethylene glycol diacrylate (EGDA) into the pHEMA polymer film as a crosslinker, confirmed via Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, resulted in varied swelling and degradation behavior. 2-Hydroxyethyl methacrylate-only films showed significant thickness loss (up to 40%), possibly due to extraction of low-molecular-weight species or erosion, after 24 h in aqueous solution, whereas films crosslinked with EGDA (9.25-12.4%) were stable for up to 21 days. These results differ significantly from those obtained with plasma-polymerized pHEMA, which degraded steadily over a 21-day period, even with crosslinking. This suggests that the piCVD films differ structurally from those fabricated via plasma polymerization (plasma-enhanced CVD). piCVD pHEMA coatings proved to be good cell culture materials, with Caco-2 cell attachment and viability comparable to results obtained on tissue-culture polystyrene. Thus, thin film CVD pHEMA offers the advantage of enabling conformal coating of a cell culture substrate with tunable properties depending on method of preparation and incorporation of crosslinking agents. © 2013 Wiley Periodicals, Inc.

  5. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongkeun; Park, Young Chul; Chun, Kyoung-Yong; Kim, Young-Jin; Choi, Jae-Boong [School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Keun Soo; Kang, Junmo; Hong, Byung Hee [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Boo, Jin-Hyo, E-mail: byunghee@skku.edu, E-mail: boong33@skku.edu [Department of Chemistry, RIAN and Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2011-03-04

    We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.

  6. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    International Nuclear Information System (INIS)

    Rosenow, Phil; Tonner, Ralf

    2016-01-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H 2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  7. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    Energy Technology Data Exchange (ETDEWEB)

    Rosenow, Phil; Tonner, Ralf, E-mail: tonner@chemie.uni-marburg.de [Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße, Marburg 35032 (Germany)

    2016-05-28

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H{sub 2} desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  8. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    Science.gov (United States)

    Rosenow, Phil; Tonner, Ralf

    2016-05-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  9. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Mullendore, A.W.; Whitley, J.B.; Pierson, H.O.; Mattox, D.M.

    1980-01-01

    Chemical vapor deposited coatings of TiB 2 , TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 2000 0 C on TiB 2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 1150 0 C were performed on TiB 2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  10. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    Science.gov (United States)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  11. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  12. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tiggelaar, R.M. [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Thakur, D.B.; Nair, H.; Lefferts, L.; Seshan, K. [Catalytic Processes and Materials, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gardeniers, J.G.E., E-mail: j.g.e.gardeniers@utwente.nl [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-05-01

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films evaporated on oxidized silicon and fused silica substrates with or without tantalum coating, which were subsequently exposed to different pretreatment atmospheres (vacuum, nitrogen, air and hydrogen; 1 h, 650 °C). Atomic force microscopy, scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the films. Pretreated Ni films were subjected to a thermal catalytic chemical vapor deposition procedure with brief ethylene exposures (0.5–3 min, 635 °C). It was found that only on the spherical nanoparticles originating from a hydrogen pretreatment of a Ni film with Ta adhesion layer, homogeneously distributed, randomly-oriented, well-attached, and semi-crystalline carbon nanofibers be synthesized. - Highlights: • On the formation of nanoparticles required for carbon nanofiber (CNF) synthesis • Various evaporated thin films on oxidized silicon and fused silica: Ni and Ni/Ta • Pretreatment of nickel-based thin films in vacuum, nitrogen, air and hydrogen • Only on reduced Ni/Ta fast – within 3 min – initiation of CNF nucleation and growth.

  13. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  14. Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.

    Science.gov (United States)

    Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L

    2018-02-07

    The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.

  15. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  16. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  17. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  18. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires

    International Nuclear Information System (INIS)

    Hou, W C; Hong, Franklin Chau-Nan

    2009-01-01

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 deg. C.

  19. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  20. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.

    Science.gov (United States)

    Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood

    2017-12-26

    Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS 2 ) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS 2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS 2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.