WorldWideScience

Sample records for diamond anvil cells

  1. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    Science.gov (United States)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  2. An improved hydrothermal diamond anvil cell

    Science.gov (United States)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  3. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  4. i-anvils : in situ measurements of pressure, temperature and conductivity in diamond anvil cells

    Science.gov (United States)

    Munsch, P.; Bureau, H.; Kubsky, S.; Meijer, J.; Datchi, F.; Ninet, S.; Estève, I.

    2011-12-01

    The precise determination of the pressure and temperature conditions during diamond anvils cells (DAC) experiments is of primary importance. Such determinations are critical more especially for the fields corresponding to "low pressures" (micro-structures are implanted in the diamond anvil lattice a few micrometers below the surface, the sensors are located a few μm below the center of the diamond culet (sample chamber position). When conductive electrodes are implanted at the position of the sample chamber on the culet of the anvil, instead of P,T sensors, they allow in situ measurements of electrical properties of the loaded sample at high P,T conditions in a DAC. The principle consists of applying an electrical potential across the structures through external contacts placed on the slopes of the anvil. The resistivity of these structures is sensitive to pressure and temperature applied in the sample chamber. The electrical transport properties of the sample can be measured the same way when electrodes have been implanted on the culet. Here we will present our last progresses, more especially using the focus ion beam (FIB) technology to perform contacts and electrodes. Progresses about the i-anvils connexions with the electronic devices will also be shown. We will present the last P and T sensors calibrations. Furnaces are also introduced through Boron implantation into the anvils, allowing the possibility to reach intermediate temperatures between externally heated DAC (up to 1100°C) and laser heated DAC (from 1500°C to a few thousands). Preliminary tests and the interest of such devices will be discussed at the meeting. A new diamond anvil cell has been especially designed for this purpose. This DAC allows in situ spectroscopies and X-Ray characterisation of geological fluids in their equilibrium conditions in the crust and in the upper mantle. Preliminary results will be presented.

  5. Comparison between beryllium and diamond-backing plates in diamond-anvil cells

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Nestola, Fabrizio; Balic Zunic, Tonci

    2011-01-01

    A direct comparison between two complete intensity datasets, collected on the same sample loaded in two identical diamond-anvil pressure cells equipped, respectively, with beryllium and diamond backing plates was performed. The results clearly demonstrate that the use of diamond-backing plates...

  6. Very high pressure Moessbauer spectroscopy using diamond anvil cells

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Taylor, R.D.

    1988-01-01

    The technique of generating very high pressure by means of Diamond Anvil Cells (DAC) for Mossbauer Effect applications is outlined. A comprehensive description is presented of the principles of DAC, modification for the use in M/umlt o/ssbauer Spectroscopy (MS), the Merrill--Bassett and Bassett cells, of pressure measurements, of gasketing and collimation, and of hydrostatic media. Examples of 151 Eu, 119 Sn and 129 I are given showing the feasibility of DAC applications in MS. Other isotopes with potential use for high pressure MS using DAC are suggested. 27 refs., 9 figs

  7. The Anvils as Pressure Calibrants in the Hydrothermal Diamond Anvil Cell

    Science.gov (United States)

    Davis, M. K.; Panero, W. R.; Stixrude, L. P.

    2003-12-01

    Throughout the crust and the upper part of the mantle, water is an important agent of heat and mass transport in processes ranging from metasomatism to magma generation in arc environments. One of the important properties of water in this regime: its ability to dissolve significant amounts of solids, presents a substantial challenge to the experimental study of water-rich systems. Many commonly used pressure standards, such as quartz and ruby, dissolve in water under the conditions accessible to the hydrothermal diamond anvil cell (up to 1200 K and 5 GPa). For this reason, it is important to develop alternative pressure calibrants. Two methods have been developed by other groups for pressure calibration in the HDAC in the presence of water. One method relies on the equation of state of the ambient fluid and the observation that the sample chamber remains approximately isochoric on heating. Disadvantages of this method include our imperfect knowledge of the equation of state of water over the relevant pressure-temperature interval, possible changes in fluid composition, and sample chamber assembly relaxation at temperatures above 800 K. The second method is based on the Raman signal from diamond chips loaded with the sample. Synthetic 13C diamond is used to avoid overlap with the much stronger signal from the anvils. Diamond is an ideal pressure sensor since it is chemically inert and unaffected by water. Therefore, we use the tips of the diamond anvils as "internal" sensors. The primary disadvantage of this method is that the stress distribution inside the anvils is non-hydrostatic and inhomogeneous, although the normal stress across the diamond-sample interface must be continuous. Using confocal micro-Raman spectroscopy we are able to characterize both the inhomogeneity and the non-hydrostaticity of the diamond stress field by combining axial and radial transects with peak shapes. We find that on room temperature loading there is substantial inhomogeneity in the

  8. Large-volume static compression using nano-polycrystalline diamond for opposed anvils in compact cells

    International Nuclear Information System (INIS)

    Okuchi, T; Sasaki, S; Ohno, Y; Osakabe, T; Odake, S; Kagi, H

    2010-01-01

    In order to extend the pressure regime of intrinsically low-sensitivity methods of measurement, such as neutron scattering and NMR, sample volume to be compressed in compact opposed-anvil cells is desired to be significantly increased. We hereby conducted a series of experiments using two types of compact cells equipped with enforced loading mechanisms. Super-hard nano-polycrystalline diamond (NPD) anvils were carefully prepared for large-volume compression in these cells. These anvils are harder, larger and stronger than single crystal diamond anvils, so that they could play an ideal role to accept the larger forces. Supported and unsupported anvil geometries were separately tested to evaluate this expectation. In spite of insufficient support to the anvils, pressures to 14 GPa were generated for the sample volume of > 0.1 mm 3 , without damaging the NPD anvils. These results demonstrate a large future potential of compact cells equipped with NPD anvils and enforced loading mechanism.

  9. Diamond-anvil cell for radial x-ray diffraction

    International Nuclear Information System (INIS)

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-01-01

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ∼54.7 0 , the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants

  10. Hydrostaticity of Pressure Media in Diamond Anvil Cells

    International Nuclear Information System (INIS)

    Shu-Jie, You; Liang-Chen, Chen; Chang-Qing, Jin

    2009-01-01

    Hydrostaticity under high pressure of several materials from solid, fluid to gas, which are widely used as pressure media in modern high-pressure experiments, is investigated in diamond anvil cells. Judging from the R-line widths and R 1 – R 2 peak separation of Ruby fluorescence, the inert argon gas is hydrostatic up to about 30 GPa. The behavior of silicon oil is found to be similar to argon at pressures less than 10 GPa, while the widening of R-lines and increase of R 1 – R 2 peak separation at higher pressure loads indicate a significant degradation of hydrostaticity. Therefore silicon oil is considered as a good pressure medium at pressures less than 10 GPa but poor at higher pressures

  11. Prospects of using synchrotron radiation facilities with diamond-anvil cells

    International Nuclear Information System (INIS)

    Manghani, M.H.; Ming, L.C.; Jamieson, J.C.

    1980-01-01

    Diamond-anvil pressure cells have proven versatile and useful for conducting high pressure research in the submegabar range. The interfacing of diamond-anvil cell technology with synchrotron facilities seems a logical new step for carrying out in situ X-ray diffraction studies of materials under extreme conditions of combined high pressure and temperature. The conventional film method of X-ray diffraction has definite limitations which call for the energy dispersive analysis techniques. Various potential high pressure-temperature studies in geophysis and related fields involving the use of diamond-anvil cell, synchrotron facilities and energy dispersive techniques are exemplified. For geophysical studies the conditions prevailing in 86% of the Earth's volume are capable of being simulated completely in pressure, and partially in pressure and temperature, simultaneously. (orig.)

  12. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  13. Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell

    Science.gov (United States)

    Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.

    2002-10-01

    Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.

  14. Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell

    DEFF Research Database (Denmark)

    Mezouar, M.; Giampaoli, R.; Garbarino, G.

    2017-01-01

    A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated...

  15. The gem anvil cell: high-pressure behaviour of diamond and related materials

    International Nuclear Information System (INIS)

    Xu Jian; Mao Hokwang; Hemley, Russell J

    2002-01-01

    The moissanite anvil cell has been used to study the high-pressure behaviour of diamond. The first-order Raman shift of diamond shows a strong dependence on hydrostaticity, with very different pressure dependences observed under hydrostatic and non-hydrostatic conditions. The shift of the second-order Raman band under hydrostatic pressures was determined for the first time. Sapphire has almost no peaks above 1000 cm -1 in the Raman spectrum and no absorption in the ultraviolet range; it is therefore especially useful for studies in those spectral regions. A sapphire anvil cell was used in a study of graphite up to 24 GPa. A phase transition was found near 18 GPa, consistent with previous reports, and no peaks characteristic of diamond in the 1330 cm -1 range were found, indicating that the phase is not diamond

  16. The gem anvil cell: high-pressure behaviour of diamond and related materials

    CERN Document Server

    Xu Jian; Hemley, R J

    2002-01-01

    The moissanite anvil cell has been used to study the high-pressure behaviour of diamond. The first-order Raman shift of diamond shows a strong dependence on hydrostaticity, with very different pressure dependences observed under hydrostatic and non-hydrostatic conditions. The shift of the second-order Raman band under hydrostatic pressures was determined for the first time. Sapphire has almost no peaks above 1000 cm sup - sup 1 in the Raman spectrum and no absorption in the ultraviolet range; it is therefore especially useful for studies in those spectral regions. A sapphire anvil cell was used in a study of graphite up to 24 GPa. A phase transition was found near 18 GPa, consistent with previous reports, and no peaks characteristic of diamond in the 1330 cm sup - sup 1 range were found, indicating that the phase is not diamond.

  17. EXAFS measurements under high pressure conditions using a combination of a diamond anvil cell and synchrotron radiation

    International Nuclear Information System (INIS)

    Sueno, Shigeho; Nakai, Izumi; Imafuku, Masayuki; Morikawa, Hideki; Kimata, Mitsuyoshi; Ohsumi, Kazumasa; Nomura, Masaharu; Shimomura, Osamu.

    1986-01-01

    EXAFS spectra for Fe, Co, Ni K-edges were successfully measured under high pressure conditions using a combination of a set of normal 1/8 carat diamond anvils, synchrotron radiation and a scintillation counter. A newly developed motor controlled goniometer stage was used for adjusting the position of a miniature diamond anvil cell. On the measurement of Cr and Mn spectra, specially designed thinner diamond anvil was necessary. EXAFS analysis of bis(dimethylglyoximato)nickel(II) at pressures from 1 atm to 5.6 GPa was made. (author)

  18. A Peltier cooling diamond anvil cell for low-temperature Raman spectroscopic measurements

    Science.gov (United States)

    Noguchi, Naoki; Okuchi, Takuo

    2016-12-01

    A new cooling system using Peltier modules is presented for a low-temperature diamond anvil cell instrument. This cooling system has many advantages: it is vibration-free, low-cost, and compact. It consists of double-stacked Peltier modules and heat sinks, where a cooled ethylene glycol-water mixture flows through a chiller. Current is applied to the Peltier modules by two programmable DC power supplies. Sample temperature can be controlled within the range 210-300 K with a precision of ±0.1 K via a Proportional-Integral-Differential (PID) control loop. A Raman spectroscopic study for the H2O ice VII-VIII transition is shown as an example of an application of the Peltier cooling diamond anvil cell system.

  19. Image analysis as an improved melting criterion in laser-heated diamond anvil cell

    OpenAIRE

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-01-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500K, our setup allows studying the melt...

  20. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    Science.gov (United States)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive

  1. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  2. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells

    International Nuclear Information System (INIS)

    Sinogeikin, Stanislav V.; Smith, Jesse S.; Rod, Eric; Lin, Chuanlong; Kenney-Benson, Curtis; Shen, Guoyin

    2015-01-01

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research

  3. Spray-loading: A cryogenic deposition method for diamond anvil cell

    Science.gov (United States)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  4. Hydrothermal Diamond Anvil Cell (HDAC): From Visual Observation to X-ray Absorption Spectroscopy

    Science.gov (United States)

    Bassett, W. A.; Mibe, K.

    2006-05-01

    A fluid sample contained in a Re gasket between two diamond anvils can be subjected to pressures up to 2.5 GPa and temperatures up to 1200°C in a resistively heated hydrothermal diamond anvil cell (HDAC). Thermocouples are used to measure temperature. The constant-volume sample chamber permits isochoric measurements that can be used to determine pressure from the equation of state of H2O and to map phases and properties in P-T space. A movie of reactions between K-feldspar and water up to 2.5 GPa and 880°C illustrates the use of visual observations for mapping coexisting solution, melt, and solid phases. X-ray absorption spectroscopy of ZnBr2 in solution up to 500°C and 500 MPa shows hydrogen bond breaking in the hydration shells of the ZnBr42- and Br- ions with increasing temperature. In other studies the stability field of ikaite (CaCO3·6H2O) has been mapped by visual observation and Raman spectroscopy; the phases of montmorillonite have been mapped by X-ray diffraction; and the leaching of Pb from zircon has been measured by X-ray microprobe.

  5. CO sub 2 laser-heated diamond-anvil cell methodology revisited

    CERN Document Server

    Hearne, G; Zhao, J

    2002-01-01

    A description is given of CO sub 2 laser heating system for attaining high temperatures at pressure in a diamond-anvil cell (DAC). The main purpose of this paper is to demonstrate that a relatively inexpensive set-up, perhaps affordable to many high-pressure laboratories, may be commissioned for laser-heated DAC experiments to achieve comparable extreme P-T conditions to those attained with more sophisticated stations documented in the literature. A novel idea of using the analogue output of a CCD camera to estimate the peak temperature and map the temperature distribution across the hot-spot has been tested. In an additional initial experiment on cubic zirconia (c-ZrO sub 2) we present evidence from a Raman characterization of the sample that temperatures exceeding 4000 K have been obtained at pressure in the DAC.

  6. In situ experimental study of subduction zone fluids using diamond anvil cells

    Science.gov (United States)

    Bureau, H.; Foy, E.; Somogyi, A.; Munsch, P.; Simon, G.; Kubsky, S.

    2008-12-01

    Experiments carried out in diamond anvil cells combined with in situ synchrotron light source measurements represent the only one issue to observe and study fluid equilibria in real time, at the pressure and temperature conditions of the subduction zones. We will present new results recently obtained at the DIFFABS beam line (SOLEIL Synchrotron) aiming at studying equilibria between silica-rich hydrous melts and aqueous fluids in the presence of U, Th, Pb, Ba and Br. We used synchrotron X-Ray fluorescence analysis performed in situ in Bassett-modified hydrothermal diamond anvil cells in order to monitor the chemical transfers of the studied elements between the phases in equilibrium at different pressures (up to 1.6 GPa) and temperatures (up to 900°C). We have calculated the partition coefficients for each studied element (i): Difluid/melt = Cifluid/Cimelt. Results show that U and Th exhibit more affinities for the silica-rich hydrous fluids in the presence or absence of Br, considered here such as an analogue for Cl, (i.e. 0.4 > 10 after decompression) this coefficient decreases with pressure suggesting that Br would not be immediately washed out from the subducted plate during dehydration but may be recycled deeper in the mantle. These new data combined with previous ones obtained for Pb, Ba (Bureau et al., 2007, HPR vol 27, p. 235) and Rb, Sr, Zr (Bureau et al., 2004, Eos Trans. AGU, 85(47), V11C-05), allow us to propose a general outline of the fluid phase transfers through the subduction factory: (1) at shallow level: their nature and composition, the impact of the presence of halogens and the fertilizing role of such fluids in the mantle wedge, where the generation of arc magmas takes place (2) deeper in the mantle: where hydrous silica-rich supercritical fluids may also favour a deep recycling of a fraction of volatiles and trace elements present in the subducted oceanic crust.

  7. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    Science.gov (United States)

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  8. A diamond-anvil high-pressure cell for X-ray diffraction on a single crystal

    International Nuclear Information System (INIS)

    Malinowski, M.

    1987-01-01

    A new diamond-anvil high-pressure cell is described which can be used in single-crystal X-ray diffraction instruments to collect X-ray intensity data from single-crystal samples up to hydrostatic pressures of about 10 GPa. A unique design allows two types of diffraction geometry to be applied in single-crystal high-pressure diffraction experiments. More than 85% of the Ewald sphere is accessible, and a continuous range of 2θ values is available from 0 up to about 160 0 . Pressure may be calibrated by the ruby fluorescence technique or by the use of an internal X-ray-standard single crystal. The design of our diamond-anvil cell would allow, with little or no modification, operation at high and low temperatures, optical studies and powder diffractometer work. (orig.)

  9. The design and application of a new Bassett-type diamond anvil cell for spectroscopic analysis of supercritical aqueous solutions

    International Nuclear Information System (INIS)

    Anderson, A.J.; Meredith, P.R.; Bassett, W.A.; Mayanovic, R.A.; Benmore, C.

    2010-01-01

    The Bassett-type hydrothermal diamond anvil cell has been modified to facilitate direct x-ray and Raman spectroscopic analysis of aqueous solutions and/or coexisting solid samples at temperatures and pressures above the critical point of water. The new cell provides more sample-detector geometry options for x-ray micro beam analysis and the reduced size of the cell affords a smaller working distance (≥ 14 mm) required for better Raman spectroscopic analysis and microscopic inspection. A shallow recess (300 × 300 × 26.5 μm) milled into one of the diamond anvils is used instead of a metal gasket to contain the aqueous solution. These modifications significantly improve our ability to directly monitor the composition and structure of supercritical fluids and have eliminated the problem of contamination due to the reaction of a metal gasket with supercritical water. The use of the modified hydrothermal diamond anvil cell to characterize the MoO 3 -H 2 O system up to 500 o C will be discussed. (author)

  10. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  11. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  12. Time- and Space-Domain Measurements of the Thermal Conductivity in Diamond Anvil Cells

    Science.gov (United States)

    Goncharov, A. F.

    2011-12-01

    I will give an overview of recent developments of experimental techniques to measure the thermal conductivity in diamond anvil cell (DAC) under conditions of high pressure and high temperature (P-T) which are relevant for the planetary interiors. To measure the lattice contributions to the thermal conductivity, we developed a transient heating technique (THT) in the diamond anvil cell (DAC) [1]. This technique utilizes a periodic front surface temperature variation (measured by the spectroradiometry) of a metallic absorber surrounded by the material of interest and exposed to a pulsed laser radiation (10 nanoseconds pulses). We extract the thermal diffusivity of minerals by fitting the experimental results to the model finite element (FE) calculations. We have recently modified this technique for microseconds laser pulses as this allows avoiding nonequilibrium heat transfer processes. We have measured the thermal conductivity of Ar up to 50 GPa and 2500 K; the results are in agreement with the theoretical calculations [2] in the limit of high temperatures. In collaboration with a group from the University of Illinois we have utilized a time-domain thermoreflectance (TDTR)- ultrafast (femtosecond) laser pump-probe technique for measurement of the lattice thermal conductivity at high P-T conditions. We have measured the thermal conductivity of MgO up to 60 GPa and 300 K and up to 45 GPa at 600 K. The detailed results of this study will be presented in a separate paper at this Meeting. Finally, we have combined static and pulsed laser techniques to determine the thermal conductivity of Fe and its temperature dependence at high pressures up to 70 GPa and 2000 K [3]. A thin plate of Fe was positioned in an Ar medium, laser heated from one side and the temperature is being measured from both sides of the sample radiometrically. The thermal conductivity has been determined by fitting the results of FE calculations to the experimental results. These examples demonstrate

  13. Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells

    Science.gov (United States)

    Bureau, Hélène; Foy, Eddy; Raepsaet, Caroline; Somogyi, Andrea; Munsch, Pascal; Simon, Guilhem; Kubsky, Stefan

    2010-07-01

    The geochemical partitioning of bromine between hydrous haplogranitic melts, initially enriched with respect to Br and aqueous fluids, has been continuously monitored in situ during decompression. Experiments were carried out in diamond anvil cells from 890 °C to room temperature and from 1.7 GPa to room pressure, typically from high P, T conditions corresponding to total miscibility (presence of a supercritical fluid). Br contents were measured in aqueous fluids, hydrous melts and supercritical fluids. Partition coefficients of bromine were characterized at pressure and temperature between fluids, hydrous melts and/or glasses, as appropriate: DBrfluid/melt = (Br) fluid/(Br) melt, ranges from 2.18 to 9.2 ± 0.5 for conditions within the ranges 0.66-1.7 GPa, 590-890 °C; and DBrfluid/glass = (Br) fluid/(Br) glass ranges from 60 to 375 at room conditions. The results suggest that because high pressure melts and fluids are capable of accepting high concentrations of bromine, this element may be efficiently removed from the slab to the mantle source of arc magmas. We show that Br may be highly concentrated in subduction zone magmas and strongly enriched in subduction-related volcanic gases, because its mobility is strongly correlated with that of water during magma degassing. Furthermore, our experimental results suggest that a non negligible part of Br present in the subducted slab may remain in the down-going slab, being transported toward the transition zone. This indicates that the Br cycle in subduction zones is in fact divided in two related but independent parts: (1) a shallower one where recycled Br may leave the slab with a water and silica-bearing "fluid" leading to enriched arc magmas that return Br to the atmosphere. (2) A deeper cycle where Br may be recycled back to the mantle maybe to the transition zone, where it may be present in high pressure water-rich metasomatic fluids.

  14. High-pressure raman study on single crystalline methane hydrate surrounded by methane in a diamond anvil cell

    International Nuclear Information System (INIS)

    Ohno, Y; Sasaki, S; Kume, T; Shimizu, H

    2008-01-01

    High-pressure Raman measurements have been performed for single crystalline methane hydrate (MH) surrounded by fluid or solid methane in a diamond anvil cell. We successfully obtained the pure O-H stretching and lattice vibration spectra in MH-sI and MH-II phases. In these Raman spectra, there is no Raman band from water or ice-VI. The observed pressure of phase transformation from MH-sI to MH-II is 0.9 GPa, which is the same result as methane hydrate surrounded by water

  15. Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell

    Science.gov (United States)

    Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.

    2017-04-01

    The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.

  16. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  17. Image analysis of speckle patterns as a probe of melting transitions in laser-heated diamond anvil cell experiments.

    Science.gov (United States)

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-09-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision. As an application, the melting curve of Te was measured up to 35 GPa. The results are found to be in good agreement with previous data obtained at pressures up to 10 GPa.

  18. Hydrothermal Diamond Anvil Cell Investigations Into the Alumina-Silica-Water System up to 1073 K and 4 GPa

    Science.gov (United States)

    Davis, M. K.; Stixrude, L. P.

    2004-12-01

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubility of different mineral assemblages in predominantly water-rich fluid along with pressure and temperature conditions control the chemical structure of the aqueous fluid and govern the transport opportunities for various chemical components away from the subducting slab. In-situ Raman experiments were performed in the alumina-silica-water system in an externally heated Bassett-type hydrothermal diamond anvil cell in the Department of Geological Sciences at the University of Michigan. Natural quartz samples (from the Owl Creek Mountains, Wyoming) were used as the silica source and synthetic ruby was used for the alumina source. Temperatures inside the diamond cell were monitored using type-K thermocouples wrapped around the diamonds and the pressure calibrated by the Raman shift of diamond or quartz or the fluorescence of ruby depending on conditions. Raman measurements of the aluminosilicate fluid show the presence of multiple alumina, silica, and mixed species. As predicted by calculations an aluminosilicate specie possibly of the form (HO)3SiOAl(OH)32- as well as the silica monomer and dimer specie were observed in the aluminosilicate fluid. There also appeared to be at least one hydrous alumina specie based on the presence of a Raman peaks at 228 cm-1, 339 cm-1 and 970 cm-1 in the fluid and a comparative analysis between Raman peaks in aqueous fluid in the silica-water, alumina-water, and alumina-silica-water systems. Solid phases formed during experiments (diaspore, kyanite) were confirmed with Raman spectroscopy.

  19. Sound speed and thermal property measurements of inert materials: laser spectroscopy and the diamond-anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Zaug, J.M.

    1997-07-01

    An indispensable companion to dynamical physics experimentation, static high-pressure diamond-anvil cell research continues to evolve, with laser diagnostic, as an accurate and versatile experimental deep planetary properties have bootstrapped each other in a process that has produced even higher pressures; consistently improved calibrations of temperature and pressure under static and dynamic conditions; and unprecedented data and understanding of materials, their elasticity, equations of state (EOS), and transport properties under extreme conditions. A collection of recent pressure and/or temperature dependent acoustic and thermal measurements and deduced mechanical properties and EOS data are summarized for a wide range of materials including H2, H2O, H2S, D2S, CO2, CH4, N2O, CH3OH,, SiO2, synthetic lubricants, PMMA, single crystal silicates, and ceramic superconductors. Room P&T sound speed measurements are presented for the first time on single crystals of beta-HMX. New high-pressure and temperature diamond cell designed and pressure calibrant materials are reviewed.

  20. Calibration of an isotopically enriched carbon-13 layer pressure sensor to 156 GPa in a diamond anvil cell

    International Nuclear Information System (INIS)

    Qiu Wei; Baker, Paul A.; Velisavljevic, Nenad; Vohra, Yogesh K.; Weir, Samuel T.

    2006-01-01

    An isotopically enriched 13 C homoepitaxial diamond layer of 6±1 μm thickness was grown on top of a brilliant cut diamond anvil by a microwave plasma chemical vapor deposition process for application as a pressure sensor. This isotopically enriched diamond tip was then used in conjunction with a natural isotopic abundance diamond anvil to generate high pressure on the sample. We provide a calibration for the 13 C Raman mode of this extremely thin epitaxial layer to 156 GPa using ruby fluorescence and the equation of state of copper as secondary pressure standards. The nonlinear calibration of the 13 C Raman mode pressure sensor is compared with similar calibrations of 12 C Raman edge and a good agreement is obtained. The Raman signal from the 13 C epitaxial layer remained a distinct singlet to 156 GPa, and pressure calibration is independent of sample mechanical strength or the diamond anvil geometry. The use of even thinner layer would allow calibration further into ultrahigh pressure regime where the use of other optical sensors has proven to be difficult

  1. A sensitive pressure sensor for diamond anvil cell experiments up to 2 GPa: FluoSpheres[reg

    International Nuclear Information System (INIS)

    Picard, Aude; Oger, Phil M.; Daniel, Isabelle; Cardon, Herve; Montagnac, Gilles; Chervin, Jean-Claude

    2006-01-01

    We present an optical pressure sensor suitable for experiments in diamond anvil cell in the 0.1 MPa-2 GPa pressure range, for temperatures between ambient and 323 K. It is based on the pressure-dependent fluorescence spectrum of FluoSpheres[reg], which are commercially available fluorescent microspheres commonly used to measure blood flow in experimental biology. The fluorescence of microspheres is excited by the 514.5 nm line of an Ar + laser, and the resulting spectrum displays three very intense broad bands at 534, 558, and 598 nm, respectively. The reference wavelength and pressure gauge is that of the first inflection point of the spectrum, located at 525.6±0.2 nm at ambient pressure. It is characterized by an instantaneous and large linear pressure shift of 9.93(±0.08) nm/GPa. The fluorescence of the FluoSpheres[reg] has been investigated as a function of pressure (0.1-4 GPa), temperature (295-343 K), pH (3-12), salinity, and pressure transmitting medium. These measurements show that, for pressures comprised between 0.1 MPa and 2 GPa, at temperatures not exceeding 323 K, at any pH, in aqueous pressure transmitting media, pressure can be calculated from the wavelength shift of two to three beads, according to the relation P=0.100 (±0.001) Δλ i (P) with Δλ i (P)=λ i (P)-λ i (0) and λ i (P) as the wavelength of the first inflection point of the spectrum at the pressure P. This pressure sensor is approximately thirty times more sensitive than the ruby scale and responds instantaneously to pressure variations

  2. In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Alexandra, E-mail: friedrich@kristall.uni-frankfurt.d [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Winkler, Bjoern; Bayarjargal, Lkhamsuren [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Juarez Arellano, Erick A. [Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Morgenroth, Wolfgang; Biehler, Jasmin; Schroeder, Florian [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Yan, Jinyuan; Clark, Simon M. [Advanced Light Source, Lawrence Berkeley National Laboratory, MS6R2100, 1 Cyclotron Road, Berkeley, CA 94720-8226 (United States)

    2010-07-16

    Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000 K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal {beta}-Ta{sub 2}N and orthorhombic {eta}-Ta{sub 2}N{sub 3}, which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of {epsilon}-TaN, {theta}-TaN, {delta}-TaN, Ta{sub 3}N{sub 5}-I or Ta{sub 3}N{sub 5}-II, which was predicted to be the stable phase at P>17 GPa and T=2800 K, at the P,T-conditions of this experiment. The bulk modulus of {eta}-Ta{sub 2}N{sub 3} was determined to be B{sub 0}=319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B{sub 0}=348.0(9) GPa for a 2nd-order fit or B{sub 0}=339(1) GPa and B{sup '}=4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined.

  3. Effect of shear strain on the α-ε phase transition of iron: a new approach in the rotational diamond anvil cell

    International Nuclear Information System (INIS)

    Ma Yanzhang; Selvi, Emre; Levitas, Valery I; Hashemi, Javad

    2006-01-01

    The effect of shear strain on the iron α-ε phase transformation has been studied using a rotational diamond anvil cell (RDAC). The initial transition is observed to take place at the reduced pressure of 10.8 GPa under pressure and shear operation. Complete phase transformation was observed at 15.4 GPa. The rotation of an anvil causes limited pressure elevation and makes the pressure distribution symmetric in the sample chamber before the phase transition. However, it causes a significant pressure increase at the centre of the sample and brings about a large pressure gradient during the phase transformation. The resistance to the phase interface motion is enhanced due to strain hardening during the pressure and shear operations on iron and this further increases the transition pressure. The work of macroscopic shear stress and the work of the pressure and shear stress at the defect tips account for the pressure reduction of the iron phase transition

  4. Experimental issues in in-situ synchrotron x-ray diffraction at high pressure and temperature by using a laser-heated diamond-anvil cell

    International Nuclear Information System (INIS)

    Yoo, C.S.

    1997-01-01

    An integrated technique of diamond-anvil cell, laser-heating and synchrotron x-ray diffraction technologies is capable of structural investigation of condensed matter in an extended region of high pressures and temperatures above 100 GPa and 3000 K. The feasibility of this technique to obtain reliable data, however, strongly depends on several experimental issues, including optical and x-ray setups, thermal gradients, pressure homogeneity, preferred orientation, and chemical reaction. In this paper, we discuss about these experimental issues together with future perspectives of this technique for obtaining accurate data

  5. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Directory of Open Access Journals (Sweden)

    Lkhamsuren Bayarjargal

    2011-09-01

    Full Text Available Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p; T stability, compressibility and hardness is described as obtained from experiments.

  6. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Science.gov (United States)

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  7. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Lowell [Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Earth Sciences, Montana State University, Bozeman, Montana 59717 (United States); Kanitpanyacharoen, Waruntorn; Kaercher, Pamela; Wenk, Hans-Rudolf; Alarcon, Eloisa Zepeda [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Raju, Selva Vennila [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); HiPSEC, Department of Physics, University of Nevada, Las Vegas, Nevada 89154 (United States); Knight, Jason; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Williams, Quentin [Department of Earth and Planetary Science, University of California, Santa Cruz, California 95064 (United States)

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

  8. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C

    Science.gov (United States)

    Bassett, William A.; Shen, A.H.; Bucknum, M.; Chou, I.-Ming

    1993-01-01

    A new style of diamond anvil cell(DAC) has been designed and built for conducting research in fluids at pressures to 2.5 GPa and temperatures from −190 to 1200 °C. The new DAC has been used for optical microscope observations and synchrotron x‐ray diffraction studies. Fringes produced by interference of laser light reflected from top and bottom anvil faces and from top and bottom sample faces provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in samples that have resulted from transitions and reactions. X‐ray diffraction patterns of samples under hydrothermal conditions have been made by the energy dispersive method using synchrotron radiation. The new DAC has individual heaters and individual thermocouples for the upper and lower anvils that can be controlled and can maintain temperatures with an accuracy of ±0.5 °C. Low temperatures are achieved by introducing liquid nitrogen directly into the DAC. The equation of state of H2O and the α‐β quartz transition are used to determine pressure with an accuracy of ±1% in the aqueous samples. The new DAC has been used to redetermine five isochores of H2O as well as the dehydration curves of brucite, Mg(OH)2, and muscovite, KAl2(Si3Al)O10(OH)2.

  9. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C

    Science.gov (United States)

    Bassett, W. A.; Shen, A. H.; Bucknum, M.; Chou, I.-Ming

    1993-08-01

    A new style of diamond anvil cell (DAC) has been designed and built for conducting research in fluids at pressures to 2.5 GPa and temperatures from -190 to 1200 °C. The new DAC has been used for optical microscope observations and synchrotron x-ray diffraction studies. Fringes produced by interference of laser light reflected from top and bottom anvil faces and from top and bottom sample faces provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in samples that have resulted from transitions and reactions. X-ray diffraction patterns of samples under hydrothermal conditions have been made by the energy dispersive method using synchrotron radiation. The new DAC has individual heaters and individual thermocouples for the upper and lower anvils that can be controlled and can maintain temperatures with an accuracy of ±0.5 °C. Low temperatures are achieved by introducing liquid nitrogen directly into the DAC. The equation of state of H2O and the α-β quartz transition are used to determine pressure with an accuracy of ±1% in the aqueous samples. The new DAC has been used to redetermine five isochores of H2O as well as the dehydration curves of brucite, Mg(OH)2, and muscovite, KAl2(Si3Al)O10(OH)2.

  10. Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by x-ray diffraction: Argon and water

    International Nuclear Information System (INIS)

    Eggert, Jon H.; Weck, Gunnar; Loubeyre, Paul; Mezouar, Mohamed

    2002-01-01

    We report quantitatively accurate high-pressure, structure-factor measurements of fluids in diamond anvil cells (DAC's) using x-ray diffraction. In the analysis of our diffraction data, we found it possible (and necessary) to determine the density directly. Thus, we also present a diffraction-based determination of the equation of state for fluid water. The analysis of these measurements is difficult since the diamond anvils are many times as thick as the sample and excessive care must be taken in the background subtraction. Due to the novel nature of the experiment and the complexity of the analysis, this paper is concerned primarily with a careful exposition of our analytical methods. Our analysis is applicable to both atomic and molecular fluids and glasses, and we present results for the structure factor and density of two relatively low-Z liquids: argon and water. In order to validate our methods we present an extensive comparison of our measurements on water at P≅0 in a DAC to recent state-of-the-art x-ray and neutron diffraction experiments and to first-principles simulations at ambient conditions

  11. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  12. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-01-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  13. Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    International Nuclear Information System (INIS)

    Errandonea, D; Somayazulu, M; Haeusermann, D; Mao, H K

    2003-01-01

    The high-pressure and high-temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 deg. GPa and 3800 deg. K. The melting was observed at nine different pressures, the melting temperature being in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dT m /dP ≅ 24 GPa -1 at 1 deg. bar) and a possible explanation for this behaviour is given. Finally, a P-V -T equation of states is obtained, the temperature dependence of the thermal expansion coefficient and the bulk modulus being estimated

  14. Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from -190°C to 1200°C

    Science.gov (United States)

    Bassett, W. A.; Shen, A. H.; Bucknum, M.; Chou, I.-Ming

    1993-06-01

    The new hydrothermal diamond anvil cell (HDAC) has been designed for optical microscopy and X-ray diffraction at pressures up to 10 GPa and temperatures between -190°C and 1200°C. Laser light reffected from the top and bottom anvil faces and the top and bottom solid sample faces produce interference fringes that provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in solid samples due to transitions and reactions. Synchrotron radiation has been used to make X-ray diffraction patterns of samples under hydrothermal conditions. Individual heaters and individual thermocouples provide temperature control with an accuracy of ±0.5°C. Liquid nitrogen directly introduced into the HDAC has been used to reduce the sample temperature to -190°C. The α-β phase boundary of quartz has been used to calculate the transition pressures from measured transition temperatures. With this method we have redetermined 5 isochores of H2O up to 850°C and 1.2 GPa at which the solution rate of the quartz became so rapid that the quartz dissolved completely before the α-β transition could be observed. When silica solutions were cooled, opal spherules and rods formed.

  15. Homogenization Experiments of Crystal-Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond-Anvil Cell

    Directory of Open Access Journals (Sweden)

    Jiankang Li

    2017-01-01

    Full Text Available Extensive studies of the crystal-rich inclusions (CIs hosted in minerals in pegmatite have resulted in substantially different models for the formation mechanism of the pegmatite. In order to evaluate these previously proposed formation mechanisms, the total homogenization processes of CIs hosted in spodumene from the Jiajika pegmatite deposit in Sichuan, China, were observed in situ under external H2O pressures in a new type of hydrothermal diamond-anvil cell (HDAC. The CIs in a spodumene chip were loaded in the sample chamber of HDAC with water, such that the CIs were under preset external H2O pressures during heating to avoid possible decrepitation. Our in situ observations showed that the crystals within the CIs were dissolved in carbonic-rich aqueous fluid during heating and that cristobalite was usually the first mineral being dissolved, followed by zabuyelite and silicate minerals until their total dissolution at temperatures between 500 and 720°C. These observations indicated that the minerals within the CIs were daughter minerals crystallized from an entrapped carbonate- and silica-rich aqueous solution and therefore provided useful information for evaluating the formation models of granitic pegmatites.

  16. The accuracy of the crystal chemical parameters at high-pressure conditions from single-crystal X-ray diffraction in diamond-anvil cell

    DEFF Research Database (Denmark)

    Periotto, Benedetta

    -ray instruments. At the same time, the high-pressure experiments have benefited by the strong improvements on the high-pressure devices, in particular the diamond-anvil cell (DAC). The aim of this research project is to assess the quality of the data obtained by means of the single-crystal X-ray diffraction...... technique through the study of different mineral phases. The procedure for setting up an experiment under high-pressure conditions, using a single crystal as sample held within a DAC, are presented here with all the details of the in situ measurements at high-pressure conditions. The research project...... started with a comparison between two different DACs, in order to define the capabilities of one of the most common types of pressure device, the ETH-type DAC. Application examples of data quality analysis have been conducted on pyroxenes (NaInSi2O6, orthoenstatite MgSiO3 and LiCrSi2O6), which...

  17. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    Science.gov (United States)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  18. The structural variation of rhombohedral LaAlO3 perovskite under non-hydrostatic stress fields in a diamond-anvil cell

    International Nuclear Information System (INIS)

    Zhao Jing; Angel, Ross J; Ross, Nancy L

    2011-01-01

    The structural variation of LaAlO 3 perovskite under non-hydrostatic stress developed in the pressure medium within a diamond-anvil cell was determined using single-crystal x-ray diffraction. The experimental results show that the lattice of LaAlO 3 becomes more distorted and deviates from the hydrostatic behavior as pressure is increased up to 7.5 GPa. The determination of the crystal structure further confirms that the octahedral AlO 6 groups become more distorted, but the octahedral rotation around the threefold axis decreases as under hydrostatic conditions. These experimental results can be reproduced from knowledge of the elastic tensor of the sample at ambient conditions and the stress state within the pressure medium. Further calculations for two other orientations also indicate that non-hydrostatic stress has only a small effect on the rotation of the AlO 6 octahedra towards zero, but non-hydrostatic stress inevitably leads to distortions in the crystal lattice and the AlO 6 octahedra. As a result, the crystal structure is eventually driven away from cubic symmetry under non-hydrostatic conditions, whereas it evolves towards cubic symmetry under hydrostatic pressure.

  19. Non-hydrostatic behavior of KBr as a pressure medium in diamond anvil cells up to 5.63 GPa

    International Nuclear Information System (INIS)

    Zhao, Jing; Ross, Nancy L

    2015-01-01

    Non-hydrostatic stresses of KBr acting as a pressure–transmitting medium have been investigated by examining their effect on a single crystal of quartz in a diamond anvil cell (DAC). The lattice strains or distortions were measured by single-crystal x-ray diffraction methods, and the non-hydrostatic deviatoric stresses for KBr were determined up to 5.63(2) GPa. The experimental results show that differences between axial stress components in the direction normal to the DAC culet face and the radial stress components in directions parallel to the DAC culet face are about 0.063(24) GPa at pressures below 2.14 GPa, and the pressure-transmitting medium can therefore be considered as quasi-hydrostatic up to this pressure. However above 2.14 GPa, after the phase transition pressure of KBr during which it converts from the B1 phase to the B2 phase, the deviatoric stresses constantly increase with increasing pressure. At the maximum pressure of this study, 5.63(2) GPa, the difference between axial stress and radial stress components reaches 0.93(9) GPa. Different variations in the non-hydrostatic deviatoric stresses were observed during both compression and decompression of the DAC, and are mainly ascribed to the phase-transition-induced volume change of KBr. (paper)

  20. en (Be_3Al_2Si_6O_1_8) by using a diamond anvil cell and in situ synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Fan, Dawei; Xu, Jingui; Kuang, Yunqian; Li, Xiaodong; Li, Yanchun; Xie, Hongsen

    2015-01-01

    High-pressure single-crystal synchrotron X-ray diffraction was carried out on a single crystal of natural beryl compressed in a diamond anvil cell. The pressure-volume (P-V) data from room pressure to 9.51 GPa were fitted by a third-order Birch-Murnaghan equation of state (BM-EoS) and resulted in unit-cell volume V_0 = 675.5 ± 0.1 Aa"3, isothermal bulk modulus K_0 = 180 ± 2 GPa, and its pressure derivative K_0"' = 4.2 ± 0.5. We also calculated V_0 = 675.5 ± 0.1 Aa"3 and K_0 = 181 ± 1GPa with fixed K_0"' at 4.0 and then obtained the axial moduli for a (K_a_0)-axis and c (K_c_0)-axis of 209 ± 1 and 141 ± 2 GPa by ''linearized'' BM-EoS approach. The axial compressibilities of a-axis and c-axis are β_a = 1.59 x 10"-"3 GPa"-"1 and β_c = 2.36 x 10"-"3 GPa"-"1 with an anisotropic ratio of β_a:β_c = 0.67:1.00. On the other hand, the pressure-volume-temperature (P-V-T) EoS of the natural beryl has also been measured at temperatures up to 750 K and at pressures up to 16.81 GPa, using diamond anvil cell in conjunction with in situ synchrotron angle-dispersive powder X-ray diffraction. The P-V data at room temperature and at a pressure range of 0.0001-15.84 GPa were then analyzed by third-order BM-EoS and yielded V_0 = 675.3 ± 0.1 Aa"3, K_0 = 180 ± 2 GPa, K_0"' = 4.2 ± 0.3. With K_0"' fixed to 4.0, we also obtained V_0 = 675.2 ± 0.1 Aa"3 and K_0 = 182 ± 1 GPa. Consequently, we fitted the P-V-T data with high-temperature BM-EoS approach using the resultant K_0"' (4.2) from room-temperature BM-EoS and then obtained the thermoelastic parameters of V_0 = 675.3 ± 0.2 Aa"3, K_0 = 180 ± 1 GPa, temperature derivative of the bulk modulus (∂K/∂T)_P = -0.017 ± 0.004 GPa K"-"1, and thermal expansion coefficient at ambient conditions α_0 = (2.82 ± 0.74) x 10"-"6 K"-"1. Present results were also compared with previous studies for beryl. From the comparison of these fittings, we propose to constrain K_0 = 180 GPa and K_0"' = 4.2 for beryl. And we also observed that

  1. Pulsed Laser Techniques in Laser Heated Diamond Anvil Cells for Studying Methane (CH4) and Water (H2O) at Extreme Pressures and Temperatures

    Science.gov (United States)

    Holtgrewe, N.; Lobanov, S.; Mahmood, M.; Goncharov, A. F.

    2017-12-01

    Scientific advancement in the fields of high pressure material synthesis and research on planetary interiors rely heavily on a variety of techniques for probing such extreme conditions, such as laser-heating diamond anvil cells (LHDACs) (Goncharov et al., J. Synch. Rad., 2009) and shock compression (Nellis et al., J. Chem. Phys., 2001/ Armstrong et al., Appl. Phys. Lett., 2008). However, certain chemical properties can create complications in the detection of such extreme states, for example the instability of energetic materials, and detection of these dynamic chemical states by time-resolved methods has proven to be valuable in exploring the kinetics of these materials. Current efforts at the Linac Coherent Light Source (LCLS) for exploring the transitions between different phases of condensed matter (Armstrong et. al., APS Mar. Meeting, 2017/ Radousky et al., APS Mar. Meeting, 2017), and X-ray synchrotron pulsed heating are useful techniques but require large facilities and are not always accessible. Instead, optical properties of materials can serve as a window into the state or structure of species through electronic absorption properties. Pump-probe spectroscopy can be used to detect these electronic properties in time and allow the user to develop a picture of complex dynamic chemical events. Here we present data acquired up to 1.5 megabar (Mbar) pressures and temperatures >3000 K using pulsed transmission/reflective spectroscopy combined with a pulsed LHDAC and time-resolved detection (streak camera) (McWilliams et. al., PNAS, 2015/ McWilliams et al., PRL, 2016). Time-resolved optical properties will be presented on methane (CH4) and water (H2O) at P-T conditions found in icy bodies such as Uranus and Neptune (Lee and Scandolo, Nature Comm., 2011). Our results show that the interiors of Uranus and Neptune are optically opaque at P-T conditions corresponding to the mantles of these icy bodies, which has implications for the unusual magnetic fields of these

  2. Implementation of the Peak Scaling Method for Temperature Measurement in the Laser Heated Diamond Anvil Cell at ALS Beamline 12.2.2

    Science.gov (United States)

    Kunz, M.; MacDowell, A. A.; Yan, J.; Beavers, C.; Doran, A.; Williams, Q. C.

    2016-12-01

    The laser-heated diamond anvil cell (LHDAC) is an important tool in the quest to correlate seismologically derived density and velocity profiles of the Earth with mineralogical models. Precise and accurate measurement of pressure and temperature is crucial for the LHDAC to be useful. Measuring accurate temperatures of laser-heated samples is an ongoing problem. One of the more promising approaches is the `peak-scaling method' as proposed by Kavner and Panero [2004]. This method relies on imaging the entire hot spot, rather than only the peak region onto the grating of a spectrometer. The temperature derived from the entire hotspot is an `average' temperature of the full hot spot. Combined with a monochromatic intensity map of the hot spot and a single temperature spot on this map (normally the peak temperature), a complete temperature map of the LHDAC can be derived. The crux of the method is to determine an accurate peak temperature. Using MATLAB, we derived systematic dependences of the relationship between average temperature and peak temperature as a function of peak temperature, deviations from the grey body assumption [ɛ = f(T,λ)], size and shape of hotspot, as well as the size and position of the spectral window used for spectral fitting. We find these average-to-peak deviations to be significant (5 - 25 %) and hard to control. To avoid biases introduced into the temperature map by erroneous assumptions on the peak temperature, we implemented on ALS beamline 12.2.2 an iterative way to fit a correct peak temperature based on the measured average temperature and measured monochromatic (700 nm) intensity map of the hot spot. The method calculates an average temperature by inverting the Planck equation on the intensities extracted from the monochromatic hotspot image and compares this value to the value obtained by fitting the Wien approximation to the averaged spectrum of the entire hotspot. The peak temperature is adjusted until the difference between

  3. Double-Sided Laser Heating in Radial Diffraction Geometry for Diamond Anvil Cell Deformation Experiments at Simultaneous High Pressures and Temperatures

    Science.gov (United States)

    Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.

    2017-12-01

    The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and

  4. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  5. In situ defect annealing of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; Park, Changyong; Popov, Dmitry; Trautmann, Christina; Ewing, Rodney C.; Lang, Maik

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron X-ray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performingin situdefect annealing and thermal expansion studies of swift heavy ion irradiated CeO2and ThO2using synchrotron X-ray diffraction. The advantages of thein situHDAC technique over conventional annealing methods include rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature and apparatus stability at high temperatures. Isochronal annealing between 300 and 1100 K revealed two-stage and one-stage defect recovery processes for irradiated CeO2and ThO2, respectively, indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high-temperature defect recovery mechanisms of CeO2and ThO2.

  6. Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating

    International Nuclear Information System (INIS)

    Hasegawa, Masashi; Yagi, Takehiko

    2005-01-01

    Syntheses of 3d-transition metal (Ti-Cu) nitrides have been tried in a supercritical nitrogen fluid at high pressures (about 10 GPa) and high temperatures (about 1800 K) using diamond anvil cell and YAG laser heating system. Nitrides, such as TiN, VN, CrN, Mn 3 N 2 , Fe 2 N, Co 2 N and Ni 3 N have been successfully synthesized easily by a simple direct nitriding reaction between metal and fluid nitrogen in a short time, while any Cu nitrides were not synthesized. These results indicate that the ratio of nitrogen to metal, N/M, of the nitride decreases from 1 to 0 with the sequence from the early transition metal nitrides to the late transition metal ones. The systematic change of the N/M ratio and crystal structure of the 3d-transition metal nitrides is discussed and interpreted on the basis of the electron arrangement of the 3d-transition metal which is relevant to its coordination number

  7. P–V–T equation of state of molybdenite (MoS2) by a diamond anvil cell and in situ synchrotron angle-dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Fan, Dawei; Xu, Jingui; Ma, Maining; Liu, Jing; Xie, Hongsen

    2014-01-01

    The pressure–volume–temperature (P–V–T) equation of state (EoS) of a natural molybdenite (MoS 2 ) has been measured at high temperature up to 700 K and high pressures up to 18.26 GPa, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature P–V data to a third-order Birch–Murnaghan EoS yields: V 0 =107.0±0.1 Å 3 , K 0 =67±2 GPa and K′ 0 =5.0±0.3. With K′ 0 fixed to 4.0, we obtained: V 0 =106.7±0.1 Å 3 and K 0 =74.5±0.8 GPa. Fitting of our P–V–T data by means of the high-temperature third order Birch–Murnaghan equations of state, gives the thermoelastic parameters: V 0 =107.0±0.1 Å 3 , K 0 =69±2 GPa, K′ 0 =4.7±0.2, (∂K/∂T) P =−0.021±0.003 GPa K −1 , a=(2.2±0.7)×10 −5 K −1 and b=(2.9±0.8)×10 −8 K −2 . The temperature derivative of the bulk modulus and thermal expansion coefficient of MoS 2 are obtained for the first time. Present results are also compared with previously studies determined the elastic properties of MoS 2 and WS 2

  8. P–V–T equation of state of molybdenite (MoS{sub 2}) by a diamond anvil cell and in situ synchrotron angle-dispersive X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Dawei, E-mail: fandawei@vip.gyig.ac.cn [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xu, Jingui [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Maining [University of Chinese Academy of Sciences, Beijing 100049 (China); Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Xie, Hongsen [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2014-10-15

    The pressure–volume–temperature (P–V–T) equation of state (EoS) of a natural molybdenite (MoS{sub 2}) has been measured at high temperature up to 700 K and high pressures up to 18.26 GPa, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature P–V data to a third-order Birch–Murnaghan EoS yields: V{sub 0}=107.0±0.1 Å{sup 3}, K{sub 0}=67±2 GPa and K′{sub 0}=5.0±0.3. With K′{sub 0} fixed to 4.0, we obtained: V{sub 0}=106.7±0.1 Å{sup 3} and K{sub 0}=74.5±0.8 GPa. Fitting of our P–V–T data by means of the high-temperature third order Birch–Murnaghan equations of state, gives the thermoelastic parameters: V{sub 0}=107.0±0.1 Å{sup 3}, K{sub 0}=69±2 GPa, K′{sub 0}=4.7±0.2, (∂K/∂T){sub P}=−0.021±0.003 GPa K{sup −1}, a=(2.2±0.7)×10{sup −5} K{sup −1} and b=(2.9±0.8)×10{sup −8} K{sup −2}. The temperature derivative of the bulk modulus and thermal expansion coefficient of MoS{sub 2} are obtained for the first time. Present results are also compared with previously studies determined the elastic properties of MoS{sub 2} and WS{sub 2}.

  9. Experimental Investigation of Magnetic Superconducting and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures using Designer Diamond Anvils

    International Nuclear Information System (INIS)

    Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun; Butch, Nicholas P.

    2004-01-01

    Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures (∼1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as

  10. Experimental Investigation of Magnetic Superconducting, and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures Using Designer Diamond Anvils

    International Nuclear Information System (INIS)

    Maple, M. Brian

    2005-01-01

    Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made

  11. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes

    Science.gov (United States)

    Ito, Eiji; Katsura, Tomoo; Yamazaki, Daisuke; Yoneda, Akira; Tado, Masashi; Ochi, Takahiro; Nishibara, Eiichi; Nakamura, Akihiro

    2009-05-01

    In order to overcome disadvantages of the DIA type press in squeezing the Kawai-cell, such as uneven compression between the upper and lower anvils and the four surrounding anvils and frictional loss of applied load in the guide block, we have developed a new 6-axis apparatus in which the movements of the six anvils are controlled by a servo mechanism. It is possible to keep the Kawai-cell cubic within an accuracy of ±2 μm during compression and decompression. Pressure generation using sintered diamond cubic anvils with edge length of 14.0 mm and a truncation of 1.5 mm has been carried out up to ca. 60 GPa by measuring electrical resistance of GaP, Zr, and Fe 2O 3. The results are compared with our previous calibration, carried out using an almost the same sample setup for identical anvils at SPring-8, by means of in situ X-ray observation. It is demonstrated that a significant amount of the applied load is lost by friction when the Kawai-cell is squeezed in the DIA type press. The load loss increases with increasing load, or pressure, and amounts to 45% at ca. 60 GPa. Therefore the 6-axis apparatus is very advantageous to generate higher pressures in the Kawai-cell. However, individual control of the anvils sometimes induces a runaway advancement of the anvils which brings about an abrupt increase of pressure.

  12. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.

    Science.gov (United States)

    Chen, Jinyang; Zheng, Haifei; Xiao, Wansheng; Zeng, Yishan

    2003-10-01

    A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.

  13. Single-cell magnetic imaging using a quantum diamond microscope.

    Science.gov (United States)

    Glenn, D R; Lee, K; Park, H; Weissleder, R; Yacoby, A; Lukin, M D; Lee, H; Walsworth, R L; Connolly, C B

    2015-08-01

    We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.

  14. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 129, May (2015), 95-99 ISSN 0927-7765 R&D Projects: GA ČR GAP108/12/0996 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : field-effect transistors * nanocrystalline diamond * osteoblastic cells * leakage currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.902, year: 2015

  15. Space efficient opposed-anvil high-pressure cell and its application to optical and NMR measurements up to 9 GPa

    International Nuclear Information System (INIS)

    Kitagawa, Kentaro; Gotou, Hirotada; Yagi, Takehiko; Yamada, Atsushi; Matsumoto, Takehiko; Uwatoko, Yoshiya; Takigawa, Masashi

    2010-01-01

    We have developed a new type of opposed-anvil high pressure cell with substantially improved space efficiency. The clamp cell and the gasket are made of non-magnetic Ni-Cr-Al alloy. Non-magnetic tungsten carbide (NMWC) is used for the anvils. The assembled cell with the dimension φ29 mm x 41 mm is capable of generating pressure up to 9 GPa over a relatively large volume of 7 mm 3 . Our cell is particularly suitable for those experiments which require large sample space to achieve good signal-to-noise ratio, such as the nuclear magnetic resonance (NMR) experiment. Argon is used as the pressure transmitting medium to obtain good hydrostaticity. The pressure was calibrated in situ by measuring the fluorescence from ruby through a transparent moissanite (6H-SiC) window. We have measured the pressure and temperature dependences of the 63 Cu nuclear-quadrupole-resonance (NQR) frequency of Cu 2 O, the in-plane Knight shift of metallic tin, and the Knight shift of platinum. These quantities can be used as reliable manometers to determine the pressure values in situ during the NMR/NQR experiments up to 9 GPa. (author)

  16. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Czech Academy of Sciences Publication Activity Database

    Mikšovský, Jan; Voss, A.; Kozarova, R.; Kocourek, Tomáš; Písařík, Petr; Ceccone, G.; Kulisch, W.; Jelínek, Miroslav; Apostolova, M.D.; Reithmaier, J.P.; Popov, C.

    2014-01-01

    Roč. 297, APR (2014), s. 95-102 ISSN 0169-4332 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : ultrananocrystalline diamond films * diamond -like carbon films * surface modification * direct contact cell tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169433214001251

  17. Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source.

    Science.gov (United States)

    McMahon, M I

    2015-03-06

    Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Study of thermal pressure and phase transitions in H2O using optical pressure sensors in the diamond anvil cell

    International Nuclear Information System (INIS)

    Sundberg, Sara; Lazor, Peter

    2004-01-01

    We present results of a study on the phase equilibria and pressure-volume-temperature relations for water and ice VII using an optical system designed for Raman spectroscopy and pressure-temperature measurements. The study shows that the strontium borate sensor represents an important tool for high-pressure-high-temperature manometry for temperatures below 600 K. In the pressure-temperature ranges 0-5 GPa and 240-600 K we detected phase transformations between four phases of H 2 O as documented by Raman spectra, pressure-temperature scans, and visual observations. Analysis of the interference fringes and comparison of the experimental data on thermal pressure with the published equations of state (EOSs) show that the heating/cooling cycles were carried out under quasi-isochoric conditions. The experimental results are discussed/analysed on the basis of different EOSs for water and ice

  19. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Katahara, K.W.; Manghnani, M.H.; Ming, L.C.; Fisher, E.S.

    1976-01-01

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/

  20. Use Of The Diamond Cell In An Industrial Laboratory

    Science.gov (United States)

    Barbour, Rachael L.; Stephens, J. D.; Cameron, David G.

    1989-12-01

    The traditional method for recording the IR spectra of solids has been KBr pellet transmission spectroscopy. This technique has several disadvantages: sample preparation time, matrix contamination, spectral distortion, ion exchange, a limited spectral range, scattering, loss of sample integrity during grinding, etc. In recent years, diffuse reflectance, ATR, photoacoustic reflectance, and external reflectance have been used increasingly, facilitated by the high SNR of FT instruments. In many cases, the diamond cell is an attractive alternative to all of these. The spectral range is -100 -1 to the UV, excluding the 2200-2000 cm -1 region. Spectral distortion, usually a great problem with inorganics, is greatly reduced as a result of sample homogeneity (from a spectral point of view) and refractive index matching. There is no matrix contamination: scattering, background slope, and all absorption bands are from the sample. There is no ion exchange. The sample size requirements are minimal. Finally, sample preparation requires the somewhat lost. but powerful, art of microscopic examination. In some instances, there may be sample orientation or pressure induced phase changes associated with the use of the diamond cell. A common misconception is that an IR microscope is needed to use the diamond cell. In fact, ~5 minutes will suffice without a beam condenser; 1 minute is all that is needed with one. In part, this is because one usually has excellent control of the optical thickness; with experience, the cell can easily be assembled to give bands in the 0.7-1.5 absorbance range, and making the sample thinner merely involves pressing the diamonds together. Given the above, the microscope should only be used for inhomogeneous samples as one loses all information below 700 cm-1, the region of greatest value when studying inorganics. We also note that the cell can readily be moved from a mid-IR to a far-IR bench. We have moved to the point where this is the dominant sampling

  1. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  2. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  3. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Václav, E-mail: prochazkav@fzu.cz [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Cifra, Michal [Institute of Photonics and Electronics, The Czech Academy of Sciences, Chaberská 57, 182 51 Prague (Czech Republic); Kulha, Pavel [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Ižák, Tibor [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Rezek, Bohuslav [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Kromka, Alexander [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16629 Prague (Czech Republic)

    2017-02-15

    Highlights: • Interaction of non-adherent yeast cells with H-terminated diamond described. • Effect of cell culture solutions on H-diamond SGFET (positive potential shifts). • H-diamond sensitive to metabolic activity of yeast cells (negative potential shift). - Abstract: Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose–YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by −26 mV and −42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  4. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    International Nuclear Information System (INIS)

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-01-01

    Highlights: • Interaction of non-adherent yeast cells with H-terminated diamond described. • Effect of cell culture solutions on H-diamond SGFET (positive potential shifts). • H-diamond sensitive to metabolic activity of yeast cells (negative potential shift). - Abstract: Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose–YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by −26 mV and −42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  5. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

    Science.gov (United States)

    Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-06-01

    Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd

  6. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake

    Directory of Open Access Journals (Sweden)

    Simon R. Hemelaar

    2018-01-01

    Full Text Available Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer research in HeLa cells.

  7. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake.

    Science.gov (United States)

    Hemelaar, Simon R; Saspaanithy, Babujhi; L'Hommelet, Severin R M; Perona Martinez, Felipe P; van der Laan, Kiran J; Schirhagl, Romana

    2018-01-26

    Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing) for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer) research in HeLa cells.

  8. The system of quantum structures coated with the diamond-like carbon for silicon solar cells

    International Nuclear Information System (INIS)

    Efimov, V.P.; Abyzov, A.S.; Luchaninov, A.A.; Omarov, A.O.; Strel'nitskij, V.E.

    2010-01-01

    The peculiarity of the process of amorphous diamond-like carbon coating deposition on the surface of Si photoelectric cell with quantum filaments, which was irradiated by the electrons and heavy multi-charge ions, have been investigated. The experimental results on the investigations of the optical characteristics of the nitrogen doped hydrogenated diamond-like carbon a-C:(H,N) coatings were presented. The parameters of the process of a-C:(H,N) coating deposition on the surfaces of disordered Si semiconductors structures were optimized for the purpose of minimizing optical reflection coefficient from the front surface of the crystal and supplying its mechanical durability.

  9. Stochastic model explains formation of cell arrays on H/O-diamond patterns

    Czech Academy of Sciences Publication Activity Database

    Ukraintsev, Egor; Brož, A.; Hubálek Kalbáčová, M.; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 10, č. 4 (2015), "041006-1"-"041006-9" ISSN 1934-8630 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : cell migration * biofilm array * diamond surface * stochastic simulations Subject RIV: BO - Biophysics Impact factor: 2.105, year: 2015

  10. Electrochemical protein cleavage in a microfluidic cell with integrated boron doped diamond electrodes

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Zhang, Tao; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Permentier, Hjalmar P.; Bischoff, Rainer P.H.; van den Berg, Albert

    2015-01-01

    We present a microfluidic electrochemical cell with integrated boron doped diamond (BDD) electrodes which is designed for high electrochemical conversion efficiencies. With our newest developments, we aim to exploit the benefits of BDD as a novel electrode material to conduct tyrosine- and

  11. Optically transparent diamond-PDMS microfluidic system for electronic monitoring of cells

    Czech Academy of Sciences Publication Activity Database

    Babchenko, Oleg; Kromka, Alexander; Conde, J.P.; Chu, V.; Schmiedinger, T.; Rezek, Bohuslav

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2593-2598 ISSN 0370-1972 R&D Projects: GA ČR GAP108/12/0996 Institutional support: RVO:68378271 Keywords : cells culturing * diamond sensor * electrical characterization * microfluidic system * optical monitoring * surface conductivity Subject RIV: BO - Biophysics Impact factor: 1.489, year: 2014

  12. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  13. Fabrication of Diamond Based Sensors for Use in Extreme Environments

    Directory of Open Access Journals (Sweden)

    Gopi K. Samudrala

    2015-04-01

    Full Text Available Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This method can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. We demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.

  14. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications.

    Science.gov (United States)

    Bajaj, Piyush; Akin, Demir; Gupta, Amit; Sherman, Debby; Shi, Bing; Auciello, Orlando; Bashir, Rashid

    2007-12-01

    Surfaces of materials that promote cell adhesion, proliferation, and growth are critical for new generation of implantable biomedical devices. These films should be able to coat complex geometrical shapes very conformally, with smooth surfaces to produce hermetic bioinert protective coatings, or to provide surfaces for cell grafting through appropriate functionalization. Upon performing a survey of desirable properties such as chemical inertness, low friction coefficient, high wear resistance, and a high Young's modulus, diamond films emerge as very attractive candidates for coatings for biomedical devices. A promising novel material is ultrananocrystalline diamond (UNCD) in thin film form, since UNCD possesses the desirable properties of diamond and can be deposited as a very smooth, conformal coating using chemical vapor deposition. In this paper, we compared cell adhesion, proliferation, and growth on UNCD films, silicon, and platinum films substrates using different cell lines. Our results showed that UNCD films exhibited superior characteristics including cell number, total cell area, and cell spreading. The results could be attributed to the nanostructured nature or a combination of nanostructure/surface chemistry of UNCD, which provides a high surface energy, hence promoting adhesion between the receptors on the cell surface and the UNCD films.

  15. Nanocarbon allotropes — graphene and nanocrystalline diamond — promote cell proliferation

    Czech Academy of Sciences Publication Activity Database

    Verdanová, M.; Rezek, Bohuslav; Brož, A.; Ukraintsev, Egor; Babchenko, Oleg; Artemenko, Anna; Ižák, Tibor; Kromka, Alexander; Kalbáč, Martin; Hubálek Kalbáčová, M.

    2016-01-01

    Roč. 12, č. 18 (2016), s. 2499-2509 ISSN 1613-6810 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : graphene * diamond * cell * cell proliferation Subject RIV: BO - Biophysics; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 8.643, year: 2016

  16. Lunar Production and Application of Solar Cells, and Synthesis of Diamond Film

    Science.gov (United States)

    Fang, P. H.

    1991-01-01

    Two projects which are carried out under the Summer Faculty Fellowship Program-1991 are discussed. A conceptual design of a solar cell manufacturing plant on a lunar base is discussed. This is a large program that requires a continuous and expanded effort, the present status of which is reflected here. An experiment on the synthesis of diamond film is discussed. Encouraging, but not yet conclusive evidence has been obtained on a new method to synthesize diamond film. The procedures and observations are presented. A third project is an analysis of the solar cell performance over five years on the moon based on Apollo missions. A paper has been completed and will be submitted to the journal Solar Cells for publication.

  17. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    International Nuclear Information System (INIS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O_2 or C_3F_8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  18. On the existence of tropical anvil clouds

    Science.gov (United States)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  19. Nanocrystalline diamond on Si solar cells for direct photoelectrochemical water splitting

    Czech Academy of Sciences Publication Activity Database

    Ashcheulov, Petr; Kusko, M.; Fendrych, František; Poruba, A.; Taylor, Andrew; Jäger, Aleš; Fekete, Ladislav; Kraus, I.; Kratochvílová, Irena

    2014-01-01

    Roč. 211, č. 10 (2014), s. 2347-2352 ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 238201 - MATCON Institutional support: RVO:68378271 Keywords : boron-doped diamond * solar cell * heterostructure * water splitting Subject RIV: JI - Composite Materials Impact factor: 1.616, year: 2014

  20. Effects of protein inter-layers on cell-diamond FET characteristics

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Krátká, Marie; Kromka, Alexander; Kalbáčová, M.

    2010-01-01

    Roč. 26, č. 4 (2010), s. 1307-1312 ISSN 0956-5663 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : field-effect transistors * diamond * bioelectronics * proteins * cells * surface conductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.361, year: 2010

  1. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  2. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines

    DEFF Research Database (Denmark)

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz

    2015-01-01

    carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied...... carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells...

  3. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  4. Radiosensitivity in lymphoblastoid cell lines derived from Shwachman-Diamond syndrome patients

    International Nuclear Information System (INIS)

    Morini, J.; Babini, G.; Mariotti, L.; Baiocco, G.; Ottolenghi, A.; Nacci, L.; Minelli, A.; Danesino, C.; Maccario, C.; Roessler, U.; Savio, M.; Gomolka, M.; Kulka, U.

    2015-01-01

    Shwachman-Diamond syndrome is an autosomal-recessive disorder characterised by bone marrow failure and a cumulative risk of progression to acute myeloid leukaemia. The Shwachman-Bodian-Diamond syndrome (SBDS) gene, the only gene known to be causative of the pathology, is involved in ribosomal biogenesis, stress responses and DNA repair, and the lack of SBDS sensitises cells to many stressors and leads to mitotic spindle destabilisation. The effect of ionising radiation on SBDS-deficient cells was investigated using immortalised lymphocytes from SDS patients in comparison with positive and negative controls in order to test whether, in response to ionising radiation exposure, any impairment in the DNA repair machinery could be observed. After irradiating cells with different doses of X-rays or gamma-rays, DNA repair kinetics and the residual damages using the alkaline COMET assay and the γ-H2AX assay were assessed, respectively. In this work, preliminary data about the comparison between ionising radiation effects in different patients-derived cells and healthy control cells are presented. (authors)

  5. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.

    Science.gov (United States)

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-29

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

  6. Structural characterization of Mg{sub 3}MnH{sub {approx}}{sub 6}--a new high-pressure phase synthesized in a multi-anvil cell at 6 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, Helen; Roennebro, Ewa; Kyoi, Daisuke; Sakai, Tetsuo; Noreus, Dag

    2003-08-25

    With modern X-ray diffraction refinement methods it was shown to be possible to identify a new Mg{sub 3}MnH{sub {approx}}{sub 6} phase from a minute sample volume in spite of poor crystallinity and coexisting impurity phases. The new hydride was synthesized at 6 GPa in a high-pressure multi-anvil cell at 873 K. A monoclinic unit cell was found with a=8.827(2), b=4.657(2), c=4.676(2) A and {beta}=105.74(2) deg., space group P2{sub 1}/m (no. 11), Z=2, V=184.99 A{sup 3}. Manganese is surrounded by a distorted cube of magnesium with average Mn-Mg distances of 2.78(2) A. The cubes share edges in the b and c directions of the unit cell but are separated by a distance of {approx}3.6 A along a, forming a layered structure. The hydrogen positions were not possible to determine, as only a small sample amount could be prepared. If the metal atom structure of the title compound is compared to the already known Mg{sub 3}MnH{sub 7} it can be concluded that Mg{sub 3}MnH{sub {approx}}{sub 6} also consists of manganese hydrido complexes counterbalanced by magnesium ions, but with a different alignment of the magnesium cubes.

  7. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.

    Science.gov (United States)

    La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R

    2012-02-01

    Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.

  8. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup, E-mail: kssong10@kumoh.ac.kr

    2016-01-15

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O{sub 2} or C{sub 3}F{sub 8} gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  9. Strong influence of hierarchically structured diamond nano-topography on adhesion of human osteoblasts and mesenchymal cells

    Czech Academy of Sciences Publication Activity Database

    Brož, A.; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kalbáčová, M.

    2009-01-01

    Roč. 206, č. 9 (2009), s. 2038-2041 ISSN 1862-6300 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond morphology * cells adhesion * cells behaviour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.228, year: 2009

  10. Adhesion of staphylococcal and Caco-2 cells on diamond-like carbon polymer hybrid coating.

    Science.gov (United States)

    Kinnari, Teemu J; Soininen, Antti; Esteban, Jaime; Zamora, Nieves; Alakoski, Esa; Kouri, Vesa-Petteri; Lappalainen, Reijo; Konttinen, Yrjö T; Gomez-Barrena, Enrique; Tiainen, Veli-Matti

    2008-09-01

    Staphylococci cause the majority of the nosocomial implant-related infections initiated by adhesion of planktonic bacteria to the implant surface. It was hypothesized that plasma accelerating filtered pulsed arc discharge method enables combination of the advantageous properties of diamond with the antisoiling properties of polymers. Diamond-like carbon polytetrafluoroethylene hybrid (DLC-PTFE-h) coating was produced. The adhesion of S. aureus ATCC 25923 (10(8) colony-forming units/mL) to surfaces diminished from 2.32%, 2.35%, and 2.57% of high quality DLC, titanium, and oxidized silicon, respectively, to 1.93% of DLC-PTFE-h. For S. epidermidis ATCC 35984 the corresponding figures were 3.90%, 3.32%, 3.47%, and 2.57%. Differences in bacterial adhesion between recombinant DLC-PTFE-h and other materials were statistically significant (p DLC-PTFE-h as to DLC, titanium, or silicon, which were all in the MTT test found to be cytocompatible. DLC-PTFE-h coating can be used to modify the surface properties of any surgical implants and is an unfavorable substrate for staphylococcal cells, but compatible with human Caco-2 cells. DLC-PTFE-h coating may help in the combat against Staphylococcus-related implant infections which usually require both antibiotics and surgical removal of the implant for cure.

  11. Precise electrical transport measurements by using Bridgman type pressure cell at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Takayuki [Division of Civil and Enviromental Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Ohashi, Masashi [Faculty of Environmental Design, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-03-01

    We report a technique for the precise measurement of the electrical resisivity under high pressure at low temperature by using Bridgman anvils made of tungsten carbide. Quasi-hydrostatic pressure is generated up to {approx}15 GPa in the relatively large working space which allows the use of large specimens and simple experimental procedures rather than using a standard diamond anvil cell. The application is demonstrated by the measurements of the electrical resistivity of lead in order to describe the effect of pressure on the superconducting transition.

  12. Precise electrical transport measurements by using Bridgman type pressure cell at low temperature

    International Nuclear Information System (INIS)

    Oishi, Takayuki; Ohashi, Masashi

    2010-01-01

    We report a technique for the precise measurement of the electrical resisivity under high pressure at low temperature by using Bridgman anvils made of tungsten carbide. Quasi-hydrostatic pressure is generated up to ∼15 GPa in the relatively large working space which allows the use of large specimens and simple experimental procedures rather than using a standard diamond anvil cell. The application is demonstrated by the measurements of the electrical resistivity of lead in order to describe the effect of pressure on the superconducting transition.

  13. Studies on the cytotoxicity of diamond nanoparticles against human cancer cells and lymphocytes.

    Science.gov (United States)

    Adach, Kinga; Fijalkowski, Mateusz; Gajek, Gabriela; Skolimowski, Janusz; Kontek, Renata; Blaszczyk, Alina

    2016-07-25

    Detonation nanodiamonds (DND) are a widely studied group of carbon nanomaterials. They have the ability to adsorb a variety of biomolecules and drugs onto their surfaces, and additionally their surfaces may be subjected to chemical functionalization by covalent bonds. We present a procedure for the purification and surface oxidation of diamond nanoparticles, which were then tested by spectroscopic analysis such as ATR-FTIR, Raman spectroscopy, and thermogravimetric analysis. We also examined the zeta potential of the tested material. Analysis of the cytotoxic effect of nanodiamonds against normal lymphocytes derived from human peripheral blood, the non-small cell lung cancer cell line (A549) and the human colorectal adenocarcinoma cell line (HT29) was performed using MTT colorimetric assay. Evaluation of cell viability was performed after 1-h and 24-h treatment with the tested nanoparticles applied at concentrations ranging from 1 μg/ml to 100 μg/ml. We found that the survival of the examined cells was strongly associated with the presence of serum proteins in the growth medium. The incubation of cells with nanodiamonds in the presence of serum did not exert a significant effect on cell survival, while the cell treatment in a serum-free medium resulted in a decrease in cell survival compared to the negative control. The role of purification and functionalization of nanodiamonds on their cytotoxicity was also demonstrated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.

    Science.gov (United States)

    Amaral, M; Dias, A G; Gomes, P S; Lopes, M A; Silva, R F; Santos, J D; Fernandes, M H

    2008-10-01

    Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical routines (MTT assays, Lowry's method, ALP activity) supported by SEM and confocal microscopy characterization were carried out. We used silicon nitride (Si3N4) substrates for NCD coatings based on a previous demonstration of the superior adhesion and tribological performance of these NCD coated ceramics. Results demonstrate an improved human osteoblast proliferation and the stimulation of differentiated markers, like ALP activity and matrix mineralization, compared with standard polystyrene tissue culture plates. The nanometric featuring of NCD, associated to its chemical affinity are key points for bone regeneration purposes.

  15. 21 CFR 882.4030 - Skull plate anvil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to fit...

  16. Leading and Trailing Anvil Clouds of West African Squall Lines

    Science.gov (United States)

    Centrone, Jasmine; Houze, Robert A.

    2011-01-01

    The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.

  17. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    Czech Academy of Sciences Publication Activity Database

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-01-01

    Roč. 395, Feb (2017), s. 214-219 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : nanocrystalline diamond * yeast cells * field-effect transistor * transfer characteristics pH sensitivity Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.387, year: 2016

  18. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Science.gov (United States)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  19. Thermodynamic control of anvil cloud amount

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  20. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction

    Science.gov (United States)

    Tulpule, Asmin; Kelley, James M.; Lensch, M. William; McPherson, Jade; Park, In Hyun; Hartung, Odelya; Nakamura, Tomoka; Schlaeger, Thorsten M.; Shimamura, Akiko; Daley, George Q.

    2013-01-01

    Summary Shwachman-Diamond syndrome (SDS), a rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency and hematopoietic dysfunction, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. We created human pluripotent stem cell models of SDS by knock-down of SBDS in human embryonic stem cells (hESCs) and generation of induced pluripotent stem cell (iPSC) lines from two SDS patients. SBDS-deficient hESCs and iPSCs manifest deficits in exocrine pancreatic and hematopoietic differentiation in vitro, enhanced apoptosis and elevated protease levels in culture supernatants, which could be reversed by restoring SBDS protein expression through transgene rescue or by supplementing culture media with protease inhibitors. Protease-mediated auto-digestion provides a mechanistic link between the pancreatic and hematopoietic phenotypes in SDS, highlighting the utility of hESCs and iPSCs in obtaining novel insights into human disease. PMID:23602541

  1. Diamond identifaction

    International Nuclear Information System (INIS)

    1976-01-01

    X-ray topography on diamonds allows for unique identification of diamonds. The method described consists of the registration of crystal defects, inclusions etc. of a diamond, resulting in a 'finger print' of the individual jewel which can only be changed by its complete destruction

  2. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

    2005-01-01

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 ∼ 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies

  3. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients.

    Science.gov (United States)

    Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H; Mills, Jason A; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M; Podsakoff, Gregory M; Gadue, Paul; French, Deborah L; Mason, Philip J; Bessler, Monica; Weiss, Mitchell J

    2013-08-08

    Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.

  4. Evidence of a generalized defect of acinar cell function in Shwachman-Diamond syndrome.

    Science.gov (United States)

    Stormon, Michael O; Ip, Wan F; Ellis, Lynda; Schibli, Susanne; Rommens, Johanna M; Durie, Peter R

    2010-07-01

    : Because the acinar cells of the exocrine pancreas in patients with Shwachman-Diamond syndrome (SDS) are severely depleted, we hypothesized that a similar deficiency may be present in acinar cells of the parotid gland. : We determined serum pancreatic isoamylase and parotid amylase activities in 16 patients with SDS, 13 healthy controls, and 13 disease controls (cystic fibrosis or fibrosing pancreatitis). Parotid amylase and electrolyte concentrations were measured in stimulated parotid gland secretions. Starch digestion was assessed by breath hydrogen testing in patients with SDS (with and without enzyme supplements) and healthy controls. : Serum pancreatic and parotid isoamylase values were lower in the patients with SDS than in the healthy controls (P gland amylase concentration (units per milligram of protein) in patients with SDS was lower than that in the healthy controls (P = 0.04), whereas the disease controls were comparable to the healthy subjects (P = 0.09). Secreted parotid chloride concentration was inversely correlated with amylase concentration in the patients with SDS (P = 0.01), but no correlation was seen in the healthy controls or disease controls. When patients with SDS ingested starch without enzyme supplementation, their breath hydrogen excretion was significantly higher than that in the healthy controls (P = 0.009). Following starch ingestion with enzymes, breath hydrogen in the patients with SDS was lower (P functional abnormality of exocrine acinar cells.

  5. Diamond Growth in the Subduction Factory

    Science.gov (United States)

    Bureau, H.; Frost, D. J.; Bolfan-Casanova, N.; Leroy, C.; Estève, I.

    2014-12-01

    Natural diamonds are fabulous probes of the deep Earth Interior. They are the evidence of the deep storage of volatile elements, carbon at first, but also hydrogen and chlorine trapped as hydrous fluids in inclusions. The study of diamond growth processes in the lithosphere and mantle helps for our understanding of volatile elements cycling between deep reservoirs. We know now that inclusion-bearing diamonds similar to diamonds found in nature (i.e. polycrystalline, fibrous and coated diamonds) can grow in hydrous fluids or melts (Bureau et al., GCA 77, 202-214, 2012). Therefore, we propose that the best environment to promote such diamonds is the subduction factory, where highly hydrous fluids or melts are present. When oceanic plates are subducted in the lithosphere, they carry an oceanic crust soaked with seawater. While the slabs are traveling en route to the mantle, dehydration processes generate saline fluids highly concentrated in NaCl. In the present study we have experimentally shown that diamonds can grow from the saline fluids (up to 30 g/l NaCl in water) generated in subducted slabs. We have performed multi-anvil press experiments at 6-7 GPa and from 1300 to 1400°C during 6:00 hours to 30:00 hours. We observed large areas of new diamond grown in epitaxy on pure diamond seeds in salty hydrous carbonated melts, forming coated gems. The new rims are containing multi-component primary inclusions. Detailed characterizations of the diamonds and their inclusions have been performed and will be presented. These experimental results suggest that multi-component salty fluids of supercritical nature migrate with the slabs, down to the deep mantle. Such fluids may insure the first stage of the deep Earth's volatiles cycling (C, H, halogen elements) en route to the transition zone and the lower mantle. We suggest that the subduction factory may also be a diamond factory.

  6. Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon

    Science.gov (United States)

    Das, Debajyoti; Banerjee, Amit

    2015-08-01

    Aiming towards a specific application as antireflection coatings (ARC) in Si solar cells, the growth of hydrogenated diamond like carbon (HDLC) films, by RF magnetron sputtering, has been optimized through comprehensive optical and structural studies. Various physical properties of the films e.g., (ID/IG) ratio in the Raman spectra, percentage of sp3 hybridization in XPS spectra, H-content in the network, etc., have been correlated with different ARC application properties e.g., transmittance, reflectance, optical band gap, refractive index, surface roughness, etc. The ARC properties have been optimized on unheated substrates, through systematic variations of RF power, gas flow rate, gas pressure and finally controlled introduction of hydrogen to the DLC network at its most favorable plasma parameters. The optimum HDLC films possess (T700)max ∼ 95.8%, (R700)min ∼ 3.87%, (n700)min ∼ 1.62 along with simultaneous (Eg)max ∼ 2.53 eV and ∼75.6% of sp3 hybridization in the C-network, corresponding to a bonded H-content of ∼23 at.%. Encouraging improvements in the ARC properties over the optimized DLC film were obtained with the controlled addition of hydrogen, and the optimum HDLC films appear quite promising for applications in Si solar cells. Systematic materials development has been performed through comprehensive understanding of the parameter space and its optimization, as elaborately discussed.

  7. H-terminated diamond as optically transparent impedance sensor for real-time monitoring of cell growth

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Novotná, Katarína; Kopová, Ivana; Bačáková, Lucie; Rezek, Bohuslav; Kromka, Alexander

    2013-01-01

    Roč. 250, č. 12 (2013), s. 2741-2746 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Institutional support: RVO:68378271 ; RVO:67985823 Keywords : cell cultivation * diamond thin films * impedance measurements * label-free biosensors Subject RIV: JB - Sensor s, Measurment, Regulation; JJ - Other Materials (FGU-C) Impact factor: 1.605, year: 2013

  8. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells

    OpenAIRE

    Gao, Yuanfang; Chen, Xiaohui; Gupta, Sanju; Gillis, Kevin D.; Gangopadhyay, Shubhra

    2008-01-01

    Carbon electrodes are widely used in electrochemistry due to their low cost, wide potential window, and low and stable background noise. Carbon-fiber electrodes (CFE) are commonly used to electrochemically measure “quantal” catecholamine release via exocytosis from individual cells, but it is difficult to integrate CFEs into lab-on-a-chip devices. Here we report the development of nitrogen doped diamond-like carbon (DLC:N) microelectrodes on a chip to monitor quantal release of catecholamines...

  9. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    Directory of Open Access Journals (Sweden)

    Liskova J

    2015-01-01

    Full Text Available Jana Liskova,1 Oleg Babchenko,2 Marian Varga,2 Alexander Kromka,2 Daniel Hadraba,1 Zdenek Svindrych,1 Zuzana Burdikova,1 Lucie Bacakova1 1Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Nanocrystalline diamond (NCD films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination or oxygen atoms (O-termination. Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix

  10. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake

    NARCIS (Netherlands)

    Hemelaar, Simon R; Saspaanithy, Babujhi; L'Hommelet, Severin R M; Perona Martinez, Felipe P; van der Laan, Kiran J; Schirhagl, Romana

    2018-01-01

    Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles

  11. Thermal stability of simple tetragonal and hexagonal diamond germanium

    Science.gov (United States)

    Huston, L. Q.; Johnson, B. C.; Haberl, B.; Wong, S.; Williams, J. S.; Bradby, J. E.

    2017-11-01

    Exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursor materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.

  12. Melting of KCl and pressure calibration from in situ ionic conductivity measurements in a multi-anvil apparatus

    Science.gov (United States)

    Li, J.; Dong, J.; Zhu, F.

    2017-12-01

    Melting plays an unparalleled role in planetary differentiation processes including the formation of metallic cores, basaltic crusts, and atmospheres. Knowledge of the melting behavior of Earth materials provides critical constraints for establishing the Earth's thermal structure, interpreting regional seismic anomalies, and understanding the nature of chemical heterogeneity. Measuring the melting points of compressed materials, however, have remained challenging mainly because melts are often mobile and reactive, and temperature and pressure gradients across millimeter or micron-sized samples introduce large uncertainties in melting detection. Here the melting curve of KCl was determined through in situ ionic conductivity measurements, using the multi-anvil apparatus at the University of Michigan. The method improves upon the symmetric configuration that was used recently for studying the melting behaviors of NaCl, Na2CO3, and CaCO3 (Li and Li 2015 American Mineralogist, Li et al. 2017 Earth and Planetary Science Letters). In the new configuration, the thermocouple and electrodes are placed together with the sample at the center of a cylindrical heater where the temperature is the highest along the axis, in order to minimize uncertainties in temperature measurements and increase the stability of the sample and electrodes. With 1% reproducibility in melting point determination at pressures up to 20 GPa, this method allows us to determine the sample pressure to oil load relationship at high temperatures during multiple heating and cooling cycles, on the basis of the well-known melting curves of ionic compounds. This approach enables more reliable pressure measurements than relying on a small number of fixed-point phase transitions. The new data on KCl bridge the gap between the piston-cylinder results up to 4 GPa (Pistorius 1965 J. of Physics and Chemistry of Solids) and several diamond-anvil cell data points above 20 GPa (Boehler et al. 1996 Physical Review). We

  13. Diamond identification

    International Nuclear Information System (INIS)

    Lang, A.R.

    1979-01-01

    Methods of producing sets of records of the internal defects of diamonds as a means of identification of the gems by x-ray topography are described. To obtain the records one can either use (a) monochromatic x-radiation reflected at the Bragg angle from crystallographically equivalent planes of the diamond lattice structure, Bragg reflections from each such plane being recorded from a number of directions of view, or (b) white x-radiation incident upon the diamond in directions having a constant angular relationship to each equivalent axis of symmetry of the diamond lattice structure, Bragg reflections being recorded for each direction of the incident x-radiation. By either method an overall point-to-point three dimensional representation of the diamond is produced. (U.K.)

  14. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  15. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    Science.gov (United States)

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  16. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  17. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amit, E-mail: erdd@iacs.res.in; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2014-04-24

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  18. Storing Hydrogen, by Enhancing Diamond Powder Properties under Hydrogen Plasma with CaF2 and KF for Use in Fuel Cells

    International Nuclear Information System (INIS)

    Ochoa, Franklyn E. Colmenares

    2006-01-01

    A fuel cell is like a battery that instead of using electricity to recharge itself, it uses hydrogen. In the fuel cell industry, one of the main problems is storing hydrogen in a safe way and extracting it economically. Gaseous hydrogen requires high pressures which could be very dangerous in case of a collision. The success of hydrogen use depends largely on the development of an efficient storage and release method. In an effort to develop a better hydrogen storage system for fuel cells technology this research investigates the use of 99% pure diamond powder for storing hydrogen. Mixing this powder with a calcium fluoride and potassium fluoride compound in its solid form and treating the surface of the powder with hydrogen plasma, modifies the surface of the diamond. After some filtration through distilled water and drying, the modified diamond is treated with hydrogen. We expect hydrogen to be attracted to the diamond powder surface in higher quantities due to the CaF2 and KF treatment. Due to the large surface area of diamond nanopowder and the electronegative terminal bonds of the fluorine particles on the structure's surface, to the method shows promise in storing high densities of hydrogen

  19. Diamond nanophotonics

    Directory of Open Access Journals (Sweden)

    Katja Beha

    2012-12-01

    Full Text Available We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

  20. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    Czech Academy of Sciences Publication Activity Database

    Lišková, Jana; Babchenko, Oleg; Varga, Marián; Kromka, Alexander; Hadraba, Daniel; Švindrych, Zdeněk; Burdíková, Zuzana; Bačáková, Lucie

    2015-01-01

    Roč. 10, č. 2015 (2015), s. 869-884 E-ISSN 1178-2013 R&D Projects: GA MŠk(CZ) EE2.3.30.0025; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 ; RVO:68378271 Keywords : nanocrystalline diamond film * osteoblast * Saos-2 Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.320, year: 2015

  1. Epithelial cells morphology and adhesion on diamonds films deposited and chemically modified by plasma processes

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, František; Mandys, V.

    2014-01-01

    Roč. 9, č. 3 (2014), "031012-1"-"031012-8" ISSN 1934-8630 R&D Projects: GA ČR GAP108/12/0996; GA AV ČR KAN400100701 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond (NCD) * AFM * surface s * DNA Subject RIV: BO - Biophysics Impact factor: 3.374, year: 2014 http://scitation.aip.org/content/avs/journal/bip/9/3/10.1116/1.4890471

  2. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    Science.gov (United States)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  3. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    International Nuclear Information System (INIS)

    Liu Ai-Ping; Liu Min; Yu Jian-Can; Qian Guo-Dong; Tang Wei-Hua

    2015-01-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. (paper)

  4. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    Science.gov (United States)

    Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua

    2015-05-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).

  5. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  6. Pressure-induced transition in the grain boundary of diamond

    Science.gov (United States)

    Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.

    2017-12-01

    Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature

  7. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    Science.gov (United States)

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline. © 2010 Wiley-Liss, Inc.

  8. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  9. Evaluation of saw damage using diamond-coated wire in crystalline silicon solar cells by photoluminescence imaging

    Science.gov (United States)

    Kinoshita, Kosuke; Kojima, Takuto; Suzuki, Ryota; Kawatsu, Tomoyuki; Nakamura, Kyotaro; Ohshita, Yoshio; Ogura, Atsushi

    2018-05-01

    Si ingots were sliced using a diamond-coated wire, and saw damage was observed even after damage removal etching and texturization. Since invisible microscopic damage was observed only under uncontrolled slice conditions, such damage was identified as saw damage. The wafers with saw damage exhibited the degradation of solar cell conversion efficiency (approximately 1–2% absolute). The results of external quantum efficiency (EQE) measurements showed a slight deterioration of EQE in the short wavelength region. Current–voltage characteristic measurements showed similar results that agreed with the EQE measurement results. In addition, EQE mapping measurements were carried out at various irradiation wavelengths between 350 and 1150 nm. Areas with dark contrasts in EQE mapping correspond to saw damage. In the cells with a low conversion efficiency, both EQE mapping and PL images exhibited dark areas and lines. On the other hand, in the cells with a high conversion efficiency, a uniform distribution of saw damage was observed even with the saw damage in the PL images. We believe that sophisticated control to suppress saw damage during sawing is required to realize higher conversion efficiency solar cells in the future.

  10. Sample cell for powder x-ray diffraction at up to 500 bars and 200 deg. C

    International Nuclear Information System (INIS)

    Jupe, Andrew C.; Wilkinson, Angus P.

    2006-01-01

    A low cost sample cell for powder diffraction at high pressure and temperature that employs either sapphire or steel pressure tubes is described. The cell can be assembled rapidly, facilitating the study of chemically reacting systems, and it provides good control of both pressure and temperature in a regimen where diamond anvil cells and multianvil apparatus cannot be used. The design provides a relatively large sample volume making it suitable for the study of quite large grain size materials, such as hydrating cement slurries. However, relatively high energy x rays are needed to penetrate the pressure tube

  11. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  12. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    International Nuclear Information System (INIS)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-01-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  13. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  14. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    Science.gov (United States)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  15. The Use of Boron-doped Diamond Electrode on Yeast-based Microbial Fuel Cell for Electricity Production

    Science.gov (United States)

    Hanzhola, G.; Tribidasari, A. I.; Endang, S.

    2018-01-01

    The dependency of fossil energy in Indonesia caused the crude oil production to be drastically decreased since 2001, while energy consumption increased. In addition, The use of fossil energy can cause several environmental problems. Therefore, we need an alternative environment-friendly energy as solution for these problems. A microbial fuel cell is one of the prospective alternative source of an environment-friendly energy source to be developed. In this study, Boron-doped diamond electrode was used as working electrode and Candida fukuyamaensis as biocatalyst in microbial fuel cell. Different pH of anode compartment (pH 6.5-7.5) and mediator concentration (10-100 μM) was used to produce an optimal electricity. MFC was operated for 3 hours. During operation, the current and voltage density was measured with potensiostat. The maximum power and current density are 425,82 mW/m2 and 440 mA/m2, respectively, for MFC using pH 7.5 at anode compartment without addition of methylene blue. The addition of redox mediator is lowering the produced electricity because of its anti microbial properties that can kill the microbe.

  16. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings.

    Science.gov (United States)

    Filova, Elena; Vandrovcova, Marta; Jelinek, Miroslav; Zemek, Josef; Houdkova, Jana; Jan Remsa; Kocourek, Tomas; Stankova, Lubica; Bacakova, Lucie

    2017-01-01

    Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.

  17. New High Pressure Phase of CaCO3: Implication for the Deep Diamond Formation

    Science.gov (United States)

    Mao, Z.; Li, X.; Zhang, Z.; Lin, J. F.; Ni, H.; Prakapenka, V.

    2017-12-01

    Surface carbon can be transported to the Earth's deep interior through sinking subduction slabs. Carbonates, including CaCO3, MgCO3 and MgCa(CO3)2, are important carbon carriers for the deep carbon cycle. Experimental studies on the phase stability of carbonates with coexisting mantle minerals at relevant pressure and temperature conditions are thus important for understanding the deep carbon cycle. In particular, recent petrological studies have revealed the evidence for the transportation of CaCO3 to the depth at least of the top lower mantle by analyzing the diamond inclusions. Yet the phase stability of CaCO3 at relevant pressure and temperature conditions of the top lower mantle is still unclear. Previous single-crystal study has shown that CaCO3 transforms from the CaCO3-III structure to CaCO3-VI at 15 GPa and 300 K. The CaCO3-VI is stable at least up to 40 GPa at 300 K. At high temperatures, CaCO3 in the aragonite structure will directly transform into the post-aragonite structure at 40 GPa. However, a recent theoretical study predicted a new phase of CaCO3 with a space group of P21/c between 32 and 48 GPa which is different from previous experimental results. In this study, we have investigated the phase stability of CaCO3 at high pressure-temperature conditions using synchrotron X-ray diffraction in laser-heated diamond anvil cells. We report the discovery of a new phase of CaCO3 at relevant pressure-temperature conditions of the top lower mantle which is consistent with previous theoretical predictions. This new phase is an important carrier for the transportation of carbon to the Earth's lower mantle and crucial for growing deep diamonds in the region.

  18. Haematopoietic stem cell transplantation for Diamond Blackfan anaemia: a report from the Italian Association of Paediatric Haematology and Oncology Registry.

    Science.gov (United States)

    Fagioli, Franca; Quarello, Paola; Zecca, Marco; Lanino, Edoardo; Corti, Paola; Favre, Claudio; Ripaldi, Mimmo; Ramenghi, Ugo; Locatelli, Franco; Prete, Arcangelo

    2014-06-01

    Allogeneic haematopoietic stem cell transplantation (HSCT) is the only curative option for patients with Diamond Blackfan anaemia (DBA). We report the transplantation outcome of 30 Italian DBA patients referred to the Italian Association of Paediatric Haematology and Oncology Registry between 1990 and 2012. This is one of the largest national registry cohorts of transplanted DBA patients. Most patients (83%) were allografted after 2000. A matched sibling donor was employed in 16 patients (53%), the remaining 14 patients (47%) were transplanted from matched unrelated donors. Twenty-eight of the 30 patients engrafted. One patient died at day +6 due to veno-occlusive disease without achieving neutrophil recovery and another patient remained transfusion-dependent despite the presence of a full donor chimerism. The 5-year overall survival and transplant-related mortality was 74·4% and 25·6%, respectively. Patients younger than 10 years as well as those transplanted after 2000 showed a significantly higher overall survival and a significantly lower risk of transplant-related mortality. No difference between donor type was observed. Our data suggest that allogeneic HSCT from a related or unrelated donor was a reasonable alternative to transfusion therapy in young and well chelated DBA patients. © 2014 John Wiley & Sons Ltd.

  19. Automatic annotation of head velocity and acceleration in Anvil

    DEFF Research Database (Denmark)

    Jongejan, Bart

    2012-01-01

    We describe an automatic face tracker plugin for the ANVIL annotation tool. The face tracker produces data for velocity and for acceleration in two dimensions. We compare the annotations generated by the face tracking algorithm with independently made manual annotations for head movements....... The annotations are a useful supplement to manual annotations and may help human annotators to quickly and reliably determine onset of head movements and to suggest which kind of head movement is taking place....

  20. Synthetic diamond in electrochemistry

    International Nuclear Information System (INIS)

    Pleskov, Yurii V

    1999-01-01

    The results of studies on the electrochemistry of diamond carried out during the last decade are reviewed. Methods for the preparation, the crystalline structure and the main electrophysical properties of diamond thin films are considered. Depending on the doping conditions, the diamond behaves as a superwide-gap semiconductor or as a semimetal. It is shown that the 'metal-like' diamond is corrosion-resistant and can be used advantageously as an electrode in the electrosynthesis (in particular, for the electroreduction of compounds that are difficult to reduce) and electroanalysis. Kinetic characteristics of some redox reactions and the impedance parameters for diamond electrodes are presented. The results of comparative studies of the electrodes made of diamond single crystals, polycrystalline diamond and amorphous diamond-like carbon, which reveal the effect of the crystalline structure (e.g., the influence of intercrystallite boundaries) on the electrochemical properties of diamond, are presented. The bibliography includes 99 references.

  1. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Jaworski, Slawomir; Kutwin, Marta

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug...... that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment....

  2. On the Wave Stresses in the Rods of Anvil Hammers

    Directory of Open Access Journals (Sweden)

    V. M. Sinitskiy

    2014-01-01

    Full Text Available With operating anvil hammers, there are rigid impacts of die tools, and as a result, almost instantaneous impact stops of the falling parts of hammer. Such operating conditions lead to the accelerated breakdowns of rods because of significant wave stresses arising in them. Common differential and integral methods to estimate wave stresses are widespread in engineering practice. However, to use them a researcher has to possess certain skills and special software. We consider the method for estimating the wave stresses in the rods of anvil hammers based on Laplace transforms (LT of wave equation. The article shows a procedure to set up and solve differential wave equations by operator method. These equations describe the wave propagation process of strains and stresses in the rods of anvil hammers with rigid impact and taking into account a damping rod connection with the head of hammer. The method takes into consideration an influence of both piston and rod weights and of mechanical and geometrical characteristics of rod on the stress value in the placement of rod in hammer head. Results analysis shows that a sufficiently efficient method for practical improving the durability of rods is the method of damping impact load on the rod through setting the damping devices in the form either of elastic "pad" of one or another design or of hydraulic shock absorbers in the placement of its connection with the hammer head. In this case there is a change of the wave front, it becomes flatter. It is shown that the stresses in the rod are proportional to the amount of wave stresses because of the own impact of rod and piston, which make a total weight of the system. Effect of piston weight on the stresses value at the rod during impact is directly proportional to the ratio of its weight to the rod weight. The geometric parameters of rod and the speed of the falling parts before the impact also influence on the value of stresses in the rod.The represented

  3. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  4. Diamond semiconducting devices

    International Nuclear Information System (INIS)

    Polowczyk, M.; Klugmann, E.

    1999-01-01

    Many efforts to apply the semiconducting diamond for construction of electronic elements: resistors, thermistors, photoresistors, piezoresistors, hallotrons, pn diodes, Schottky diodes, IMPATT diodes, npn transistor, MESFETs and MISFETs are reviewed. Considering the possibilities of acceptor and donor doping, electrical resistivity and thermal conductivity of diamond as well as high electric-field breakdown points, that diamond devices could be used at about 30-times higher frequency and more then 8200 times power than silicon devices. Except that, due to high heat resistant of diamond, it is concluded that diamond devices can be used in environment at high temperature, range of 600 o C. (author)

  5. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  6. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  7. Effective Ice Particle Densities for Cold Anvil Cirrus

    Science.gov (United States)

    Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica

    2002-01-01

    This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.

  8. Thermally stable diamond brazing

    Science.gov (United States)

    Radtke, Robert P [Kingwood, TX

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  9. Role of Shwachman-Bodian-Diamond syndrome protein in translation machinery and cell chemotaxis: a comparative genomics approach

    Directory of Open Access Journals (Sweden)

    Vasieva O

    2011-09-01

    Full Text Available Olga VasievaInstitute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fellowship for the Interpretation of Genomes, Burr Ridge, IL, USAAbstract: Shwachman-Bodian-Diamond syndrome (SBDS is linked to a mutation in a single gene. The SBDS proinvolved in RNA metabolism and ribosome-associated functions, but SBDS mutation is primarily linked to a defect in polymorphonuclear leukocytes unable to orient correctly in a spatial gradient of chemoattractants. Results of data mining and comparative genomic approaches undertaken in this study suggest that SBDS protein is also linked to tRNA metabolism and translation initiation. Analysis of crosstalk between translation machinery and cytoskeletal dynamics provides new insights into the cellular chemotactic defects caused by SBDS protein malfunction. The proposed functional interactions provide a new approach to exploit potential targets in the treatment and monitoring of this disease.Keywords: Shwachman-Bodian-Diamond syndrome, wybutosine, tRNA, chemotaxis, translation, genomics, gene proximity

  10. Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells

    Czech Academy of Sciences Publication Activity Database

    Beranová, Jana; Seydlová, Gabriela; Kozak, Halyna; Benada, Oldřich; Fišer, R.; Artemenko, Anna; Konopásek, I.; Kromka, Alexander

    2014-01-01

    Roč. 351, č. 2 (2014), s. 179-186 ISSN 0378-1097 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331 Institutional support: RVO:68378271 ; RVO:61388971 Keywords : diamond nanoparticles * antibacterial properties * Escherichia coli * Bacillus subtilis * DLS * XPS Subject RIV: BO - Biophysics Impact factor: 2.121, year: 2014

  11. Diamond MEMS: wafer scale processing, devices, and technology insertion

    Science.gov (United States)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  12. Diamond-Based Supercapacitors: Realization and Properties.

    Science.gov (United States)

    Gao, Fang; Nebel, Christoph E

    2016-10-26

    In this Spotlight on Applications, we describe our recent progress on the fabrication of surface-enlarged boron-doped polycrystalline diamond electrodes, and evaluate their performance in supercapacitor applications. We begin with a discussion of the fabrication methods of porous diamond materials. The diamond surface enlargement starts with a top-down plasma etching method. Although the extra surface area provided by surface roughening or nanostructuring provides good outcome for sensing applications, a capacitance value <1 mF cm -2 or a surface-enlargement factor <100 fail to meet the requirement of a practical supercapacitor. Driven by the need for large surface areas, we recently focused on the tempated-growth method. We worked on both supported and free-standing porous diamond materials to enhance the areal capacitance to the "mF cm -2 " range. With our newly developed free-standing diamond paper, areal capacitance can be multiplied by stacking multilayers of the electrode material. Finally, considering the fact that there is no real diamond-based supercapacitor device up to now, we fabricated the first prototype pouch-cell device based on the free-standing diamond paper to evaluate its performance. The results reveal that the diamond paper is suitable for operation in high potential windows (up to 2.5 V) in aqueous electrolyte with a capacitance of 0.688 mF cm -2 per layer of paper (or 0.645 F g -1 ). Impedance spectroscopy revealed that the operation frequency of the device exceeds 30 Hz. Because of the large potential window and the ability to work at high frequency, the specific power of the device reached 1 × 10 5 W kg -1 . In the end, we made estimations on the future target performance of diamond supercapacitors based on the existing information.

  13. Detection of diamonds

    International Nuclear Information System (INIS)

    Hansen, J.O.; Blondeel, E.J.G.; Taylor, G.T.

    1991-01-01

    Diamond particles are distinguished from non-diamond, associated particles on the basis of their higher refractive index. The particles are brought to a specific location, typically in a stream of water flowing full in a vertical duct, and a beam of collimated electromagnetic radiation is directed at them. An array of radiation detectors is provided to detect refracted and/or reflected radiation. The array is so configured that the responses of the detectors, considered collectively, will be indicative of the presence of a diamond when a diamond is in fact present. However, when a particle having a substantially lower refractive index is present, the responses of the detectors will not be so indicative. The diamond and non-diamond particles can subsequently be sorted from one another

  14. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0590 TITLE: SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA PRINCIPAL INVESTIGATOR: KATHLEEN M...SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0590 SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT: Diamond Blackfan Anemia (DBA) is a disorder that results in pure red cell aplasia, congenital

  15. Diamond-cleaning investigations

    International Nuclear Information System (INIS)

    Derry, T.E.

    Four parcels of diamonds which either had or had not been cleaned using the usual techniques, chiefly involving etch in molten potassium nitrate were supplied by De Beers Diamond Research Laboratories. Each parcel contained about 40 stones, amounting to about 10 carats. Half the diamonds in each parcel were cleaned by a standard procedure involving half an hours ultrasonic agitation in a 20% solution of the commercial detergent 'Contrad' which is effectively a surfactant and chelating agent. Visual comparisons by a number of observers who were not told the stones' histories, established that these diamonds generally had a more sparkling appearance after the cleaning procedure had been applied

  16. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  17. Are diamond nanoparticles cytotoxic?

    Science.gov (United States)

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types.

  18. Diamond Nucleation Using Polyethene

    Science.gov (United States)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  19. Diamond films: Historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Messier, R. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  20. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  1. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  2. Investing in Diamonds

    NARCIS (Netherlands)

    Renneboog, Luc

    2015-01-01

    This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual nominal USD

  3. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    Science.gov (United States)

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  4. Factors influencing the parameterization of anvil clouds within GCMs

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Chin, Hung-Neng.

    1993-03-01

    The overall goal of this project is to improve the representation of clouds and their effects within global climate models (GCMs). The authors have concentrated on a small portion of the overall goal, the evolution of convectively generated cirrus clouds and their effects on the large-scale environment. Because of the large range of time and length scales involved they have been using a multi-scale attack. For the early time generation and development of the cirrus anvil they are using a cloud-scale model with horizontal resolution of 1--2 kilometers; while for the larger scale transport by the larger scale flow they are using a mesoscale model with a horizontal resolution of 20--60 kilometers. The eventual goal is to use the information obtained from these simulations together with available observations to derive improved cloud parameterizations for use in GCMs. This paper presents results from their cloud-scale studies and describes a new tool, a cirrus generator, that they have developed to aid in their mesoscale studies

  5. Anvil Points oil shale tailings management in Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, R.; Galli LaBerge, C.; McClurg, J. [Ecology and Environment Inc., Lancaster, NY (United States); Walsh Integrated, Lachine, PQ (Canada)

    2009-07-01

    This presentation summarized the oil shale tailings management program used at the Anvil Points mining site in Colorado. Decommissioning and reclamation of the site occurred between 1984 and 1986. The geology of the region is comprised of Tertiary bedrock sedimentary formations and Quaternary formations on the surface. Oil shales mined at the facility are from the Eocene Green River formation. While the site lies within big game winter ranges, the areas around the shale pile supports are not a significant nesting or feeding habitat for wildlife. No sensitive plants are located on the waste shale pile. The program currently includes revegetation test plots and the reclamation of an area where heating oil storage tanks were located. The dumping area is currently being monitored, and geophysical surveys are being conducted. Documents produced by mining activities are also being reviewed. Results of the study to date have indicated the presence of asbestos-containing materials, significant physical hazards, and significant cultural resources. An engineering evaluation and cost analysis has demonstrated that arsenic, beryllium, and iron exceed established soil screening levels. It was concluded that off-site removal actions will be conducted to prevent or reduce human exposure to the metals of concern. tabs., figs.

  6. Diamond Nanoparticles Modify Curcumin Activity: In Vitro Studies on Cancer and Normal Cells and In Ovo Studies on Chicken Embryo Model.

    Directory of Open Access Journals (Sweden)

    Barbara Strojny

    Full Text Available Curcumin has been studied broadly for its wide range of biological activities, including anticancer properties. The major problem with curcumin is its poor bioavailability, which can be improved by the addition of carriers, such as diamond nanoparticles (DN. They are carbon allotropes, and are therefore biocompatible and easily taken up by cells. DN are non-toxic and have antiangiogenic properties with potential applications in cancer therapy. Their large surface makes them promising compounds in a drug delivery system for bioactive agents, as DN create bio-complexes in a fast and simple process of self-organisation. We investigated the cytotoxicity of such bio-complexes against liver cancer cells and normal fibroblasts, revealing that conjugation of curcumin with DN significantly improves its activity. The experiment performed in a chicken embryo model demonstrated that neither curcumin nor DN nor bio-complexes affect embryo development, even though DN can form deposits in tissues. Preliminary results confirmed the applicability of DN as an efficient carrier of curcumin, which improves its performance against cancer cells in vitro, yet is not toxic to an organism, which makes the bio-complex a promising anticancer agent.

  7. Diamond network: template-free fabrication and properties.

    Science.gov (United States)

    Zhuang, Hao; Yang, Nianjun; Fu, Haiyuan; Zhang, Lei; Wang, Chun; Huang, Nan; Jiang, Xin

    2015-03-11

    A porous diamond network with three-dimensionally interconnected pores is of technical importance but difficult to be produced. In this contribution, we demonstrate a simple, controllable, and "template-free" approach to fabricate diamond networks. It combines the deposition of diamond/β-SiC nanocomposite film with a wet-chemical selective etching of the β-SiC phase. The porosity of these networks was tuned from 15 to 68%, determined by the ratio of the β-SiC phase in the composite films. The electrochemical working potential and the reactivity of redox probes on the diamond networks are similar to those of a flat nanocrystalline diamond film, while their surface areas are hundreds of times larger than that of a flat diamond film (e.g., 490-fold enhancement for a 3 μm thick diamond network). The marriage of the unprecedented physical/chemical features of diamond with inherent advantages of the porous structure makes the diamond network a potential candidate for various applications such as water treatment, energy conversion (batteries or fuel cells), and storage (capacitors), as well as electrochemical and biochemical sensing.

  8. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  9. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.; El Tall, Omar; Raja, Inam U.

    2014-01-01

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  10. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  11. Diamond Jubilee Meeting

    Indian Academy of Sciences (India)

    1994-10-01

    Oct 1, 1994 ... Science, Bangalore, the Diamond Jubilee Annual. Meeting will be held in ... "The fascination of statistics" .... on post Hartree-Fock methods, highly correlated systems ..... Gold Medal of the National Institute of Social. Sciences ...

  12. Quantum Computing in Diamond

    National Research Council Canada - National Science Library

    Prawer, Steven

    2007-01-01

    The aim of this proposal is to demonstrate the key elements needed to construct a logical qubit in diamond by exploiting the remarkable quantum properties of the nitrogen-vacancy (NV) optical centre...

  13. Diamonds: powerful tools for high-pressure physics

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Diamond-anvil high-pressure studies have progressed to the point where they complement shock-wave studies. Because they operate at static high pressure, they permit time-consuming procedures, such as x-ray diffraction measurements for determining crystal structure. The sample material is completely recoverable and the method is adaptable to minute advantage when dealing with rare or hazardous materials. One of our goals in investigating the high-pressure behavior of iridium was to test the theoretical prediction that iridium would exhibit a phase transformation from the face-centered cubic crystal structure at about 9 GPa. Our finding that no such transformation takes place even at pressures up to 30 GPa will need to be taken into account by physicsts working to improve solid-state theory

  14. Diamond thin films: giving biomedical applications a new shine.

    Science.gov (United States)

    Nistor, P A; May, P W

    2017-09-01

    Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo , diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required. © 2017 The Authors.

  15. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  16. Diamond drilling for nuclear waste QC

    International Nuclear Information System (INIS)

    Jennings, Martin.

    1990-01-01

    Specialised diamond core drilling equipment could soon have a role to play in the safe disposal of intermediate level radioactive waste (ILW). Equipment to core and extract samples for quality checking from cement-filled steel waste drums by techniques compatible with eventual remote-handling operations in a 'hot-cell' is being developed. All coring tests carried out to date have been on simulant waste: 200 litre drums containing mixtures of Ordinary Portland Cement, Ground Granulated Blast Furnace Slag and Pulverised Fuel Ash. No radioactive materials have yet been used for the coring trials. The coring equipment and the diamond coring bits are described. (author)

  17. Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences

    Directory of Open Access Journals (Sweden)

    Deng Min

    2016-01-01

    The total anvil clouds detrained from convection counts for 0.4 to 0.8 of the cluster horizontal scale, 0.2 to 0.6 of the cluster cross section volume, and 0.05 to 0.20 of the cluster ice mass, depending on the cluster scales and height. There are two main detrainment layers. When the convective clusters is less than about 100 km, the anvil clouds are mainly detrained at about 6-8 km with a spreading ratio (ratio of maximum cluster width to convection rainy core width less than 1.5. When convective clusters becomes 100 km or wider, it reaches the dominate detrainment layer at about 12 km, the detrainment index increase from 2 to more 6. Among 8 regions, convection clusters in MA produce the most anvil volume fraction. The more the ice mass is pumped upward in the anvil clouds till clusters are about 500 km wider. Nevertheless, the anvil ice mass pumped above 15 km is less than 0.1% of the total ice mass in the convective cluster.

  18. Fabrication of planarised conductively patterned diamond for bio-applications

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wei [School of Physics, University of Melbourne, Parkville, Victoria (Australia); Fox, Kate, E-mail: kfox@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria (Australia); Ganesan, Kumaravelu [School of Physics, University of Melbourne, Parkville, Victoria (Australia); Turnley, Ann M. [Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria (Australia); Shimoni, Olga [School of Physics, University of Melbourne, Parkville, Victoria (Australia); Tran, Phong A. [Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria (Australia); Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J. [School of Physics, University of Melbourne, Parkville, Victoria (Australia); Meffin, Hamish [National Information and Communication Technology Australia, Victoria 3010 (Australia); Department of Electrical and Electronic Engineering, University of Melbourne, Victoria 3010 (Australia); O' Brien-Simpson, Neil M.; Reynolds, Eric C. [Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Victoria 3010 (Australia); Prawer, Steven [School of Physics, University of Melbourne, Parkville, Victoria (Australia)

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. - Highlights: • We have fabricated a planar diamond device with conducting and insulating features. • A precise method is provided using CVD and RIE techniques to develop the substrate. • The step between conducting and insulating features is less than 3 nm. • Planar topography promotes neuronal cell adhesion and restricts bacterial adhesion. • Neuronal cells prefer conductive diamond (N-UNCD) to non-conductive diamond (UNCD)

  19. Diamond pixel modules

    International Nuclear Information System (INIS)

    Asner, D.; Barbero, M.; Bellini, V.; Belyaev, V.; Brom, J-M.; Bruzzi, M.; Chren, D.; Cindro, V.; Claus, G.; Cristinziani, M.; Costa, S.; D'Alessandro, R.; Boer, W. de; Dobos, D.; Dolenc, I.; Dulinski, W.; Duris, J.; Eremin, V.; Eusebi, R.; Frais-Koelbl, H.

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10 16 protons/cm 2 illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  20. Diamond pixel modules

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D. [Carleton University, Ottawa (Canada); Barbero, M. [Universitaet Bonn (Germany); Bellini, V. [INFN/University of Catania (Italy); Belyaev, V. [MEPHI Institute, Moscow (Russian Federation); Brom, J-M. [IPHC, Strasbourg (France); Bruzzi, M. [INFN/University of Florence (Italy); Chren, D. [Czech Technical University, Prague (Czech Republic); Cindro, V. [Jozef Stefan Institute, Ljubljana (Slovenia); Claus, G. [IPHC, Strasbourg (France); Cristinziani, M. [Universitaet Bonn (Germany); Costa, S. [INFN/University of Catania (Italy); D' Alessandro, R. [Department of Energetics/INFN Florence (Italy); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Dobos, D. [CERN, Geneva (Switzerland); Dolenc, I. [Jozef Stefan Institute, Ljubljana (Slovenia); Dulinski, W. [IPHC, Strasbourg (France); Duris, J. [UCLA, Los Angeles, CA (United States); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Eusebi, R. [FNAL, Batavia (United States); Frais-Koelbl, H. [Fachhochschule fuer Wirtschaft und Technik, Wiener Neustadt (Austria)

    2011-04-21

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10{sup 16} protons/cm{sup 2} illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  1. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  2. Nanocrystalline diamond coatings for machining

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  3. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  4. Optimization of Tungsten Carbide Opposite Anvils Used in the In Situ High-Pressure Loading Apparatus

    Directory of Open Access Journals (Sweden)

    Zhang Ying

    2014-01-01

    Full Text Available In order to optimize the structure of anvils, finite element method is used to simulate two kinds of structures, one of which has a support ring but the other one does not. According to the simulated results, it is found that the maximum value of pressure appears at the center of culet when the bevelled angle is about 20°. Comparing the results of these two kinds of structures, we find that the efficiency of pressure transformation for the structure without support ring is larger than that for the structure with support ring. Considering the effect of von Mises stress, two kinds of tungsten carbide opposite anvils have been manufactured with bevelled angle of 10°. The experimental results for these two anvils are in good agreement with the simulation.

  5. Biofunctionalization of diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reitinger, Andreas Adam; Lud, Simon Quartus; Stutzmann, Martin; Garrido, Jose Antonio [Walter Schottky Institut, TU Muenchen (Germany); Hutter, Naima Aurelia; Richter, Gerhard; Jordan, Rainer [WACKER-Chair of Macromolecular Chemistry, TU Muenchen (Germany)

    2010-07-01

    In this work we present two main routes for the biofunctionalization of nanocrystalline diamond films, aiming at the application of diamond microelectrodes as amperometric biosensors. We report on direct covalent grafting of biomolecules on nanocrystalline diamond films via diazonium monophenyls and biphenyls as well as other linker molecules, forming self-assembled monolayers on the diamond surface. Monolayers with different functional head groups have been characterized. Patterning of the available functional groups using electron beam-induced chemical lithography allows the selective preparation of well-localized docking sites for the immobilization of biomolecules. Furthermore, polymer brushes are expected to enable novel paths for designing more advanced biosensing schemes, incorporating multifunctional groups and a higher loading capacity for biomolecules. Here, we focus on the preparation of polymer grafts by self-initiated photografting and photopolymerization. Further chemical modification of the grafted polymer brushes results in the introduction of additional functional molecules, paving the way for the incorporation of more complex molecular structures such as proteins. In a comparative study we investigate the advantages and disadvantages of both approaches.

  6. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  7. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    Science.gov (United States)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  8. Surface Texturing of CVD Diamond Assisted by Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Daniele M. Trucchi

    2017-11-01

    Full Text Available Diamond is a wide bandgap semiconductor with excellent physical properties which allow it to operate under extreme conditions. However, the technological use of diamond was mostly conceived for the fabrication of ultraviolet, ionizing radiation and nuclear detectors, of electron emitters, and of power electronic devices. The use of nanosecond pulse excimer lasers enabled the microstructuring of diamond surfaces, and refined techniques such as controlled ablation through graphitization and etching by two-photon surface excitation are being exploited for the nanostructuring of diamond. On the other hand, ultrashort pulse lasers paved the way for a more accurate diamond microstructuring, due to reduced thermal effects, as well as an effective surface nanostructuring, based on the formation of periodic structures at the nanoscale. It resulted in drastic modifications of the optical and electronic properties of diamond, of which “black diamond” films are an example for future high-temperature solar cells as well as for advanced optoelectronic platforms. Although experiments on diamond nanostructuring started almost 20 years ago, real applications are only today under implementation.

  9. Formation of a silicon terminated (100) diamond surface

    International Nuclear Information System (INIS)

    Schenk, Alex; Sear, Michael; Pakes, Chris; Tadich, Anton; O'Donnell, Kane M.; Ley, Lothar; Stacey, Alastair

    2015-01-01

    We report the preparation of an ordered silicon terminated diamond (100) surface with a two domain 3 × 1 reconstruction as determined by low energy electron diffraction. Based on the dimensions of the surface unit cell and on chemical information provided by core level photoemission spectra, a model for the structure is proposed. The termination should provide a homogeneous, nuclear, and electron spin-free surface for the development of future near-surface diamond quantum device architectures

  10. Osteoblast adhesion, migration, and proliferation variations on chemically patterned nanocrystalline diamond films evaluated by live-cell imaging

    Czech Academy of Sciences Publication Activity Database

    Brož, Antonín; Ukraintsev, Egor; Kromka, Alexander; Rezek, Bohuslav; Kalbáčová, M.H.

    2017-01-01

    Roč. 105, č. 5 (2017), s. 1469-1478 ISSN 1549-3296 R&D Projects: GA ČR(CZ) GA14-04790S; GA MZd(CZ) NV15-32497A Institutional support: RVO:67985823 ; RVO:68378271 Keywords : live-cell imaging * osteoblasts * adhesion * proliferation * migration * patterned surface Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Biomaterials (as related to medical implants, devices, sensors) Impact factor: 3.076, year: 2016

  11. Concept design and simulation study on a "phantom" anvil for circular stapler.

    Science.gov (United States)

    Rulli, Francesco; Kartheuser, Alex; Amirhassankhani, Sasan; Mourad, Michel; Stefani, Mario; de Ferrá Aureli, Andrés; Sileri, Pierpaolo; Valentini, Pier Paolo

    2015-04-01

    Complications and challenges arising from the intraoperative double-stapling technique are seldom reported in colorectal surgery literature. Partial or full-thickness rectal injuries can occur during the introduction and the advancement of the circular stapler along the upper rectum. The aim of this study is to address some of these issues by designing and optimizing a "phantom" anvil manufactured to overcome difficulties throughout the rectal introduction and advancement of the circular stapler for the treatment of benign and malignant colon disease. The design of the "phantom" anvil has been performed using computer-aided modeling techniques, finite element investigations, and 2 essential keynotes in mind. The first one is the internal shape of the anvil, which is used for the connection to the gun. The second is the shape of the cap, which makes possible the insertion of the gun through the rectum. The "phantom" anvil has 2 functional requirements, which have been taken into account. The design has been optimized to avoid colorectal injuries, neoplastic dissemination (ie, mechanical seeding) and to reduce the fecal contamination. Numerical simulations show that a right combination of both top and bottom fillet radii of the shape of the anvil can reduce the stress for the considered anatomic configuration of >90%. Both the fillet radii at the top and the bottom of the device influence the local stress of the colon rectum. A dismountable device, which is used only for the insertion and advancement of the stapler, allows a dedicated design of its shape, keeping the remainder of the stapler unmodified. Computer-aided simulations are useful to perform numerical investigations to optimize the design of this auxiliary part for both the safety of the patient and the ease of the stapler advancement through the rectum.

  12. Life Cycle of Tropical Convection and Anvil in Observations and Models

    Science.gov (United States)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  13. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    Science.gov (United States)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  14. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  15. Enhanced Growth and Osteogenic Differentiation of Human Osteoblast-Like Cells on Boron-Doped Nanocrystalline Diamond Thin Films

    Czech Academy of Sciences Publication Activity Database

    Grausová, Ľubica; Kromka, Alexander; Burdíková, Zuzana; Eckhardt, Adam; Rezek, Bohuslav; Vacík, Jiří; Haenen, K.; Lisá, Věra; Bačáková, Lucie

    2011-01-01

    Roč. 6, č. 6 (2011), e20943 E-ISSN 1932-6203 R&D Projects: GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) IAAX00100902; GA ČR(CZ) GAP108/11/0794 Grant - others:GA AV ČR(CZ) KAN400100701 Program:KA Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : osteoblast-like cells * boron * NCD films Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.092, year: 2011

  16. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings

    Czech Academy of Sciences Publication Activity Database

    Filová, Elena; Vandrovcová, Marta; Jelínek, Miroslav; Zemek, Josef; Houdková, Jana; Remsa, Jan; Kocourek, Tomáš; Staňková, Ľubica; Bačáková, Lucie

    2017-01-01

    Roč. 28, č. 1 (2017), č. článku 17. ISSN 0957-4530 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA14-04790S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:68378271 Keywords : osteocalcin * osteogenic differentiation * hexavalent chromium * focal adhesion contact * cell spreading area Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Biomaterials (as related to medical implants, devices, sensors) Impact factor: 2.325, year: 2016

  17. Finite element design for the HPHT synthesis of diamond

    Science.gov (United States)

    Li, Rui; Ding, Mingming; Shi, Tongfei

    2018-06-01

    The finite element method is used to simulate the steady-state temperature field in diamond synthesis cell. The 2D and 3D models of the China-type cubic press with large deformation of the synthesis cell was established successfully, which has been verified by situ measurements of synthesis cell. The assembly design, component design and process design for the HPHT synthesis of diamond based on the finite element simulation were presented one by one. The temperature field in a high-pressure synthetic cavity for diamond production is optimized by adjusting the cavity assembly. A series of analysis about the influence of the pressure media parameters on the temperature field are examined through adjusting the model parameters. Furthermore, the formation mechanism of wasteland was studied in detail. It indicates that the wasteland is inevitably exists in the synthesis sample, the distribution of growth region of the diamond with hex-octahedral is move to the center of the synthesis sample from near the heater as the power increasing, and the growth conditions of high quality diamond is locating at the center of the synthesis sample. These works can offer suggestion and advice to the development and optimization of a diamond production process.

  18. Laser shocks on helium, hydrogen and diamond: an experimental study of the warm dense matter zone; Chocs laser sur l'helium, l'hydrogene et le diamant: une etude experimentale de la 'Warm Dense Matter'

    Energy Technology Data Exchange (ETDEWEB)

    Brygoo, St

    2006-11-15

    The purpose of this work was to develop a new approach of laser shocks on pre-compressed targets in order to collect data concerning the equation of state in the warm dense matter zone of the phase diagram. The accuracy of the measurement has been increased by the use of a new metrology based on quartz. Quartz is considered as a standard for the measurement of both the pressure and the density, a model of an isentropic relaxation based on a Grueneisen type approximation has been developed. By combining laser shocks with diamond anvil cells and by using this new metrology, we have investigated the following systems: diamond, helium, hydrogen, deuterium and hydrogen-helium mixtures. The results for helium agree very well with the predictions of the Saumon-Chabrier model. The results for deuterium are consistent with the latest results found in literature. As for the results concerning hydrogen, they have showed the limits of the quartz-based metrology. In fact, by being so little dense we are at the limit of the application range of the quartz relaxation. A mixture of helium-hydrogen (50 %) has been investigated, no sign of phase separation has been found.

  19. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  20. Genetics Home Reference: Diamond-Blackfan anemia

    Science.gov (United States)

    ... Home Health Conditions Diamond-Blackfan anemia Diamond-Blackfan anemia Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Diamond-Blackfan anemia is a disorder of the bone marrow . The ...

  1. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  2. Fast diamond photoconductors

    International Nuclear Information System (INIS)

    Pochet, T.

    1993-01-01

    Preliminary results on the response of type Ib and IIa diamond photodetectors to fast laser pulse exposures at 265 and 530 nm are presented. The influence of the applied bias, the laser wavelengths and the light intensity on the detector sensitivity is studied. Also, recent measurements with 1.25 MeV gamma ray pulses are reported. (authors). 13 refs., 7 figs., 1 tab

  3. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  4. Diamond Pixel Detectors and 3D Diamond Devices

    International Nuclear Information System (INIS)

    Venturi, N.

    2016-01-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  5. Integrated-fin gasket for palm cubic-anvil high pressure apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.-G. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Matsubayashi, K.; Nagasaki, S.; Hisada, A.; Hirayama, T.; Uwatoko, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Hedo, M. [Faculty of Science, University of Ryukyus, Senbaru, Nishihara, Okinawa 903-0213 (Japan); Kagi, H. [Graduate School of Science, University of Tokyo, 7-3-1, Hongo Bunkyo-Ku, Tokyo 113-0033 (Japan)

    2014-09-15

    We described an integrated-fin gasket technique for the palm cubic-anvil apparatus specialized for the high-pressure and low-temperature measurements. By using such a gasket made from the semi-sintered MgO ceramics and the tungsten-carbide anvils of 2.5 mm square top, we successfully generate pressures over 16 GPa at both room and cryogenic temperatures down to 0.5 K. We observed a pressure self-increment for this specific configuration and further characterized the thermally induced pressure variation by monitoring the antiferromagnetic transition temperature of chromium up to 12 GPa. In addition to enlarge the pressure capacity, such a modified gasket also improves greatly the surviving rate of electrical leads hanging the sample inside a Teflon capsule filled with the liquid pressure-transmitting medium. These improvements should be attributed to the reduced extrusion of gasket materials during the initial compression.

  6. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-05-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming at top-of-atmosphere.

    Furthermore we introduce the cloud optical depth (τ, cloud height (Z forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene.

    Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  7. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available Diamond has the highest thermal conductivity among known materials, and as such finds uses as an industrial tool in areas where dissipation of excess heat is a requirement. In this investigation we set up a laser system to heat a diamond sample...

  8. Electrochemical applications of CVD diamond

    International Nuclear Information System (INIS)

    Pastor-Moreno, Gustavo

    2002-01-01

    Diamond technology has claimed an important role in industry since non-expensive methods of synthesis such as chemical vapour deposition allow to elaborate cheap polycrystalline diamond. This fact has increased the interest in the scientific community due to the outstanding properties of diamond. Since Pleskov published in 1987 the first paper in electrochemistry, many researchers around the world have studied different aspects of diamond electrochemistry such as reactivity, electrical structure, etc. As part of this worldwide interest these studies reveal new information about diamond electrodes. These studies report investigation of diamond electrodes characterized using structural techniques like scanning electrode microscopy and Raman spectroscopy. A new electrochemical theory based on surface states is presented that explains the metal and the semiconductor behaviour in terms of the doping level of the diamond electrode. In an effort to characterise the properties of diamond electrodes the band edges for hydrogen and oxygen terminated surface are located in organic solvent, hence avoiding possible interference that are present in aqueous solution. The determination of the band edges is performed by Mott-Schottky studies. These allow the calculation of the flat band potential and therefore the band edges. Additional cyclic voltammetric studies are presented for both types of surface termination. Mott-Schottky data and cyclic voltammograms are compared and explained in terms of the band edge localisation. Non-degenerately p-type semiconductor behaviour is presented for hydrogen terminated boron doped diamond. Graphitic surface states on oxidised surface boron doped diamond are responsible for the electrochemistry of redox couples that posses similar energy. Using the simple redox couple 1,4-benzoquinone effect of surface termination on the chemical behaviour of diamond is presented. Hydrogen sublayers in diamond electrodes seem to play an important role for the

  9. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  10. Presolar Diamond in Meteorites

    OpenAIRE

    Amari, Sachiko

    2009-01-01

    Presolar diamond, the carrier of the isotopically anomalous Xe component Xe-HL, was the first mineral type of presolar dust that was isolated from meteorites. The excesses in the light, p-process only isotopes 124Xe and 126Xe, and in the heavy, r-process only isotopes 134Xe and 136Xe relative to the solar ratios indicate that Xe-HL was produced in supernovae: they are the only stellar source where these two processes are believed to take place. Although these processes occur in supernovae, th...

  11. STABILIZATION OF TEMPERATURE REGIMES WHILE SYNTHESIZING DIAMOND POWDERS

    Directory of Open Access Journals (Sweden)

    A. I. Dudiak

    2012-01-01

    Full Text Available The paper considers peculiar features of artificial diamond powder synthesis process and also direct and indirect methods for temperature measurement in a reaction cell of high-pressure apparatus. Differences in temperature regimes of diamond synthesis associated with time fixation of strain and heating power have been analyzed in the paper. The paper  reveals their impracticability.Theoretical methodology for temperature correction in the reaction cell has been proposed in the paper. An algorithm controlling cell material heating has been developed on the basis of a microcontroller and it makes it possible to stabilize temperature in the reaction mixture that permits to improve quality and strength characteristics of the obtained diamond powders. The paper contains a graphic interpretation of calculation results with the help of the proposed algorithm. 

  12. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T. [Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamada, A. [The University of Shiga Prefecture, Shiga 522-8533 (Japan); Tabata, S.; Kondo, M.; Nakamura, A. [Sumitomo Heavy Industries Co., Ltd., Ehime 792-0001 (Japan); Kagi, H.; Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  13. Transmission diamond imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, John, E-mail: smedley@bnl.gov; Pinelli, Don; Gaoweia, Mengjia [Brookhaven National Laboratory, Upton, NY (United States); Muller, Erik; Ding, Wenxiang; Zhou, Tianyi [Stony Brook University, Stony Brook, NY (United States); Bohon, Jen [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States)

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  14. Diamonds in the Sky

    Science.gov (United States)

    Brotherton, M.

    2004-12-01

    My first science fiction novel, Star Dragon, just recently available in paperback from Tor, features a voyage to the cataclysmic variable star system SS Cygni. My second novel, Spider Star, to appear early in 2006, takes place in and around a dark matter ``planet'' orbiting a neutron star. Both novels are ``hard'' science fiction, relying on accurate physics to inform the tales. It's possible to bring to life abstract concepts like special relativity, and alien environments like accretion disks, by using science fiction. Novels are difficult to use in a science class, but short stories offer intriguing possibilities. I'm planning to edit an anthology of hard science fiction stories that contain accurate science and emphasize fundamental ideas in modern astronomy. The working title is Diamonds in the Sky. The collection will be a mix of original stories and reprints, highlighting challenging concepts covered in a typical introductory astronomy course. Larry Niven's classic story, ``Neutron Star," is an excellent demonstration of extreme tidal forces in an astronomical context. Diamonds in the Sky will include forewards and afterwards to the stories, including discussion questions and mathematical formulas/examples as appropriate. I envision this project will be published electronically or through a print-on-demand publisher, providing long-term availabilty and keeping low cost. I encourage interested parties to suggest previously published stories, or to suggest which topics must be included.

  15. Thermal applications of low-pressure diamond

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    During the last decade several applications of low-pressure diamond were developed. Main products are diamond heat-spreaders using its high thermal conductivity, diamond windows with their high transparency over a wide range of wavelengths and wear resistant tool coatings because of diamonds superhardness. A short description of the most efficient diamond deposition methods (microwave, DC-glow discharge, plasma-jet and arc discharge) is given. The production and applications of diamond layers with high thermal conductivity will be described. Problems of reproducibility of diamond deposition, the influence of impurities, the heat conductivity in electronic packages, reliability and economical mass production will be discussed. (author)

  16. Investigation of the physics of diamond MEMS : diamond allotrope lithography

    International Nuclear Information System (INIS)

    Zalizniak, I.; Olivero, P.; Jamieson, D.N.; Prawer, S.; Reichart, P.; Rubanov, S.; Petriconi, S.

    2005-01-01

    We propose a novel lithography process in which ion induced phase transfomations of diamond form sacrificial layers allowing the fabrication of small structures including micro-electromechanical systems (MEMS). We have applied this novel lithography to the fabrication of diamond microcavities, cantilevers and optical waveguides. In this paper we present preliminary experiments directed at the fabrication of suspended diamond disks that have the potential for operation as optical resonators. Such structures would be very durable and resistant to chemical attack with potential applications as novel sensors for extreme environments or high temperature radiation detectors. (author). 3 refs., 3 figs

  17. The Diamond machine protection system

    International Nuclear Information System (INIS)

    Heron, M.T.; Lay, S.; Chernousko, Y.; Hamadyk, P.; Rotolo, N.

    2012-01-01

    The Diamond Light Source Machine Protection System (MPS) manages the hazards from high power photon beams and other hazards to ensure equipment protection on the booster synchrotron and storage ring. The system has a shutdown requirement, on a beam mis-steer of under 1 msec and has to manage in excess of a thousand interlocks. This is realised using a combination of bespoke hardware and programmable logic controllers. The MPS monitors a large number of interlock signals from diagnostics instrumentation, vacuum instrumentation, photon front ends and plant monitoring subsystems. Based on logic it can then remove the source of the energy to ensure protection of equipment. Depending on requirements, interlocks are managed on a Local or a Global basis. The Global system is structured as two layers, and supports fast- and slow-response-time interlock requirements. A Global MPS module takes the interlock permits for a given interlock circuit from each of the cells of the accelerator, and, subject to all interlocks being good, produces a permit to operate the source of energy: the RF amplifier for vessel protection and the PSU for magnet protection. The Local MPS module takes fast Interlock inputs from one cell of the Storage Ring or one quadrant of the Booster. Fast interlocks are those that must drop the beam in under 400 μsec (the maximum speed of the interlock) in the event of failure. EPIC provides the user interface to the MPS system

  18. Diamond: a material for acoustic devices

    OpenAIRE

    MORTET, Vincent; WILLIAMS, Oliver; HAENEN, Ken

    2008-01-01

    Diamond has been foreseen to replace silicon for high power, high frequency electronic applications or for devices that operates in harsh environments. However, diamond electronic devices are still in the laboratory stage due to the lack of large substrates and the complexity of diamond doping. On another hand, surface acoustic wave filters based on diamond are commercially available. Diamond is especially suited for acoustic applications because of its exceptional mechanical properties. The ...

  19. CVD diamond metallization and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fraimovitch, D., E-mail: dimitryf@mail.tau.ac.il [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Adelberd, A.; Marunko, S. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Lefeuvre, G. [Micron Semiconductor Ltd. Royal Buildings, Marlborough Road, Lancing Business Park, BN15 8SJ (United Kingdom); Ruzin, A. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2017-02-11

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  20. CVD diamond metallization and characterization

    International Nuclear Information System (INIS)

    Fraimovitch, D.; Adelberd, A.; Marunko, S.; Lefeuvre, G.; Ruzin, A.

    2017-01-01

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  1. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  2. The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle

    Science.gov (United States)

    Beyer, Christopher; Frost, Daniel J.

    2017-03-01

    Most diamonds form in the Earth's lithosphere but a small proportion contain Si-rich majoritic garnet inclusions that indicate formation in the deeper mantle. The compositions of syngenetic garnet inclusions can potential yield information on both the depth and mantle lithology in which the diamonds formed. Pressure dependent changes in garnet compositions have been calibrated using the results of experiments conducted in a multi-anvil apparatus at pressures between 6 and 16 GPa and temperatures of 1000 to 1400 °C. Using the results of these experiments a barometer was formulated based on an empirical parameterisation of the two major majoritic substitutions, referred to as majorite (Maj; Al3+ =Mg2+ +Si4+), and Na-majorite (Na-Maj; Mg2+ +Al3+ =Na+ +Si4+). Moreover, previously published experimental garnet compositions from basaltic, kimberlite, komatiite and peridotite bulk compositions were included in the calibration, which consequently covers pressures from 6 to 20 GPa and temperatures from 900 to 2100 °C. Experimental pressures are reproduced over these conditions with a standard deviation of 0.86 GPa. The barometer is used to determine equilibration pressures of approximately 500 reported garnet inclusions in diamonds from a range of localities. As the majority of these inclusions are proposed to be syngenetic this allows a detailed picture of diamond formation depths and associated source rocks to be established using inclusion chemistry. Geographic differences in diamond source rocks are mapped within the sub-lithospheric mantle to over 500 km depth. Continuous diamond formation occurs over this depth range within lithologies with eclogitic affinities but also in lithologies that appear transitional between eclogitic and peridotitic bulk compositions, with an affinity to pyroxenites. The geographic differences between eclogitic and pyroxenitic diamond source rocks are rationalised in terms of diamond formation within downwelling and upwelling regimes

  3. Method of dehalogenation using diamonds

    Science.gov (United States)

    Farcasiu, Malvina; Kaufman, Phillip B.; Ladner, Edward P.; Anderson, Richard R.

    2000-01-01

    A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.

  4. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko; Faraon, Andrei

    2013-01-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has

  5. CVD diamond detectors and dosimeters

    International Nuclear Information System (INIS)

    Manfredotti, C.; Fizzotti, F.; LoGiudice, A.; Paolini, C.; Oliviero, P.; Vittone, E.; Torino Univ., Torino

    2002-01-01

    Natural diamond, because of its well-known properties of tissue-equivalence, has recorded a wide spreading use in radiotherapy planning with electron linear accelerators. Artificial diamond dosimeters, as obtained by Chemical Vapour Deposition (CVD) could be capable to offer the same performances and they can be prepared in different volumes and shapes. The dosimeter sensitivity per unit volume may be easily proved to be better than standard ionization microchamber. We have prepared in our laboratory CVD diamond microchamber (diamond tips) in emispherical shape with an external diameter of 200 μm, which can be used both as X-ray beam profilometers and as microdosimeters for small field applications like stereotaxy and also for in vivo applications. These dosimeters, which are obtained on a wire substrate that could be either metallic or SiC or even graphite, display good performances also as ion or synchrotron X-rays detectors

  6. DIAMONDS: Engineering Distributed Object Systems

    National Research Council Canada - National Science Library

    Cheng, Evan

    1997-01-01

    This report describes DIAMONDS, a research project at Syracuse University, that is dedicated to producing both a methodology and corresponding tools to assist in the development of heterogeneous distributed software...

  7. CRYSTAL-FACE Analysis and Simulations of the July 23rd Extended Anvil Case

    Science.gov (United States)

    Starr, David

    2003-01-01

    A key focus of CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers - Florida Area Cirrus Experiment) was the generation and subsequent evolution of cirrus outflow from deep convective cloud systems. Present theoretical background and motivations will be discussed. An integrated look at the observations of an extended cirrus anvil cloud system observed on 23 July 2002 will be presented, including lidar and millimeter radar observation; from NASA s ER-2 and in-situ observations from NASA s WB-57 and University of North Dakota Citation. The observations will be compared to results of simulations using 1-D and 2-D high-resolution (100 meter) cloud resolving models. The CRMs explicitly account for cirrus microphysical development by resolving the evolving ice crystal size distribution (bin model) in time and space. Both homogeneous and heterogeneous nucleation are allowed in the model. The CRM simulations are driven using the output of regional simulations using MM5 that produces deep convection similar to what was observed. The MM5 model employs a 2 km inner grid (32 layers) over a 360 km domain, nested within a 6-km grid over a 600-km domain. Initial and boundary conditions for the 36-hour MM5 simulation are taken from NCEP Eta model analysis at 32 km resolution. Key issues to be explored are the settling of the observed anvil versus the model simulations, and comparisons of dynamical properties, such as vertical motions, occurring in the observations and models. The former provides an integrated measure of the validity of the model microphysics (fallspeed) while the latter is the key factor in forcing continued ice generation.

  8. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Science.gov (United States)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  9. Modeling of diamond radiation detectors

    International Nuclear Information System (INIS)

    Milazzo, L.; Mainwood, A.

    2004-01-01

    We have built up a computer simulation of the detection mechanism in the diamond radiation detectors. The diamond detectors can be fabricated from a chemical vapour deposition polycrystalline diamond film. In this case, the trapping-detrapping and recombination at the defects inside the grains and at the grain boundaries degrade the transport properties of the material and the charge induction processes. These effects may strongly influence the device's response. Previous simulations of this kind of phenomena in the diamond detectors have generally been restricted to the simple detector geometries and homogeneous distribution of the defects. In our model, the diamond film (diamond detector) is simulated by a grid. We apply a spatial and time discretization, regulated by the grid resolution, to the equations describing the charge transport and, by using the Shockley-Ramo theorem, we calculate the signal induced on the electrodes. In this way, we can simulate the effects of the nonhomogeneous distributions of the trapping, recombination, or scattering centers and can investigate the differences observed when different particles, energies, and electrode configurations are used. The simulation shows that the efficiency of the detector increases linearly with the average grain size, that the charge collection distance is small compared to the dimensions of a single grain, and that for small grains, the trapping at the intragrain defects is insignificant compared to the effect of the grain boundaries

  10. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko

    2013-02-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond\\'s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments. Copyright © Materials Research Society 2013.

  11. Diamonds: Exploration, mines and marketing

    Science.gov (United States)

    Read, George H.; Janse, A. J. A. (Bram)

    2009-11-01

    The beauty, value and mystique of exceptional quality diamonds such as the 603 carat Lesotho Promise, recovered from the Letseng Mine in 2006, help to drive a multi-billion dollar diamond exploration, mining and marketing industry that operates in some 45 countries across the globe. Five countries, Botswana, Russia, Canada, South Africa and Angola account for 83% by value and 65% by weight of annual diamond production, which is mainly produced by four major companies, De Beers, Alrosa, Rio Tinto and BHP Billiton (BHPB), which together account for 78% by value and 72% by weight of annual diamond production for 2007. During the last twelve years 16 new diamond mines commenced production and 4 re-opened. In addition, 11 projects are in advanced evaluation and may begin operations within the next five years. Exploration for diamondiferous kimberlites was still energetic up to the last quarter of 2008 with most work carried out in Canada, Angola, Democratic Republic of the Congo (DRC) and Botswana. Many kimberlites were discovered but no new economic deposits were outlined as a result of this work, except for the discovery and possible development of the Bunder project by Rio Tinto in India. Exploration methods have benefitted greatly from improved techniques of high resolution geophysical aerial surveying, new research into the geochemistry of indicator minerals and further insights into the formation of diamonds and the relation to tectonic/structural events in the crust and mantle. Recent trends in diamond marketing indicate that prices for rough diamonds and polished goods were still rising up to the last quarter of 2008 and subsequently abruptly sank in line with the worldwide financial crisis. Most analysts predict that prices will rise again in the long term as the gap between supply and demand will widen because no new economic diamond discoveries have been made recently. The disparity between high rough and polished prices and low share prices of publicly

  12. An NV-Diamond Magnetic Imager for Neuroscience

    Science.gov (United States)

    Turner, Matthew; Schloss, Jennifer; Bauch, Erik; Hart, Connor; Walsworth, Ronald

    2017-04-01

    We present recent progress towards imaging time-varying magnetic fields from neurons using nitrogen-vacancy centers in diamond. The diamond neuron imager is noninvasive, label-free, and achieves single-cell resolution and state-of-the-art broadband sensitivity. By imaging magnetic fields from injected currents in mammalian neurons, we will map functional neuronal network connections and illuminate biophysical properties of neurons invisible to traditional electrophysiology. Furthermore, through enhancing magnetometer sensitivity, we aim to demonstrate real-time imaging of action potentials from networks of mammalian neurons.

  13. Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Michalíková, Lenka; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kmoch, S.

    2008-01-01

    Roč. 245, č. 10 (2008), s. 2124-2127 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cell growth * nanocrystalline diamond * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.166, year: 2008

  14. Effects of Friction and Anvil Design on Plastic Deformation during the Compression Stage of High-Pressure Torsion

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuepeng; Chen, Miaomiao; Xu, Baoyan; Guo, Jing; Xu, Lingfeng; Wang, Zheng [Mechanical and Electronic Engineering College, Tai’an (China); Gao, Dongsheng [Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Tai’an (China); Kim, Hyoung Seop [Department of Materials Science and Engineering, Pohang (Korea, Republic of)

    2016-11-15

    Herein, we report the results of our investigation on the effect of friction and anvil design on the heterogeneous plastic-deformation characteristics of copper during the compressive stage of high-pressure torsion (HPT), using the finite element method. The results indicate that the friction and anvil geometry play important roles in the homogeneity of the deformation. These variables affect the heterogeneous level of strain in the HPT compressed disks, as well as the flash in the disk edge region. The heterogeneous plastic deformation of the disks becomes more severe with the increasing depth of the cavity, as anvil angle and friction coefficient increase. However, the homogeneity increases with increases in the wall angle. The length of flash and the area of the dead metal zone increase with the depth of the cavity, while they decrease at a wall angle of 180°.

  15. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    Energy Technology Data Exchange (ETDEWEB)

    Kamojjala, Krishna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lacy, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chu, Henry S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brannon, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  16. Dye-sensitization of boron-doped diamond foam: champion photoelectrochemical performance of diamond electrodes under solar light illumination

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Kavan, Ladislav; Vlčková Živcová, Zuzana; Yeap, W. S.; Verstappen, P.; Maes, W.; Haenen, K.; Gao, F.; Nebel, C. E.

    2015-01-01

    Roč. 5, č. 99 (2015), s. 81069-81077 ISSN 2046-2069 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : dye-sensitized solar cells * electrochemistry * diamonds Subject RIV: CG - Electrochemistry Impact factor: 3.289, year: 2015

  17. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  18. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Polycrystalline diamond coatings; hot filament CVD; high vacuum tribology. 1. Introduction .... is a characteristic of graphite. We mark the (diamond ... coefficient of friction due to changes in substrate temperature. The average coefficient of.

  19. Diamond-based materials for biomedical applications

    CERN Document Server

    Narayan, Roger

    2013-01-01

    Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of diamond particles and surfaces is discussed, followed by biotribology and biological behaviour of nanocrystalline diamond coatings, and blood compatibility of diamond-like carbon coatings. Part two then goes on to review biomedical applications of diamond based materials, beginning with nanostructured diamond coatings for orthopaedic applications. Topics explored include ultrananocrystalline diamond for neural and ophthalmologi...

  20. Studies on synthesis of diamond at high pressure and temperature

    Science.gov (United States)

    Kailath, Ansu J.

    chapter is a general introduction incorporating the information regarding diamond together with a brief history of diamond synthesis. It also includes the details of the high pressure synthesis of diamond, the uses of diamond grits, the advantages of the synthetic diamond grit over natural grit and an outline to elucidate the reasons which prompted to undertake the present work. The details of the technique used in the present studies for synthesis of diamond grits by high-pressure high-temperature process are included in chapter II. The hydraulic press used for synthesis, the details of the reactant materials, stacking of the high pressure cell and the details of synthesis run have been described together with the separation procedure to isolate diamond grits from the frozen slug. Different analytical and characterization techniques used in the present studies for the analysis and characterization of the reactant materials, synthesized diamonds and the crystallization medium have been illustrated in chapter III. The effect of different synthesizing parameters on synthesized diamond crystals were studied. This study includes: (a) dependence of yield of diamond on temperature and pressure, (b) dependence of crystal size on cook length, (c) effect of variation of the relative amounts of carbonaceous material and catalyst on synthesis, (d) morphological variation and (e) effect of pressure pulse on synthesized crystals. Various observations made during this study and the results obtained have been compiled in chapter IV. The synthesized diamond crystals were characterized by X-ray Powder Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) and Optical Microscopy. The results obtained have been compiled in chapter V. In addition to these, the results obtained from the Infrared Spectra and the Electron Paramagnetic Spectra have also been included. Studies of crystallization medium and inclusions in the synthesized diamonds were carried out. This include

  1. Ohmic contacts to semiconducting diamond

    Science.gov (United States)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  2. Organophosphonate biofunctionalization of diamond electrodes.

    Science.gov (United States)

    Caterino, R; Csiki, R; Wiesinger, M; Sachsenhauser, M; Stutzmann, M; Garrido, J A; Cattani-Scholz, A; Speranza, Giorgio; Janssens, S D; Haenen, K

    2014-08-27

    The modification of the diamond surface with organic molecules is a crucial aspect to be considered for any bioapplication of this material. There is great interest in broadening the range of linker molecules that can be covalently bound to the diamond surface. In the case of protein immobilization, the hydropathicity of the surface has a major influence on the protein conformation and, thus, on the functionality of proteins immobilized at surfaces. For electrochemical applications, particular attention has to be devoted to avoid that the charge transfer between the electrode and the redox center embedded in the protein is hindered by a thick insulating linker layer. This paper reports on the grafting of 6-phosphonohexanoic acid on OH-terminated diamond surfaces, serving as linkers to tether electroactive proteins onto diamond surfaces. X-ray photoelectron spectroscopy (XPS) confirms the formation of a stable layer on the surface. The charge transfer between electroactive molecules and the substrate is studied by electrochemical characterization of the redox activity of aminomethylferrocene and cytochrome c covalently bound to the substrate through this linker. Our work demonstrates that OH-terminated diamond functionalized with 6-phosphonohexanoic acid is a suitable platform to interface redox-proteins, which are fundamental building blocks for many bioelectronics applications.

  3. Medical applications of diamond particles & surfaces

    OpenAIRE

    Roger J Narayan; Ryan D. Boehm; Anirudha V. Sumant

    2011-01-01

    Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and...

  4. Ultimate Atomic Bling: Nanotechnology of Diamonds

    International Nuclear Information System (INIS)

    Dahl, Jeremy

    2010-01-01

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  5. Diamond and diamond-like carbon MEMS

    Science.gov (United States)

    Luo, J. K.; Fu, Y. Q.; Le, H. R.; Williams, J. A.; Spearing, S. M.; Milne, W. I.

    2007-07-01

    To generate complex cartilage/bone tissues, scaffolds must possess several structural features that are difficult to create using conventional scaffold design/fabrication technologies. Successful cartilage/bone regeneration depends on the ability to assemble chondrocytes/osteoblasts into three-dimensional (3D) scaffolds. Therefore, we developed a 3D scaffold fabrication system that applies the axiomatic approach to our microstereolithography system. The new system offers a reduced machine size by minimizing the optical components, and shows that the design matrix is decoupled. This analysis identified the key factors affecting microstructure fabrication and an improved scaffold fabrication system was constructed. The results demonstrate that precise, predesigned 3D structures can be fabricated. Using this 3D scaffold, cell adhesion behavior was observed. The use of 3D scaffolds might help determine key factors in the study of cell behavior in complex environments and could eventually lead to the optimal design of scaffolds for the regeneration of various tissues, such as cartilage and bone.

  6. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  7. Diamonds at the golden point

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Alongside the CMS Pixel Luminosity Telescope (PLT) – installed last month (see here) – lie diamond detectors. No ordinary gems, these lab-grown diamonds will be playing a vital role in Run 2: differentiating signals from collision products with those from the beam background.   The BCM detector's green "c-shaped" printed circuit board is mounted on the PLT/BCM carbon-fibre carriage ready for installation. Earlier this year, the CMS BRIL project installed beam condition monitors (BCM) at the heart of the CMS detector. Designed to measure the online luminosity and beam background as close as possible to the LHC beam pipe, the BCMs use radiation-hard diamonds to differentiate between background and collision signals. The BCM also protects the CMS silicon trackers from damaging beam losses, by aborting the beam if the signal currents measured are above an acceptable threshold. These new BCMs are designed with Run 2 bunches in mind. &ldq...

  8. Status of diamond particle detectors

    Science.gov (United States)

    Krammer, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fish, D.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Manfredi, P. F.; Meier, D.; Mishina, M.; LeNormand, F.; Pan, L. S.; Pernegger, H.; Pernicka, M.; Re, V.; Riester, G. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1998-11-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given.

  9. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  10. Graphene grown out of diamond

    Science.gov (United States)

    Gu, Changzhi; Li, Wuxia; Xu, Jing; Xu, Shicong; Lu, Chao; Xu, Lifang; Li, Junjie; Zhang, Shengbai

    2016-10-01

    Most applications of graphene need a suitable support substrate to present its excellent properties. But transferring graphene onto insulators or growing graphene on foreign substrates could cause properties diminishing. This paper reports the graphene growth directly out of diamond (111) by B doping, guided by first-principles calculations. The spontaneous graphene formation occurred due to the reconstruction of the diamond surface when the B doping density and profile are adequate. The resulting materials are defect free with high phase purity/carrier mobility, controllable layer number, and good uniformity, which can be potentially used directly for device fabrication, e.g., high-performance devices requiring good thermal conductivity.

  11. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.

    Science.gov (United States)

    Nicolau, Eduardo; Méndez, Jessica; Fonseca, José J; Griebenow, Kai; Cabrera, Carlos R

    2012-06-01

    Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  13. Synthesis of platinum and platinum–ruthenium-modified diamond nanoparticles

    International Nuclear Information System (INIS)

    La-Torre-Riveros, Lyda; Abel-Tatis, Emely; Méndez-Torres, Adrián E.; Tryk, Donald A.; Prelas, Mark; Cabrera, Carlos R.

    2011-01-01

    With the aim of developing dimensionally stable-supported catalysts for direct methanol fuel cell application, Pt and Pt–Ru catalyst nanoparticles were deposited onto undoped and boron-doped diamond nanoparticles (BDDNPs) through a chemical reduction route using sodium borohydride as a reducing agent. As-received commercial diamond nanoparticles (DNPs) were purified by refluxing in aqueous nitric acid solution. Prompt gamma neutron activation analysis and transmission electron microscopy (TEM) techniques were employed to characterize the as-received and purified DNPs. The purified diamond nanoparticulates, as well as the supported Pt and Pt–Ru catalyst systems, were subjected to various physicochemical characterizations, such as scanning electron microscopy, energy dispersive analysis, TEM, X-ray diffraction, inductively coupled plasma-mass spectrometry, X-ray photoelectron spectroscopy, and infrared spectroscopy. Physicochemical characterization showed that the sizes of Pt and Pt–Ru particles were only a few nanometers (2–5 nm), and they were homogeneously dispersed on the diamond surface (5–10 nm). The chemical reduction method offers a simple route to prepare the well-dispersed Pt and Pt–Ru catalyst nanoparticulates on undoped and BDDNPs for their possible employment as an advanced electrode material in direct methanol fuel cells.

  14. Standard-free Pressure Measurement by Ultrasonic Interferometry in a Multi-Anvil Device

    Science.gov (United States)

    Mueller, H. J.; Lathe, C.; Schilling, F. R.; Lauterjung, J.

    2002-12-01

    A key question to all high pressure research arises from the reliability of pressure standards. There is some indication and discussion of an uncertainty of 10-20% for higher pressures in all standards. Simultaneous and independent investigation of the dynamical (ultrasonic interferometry of elastic wave velocities) and static (XRD-measurement of the pressure-induced volume decline) compressibility on a sample reveal the possibility of a standard-free pressure calibration (see Getting, 1998) and, consequently an absolute pressure measurement. Ultrasonic interferometry is used to measure velocities of elastic compressional and shear waves in the multi-anvil high pressure device MAX80 at HASYLAB Hamburg enabling simultaneous XRD and ultrasonic experiments. Two of the six anvils were equipped with overtone polished lithium niobate transducers of 33.3 MHz natural frequency, for generation and detection of ultrasonic waves with a frequency sweep between 5 and 55 MHz. Different buffer - reflector combinations were tested to optimize the critical interference between both sample echoes. NaCl powder of 99.5 % purity (analytical grade by Merck) was used as starting material for manufacturing the samples used as pressure calibrant after Decker (1971). The medium grain size was 50 μm. The powder was pressed to a crude sample cylinder of 10 mm diameter and a length of 20 mm using a load of 6 tons resulting in an effective pressure of 0.25 to 0.3 GPa. The millimeter sized samples (diameter 2.4 mm and 1.6 mm length for 6 mm anvil truncation and diameter 3.1 mm and 1.1 mm length for 3.5 mm anvil truncation) for the high pressure experiments were shaped with a high-precision (+/- 0.5 μm) cylindrical grinding machine and polished at the front faces. From the ultrasonic wave velocity data we calculated the compressibility of NaCl. This requires in situ density data. Therefore the sample deformation during the high pressure experiments was analyzed in detail and the results were

  15. Modified Cooling System for Low Temperature Experiments in a 3000 Ton Multi-Anvil Press

    Science.gov (United States)

    Secco, R.; Yong, W.

    2017-12-01

    A new modified cooling system for a 3000-ton multi-anvil press has been developed to reach temperatures below room temperature at high pressures. The new system is much simpler in design, easier to make and use, and has the same cooling capability as the previous design (Secco and Yong, RSI, 2016). The key component of the new system is a steel ring surrounding the module wedges that contains liquid nitrogen (LN2) which flows freely through an entrance port to flood the interior of the pressure module. Upper and lower O-rings on the ring seal in the liquid while permitting modest compression and an thermally insulating layer of foam is attached to the outside of the ring. The same temperature of 220 K reached with two different cooling systems suggests that thermal equilibrium is reached between the removal of heat by LN2 and the influx of heat through the massive steel components of this press.

  16. Transparent nanocrystalline diamond coatings and devices

    Science.gov (United States)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  17. Recent results on CVD diamond radiation sensors

    Science.gov (United States)

    Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration

    1998-02-01

    CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.

  18. Diamond Sensors for Energy Frontier Experiments

    CERN Document Server

    Schnetzer, Steve

    2014-01-01

    We discuss the use of diamond sensors in high-energy, high-i ntensity collider experiments. Re- sults from diamond sensor based beam conditions monitors in the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) are presented and pla ns for diamond based luminosity monitors for the upcoming LHC run are described. We describe recent measurements on single crystal diamond sensors that indicate a polarization effec t that causes a reduction of charge col- lection efficiency as a function of particle flux. We conclude by describing new developments on the promising technology of 3D diamond sensors.

  19. An ab initio study on the transition paths from graphite to diamond under pressure

    International Nuclear Information System (INIS)

    Dong Xiao; Zhou Xiangfeng; Wang Huitian; Qian Guangrui; Zhao Zhisheng; Tian Yongjun

    2013-01-01

    We calculate and compare the transition paths from graphite to two types of diamond using the variable cell nudged elastic band method. For the phase transition from graphite to cubic diamond, we analyze in detail how the π bonds transit to the σ bonds in an electronic structure. Meanwhile, a new transition path with a lower energy barrier for the transformation from graphite to hexagonal diamond is discovered. The path has its own peculiar sp 2 –sp 3 bonding configurations, serving as a transition state. Further calculation suggests that the sp 2 –sp 3 transition state represents an expected general phenomenon for cold-compressed graphite. (paper)

  20. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate

    Science.gov (United States)

    Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing

    2018-05-01

    Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.

  1. CVD diamond windows for infrared synchrotron applications

    International Nuclear Information System (INIS)

    Sussmann, R.S.; Pickles, C.S.J.; Brandon, J.R.; Wort, C.J.H.; Coe, S.E.; Wasenczuk, A.; Dodge, C.N.; Beale, A.C.; Krehan, A.J.; Dore, P.; Nucara, A.; Calvani, P.

    1998-01-01

    This paper describes the attributes that make diamond a unique material for infrared synchrotron beam experiments. New developments in diamond synthesised by Chemical Vapour Deposition (CVD) promise to extend the range of applications which have been hitherto limited by the availability and cost of large-size single-crystal diamond. Polycrystalline CVD diamond components such as large (100 mm) diameter windows with extremely good transparency over a wide spectral range are now commercially available. Properties of CVD diamond of relevance to optical applications, such as mechanical strength, thermal conductivity and absolute bulk absorption, are discussed. It is shown that although some of the properties of CVD diamond (similar to other polycrystalline industrial ceramics) are affected by the grain structure, currently produced CVD diamond optical components have the quality and performance required for numerous demanding applications

  2. The Many Facets of Diamond Crystals

    Directory of Open Access Journals (Sweden)

    Yuri N. Palyanov

    2018-01-01

    Full Text Available This special issue is intended to serve as a multidisciplinary forum covering broad aspects of the science, technology, and application of synthetic and natural diamonds. This special issue contains 12 papers, which highlight recent investigations and developments in diamond research related to the diverse problems of natural diamond genesis, diamond synthesis and growth using CVD and HPHT techniques, and the use of diamond in both traditional applications, such as mechanical machining of materials, and the new recently emerged areas, such as quantum technologies. The results presented in the contributions collected in this special issue clearly demonstrate that diamond occupies a very special place in modern science and technology. After decades of research, this structurally very simple material still poses many intriguing scientific questions and technological challenges. It seems undoubted that diamond will remain the center of attraction for many researchers for many years to come.

  3. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  4. Recent Advances in Diamond Detectors

    CERN Document Server

    Trischuk, W.

    2008-01-01

    With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2012, ATLAS and CMS are planning for detector upgrades for their innermost layers requiring radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is now planned for all LHC experiments. This material is now being considered as an alternate sensor for use very close to the interaction region of the super LHC where the most extreme radiation conditions will exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences available. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10^16 protons/cm^2 showing that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve allowing one t...

  5. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R [Department of Chemistry and Center of Nanoscale Materials, University of Puerto Rico, Rio Piedras, PO Box 23346 San Juan, PR 00931-3346 (Puerto Rico)

    2007-04-15

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO{sub 3} and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 {mu}m) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron.

  6. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    International Nuclear Information System (INIS)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R

    2007-01-01

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO 3 and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 μm) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron

  7. Fabrication of planarised conductively patterned diamond for bio-applications.

    Science.gov (United States)

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Copper-micrometer-sized diamond nanostructured composites

    International Nuclear Information System (INIS)

    Nunes, D; Livramento, V; Fernandes, H; Silva, C; Carvalho, P A; Shohoji, N; Correia, J B

    2011-01-01

    Reinforcement of a copper matrix with diamond enables tailoring the properties demanded for thermal management applications at high temperature, such as the ones required for heat sink materials in low activated nuclear fusion reactors. For an optimum compromise between thermal conductivity and mechanical properties, a novel approach based on multiscale diamond dispersions is proposed: a Cu-nanodiamond composite produced by milling is used as a nanostructured matrix for further dispersion of micrometer-sized diamondDiamond). A series of Cu-nanodiamond mixtures have been milled to establish a suitable nanodiamond fraction. A refined matrix with homogeneously dispersed nanoparticles was obtained with 4 at.% μDiamond for posterior mixture with microdiamond and subsequent consolidation. Preliminary consolidation by hot extrusion of a mixture of pure copper and μDiamond has been carried out to define optimal processing parameters. The materials produced were characterized by x-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

  9. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Toucan's Diamond

    Science.gov (United States)

    2006-06-01

    The Southern constellation Tucana (the Toucan) is probably best known as the home of the Small Magellanic Cloud, one of the satellite galaxies of the Milky Way. But Tucana also hosts another famous object that shines thousands of lights, like a magnificent, oversized diamond in the sky: the globular cluster 47 Tucanae. More popularly known as 47 Tuc, it is surpassed in size and brightness by only one other globular cluster, Omega Centauri. Globular clusters are gigantic families of stars, comprising several tens of thousands of stars, all thought to be born at the same time from the same cloud of gas [1]. As such, they constitute unique laboratories for the study of how stars evolve and interact. This is even more so because they are located at the same distance, so the brightness of different types of stars, at different stages in their evolution can be directly compared. The stars in globular clusters are held together by their mutual gravity which gives them their spherical shape, hence their name. Globular clusters are thought to be among the oldest objects in our Milky Way galaxy, and contain therefore mostly old, low-mass stars. ESO PR Photo 20/06 ESO PR Photo 20/06 Globular Cluster 47 Tuc 47 Tucanae is an impressive globular cluster that is visible with the unaided eye from the southern hemisphere. It was discovered in 1751 by the French astronomer Nicholas Louis de Lacaille who cataloged it in his list of southern nebulous objects. Located about 16 000 light years away, it has a total mass of about 1 million times the mass of the Sun and is 120 light years across, making it appear on the sky as big as the full moon. The colour image of 47 Tucanae presented here was taken with FORS1 on ESO's Very Large Telescope in 2001. The image covers only the densest, very central part of the cluster. The globular cluster extends in reality four times further away! As can be seen however, the density of stars rapidly drops off when moving away from the centre. The red

  11. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  12. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  13. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  14. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  15. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    Science.gov (United States)

    2014-10-27

    Diamond. Phys. Rev. Lett. 2000, 84, 5160−5163. (31) Ownby, P. D.; Yang, X.; Liu, J. Calculated X-Ray-Diffraction Data for Diamond Polytypes. J. Am. Ceram...Surfaces from Ab-Initio Calculations . Phys. Rev. B 1995, 51, 14669−14685. (39) Ferrari, A. C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured...Y.; Takami, S.; Kubo , M.; Belosludov, R. V.; Miyamoto, A.; Imamura, A.; Gamo, M. N.; Ando, T. First-Principle Study on Reactions of Diamond (100

  16. Entanglement, holography and causal diamonds

    Science.gov (United States)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  17. Entanglement, holography and causal diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Heller, Michal P.; Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2016-08-29

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  18. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  19. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  20. Diamond coating in accelerator structure

    International Nuclear Information System (INIS)

    Lin, X.E.

    1998-08-01

    The future accelerators with 1 GeV/m gradient will give rise to hundreds of degrees instantaneous temperature rise on the copper surface. Due to its extraordinary thermal and electric properties, diamond coating on the surface is suggested to remedy this problem. Multi-layer structure, with the promise of even more temperature reduction, is also discussed, and a proof of principle experiment is being carried out

  1. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  2. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    Science.gov (United States)

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  3. 76 FR 37684 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model (Diamond) DA 40 Airplanes...

    Science.gov (United States)

    2011-06-28

    ... Industries GmbH Model (Diamond) DA 40 Airplanes Equipped With Certain Cabin Air Conditioning Systems AGENCY... inspections of the Diamond Model DA 40 airplanes equipped with a VCS installed per Premier Aircraft Service... GmbH Model (Diamond) DA 40 Airplanes Equipped With Certain Cabin Air Conditioning Systems: Docket No...

  4. Dysregulated microRNA activity in Shwachman-Diamond Syndrome

    Science.gov (United States)

    2017-09-01

    Products Publications, conference papers, and presentations Joyce CE, Saadatpour A, Jiang L, Ruiz-Gutierrez M, Vargel Bolukbasi O, Hofmann I...Annual Meeting, San Diego, CA, 2016. Joyce CE, Li S, Hofmann I, Nusbaum C, Sieff C, Mason CE, Novina CD. “Single cell transcriptomic analysis of...hematopoietic dysfunction in Shwachman-Diamond Syndrome”. Poster, Keystone Hematopoiesis, Keystone, CO, 2015. Joyce CE, Jiang L, Hofmann I, Nusbaum C

  5. A Novel Porous Diamond - Titanium Biomaterial: Structure, Microstructure, Physico-Mechanical Properties and Biocompatibility

    Directory of Open Access Journals (Sweden)

    ZULMIRA A.S. GUIMARÃES

    2017-12-01

    Full Text Available ABSTRACT With the aim of introducing permanent prostheses with main properties equivalent to cortical human bone, Ti-diamond composites were processed through powder metallurgy. Grade 1 titanium and mixtures of Ti powder with 2%, 5% and 10 wt% diamond were compacted at 100MPa, and then sintered at 1250°C/2hr/10-6mbar. Sintered samples were studied in the point of view of their microstructures, structures, yield strength and elastic modulus. The results showed that the best addition of diamonds was 2 wt%, which led to a uniform porosity, yield strength of 370MPa and elastic modulus of 13.9 GPa. Samples of Ti and Ti-2% diamond were subjected to in vitro cytotoxicity test, using cultures of VERO cells, and it resulted in a biocompatible and nontoxic composite material.

  6. Wetting of the diamond surface

    International Nuclear Information System (INIS)

    Hansen, J.O.

    1987-01-01

    The surface conditions which lead to a wide variation in the wettability of diamond surfaces have been investigated using macroscopic surfaces to allow for the crystal anisotropy. A wetting balance method of calculating adhesion tension and hence contact angle has been used for diamonds having major faces near the [111] and [110] lattice planes. Three classes of behaviour have been identified. Surface analyses by Rutherford Backscattering of helium ions, X-ray Photoelectron Spectroscopy and Low Energy Electron Diffraction (LEED) have been used to define the role of the oxygen coverage of the surface in the transition I → O → H. Ferric ion has a hydrophilizing effect on the diamond surface, thought to be the consequence of attachment to the hydroxyl groups at the surface by a ligand mechanism. Other transition metal ions did not show this effect. The phenomenon of hydration of the surface, i.e. progressively more hydrophilic behaviour on prolonged exposure to liquid water, has been quantified. Imbibition or water penetration at microcracks are thought unlikely, and a water cluster build-up at hydrophilic sites is thought to be the best explanation. Dynamic studies indicate little dependence of the advancing contact angle on velocity for velocities up to 10 -4 m/s, and slight dependence of the receding contact angle. Hence advancing angles by this technique are similar to equilibrated contact angles found by optical techniques, but the receding angles are lower than found by other non-dynamic measurements

  7. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  8. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  9. Status of diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krammer, M.; Adam, W.; Friedl, M.; Hrubec, J.; Pernegger, H.; Pernicka, M. [Institut fuer Hochenergiephysik der Oesterr. Akademie d. Wissenschaften, Nikolsdorferg. 18, A-1050 Vienna (Austria); Bauer, C. [MPI fuer Kernphysik, D-69029 Heidelberg (Germany); Berdermann, E.; Stelzer, H. [GSI, Darmstadt (Germany); Bogani, F. [LENS, Florence (Italy); Borchi, E.; Bruzzi, M.; Sciortino, S. [University of Florence, Florence (Italy); Colledani, C.; Dulinski, W.; Husson, D.; LeNormand, F.; Riester, G.L.; Turchetta, R. [LEPSI, CRN Strasbourg (France); Conway, J.; Fish, D.; Schnetzer, S.; Stone, R.; Tesarek, R.; Thomson, G.B.; Walsh, A.M. [Rutgers University, Piscataway, NJ (United States); Dabrowski, W.; Kaplon, J.; Meier, D.; Roe, S.; Rudge, A.; Wedenig, R.; Weilhammer, P. [CERN, CH-1211 Geneva (Switzerland); Delpierre, P.; Hallewell, G. [CPPM, Marseille (France); Deneuville, A.; Cheeraert, E. [LEPES, Grenoble (France); Eijk, B.V.; Hartjes, F. [NIKHEF, Amsterdam (Netherlands); Fallou, A. [CPPM, Marseille (France); Foulon, F. [Centre d' Etudes de Saclay, 91191 Gif-Sur-Yvette (France); Gan, K.K.; Kagan, H.; Kass, R.; Trawick, M.; Zoeller, M. [The Ohio State University, Columbus, OH (United States); Grigoriev, E.; Knoepfle, K.T. [MPI fuer Kernphysik, D-69029 Heidelberg (Germany); Hall-Wilton, R. [Bristol University, Bristol (United Kingdom); Han, S.; Ziock, H. [Los Alamos National Laboratory, Research Division, Los Alamos, NM (United States); Kania, D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Manfredi, P.F.; Re, V.; Speziali, V. [Universita di Pavia, Dipartimento di Elettronica, 27100 Pavia (Italy); Mishina, M. [FNAL, Batavia, IL (United States); Pan, L.S. [Sandia National Laboratory, Albuquerque, NM (United States); Roff, D.; Tapper, R.J. [Bristol University, Bristol (United Kingdom); Trischuk, W. [University of Toronto, Toronto (Canada)

    1998-11-21

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Status of diamond particle detectors

    International Nuclear Information System (INIS)

    Krammer, M.; Adam, W.; Friedl, M.; Hrubec, J.; Pernegger, H.; Pernicka, M.; Bauer, C.; Berdermann, E.; Stelzer, H.; Bogani, F.; Borchi, E.; Bruzzi, M.; Sciortino, S.; Colledani, C.; Dulinski, W.; Husson, D.; LeNormand, F.; Riester, G.L.; Turchetta, R.; Conway, J.; Fish, D.; Schnetzer, S.; Stone, R.; Tesarek, R.; Thomson, G.B.; Walsh, A.M.; Dabrowski, W.; Kaplon, J.; Meier, D.; Roe, S.; Rudge, A.; Wedenig, R.; Weilhammer, P.; Delpierre, P.; Hallewell, G.; Deneuville, A.; Cheeraert, E.; Eijk, B.V.; Hartjes, F.; Fallou, A.; Foulon, F.; Gan, K.K.; Kagan, H.; Kass, R.; Trawick, M.; Zoeller, M.; Grigoriev, E.; Knoepfle, K.T.; Hall-Wilton, R.; Han, S.; Ziock, H.; Kania, D.; Manfredi, P.F.; Re, V.; Speziali, V.; Mishina, M.; Pan, L.S.; Roff, D.; Tapper, R.J.; Trischuk, W.

    1998-01-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  12. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  13. Ultimate Atomic Bling: Nanotechnology of Diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  14. Undoped CVD diamond films for electrochemical applications

    International Nuclear Information System (INIS)

    Mosinska, Lidia; Fabisiak, Kazimierz; Paprocki, Kazimierz; Kowalska, Magdalena; Popielarski, Pawel; Szybowicz, Miroslaw

    2013-01-01

    By using different deposition conditions, the CVD diamond films with different qualities and orientation were grown by the hot-filament CVD technique. The object of this article is to summarize and discuss relation between structural, physical and electrochemical properties of different diamond electrodes. The physical properties of the Hot Filament CVD microcrystalline diamond films are analyzed by scanning electron microscopy and Raman spectroscopy. In presented studies two different electrodes were used of the diamond grain sizes around 200 nm and 10 μm, as it was estimated from SEM picture. The diamond layers quality was checked on basis of FWHM (Full width at Half Maximum) of 1332 cm −1 diamond Raman peak. The ratio of sp 3 /sp 2 carbon bonds was determined by 1550 cm −1 G band and 1350 cm −1 D band in the Raman spectrum. The electrochemical properties were analyzed using (CV) cyclic voltammetry measurements in aqueous solutions. The sensitivity of undoped diamond electrodes depends strongly on diamond film quality and concentration of amorphous carbon phase in the diamond layer

  15. CVD diamond substrates for electronic devices

    International Nuclear Information System (INIS)

    Holzer, H.

    1996-03-01

    In this study the applicability of chemical vapor deposition (CVD) diamond as a material for heat spreaders was investigated. Economical evaluations on the production of heat spreaders were also performed. For the diamond synthesis the hot-filament and microwave method were used respectively. The deposition parameters were varied in a way that free standing diamond layers with a thickness of 80 to 750 microns and different qualities were obtained. The influence of the deposition parameters on the relevant film properties was investigated and discussed. With both the hot-filament and microwave method it was possible to deposit diamond layers having a thermal conductivity exceeding 1200 W/mK and therefore to reach the quality level for commercial uses. The electrical resistivity was greater than 10 12 Ωcm. The investigation of the optical properties was done by Raman-, IR- and cathodoluminescence spectroscopy. Because of future applications of diamond-aluminium nitride composites as highly efficient heat spreaders diamond deposition an AIN was investigated. An improved substrate pretreatment prior to diamond deposition showed promising results for better performance of such composite heat spreaders. Both free standing layers and diamond-AIN composites could be cut by a CO2 Laser in Order to get an exact size geometry. A reduction of the diamond surface roughness was achieved by etching with manganese powder or cerium. (author)

  16. Study of cooling rates during metallic glass formation in a hammer and anvil apparatus

    International Nuclear Information System (INIS)

    Kroeger, D.M.; Coghlan, W.A.; Easton, D.S.; Koch, C.C.; Scarbrough, J.O.

    1982-01-01

    A model is presented of the simultaneous spreading and cooling of the liquid drop in a hammer and anvil apparatus for rapid quenching of liquid metals. The viscosity of the melt is permitted to vary with temperature, and to avoid mathematical complications which would be associated with spatial variation of the viscosity, Newtonian cooling is assumed. From an expression for the force required to spread the specimen, coupled equations for the mechanical energy balance for the system and the heat transfer from the sample to the hearth and hammer were obtained, and solved numerically. The sample reaches its final thickness when the force required to deform it becomes greater than the force exerted on it by the decelerating hammer. The model was fit to measurements of sample thickness versus hammer speed, using the interface heat transfer coefficient, h, as an adjustable parameter. The values of h so obtained vary somewhat with the melt alloy/substrate metal combination. From predicted cooling curves, the effects of hammer speed, sample size, and initial melt temperature on the cooling rate and the efficiency of glass formation can be assessed. Addition of sample superheat shifts the cooling curve relative to the expected position of the time-temperature-transformation curve for formation of crystalline material from the melt, and thus is an effective means of increasing the probability of glass formation in this type of apparatus

  17. Factors influencing the parameterization of anvil clouds within general circulation models

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Chin, H.N.

    1994-01-01

    The overall goal of this project is to improve the representation of clouds and their effects within global climate models (GCMs). We have concentrated on a small portion of the overall goal, the evolution of convectively generated cirrus clouds and their effects on the large-scale environment. Because of the large range of time and length scales involved, we have been using a multi-scale attack. For the early time generation and development of the cirrus anvil, we are using a cloud-scale model with horizontal resolution of 1 to 2 kilometers; for the larger scale transport by the larger scale flow, we are using a mesoscale model with a horizontal resolution of 20 to 60 kilometers. The eventual goal is to use the information obtained from these simulations, together with available observations, to derive improved cloud parameterizations for use in GCMs. This paper presents a new tool, a cirrus generator, that we have developed to aid in our mesoscale studies

  18. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    2017-07-24

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  19. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    Science.gov (United States)

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-04

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  20. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  1. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Wigger, Tina; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Karst, U.; van den Berg, Albert

    2016-01-01

    Reactive xenobiotic metabolites and their adduct formation with biomolecules such as proteins are important to study as they can be detrimental to human health. Here, we present a microfluidic electrochemical cell with integrated micromixer to study phase I and phase II metabolism as well as protein

  2. Robust diamond meshes with unique wettability properties.

    Science.gov (United States)

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  3. Conflict diamonds — unfinished business | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-22

    Jul 22, 2011 ... ... diamonds reached this year will not be effective if it is not monitored, and if the countries ... What we do know is that 75 percent of the world's gem diamonds are mined in ... It makes the Kimberley accord weaker than any other international ... a British NGO, have been nominated for the Nobel Peace Prize.

  4. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  5. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  6. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  7. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  8. The Returns on Investment Grade Diamonds

    NARCIS (Netherlands)

    Renneboog, L.D.R.

    2013-01-01

    Abstract: This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual

  9. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  10. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    Science.gov (United States)

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  11. Adherence of diamond films on refractory metal substrates for thermionic applications

    International Nuclear Information System (INIS)

    Tsao, B.H.; Ramalingam, M.L.; Adams, S.F.; Cloyd, J.S.

    1991-01-01

    Diamond films are currently being considered as electrical insulation material for application in the thermionic fuel element of a power producing nuclear reactor system. The function of the diamond insulator in this application is to electrically isolate the collector of each cell in the TFE from the coolant and outer sheath. Deposition of diamond films on plane surfaces of Si/SiO 2 have already been demonstrated to be quite effective. However, the diamond films on refractory metal surfaces tend to spall off in the process of deposition revealing an inefficient adherence characteristic between the film and the substrate. This paper is geared towards explaining this deficiency by way of selected experimentation and the use of analytical tools to predict uncertainties such as the mismatch in coefficient of expansion, micrographic study of the interface between the film and the substrate and X-ray diffraction spectra. The investigation of the adherence characteristics of several diamond films on Mo and Nb substrates revealed that there was an allowable stress that resulted in the formation of the critical thickness for the diamond film

  12. Diamond sensors for future high energy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bachmair, Felix, E-mail: bachmair@phys.ethz.ch

    2016-09-21

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  13. Diamond electrophoretic microchips-Joule heating effects

    International Nuclear Information System (INIS)

    Karczemska, Anna T.; Witkowski, Dariusz; Ralchenko, Victor; Bolshakov, Andrey; Sovyk, Dmitry; Lysko, Jan M.; Fijalkowski, Mateusz; Bodzenta, Jerzy; Hassard, John

    2011-01-01

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare TM was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  14. Engineering NV centres in Synthetic Diamond

    International Nuclear Information System (INIS)

    Matthew Markham

    2014-01-01

    The quantum properties of the nitrogen vacancy (NV) centre in diamond has prompted rapid growth in diamond research. This initial growth was driven by the fact the NV centre provides an 'easy' to manipulate quantum system along with opening up the possibility of a new material to deliver a solid state quantum computer. The NV defect is now moving from a quantum curiosity to a commercial development platform for a range of application such as as gyroscopes, timing and magnetometry as well as the more traditional quantum technologies such as quantum encryption and quantum simulation. These technologies are pushing the development needs of the material, and the processing of that material. The paper will describes the advances in CVD diamond synthesis with special attention to getting NV defects close to the surface of the diamond and how to process the material for diamond quantum optical applications. (author)

  15. Diamond detector technology: status and perspectives

    CERN Document Server

    Kagan, Harris; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H P; Bellini,, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; De Boer, W; Dehning, B; Dorfer, C; Dunser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Mcfadden, N; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Reichmann, M; Riley, G; Roe, S; Sanz, D; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Schreiner, T; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Taylor, Aaron; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, Stephen; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2017-01-01

    The status of material development of poly-crystalline chemical vapor deposition (CVD) diamond is presented. We also present beam test results on the independence of signal size on incident par-ticle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition the first beam test results from 3D detectors made with poly-crystalline CVD diamond are presented. Finally the first analysis of LHC data from the ATLAS Diamond Beam Monitor (DBM) which is based on pixelated poly-crystalline CVD diamond sensors bump-bonded to pixel readout elec-tronics is shown.

  16. Nanostructured Diamond Device for Biomedical Applications.

    Science.gov (United States)

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  17. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  18. Diamond encapsulated photovoltaics for transdermal power delivery.

    Science.gov (United States)

    Ahnood, A; Fox, K E; Apollo, N V; Lohrmann, A; Garrett, D J; Nayagam, D A X; Karle, T; Stacey, A; Abberton, K M; Morrison, W A; Blakers, A; Prawer, S

    2016-03-15

    A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980 nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7 W/cm(2), a peak output power of 2.7 mW is delivered to the implant with an active PV cell dimension of 1.5 × 1.5 × 0.06 mm(3). This corresponds to a volumetric power output density of ~20 mW/mm(3), significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  20. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  1. Cold cathodes on ultra-dispersed diamond base

    International Nuclear Information System (INIS)

    Alimova, A.N.; Zhirnov, V.V.; Chubun, N.N.; Belobrov, P.I.

    1998-01-01

    Prospects of application of nano diamond powders for fabrication of cold cathodes are discussed.Cold cathodes based on silicon pointed structures with nano diamond coatings were prepared.The deposition technique of diamond coating was dielectrophoresis from suspension of nano diamond powder in organic liquids.The cathodes were tested in sealed prototypes of vacuum electronic devices

  2. Influence of high sintering pressure on the microhardness and wear resistance of diamond powder and silicon carbide-based composites

    Directory of Open Access Journals (Sweden)

    Osipov Oleksandr Sergueevitch

    2004-01-01

    Full Text Available The work reported on here involved the development of several samples of "diamond-SiC" composite produced under sintering pressures of up to 9.0 GPa at temperatures of up to 1973 7K. The average size of the diamond micropowder crystals used was 40/28 µm. The sintering process was carried out in a 2500-ton hydraulic press equipped with an anvil-type high-pressure device having a toroidal work surface and a central concavity diameter of 20 mm. The microhardness and wear resistance of the samples were found to be dependent on the sintering pressure. The experimental results indicated that the maximum microhardness and minimum wear resistance coefficients of each compact were attained when the pressure applied during sintering exceeded 6.5 GPa. Based on the established values of pressure, this study served to identify the types of devices applicable for the manufacture of composite material inserts for a variety of rock drilling applications.

  3. Transfection and imaging of diamond nanocrystals as scattering optical labels

    International Nuclear Information System (INIS)

    Smith, Bradley R.; Niebert, Marcus; Plakhotnik, Taras; Zvyagin, Andrei V.

    2007-01-01

    We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation 'space' contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond

  4. Insight into boron-doped diamond Raman spectra characteristic features

    Czech Academy of Sciences Publication Activity Database

    Mortet, Vincent; Vlčková Živcová, Zuzana; Taylor, Andrew; Frank, Otakar; Hubík, Pavel; Trémouilles, D.; Jomard, F.; Barjon, J.; Kavan, Ladislav

    2017-01-01

    Roč. 115, May (2017), s. 279-284 ISSN 0008-6223 R&D Projects: GA ČR GA13-31783S; GA MŠk 7AMB16FR004 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * boron doping * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (UFCH-W) Impact factor: 6.337, year: 2016

  5. The Geopolitical Setting of Conflict Diamonds.

    Science.gov (United States)

    Haggerty, S. E.

    2002-05-01

    September 11, 2001 will live in infamy. Ideological differences have also led to senseless atrocities in Angola, Congo Republic, Sierra Leone, and Liberia. Hundreds of thousands have died, scores mutilated, and millions displaced. These have gone virtually unnoticed for decades. Unnoticed that is until it became evident that these barbaric acts were fueled by the sale or bartering of diamonds for arms, or by more ingenious ways that are less traceable. There is no end in sight. Industry has long recognized that about 20% of diamonds reaching the open market are smuggled from operating mines, and more recently that an additional 4% originates from conflict diamond sources. Diamond identification by laser inscription, ion implantation, or certification protocols are subject to fraudulent tampering. And these applied methods are thwarted if cutting and polishing centers are infiltrated, or if terrorist facilities are independently established. Mark ups are substantial (40-60%) from raw material to finished product. Tracking the paths of rough stones from mines to faceted gems is impractical because some 30-50 million cts of top quality material, or about 100 million stones, would require branding each year. Moreover, the long standing tradition of site-holdings and the bourse system of mixing or matching diamonds, inadvertently ensures regional anonymity. Conflict diamonds are mined in primary kimberlites and from widely dispersed alluvial fields in tropical jungle. Landscapes, eroded by 1-5 vertical km over 100 Ma, have transformed low grade primary deposits into unconsolidated sedimentary bonanzas. The current value of stones retrieved, by motivated diggers and skillful jiggers, in rebel held territories, is impossible to determine, but in 1993 amounted to tens of millions USD. Diamonds over 100 cts continue to surface at premier prices. Borders are porous, diamonds flow easily, and armed networks are permeable and mobile. Diamonds form at great depths (over 200 km

  6. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  7. Thin diamond films for tribological applications

    International Nuclear Information System (INIS)

    Wong, M.S.; Meilunas, R.; Ong, T.P.; Chang, R.P.H.

    1989-01-01

    Diamond films have been deposited on Si, Mo and many other substrates by microwave and radio frequency plasma enhanced chemical vapor deposition. Although the adhesion between the diamond film and most of the metal substrates is poor due to residual thermal stress from the mismatch of thermal expansion coefficients, the authors have developed processes to promote the growth of uniform and continuous diamond films with enhanced adhesion to metal substrates for tribological applications. The tribological properties of these films are measured using a ring-on-block tribotester. The coefficients of friction of diamond films sliding against a 52100 steel ring under the same experimental conditions are found to be significantly different depending on the morphology, grain size and roughness of the diamond films. However, under all cases tested, it is found that for uniform and continuous diamond films with small grain size of 1-3 micrometers, the coefficient of friction of the diamond film sliding against a steel ring under lubrication of a jet of mineral oil is about 0.04

  8. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Bergonzo, P.; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F.

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  9. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  10. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    Science.gov (United States)

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  11. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuebing; Chen, Ting; Qi, Xintong [Department of Geosciences, Stony Brook University, Stony Brook, New York 11794 (United States); Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng [Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794 (United States); Kung, Jennifer [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Tony; Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-08-14

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  12. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    International Nuclear Information System (INIS)

    Wang, Xuebing; Chen, Ting; Qi, Xintong; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng; Kung, Jennifer; Yu, Tony; Wang, Yanbin

    2015-01-01

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al 2 O 3 were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al 2 O 3 pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus

  13. Wave Stresses in the Anvil Hammer Rods under Impact Including Ram Mass and Deformation Force of Forgings

    Directory of Open Access Journals (Sweden)

    V. M. Sinitskiy

    2016-01-01

    Full Text Available When operating the anvil hammers there occur impacts of die tooling and as a consequence, virtually instantaneous impact stops of motion of drop hammer parts. Such operating conditions come with accelerated failures of the anvil hammer rods because of emerging significant wave stresses. Engineering practice widely uses variation, difference, and integral methods to calculate wave stresses. However, to use them a researcher has to acquire certain skills, and the special programs should be available. The paper considers a method for estimating the wave stress changes in the anvil hammer rods, which is based on the wave equation of the Laplace transform. It presents a procedure for generating differential equations and their solution using the operator method. These equations describe the wave processes of strain and stress propagation in the anvil hammer rod under non-rigid impact with the compliance obstacle of the drop hammer parts. The work defines how the piston and rod mass and also the mechanical and geometric parameters of the rod influence on the stress level in the rod sealing of the hammer ram. Analysis of the results shows that the stresses in the rod sealing are proportional to the total amount of wave stresses caused by the rod and piston impact included in the total weight of the system. The piston influence on the stresses in the rod under impact is in direct proportion to the ratio of its mass to the mass of the rod. Geometric parameters of the rod and speed of drop parts before the impact influence on the stress value as well. It was found that if the time of impact is less than the time of the shock wave running in forward and backward direction, the impact with a compliance obstacle is equivalent to that of with a rigid obstacle, and the dependence of the wave stresses follows the Zhukovsky formula of direct pressure shock. The presented method of stress calculation can be successfully used to select the optimal mass and the rod

  14. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  15. Physics and applications of CVD diamond

    CERN Document Server

    Koizumi, Satoshi; Nesladek, Milos

    2008-01-01

    Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs.Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is e

  16. Residual radioactivity of treated green diamonds.

    Science.gov (United States)

    Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel

    2017-08-01

    Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.

  17. Amorphous Diamond MEMS and Sensors

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater

  18. High-pressure resistivity technique for quasi-hydrostatic compression experiments.

    Science.gov (United States)

    Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  19. Moessbauer study of small amounts of iron in graphite, around the diamond-graphite pressure-temperature stability region

    International Nuclear Information System (INIS)

    Oliveira, C.L.S. de; Silva, M.T.X.; Vasquez, A.; Jornada, J.A.H. da

    1991-01-01

    An exploratory Moessbauer spectroscopy study of the Fe-C system in the C rich region, prepared by high pressure-high temperature treatment near the graphite-diamond stability line, was made. The results obtained for the different processing conditions give no evidence of Fe intercalation in graphite. The presence of some water in the cell produced hydrated Fe complexes, which can explain the deleterious effect of water or hydrogen in the high pressure diamond synthesis. (orig.)

  20. Hematopoietic Stem Cell Transplant for High Risk Hemoglobinopathies

    Science.gov (United States)

    2017-12-03

    Sickle Cell Disease; Transfusion Dependent Alpha- or Beta- Thalassemia; Diamond Blackfan Anemia; Paroxysmal Nocturnal Hemoglobinuria; Glanzmann Thrombasthenia; Severe Congenital Neutropenia; Shwachman-Diamond Syndrome; Non-Malignant Hematologic Disorders

  1. Astronomers debate diamonds in space

    Science.gov (United States)

    1999-04-01

    This is not the first time the intriguing carbonaceous compound has been detected in space. A peculiar elite of twelve stars are known to produce it. The star now added by ISO to this elite is one of the best representatives of this exclusive family, since it emits a very strong signal of the compound. Additionally ISO found a second new member of the group with weaker emission, and also observed with a spectral resolution never achieved before other already known stars in this class. Astronomers think these ISO results will help solve the mystery of the true nature of the compound. Their publication by two different groups, from Spain and Canada, has triggered a debate on the topic, both in astronomy institutes and in chemistry laboratories. At present, mixed teams of astrophysicists and chemists are investigating in the lab compounds whose chemical signature or "fingerprint" matches that detected by ISO. Neither diamonds nor fullerenes have ever been detected in space, but their presence has been predicted. Tiny diamonds of pre-solar origin --older than the Solar System-- have been found in meteorites, which supports the as yet unconfirmed theory of their presence in interstellar space. The fullerene molecule, made of 60 carbon atoms linked to form a sphere (hence the name "buckyball"), has also been extensively searched for in space but never found. If the carbonaceous compound detected by ISO is a fullerene or a diamond, there will be new data on the production of these industrially interesting materials. Fullerenes are being investigated as "capsules" to deliver new pharmaceuticals to the body. Diamonds are commonly used in the electronics industry and for the development of new materials; if they are formed in the dust surrounding some stars, at relatively low temperatures and conditions of low pressure, companies could learn more about the ideal physical conditions to produce them. A textbook case The latest star in which the compound has been found is

  2. Ultra-fast calculations using diamond

    NARCIS (Netherlands)

    Van Dijk, T.

    2011-01-01

    TU Delft researchers have managed to use a piece of diamond to hold four quantum bits that can be spun, flipped and entangled with each other. This is an important step towards a working quantum computer

  3. Short-range order in irradiated diamonds

    International Nuclear Information System (INIS)

    Agafonov, S.S.; Glazkov, V.P.; Nikolaenko, V.A.; Somenkov, V.A.

    2005-01-01

    Structural changes in irradiated diamond with a change in its density were studied. Natural diamond powders with average particle size from 14-20 μm to 0.5 mm, irradiated in beryllium block of the MR reactor up to a fluence of 1.51 x 10 21 were used as samples. Using the neutron-diffraction method, it has been established that, when density in irradiated diamonds varies, a transition from a diamond-like amorphous structure to a graphite-like structure occurs. The transition occurs at a density ρ ∼ 2.7-2.9 g/cm 3 and is accompanied by a sharp change in resistivity [ru

  4. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Science.gov (United States)

    Khanaliloo, Behzad; Jayakumar, Harishankar; Hryciw, Aaron C.; Lake, David P.; Kaviani, Hamidreza; Barclay, Paul E.

    2015-10-01

    Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200 nm . The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7 ×105 and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm /√{Hz } sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  5. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Directory of Open Access Journals (Sweden)

    Behzad Khanaliloo

    2015-12-01

    Full Text Available Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200  nm. The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7×10^{5} and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5  fm/sqrt[Hz] sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  6. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  7. Diamond detectors for high energy physics experiments

    Science.gov (United States)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  8. Diamond Detector Technology: Status and Perspectives

    CERN Document Server

    Reichmann, M; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H; Bellini, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; Dauvergne, D; de Boer, W; Dorfer, C; Dünser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gallin-Martel, L; Gallin-Martel, M L; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kagan, H; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Konovalov, V; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Riley, G; Roe, S; Sanz-Becerra, D A; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Smith, S; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Tannenwald, B; Taylor, A; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, S; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2018-01-01

    The planned upgrade of the LHC to the High-Luminosity-LHC will push the luminosity limits above the original design values. Since the current detectors will not be able to cope with this environment ATLAS and CMS are doing research to find more radiation tolerant technologies for their innermost tracking layers. Chemical Vapour Deposition (CVD) diamond is an excellent candidate for this purpose. Detectors out of this material are already established in the highest irradiation regimes for the beam condition monitors at LHC. The RD42 collaboration is leading an effort to use CVD diamonds also as sensor material for the future tracking detectors. The signal behaviour of highly irradiated diamonds is presented as well as the recent study of the signal dependence on incident particle flux. There is also a recent development towards 3D detectors and especially 3D detectors with a pixel readout based on diamond sensors.

  9. Modified diamond dies for laser applications

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, R.A.

    1978-06-21

    A modified wire drawing die for spatial filtering techniques is described. It was designed for use in high power laser systems. The diamond aperture is capable of enduring high intensity laser frequency without damaging the laser beam profile. The diamond is mounted at the beam focus in a vacuum of 1 x 10/sup -5/ Torr. The vacuum prevents plasma forming at the diamond aperture, thus enabling the beam to pass through without damaging the holder or aperture. The spatial filters are fitted with a manipulator that has three electronic stepping motors, can position the aperture in three orthogonal directions, and is capable of 3.2 ..mu..m resolution. Shiva laser system is using 105 diamond apertures for shaping the High Energy Laser Beam.

  10. The DIAMOND Model of Peace Support Operations

    National Research Council Canada - National Science Library

    Bailey, Peter

    2005-01-01

    DIAMOND (Diplomatic And Military Operations in a Non-warfighting Domain) is a high-level stochastic simulation developed at Dstl as a key centerpiece within the Peace Support Operations (PSO) 'modelling jigsaw...

  11. Dosimetry in radiotherapy with natural diamond detectors

    International Nuclear Information System (INIS)

    De Angelis, C.; Onori, S.; Pacilio, M.; Cirrone, G.A.P.; Cuttone, G.; Raffaele, L.; Bucciolini, M.; Mazzocchi, S.

    2002-01-01

    There is wide interest in the use of diamond detectors for dosimetry in radiotherapy mainly because of the small dimensions, radiation hardness, nearly tissue equivalence of sensitive material and capability to deliver the dosimetric response 'on line'. In order to assess the dosimetric properties of PTW Riga diamond detectors type 60003, experiments were performed in conventional (high energy photon and electron) therapy beams as well as in proton therapy beams. The main detector features investigated were reproducibility of response, dose-signal relationship, temperature dependence, dose-rate dependence, energy dependence and angular dependence. High energy photons (6-25 MV) and electrons (6-22 MeV), available at the Radiotherapy Department of the Florence University, were used for investigating the general properties. Two different PTW diamond detectors of the same type were used to evidence inter-sample differences. The beam quality dependence of the detector response is probably the most critical point and this statement is of particular relevance for proton dosimetry since the proton LET changes with depth in the medium. Mainly because of the little information available on detector sensitivity variations with beam energy, the use of diamonds for clinical proton dosimetry is not widespread. In two recent papers a sensitivity dependence on proton energy of a natural PTW diamond detector has been reported. Due to the necessity to characterise each diamond detector individually the PTW Riga natural diamond detector in operation at the LNS-INFN, Catania, Italy was tested with the local proton beam line. This experiment is of main concern because this proton beam, produced by a superconducting cyclotron and used for ocular melanoma treatment, is available only since 2001 (CATANA beam). The first patient has been treated in February 2002. Proton irradiations were performed with non modulated and modulated 62 MeV beams. Attention was focused on diamond sensitivity

  12. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  13. Growth and optical spectroscopy of synthetic diamonds

    International Nuclear Information System (INIS)

    Mudryj, A.V.; Larionova, T.P.; Shakin, I.A.; Gysakov, G.A.; Dubrov, G.A.; Tikhonov, V.V.

    2003-01-01

    It is studied the growth and optical properties of synthetic diamonds, which may be used for detection of ionizing radiation, optical windows, heat removal, ultraviolet and thermo sensors, optoelectronic devices. Optical properties of diamonds (grown in different technological conditions) were studied in temperature range 78 - 300 K by means of measuring transmission in spectral band 0.2 - 25 μm, photoluminescence and registration of luminescence excitation spectra in spectral band 0.2 - 2 μm

  14. Long-term data storage in diamond

    OpenAIRE

    Dhomkar, Siddharth; Henshaw, Jacob; Jayakumar, Harishankar; Meriles, Carlos A.

    2016-01-01

    The negatively charged nitrogen vacancy (NV?) center in diamond is the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Although most work so far has focused on the NV? optical and spin properties, control of the charge state promises complementary opportunities. One intriguing possibility is the long-term storage of information, a notion we hereby introduce using NV-rich, type 1b diamond. As a proof of principle, we use multic...

  15. Diamond nanostructured devices for chemical sensing applications

    OpenAIRE

    Ahmad, R. K.

    2011-01-01

    Research in the area of CVD single crystal diamond plates of which only recently has been made commercially available saw significant advancements during the last decade. In parallel to that, detonation nanodiamond (DND) particles also now widely made accessible for requisition are provoking a lot of scientific investigations. The remarkable properties of diamond including its extreme hardness, low coefficient of friction, chemical inertness, biocompatibility, high thermal c...

  16. Diamond carbon sources: a comparison of carbon isotope models

    International Nuclear Information System (INIS)

    Kirkley, M.B.; Otter, M.L.; Gurney, J.J.; Hill, S.J.

    1990-01-01

    The carbon isotope compositions of approximately 500 inclusion-bearing diamonds have been determined in the past decade. 98 percent of these diamonds readily fall into two broad categories on the basis of their inclusion mineralogies and compositions. These categories are peridotitic diamonds and eclogitic diamonds. Most peridotitic diamonds have δ 13 C values between -10 and -1 permil, whereas eclogitic diamonds have δ 13 C values between -28 and +2 permil. Peridotitic diamonds may represent primordial carbon, however, it is proposed that initially inhomogeneous δ 13 C values were subsequently homogenized, e.g. during melting and convection that is postulated to have occurred during the first billion years of the earth's existence. If this is the case, then the wider range of δ 13 C values exhibited by eclogitic diamonds requires a different explanation. Both the fractionation model and the subduction model can account for the range of observed δ 13 C values in eclogitic diamonds. 16 refs., 2 figs

  17. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello

    2010-01-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  18. Diamond knife-assisted deep anterior lamellar keratoplasty to manage keratoconus.

    Science.gov (United States)

    Vajpayee, Rasik B; Maharana, Prafulla K; Sharma, Namrata; Agarwal, Tushar; Jhanji, Vishal

    2014-02-01

    To evaluate the outcomes of a new surgical technique, diamond knife-assisted deep anterior lamellar keratoplasty (DALK), and compare its visual and refractive results with big-bubble DALK in cases of keratoconus. Tertiary eyecare hospital. Comparative case series. The visual and surgical outcomes of diamond knife-assisted DALK were compared with those of successful big-bubble DALK. Diamond knife-assisted DALK was performed in 19 eyes and big-bubble DALK, in 11 eyes. All surgeries were completed successfully. No intraoperative or postoperative complications occurred with diamond knife-assisted DALK. Six months after diamond knife-assisted DALK, the mean corrected distance visual acuity (CDVA) improved significantly from 1.87 logMAR ± 0.22 (SD) to 0.23 ± 0.06 logMAR, the mean keratometry improved from 65.99 ± 8.86 diopters (D) to 45.13 ± 1.16 D, and the mean keratometric cylinder improved from 7.99 ± 3.81 D to 2.87 ± 0.59 D (all P=.005). Postoperatively, the mean refractive astigmatism was 2.55 ± 0.49 D and the mean spherical equivalent was -1.97 ± 0.56 D. The mean logMAR CDVA (P = .06), postoperative keratometry (P=.64), refractive cylinder (P=.63), and endothelial cell loss (P=.11) were comparable between diamond knife-assisted DALK and big-bubble DALK. Diamond knife-assisted DALK was effective and predictable as a surgical technique for management of keratoconus cases. This technique has the potential to offer visual and refractive outcomes comparable to those of big-bubble DALK. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    Science.gov (United States)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  20. Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals

    International Nuclear Information System (INIS)

    Martin, M.; Shen, T.; Thadhani, N.N.

    2008-01-01

    Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state

  1. Detection and analysis of diamond fingerprinting feature and its application

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin; Huang Guoliang; Li Qiang; Chen Shengyi, E-mail: tshgl@tsinghua.edu.cn [Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing, 100084 (China)

    2011-01-01

    Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the 'Diamond ID' and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.

  2. Diamond growth in oxygen-acetylene flame

    International Nuclear Information System (INIS)

    Haga, Mario S.; Nagai, Y. Ernesto; Suzuki, Carlos K.

    1995-01-01

    What was supposed to be a laboratory curiosity in the 80's, in recent years the low pressure process for the production of man-made diamond turned out to be a major target for research and development of many high-tech companies. The main reason for such an interest stems on the possibility of coating many materials with a diamond film possessing the same amazing properties of the bulk natural diamond. Polycrystalline diamond film has been deposited on Mo substrate by using oxygen-acetylene flame of a welding torch. The substrate temperature has been held constant about 700 d eg C by means of a water cooled mount designed properly. Precision flowmeters have been used to control the flow ratio oxygen/acetylene, a key parameter for the success in diamond growth. Diamond has been detected by X-ray diffraction, a fast foolproof technique for crystal identification. Another method of analysis often used in Raman spectroscopy, which is able to exhibit amorphous structure besides crystalline phase. (author)

  3. CVD diamond deposition onto dental burs

    International Nuclear Information System (INIS)

    Ali, N.; Sein, H.

    2001-01-01

    A hot-filament chemical vapor deposition (HFCVD) system has been modified to enable non-planar substrates, such as metallic wires and dental burs, to be uniformly coated with thin polycrystalline diamond films. Initially, diamond deposition was carried out on titanium and tantalum wires in order to test and optimize the system. High growth rates of the order of approx. 8 /hr were obtained when depositing diamond on titanium wires using the vertical filament arrangement. However, lower growth rates of the order of 4-5meu m/hr were obtained with diamond deposition on tantalum wires. To extend the work towards a practical biomedical application tungsten carbide dental burs were coated with diamond films. The as-grown films were found to be polycrystalline and uniform over the cutting tip. Finally, the costs relating to diamond CVD onto dental burs have been presented in this paper. The costs relating to coating different number of burs at a time and the effect of film thickness on costs have been included in this investigation. (author)

  4. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  5. Six-six (6-6) cell used in X-ray and neutron diffraction experiments under high pressure

    International Nuclear Information System (INIS)

    Nishiyama, Norimasa; Yamada, Akihiro

    2015-01-01

    At synchrotron radiation facilities and neutron experimental facilities, X-ray diffraction experiments and neutron diffraction experiments under high-pressure for large-capacity of samples are conducted using DIA type device and 6-axis pressure device that add pressure on cubic space. As the anvil assembly capable of mounting on the above two devices, MA6-6 cell has come to be used. This paper introduces the advantages of using MA6-6 cell, pressure region where experiment is possible with MA6-6 cell, and large-capacity high-pressure press beamline P61.2 that simulates MA-6-6 cell. At MA6-6 cell, 6 pieces of the first-stage anvils of DIA type device or 6-axis pressure device pressurize 6 pieces of the second-stage anvils. These second-stage anvils are included in MA6-6 anvil assembly. The greatest feature of MA6-6 cell is the adoption of the frame for taking alignment of the second stage anvils. By combining MA6-6 cell with DIA-type device or 6-axis pressure device, the degree of freedom of experiment increases, which can simplify the experimental setup. (A.O.)

  6. Boron doped diamond electrode for the wastewater treatment

    International Nuclear Information System (INIS)

    Quiroz Alfaro, Marco Antonio; Ferro, Sergio; Martinez-Huitle, Carlos Alberto; Vong, Yunny Meas

    2006-01-01

    Electrochemical studies of diamond were started more than fifteen years ago with the first paper on diamond electrochemistry published by Pleskov. After that, work started in Japan, United States of America, France, Switzerland and other countries. Over the last few years, the number of publications has increased considerably. Diamond films have been the subject of applications and fundamental research in electrochemistry, opening up a new branch known as the electrochemistry of diamond electrodes. Here, we first present a brief history and the process of diamond film synthesis. The principal objective of this work is to summarize the most important results in the electrochemical oxidation using diamond electrodes. (author)

  7. Optimizing biosensing properties on undecylenic Acid-functionalized diamond.

    Science.gov (United States)

    Zhong, Yu Lin; Chong, Kwok Feng; May, Paul W; Chen, Zhi-Kuan; Loh, Kian Ping

    2007-05-08

    The optimization of biosensing efficiency on a diamond platform depends on the successful coupling of biomolecules on the surface, and also on effective signal transduction in the biorecognition events. In terms of biofunctionalization of diamond surfaces, surface electrochemical studies of diamond modified with undecylenic acid (UA), with and without headgroup protection, were performed. The direct photochemical coupling method employing UA was found to impart a higher density of carboxylic acid groups on the diamond surface compared to that using trifluoroethyl undecenoate (TFEU) as the protecting group during the coupling process. Non-faradic impedimetric DNA sensing revealed that lightly doped diamond gives better signal transduction sensitivity compared to highly doped diamond.

  8. Boron doped diamond electrode for the wastewater treatment

    Directory of Open Access Journals (Sweden)

    Alfaro Marco Antonio Quiroz

    2006-01-01

    Full Text Available Electrochemical studies of diamond were started more than fifteen years ago with the first paper on diamond electrochemistry published by Pleskov. After that, work started in Japan, United States of America, France, Switzerland and other countries. Over the last few years, the number of publications has increased considerably. Diamond films have been the subject of applications and fundamental research in electrochemistry, opening up a new branch known as the electrochemistry of diamond electrodes. Here, we first present a brief history and the process of diamond film synthesis. The principal objective of this work is to summarize the most important results in the electrochemical oxidation using diamond electrodes.

  9. Recognition of diamond grains on surface of fine diamond grinding wheel

    Institute of Scientific and Technical Information of China (English)

    Fengwei HUO; Zhuji JIN; Renke KANG; Dongming GUO; Chun YANG

    2008-01-01

    The accurate evaluation of grinding wheel sur-face topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simu-lation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distri-bution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturb-ance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteris-tics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface pro-filer based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective.

  10. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  11. Status and applications of diamond and diamond-like materials: An emerging technology

    Science.gov (United States)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  12. Diamond growth on an array of seeds: The revolution of diamond production

    Energy Technology Data Exchange (ETDEWEB)

    Sung, James C. [KINIK Company, 64, Chung-San Rd., Ying-Kuo, Taipei Hsien 239, Taiwan (China) and National Taiwan University, Taipei 106, Taiwan (China) and National Taipei University of Technology, Taipei 106, Taiwan (China)]. E-mail: sung@kinik.com.tw; Sung, Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Sung, Emily [Johnson and Johnson, Freemont, CA (United States)

    2006-03-01

    The consumption of saw diamond grits is a measure of a nation's constructional activities. The per capita consumption for the world is about 0.7 carats in 2004, and in China, about 3 carats. The manufacture of large saw diamond grits requires stringent control of pressure and temperature that only a few companies can master. However, with the implementation of a novel diamond seeding technology, large saw diamond grits of extreme quality can be mass produced. With this breakthrough, the prices of saw grit will plummet in the near future that should benefit the constructional industry worldwide. Moreover, electronic or thermal grade of large diamond crystals may be produced for applications in semiconductor, electronic or optical industry.

  13. Diamond growth on an array of seeds: The revolution of diamond production

    International Nuclear Information System (INIS)

    Sung, James C.; Sung, Michael; Sung, Emily

    2006-01-01

    The consumption of saw diamond grits is a measure of a nation's constructional activities. The per capita consumption for the world is about 0.7 carats in 2004, and in China, about 3 carats. The manufacture of large saw diamond grits requires stringent control of pressure and temperature that only a few companies can master. However, with the implementation of a novel diamond seeding technology, large saw diamond grits of extreme quality can be mass produced. With this breakthrough, the prices of saw grit will plummet in the near future that should benefit the constructional industry worldwide. Moreover, electronic or thermal grade of large diamond crystals may be produced for applications in semiconductor, electronic or optical industry

  14. Plasma spraying method for forming diamond and diamond-like coatings

    Science.gov (United States)

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  15. Study on cellular adhesion of human osteoblasts on nano-structured diamond films

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Brož, A.; Babchenko, Oleg; Kromka, Alexander

    2009-01-01

    Roč. 246, 11-12 (2009), 2774-2777 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cells adhesion * diamond nanostructures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.150, year: 2009

  16. Gamma radiation effects on hydrogen-terminated nanocrystalline diamond bio-transistors

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Babchenko, Oleg; Ukraintsev, Egor; Vachelová, Jana; Davídková, Marie; Vandrovcová, Marta; Kromka, Alexander; Rezek, Bohuslav

    2016-01-01

    Roč. 63, Mar (2016), 186-191 ISSN 0925-9635 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 ; RVO:67985823 Keywords : diamond thin films * field effect transistors * proteins * cells * gamma irradiation * atomic force microscope * biosensors Subject RIV: BO - Biophysics Impact factor: 2.561, year: 2016

  17. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  18. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds

    Science.gov (United States)

    Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.

    Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards

  19. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    Greentree, Andrew D; Olivero, Paolo; Draganski, Martin; Trajkov, Elizabeth; Rabeau, James R; Reichart, Patrick; Gibson, Brant C; Rubanov, Sergey; Huntington, Shane T; Jamieson, David N; Prawer, Steven

    2006-01-01

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  20. Prospects for the synthesis of large single-crystal diamonds

    International Nuclear Information System (INIS)

    Khmelnitskiy, R A

    2015-01-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)

  1. Architecting boron nanostructure on the diamond particle surface

    International Nuclear Information System (INIS)

    Bai, H.; Dai, D.; Yu, J.H.; Nishimura, K.; Sasaoka, S.; Jiang, N.

    2014-01-01

    The present study provides an efficient approach for nano-functionalization of diamond powders. Boron nanostructure can be grown on diamond particle entire surface by a simple heat-treatment process. After treatment, various boron nanoforms were grown on the diamond particle surface at different processing temperature. High-density boron nanowires (BNWs) grow on the diamond particle entire surface at 1333 K, while nanopillars cover diamond powders when the heat treatment process is performed at 1393 K. The influence of the pretreatment temperature on the microstructure and thermal conductivity of Cu/diamond composites were investigated. Cu/diamond composites with high thermal conductivity of 670 W (m K) −1 was obtained, which was achieved by the formation of large number of nanowires and nanopillars on the diamond particle surface.

  2. Development of diamond coated tool and its performance in ...

    Indian Academy of Sciences (India)

    Unknown

    Mechanical Engineering Department, Indian Institute of Technology, Kharagpur 721 302, India ... chemical inertness of diamond coating towards the work material, did not show any .... CVD diamond coated carbide tools, Ph D Thesis, Indian.

  3. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  4. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    Science.gov (United States)

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Mysteries of Diamonds: Bizarre History, Amazing Properties, Unique Applications

    International Nuclear Information System (INIS)

    Kagan, Harris

    2008-01-01

    Diamonds have been a prized material throughout history. They are scarce and beautiful, wars have been fought over them, and they remain today a symbol of wealth and power. Diamonds also have exceptional physical properties which can lead to unique applications in science. There are now techniques to artificially synthesize diamonds of extraordinarily high quality. In this talk, Professor Kagan will discuss the history of diamonds, their bizarre properties, and their manufacture and use for 21st century science.

  6. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  7. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    Science.gov (United States)

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  8. The Mysteries of Diamonds: Bizarre History, Amazing Properties, Unique Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Harris (Ohio State University)

    2008-06-24

    Diamonds have been a prized material throughout history. They are scarce and beautiful, wars have been fought over them, and they remain today a symbol of wealth and power. Diamonds also have exceptional physical properties which can lead to unique applications in science. There are now techniques to artificially synthesize diamonds of extraordinarily high quality. In this talk, Professor Kagan will discuss the history of diamonds, their bizarre properties, and their manufacture and use for 21st century science.

  9. Virtual Environment User Interfaces to Support RLV and Space Station Simulations in the ANVIL Virtual Reality Lab

    Science.gov (United States)

    Dumas, Joseph D., II

    1998-01-01

    Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.

  10. Improvements in or relating to artefacts incorporating industrial diamonds

    International Nuclear Information System (INIS)

    Hartley, N.E.W.; Poole, M.J.

    1981-01-01

    A process for improving the wear characteristics of industrial diamonds is described which consists of implanting into the surface regions of the diamonds, ions of a material having an atomic weight greater than one and such as to affect the surface properties of the diamonds. Examples of the invention, in which N + and C + ions have been used, are cited. (U.K.)

  11. An assessment of radiotherapy dosimeters based on CVD grown diamond

    International Nuclear Information System (INIS)

    Ramkumar, S.; Buttar, C.M.; Conway, J.; Whitehead, A.J.; Sussman, R.S.; Hill, G.; Walker, S.

    2001-01-01

    Diamond is potentially a very suitable material for use as a dosimeter for radiotherapy. Its radiation hardness, the near tissue equivalence and chemical inertness are some of the characteristics of diamond, which make it well suited for its application as a dosimeter. Recent advances in the synthesis of diamond by chemical vapour deposition (CVD) technology have resulted in the improvement in the quality of material and increased its suitability for radiotherapy applications. We report in this paper, the response of prototype dosimeters based on two different types (CVD1 and CVD2) of CVD diamond to X-rays. The diamond devices were assessed for sensitivity, dependence of response on dose and dose rate, and compared with a Scanditronix silicon photon diode and a PTW natural diamond dosimeter. The diamond devices of CVD1 type showed an initial increase in response with dose, which saturates after ∼6 Gy. The diamond devices of CVD2 type had a response at low fields ( 1162.8 V/cm), the CVD2-type devices showed polarisation and dose-rate dependence. The sensitivity of the CVD diamond devices varied between 82 and 1300 nC/Gy depending upon the sample type and the applied voltage. The sensitivity of CVD diamond devices was significantly higher than that of natural diamond and silicon dosimeters. The results suggest that CVD diamond devices can be fabricated for successful use in radiotherapy applications

  12. Coesite inclusions in diamonds of Yakutia

    Science.gov (United States)

    Bardukhinov, L. D.; Spetsius, Z. V.; Monkhorov, R. V.

    2016-10-01

    The results of the study of diamonds with inclusions of high-pressure modification of SiO2 (coesite) by Raman spectroscopy are reported. It is established that the octahedral crystal from the Zapolyarnaya pipe is characterized by the highest residual pressure (2.7 ± 0.07 GPa). An intermediate value of this parameter (2.1 ± 0.07 GPa) was obtained for a crystal of transitional habit from the Maiskaya pipe. The minimal Raman shift was registered for coesite in diamond from the Komsomol'skaya-Magnitnaya pipe and provided a calculated residual pressure of 1.8 ± 0.03 GPa. The residual pressures for crystals from the placer deposits of the Kuoika and Bol'shaya Kuonamka rivers are 2.7 ± 0.07 and 3.1 ± 0.1 GPa, respectively. Octahedral crystals were formed in the mantle at a higher pressure than rhombododecahedral diamonds.

  13. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  14. Recent results with CVD diamond trackers

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm{sup 2} diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 {mu}s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm{sup 2} diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  15. Recent results with CVD diamond trackers

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    We present recent results on the use of chemical vapor deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1*1 cm/sup 2/ diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 mu s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2*4 cm/sup 2/ diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch. (6 refs).

  16. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  17. CVD diamond detectors for ionizing radiation

    Science.gov (United States)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  18. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  19. Diamond as a scaffold for bone growth.

    Science.gov (United States)

    Fox, Kate; Palamara, Joseph; Judge, Roy; Greentree, Andrew D

    2013-04-01

    Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.

  20. Conductivity and superconductivity in heavily vacant diamond

    Directory of Open Access Journals (Sweden)

    S A Jafari

    2009-08-01

    Full Text Available   Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .

  1. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    Science.gov (United States)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  2. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies

    Science.gov (United States)

    Kueter, Nico; Soesilo, Joko; Fedortchouk, Yana; Nestola, Fabrizio; Belluco, Lorenzo; Troch, Juliana; Wälle, Markus; Guillong, Marcel; Von Quadt, Albrecht; Driesner, Thomas

    2016-11-01

    Diamonds in alluvial deposits in Southeast Asia are not accompanied by indicator minerals suggesting primary kimberlite or lamproite sources. The Meratus Mountains in Southeast Borneo (Province Kalimantan Selatan, Indonesia) provide the largest known deposit of these so-called "headless" diamond deposits. Proposals for the origin of Kalimantan diamonds include the adjacent Meratus ophiolite complex, ultra-high pressure (UHP) metamorphic terranes, obducted subcontinental lithospheric mantle and undiscovered kimberlite-type sources. Here we report results from detailed sediment provenance analysis of diamond-bearing Quaternary river channel material and from representative outcrops of the oldest known formations within the Alino Group, including the diamond-bearing Campanian-Maastrichtian Manunggul Formation. Optical examination of surfaces of diamonds collected from artisanal miners in the Meratus area (247 stones) and in West Borneo (Sanggau Area, Province Kalimantan Barat; 85 stones) points toward a classical kimberlite-type source for the majority of these diamonds. Some of the diamonds host mineral inclusions suitable for deep single-crystal X-ray diffraction investigation. We determined the depth of formation of two olivines, one coesite and one peridotitic garnet inclusion. Pressure of formation estimates for the peridotitic garnet at independently derived temperatures of 930-1250 °C are between 4.8 and 6.0 GPa. Sediment provenance analysis includes petrography coupled to analyses of detrital garnet and glaucophane. The compositions of these key minerals do not indicate kimberlite-derived material. By analyzing almost 1400 zircons for trace element concentrations with laser ablation ICP-MS (LA-ICP-MS) we tested the mineral's potential as an alternative kimberlite indicator. The screening ultimately resulted in a small subset of ten zircons with a kimberlitic affinity. Subsequent U-Pb dating resulting in Cretaceous ages plus a detailed chemical reflection make

  3. Electron field emission for ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E. (and others)

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1--2.4 {mu}m thick were conformally deposited on sharp single Si microtip emitters, using microwave CH{sub 4}--Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60--100 {mu}A/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond--vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  4. Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films.

    Science.gov (United States)

    Wang, Tao; Handschuh-Wang, Stephan; Huang, Lei; Zhang, Lei; Jiang, Xin; Kong, Tiantian; Zhang, Wenjun; Lee, Chun-Sing; Zhou, Xuechang; Tang, Yongbing

    2018-01-30

    In this Article, we report the synthesis of micro- and nanocrystalline diamond/β-SiC composite gradient films, using a hot filament chemical vapor deposition (HFCVD) technique and its application as a robust and chemically inert means to actuate water and hazardous liquids. As revealed by scanning electron microscopy, the composition of the surface changed gradually from pure nanocrystalline diamond (hydrophobic) to a nanocrystalline β-SiC surface (hydrophilic). Transmission electron microscopy and Raman spectroscopy were employed to determine the presence of diamond, graphite, and β-SiC phases. The as-prepared gradient films were evaluated for their ability to actuate water. Indeed, water was transported via the gradient from the hydrophobic (hydrogen-terminated diamond) to the hydrophilic side (hydroxyl-terminated β-SiC) of the gradient surface. The driving distance and velocity of water is pivotally influenced by the surface roughness. The nanogradient surface showed significant promise as the lower roughness combined with the longer gradient yields in transport distances of up to 3.7 mm, with a maximum droplet velocity of nearly 250 mm/s measured by a high-speed camera. As diamond and β-SiC are chemically inert, the gradient surfaces can be used to drive hazardous liquids and reactive mixtures, which was signified by the actuation of hydrochloric acid and sodium hydroxide solution. We envision that the diamond/β-SiC gradient surface has high potential as an actuator for water transport in microfluidic devices, DNA sensors, and implants, which induce guided cell growth.

  5. Shwachman-Diamond syndrome: first molecular diagnosis in a Brazilian child

    Directory of Open Access Journals (Sweden)

    Cresio Alves

    2013-01-01

    Full Text Available Herein the first molecular diagnosis of a Brazilian child with Shwachman-Diamond Syndrome is reported. A 6-year-old boy was diagnosed with cystic fibrosis at the age of 15 months due to recurrent respiratory infections, diarrhea and therapeutic response to pancreatic enzymes. Three sweat tests were negative. At the age of 5 years, he began to experience pain in the lower limbs, laxity of joints, lameness and frequent falls. A radiological study revealed metaphyseal chondrodysplasia. A complete blood cell count showed leukopenia (leukocytes: 3.1-3.5 x 103/µL, neutropenia (segmented neutrophils: 15-22%, but normal hemoglobin, hematocrit and platelet count. A molecular study revealed biallelic mutations in the Shwachman-Bodian-Diamond Syndrome gene (183-184TA-CT K62X in exon 2 and a 258+2T-C transition confirming the diagnosis of Shwachman-Diamond Syndrome. A non-pathologic, silent nucleotide A to G transition at position 201 was also found in heterozygosis in the Shwachman-Bodian-Diamond Syndrome gene. This is the first report to describe a Brazilian child with molecular diagnosis of Shwachman-Diamond Syndrome, a rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency, intermittent or persistent neutropenia and skeletal changes. Other characteristics include immune system, hepatic and cardiac changes and predisposition to leukemia. Recurrent bacterial, viral and fungal infections are common. The possibility of Shwachman-Diamond Syndrome should be kept in mind when investigating children with a diagnosis of cystic fibrosis and normal sweat tests.

  6. Clinical dosimeter based on diamond detector

    International Nuclear Information System (INIS)

    Chervjakov, A.M.; Ljalina, L.I.; Ljutina, G.J.; Khrunov, V.S.; Martynov, S.S.; Popov, S.A.

    2002-01-01

    Full text: Diamond detectors have found application in the relative dosimetry and their parameters have been described elsewhere. Today, the exclusive producer of the diamond detector is the Institute of Physical and Technical Problems, Russia, and exclusive dealer is the PTW-Freiburg. The main features of the diamond detector are good long time stability, suitable range of the energy dependence for photon and electron beams in clinical use, independence of the measured date from temperature and pressure. The high sensitivity per volume unit of the diamond detector (1500 times higher than ionization chamber) allowed using detectors with very small volume (1-5 mm 3 ) and rather simple electronics for ionization current registration. The new dosimeter consists of the diamond detector itself, 40 m registration cable, pre-amplifier, micro-processor block for data handling and absorbed dose calculation using the calibration factor of diamond detector in terms of absorbed dose to water. Dosimeter has the possibility to work with PC using standard RS-232 interface. The main features of the dosimeter are as follows: the range of dose rate measurements for photon, electron and proton beams is within 0.01-1.0 Gy/s; the energy ranges for photons are 0.08-25 MeV, and 4-25 MeV for electrons, with energy dependence no more than ±2%; the main uncertainty of the dose measurements is within ±2%; the pre-irradiation dose for diamond detector is no more than 10 Gy; the sensitive volume of the used diamond detectors is within 1-5 mm 3 ; the weight of the dosimeter no more than 2 kg. The new dosimeter was evaluated at the Central Research Institute of Roentgenology and Radiology, St. Petersburg, Russia to verify its performance. The dosimeter was used as a reference instrument for dose measurements at Cobalt-60 unit, SL75-5 and SL-20 linear accelerators and the test results have shown that the device have met the specifications. It is planned to produce dosimeter as serial device by

  7. Progress of Diamond-like Carbon Films

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yun

    2017-03-01

    Full Text Available Diamond-like carbon(DLC films had many unique and outstanding properties such as high thermal conductivity, high hardness, excellent chemical inertness, low friction coefficients and wear coefficients. The properties and combinations were very promising for heat sink, micro-electromechanical devices, radiation hardening, biomedical devices, automotive industry and other technical applications, more research and a lot of attention were attracted in recent years. The research progress of diamond-like films and the nucleation mechanism of film were summarized, and application prospect of DLC films were demonstrated. The aim of this paper is to provide insights on the research trend of DLC films and the industry applications.

  8. D.C. Arcjet Diamond Deposition

    Science.gov (United States)

    Russell, Derrek Andrew

    1995-01-01

    Polycrystalline diamond films synthesized by a D.C. (direct current) arcjet device was reported for the first time in 1988. This device is capable of higher diamond growth rates than any other form of diamond CVD (chemical vapor deposition) process due to its inherent versatility with regard to the enthalpy and fluid properties of the diamond-depositing vapor. Unfortunately, the versatility of this type of device is contrasted by many difficulties such as arc stability and large heat fluxes which make applying it toward diamond deposition a difficult problem. The purpose of this work was to convert the dc arcjet, which is primarily a metallurgical device, into a commercially viable diamond CVD process. The project was divided into two parts: process development and diagnostics. The process development effort concentrated on the certain engineering challenges. Among these was a novel arcjet design that allowed the carbon-source gas to be injected downstream of the tungsten cathode while still facilitating mixture with the main gas feed. Another engineering accomplishment was the incorporation of a water -cooled substrate cooler/spinner that maintained the substrate at the proper temperature, provided the substrate with a large thermal time constant to reduce thermal shock of the diamond film, and enabled the system to achieve a four -inch diameter growth area. The process diagnostics effort concentrated on measurements aimed at developing a fundamental understanding of the properties of the plasma jet such as temperature, plasma density, Mach number, pressure at the substrate, etc. The plasma temperature was determined to be 5195 K by measuring the rotational temperature of C _2 via optical emission spectroscopy. The Mach number of the plasma jet was determined to be ~6.0 as determined by the ratio of the stagnation pressures before and after the shock wave in the plasma jet. The C_2 concentration in the plasma jet was determined to be {~10 }^{12} cm^ {-3} by

  9. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Albin, S.; Winfree, W.P.; Crews, B.S.

    1990-01-01

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  10. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  11. Application of CVD diamond film for radiation detection

    International Nuclear Information System (INIS)

    Zhou Haiyang; Zhu Xiaodong; Zhan Rujuan

    2005-01-01

    With the development of diamond synthesis at low pressure, the CVD diamond properties including electronic characteristics have improved continuously. Now the fabrication of electronic devices based on the CVD diamond has been one of hot research subjects in this field. Due to many unique advantages, such as high signal-noise ratio, fast time response, and normal output in extremely harsh surrounding, the CVD diamond radiation detector has attracted more and more interest. In this paper, we have reviewed the development and status of the CVD diamond radiation detector. The prospect of this detector is described. (authors)

  12. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    Science.gov (United States)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and hence material perfection, improves. The ultimate prize for man-made diamond is surely not in the synthesis of gem stones, but in delivering technological solutions enabled by diamond to the challenges facing our society today. If the special properties are to be exploited to their full potential, at least four crucial factors must be considered. First, there must be sufficient scientific understanding of diamond to make applications effective, efficient and economical. Secondly, the means of fabrication and control of properties have to be achieved so that diamond's role can be optimised. Thirdly, it is not enough that its properties are superior to existing materials: they must be so much better that it is worth initiating new technologies to exploit them. Finally, any substantial applications will have to address the society's major needs worldwide. The clear technology drivers for the 21st century come from the biomedical technologies, the demand for energy subject to global constraints, and the information technologies, where perhaps diamond will provide the major enabling technology [1]. The papers in this volume concern the solid state physics of diamond, and primarily concern the first two factors: understanding, and control of properties. They address many of the outstanding basic problems, such as the identification of existing defects, which affect the material's properties, both desirable and less so. Regarding future substantial applications, one paper discusses

  13. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  14. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S; Nugent, K W; Bettiol, A A; Kostidis, L I; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  15. Study on the Effect of Diamond Grain Size on Wear of Polycrystalline Diamond Compact Cutter

    Science.gov (United States)

    Abdul-Rani, A. M.; Che Sidid, Adib Akmal Bin; Adzis, Azri Hamim Ab

    2018-03-01

    Drilling operation is one of the most crucial step in oil and gas industry as it proves the availability of oil and gas under the ground. Polycrystalline Diamond Compact (PDC) bit is a type of bit which is gaining popularity due to its high Rate of Penetration (ROP). However, PDC bit can easily wear off especially when drilling hard rock. The purpose of this study is to identify the relationship between the grain sizes of the diamond and wear rate of the PDC cutter using simulation-based study with FEA software (ABAQUS). The wear rates of a PDC cutter with a different diamond grain sizes were calculated from simulated cuttings of cutters against granite. The result of this study shows that the smaller the diamond grain size, the higher the wear resistivity of PDC cutter.

  16. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N.

    1996-01-01

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 μm 2 . After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs

  17. X-ray topographic study of diamonds: implications for the genetic nature of inclusions in diamond

    Science.gov (United States)

    Agrosì, Giovanna; Nestola, Fabrizio; Tempesta, Gioacchino; Bruno, Marco; Scandale, Eugenio; Harris, Jeff W.

    2014-05-01

    In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them (Howell, 2012 and references therein). Nevertheless, to obtain rigorous information about chemical and physical conditions of diamond formation, it is crucial to determine if the crystallization of the inclusions occurred before (protogenetic nature), during (syngenetic nature) or after (epigenetic nature) the growth of diamond (Wiggers de Vries et al., 2011). X-ray topography (XRDT) can be a helpful tool to verify the genetic nature of inclusions in diamond. This technique characterizes the extended defects and reconstructs the growth history of the samples (Agrosì et al., 2013 and references therein) and, consequently contributes to elucidation of the relationship between the inclusions and the host-diamond. With this aim a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond crystal was the one previously studied by Nestola et al. (2011) who performed in-situ crystal structure refinement of the inclusions to obtain data about the formation pressure. The inclusions were iso-oriented olivines that did not show evident cracks and subsequently could not be considered epigenetic. Optical observations revealed an anomalous birefringence in the adjacent diamond and the inclusions had typical "diamond-imposed cubo-octahedral" shape for the largest olivine. The diffraction contrast study shows that the diamond exhibits significant deformation fields related to plastic post growth deformation. The crystallographic direction of strains was established applying the extinction criterion. Section topographs were taken to minimize the overlapping of the strain field associate with the different defects and revealed that no dislocations nucleated from the olivine inclusions. Generally, when a solid inclusion has been incorporated in the growing crystal, the associated volume distortion can be minimized by

  18. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Zhuang, Hao; Jiang, Xin, E-mail: xin.jiang@uni-siegen.de

    2015-12-30

    Graphical abstract: - Highlights: • Novel diamond/beta-silicon carbide composite gradient interlayers were synthesized. • The interlayer features a cross-sectional gradient with increasing diamond content. • Diamond top layers and the interlayers were deposited in one single process. • The adhesion of the diamond film is drastically improved by employing the interlayer. • The stress was suppressed by manipulating the distribution of diamond and silicon carbide. - Abstract: Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co{sub 2}Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  19. Mechanical pretreatment for improved adhesion of diamond coatings

    International Nuclear Information System (INIS)

    Toenshoff, H.K.; Mohlfeld, A.; Gey, C.; Winkler, J.

    1999-01-01

    Diamond coatings are mainly used in cutting processes due to their tribological characteristics. They show a high hardness, low friction coefficient, high wear resistance and good chemical inertness. In relation to polycrystalline diamond (PCD)-tipped cutting inserts, especially the advantageous chemical stability of diamond coatings is superior as no binder phases between diamond grains are used. However, the deposition of adherent high-quality diamond coatings has been found difficult. Thus, substrate pretreatment is utilised to improve film adhesion. This investigation is based on water peening of the substrate material before coating. The investigation revealed best results for diamond film adhesion on pretreated substrates compared to conventional diamond coatings on cemented carbide tools applied with the CVD hot-filament process. In final cutting tests with increased film adhesion trough water peened cutting tools an improved wear behavior was detected. (orig.)

  20. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  1. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES

    International Nuclear Information System (INIS)

    2005-01-01

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm 2 have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector

  2. Diamond particle detectors systems in high energy physics

    CERN Document Server

    Gan, Kock Kiam

    2015-01-01

    The measurement of luminosity at the Large Hadron Collider (LHC) using diamond detect or s has matured from devices based on a rather large pads to highly granular pixelated device s . The ATLAS experiment has recently installed a diamond pixel detector, the Diamond Beam Monitor (DBM), to measure the luminosity in the upgraded LHC with higher instantaneous luminosity. Polycrystalline diamonds were used to fabricate the diamond pixel modules. The design , production, and test beam result s are described. CMS also has a similar plan to construct a diamond based luminosity monitor, the Pixel Luminos ity Telescope s (PLT) . In a pilot run using single crystal diamond, the pulse height was found to depend on the luminosity . Consequently the collaboration decided to use silicon instead due to time constrain ts .

  3. Diamond Beamline I16 (Materials and Magnetism)

    International Nuclear Information System (INIS)

    Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G.

    2010-01-01

    We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

  4. Diamond Light Source: status and perspectives.

    Science.gov (United States)

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I

    2015-03-06

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Structuring of diamond films using microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Roč. 54, č. 5 (2014), s. 320-324 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanostructuring * diamond thin films * polystyrene microspheres * reactive ion etching * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. HFCVD Diamond-Coated Mechanical Seals

    Directory of Open Access Journals (Sweden)

    Raul Simões

    2018-05-01

    Full Text Available A mechanical seal promotes the connection between systems or mechanisms, preventing the escape of fluids to the exterior. Nonetheless, due to extreme working conditions, premature failure can occur. Diamond, due to its excellent properties, is heralded as an excellent choice to cover the surface of these devices and extend their lifetime. Therefore, the main objective of this work was to deposit diamond films over mechanical seals and test the coated seals on a water pump, under real working conditions. The coatings were created by hot filament chemical vapor deposition (HFCVD and two consecutive layers of micro- and nanocrystalline diamond were deposited. One of the main difficulties is the attainment of a good adhesion between the diamond films and the mechanical seal material (WC-Co. Nucleation, deposition conditions, and pre-treatments were studied to enhance the coating. Superficial wear or delamination of the film was investigated using SEM and Raman characterization techniques, in order to draw conclusions about the feasibility of these coatings in the WC-Co mechanical seals with the purpose of increasing their performance and life time. The results obtained gave a good indication about the feasibility of this process and the deposition conditions used, with the mechanical seals showing no wear and no film delamination after a real work environment test.

  7. Quantum sensors based on single diamond defects

    International Nuclear Information System (INIS)

    Jelezko Fedor

    2014-01-01

    NV centers in diamond are promising sensors able to detect electric and magnetic fields at nanoscale. Here we report on the detection of biomolecules using magnetic noise induced by their electron and nuclear spins. Presented results show first steps towards establishing novel sensing technology for visualizing single proteins and study of their dynamics. (author)

  8. Grain boundary effects in nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Nesládek, Miloš

    2008-01-01

    Roč. 205, č. 9 (2008), 2163-2168 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * grain boundary * superconductivity * noise * ballistic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.205, year: 2008

  9. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  10. Laser systems with diamond optical elements

    International Nuclear Information System (INIS)

    Seitz, J.R.

    1975-01-01

    High power laser systems with optical elements of diamond having a thermal conductivity of at least 10 W/cm. 0 K at 300 0 K and an optical absorption at the laser beam wavelength of no more than 10 to 20 percent are described. (U.S.)

  11. Trading diamonds for guns | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-15

    Jul 15, 2011 ... ... from war zones to Belgian brokers to jewellery stores wasn't easy. ... The UN Security Council began to take a major interest in Sierra Leone and its ... and industry and government to play in the regulatory body for diamonds ...

  12. Tribology: Diamonds are forever - or are they?

    Science.gov (United States)

    Fineberg, Jay

    2011-01-01

    The friction and wear of materials is part of our everyday experience, and yet these processes are not well understood. The example of diamond highlights wear processes that result from bumping atoms, showing that the devil is indeed in the details.

  13. Point contact to single-crystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Uxa, Štěpán; Krištofik, Jozef; Kozak, Halyna

    2012-01-01

    Roč. 27, č. 6 (2012), 1-4 ISSN 0268-1242 R&D Projects: GA ČR GAP204/10/0212 Institutional research plan: CEZ:AV0Z10100521 Keywords : point-contact * diamond * space-charge–limited transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.921, year: 2012

  14. Diamond-based single-photon emitters

    International Nuclear Information System (INIS)

    Aharonovich, I; Castelletto, S; Simpson, D A; Su, C-H; Greentree, A D; Prawer, S

    2011-01-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information-thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  15. Diamond Turning Of Infra-Red Components

    Science.gov (United States)

    Hodgson, B.; Lettington, A. H.; Stillwell, P. F. T. C.

    1986-05-01

    Single point diamond machining of infra-red optical components such as aluminium mirrors, germanium lenses and zinc sulphide domes is potentially the most cost effective method for their manufacture since components may be machined from the blanks to a high surface finish, requiring no subsequent polishing, in a few minutes. Machines for the production of flat surfaces are well established. Diamond turning lathes for curved surfaces however require a high capital investment which can be justified only for research purposes or high volume production. The present paper describes the development of a low cost production machine based on a Bryant Symons diamond turning lathe which is able to machine spherical components to the required form and finish. It employs two horizontal spindles one for the workpiece the other for the tool. The machined radius of curvature is set by the alignment of the axes and the radius of the tool motion, as in conventional generation. The diamond tool is always normal to the workpiece and does not need to be accurately profiled. There are two variants of this basic machine. For machining hemispherical domes the axes are at right angles while for lenses with positive or negative curvature these axes are adjustable. An aspherical machine is under development, based on the all mechanical spherical machine, but in which a ± 2 mm aspherecity may be imposed on the best fit sphere by moving the work spindle under numerical control.

  16. Comparison of natural and synthetic diamond X-ray detectors.

    Science.gov (United States)

    Lansley, S P; Betzel, G T; Metcalfe, P; Reinisch, L; Meyer, J

    2010-12-01

    Diamond detectors are particularly well suited for dosimetry applications in radiotherapy for reasons including near-tissue equivalence and high-spatial resolution resulting from small sensitive volumes. However, these detectors have not become commonplace due to high cost and poor availability arising from the need for high-quality diamond. We have fabricated relatively cheap detectors from commercially-available synthetic diamond fabricated using chemical vapour deposition. Here, we present a comparison of one of these detectors with the only commercially-available diamond-based detector (which uses a natural diamond crystal). Parameters such as the energy dependence and linearity of charge with dose were investigated at orthovoltage energies (50-250 kV), and dose-rate dependence of charge at linear accelerator energy (6 MV). The energy dependence of a synthetic diamond detector was similar to that of the natural diamond detector, albeit with slightly less variation across the energy range. Both detectors displayed a linear response with dose (at 100 kV) over the limited dose range used. The sensitivity of the synthetic diamond detector was 302 nC/Gy, compared to 294 nC/Gy measured for the natural diamond detector; however, this was obtained with a bias of 246.50 V compared to a bias of 61.75 V used for the natural diamond detector. The natural diamond detector exhibited a greater dependency on dose-rate than the synthetic diamond detector. Overall, the synthetic diamond detector performed well in comparison to the natural diamond detector.

  17. High sensitivity thermal sensors on insulating diamond

    Energy Technology Data Exchange (ETDEWEB)

    Job, R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Denisenko, A.V. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Zaitsev, A.M. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Melnikov, A.A. [Belarussian State Univ., Minsk (Belarus). HEII and FD; Werner, M. [VDI/VDE-IT, Teltow (Germany); Fahrner, W.R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices

    1996-12-15

    Diamond is a promising material to develop sensors for applications in harsh environments. To increase the sensitivity of diamond temperature sensors the effect of thermionic hole emission (TE) over an energetic barrier formed in the interface between highly boron-doped p-type and intrinsic insulating diamond areas has been suggested. To study the TE of holes a p-i-p diode has been fabricated and analyzed by electrical measurements in the temperature range between 300 K and 700 K. The experimental results have been compared with numerical simulations of its electrical characteristics. Based on a model of the thermionic emission of carriers into an insulator it has been suggested that the temperature sensitivity of the p-i-p diode on diamond is strongly affected by the re-emission of holes from a group of donor-like traps located at a level of 0.7-1.0 eV above the valence band. The mechanism of thermal activation of the current includes a spatial redistribution of the potential, which results in the TE regime from a decrease of the immobilized charge of the ionized traps within the i-zone of the diode and the correspondent lowering of the forward biased barrier. The characteristics of the p-i-p diode were studied with regard to temperature sensor applications. The temperature coefficient of resistance (TCR=-0.05 K{sup -1}) for temperatures above 600 K is about four times larger than the maximal attainable TCR for conventional boron-doped diamond resistors. (orig.)

  18. Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography

    International Nuclear Information System (INIS)

    Picollo, F.; Battiato, A.; Bernardi, E.; Boarino, L.; Enrico, E.; Forneris, J.; Gatto Monticone, D.; Olivero, P.

    2015-01-01

    In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 μm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 μm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals

  19. Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals

    Science.gov (United States)

    Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.

    2018-05-01

    The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.

  20. Applications of diamond films and related materials; Proceedings of the 1st International Conference, Auburn, AL, Aug. 17-22, 1991

    Science.gov (United States)

    Tzeng, Yonhua (Editor); Yoshikawa, Manasori (Editor); Murakawa, Masao (Editor); Feldman, Albert (Editor)

    1991-01-01

    The present conference discusses the nucleation and growth of diamond from hydrocarbons, the cutting tool performance of CVD thick-film diamond, the characterization of CVD diamond grinding powder, industrial applications of crystalline diamond-coated tools, standardized SEM tribometry of diamond-coated substrates, residual stress in CVD diamond films, the optical properties of CVD diamond films, polycrystalline diamond films for optical applications, and diamond growth on ferrous metals. Also discussed are ion beam-irradiation smoothing of diamond films, electronic circuits on diamond substrates, diamond-laminated surfaces for evaporative spray cooling, electron devices based on the unique properties of diamond, diamond cold cathodes, thin-film diamond microstructure applications, Schottky diodes from flame-grown diamond, diamond films for thermionic applications, methods of diamond nucleation and selective deposition, high-rate/large-area diamond film production, halogen-assisted diamond growth, the economics of diamond technology, and the optical and mechanical properties of diamondlike films.

  1. Preparation of Ti-coated diamond particles by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quanchao [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yunnan Copper Smelting and Processing Complex, Yunnan Copper (Group) CO., LTD., Kunming 650102 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Peng, Jinghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); and others

    2016-12-30

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  2. Preparation of Ti-coated diamond particles by microwave heating

    International Nuclear Information System (INIS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.

    2016-01-01

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  3. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    International Nuclear Information System (INIS)

    Sein, Htet; Ahmed, Waqar; Jackson, Mark; Woodwards, Robert; Polini, Riccardo

    2004-01-01

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 μm were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools

  4. CD34+ (Non-Malignant) Stem Cell Selection for Patients Receiving Allogeneic Stem Cell Transplantation

    Science.gov (United States)

    2017-07-13

    Bone Marrow Failure Syndrome; Severe Aplastic Anemia; Severe Congenital Neutropenia; Amegakaryocytic Thrombocytopenia; Diamond-Blackfan Anemia; Schwachman Diamond Syndrome; Primary Immunodeficiency Syndromes; Acquired Immunodeficiency Syndromes; Histiocytic Syndrome; Familial Hemophagocytic Lymphocytosis; Lymphohistiocytosis; Macrophage Activation Syndrome; Langerhans Cell Histiocytosis (LCH); Hemoglobinopathies; Sickle Cell Disease; Sickle Cell-beta-thalassemia

  5. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  6. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  7. Diamond detectors for synchrotron radiation X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy)], E-mail: desio@arcetri.astro.it; Pace, E. [Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy); INFN, Sezione di Firenze, v. G. Sansone 1, Sesto Fiorentino, Firenze (Italy); Cinque, G.; Marcelli, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Achard, J.; Tallaire, A. [LIMHP-CNRS, University of Paris XIII, 99 Avenue JB Clement, 93430 Villetaneuse (France)

    2007-07-15

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices.

  8. Diamond based adsorbents and their application in chromatography.

    Science.gov (United States)

    Peristyy, Anton A; Fedyanina, Olga N; Paull, Brett; Nesterenko, Pavel N

    2014-08-29

    The idea of using diamond and diamond containing materials in separation sciences has attracted a strong interest in the past decade. The combination of a unique range of properties, such as chemical inertness, mechanical, thermal and hydrolytic stability, excellent thermal conductivity with minimal thermal expansion and intriguing adsorption properties makes diamond a promising material for use in various modes of chromatography. This review summarises the recent research on the preparation of diamond and diamond based stationary phases, their properties and chromatographic performance. Special attention is devoted to the dominant retention mechanisms evident for particular diamond containing phases, and their subsequent applicability to various modes of chromatography, including chromatography carried out under conditions of high temperature and pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Vertically aligned nanowires from boron-doped diamond.

    Science.gov (United States)

    Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E

    2008-11-01

    Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.

  10. Investigation of defects in CVD diamond: Influence for radiotherapy applications

    International Nuclear Information System (INIS)

    Guerrero, M.J.; Tromson, D.; Bergonzo, P.; Barrett, R.

    2005-01-01

    In this study we present the potentialities of CVD diamond as an ionisation chamber for radiotherapy applications. Trapping levels present in CVD diamond are characterised using Thermally Stimulated Current (TSC) method with X-ray sources. The influence of the corresponding defects on the detector response is investigated and compared to those observed in natural diamond. Also, their spatial distribution across a large area polycrystalline diamond ionisation chamber is discussed. Results show the relative influence of two different populations of trapping levels in CVD diamond whose effect is crucial for radiotherapy applications. To partially overcome the defect detrimental effects, we propose to use CVD diamond ionisation chambers at moderate temperatures from 70 to 100 deg. C that could be provided by self heating of the device, for a dramatically improved stability and reproducibility

  11. Use of the diamond to the detection of particles

    International Nuclear Information System (INIS)

    Mer, C.; Tromson, D.; Brambilla, A.; Foulon, F.; Guizard, B.; Bergonzo

    2001-01-01

    Diamond synthesized by chemical vapor deposition (CVD) is a valuable material for the detection of particles: broad forbidden energy band, high mobility of electron-hole pairs, and a short life-time of charge carriers. Diamond layers have been used in alpha detectors or gamma dose ratemeters designed to be used in hostile environment. Diamond presents a high resistance to radiation and corrosion. The properties of diamond concerning the detection of particles are spoilt by the existence of crystal defects even in high quality natural or synthesized diamond. This article presents recent works that have been performed in CEA laboratories in order to optimize the use of CVD diamond in particle detectors. (A.C.)

  12. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  13. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  14. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  15. 78 FR 52363 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Diamond...

    Science.gov (United States)

    2013-08-22

    ... causes of diamond darter habitat loss. Water quality degradation and siltation also played key roles. See... quantitatively define specific water quality standards required by the diamond darter. These organizations noted... conductivity poses to the diamond [[Page 52368

  16. A study of defects in diamond

    International Nuclear Information System (INIS)

    Hunt, D.C.

    1999-01-01

    Defects, intrinsic and extrinsic, in natural and synthetic diamond, have been studied using Electron Paramagnetic Resonance (EPR) and optical absorption techniques. EPR measurements have been used in conjunction with infrared absorption to identify the defect-induced one-phonon infrared spectra produced by ionised single substitutional nitrogen, N s + . This N s + spectrum is characterised by a sharp peak at the Raman energy, 1332 cm -1 , accompanied by several broader resonances at 950(5), 1050(5), and 1095(5) cm -1 . Detailed concentration measurements show that a concentration of 5.5(5) ppm gives rise to an absorption of 1 cm -1 at 1332 cm -1 . The optical absorption band ND1, identified as the negative vacancy (V - ), is frequently used by diamond spectroscopists to measure the concentration of V - . Isoya has identified V - in the EPR spectra of irradiated diamond. The accuracy of EPR in determining concentrations, has been used to correlate the integrated absorption of the ND1 zero-phonon line to the concentration of V - centres. The parameter derived from this correlation is ∼16 times smaller than the previously accepted value obtained by indirect methods. A systematic study has been made - using EPR and optical absorption techniques - of synthetic type IIa diamonds, which have been irradiated with 2 MeV electrons in a specially developed dewar, allowing irradiation down to a measured sample temperature of 100K. Measurement of defect creation rates of the neutral vacancy and EPR defects, show a radical difference in the production rate of the EPR defect R2 between irradiation with the sample held at 100K and 350K. At 100K its production rate is 1.1(1) cm -1 , ∼10 times greater that at 350K. Observation of the di- -split interstitial (Ri) after irradiation at 100K proves the self-interstitial in diamond must be mobile at 100K, under the conditions of irradiation. Further study of the properties of the R2 defect (the most dominant EPR after electron

  17. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  18. Dislocation density and graphitization of diamond crystals

    International Nuclear Information System (INIS)

    Pantea, C.; Voronin, G.A.; Zerda, T.W.; Gubicza, J.; Ungar, T.

    2002-01-01

    Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples

  19. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  20. Diamond turning on advanced machine tool prototypes

    International Nuclear Information System (INIS)

    Arnold, J.B.; Steger, P.J.

    1975-01-01

    Specular-quality metal mirrors are being machined for use in laser optical systems. The fabrication process incorporates special quality diamond tools and specially constructed turning machines. The machines are controlled by advanced control techniques and are housed in an environmentally controlled laboratory to insure ultimate machine stability and positional accuracy. The materials from which these mirrors are primarily produced are the softer face-center-cubic structure metals, such as gold, silver, copper, and aluminum. Mirror manufacturing by the single-point diamond machining process is in an early stage of development, but it is anticipated that this method will become the most economical way for producing high-quality metal mirrors. (U.S.)

  1. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  2. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  3. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    Sochor, V.; Cechak, T.; Sopko, B.

    2008-01-01

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  4. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....

  5. Nanocrystalline diamond coatings for mechanical seals applications.

    Science.gov (United States)

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  6. Diamond window and its application to ITER gyrotron

    International Nuclear Information System (INIS)

    Sakamoto, K.

    1999-01-01

    On the background of having to reduce the overall cost for ITER to 50% it is proposed to replace conventional glass windows on gyrotrons by diamonds. The successful production and testing of such diamond windows is reported. A diamond window can transmit 5 times more power than usual double disk transmission windows while only costing 3 times as much. As a tradeoff, the gyrotrons could be replaced by more powerful ones and one would need fewer of them

  7. Diamond deposition using a planar radio frequency inductively coupled plasma

    Science.gov (United States)

    Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.

    1995-06-01

    A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.

  8. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  9. Diamond-based structures to collect and guide light

    Energy Technology Data Exchange (ETDEWEB)

    Castelletto, S [Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Mail H 34 Hawthorn, VIC 3122 (Australia); Harrison, J P; Marseglia, L; Stanley-Clarke, A C; Hadden, J P; Ho, Y-L D; O' Brien, J L; Rarity, J G [Centre for Quantum Photonics, H H Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB (United Kingdom); Gibson, B C; Fairchild, B A; Ganesan, K; Huntington, S T; Greentree, A D; Prawer, S [School of Physics, University of Melbourne, Melbourne VIC 3010 (Australia); Hiscocks, M P; Ladouceur, F, E-mail: scastelletto@swin.edu.au, E-mail: luca.marseglia@bristol.ac.uk [School of EE and T, University of New South Wales, Sydney, NSW 2052 (Australia)

    2011-02-15

    We examine some promising photonic structures for collecting and guiding light in bulk diamond. The aim of this work is to optimize single photon sources and single spin read-out from diamond color centers, specifically NV{sup -} centers. We review the modeling and fabrication (by focused ion beam and reactive ion etching) of solid immersion lenses, waveguides and photonic crystal cavities in monolithic diamond.

  10. Method to fabricate micro and nano diamond devices

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alfredo M.; Anderson, Richard J.; Yang, Nancy Y. C.; Skinner, Jack L.; Rye, Michael J.

    2017-04-11

    A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.

  11. 3D characterisation of tool wear whilst diamond turning silicon

    OpenAIRE

    Durazo-Cardenas, Isidro Sergio; Shore, Paul; Luo, X.; Jacklin, T.; Impey, S. A.; Cox, A.

    2006-01-01

    Nanometrically smooth infrared silicon optics can be manufactured by the diamond turning process. Due to its relatively low density, silicon is an ideal optical material for weight sensitive infrared (IR) applications. However, rapid diamond tool edge degradation and the effect on the achieved surface have prevented significant exploitation. With the aim of developing a process model to optimise the diamond turning of silicon optics, a series of experimental trials were devi...

  12. Nanomechanical resonant structures in single-crystal diamond

    OpenAIRE

    Burek, Michael J.; Ramos, Daniel; Patel, Parth; Frank, Ian W.; Lončar, Marko

    2013-01-01

    With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the o...

  13. Photovoltage effects in polypyrrole-diamond nanosystem

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Čermák, Jan; Kromka, Alexander; Ledinský, Martin; Kočka, Jan

    2009-01-01

    Roč. 18, 2-3 (2009), 249-252 ISSN 0925-9635 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond * polymers * heterojunction * Kelvin force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  14. Influence of defects on diamond detection properties

    International Nuclear Information System (INIS)

    Tromson, Dominique

    2000-01-01

    This work focuses on the study of the influence of defects on the detection properties of diamond. Devices are fabricated using natural as well as synthetic diamond samples grown using the plasma enhanced chemical vapour deposition (CVD). Optical studies with infrared and Raman spectrometry are used to characterise the material properties as well as thermoluminescence and thermally stimulated current measurements. These thermally stimulated analyses reveal the presence of several trapping levels with emission temperatures below or near room temperature as well as an important level near 550 K. The influence of these defects on the alpha and X-ray detector responses is studied as a function of the initial state of the detectors (thermal treatment, irradiation) and of the measurement conditions (time, temperature). The results show a significant correlation between the charged state of traps, namely filled or empty and the response of the detectors. It appears that filling and emptying the traps respectively enhances the sensitivity and stability of detection devices to be used at room temperature and decreases the detection properties at higher temperature. Localised measurements are also used to study the spatial inhomogeneity of natural and CVD diamond samples from the 2D mapping of the detector responses. Non uniformity are attributed to a non-isotropic distribution of defects in natural diamonds. By comparing the detector responses to the topographical map of CVD samples a correlation appears between grains and grain boundaries with the variation of the detector sensitivity. Devices fabricated for detection applications with CVD samples are presented and namely for the monitoring and profiling of synchrotron beams as well as dose rate measurements in harsh environments. (author) [fr

  15. Application of diamond tools when decontaminating concrete

    International Nuclear Information System (INIS)

    Woods, B.L.; Gossett, R.F.

    1980-01-01

    The utilization of diamond concrete cutting tools offers new potential approaches to the recurring problems of removing contaminated concrete. Innovative techniques can provide exacting removal within a dust-free environment. Present day technology allows remote control operated equipment to perform tasks heretofore considered impossible. Experience gained from years of removing concrete within the construction industry hopefully can contribute new and improved methods to D and D projects

  16. Fermi level on hydrogen terminated diamond surfaces

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Saurer, C.; Nebel, C. E.; Stutzmann, M.; Ristein, J.; Ley, L.; Snidero, E.; Bergonzo, P.

    2003-01-01

    Roč. 82, č. 14 (2003), s. 2266-2268 ISSN 0003-6951 EU Projects: European Commission(XE) HPRN-CT-1999-00139 Grant - others:DFC(DE) NE524-2 Institutional research plan: CEZ:AV0Z1010914 Keywords : atomic force microscope (AFM) * Kelvin probe experiments * diamond surface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.049, year: 2003

  17. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  18. Noble gas studies in vapor-growth diamonds: Comparison with shock-produced diamonds and the origin of diamonds in ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Junichi; Fukunaga, Kazuya; Ito, Keisuke (Kobe Univ. (Japan))

    1991-07-01

    The authors synthesized vapor-trowth diamonds by two kinds of Chemical Vapor Deposition (CVD) using microwave (MWCVD) and hot filament (HFCVD) ionization of gases, and examined elemental abundances and isotopic compositions of the noble gases trapped in the diamonds. It is remarkable that strong differences existed in the noble gas concentrations in the two kinds of CVD diamonds: large amounts of noble gases were trapped in the MWCVD diamonds, but not in the HFCVD diamonds. The heavy noble gases (Ar to Xe) in the MWCVD diamonds were highly fractionated compared with those in the ambient atmosphere, and are in good agreement with the calculated fractionation patterns for plasma at an electron temperature of 7,000-9,000 K. These results strongly suggest that the trapping mechanism of noble gases in CVD diamonds is ion implantation during diamond growth. The degrees of fractionation of heavy noble gases were also in good agreement with those in ureilites. The vapor-growth hypothesis is discussed in comparison with the impact-shock hypothesis as a better model for the origin of diamonds in ureilites. The diamond (and graphite, amorphous carbon, too) may have been deposited on early condensates such as Re, Ir, W, etc. This model explains the chemical features of vein material in ureilites; the refractory siderophile elements are enriched in carbon and noble gases and low in normal siderophiles. The vapor-growth model is also compatible with the oxygen isotopic data of ureilites which suggests that nebular processes are primarily responsible for the composition of ureilites.

  19. Fabrication of Terahertz Wave Resonators with Alumina Diamond Photonic Crystals for Frequency Amplification in Water Solvents

    International Nuclear Information System (INIS)

    Ohta, N; Niki, T; Kirihara, S

    2011-01-01

    Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.

  20. Coherent Control of Diamond Defects for Quantum Information Science and Quantum Sensing

    Science.gov (United States)

    2014-04-18

    information of G. Kucsko⇤, P. C. Maurer⇤, N. Yao, M. Kubo , H. J. Noh, P. Lo, H. Park, M. D. Lukin, Nanometer scale thermometry in a living cell, Nature 500, 54...appreciation goes to Minako Kubo , Prof. Peggy Lo and Prof. Hongkun Park from the chemistry department at Harvard for preparing biological sample...initio calculations [40]. From such calculations one finds that the lowest lying energy level is located within the valence band of diamond and the