WorldWideScience

Sample records for diamagnetism

  1. Peierls' Elucidation of Diamagnetism

    Indian Academy of Sciences (India)

    IAS Admin

    portion of the boundary electrons has however a large contribution to M because of the largeness of the magnitude of the position vector r. Bohr–van Leeuwen theorem which states that. Diamagnetism does not exist in Classical. Mechanics. It is through A that the magnetic field B enters into the discussion via the relation:.

  2. Faraday diamagnetism under slowly oscillating magnetic fields

    Science.gov (United States)

    Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke

    2018-04-01

    Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.

  3. Diamagnetic response in zigzag hexagonal silicene rings

    International Nuclear Information System (INIS)

    Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng

    2016-01-01

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  4. Diamagnetic response in zigzag hexagonal silicene rings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning, E-mail: nxu@ycit.cn [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Chen, Qiao [Department of Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Tian, Hongyu [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Ding, Jianwen [Department of Physics, Xiangtan University, Xiangtan 411105 (China); Liu, Junfeng, E-mail: liu.jf@sustc.edu.cn [Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China)

    2016-09-16

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  5. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  6. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  7. Diamagnetic flux measurement in Aditya tokamak

    International Nuclear Information System (INIS)

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-01-01

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  8. Spin noise measurement with diamagnetic atoms

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.

    2007-01-01

    We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam

  9. Toroidal Simulations of Sawteeth with Diamagnetic Effects

    Science.gov (United States)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen

    2014-10-01

    The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. There is an indication that diamagnetic suppression could play an important role in this phenomenon. While computational tools to study toroidal plasmas have existed for some time, extended-MHD physics have only recently been integrated. Interestingly, incomplete reconnection has been observed in simulations when diamagnetic effects are present. In the current study, we employ the three-dimensional, extended-MHD code M3D-C1 to study the sawtooth crash in a toroidal geometry. In particular, we describe how magnetic reconnection at the q = 1 rational surface evolves when self-consistently increasing diamagnetic effects are present. We also explore how the termination of reconnection may lead to core-relaxing ideal-MHD instabilities.

  10. Diamagnetic expansions for perfect quantum gases

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine

    2006-01-01

    In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter ome......:=eB/c in different topologies. This allows us to prove the existence of the thermodynamic limit for the pressure and for all its derivatives with respect to omega (the so-called generalized susceptibilities)....

  11. Design of diamagnetic loop on EAST superconducting tokamak

    International Nuclear Information System (INIS)

    Xi Weibin; Shen Biao; Qian Jinping; Wu Songtao; Wan Baonan

    2007-01-01

    The design of EAST diamagnetic measurement system including diamagnetic loop and compensation loop has been given. The advantage of this method is that, the compensation loop is applied for eliminating the change of toroidal flux produced by the toroidal coils and the adjustable structure can be used to decrease the error signals come from the poloidal field. On the other hand, the effect of the material and structure on the diamagnetic loop is detailedly checked during engineering design. Error analysis of the measurement system is given. (authors)

  12. Superconductivity, diamagnetism, and the mean inner potential of solids

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E. [Department of Physics, University of California San Diego, La Jolla, CA (United States)

    2014-01-15

    The mean inner potential of a solid is known to be proportional to its diamagnetic susceptibility. Superconductors exhibit giant diamagnetism. What does this say about the connection between superconductivity and mean inner potential? Nothing, according to the conventional theory of superconductivity. Instead, it is proposed that a deep connection exists between the mean inner potential, diamagnetism, and superconductivity: that they are all intimately linked to the fundamental charge asymmetry of matter. It is discussed how this physics can be probed experimentally and what the implications of different experimental findings would be for the understanding of superconductivity. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots

    International Nuclear Information System (INIS)

    Rahmani, K; Zorkani, I; Jorio, A

    2011-01-01

    The binding energy and diamagnetic susceptibility χ dia are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility χ dia depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy E b shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.

  14. How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead

    Science.gov (United States)

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  15. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    Science.gov (United States)

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  16. Bifurcated equilibria in two-dimensional MHD with diamagnetic effects

    International Nuclear Information System (INIS)

    Ottaviani, M.; Tebaldi, C.

    1998-12-01

    In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)

  17. Review - On-chip diamagnetic repulsion in continuous flow

    Directory of Open Access Journals (Sweden)

    Mark D Tarn, Noriyuki Hirota, Alexander Iles and Nicole Pamme

    2009-01-01

    Full Text Available We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm were examined in two concentrations of MnCl2 (6 and 10%. The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.

  18. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    International Nuclear Information System (INIS)

    Zhou, Yilong; Song, Le; Yu, Liandong; Xuan, Xiangchun

    2016-01-01

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  19. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yilong [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States); Song, Le [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Yu, Liandong, E-mail: liandongyu@hfut.edu.cn [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Xuan, Xiangchun, E-mail: xcxuan@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States)

    2016-08-15

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  20. Bifurcations and complete chaos for the diamagnetic Kepler problem

    Science.gov (United States)

    Hansen, Kai T.

    1995-03-01

    We describe the structure of bifurcations in the unbounded classical diamagnetic Kepler problem. We conjecture that this system does not have any stable orbits and that the nonwandering set is described by a complete trinary symbolic dynamics for scaled energies larger than ɛc=0.328 782. . ..

  1. Bifurcations and Complete Chaos for the Diamagnetic Kepler Problem

    OpenAIRE

    Hansen, Kai T.

    1995-01-01

    We describe the structure of bifurcations in the unbounded classical Diamagnetic Kepler problem. We conjecture that this system does not have any stable orbits and that the non-wandering set is described by a complete trinary symbolic dynamics for scaled energies larger then $\\epsilon_c=0.328782\\ldots$.

  2. Diamagnetism in spinel compound CuIr2S4

    International Nuclear Information System (INIS)

    Yagasaki, K.; Nakama, T.

    2007-01-01

    The diamagnetic susceptibility in CuIr 2 S 4 is independent of temperature up to just below metal-insulator transition temperature. If activation of electrons to higher levels occurs with breaking dimer pairs, the residual electrons at the dimer position and the activated electrons to the anti-bonding orbital make localized free spins giving a Langevin paramagnetism. Assuming no magnetic interaction between the localized free spins, the susceptibility is calculated using the energy gap obtained from the conductivity assumed to be a conventional semiconductor. The calculated results cannot explain the temperature-independent diamagnetism. The real energy gap is too large for thermal electron activation, however, conduction is induced thermally over several orders of magnitude within insulating phase. From the above results, we claimed new conduction mechanism named traveling dimer conduction: dimer shifts its position by electron hopping to neighbor position without electron activation over the energy gap

  3. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Kapitán, J.; Pačes, Ondřej; Bouř, Petr

    2016-01-01

    Roč. 55, č. 10 (2016), s. 3504-3508 ISSN 1433-7851 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-00431S; GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : angular momentum theory * diamagnetic molecules * excited electronic states * magnetic field * Raman optical activity Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  4. The effect of collisionality and diamagnetism on the plasma dynamo

    International Nuclear Information System (INIS)

    Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1995-01-01

    Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs

  5. Stabilization of kinetic internal kink mode by ion diamagnetic effects

    International Nuclear Information System (INIS)

    Naitou, H.; Kuramoto, T.; Kobayashi, T.; Yagi, M.; Tokuda, S.; Matsumoto, T.

    2000-04-01

    Ion diamagnetic effects on the m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink mode are studied numerically by the three-field gyro-reduced-MHD code in the cylindrical coordinates, GRM3F-CY. In the derivation of the gryo-reduced-MHD model including the ion diamagnetic effects, finite gyroradius effects of ions are added to the gyrokinetic Poisson equation (quasi-neutral condition) and the convection term of the conservation law of the ion density. It is found that the long wavelength approximation, ksub(perpendicular) ρ ti ti is the thermal ion gyroradius, fails to reproduce the correct dispersion relation; the formulation valid even for ksub(perpendicular) ρ ti >> 1 is necessary. The results of numerical calculation coincide with the theory for |ω *e |+|ω *i | 0 , where the growth rate reduces as the density gradient increases. Here ω *e and ω *i are electron and ion diamagnetic angular frequencies estimated at the rational surface of q=1 (q is a safety factor), respectively, and γ 0 is the growth rate for the uniform density. Very weak instability, however, is observed for |ω *e |+|ω *i | 0 , where the theory predicts the complete stabilization. This residual instability appears since the region with the density gradient is limited in the radial direction and the stabilization by the outgoing drift-wave like mode becomes incomplete. (author)

  6. Theory of diamagnetic signal in current-free stellarators

    International Nuclear Information System (INIS)

    Pustovitov, Vladimir D.

    2010-01-01

    The toroidal magnetic flux through the plasma column is calculated analytically for current-free stellarators of arbitrary geometry without assumptions on the plasma shape, aspect ratio, etc. This is done with accuracy sufficient for extracting the contribution due to the finite plasma pressure from this flux. The final result is a formula relating the measured diamagnetic signal with β, the ratio of the plasma pressure to the magnetic pressure. This formula is obtained assuming small β and the relative depth of the magnetic well. These are natural conditions for stellarators, therefore the final result can be recommended for magnetic diagnostics without practical limitations. (author)

  7. Diamagnetic measurements on ISX-B: method and results

    International Nuclear Information System (INIS)

    Neilson, G.H.

    1983-10-01

    A diamagnetic loop is used on the ISX-B tokamak to measure the change in toroidal magnetic flux, sigma phi, caused by finite plasma current and perpendicular pressure. From this measurement, the perpendicular poloidal beta β/sub I perpendicular to/ is determined. The principal difficulty encountered is in identifying and making corrections for various noise components which appear in the measured flux. These result from coupling between the measuring loops and the toroidal and poloidal field windings, both directly and through currents induced in the vacuum vessel and coils themselves. An analysis of these couplings is made and techniques for correcting them developed. Results from the diamagnetic measurement, employing some of these correction techniques, are presented and compared with other data. The obtained values of β/sub I perpendicular to/ agree with those obtained from the equilibrium magnetic analysis (β/sub IΔ/) in ohmically heated plasmas, indicating no anisotropy. However, with 0.3 to 2.0 MW of tangential neutral beam injection, β/sub IΔ/ is consistently greater than β/sub I pependicular to/ and qualitatively consistent with the formation of an anisotropic ion velocity distribution and with toroidal rotation. Quantitatively, the difference between β/sub IΔ/ and β/sub I perpendicular to/ is more than can be accounted for on the basis of the usual classical fast ion calculations and spectroscopic rotation measurements

  8. Diamagnetic (cyclotron) resonance in semiconductors using strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sosniak, J

    1962-07-01

    Diamagnetic (cyclotron) resonance experiments have been carried out in the semiconductors indium-antimonide (InSb), the indium-arsenide (InAs). Pulsed magnetic fields up to 300,000 gauss and monochromatic infrared radiation of 9 to 13.5 microns wavelength were used to measure the effective mass of the conduction electrons in those materials. The samples were n-type single crystals, with a room temperature electron concentration of 1.9 x 10{sup 16} and 6 x 10{sup 16} per cm{sup 3} in InSb and InAs respectively. Both the InSb and InAs samples showed a strong dependence of the effective mass on the magnetic field. The results show that the conduction bands in those solids are highly non-parabolic. Measurements were also made of the resonance absorption coefficients, which were found to be considerably smaller than the values obtained from simple theory. The effect is explained by assuming that the magnetic field reduces the intrinsic electron density, and that the absorption coefficient depends on the shape of the conduction band. It is postulated as a consequence that the relaxation time of diamagnetic energy levels at high magnetic fields does not differ appreciably from the relaxation time used in the description of conduction processes. (author)

  9. Diamagnetic effect in the foremoon solar wind observed by Kaguya

    Science.gov (United States)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-04-01

    Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.

  10. Spin and diamagnetism in linear and nonlinear optics

    International Nuclear Information System (INIS)

    Andersen, Torsten; Keller, Ole; Huebner, Wolfgang; Johansson, Boerje

    2004-01-01

    We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the terms depending on the electron spin. The resulting general real-space conductivities are presented and discussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in which we treat ω and q as independent variables, thereby opening the theory to near-field optics and the study of evanescent waves. We show that in regions of the ω-q spectrum, the presence of diamagnetism and spin dynamics significantly alters the response in comparison to considering only the paramagnetic response. Additionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect the present theory to existing methods in ab initio solid-state physics

  11. Dynamical behavior of granular matter in low gravity (diamagnetic levitation)

    International Nuclear Information System (INIS)

    Brooks, J.S.; Cothern, J.A.

    2001-01-01

    We report studies on the dynamics of macroscopic particles in a low-gravity 'magnetic levitation' environment. In a real sense, this allows the investigation of new states of granular matter. Particle ensembles (rods, spheres, or grains) can be held in a weak confining potential due to diamagnetic forces in a high-field-resistive magnet. In such a case 'kT' is not zero, and assemblies of particles undergo ergodic processes to find the lowest configurational ground state. This new area presents unique problems for video data acquisition and mathematical descriptions of the complex dynamic motions, interactions, and configurations of single and multiple particle assemblies. Three examples of such processes are presented

  12. Dynamical behavior of granular matter in low gravity (diamagnetic levitation)

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.S. E-mail: brooks@magnet.fsu.edu; Cothern, J.A

    2001-05-01

    We report studies on the dynamics of macroscopic particles in a low-gravity 'magnetic levitation' environment. In a real sense, this allows the investigation of new states of granular matter. Particle ensembles (rods, spheres, or grains) can be held in a weak confining potential due to diamagnetic forces in a high-field-resistive magnet. In such a case 'kT' is not zero, and assemblies of particles undergo ergodic processes to find the lowest configurational ground state. This new area presents unique problems for video data acquisition and mathematical descriptions of the complex dynamic motions, interactions, and configurations of single and multiple particle assemblies. Three examples of such processes are presented.

  13. Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.

    Science.gov (United States)

    Loh, Yen Lee; Karki, Pragalv

    2017-10-25

    Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].

  14. Fluctuation diamagnetism near surfaces and twinning planes in superconductors

    International Nuclear Information System (INIS)

    Burmistrov, S.N.; Dubovskii, L.B.

    1984-01-01

    Fluctuations of the magnetic moment and of the specific heat near surfaces and twinning planes in superconductors are studied. Fluctuations near a surface yield an additional contribution to the effect of the usual bulk fluctuations on the diamagnetic moment. Such an additional contribution has a singularity near a temperature T/sub c/3(H), which is higher than the bulk superconducting transition temperature in a magnetic field T/sub c/2(H). Depending on the strength of the magnetic field, the singularity of the additional contribution to the magnetic moment can be either logarithmic (strong fields) or of square-root type (weak fields). Experiments which could reveal the aforementioned anomalous behavior are discussed in detail

  15. Zero electrical resistance of perfect conductor and diamagnet

    International Nuclear Information System (INIS)

    Palaspagar, R.S.

    2012-01-01

    Intense research has taken place to discover new superconductors, to understand the physics that underlies the properties of superconductors, and to develop new applications for these materials. The fascinating phenomenon of superconductivity and its potential applications have attracted the attention of scientists, engineers and businessmen. In this paper we will discuss about the brief history of superconductors. And we will discuss also phenomenons of superconductors and the two different types of superconductor that exist today. We can say that superconductor exhibits infinite conductivity. A bulk specimen of metal in the superconducting state exhibits perfect diamagnetism, with the magnetic induction B=0 named as Meissner effect. It would have been very difficult to have arrived at the theory of superconductivity by purely deductive reasoning from the basic equations of quantum mechanics. A successful quantum theory of superconductivity has provided the basic for subsequent work and the importance of the phase of the superconducting wave function. If we could make a material that was superconducting at room temperature then our computers would work faster because they would allow electric currents to flow more easily. That would mean electric appliances in our homes and offices would waste much less power. We could also make 'Maglev' (magnetic levitation) trains that would float on rails using linear motors and get us around with a fraction of the power used by current locomotives. (author)

  16. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    Science.gov (United States)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  17. Method of compensation spires for the detection of the diamagnetic effect in a Tokamak

    International Nuclear Information System (INIS)

    Colunga S, S.

    1990-09-01

    In this report the classical detection method of the diamagnetic effect by means of a rolled spire on the discharges chamber in the poloidal direction and the difficulties related with this are analyzed. An alternative method that increases considerably the detection sensibility of the diamagnetic effect and that for its simplicity it is quite attractive for its application to the Tokamak Novillo of the ININ is presented. (Author)

  18. Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Hajra, Rajkumar; Henri, Pierre; Vallières, Xavier; Moré, Jerome; Gilet, Nicolas; Wattieaux, Gaetan; Goetz, Charlotte; Richter, Ingo; Tsurutani, Bruce T.; Gunell, Herbert; Nilsson, Hans; Eriksson, Anders I.; Nemeth, Zoltan; Burch, James L.; Rubin, Martin

    2018-04-01

    The Rosetta orbiter witnessed several hundred diamagnetic cavity crossings (unmagnetized regions) around comet 67P/Churyumov-Gerasimenko during its two year survey of the comet. The characteristics of the plasma environment inside these diamagnetic regions are studied using in situ measurements by the Rosetta Plasma Consortium instruments. Although the unmagnetized plasma density has been observed to exhibit little dynamics compared to the very dynamical magnetized cometary plasma, we detected several localized dynamic plasma structures inside those diamagnetic regions. These plasma structures are not related to the direct ionization of local cometary neutrals. The structures are found to be steepened, asymmetric plasma enhancements with typical rising-to-descending slope ratio of ˜2.8 (±1.9), skewness ˜0.43 (±0.36), mean duration of ˜2.7 (±0.9) min and relative density variation ΔN/N of ˜0.5 (±0.2), observed close to the electron exobase. Similar steepened plasma density enhancements were detected at the magnetized boundaries of the diamagnetic cavity as well as outside the diamagnetic region. The plausible scalelength and propagation direction of the structures are estimated from simple plasma dynamics considerations. It is suggested that they are large-scale unmagnetized plasma enhancements, transmitted from the very dynamical outer magnetized region to the inner magnetic field-free cavity region.

  19. Transition from diamagnetic to ferromagnetic state in laser ablated nitrogen doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Kajal Jindal

    2015-02-01

    Full Text Available Transition from room temperature diamagnetic to ferromagnetic state in N doped ZnO (ZnO:N films grown by pulsed laser deposition with tunable energy density has been identified. ZnO:N films deposited with moderate laser energy density of 2.5 J/cm2 are single phase and nearly defect free having N dopant substitution at O sites in ZnO lattice, exhibiting intrinsic ferromagnetism. When energy density reduces (<2.5 J/cm2, defects in ZnO:N film degrades ferromagnetism and exhibit diamagnetic phase when grown at energy density of 1.0 J/cm2. Growth kinetics, which in turn depends on laser energy density is playing important role in making transition from ferromagnetic to diamagnetic in ZnO:N films.

  20. Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes

    Science.gov (United States)

    Yanqing, HUANG; Tianyang, XIA; Bin, GUI

    2018-04-01

    The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.

  1. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tanimoto, Y [Faculty of Pharmacy, Osaka Ohtani University, Nishikiorikita, Tondabayashi 584-8540 (Japan)], E-mail: fuji0710@sci.hiroshima-u.ac.jp

    2009-03-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 {+-} 0.005) x (calculated) - (1.22 {+-} 0.60) x 10{sup -6} in a unit of cm{sup 3} mol{sup -1} and good cost performance.

  2. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    International Nuclear Information System (INIS)

    Fujiwara, Y; Tanimoto, Y

    2009-01-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 ± 0.005) x (calculated) - (1.22 ± 0.60) x 10 -6 in a unit of cm 3 mol -1 and good cost performance.

  3. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    Science.gov (United States)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.

  4. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu [Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India); Kalpana, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Gandhigram, Tamilnadu-624302 (India); Reuben, A. Merwyn Jasper D., E-mail: merwyn@gmail.com [Department of Physics, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India)

    2015-06-24

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  5. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Science.gov (United States)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.

    2015-06-01

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  6. Orbital diamagnetism of a charged Brownian particle undergoing birth-death process

    International Nuclear Information System (INIS)

    Jayannawar, A.M.; Kumar, N.

    1980-06-01

    We consider the magnetic response of a charged Brownian particle undergoing a stochastic birth-death process. The latter simulates the electron-hole pair production and recombination in semiconductors. We obtain non-zero, orbital diamagnetism which can be large without violating the Van Leeuwen theorem. (author)

  7. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    Science.gov (United States)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  8. Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Electromagnetism is a relativistic theory, and one must exercise care in coupling this theory with nonrelativistic classical mechanics and with nonrelativistic classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: (1) the neglect of classical electromagnetic zero-point radiation, and (2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we review the treatment of classical blackbody radiation, and show that the presence of Lorentz-invariant classical electromagnetic zero-point radiation can explain both the Planck blackbody spectrum and Landau diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statistical mechanics is applied only in the low-frequency limit when zero-point energy makes no contribution. (paper)

  9. Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum

    International Nuclear Information System (INIS)

    Gisler, G.

    1989-01-01

    Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock

  10. A low-frequency vibration energy harvester based on diamagnetic levitation

    Science.gov (United States)

    Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo

    2017-04-01

    This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.

  11. Monte Carlo studies of diamagnetism and charge density wave order in the cuprate pseudogap regime

    Science.gov (United States)

    Hayward Sierens, Lauren; Achkar, Andrew; Hawthorn, David; Melko, Roger; Sachdev, Subir

    2015-03-01

    The pseudogap regime of the hole-doped cuprate superconductors is often characterized experimentally in terms of a substantial diamagnetic response and, from another point of view, in terms of strong charge density wave (CDW) order. We introduce a dimensionless ratio, R, that incorporates both diamagnetic susceptibility and the correlation length of CDW order, and therefore reconciles these two fundamental characteristics of the pseudogap. We perform Monte Carlo simulations on a classical model that considers angular fluctuations of a six-dimensional order parameter, and compare our Monte Carlo results for R with existing data from torque magnetometry and x-ray scattering experiments on YBa2Cu3O6+x. We achieve qualitative agreement, and also propose future experiments to further investigate the behaviour of this dimensionless ratio.

  12. Modulated ECH power absorption measurements using a diamagnetic loop in the TCV tokamak

    International Nuclear Information System (INIS)

    Manini, A.; Moret, J.M.; Alberti, S.; Goodman, T.P.; Henderson, M.A.

    2001-10-01

    The additional power absorbed by the plasma can be determined from the time derivative of the total plasma energy, which can be estimated from the diamagnetic flux of the plasma using a Diamagnetic Loop (DML). The main difficulty in using diamagnetic measurements to estimate the kinetic energy is the compensation of the flux measurement sensitivity to poloidal magnetic fields, which is not always easy to adjust. A method based on the temporal variations of the diamagnetic flux of the plasma during Modulated Electron Cyclotron Heating (MECH) has been developed. Using MECH has the advantage that these poloidal fields are not significantly modulated and a good compensation of these fields is not necessary. However, a good compensation of the vessel poloidal image current is crucial to ensure a sufficiently large bandwidth. The application of this diagnostic to studies of the extraordinary mode (X-mode) absorption at the third electron cyclotron harmonic frequency (X3) has been performed on the TCV Tokamak in plasmas pre-heated by X-mode at the second harmonic (X2). A MECH frequency scan has allowed the determination of an optimum modulation frequency, situated at about 200- 250 Hz. Based on this diagnostic, full single-pass absorption of the injected X3 power was measured with the X2 pre-heating in co-current drive. This high absorption is more than a factor of 2 higher than the one predicted by the linear ray tracing code TORAY. Experimental evidence indicates that a large fraction of the X3 power is absorbed by electrons in an energetic tail created by the X2 pre-heating. (author)

  13. Modelling of diamagnetic stabilization of ideal MHD eigenmodes associated with the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.; Sharapov, S.; Mikhailovskii, A.; Kerner, W.

    2001-01-01

    A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal MHD code MISHKA-1 in order to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency, ω *i , on linear ideal MHD eigenmodes in tokamaks with shaped plasma cross-section. The MISHKA-D code gives a self-consistent computation of both stable and unstable eigenmodes with eigenvalues [γ] ≅ ω *i in plasmas with strong radial variation in the ion diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the analytically obtained ω *i -spectrum and stability limits of the internal kink mode, n/m=1/1, used as a benchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport barrier just inside the separatrix are studied for H-mode plasma with the ω *i -effect included. The ion diamagnetic stabilization of the ballooning modes is found to be most effective for narrow edge pedestals. For low enough plasma density the ω *i - stabilization can lead to a second zone of ballooning stability, in which all the ballooning modes are stable for any value of the pressure gradient. For internal transport barriers typical of JET optimised shear discharges, the stabilizing influence of ion diamagnetic frequency on the n=1 global pressure driven disruptive mode is studied. A strong radial variation of ω *i is found to significantly decrease the stabilizing ω *i - effect on the n=1 mode, in comparison with the case of constant ω *i estimated at the foot of the internal transport barrier. (author)

  14. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    Science.gov (United States)

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  15. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    Science.gov (United States)

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  16. NMR study of local diamagnetic properties of carbon structures with multiwalled nanotubes

    International Nuclear Information System (INIS)

    Nikolaev, E.G.; Omel'yanovsky, O.E.; Prudkovsky, V.S.; Sadakov, A.V.; Tsebro, V.I.

    2009-01-01

    The reasons for the high diamagnetic susceptibility of carbon columns, which are covered with a nanotube mesh, from the interior part of cathode deposits have been studied by means of NMR. A comparative study is made of the 13 C NMR spectra and the magnetic susceptibility of carbon columns before and after ultrasonic processing as well as of finely dispersed material, obtained as a result of such processing, enriched with multilayer nanotubes. The strong diamagnetism of the carbon columns is apparently associated with a quite dense conglomerate of graphite particles, nanotubes, and multilayer polyhedral particles present in their core and not with the surface mesh of multilayer nanotubes. To make a more accurate determination of the character of the anisotropy of the magnetic susceptibility of multilayer carbon nanotubes, the form of the 13 C NMR spectra of samples enriched with multilayer nanotubes, where the nanotubes are either not oriented or only partially oriented, is analyzed. It is shown that the diamagnetic susceptibility of multilayer carbon nanotubes is highest when the magnetic field is oriented perpendicular to their axis

  17. Impurity States and diamagnetic susceptibility of a donor in a triangular quantum well

    Science.gov (United States)

    Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2017-05-01

    We have calculated the binding energy and the diamagnetic susceptibility(χdia) of the ground (1s) and few low lying excited states (2s and 2p±) in a GaAs/AlxGa1-xAs Triangular Quantum Well (TQW) for the Al composition of x = 0.3. Since the estimation of gives the carrier localization in nanostructured systems and also the calculation of (χdia) involves the , the same has also been estimated as a function of well width. The Schrodinger equation has been solved using variational technique involving Airy functions in the effective mass approximation. The results are presented and discussed.

  18. Experimental study on stabilizing range extension of diamagnetic levitation under modulated magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T C S; Wong, P L; Liu, K P, E-mail: 50578230@student.cityu.edu.h, E-mail: meplwong@cityu.edu.h, E-mail: mekpliu@cityu.edu.h [Manufacturing Engineering and Engineering Management Department, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2010-01-01

    The real energy-free levitation exists with the help of diamagnetic material. Its ultra-high sensitivity to force is particularly attractive to micro/nano force sensing. A key parameter: Levitation Stabilizing Local Range, LR (allowable moving range of the floater) is critical to the load and self-rotating performance. Besides, larger LR reduces the energy loss due to the eddy current and has greater application potential. Recently, an idea of extending the LR by a modulating coil array has been validated using numerical simulation. This paper takes the next move to carry out an experimental study on the shape effect of stacked coil arrays with different currents on LR.

  19. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  20. Diamagnetism of the B10H12L2 series compounds

    International Nuclear Information System (INIS)

    Volkov, V.V.; Ikorskij, V.N.; Dunaev, S.T.

    1988-01-01

    The method of static magnetic susceptibility is used to study diamagnetic susceptibilities of a number of B 10 H 12 L 2 (where L - nitrogen, sulfur, phosphorus-containing organic ligands) decaborane-derivatives and to draw the increment χ M -125 for the nido cluster (B 10 H 12 ) and boron atomic increment χ bar M -9.0 in this cluster. The absolute value χ B in (B 10 H 12 ) cluster is much higher than χ B for noncluster systems (2.7-7.6). This difference proves electron delocalization in (B 10 H 12 ) and the aromatic nature of this nido-cluster

  1. Theory and Simulations of Incomplete Reconnection During Sawteeth Due to Diamagnetic Effects

    Science.gov (United States)

    Beidler, Matthew Thomas

    Tokamaks use magnetic fields to confine plasmas to achieve fusion; they are the leading approach proposed for the widespread production of fusion energy. The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. In this dissertation, we introduce a model for incomplete reconnection in sawtooth crashes resulting from increasing diamagnetic effects in the nonlinear phase of magnetic reconnection. Physically, the reconnection inflow self-consistently convects the high pressure core of a tokamak toward the q=1 rational surface, thereby increasing the pressure gradient at the reconnection site. If the pressure gradient at the rational surface becomes large enough due to the self-consistent evolution, incomplete reconnection will occur due to diamagnetic effects becoming large enough to suppress reconnection. Predictions of this model are borne out in large-scale proof-of-principle two-fluid simulations of reconnection in a 2D slab geometry and are also consistent with data from the Mega Ampere Spherical Tokamak (MAST). Additionally, we present simulations from the 3D extended-MHD code M3D-C1 used to study the sawtooth crash in a 3D toroidal geometry for resistive-MHD and two-fluid models. This is the first study in a 3D tokamak geometry to show that the inclusion of two-fluid physics in the model equations is essential for recovering timescales more closely in line with experimental results compared to resistive-MHD and contrast the dynamics in the two models. We use a novel approach to sample the data in the plane of reconnection perpendicular to the (m,n)=(1,1) mode to carefully assess the reconnection physics. Using local measures of

  2. Realization of Anisotropic Diamagnetic Kepler Problem in a Solid State Environment

    International Nuclear Information System (INIS)

    Chen Zhanghai; Zhou Weihang; Zhang Bo; Yu, C. H.; Zhu Jingbing; Lu Wei; Shen, S. C.

    2009-01-01

    The anisotropic diamagnetic Kepler problem (ADKP) is realized experimentally by the orbital electrons of a P donor in Si under magnetic fields. The interference of electron wave packets which leads to quasi-Landau resonances (QLR) were observed. Applying the closed-orbit theory to an anisotropic solid state environment, we have identified orbits responsible for the QLR manifesting the quantum chaotic behavior in Rydberg atoms. The excellent consistency between the measured spectra and theoretical calculation provides unambiguous evidence of quantum chaotic dynamics of electrons in the ADKP.

  3. Research support for plasma diagnostics on Elmo Bumpy Torus: investigation of diamagnetic diagnostics for the electron rings

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1981-02-01

    Diamagnetic diagnostics for the EBT electron rings are fundamental to the experiment. The diamagnetic flux pickup loops on each cavity output signals proportional to ring perpendicular energy. A data analysis technique is described, which in its simplest form is subtracting 1/4 the signal from each neighboring cavity pickup loop from the central one's, which provides a signal proportional to the energy in a single ring. The calibration factor relating absolute perpendicular energy to diamagnetic signal depends weakly on the geometrical model for the ring. Calculations with a bumpy cylinder MHD equilibrium code give calibration factors in reasonable agreement (20%) to the values obtained using a simple, concentric cylindrical current sheet model. The cylindrical current sheet model is used to show that diamagnetic field components measured external to the plasma require high precision or correlation with other diagnostics in order to fix model parameters. A computer simulation shows an assumption of constant ring thickness and energy density with increasing length (and energy) is compatible to diamagnetic field observations on NBT

  4. Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations

    Science.gov (United States)

    Abbott, Stephen; Germaschewski, Kai

    2014-10-01

    Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.

  5. Extend of magnetic field interference in the natural convection of diamagnetic nanofluid

    Science.gov (United States)

    Roszko, Aleksandra; Fornalik-Wajs, Elzbieta

    2017-10-01

    Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.

  6. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field.

    Science.gov (United States)

    Gorobets, Yu I; Gorobets, O Yu

    2015-01-01

    The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  8. Outbursts and diamagnetic cavities in comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Voelzke, M. R.

    2018-03-01

    On 2014 August 06 the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. Since then, the spacecraft accompanied the comet on its journey around the Sun (Glassmeier et al. 2007), until the end of the mission on 2016 September 30. This work tries to understand the possible connections between the 665 reported diamagnetic regions (Goetz et al. 2016), detected from April 2015 to February 2016 around the comet 67P/Churyumov-Gerasimenko, with the fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG), when the heliocentric distance of the comet from the sun varied from 1.8 to 2.4 AU and the 34 reported outbursts (Vincent et al. 2016), detected from July to September 2015, with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras, when the ESA's Rosetta spacecraft changed the cometocentric distance from 155 to 817 km.

  9. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Kapaev, V.V.; Belyavsky, V.I. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation); Kopaev, Yu.V. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation)], E-mail: kopaev@sci.lebedev.ru; Smirnov, M.Yu. [State Pedagogical University, Voronezh 394043 (Russian Federation)

    2007-09-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = ({pi}, {pi}). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response.

  10. Note on de Haas-van Alphen diamagnetism in thin, free-electron films

    Directory of Open Access Journals (Sweden)

    J. A. Grzesik

    2012-03-01

    Full Text Available We revisit the problem of de Haas-van Alphen (dHvA diamagnetic susceptibility oscillations in a thin, free-electron film trapped in a synthetic harmonic potential well. A treatment of this phenomenon at zero temperature was announced many years ago by Childers and Pincus (designated hereafter as CP, and we traverse initially much the same ground, but from a slightly different analytic perspective. That difference hinges around our use, in calculating the Helmholtz free energy F, of an inverse Laplace transform, Bromwich-type contour integral representation for the sharp distribution cutoff at Fermi level μ. The contour integral permits closed-form summation all at once over the discrete orbital Landau energy levels transverse to the magnetic field, and the energy associated with the in-plane canonical momenta ℏ k x and ℏ k z. Following such summation/integration, pole/residue pairs appear in the plane of complex transform variable s, a fourth-order pole at origin s = 0, and an infinite ladder, both up and down, of simple poles along the imaginary axis. The residue sum from the infinite pole ladder automatically engenders a Fourier series with period one in dimensionless variable μ/ ℏ ω (with effective angular frequency ω suitably defined, series which admits closed-form summation as a cubic polynomial within any given periodicity slot. Such periodicity corresponds to Landau levels slipping sequentially beneath Fermi level μ as the ambient magnetic field H declines in strength, and is manifested by the dHvA pulsations in diamagnetic susceptibility. The coëxisting steady contribution from the pole at origin has a similar cubic structure but is opposite in sign, inducing a competition whose outcome is a net magnetization that is merely quadratic in any given periodicity slot, modulated by a slow amplitude growth. Apart from some minor notes of passing discord, these simple algebraic structures confirm most of the CP formulae, and their

  11. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system.

    Science.gov (United States)

    Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.

  12. Exploitation of a diamagnetic loop for modulated ECH power absorption measurements in TCV

    International Nuclear Information System (INIS)

    Manini, A.; Moret, J.M.; Alberti, S.; Goodman, T.P.; Henderson, M.A.

    2003-01-01

    For the evaluation of the performance of auxiliary heating methods and for the understanding of the transport properties of auxiliary heated plasmas, it is of fundamental importance to determine the fraction of the launched power that is actually transferred to the plasma, as well as where in the plasma the power is deposited. The diagnostic which is probably the best suited for the first goal is the Diamagnetic Loop (DML) providing a measurement of the diamagnetic flux of the plasma, which is directly related to the total plasma kinetic energy. TCV is equipped with a very versatile Electron Cyclotron Heating (ECH) system. It consists of six gyrotrons operating at the second harmonic, 82.7 GHz, and three gyrotrons at the third harmonic, 118 GHz. The nominal power for each 82.7 GHz gyrotron is 465 kW and for each 118 GHz gyrotron is 480 kW, resulting in a total of radio frequency power of 4.2 MW. In this paper we present the method that has been developed for determining the absorbed power in the ECH experiments in TCV, pointing out especially the results of the first third harmonic X-Mode (X3) ECH experiments, leaving the problem of the power deposition localisation to other reports. For the determination of the total plasma kinetic energy, the DML has also been used on other devices such as JET, ASDEX and TEXTOR, but only for this last case modulation experiments have been performed and analysed. Modulated ECH has been used to determine the ECH X2 and X3 power absorption from the measurement of the diamagnetic flux variations using the DML. Since only the modulation contribution is relevant to the analysis, the method does not require a perfect compensation of the diamagnetic flux measurement, although a good compensation of the vessel poloidal image current is crucial for ensuring a sufficiently large bandwidth to allow the use of high frequency modulation. The analysis of the behaviour of the amplitude and phase response in the modulation frequency scan has

  13. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    International Nuclear Information System (INIS)

    Kapaev, V.V.; Belyavsky, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.

    2007-01-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = (π, π). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response

  14. Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem

    International Nuclear Information System (INIS)

    Hasegawa, H.; Harada, A.; Okazaki, Y.

    1984-01-01

    The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral Λ of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B → 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression Λ. (author)

  15. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system

    Science.gov (United States)

    Shimokawa, Y.; Matsuura, Y.; Hirano, T.; Sakai, K.

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ṡ s.

  16. Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Harada, A; Okazaki, Y [Kyoto Univ. (Japan). Dept. of Physics

    1984-11-11

    The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral ..lambda.. of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B ..-->.. 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression ..lambda...

  17. Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam

    International Nuclear Information System (INIS)

    Thomas, V.A.

    1989-01-01

    The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989

  18. Design of a low temperature translation balance for the measurement of paramagnetic and diamagnetic susceptibilities

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, G.S.

    1979-05-01

    A modified Foex and Forrer Translation Balance has been designed for measuring the paramagnetic and diamagnetic properties of materials over the temperature range 77-300/sup 0/K. The systems' temperature range can eventually be extended to 4.2/sup 0/K. The apparatus incorporates a vertical Dewar of Standard variety in addition to a horizontal Dewar for cooling the sample holder and adjacent horizontal supports. The design also allows for the placement of a thermocouple junction in direct contact with a sample. The balance sensitivity, defined as the change in displacement per unit applied force, is 0.0044 cm/dyne. The precision of the balance is +- .5% with an accuracy of 1.5%.

  19. Co–Fe Prussian Blue Analogue Intercalated into Diamagnetic Mg–Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Cuijuan Zhang

    2016-04-01

    Full Text Available A heterostructure of diamagnetic magnesium‒aluminium layered double hydroxides (Mg‒Al LDHs and photomag‐ netic cobalt‒iron Prussian Blue analogue (Co‒Fe PBA was designed, synthesized and then designated as LDH‒PB. The cyanide-bridged Co‒Fe PBA was two-dimensionally intercalated into the Mg‒Al LDH template by the stepwise anion exchange method. LDH‒PB showed ferrimagnetic properties with in-plane antiferromagnetic exchange interactions, as well as small photo-induced magnetization by visible light illumination due to the low dimensional structures and the characteristic photo-induced electronic states of the mixed valence of FeIII(low spin, S = 1/2‒CN‒ CoII(high spin, S = 3/2‒NC‒FeII (low spin, S = 0.

  20. Diamagnetic measurement of JFT-2 plasma heated by neutral beam injection

    International Nuclear Information System (INIS)

    Maeno, Masaki; Sengoku, Seio; Yamamoto, Shin; Suzuki, Norio; Yamauchi, Toshihiko; Kawashima, Hisato; Miura, Yukitoshi

    1984-01-01

    A neutral beam was injected into the plasma in the JFT-2 tokamak, and the poloidal beta value βsub(p) of the plasma was determined by a diamagnetic method in which the change in the magnetic flux due to the plasma was obtained by measuring the very small perturbation of the current in the tokamak's toroidal field coil. The ratio of the perturbed to unperturbed currents in the coil was found to be (2-3) x 10 -4 . The poloidal beta value βsub(pd) determined by this method agrees within experimental error with that obtained from magnetic and energy profile analyses. βsub(pd) increases linearly with the total power Psub(net) deposited by the neutral beam in the plasma when Psub(net)=1.5 MW. The heating efficiency of the beam injection heating was found to be lower than that of Joule heating. (author)

  1. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  2. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    International Nuclear Information System (INIS)

    Perez-Mayoral, Elena; Negri, Viviana; Soler-Padros, Jordi; Cerdan, Sebastian; Ballesteros, Paloma

    2008-01-01

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T 1 and T 2 of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH e ) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH e , independent of water relaxivity, diffusion or exchange

  3. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mayoral, Elena [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Negri, Viviana; Soler-Padros, Jordi [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Cerdan, Sebastian [Laboratorio de Imagen Espectroscopica por Resonancia Magnetica (LIERM), Instituto de Investigaciones Biomedicas ' Alberto Sols' , CSIC/UAM, c/Arturo Duperier 4, E-28029 Madrid (Spain); Ballesteros, Paloma [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain)], E-mail: pballesteros@ccia.uned.es

    2008-09-15

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T{sub 1} and T{sub 2} of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH{sub e}) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH{sub e}, independent of water relaxivity, diffusion or exchange.

  4. Magnetic bistability of isolated giant-spin centers in a diamagnetic crystalline matrix.

    Science.gov (United States)

    Vergnani, Luca; Barra, Anne-Laure; Neugebauer, Petr; Rodriguez-Douton, Maria Jesus; Sessoli, Roberta; Sorace, Lorenzo; Wernsdorfer, Wolfgang; Cornia, Andrea

    2012-03-12

    Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe(4) SMM and its Ga(4) analogue were prepared with no metal scrambling for Fe(4) molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe(4) phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe(4) phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe(4) concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Punugupati, Sandhyarani; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-04-04

    We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO{sub 3} (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST). The epitaxial integration of BST (∼800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A{sub 1}TO{sub 3} mode (at 521.27 cm{sup −1}) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.

  6. G-factors and diamagnetic coefficients of electrons, holes, and excitons in InAs/InP quantum dots

    NARCIS (Netherlands)

    Bree, van J.; Silov, A.Yu.; Koenraad, P.M.; Flatté, M.E.; Pryor, C.E.

    2012-01-01

    The electron, hole, and exciton g factors and diamagnetic coefficients have been calculated using envelope-function theory for cylindrical InAs/InP quantum dots in the presence of a magnetic field parallel to the dot symmetry axis. A clear connection is established between the electron g factor and

  7. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    Science.gov (United States)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  8. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    Science.gov (United States)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  9. Method of compensation spires for the detection of the diamagnetic effect in a Tokamak; Metodo de espiras de compensacion para la deteccion del efecto diamagnetico en un Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Colunga S, S

    1990-09-15

    In this report the classical detection method of the diamagnetic effect by means of a rolled spire on the discharges chamber in the poloidal direction and the difficulties related with this are analyzed. An alternative method that increases considerably the detection sensibility of the diamagnetic effect and that for its simplicity it is quite attractive for its application to the Tokamak Novillo of the ININ is presented. (Author)

  10. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  11. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  12. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Herranz Raul

    2012-02-01

    Full Text Available Abstract Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM. We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  13. Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion.

    Science.gov (United States)

    Upadhyay, Apoorva; Singh, Saurabh Kumar; Das, Chinmoy; Mondol, Ranajit; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2014-08-18

    Field induced single-molecule-magnet behaviour is observed for both a heterodinuclear [ZnDy(L(-))2](3+) complex (1) and a mononuclear [Dy(HL)2](3+) complex (2), with effective energy barriers of 83 cm(-1) and 16 cm(-1), respectively. Insights into the relaxation mechanism(s) and barrier heights are provided via ab initio and DFT calculations. Our findings reveal an interesting observation that the U(eff) of SMMs can be enhanced by incorporating diamagnetic metal ions.

  14. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    International Nuclear Information System (INIS)

    Kim, Keun Su

    2009-01-01

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field

  15. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Bera, Aindrila; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  16. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Surajit [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Bera, Aindrila [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2016-11-30

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  17. Diamagnetism of 2D-fermions in the strong nonhomogeneous static magnetic field B = B(0,0,1/cosh2(x-x0/δ))

    International Nuclear Information System (INIS)

    Hudak, O.

    1991-09-01

    We study diamagnetism of a gas of fermions moving in a nonhomogeneous magnetic field B = B(0,0,1/cosh 2 (x-x 0 /δ)). The gas magnetization, the static magnetic susceptibility, the chemical potential and the gas compressibility are discussed and compared with the uniform field case. (author). 5 refs

  18. Impurity states and the diamagnetic susceptibility of a donor in a GaAs/AlxGa1-xAs Triangular Quantum Well under hydrostatic pressure

    Science.gov (United States)

    Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram

    2017-11-01

    We study the effect of Γ-X band crossover due to the application of hydrostatic pressure of a hydrogenic donor confined in a Triangular GaAs/Al1-xGaxAs Quantum Well (TQW) for x = 0.3 and the diamagnetic susceptibility (χdia) for such an impurity in 1s and some few low lying excited states have been investigated. The Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the diamagnetic susceptibility (χdia) of a hydrogenic donor abruptly increases at a particular pressure for 1s and 2p± states but a steady increase for 2s state as a function of applied pressure.

  19. Attempt to detect diamagnetic anisotropy of dust-sized crystal orientated to investigate the origin of interstellar dust alignment

    Science.gov (United States)

    Takeuchi, T.; Hisayoshi, K.; Uyeda, C.

    2013-03-01

    Diamagnetic anisotropy Δ χ dia was detected on a submillimeter-sized calcite crystal by observing the rotational oscillation of its magnetically stable axis with respect to the magnetic field direction. The crystal was released in an area of microgravity generated by a 1.5-m-long drop shaft. When the oscillations are observable, the present method can measure Δ χ dia of crystal grains irrespective of how small they are without measuring the sample mass. In conventional Δ χ measurements, the background signal from the sample holder and the difficulty in measuring the sample mass prevent measurement of Δ χ dia for small samples. The present technique of observing Δ χ dia of a submillimeter-sized single crystal is a step toward realizing Δ χ dia measurements of micron-sized grains. The Δ χ dia values of single micron-sized grains can be used to assess the validity of a dust alignment model based on magnetic torque that originates from the Δ χ dia of individual dust particles.

  20. 3-D mesoscale MHD simulations of magnetospheric cusp-like configurations: cusp diamagnetic cavities and boundary structure

    Directory of Open Access Journals (Sweden)

    E. Adamson

    2012-02-01

    Full Text Available We present results from mesoscale simulations of the magnetospheric cusp region for both strongly northward and strongly southward interplanetary magnetic field (IMF. Simulation results indicate an extended region of depressed magnetic field and strongly enhanced plasma β which exhibits a strong dependence on IMF orientation. These structures correspond to the Cusp Diamagnetic Cavities (CDC's. The typical features of these CDC's are generally well reproduced by the simulation. The inner boundaries between the CDC and the magnetosphere are gradual transitions which form a clear funnel shape, regardless of IMF orientation. The outer CDC/magnetosheath boundary exhibits a clear indentation in both the x-z and y-z planes for southward IMF, while it is only indented in the x-z plane for northward, with a convex geometry in the y-z plane. The outer boundary represents an Alfvénic transition, mostly consistent with a slow-shock, indicating that reconnection plays an important role in structuring the high-altitude cusp region.

  1. Green's dyadic approach of the self-stress on a dielectric-diamagnetic cylinder with non-uniform speed of light

    International Nuclear Information System (INIS)

    Cavero-Pelaez, I; Milton, K A

    2006-01-01

    We present a Green's dyadic formulation to calculate the Casimir energy for a dielectric-diamagnetic cylinder with the speed of light differing inside and outside. Although the result is in general divergent, special cases are meaningful. It is pointed out how the self-stress on a purely dielectric cylinder vanishes through second order in the deviation of the permittivity from its vacuum value, in agreement with the result calculated from the sum of van der Waals forces

  2. Noise-driven diamagnetic susceptibility of impurity doped quantum dots: Role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function

    International Nuclear Information System (INIS)

    Bera, Aindrila; Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • The dot is subjected to Gaussian white noise. • Role of anisotropy, PDEM and PDDSF have been analyzed. • Noise amplifies and suppresses DMS depending on particular condition. • Findings bear significant technological importance. - Abstract: We explore Diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise introduced to the system additively and multiplicatively. In view of this profiles of DMS have been pursued with variations of geometrical anisotropy and dopant location. We have invoked position-dependent effective mass (PDEM) and position-dependent dielectric screening function (PDDSF) of the system. Presence of noise sometimes suppresses and sometimes amplifies DMS from that of noise-free condition and the extent of suppression/amplification depends on mode of application of noise. It is important to mention that the said suppression/amplification exhibits subtle dependence on use of PDEM, PDDSF and geometrical anisotropy. The study reveals that DMS, or more fundamentally, the effective confinement of LDSS, can be tuned by appropriate mingling of geometrical anisotropy/effective mass/dielectric constant of the system with noise and also on the pathway of application of latter.

  3. Thermally Activated Paramagnets from Diamagnetic Polymers of Biphenyl-3,5-diyl Bis(tert-butyl Nitroxides Carrying Methyl and Fluoro Groups at the 2’- and 5’-Positions

    Directory of Open Access Journals (Sweden)

    Toru Yoshitake

    2016-03-01

    Full Text Available Three new biradicals—2’,5’-dimethyl-, 2’-fluoro-5’-methyl-, and 5’-fluoro-2’-methyl- biphenyl-3,5-diyl bis(tert-butyl nitroxides—were synthesized. The magnetic susceptibility measurements revealed their diamagnetism below and around room temperature. The nitroxide groups are located close to each other in an intermolecular fashion to form a weakly covalent head-to-tail (NO2 ring. Biradical molecules are connected on both radical sites, constructing a diamagnetic chain. The dimethyl derivative underwent a structural phase transition at 83 °C, clarified via differential scanning calorimetry and powder X-ray diffraction, and a paramagnetic solid phase with S = 1 irreversibly appeared. The other analogues exhibited a similar irreversible upsurge of the magnetic susceptibility on heating, but the transition was characterized as the melting.

  4. NMR study of the structure and ion transport in the M1-xRxF2+x diamagnetic solid electrolytes

    International Nuclear Information System (INIS)

    Matsulv, A.N.; Nuznik, V.M.; Livshits, A.I.; Fedorov, P.P.; Sobolev, B.P.

    1988-01-01

    Monocrystalline samples of Sr 0.75 La 0.25 F 2.25 and Ba 0.75 Y 0.25 F 2.25 solid electrolytes, which belong to diamagnetic fluorite-like solid solutions, are investigated using 19 F continuous NMR method at 48 MHz frequency. Comparison of theoretical calculations and experimental data has allowed to attach component-spectra to two structural positions - F l main lattice one and F i interstitial one. A technique is suggested, and evaluation of density of structural positions is made on the basis of orientational dependences of spectra secondary moment. Change of spectra form and dispersion on heating is characteristic one for samples with ion diffusive movement. Analysis of experimental data has allowed to determine, that anionic systems of solid solutions are dinamically heterogeneous. At 290-470 K temperatures the florine ions of both types (F l and F i ) contribute to the ionic conductivity. Within this temperature range movement of the bulk of fluorine ions is more, than 10 4 Hz. Measurements, conducted for Sr 0.75 La 0.25 F 2.25 have shown, that fluorine ions in the interstitial positions are more mobile, than in the lattice ones

  5. The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection

    International Nuclear Information System (INIS)

    Bamford, R; Bradford, J; Bingham, R; Gargate, L; Hapgood, M; Stamper, R; Gibson, K J; Thornton, A J; Silva, L O; Fonseca, R A; Norberg, C; Todd, T

    2008-01-01

    Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding a spacecraft forming a 'mini magnetosphere'. Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the solar wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small 'hole' in a solar wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared with a 3D particle-in-cell 'hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers.

  6. Two-dimensional Haeckelite NbS{sub 2}. A diamagnetic high-mobility semiconductor with Nb{sup 4+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yandong; Kuc, Agnieszka; Jing, Yu; Heine, Thomas [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Universitaet Leipzig (Germany); Philipsen, Pier [Scientific Computing and Modelling NV, Amsterdam (Netherlands)

    2017-08-14

    In all known Group 5 transition-metal dichalcogenide monolayers (MLs), the metal centers carry a spin, and their ground-state phases are either metallic or semiconducting with indirect band gaps. Here, on grounds of first-principles calculations, we report that the Haeckelite polytypes 1S-NbX{sub 2} (X=S, Se, Te) are diamagnetic direct-band-gap semiconductors even though the Nb atoms are in the 4+ oxidation state. In contrast, 1S-VX{sub 2} MLs are antiferromagnetically coupled indirect-band-gap semiconductors. The 1S phases are thermodynamically and dynamically stable but of slightly higher energy than their 1H and 1T ML counterparts. 1S-NbX{sub 2} MLs are excellent candidates for optoelectronic applications owing to their small band gaps (between 0.5 and 1 eV). Moreover, 1S-NbS{sub 2} shows a particularly high hole mobility of 2.68 x 10{sup 3} cm{sup 2} V{sup -1} s{sup -1}, which is significantly higher than that of MoS{sub 2} and comparable to that of WSe{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Structure, spectra and thermal, mechanical, Faraday rotation properties of novel diamagnetic SeO2-PbO-Bi2O3-B2O3 glasses

    Science.gov (United States)

    Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei

    2018-06-01

    Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.

  8. Paramagnetism and diamagnetism in EXTRAP

    International Nuclear Information System (INIS)

    Tennfors, E.

    1991-10-01

    Magnetic field profiles measured in Extrap discharges with an imposed axial/toroidal magnetic field are analysed in the present article. In a linear device, Extrap L1, the axial current is driven by an applied electrode voltage. In the toroidal Extrap T1, the toroidal current is induced. Contributions to the current, and addition to that due to the applied voltage, may arise from radial diffusion as well as from dynamo effects like those observed in reversed field pinches. Typical magnetic field profiles are studied here in order to assess these contributions. (12 refs., 14 figs.)

  9. Diamagnetism in quasicrystalline superconducting networks

    International Nuclear Information System (INIS)

    Qian Niu; Nori, F.

    1990-01-01

    In this paper, we review recent results on superconducting structures with quasicrystalline geometry. Specifically, we consider the superconducting-normal phase boundaries of a variety of wire networks and Josephson junction arrays. We have computed the mean field phase diagrams for a number of geometries and compared them to the corresponding experimental data. We have introduced an analytical approach to the analysis of the structures present in the phase boundaries. Furthermore, we have shown in great detail how the gross structure is determined by the statistical distributions of the cell areas, and how the fine structures are determined by correlations among neighboring cells in the lattices. (author). 12 refs, 2 figs

  10. Universal fluctuations in orbital diamagnetism

    Indian Academy of Sciences (India)

    P S Pal

    published online 31 January 2018. Abstract. Bohr–van ... friction and (c) particle moving in a medium with space-dependent temperature. For all the three cases, the average ..... A M J thanks Department of Science and Technology,. India, for ...

  11. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  12. Determination of the physical values of a plasma puff by analysis of the diamagnetic signals. 1. part: expansion model for the puff. 2. part: comparison of experimental results with the expansion model for the plasma puff

    International Nuclear Information System (INIS)

    Jacquinot, J.; Leloup, Ch.; Waelbroeck, F.; Poffe, J.P.

    1964-01-01

    The flow of a dense plasma puff, along the axis of a uniform magnetic field is examined, assuming the following hypotheses: the axial distribution of the line density can be described at any time by a gaussian function whose characteristic parameter is independent of the distance from the axis of the system; the β ratio is less than 0,6. An approximate solution of the magnetohydrodynamics equations is obtained. The evolution of the characteristic properties of the plasma (local velocity, temperature and density) can be calculated from a set of equations involving 5 plasma parameters. A method leading to the determination of these parameters is described. It uses 5 informations picked up from the diamagnetic signals induced by the plasma into a set of 4 compensated magnetic loops. (authors) [fr

  13. Strong diamagnetism for general domains and applications

    DEFF Research Database (Denmark)

    Fournais, Søren; Helffer, Bernard

    2007-01-01

    We consider the Neumann Laplacian with constant magnetic field on a regular domain. Let $B$ be the strength of the magnetic field, and let $\\lambda_1(B)$ be the first eigenvalue of the magnetic Neumann Laplacian on the domain. It is proved that $B \\mapsto \\lambda_1(B)$ is monotone increasing for ...

  14. Theory of anisotropic diamagnetism, local moment magnetization ...

    Indian Academy of Sciences (India)

    Department of Physics, S.K.C.G College, Parlakhemundi 761 200, India. 1Department of ..... We believe inclusion of such effects might improve the agreement. .... One of the authors (GST) acknowledges financial support from UGC, India.

  15. Diamagnetic measurements on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Shepard, T.D.

    1985-07-01

    A procedure for determining the total thermal energy content of a magnetically confined plasma from a measurement of the plasma magnetization has been successfully implemented on the Alcator C tokamak. When a plasma is confined by a magnetic field, the kinetic pressure of the plasma is supported by an interaction between the confining magnetic field and drift currents which flow in the plasma. These drift currents induce an additional magnetic field which can be measured by means of appropriately positioned pickup coils. From a measurement of this magnetic field and of the confining magnetic field, one can calculate the spatially averaged plasma pressure, which is related to the thermal energy content of the plasma by the equation of state of the plasma. The theory on which this measurement is based is described in detail. The fields and currents which flow in the plasma are related to the confining magnetic field and the plasma pressure by requiring that the plasma be in equilibrium, i.e., by balancing the forces due to pressure gradients against those due to magnetic interactions. The apparatus used to make this measurement is described and some example data analyses are carried out

  16. Diamagnetism of quantum gases with singular potentials

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Savoie, Baptiste

    2010-01-01

    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is analytic with respect to the chemical potential and the intensity of the external magnetic...

  17. Diamagnetic boundary layers: a kinetic theory

    International Nuclear Information System (INIS)

    Lemaire, J.; Burlaga, L.F.

    1976-01-01

    A kinetic theory for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma such as those observed in the solar wind is presented. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary, one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers, in which the current is carried by protons are discussed; in particular, cases in which the magnetic field intensity and/or direction changed across the layer were considered. In every case, the thickness was of the order of a few proton gyroradii and the field changed smoothly , although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. The results are consistent with the observations of boundary layers in the solar wind near 1 AU. (Auth.)

  18. Study of diamagnetism in uranyl complexes of some Schiff bases

    International Nuclear Information System (INIS)

    Dodwad, S.S.; Sawant, A.S.

    1992-01-01

    Uranyl complexes of Schiff bases obtained by condensing salicylaldehyde with aromatic amines have been isolated and characterised. The complexes have the formula M (LH) 2 (NO 3 ) 2 where M = UO 2 and LH = Schiff base. The magnetic susceptibilities of these complexes have been measured on a Gouy balance. These values have been compared with the computed ones. The percentage deviation between the observed and computed values of molar magnetic susceptibilities clearly show that they are outside experimental error and therefore significant. These deviations have been discussed in the light of VanVleck's, equation for molar susceptibility of polyatomic molecule. (author). 3 refs., 1 tab

  19. Magnetic modification of diamagnetic agglomerate forming powder materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Baldíková, Eva; Pospíšková, K.; Šafaříková, Miroslava

    2016-01-01

    Roč. 29, December (2016), s. 169-171 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic modification * magnetic separation * powdered material * magnetic iron oxide * microwave assisted synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  20. The physical kinetics of magnetoplasticity of diamagnetic crystals

    International Nuclear Information System (INIS)

    Buchachenko, A. L.

    2007-01-01

    The kinetic equations describing the rate of magnetically induced release of dislocations entrapped by stoppers were solved. The magnetic field effect on the mobility of dislocations was calculated. Its comparison with experiment gave the ratio between the rate constants for two key processes governing magnetoplasticity, namely, singlet-triplet conversion in a spin nanoreactor and the release of a dislocation from it. The kinetic criterion of the existence of magnetoplasticity as a physical phenomenon was obtained

  1. Electron diamagnetism and toroidal coupling of tearing modes

    International Nuclear Information System (INIS)

    Cowley, S.C.; Hastie, R.J.

    1987-10-01

    Using a simple model for the layer of the tearing mode, we demonstrate that toroidally coupled tearing modes with two rational surfaces are most unstable when the ω*'s of the electrons at the rational surfaces are equal. The onset of instability may then occur because of the tuning of ω* rather than the passage of Δ'-like quantities through zero. This mechanism for the onset of instability is sharp since the resonance is narrow. The effect of toroidal rotation is also discussed. 7 refs., 2 figs

  2. Magnetic properties and superconducting-fluctuation diamagnetism above Tc in Bi2-xPbxSr2CaCu2O8+δ (x=0.0, 0.1, 0.2, 0.3, 0.5) and

    International Nuclear Information System (INIS)

    Lee, W.C.; Cho, J.H.; Johnston, D.C.

    1991-01-01

    The magnetic susceptibilities χ(T) of the title compounds above and below T c are reported. For the Bi 2-x Pb x Sr 2 CaCu 2 O 8+δ (Bi 2:2:1:2) system, optimization of the phase purity and superconducting properties is found between x=0.2 and 0.3. The χ(T) data for these Bi 2:2:1:2 and for the two Bi 2:2:2:3 samples increase monotonically with temperature from T c up to at least 400 K, exhibiting strong negative curvature below ∼200 K. From theoretical fits to the data in the two-dimensional regime above T c using the static Lawrence-Doniach model as modified by Klemm, we conclude that the negative curvature in χ(T) for each sample arises from superconducting-fluctuation diamagnetism (SFD). The data are thus consistent with a superconducting order parameter of s-wave symmetry. From the fits to the data, the Ginzburg-Landau coherence lengths in the CuO 2 planes were obtained and found to be ξ ab (0)=20.4(2) A for Bi 2:2:1:2 and 11.8(4) A for Bi 2:2:2:3. The value for Bi 2:2:1:2 is comparable to those calculated from upper critical magnetic-field data for this compound (23.5--27.1 A). Our ξ ab (0) values for Bi 2:2:1:2 and Bi 2:2:2:3 are also comparable with that (13.6 A) found from our previous similar analysis of the SFD in YBa 2 Cu 3 O 7 . The possible role of the bridging oxygens out of the CuO 2 plane in Bi 2:2:2:3 and the influence of the dynamics in the fits to the SFD in the Bi-based compounds remain to be addressed

  3. Ferromagnetic Coupling between Copper(II) Centers through the Diamagnetic Zinc(II) Ion: Crystal Structure and Magnetic Properties of [Cu(2)Zn(Hdmg)(2)(dmg)(2)(H(2)O)].0.5H(2)dmg.H(2)O (H(2)dmg = Dimethylglyoxime).

    Science.gov (United States)

    Ruiz, Rafael; Julve, Miguel; Faus, Juan; Lloret, Francesc; Muñoz, M. Carmen; Journaux, Yves; Bois, Claudette

    1997-07-30

    ferromagnetic coupling in 1 are the diamagnetic zinc(II) ion and the out-of-plane double-oximato bridge, the magnitude of the magnetic coupling between the copper(II) ions through these bridging units being 3.9 and 5.1 cm(-)(1), respectively.

  4. Determination of the physical values of a plasma puff by analysis of the diamagnetic signals. 1. part: expansion model for the puff. 2. part: comparison of experimental results with the expansion model for the plasma puff; Determination des grandeurs physiques d'une bouffee de plasma par l'analyse de signaux diamagnetiques. 1. partie: modele d'expansion de bouffee. 2. partie: confrontation des resultats experimentaux et du modele d'expansion de la bouffee de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J; Leloup, Ch; Waelbroeck, F; Poffe, J P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The flow of a dense plasma puff, along the axis of a uniform magnetic field is examined, assuming the following hypotheses: the axial distribution of the line density can be described at any time by a gaussian function whose characteristic parameter is independent of the distance from the axis of the system; the {beta} ratio is less than 0,6. An approximate solution of the magnetohydrodynamics equations is obtained. The evolution of the characteristic properties of the plasma (local velocity, temperature and density) can be calculated from a set of equations involving 5 plasma parameters. A method leading to the determination of these parameters is described. It uses 5 informations picked up from the diamagnetic signals induced by the plasma into a set of 4 compensated magnetic loops. (authors) [French] L'ecoulement d'une bouffee dense de plasma le long des lignes de force d'un champ magnetique uniforme est etudie en faisant les hypotheses suivantes : la distribution axiale de la densite lineique est, a chaque instant, une gaussienne dont le parametre caracteristique ne depend pas de la distance a l'axe de revolution du systeme; {beta}(2 {mu}{sub 0} p/B{sup 2}{sub e}) est inferieur a 0,6. Dans ces conditions, une solution approchee des equations magneto-hydrodynamiques a pu etre trouvee. L'evolution des quantites physiques du plasma (vitesse, temperature, densite locale) est alors explicitement donnee par des equations dependant de 5 parametres. On decrit une methode permettant la determination de ces parametres. Elle necessite 5 informations prises sur les signaux diamagnetiques induits par le plasma dans un jeu de quatre boucles magnetiques compensees. (auteurs)

  5. The magnetic state of diamagnetically diluted antiferromagnetic cobalt and nickel monoxide

    International Nuclear Information System (INIS)

    Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2009-01-01

    The nearest neighbour J 1 (x) and the next-neighbour super-exchange J 2 (x) interactions are evaluated by using the mean field theory for Mg 1-x B x O (B=Co and Ni) systems. The magnetic energy E(x) is obtained. A magnetic phase diagram of the Mg 1-x B x O (B=Co and Ni) solid solutions with 0≤x≤1 is drawn by high-temperature series expansions (HTSE) combined with the Pade approximants method (PA). The critical exponents associated with the magnetic susceptibility (γ) and with the correlation length (ν) are deduced in order phase.

  6. Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Tu, C. S., E-mail: 039611@mail.fju.edu.tw [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Xu, Z.-R.; Chang, L.-Y. [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Schmidt, V. H.; Chien, R. R. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Chang, W. C. [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China)

    2014-05-07

    Spontaneous magnetization and photovoltaic (PV) effects have been measured in (Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramics for x = 0.05, 0.10, and 0.15. The substitution of Ba{sup 2+} ion in the A site of the perovskite unit cell can effectively enhance the ferromagnetic magnetization. The heterostructure of indium tin oxide (ITO) film/(Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramic/Au film exhibits significant PV effects under illumination of λ = 405 nm. The PV responses decrease with increasing Ba concentration. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.95}Ba{sub 0.5})FeO{sub 2.95}/Au can reach 0.006%. A theoretical model based on optically excited current in the depletion region between ITO film and (Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramics is used to describe the I-V characteristic, open-circuit voltage (V{sub oc}), and short-circuit current density (J{sub sc}) as a function of light intensity.

  7. Fluctuation induced diamagnetism versus paraconductivity in Y1Ba2Cu3O7-δ single crystals

    International Nuclear Information System (INIS)

    Torron, C.; Diaz, A.; Jegoudez, J.; Maza, J.; Pomar, A.; Revcolevschi, A.; Veira, J.A.; Vidal, F.

    1994-01-01

    The rounding effects above the superconducting transition of the electrical resistivity and of the magnetic susceptibility in low magnetics fields have been measured in the same YBa 2 Cu 3 O 7-δ (YBCO) single crystals. When analyzed in terms of independent gaussian fluctuations of the superconducting order parameter in layered materials, an scenario compatible with these experimental results is: Absence of appreciable Maki-Thompson contribution to the paraconductivity, ξ ab (0) = (10 ± 2) A, ξ c (0) = (1.2 ± 0.3) A, d e = s = 11.7 A, and conventional 1 s o wave pairing or one complex component unconventional pairing. (orig.)

  8. Stochastic transition of free motion in billiards with borders given by equipotential lines of the diamagnetic Kepler problem

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Mueller, K.

    1992-01-01

    We compare the transition from ordered to chaotic motion in a potential with that in a billiard, whose borders are defined by the maximal equipotential line of the potential system in the case of hydrogen in a uniform magnetic field. For the billiard we calculate the Poincare maps, the fraction of regular motion on the surface of section, and the stability properties of the shortest periodic orbits. In contrast to the H atom, the billiard shows a generic transition to chaos. While the shape of the orbits is determined by the boundary and is thus very similar, their properties of stability are different: The potential tends to stabilize the motion. The onset of instability in the billiard can be understood in terms of the curvature of the boundary; for the potential system the Gaussian curvature of the potential-energy surface is shown to be the relevant parameter

  9. High-Frequency C-13 and Si-29 NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of TII and Pb-II: Decisive Role of Relativistic Effects

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 4 (2016), s. 1770-1781 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : high-frequency NMR chemical shifts * HALA effect * relativistic DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  10. Transition from the diamagnetic insulator to ferromagnetic metal in La.sub.1-x./sub.Sr.sub.x./sub.CoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Novák, Pavel

    2010-01-01

    Roč. 322, 9-12 (2010), s. 1221-1223 ISSN 0304-8853 R&D Projects: GA AV ČR IAA100100611 Institutional research plan: CEZ:AV0Z10100521 Keywords : LnCoO 3 * GGA+U calculation * spin states transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  11. Magnetic properties of single crystals of bismuth telluride doped with 0.2 at% lead and its thermoelectric power

    International Nuclear Information System (INIS)

    Biswas, S.; Bhattacharya, R.

    1990-01-01

    At temperatures above 200 K the diamagnetic susceptibility of Bi 2 Te 3 doped with 0.2 at% Pb decreases with rising temperature which cannot be accounted for by the change in the diamagnetic contribution of the free carriers present in the substance. It is shown that this decrease can be accounted for if χ L (diamagnetic contribution of core and valence electrons) decreases with temperature. The thermoelectric power is measured to determine the effective mass of carriers. (author)

  12. Stability of tokamaks with elongated cross section

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1978-08-01

    Fixed boundary n = 1 MHD instabilities are studied computationally as a function of diamagnetism (β/sub pol/) and current profile in elongated toroidal equilibria (1 2) or a diamagnetic plasma (β/sub pol/ > 1) with only a mildly elongated cross section

  13. Disk-cylinder method for using NMR to measure magnetic susceptibility

    International Nuclear Information System (INIS)

    Burnham, A.K.

    1978-01-01

    The sphere-cylinder method of using nuclear magnetic resonance (NMR) to measure the magnetic susceptibility of diamagnetic and paramagnetic materials has been generalized to the disk-cylinder method. A two-fold increase in sensitivity was obtained. Accuracies of 0.1% of the diamagnetism of water should be readily obtainable

  14. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  15. Interaction of a spheromak-like compact toroid with a high beta spherical tokamak plasma

    International Nuclear Information System (INIS)

    Hwang, D.Q.; McLean, H.S.; Baker, K.L.; Evans, R.W.; Horton, R.D.; Terry, S.D.; Howard, S.; Schmidt, G.L.

    2000-01-01

    Recent experiments using accelerated spheromak-like compact toroids (SCTs) to fuel tokamak plasmas have quantified the penetration mechanism in the low beta regime; i.e. external magnetic field pressure dominates plasma thermal pressure. However, fusion reactor designs require high beta plasma and, more importantly, the proper plasma pressure profile. Here, the effect of the plasma pressure profile on SCT penetration, specifically, the effect of diamagnetism, is addressed. It is estimated that magnetic field pressure dominates penetration even up to 50% local beta. The combination of the diamagnetic effect on the toroidal magnetic field and the strong poloidal field at the outer major radius of a spherical tokamak will result in a diamagnetic well in the total magnetic field. Therefore, the spherical tokamak is a good candidate to test the potential trapping of an SCT in a high beta diamagnetic well. The diamagnetic effects of a high beta spherical tokamak discharge (low aspect ratio) are computed. To test the penetration of an SCT into such a diamagnetic well, experiments have been conducted of SCT injection into a vacuum field structure which simulates the diamagnetic field effect of a high beta tokamak. The diamagnetic field gradient length is substantially shorter than that of the toroidal field of the tokamak, and the results show that it can still improve the penetration of the SCT. Finally, analytic results have been used to estimate the effect of plasma pressure on penetration, and the effect of plasma pressure was found to be small in comparison with the magnetic field pressure. The penetration condition for a vacuum field only is reported. To study the diamagnetic effect in a high beta plasma, additional experiments need to be carried out on a high beta spherical tokamak. (author)

  16. Characterization of zonal flow generation in weak electrostatic turbulence

    International Nuclear Information System (INIS)

    Negrea, M; Petrisor, I; Weyssow, B

    2008-01-01

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted

  17. An environment with strong gravitational and magnetic field alterations synergizes to promote variations in Arabidopsis thaliana callus global transcriptional state

    Data.gov (United States)

    National Aeronautics and Space Administration — Using diamagnetic levitation we have exposed A. thaliana in vitro callus cultures to five environments with different levels of effective gravity (from levitation...

  18. The effect of energetic trapped particles on the resistive internal Kink

    International Nuclear Information System (INIS)

    Romanelli, F.; White, R.B.

    1988-01-01

    The effect of energetic trapped particles on the ideal and resistive internal Kink mode is analyzed including diamagnetic effects. The relation between different approaches to the problem is discussed

  19. Observations of plasma tearing instabilities and associated axial translation in field-reversed experiments

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Cochrane, J.C.; Lipson, J.; Tuszewski, M.

    1981-02-01

    Tearing and reconnection processes during the formation and quiescent periods of a field-reversed configuration are studied with an axial array of compensated diamagnetic loops. Several representative plasma shots are documented

  20. Magnetism in the New GCSE

    Science.gov (United States)

    French, M. M. J.

    2016-01-01

    The new 9-1 GCSE courses in Physics include reference to both permanent and induced magnets. In this article I briefly examine the origin of ferromagnetism, diamagnetism and paramagnetism and suggest a number of helpful classroom demonstrations.

  1. Metal octacarboxy phthalocyanines / Multiwalled carbon nanotubes hybrid for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2011-05-01

    Full Text Available photovoltaic cells. In these devices, photosensitisers are one of the main components for light-driven processes. Metallophthalocyanine (MPc) complexes, especially those containing diamagnetic metal centres (M = Zn, Ga, Si), are well established as efficient...

  2. The effect of multi-walled carbon nanotubes on metal octacarboxyphthalocyanines for dye solar cells application: synthesis and characterisation

    CSIR Research Space (South Africa)

    Mphahlele, N

    2012-10-01

    Full Text Available . Metallophthalocyanine (MPc) complexes, especially those containing diamagnetic metal centres (M = Zn, Ga, Si), are well established as efficient photosensitisers [2]. A significant effort has been made to enhance the photosensitization properties in DSCs by modifying...

  3. Effects of inhomogeneity on the Shukla-Nambu-Salimullah potential in a magnetized plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Shah, H.A.; Murtaza, G.; Nitta, H.; Tessarotto, M.

    2007-01-01

    Detailed properties of the electrostatic Shukla-Nambu-Salimullah potential in an inhomogeneous magnetoplasma in the presence of ion streaming due to diamagnetic drift as in a laboratory discharge plasma have been examined analytically. The potential becomes a sensitive function of the external static magnetic field, the scalelength of inhomogeneity, and the diamagnetic ion streaming velocity. For a decreasing ion density gradient, there is a limit of existence of this static modified shielding potential

  4. Magnetic susceptibilities of bynary non-electrolyte mixtures

    International Nuclear Information System (INIS)

    Caceres, P.; Acevedo, I.L.; Postigo, M.A.; Kartz, M.

    1987-01-01

    Molar magnetic susceptibilities are determined by the Goy method for the following two systems: 1-propanol + methyl acetate and 2-propanol + methyl acetate at 298 K where the three molecules are polar and the alcohol molecules are associated in their pure state. Excess diamagnetic susceptibilties are calculated to obtain information about possible interactions. Diamagnetic suscetibilities were related with molecular polarizabilities by Boyer-Donzelot's equation and compared with experimental results. (author) [pt

  5. Pressure anisotropy in ohmic FTU discharges

    International Nuclear Information System (INIS)

    Alladio, F.; Buratti, P.; Grolli, M.; Marinucci, M.; Podda, S.; Zerbini, M.; Zoffoli, M.

    1991-01-01

    The diamagnetic measurements of the toroidal magnetic flux provides on tokamaks a direct evaluation of the perpendicular beta poloidal of the plasma. The diamagnetic measurement is performed on FTU by compensated diamagnetic loops that are mounted on the inside of the toroidal field magnet. The signal of the main loop that surrounds the plasma is compensated by the difference between the signals of two auxiliary loops (one external and the other internal to the main one) that just measures the vacuum toroidal flux. The most careful zeroing of the compensated signal in absence of the plasma has been performed by trimmering all the electronics that makes the analogue signal processing; however, due to the time evolution of the spatial ripple of the toroidal field, such zeroing does not produce a zero voltage signal. At the best regulation one has obtained a reproducible signal for a given toroidal field current waveform (in absence of any other machine current). The reproducibility of the signal was perfectly constant during months within the arbitrary addition of an offset and of a linear ramp both due to the minimal thermal drifts of the analogue electronics. This has allowed to obtain the real diamagnetic signal by a simple subtraction and allowing for an additional offset and ramp. This operation was performed on two independent sets of compensated diamagnetic loops, one sitting on the minimum and the other on the maximum of the toroidal field ripple. (author) 2 refs., 3 figs

  6. Experimental study of poloidal flow effect on magnetic island dynamics in LHD and TJ-II

    International Nuclear Information System (INIS)

    Narushima, Y.; Sakakibara, S.; Castejon, F.

    2010-11-01

    The dynamics of a magnetic island are studied by focusing on the poloidal flows in the helical devices LHD and TJ-II. The temporal increment of the ExB poloidal flow prior to the magnetic island transition from growth to healing is observed. The direction of the poloidal flow is in the electron-diamagnetic direction in LHD and in the ion-diamagnetic direction in TJ-II. From the magnetic diagnostics, it is observed that a current structure flowing in the plasma moves ∼π rad poloidally in the electron-diamagnetic direction during the transition in LHD experiments. These experimental observations from LHD and TJ-II show that the temporal increment of the poloidal flow is followed by the transition (growth to healing) of the magnetic island regardless of the flow direction and clarify the fact that significant poloidal flow affects the magnetic island dynamics. (author)

  7. Low temperature and neutron physics studies. Progress report, September, 1977--April, 1979

    International Nuclear Information System (INIS)

    Shull, C.G.

    1979-04-01

    Experimental research work with the neutron diffraction spectrometers at the MIT Research Reactor concentrated during the past period in two general areas, a study of diamagnetic scattering of neutrons by bismuth and physical effects associated with dynamical diffraction by perfect crystals. The former study showed that the outermost valence (or lattice) electrons contribute dominantly to the field-induced diamagnetism. Fourier transformation of the scattering data provided maps showing the distribution of diamagnetization density throughout the unit cell with pronounced spatial variations. In the latter studies, some of the anomalous effects associated with neutron propagation through diffracting perfect crystals were investigated. These include the very sensitive modification of transport direction within the crystal when the entrance direction is changed slightly or when the neutron energy is changed slightly by applicaton of a modest magnetic field. Additional studies have shown that neutrons propagate through a diffracting crystal with a drift velocity which can be pronouncedly smaller than the usual group velocity

  8. Bi-fluid and neoclassical effect on a Double-Tearing mode in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Maget, Patrick, E-mail: patrick.maget@cea.fr; Garbet, Xavier; Février, Olivier; Ségui, Jean-Luc [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Lütjens, Hinrich; Luciani, Jean-François [Centre de Physique Théorique, Ecole Polytechnique, CNRS (France)

    2014-06-15

    Tearing modes associated to hollow current profiles are prone to grow in moderate performance plasmas and often constrain the realization of non-inductive discharges in the Tore Supra tokamak, where long pulse duration is performed using Lower Hybrid waves for providing most of the plasma current. The prediction of MHD boundaries in such scenarios is complicated by the importance of diamagnetic effects, combined with curvature stabilization, which determine the stability of these modes. We show that diamagnetic effects, as well as neoclassical forces, are playing a key role in the linear and nonlinear regimes of Double-Tearing Modes on q = 5/3 and q = 2 in these experimental conditions. Detailed comparison with experimental measurements, combined with a scaling in plasma resistivity, give constraints about the experimental equilibrium. Resistive-Interchange Modes destabilized by diamagnetic rotation could also play a role in degrading the energy confinement in the negative magnetic shear region.

  9. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  10. Muon implantation in inert gases studied by radio frequency spectroscopy

    International Nuclear Information System (INIS)

    Johnson, C; Cottrell, S P; Ghandi, K; Fleming, D G

    2005-01-01

    Diamagnetic and muonium (Mu) fractions formed in low-pressure inert gases, by energetic muon implantation, have been studied using the technique of time-delayed radio frequency muon spin resonance (RF-μSR). Results obtained establish the validity of the long-held view that formation of these species is due only to prompt processes, and in turn confirms that the diamagnetic environment is due to a muon molecular ion, MMu + , and not a bare μ + . In addition, polarization fractions for the diamagnetic and Mu environments have been determined at different pressures, thereby complementing earlier data, and demonstrating that the RF-μSR technique provides polarization fractions in good accord with those obtained using conventional transverse-field muon spin resonance measurements

  11. Muon implantation in inert gases studied by radio frequency spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Cottrell, S P [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Ghandi, K [TRIUMF and Department of Chemistry, University of British Columbia, Vancouver (Canada); Fleming, D G [TRIUMF and Department of Chemistry, University of British Columbia, Vancouver (Canada)

    2005-01-14

    Diamagnetic and muonium (Mu) fractions formed in low-pressure inert gases, by energetic muon implantation, have been studied using the technique of time-delayed radio frequency muon spin resonance (RF-{mu}SR). Results obtained establish the validity of the long-held view that formation of these species is due only to prompt processes, and in turn confirms that the diamagnetic environment is due to a muon molecular ion, MMu{sup +}, and not a bare {mu}{sup +}. In addition, polarization fractions for the diamagnetic and Mu environments have been determined at different pressures, thereby complementing earlier data, and demonstrating that the RF-{mu}SR technique provides polarization fractions in good accord with those obtained using conventional transverse-field muon spin resonance measurements.

  12. The influence of electric discharge on the properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Parashchuk, V.V.

    1990-01-01

    The influence is studied of pulse voltage with amplitude 100 kV and duration 100 to 200 ns on the temperature dependence of diamagnetic susceptibility of yttrium ceramics. As a result of the action of spark discharge on the ceramics, the superconducting transition parameters change. As the number of voltage pulses is increased, the diamagnetic susceptibility and the critical temperature determined by it first increase rapidly, then drop slowly. At the same time the transition in the optimum becomes more sharp. In the case of treatment in the air, Tc increases by 15 K and at discharge in liquid nitrogen by 25 K. It is found that the atmospheric air under certain conditions affects the temperature dependence of the diamagnetic susceptibility of HTSC ceramics. Treatment by a high-voltage spark decreases the susceptibility of the ceramics due to atmospheric effects. The highest efficiency of spark treatment is achieved at discharge in liquid nitrogen. (orig.)

  13. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    Science.gov (United States)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  14. Zonal Flows Driven by Small-Scale Drift-Alfven Modes

    International Nuclear Information System (INIS)

    Li Dehui; Zhou Deng

    2011-01-01

    Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)

  15. Persistent current through a semiconductor quantum dot with Gaussian confinement

    International Nuclear Information System (INIS)

    Boyacioglu, Bahadir; Chatterjee, Ashok

    2012-01-01

    The persistent diamagnetic current in a GaAs quantum dot with Gaussian confinement is calculated. It is shown that except at very low temperature or at high temperature, the persistent current increases with decreasing temperature. It is also shown that as a function of the dot size, the diamagnetic current exhibits a maximum at a certain confinement length. It is furthermore shown that for a shallow potential, the persistent current shows an interesting maximum structure as a function of the depth of the potential. At low temperature, the peak structure is pretty sharp but becomes broader and broader with increasing temperature.

  16. Evaluation of the magnetic properties of cosmetic contact lenses with a superconducting quantum interference device.

    Science.gov (United States)

    Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu

    2014-01-01

    We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.

  17. Response of hard superconductors to crossed magnetic fields: elliptic critical-state model

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C.; Perez-Rodriguez, F

    2004-05-01

    The behavior of hard superconductors subjected to crossed magnetic fields is theoretically investigated by employing an elliptic critical-state model. Here the anisotropy is induced by flux-line cutting. The model reproduces successfully the collapse of the magnetic moment under the action of a sweeping magnetic field, applied perpendicularly to a dc field, for diamagnetic and paramagnetic initial states. Besides, it explains the transition from the diamagnetic state to the paramagnetic one when the magnitudes of the crossed magnetic fields are of the same order.

  18. Magnetic properties of Zn(P/sub x/As/sub 1-x/)2 alloys

    International Nuclear Information System (INIS)

    Vitkina, T.Z.; Smolyarenko, E.M.; Trukhan, V.M.

    1987-01-01

    The authors study the magnetic properties of Zn(P/sub x/As/sub 1-x/) 2 alloys. The concentration-dependent magnetic susceptibility of these alloys is shown, as is the temperature dependence of the magnetic susceptibility in solid solutions of the alloys. The diamagnetic susceptibility associated with the valence electrons displays a marked change for a transition to the bound state inasmuch as the valence electrons constitute the chemical bonding in the crystal. The diamagnetic component of the susceptibility of the valence electrons is calculated according to the MO LCAO approximation on the assumption that there is sp 3 -hybridization of the atomic wave function

  19. TRANSFORMER APPARATUS

    Science.gov (United States)

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  20. Classical calculation of radiative lifetimes of atomic hydrogen in a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Horbatsch, M.W.; Hessels, E.A.; Horbatsch, M.

    2005-01-01

    Radiative lifetimes of hydrogenic atoms in a homogeneous magnetic field of moderate strength are calculated on the basis of classical radiation. The modifications of the Keplerian orbits due to the magnetic field are incorporated by classical perturbation theory. The model is complemented by a classical radiative decay calculation using the radiated Larmor power. A recently derived highly accurate formula for the transition rate of a field-free hydrogenic state is averaged over the angular momentum oscillations caused by the magnetic field. The resulting radiative lifetimes for diamagnetic eigenstates classified by n,m and the diamagnetic energy shift C compare well with quantum results

  1. Investigation of magnetic interactions in sulfides by means of magnetic resonance

    International Nuclear Information System (INIS)

    Veen, G. van.

    1978-01-01

    Investigations have been designed to gather more information about magnetic pair interactions in sulfides by isomorphic substitution of the magnetic ions in suitable chosen diamagnetic host lattices and measurement of electron spin resonance of coupled pairs and of electron spin resonance or electron nuclear double resonance of the hyperfine interaction due to the nuclei of diamagnetic cations. The greater part of this thesis is devoted to preliminaries of magnetic resonance interpretation and sample selection and preparation. The measurements on the magnetically diluted compounds, which are described, only have an exploratory nature. (Auth.)

  2. Two-stage magnetic orientation of uric acid crystals as gout initiators

    Science.gov (United States)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  3. Electrical, magnetic and physical properties of YBa/sub 2/Cu/sub 3/O/sub 7-x/ superconductor/polymer composites

    International Nuclear Information System (INIS)

    Fuierer, P.A.; Srinivasan, T.T.; Newnham, R.E.

    1988-01-01

    A polymer matrix provides a composite with flexibility and improved impact strength as well as protection against humidity and chemical attack. Superconductor/polymer 0-3 composites have been prepared by mixing YBa/sub 2/Cu/sub 3/O/sub 7-x/ powder with silicone rubber, pressing and curing. The resistivities of these composites do not go to zero, however, the magnetic flux exclusion is maintained in the temperature range, T< T/sub c/(--91K). The composite resistivities show percolation behavior and diamagnetism increases with increasing volume fraction of the superconductor filler. The composites exhibit levitation and large diamagnetic susceptibilities

  4. Introduction to the theory of magnetism

    CERN Document Server

    Wagner, D

    2013-01-01

    Introduction to the Theory of Magnetism is an introductory text on the theory of magnetism. The discussions are organized around diamagnetism, paramagnetism, and ferromagnetism. The exchange interaction and the resulting many-particle problem for a system of atomic spins are also considered, and the properties of this system are examined in several approximations. This book is comprised of three chapters and begins with a review of the fundamental effects of diamagnetism, paying particular attention to the Bohr-van Leeuwen theorem, the Fermi gas, Landau levels, and cyclotron resonance. The dia

  5. The L-H transition and the stability of the edge pedestal

    International Nuclear Information System (INIS)

    Rogers, B.N.; Drake, J.F.; Zeiler, A.

    2001-01-01

    Based on three-dimensional simulations of the Braginskii equations, we identify two main parameters which control transport in the edge of tokamaks: the MHD ballooning parameter and a diamagnetic parameter. The space defined by these parameters delineates regions where typical L-mode levels of transport arise, where the transport is catastrophically large (density limit) and where the plasma spontaneously forms a transport barrier (H-mode). Ion diamagnetic effects allow the edge pedestal to steepen well beyond the first ideal MHD stability boundary. (author)

  6. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  7. Rotation characteristics of main ions and impurity ions in H-mode tokamak plasma

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Kim, Y.; St. John, H.E.; Seraydarian, R.P.; Wade, M.R.

    1994-01-01

    Poloidal and toroidal rotation of the main ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been measured via charge exchange recombination spectroscopy in the DIII-D tokamak. It was discovered that the main ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction, in qualitative agreement with the neoclassical theory. The deduced radial electric field in the edge is of the same negative-well shape regardless of which ion species is used, validating the fundamental nature of the electric field in L-H transition phenomenology

  8. Landau and modern physics

    International Nuclear Information System (INIS)

    Pokrovsky, Valery L

    2009-01-01

    This article describes the history of the creation and further development of Landau's famous works on phase transitions, diamagnetism of electron gas (Landau levels), and quantum transitions at a level crossing (the Landau-Zener phenomenon), and its role in modern physics. (methodological notes)

  9. Electromagnetic reaction paradox

    International Nuclear Information System (INIS)

    Aspden, H.

    1984-01-01

    Alternative explanations for free-electron diamagnetism appear paradoxical and inconsistent with the reactive induction properties of magnetic materials. It is shown that the paradox can be eliminated by a generalized definition of the magnetic field with interesting spin-off consequences, including a justification for the anomalous doubling of the positron's effective mass in a free-electron environment

  10. WOHLLEBEN EFFECT (PARAMAGNETIC MEISSNER EFFECT) IN HIGH-TEMPERATURE SUPERCONDUCTORS

    NARCIS (Netherlands)

    KHOMSKII, D

    Recently a quite unexpected phenomenon was observed during the study of the magnetic properties of High-T(c) superconductors: In the field-cooled regime the magnetic response of some HTSC at very low fields (less than or similar to 1 Oe), instead of being diamagnetic, becomes paramagnetic. Such

  11. Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Voskoboynikov, O., E-mail: vam@faculty.nctu.edu.tw [Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan (China)

    2016-07-15

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled In{sub c}Ga{sub 1−c}As/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape) under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in In{sub c}Ga{sub 1−c}As/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.

  12. Influence of Equilibrium Perpendicular Shear Flow on Peeling-ballooning Instabilities

    Science.gov (United States)

    Xi, P. W.; Xu, X. Q.

    2011-10-01

    The influence of perpendicular ExB shear flow on peeling-ballooning instabilities is investigated with BOUT++ code. In our simulation, a set of reduced MHD equations are solved for a very unstable equilibrium and a marginal unstable equilibrium in shifted-circular tokamak geometry. For ideal MHD cases without diamagnetic terms and resistivity, we find that flow shear shows dramatic stabilizing effect on peeling-ballooning modes and the stabilizing degree increases with mode number. When the flow shear is large enough, we find the curvature of growth rate verse mode number has the same shape like that for the case with only diamagnetic term, and this implies that diamagnetic term and the shear flow have the same mechanism acting on peeling-ballooning instabilities. The role of Kelvin-Helmholtz term is also investigated and we find it is destabilizing and the effect depends on both flow shear and mode number. For cases with both diamagnetic term and the applied shear flow, modes with intermediate mode number are strongest stabilized while high n and low n mode keep unstable. Based on these results, an ELM trigger sketch is proposed. Performed for USDoE by LLNL Contract DE-AC52-07NA27344.

  13. Modulation of the wall-heat transfer in turbulent thermomagnetic convection by magnetic field gradients

    NARCIS (Netherlands)

    Kenjeres, S.; Zinsmeester, R.; Pyrda, L.; Fornalik-Wajs, E.; Szmyd, J.

    2015-01-01

    We present combined experimental and numerical studies of the heat transfer of paramagnetic or diamagnetic fluid inside a differentially heated cubical enclosure subjected to the magnetic field gradients of different strength and orientation. In contrast to the previously reported studies in

  14. Semiconductor-Metal transition in a quantum well

    International Nuclear Information System (INIS)

    Nithiananthi, P.; Jayakumar, K.

    2007-01-01

    We demonstrate semiconductor-metal transition through diamagnetic susceptibility of a donor in a GaAs/Al x Ga 1- x As quantum well for both infinite and finite barrier models. We have also considered the non-parabolicity of the conduction band in our calculation. Our results agree with the earlier theoretical result and also with the recent experimental result

  15. Atomistic simulation of the structure and elastic properties of pyrite (FeS2) as a function of pressure

    CSIR Research Space (South Africa)

    Sithole, Happy M

    2003-10-01

    Full Text Available metal, NiS2 a paramagnetic Mott–Hubbard insulator, CuS2 a (metallic) superconductor and ZnS2 a diamagnetic insulator. Thus they attract a great deal of interest from both physicists and mineralogists, and of- fer a challenging group of minerals...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The magnetic property of the complex is also remarkably enhanced compared to that of the diamagnetic 2-benzoyl pyridine which may be suitable for applications in devices. FTIR and Raman spectra of the ligand, 2-benzoyl pyridine and the synthesized complex are recorded at room temperature, which not only confirm the ...

  17. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  18. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc...

  19. Anchor stabilization of trapped particle modes in mirror machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Roslyakov, G.V.

    1986-07-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  20. Role of magnetic susceptibility weighted imaging in evaluation of ...

    African Journals Online (AJOL)

    Introduction: Susceptibility-weighted imaging (SWI) is a new method in MR imaging. SWI detects the signal loss created by disturbance of a homogeneous magnetic field; these disturbances can be caused by paramagnetic, ferromagnetic, or diamagnetic substances. There are many neurologic conditions that can benefit ...

  1. Studies of muonium-substituted molecules in 2-propanone and in aqueous solutions of 2-propanone

    International Nuclear Information System (INIS)

    Cox, S.F.J.; Renzi, R. De; Scott, C.A.; Hill, A.; Symons, M.C.R.; Bucci, C.; Vecli, A.

    1984-04-01

    The paper deals with muonium substituted molecules, which are formed when positive muons are implanted in pure 2-propanone and in binary aqueous systems; and are studied by the muon spin rotation technique. Studies of muonium substituted molecules are discussed under five topic headings: hyperfine interaction, influence of the solvent, radical formation, diamagnetic fraction and linewidths. (U.K.)

  2. Impacts of Coulomb Interactions on the Magnetic Responses of Excitonic Complexes in Single Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Fu Ying-Jhe

    2010-01-01

    Full Text Available Abstract We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs and quantum rings (QRs. For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X, biexcitons (XX, and positive trions (X−. For negative trions (X− in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections.

  3. Electron paramagnetic resonance of K3Rh(CN)6 irradiated with electrons in KCl

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1970-07-01

    Using a simple theory, it was estimated the electronic density of the diamagnetic complex Rh (CN) 3- 6 in a KCl lattice. The g// and g1 values were determined by EPR, and the experimental results fit the theoretical calculations. (M.W.O.) [pt

  4. The use of the special theory of relativity for the Meissner Effect in superconductor

    NARCIS (Netherlands)

    Rashid, M.

    2011-01-01

    The electromagnetic waves are considered in this article as the mediators of interaction in the Meissner Effect or the diamagnetic property of the superconductors. During the cooling of a superconductor electromagnetic waves may be released when the electrons occupy lower states of the energy. These

  5. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations

    KAUST Repository

    Harb, Moussab; Sautet, P.; Raybaud, P.

    2011-01-01

    unambiguously that the diamagnetic TiO(2-3x)N2x system exhibits the enhanced optical absorption in N-doped TiO2 under visible-light irradiation. Electronic analysis further reveals a band gap narrowing of 0.6 eV induced by delocalized impurity states located

  6. Construction of quantized gauge fields: continuum limit of the Abelian Higgs model in two dimensions

    International Nuclear Information System (INIS)

    Seiler, E.

    1981-01-01

    The author proves the existence of the continuum limit of the two-dimensional Higgs model for two cases: External gauge fields that are Hoelder continuous and may be non-Abelian, and the fully quantized Abelian model. In the latter case all Wightman axioms are verified except clustering. Important ingredients are a universal diamagnetic bound and correlation inequalities. (Auth.)

  7. Streaming instability in a velocity–sheared dusty plasma | Duwa ...

    African Journals Online (AJOL)

    A two-stream instability, obtained from kinetic theory, of strongly velocity-sheared inhomogeneous streaming electron in a magnetized plasma in the presence of negatively charged dust is discussed. Various cold plasma approximations were considered and it is shown that when the diamagnetic effect of ion can be ignored ...

  8. Synthesis of α-Amino Acids via Asymmetric Phase Transfer-Catalyzed Alkylation of Achiral Nickel(II) Complexes of Glycine-Derived Schiff Bases

    NARCIS (Netherlands)

    Belokon, Yuri N.; Bespalova, Natalia B.; Churkina, Tatiana D.; Císařová, Ivana; Ezernitskaya, Marina G.; Harutyunyan, Syuzanna R.; Hrdina, Radim; Kagan, Henri B.; Kočovský, Pavel; Kochetkov, Konstantin A.; Larionov, Oleg V.; Lyssenko, Konstantin A.; North, Michael; Polášek, Miroslav; Peregudov, Alexander S.; Prisyazhnyuk, Vladimir V.; Vyskočil, Štěpán

    2003-01-01

    Achiral, diamagnetic Ni(II) complexes 1 and 3 have been synthesized from Ni(II) salts and the Schiff bases, generated from glycine and PBP and PBA, respectively, in MeONa/MeOH solutions. The requisite carbonyl-derivatizing agents pyridine-2-carboxylic acid(2-benzoyl-phenyl)-amide (PBP) and

  9. pi-Dimers of end-capped oligopyrrole cation radicals

    NARCIS (Netherlands)

    Haare, van J.A.E.H.; Groenendaal, L.; Havinga, E.E.; Janssen, R.A.J.; Meijer, E.W.

    1996-01-01

    In two consecutive one-electron oxidations, oligopyrroles substituted with phenyl capping groups (PhPynPh, n = 2–4) can be oxidized reversibly to give stable cation radicals and dications. Spectroelectrochemical studies give direct evidence that diamagnetic p-dimers of cation radicals are formed in

  10. Magnetic resonance studies of isotopically labeled paramagnetic proteins: (2FE-2S) ferredoxins

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.; Xia, B.; Chae, Y.K.; Westler, W.M.; Markley, J.L. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    Recent developments in NMR spectroscopy, especially multidimensional, multinuclear NMR techniques, have made NMR the most versatile tool available for studying protein structure and function in solution. Unlike diamagnetic proteins, paramagnetic proteins contain centers with unpaired electrons. These unpaired electrons interact with magnetic nuclei either through chemical bonds by a contact mechanism or through space by a pseudocontact mechanism. Such interactions make the acquisition and analysis of NMR spectra of paramagnetic proteins more challenging than those of diamagnetic proteins. Some NMR signals from paramagnetic proteins are shifted outside the chemical shift region characteristic of diamagnetic proteins; these {open_quotes}hyperfine-shifted{close_quotes} resonances originate from nuclei that interact with unpaired electrons from the paramagnetic center. The large chemical shift dispersion in spectra of paramagnetic proteins makes it difficult to excite the entire spectral window and leads to distortions in the baseline. Interactions with paramagnetic centers shorten T{sub 1} and T{sub 2} relaxation times of nuclei; the consequences are line broadening and lower spectral sensitivity. Scalar (through bond) and dipolar (through space) interactions between pairs of nuclei are what give rise to crosspeak signals in multi-dimensional NMR spectra of small diamagnetic proteins. When such interactions involve a nucleus that is strongly relaxed by interaction with a paramagnetic center, specialized methods may be needed for its detection or it may be completely undetectable by present nD NMR methods.

  11. Electrostatic field in superconductors II: balance of forces

    Czech Academy of Sciences Publication Activity Database

    Lipavský, P.; Koláček, Jan

    2009-01-01

    Roč. 23, 20-21 (2009), 4488-4495 ISSN 0217-9792 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * London theory of diamagnetic currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.408, year: 2009

  12. Investigation of structure, specific heat and superconducting transition in Mg1-xAlxB2(x∼0.5)

    International Nuclear Information System (INIS)

    Xiang, J.Y.; Zheng, D.N.; Lang, P.L.; Zhao, Z.X.; Luo, J.L.

    2004-01-01

    We have carried out structure, magnetic and specific heat measurements on aluminum doped magnetism diboride samples Mg 1-x Al x B 2 in order to investigate possible superconductivity at the x=0.5 concentration. A diamagnetic signal was observed in magnetization measurements accompanied by a decrease in resistivity. However, the diamagnetic signal was extremely small as compared to what expected from full diamagnetism. Also, the transition both in magnetization and resistance was very broad. We propose that the diamagnetism is due to a very small amount of superconducting phase such as MgB 2 and the resistive transition is due to the percolation behavior. Furthermore, we performed specific heat measurements, which are considered as a tool to investigate the bulk nature of superconducting transition, on the x=0.5 sample to verify the existence of superconductivity. We observed no evident superconducting transition in the entire temperature region from 2 to 300 K. The undistinguishable data between 0 and 5 T magnetic fields also indicated the absence of bulk superconductivity in the x=0.5 sample

  13. Steady state drift vortices in plasmas with shear flow in equilibrium

    DEFF Research Database (Denmark)

    Chakrabarti, N.

    1999-01-01

    The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...

  14. Kinetic measurements and quantum chemical calculations on low ...

    Indian Academy of Sciences (India)

    shell singlet state with all paired electrons that results in the diamagnetic system. ..... Ni(II) ion and the oxygen atom of the water molecule is >3.1 Å (table 3) and it .... Energy considerations reveal that the formation of the sulphato complexes 3 ...

  15. Magnetic turbulence and anomalous transport

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1990-01-01

    The self consistency conditions for magnetic turbulence are reviewed. The main features of magnetic topology involving stochastic flux lines are summarized. Two driving sources are considered: thermal effects which require large scale residual islands and electron diamagnetism which involves fluctuation scales smaller than the ion Larmor radius and a β p threshold of order one. Stability criteria and transport coefficients are given

  16. Specific heat (1-330K), magnetic susceptiblity and Meissner effect Bi-(Pb)-Sr-Ca-Cu-O samples

    International Nuclear Information System (INIS)

    Junod, A.; Eckert, D.; Triscone, G.; Brunner, O.; Muller, J.; Zhao, Z.

    1989-01-01

    Five samples in the Bi 2 - y Pb y Sr 2 CaCu 2 O 8 + x system selected for their sharp diamagnetic transitions are characterized with particular emphasis on the specific heat. The behavior of the magnetic susceptibility upon doping with holes (Pb) is similar to that of the La 1 - y Sr y CuO 4 system

  17. Anchor stabilization of trapped particle modes in mirror machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Roslyakov, G.V.

    1986-04-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  18. Instability study during implosion in the Tupa Theta-Pinch

    International Nuclear Information System (INIS)

    Kayama, M.E.; Boeckelmann, H.K.

    1986-01-01

    The importance of instabilities which occur during plasma heating in a Theta Pinch, in the implosion phase, is analysed. The plasma diagnostic was done by ultrafast photography and diamagnetic probe. The implosion time and the current layer thickness were calculated using a hybrid code for plasma simulation. The theoretical data were compared with the experimental ones. (M.C.K.) [pt

  19. A magnetooptic imaging probe for continuous magnetic field profiles

    International Nuclear Information System (INIS)

    Dimonte, G.

    1992-01-01

    Magnetic field profiles are measured continuously in space and time using Faraday rotation in magnetooptic glass. A line focused laser beam which undergoes Faraday rotation within the glass element is imaged in one dimension through a polarizer and onto a streak camera. The system is described and used to characterize an exploding diamagnetic plasma cavity

  20. Neutron studies of nuclear magnetism at ultralow temperature

    DEFF Research Database (Denmark)

    Siemensmeyer, K.; Clausen, K.N.; Lefmann, K.

    1997-01-01

    Nuclear magnetic order in copper and silver has been investigated by neutron diffraction. Antiferromagnetic order is observed in these simple, diamagnetic metals at temperatures below 50 nK and 560 pK, respectively. Both crystallize in the FCC-symmetry which is fully frustrated for nearest...

  1. Topics in gauge theories and the unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1992-02-01

    We report on work done by the principal investigators and their collaborators on: purely fermionic composite models, gravitational diamagnetism, dynamical Casimir effect, N-particle amplitudes for large N beyond the three approximation, and analysis of classical scalar φ 4 field theory

  2. Persistent current in triangle silicene rings with spin–orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning, E-mail: nxu@ycit.cn [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Zhang, Haiyang; Wu, Xiuqiang; Bai, Yujie [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Ding, Jianwen, E-mail: jwding@xtu.edu.cn [Department of Physics, Xiangtan University, Xiangtan 411105 (China)

    2017-06-28

    The energy spectrum and magnetic response of triangle silicene rings (TSRs) are investigated within the tight-binding model. It is shown that the flux-dependent energy spectrum is divided into bands, with three levels per band, owing to the three-fold rotational symmetry structure of TSRs. The zigzag TSRs are metallic, exhibiting either diamagnetic or paramagnetic response depending on the size of inner ring radius. Armchair TSRs are semiconducting, exhibiting diamagnetic response. Taking into account the intrinsic spin–orbit interaction, the magnetic-field-driven spin-up electrons flow anticlockwise around the TSRs and the spin-down electrons flow clockwise around the TSRs. Additionally, paramagnetism–diamagnetism or diamagnetism–paramagnetism transitions are observed with the increase of exchange field. The results may be very helpful for the design and application of TSR-based nanodevices. - Highlights: • The zigzag TSRs are metallic. • Armchair TSRs which exhibit diamagnetic response are semiconducting. • The spin-up electrons flow anticlockwise and spin-down electrons flow clockwise around the rings.

  3. Instability of quark matter core in a compact newborn neutron star ...

    Indian Academy of Sciences (India)

    with moderately strong magnetic field strength, which populates only the electron's Landau levels, then in the β-equilibrium condition, the quark core is energetically much more unstable than the neutron matter of identical physical condition. Keywords. Landau diamagnetism; quark matter; quark star. PACS Nos 26.60.

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... of Science Education; Volume 7; Issue 3. Faraday: Father of Electromagnetism. S V Bhat. General Article Volume 7 Issue 3 March 2002 pp 46-50 ... Keywords. Faraday effect; electromagnetic rotation; diamagnetism. Author Affiliations. S V Bhat1. Department of Physics, Indian Institute of Science, Bangalore 560012, India.

  5. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    in the study of time dependent density functional theory [5] due to the work of Vignale and. Kohn [6,7]. They obtained ... part has relevance to the study of viscous effects [10] in the electron gas and to the dia- magnetic ... is found that the diamagnetic susceptibility, related to the transverse part, smoothly cross over from ...

  6. Non linear dynamics of magnetic islands in fusion plasmas

    International Nuclear Information System (INIS)

    Meshcheriakov, D.

    2012-10-01

    In this thesis we investigate the issues of linear stability of the tearing modes in a presence of both curvature and diamagnetic rotation using the non linear full-MHD toroidal code XTOR-2F, which includes anisotropic heat transport, diamagnetic and geometrical effects. This analysis is applied to one of the fully non-inductive discharges on Tore-Supra. Such experiments are crucially important to demonstrate reactor scale steady state operation for the tokamak. The possibility of a full linear stabilization of the tearing modes by diamagnetic rotation in the presence of toroidal curvature is shown. The stabilization threshold does not follow the classical scaling law connecting the growth rate of islands to plasma conductivity, measured here by the Lundquist number (S). However, for numerical reasons, the conductivity used in the simulations is lower than that of the experiment, which raises the question of extrapolation of the obtained results to the experimental situation. The extrapolation of the obtained results requires simulations with several different conductivities. It predicts that the mode at q = 2 surface to be stable at value of diamagnetic frequency consistent with the experimental one at S = S(exp). In the linearly stable domain, the mode is metastable: saturation level depends on the seed island size. In the non linear regime, the saturation of n=1, m=2 mode is found to be strongly reduced by diamagnetic rotation and by Lundquist number. However, the extrapolation to the experimental situation shows that if the island is destabilized, it will saturate at a detectable level for the Tore Supra diagnostic. For a large plasma aspect ratio (i.e. weak curvature effects), the reduction of the saturated width by diamagnetic frequency takes the form of a jump reminiscent of multiple states evidenced in slab geometry case. The question of extrapolation of the obtained results towards future generation of fusion devices is also addressed. In particular, for

  7. Perpendicular electron cyclotron emission from hot electrons in TMX-U

    International Nuclear Information System (INIS)

    James, R.A.; Ellis, R.F.; Lasnier, C.J.; Casper, T.A.; Celata, C.M.

    1984-01-01

    Perpendicular electron cyclotron emission (PECE) from the electron cyclotron resonant heating of hot electrons in TMX-U is measured at 30 to 40 and 50 to 75 GHz. This emission is optically thin and is measured at the midplane, f/sub ce/ approx. = 14 GHz, in either end cell. In the west end cell, the emission can be measured at different axial positions thus yielding the temporal history of the hot electron axial profile. These profiles are in excellent agreement with the axial diamagnetic signals. In addition, the PECE signal level correlates well with the diamagnetic signal over a wide range of hot electron densities. Preliminary results from theoretical modeling and comparisons with other diagnostics are also presented

  8. Electrostatic fluctuations measured in low temperature helical plasmas with low collisionality

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ikeda, R.; Ito, T.; Toi, K.; Suzuki, C.; Matsunaga, G.

    2004-01-01

    Electrostatic fluctuations have been measured by Langmuir probes from edge to core plasma region in low temperature helical plasmas which are produced by 2.45 GHz microwaves at very low field less than 0.1 T. The principal dimensionless parameters of the plasmas, that is, the normalized electron-ion collision frequency ν ei , and averaged plasma β φ and others are in the same range of them in high temperature plasmas, except the normalized gyro radius ρ s . The data on fluctuation characteristics from the dimensionally similar low temperature plasmas may give an important insight into the understanding of turbulent transport in high temperature plasmas. Dependences of fluctuation amplitudes on the radial electric field shear, ρ s and ν ei are investigated. Electrostatic fluctuations propagating in electron-diamagnetic drift direction have been observed in the plasma edge region and in ion-diamagnetic drift direction in the plasma core region. (authors)

  9. Destabilization of TAE modes by particle anisotropy

    International Nuclear Information System (INIS)

    Wong, H.V.; Berk, H.L.

    1998-01-01

    Plasmas heated by ICRF produce energetic particle distribution functions which are sharply peaked in pitch-angle, and the authors show that at moderate toroidal mode numbers, this anisotropy is a competitive and even dominant instability drive when compared with the universal instability drive due to spatial gradient. The universal drive, acting along, destabilizes only co-propagating waves (i.e., waves propagating in the same toroidal direction as the diamagnetic flow of the energetic particles), but stabilizes counter-propagating waves (i.e., waves propagating in the opposite toroidal direction as the diamagnetic flow of the energetic particles). Nonetheless, the authors show that in a tokamak, it is possible that particle anisotropy can produce a larger linear growth rate for counter-propagating waves, and provide a mechanism for preferred destabilization of the counter-propagating TAE modes that are sometimes experimentally observed

  10. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves t...... towards the injector. Simultaneously with the compression, an increase in the electron temperature and reflection of a small amount of plasma are seen. The amount of plasma transmitted through the dipole field is found to be nearly independent of the field strength.......A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  11. Change of Zonal Flow Spectra in the JIPP T-IIU Tokamak Plasmas

    International Nuclear Information System (INIS)

    Hamada, Y.; Watari, T.; Yamagishi, O.; Nishizawa, A.; Narihara, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.

    2007-01-01

    When Ohmically heated low-density plasmas are additionally heated by higher-harmonics ion-cyclotron-range-of frequency heating, heated by neutral beam injection, or strongly gas puffed, the intensity of zonal flows in the geodesic acoustic mode frequency range in the tokamak core plasma decreases sharply and that of low-frequency zonal flow grows drastically. This is accompanied by a damping of the drift wave propagating in the electron diamagnetic drift direction, turbulence by trapped electron mode (TEM), and the increase of the mode propagating to ion diamagnetic drift direction (ITG). In the half-radius region, TEM and high-frequency zonal flows remain intense in both OH and heated phases. ITG and low-frequency zonal flows grow in heated plasmas, suggesting a strong coupling between ITG and low-frequency zonal flow

  12. Effect of drift-acoustic waves on magnetic island stability in slab geometry

    International Nuclear Information System (INIS)

    Fitzpatrick, R.; Waelbroeck, F.L.

    2005-01-01

    A mathematical formalism is developed for calculating the ion polarization term in the Rutherford island width evolution equation in the presence of drift-acoustic waves. The calculation is fully nonlinear, includes both ion and electron diamagnetic effects, as well as ion compressibility, but is performed in slab geometry. Magnetic islands propagating in a certain range of phase velocities are found to emit drift-acoustic waves. Wave emission gives rise to rapid oscillations in the ion polarization term as the island phase velocity varies, and also generates a net electromagnetic force acting on the island region. Increasing ion compressibility is found to extend the range of phase velocities over which drift-acoustic wave emission occurs in the electron diamagnetic direction

  13. Coupled Electronic and Magnetic Phase Transition in the Infinite-Layer Phase LaSrNiRuO4.

    Science.gov (United States)

    Patino, Midori Amano; Zeng, Dihao; Bower, Ryan; McGrady, John E; Hayward, Michael A

    2016-09-06

    Topochemical reduction of the ordered double perovskite LaSrNiRuO6 with CaH2 yields LaSrNiRuO4, an extended oxide phase containing infinite sheets of apex-linked, square-planar Ni(1+)O4 and Ru(2+)O4 units ordered in a checkerboard arrangement. At room temperature the localized Ni(1+) (d(9), S = (1)/2) and Ru(2+) (d(6), S = 1) centers behave paramagnetically. However, on cooling below 250 K the system undergoes a cooperative phase transition in which the nickel spins align ferromagnetically, while the ruthenium cations appear to undergo a change in spin configuration to a diamagnetic spin state. Features of the low-temperature crystal structure suggest a symmetry lowering Jahn-Teller distortion could be responsible for the observed diamagnetism of the ruthenium centers.

  14. Mott transition in the Hubbard model

    International Nuclear Information System (INIS)

    Shastry, B.S.

    1992-01-01

    In this article, the author discuss W. Kohn's criterion for a metal insulator transition, within the framework of a one-band Hubbard model. This and related ideas are applied to 1-dimensional Hubbard systems, and some interesting miscellaneous results discussed. The Jordan-Wigner transformation converting the two species of fermions to two species of hardcore bosons is performed in detail, and the extra phases arising from odd-even effects are explicitly derived. Bosons are shown to prefer zero flux (i.e., diamagnetism) and the corresponding happy fluxes: for the fermions identified. A curios result following from the interplay between orbital diamagnetism and spin polarization is highlighted. A spin-statistics like theorem, showing that the anticommutation relations between fermions of opposite spin are crucial to obtain the SU(2) invariance is pointed out

  15. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    International Nuclear Information System (INIS)

    Male, G; Lubin, T; Mezani, S; Leveque, J

    2011-01-01

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  16. SHF radiation of plasma and acceleration regime of a discharge in the Tokamak FT-1

    International Nuclear Information System (INIS)

    Larionov, M.M.; Levin, L.S.; Rozhdestvenskij, V.V.; Tokunov, A.I.

    1975-01-01

    It is studied the frequency spectrum of SHF radiation, hard X-radiation, diamagnetism, conductivity and density of plasma in high-temperature and accelerating regimes of the FT-1 tokamak. It is shown that the intensities of hard X-radiation and SHF radiation in an accelerating discharge are far more than in a high-temperature discharge. In the first case radiation temperature of the SHF range reaches 7 keV while in the second one it will be 7 eV. The difference in the radiations points to the diverse role of electron running-away. The total and transverse energies of run-away electrons are evaluated according to the X-ray energy and SHF radiation. The transverse energy of the run-away electrons is found to be 80 keV. This value permits interpretation of the observed plasma diamagnetism

  17. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  18. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  19. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  20. A muoniated radical in selenium

    International Nuclear Information System (INIS)

    Reid, I.D.; Cox, S.F.J.; Jayasooriya, U.A.; Zimmermann, U.

    2003-01-01

    We report new 0.3 T transverse-field μSR experiments in crystalline Se which show only a small, slowly relaxing muon signal at 300 K, accounting for about 30% of the incoming muon polarization. However, at 90 K signals are observed around 74 and 157 MHz, characteristic of a radical with a hyperfine coupling of 231 MHz. Very fast relaxation which increases with temperature makes these signals impossible to follow beyond 200 K. Above 400 K a quickly relaxing diamagnetic signal becomes visible, its relaxation falling with increasing temperature. In the melt (>490 K) just a single non-relaxing diamagnetic signal is seen. These observations may be explained by electron spin-exchange with a muoniated radical

  1. Critical state in the Y-Ba-Cu-O ceramics

    International Nuclear Information System (INIS)

    Artemov, A.N.; Grishin, A.M.; Korenivskii, V.N.; Ulyanov, A.N.; Khokhlov, V.A.

    1990-01-01

    This paper reports on the temperature and field dependences of the Y-Ba-Cu-O ceramics susceptibility studied both experimentally and theoretically. These dependence have been used to reconstruct the temperature dependence of the critical current (j c (T) = j c (O)(1 - T/T c1 ) 3/2 , J c (O) = 340 A/cm 2 , T c1 = 94.6 K) and the distribution of the granules with respect to the superconducting transition temperature (with the maximum at T c2 = 95.3 K and ΔT = 1.1 K). Within the critical state concept diamagnetic response of the granular superconductors at fundamental and multiple frequencies has been calculated. The calculation results are in good agreement with the experimentally obtained susceptibility dependences and explain the different dependences of the diamagnetic response on the magnitude of the d.c. field and the amplitude of a.c. field

  2. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  3. Possible nucleation of a 2D superconducting phase on WO3 single crystals surface doped with Na+

    International Nuclear Information System (INIS)

    Reich, S.; Tsabba, Y.

    1999-01-01

    WO 3 crystals with a surface composition of Na 0.05 WO 3 were grown. These crystals exhibit a sharp diamagnetic step in magnetization at 91 K, and a magnetic hysteresis below this temperature. As the temperature is lowered below 100 K in transport measurements, a sharp metal to insulator transition is observed, this is followed by a sharp decrease in the resistivity when the temperature is lowered to about 90 K. When the surface of the crystals was covered by gold the depth of the diamagnetic step had decreased considerably. These results indicate a possible nucleation of a superconducting phase on the surface of these crystals. This is a non cuprate system exhibiting a critical temperature in the HTS range. (orig.)

  4. Parametric dynamic analysis of a superconducting bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A; Hasar, U C; Cam, B Ates [Electrical and Electronics Engineering Department, Ataturk University, Erzurum (Turkey); Gundogdu, Oe, E-mail: acansiz@atauni.edu.t [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)

    2009-03-01

    The dynamics of a disk-shaped permanent-magnet rotor levitated over a high-temperature superconductor is studied. The interaction between the rotor magnet and the superconductor is modelled by assuming the magnet to be a magnetic dipole and the superconductor as a diamagnetic material. In the magneto-mechanical analysis of the superconductor part, the frozen image concept is combined with the diamagnetic image and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potential. From the dynamical analysis, the equations of motion of the permanent magnet are stated as a function of lateral, vertical and tilt directions. The vibration behaviour of the permanent magnet is analyzed with a numerical calculation obtained by the non-dimensionalized differential equations for small initial impulses.

  5. Parametric dynamic analysis of a superconducting bearing system

    International Nuclear Information System (INIS)

    Cansiz, A; Hasar, U C; Cam, B Ates; Gundogdu, Oe

    2009-01-01

    The dynamics of a disk-shaped permanent-magnet rotor levitated over a high-temperature superconductor is studied. The interaction between the rotor magnet and the superconductor is modelled by assuming the magnet to be a magnetic dipole and the superconductor as a diamagnetic material. In the magneto-mechanical analysis of the superconductor part, the frozen image concept is combined with the diamagnetic image and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potential. From the dynamical analysis, the equations of motion of the permanent magnet are stated as a function of lateral, vertical and tilt directions. The vibration behaviour of the permanent magnet is analyzed with a numerical calculation obtained by the non-dimensionalized differential equations for small initial impulses.

  6. Towards intrinsic magnetism of graphene sheets with irregular zigzag edges.

    Science.gov (United States)

    Chen, Lianlian; Guo, Liwei; Li, Zhilin; Zhang, Han; Lin, Jingjing; Huang, Jiao; Jin, Shifeng; Chen, Xiaolong

    2013-01-01

    The magnetism of graphene has remained divergent and controversial due to absence of reliable experimental results. Here we show the intrinsic magnetism of graphene edge states revealed based on unidirectional aligned graphene sheets derived from completely carbonized SiC crystals. It is found that ferromagnetism, antiferromagnetism and diamagnetism along with a probable superconductivity exist in the graphene with irregular zigzag edges. A phase diagram is constructed to show the evolution of the magnetism. The ferromagnetic ordering curie-temperature of the fundamental magnetic order unit (FMOU) is 820 ± 80 K. The antiferromagnetic ordering Neel temperature of the FMOUs belonging to different sublattices is about 54 ± 2 K. The diamagnetism is similar to that of graphite and can be well described by the Kotosonov's equation. Our experimental results provide new evidences to clarify the controversial experimental phenomena observed in graphene and contribute to a deeper insight into the nature of magnetism in graphene based system.

  7. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  8. Signal processing methods for MFE plasma diagnostics

    International Nuclear Information System (INIS)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL

  9. DML and Foil Measurements of ETA Beam Radius

    International Nuclear Information System (INIS)

    Nexsen, W; Weir, J

    2005-01-01

    Simultaneous measurements of the ETA beam radius have been made with a quartz foil and a diamagnetic loop (DML). While the measurements agreed at some settings they diverged at others. While the DML measures the rms radius of the total beam, the foil measures mainly the core and the divergence can be explained by the presence of a low density halo. Evidence of such a halo from other measurements is presented

  10. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  11. A theory for the propagation of changes to confinement

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    A drift kinetic fluid model has been developed. It shows that diamagnetic drifts do not contribute to transport of plasma and energy (no entropy generation). Application of the model to a simplified description of plasma turbulence shows that disturbances, such as heat-cold pulses, L to H transitions, all can propagate with the fluid advective drift velocity irrespective of the nature of these disturbances. 6 refs.

  12. A theory for the propagation of changes to confinement

    International Nuclear Information System (INIS)

    Christiansen, J.P.

    1994-01-01

    A drift kinetic fluid model has been developed. It shows that diamagnetic drifts do not contribute to transport of plasma and energy (no entropy generation). Application of the model to a simplified description of plasma turbulence shows that disturbances, such as heat-cold pulses, L to H transitions, all can propagate with the fluid advective drift velocity irrespective of the nature of these disturbances. 6 refs

  13. Stability of magnetic modes in tokamaks; Stabilite des modes magnetiques dans les tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Zabiego, M

    1994-06-01

    A theoretical study is carried out concerning two experimental topics: stabilization, by a suprathermal population, of the mode ``m=1, n=1`` which induces the sawtooth effect (modelling the role of suprathermal particles in the stabilization); stability, in the non linear regime, of the magnetic islands involved in magnetic turbulence problems (micro-tearing) and in disruption phenomena (tearing), and the effects of diamagnetism, excitation threshold and saturation levels. 45 figs., 97 refs.

  14. 3-D resistive MHD calculations for tokamak plasmas: beyond the simple reduced set of equations

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.; Masden, B.F.

    1983-01-01

    Numerical studies of the resistive stability of tokamak plasmas in cylindrical geometry have been performed using: (1) the full set of resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of the reduced set of resistive MHD equations including diamagnetic and electron temperature effects. In particular, the nonlinear interaction of tearing modes of many helicities has been investigated. The numerical results confirm many of the features uncovered previously using the simple reduced equations. (author)

  15. Muonium states in semiconductors

    International Nuclear Information System (INIS)

    Patterson, B.D.

    1987-01-01

    There is a brief summary of what is known about the muonium states isotropic, anisotropic and diamagnetic in diamond and zincblende semiconductors. The report deals with muonium spectroscopy, including the formation probabilities, hyperfine parameters and electronic g-factors of the states. The dynamics of the states is treated including a discussion of the transition from isotropic Mu to anisotropic Mu in diamond, temperature-dependent linewidthes in silicon and germanium and effects of daping and radiation damage

  16. Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer

    OpenAIRE

    Scholz, F.; Boroske, E.; Helfrich, W.

    1984-01-01

    Cylindrical giant vesicles prepared from egg lecithin and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are oriented in an external magnetic field and observed by phase contrast microscopy. The anisotropic part of the diamagnetic susceptibility of the lecithin membrane is determined from the distribution of angles between the magnetic field and the long cylinder axis due to thermal fluctuations. The anisotropy of DMPC is found to be larger by a factor of 2 than that of egg lecithin. This...

  17. Pyrolytic citrate synthesis and ozone annealing

    International Nuclear Information System (INIS)

    Celani, F.; Saggese, A.; Giovannella, C.; Messi, R.; Merlo, V.

    1988-01-01

    A pyrolytic procedure is described that via a citrate synthesis allowed us to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, results already to contain a large amount of superconducting microcrystals. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurement show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  18. NMR study of thallium(I) ions in molten binary mixtures of nitrates and chlorides

    International Nuclear Information System (INIS)

    Nakamura, Yoshio; Kitazawa, Yukiharu; Shimoji, Mitsuo; Shimokawa, Shigezo.

    1983-01-01

    The chemical shifts of 205 Tl NMR in molten binary mixtures of nitrates and those of chlorides have been measured as a function of composition and temperature. The shifts increase in the diamagnetic direction with decreasing the size of foreign cations and increase in the paramagnetic direction with increasing temperature. These results are interpreted by changes in the overlap of orbitals of the Tl + ion and the anion, which depend upon composition and temperature. (author)

  19. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  20. Diagnostics of internal inductance in HT-7

    International Nuclear Information System (INIS)

    Zeng Li; Wan Baonian; Qian Jinping; Fan Hengyu

    2001-01-01

    Two arrays of Mirnov coils and a pair of concentric loops have been installed to superconducting tokamak HT-7. Software compensation and digital Fourier series expansion are the two techniques that have been applied successfully in measuring diamagnetic flux of concentric loops and internal inductance. The internal inductance of plasma l i , poloidal beta β p , Grad Shafranov parameter Λ, plasma minor radius α p and the center of the outermost magnetic flux surface Δ g are determined

  1. Magnetic levitation

    OpenAIRE

    Štěpánek,B.; Paleček,M.

    2015-01-01

    The paper deals with magnetism and its influence on superconducting materials. We describe the discovery and development of superconductivity, superconducting levitation and its use in future technology - called. MAGLEV speed trains. We show the interaction of the magnetic field of a strong neodymium magnet and high-temperature superconductor, cooled with liquid nitrogen at about -200 ° C. Of superconductors at this temperature becomes perfect diamagnetic material. That is ejected from the ma...

  2. Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Cristina Mozzati, Maria [Department of Physics, CNISM and INSTM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy); Ferrara, Chiara; Mustarelli, Piercarlo [Department of Chemistry, Section of Physical Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia (Italy)

    2013-07-15

    Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.

  3. Measurements of beam-ion confinement during tangential beam-driven instabilities in PBX [Princeton Beta Experiment

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Kaita, R.; Takahashi, H.; Gammel, G.; Hammett, G.W.; Kaye, S.

    1987-01-01

    During tangential injection of neutral beams into low density tokamak plasmas with β > 1% in the Princeton Beta Experiment (PBX), instabilities are observed that degrade the confinement of beam ions. Neutron, charge-exchange, and diamagnetic loop measurements are examined in order to identify the mechanism or mechanisms responsible for the beam-ion transport. The data suggest a resonant interaction between the instabilities and the parallel energetic beam ions. Evidence for some nonresonant transport also exists

  4. Bright new world

    Energy Technology Data Exchange (ETDEWEB)

    Kroó, Norbert; Rácz, Péter [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Institute for Solid State Physics and Optics, H-1525 Budapest, Pf. 49 (Hungary); Varró, Sándor [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Institute for Solid State Physics and Optics, H-1525 Budapest, Pf. 49 (Hungary); ELI-ALPS, ELI-Hu Nonprofit Kft., Dugonics tér 13, H-6720 Szeged (Hungary)

    2016-02-15

    Surface plasmons (SPOs) have been excited by intense femtosecond laser pulses on a gold film at room temperature and their near field has been analyzed by the intensity dependent response of an STM and by studying the spectra of multiplasmon emitted electrons. Around 80 GW/cm{sup 2} laser intensity, anomalies have been found in both cases, interpreted as the stepping in of electron pairing, transition to a diamagnetic state, and by anomalous Faraday rotation.

  5. Structural Stability of Tokamak Equilibrium: Transport Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Solano, E. R.

    2001-07-01

    A generalised theory of structural stability of differential equations is introduced and applied to the Grad-Shafranov equation. It is discussed how the formation and loss of transport barrier could be associated with the appearance/disappearance of equilibria. The equilibrium conjecture is presented: transport barriers are associated with locally diamagnetic regions in the plasma, and affected by the paramagnetism of the bootstrap current. (Author) 18 refs.

  6. Symmetry breaking and chaos

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    1999-01-01

    Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field

  7. Dynamoelectric machine with a superconductive field winding that can operate in either a synchronous or an asynchronous mode

    International Nuclear Information System (INIS)

    Mole, C.J.; Haller, H.E. III.

    1977-01-01

    Two parallel magnetic flux paths are provided in a dynamoelectric machine having a superconductive field winding. A first, or main, magnetic flux path includes at least one area of nonferromagnetic or diamagnetic material. A second, or shunt, magnetic flux path prevents the relatively low frequency ac flux present during starting or asynchronous operation of the machine, when used as an ac motor, from penetrating the superconductive winding

  8. Theoretical Studies on Electronic States of Rh-C60. Possibility of a Room-temperature Organic Ferromagnet

    Directory of Open Access Journals (Sweden)

    K. Yamaguchi

    2004-08-01

    Full Text Available A possible mechanism for a ferromagnetic interaction in the rhombic (Rh formof C60 (Rh-C60 is suggested on the basis of theoretical studies in relation to cage distortionof the C60 unit in the polymerized 2D-plane. Band structure calculations on Rh-C60 showthat cage distortion leads to competition between diamagnetic and ferromagnetic states,which give rise to the possibility of thermally populating the ferromagnetic state.

  9. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  10. Coupled Hartree-Fock calculation of {sup 13} C shielding tensors in acetylene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Craw, John Simon; Nascimento, Marco Antonio Chaer [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1992-12-31

    The coupled Hartree Fock method has been used to calculate ab-initio carbon magnetic shielding tensors for small clusters of acetylene molecules. The chemical shift increases from the monomer to the dimer and trimer. This is mainly due increased diamagnetism, which is imperfectly cancelled by increased paramagnetism due to loss of axial symmetry. Anisotropic effects are shown to be small in both the dimer the and trimer. (author) 21 refs., 2 tabs.

  11. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N1,N4-di(salicylidene)-isothiosemicarbazides

    International Nuclear Information System (INIS)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-01-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N 1 ,N 4 -di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic μ-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O 2 bond is discussed

  12. Periodicity and chaos in strongly perturbed classical orbitals for Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Klar, H

    1986-01-01

    Within the framework of classical mechanics two prototypes of strongly perturbed orbitals, the diamagnetism in hydrogen and electronic double excitation, are analyzed near critical phase space points (fixed points). The motion of the hydrogen electron under the joint influence of the Coulomb field and the magnetic field is periodic for any field strengths. For a two-electron atom however the author finds a chaotic time evolution of the electron pair correlation, causing presumably irregular spectral patterns. (Auth.).

  13. Magnetic modulation of exciplex fluorescence of pyrene solutions with azacrown-ether excess in the presence of ions of alkali and alkaline earth metals

    International Nuclear Information System (INIS)

    Borisenko, V.N.; Petrov, N.Kh.; Gromov, S.P.; Alfimov, M.V.

    1997-01-01

    Photoexcitation of polar pyrene solutions with excess of phenylaza-15-crown-5 as a donor results to intermolecular electron transfer with formation of ion-radical pairs, recombination of which produces fluorescent exciplex. Charge exchange between molecules of crown ether and its cation-radicals is practically absent at that. Magnetic effect, observed for fluorescence, decreases, when adding diamagnetic lithium and calcium ions to exiplex pyrene/crown-ether system. This can be explained by formation of paramagnetic complexes. 15 refs., 5 figs

  14. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory

    DEFF Research Database (Denmark)

    Ilias, Miroslav; Saue, Trond; Enevoldsen, Thomas

    2009-01-01

    The use of perturbation-dependent London atomic orbitals, also called gauge including atomic orbitals, has proven efficient for calculations of NMR shielding constants and other magnetic properties in the nonrelativistic framework. In this paper, the theory of London atomic orbitals for NMR...... calculates the diamagnetic contribution as an expectation value, leads to significant errors and is not recommended. (C) 2009 American Institute of Physics. [doi:10.1063/1.3240198]...

  15. Ultrasound and orientational relaxation of nematic liquid crystals at high pressure

    International Nuclear Information System (INIS)

    Khabibullaev, P.K.; Oribjonov, Kh.J.; Lagunov, A.S.

    2004-01-01

    The acoustic properties of the nematic liquid crystal N-96 and its benzene solution in anisotropic phase are investigated in rotational magnetic field. The effects of concentration, temperature, pressure, and frequency of magnetic field rotation on ultrasonic absorption anisotropy are studied. Critical frequency values are experimentally determined. The relationship between the diamagnetic susceptibility anisotropy rotational viscosities was calculated, and its dependences on the pressure and temperature are also discussed. (author)

  16. 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart

    OpenAIRE

    Jelicks, L.A.; Wittenberg, B.A.

    1995-01-01

    The proximal histidine N delta H proton of deoxymyoglobin experiences a large hyperfine shift resulting in its 1H nuclear magnetic resonance (NMR) signal appearing at approximately 76 ppm (at 35 degrees C), downfield of the diamagnetic spectral region. 1H NMR of this proton is used to monitor sarcoplasmic oxygen pressure in isolated perfused rat heart. This method monitors intracellular oxygenation in the whole heart and does not reflect oxygenation in a limited region. The deoxymyoglobin res...

  17. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    Science.gov (United States)

    Ganz, P. R.; Schaadt, D. M.

    2011-12-01

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  18. The reduction of low frequency fluctuations in RFP experiments

    International Nuclear Information System (INIS)

    Phillips, J.A.; Baker, D.A.; Gribble, R.F.

    1998-01-01

    The low frequency fluctuations seen in RFP experiments are found to be correlated with changes in the toroidal flux measured by diamagnetic loops surrounding the discharge. The correlation of the onset of impurity radiation and x-rays with the crash seen in experiments is caused by plasma bombarding the metal liner associated with this loss of flux. Efforts should be made to design improved stabilizing shells that will reduce the loss of flux and give improved RFP energy confinement times

  19. Magnetic-Field Induced Enhancement in the Fluorescence Yield Spectrum of Doubly Excited States in Helium

    International Nuclear Information System (INIS)

    Stroem, Magnus; Saathe, Conny; Agaaker, Marcus; Soederstroem, Johan; Rubensson, Jan-Erik; Stranges, Stefano; Richter, Robert; Alagia, Michele; Gorczyca, T. W.; Robicheaux, F.

    2006-01-01

    An influence of static magnetic fields on the fluorescence yield spectrum of He in the vicinity of the N=2 thresholds has been observed. The experimental results are in excellent agreement with predictions based on multichannel quantum defect theory, and it is demonstrated that the Rydberg electron l mixing due to the diamagnetic interaction is essential for the description of the observed fluorescence yield intensity enhancement

  20. Theory of semicollisional drift-interchange modes in cylindrical plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.; Chen, L.

    1985-01-01

    Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime

  1. Theory of semicollisional kinetic Alfven modes in sheared magnetic fields

    International Nuclear Information System (INIS)

    Hahm, T.S.; Chen, L.

    1985-02-01

    The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum

  2. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  3. La lévitation Diamagnétique à l'Echelle Micrométrique: Applications et Possibilités

    OpenAIRE

    Pigot , Christian

    2008-01-01

    Levitation is a fascinating way to compensate the action of gravity. Diamagnetism is the only physical phenomenon that allows a stable, static and passive levitation at room temperature. However, this magnetic effet is mostly insignificant at ordinary scales. Among the different means to improve the amplitude of this phenomenon, scale reduction is promishing. The present work contributes to the exploration of the possibilities and the potentialities of levitation in the microsystems. The redu...

  4. Weird muonium diffusion in solid xenon

    International Nuclear Information System (INIS)

    Storchak, V.G.; Kirillov, B.F.; Pirogov, A.V.

    1992-09-01

    Muon and muonium spin rotation and relaxation parameters were studied in liquid and solid xenon. The small diamagnetic fraction (∼ 10%) observed in condensed xenon is believed to be Xeμ + . The muonium hyperfine frequency was measured for the first time in liquid Xe and was found to be in agreement with the vacuum value. A nonmonotonic temperature dependence of the muonium relaxation rate probably indicates that muonium diffusion in solid Xe is of quantum nature. 16 refs., 3 figs

  5. Some theoretical problems of magnetic diagnostics in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1993-12-01

    The main problem of magnetic diagnostics is discussed here: which plasma characteristics can be determined from magnetic measurements in tokamaks and stellarators. The reasons are elucidated why diamagnetic measurements are reliable and easily interpreted. We discuss also the capabilities of diagnostics based on the measurements of poloidal fields outside the plasma. This article is based on a lecture delivered at the Third International School on Plasma Physics and Controlled Fusion, held 15-22 June 1993 at St. Petersburg - Kizhi, Russia. (author)

  6. Some theoretical problems of magnetic diagnostics in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    1993-12-01

    The main problem of magnetic diagnostics is discussed here: which plasma characteristics can be determined from magnetic measurements in tokamaks and stellarators. The reasons are elucidated why diamagnetic measurements are reliable and easily interpreted. We discuss also the capabilities of diagnostics based on the measurements of poloidal fields outside the plasma. This article is based on a lecture delivered at the Third International School on Plasma Physics and Controlled Fusion, held 15-22 June 1993 at St. Petersburg - Kizhi, Russia. (author).

  7. Influence of plasma pedestal profiles on access to ELM-free regimes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Poshekhonov, Yu. Yu., E-mail: naida@a5.kiam.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Konovalov, S. V., E-mail: konoval-sv@nrcki.ru [National Research Nuclear University “MEPhI,” (Russian Federation); Polevoi, A. R., E-mail: alexei.polevoi@iter.org [ITER Organization (France)

    2016-05-15

    The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reaching high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.

  8. Mixed-ligand complexes of technetium-III. Synthesis and characterization of [bis(diphenylphosphino)ethane]tetrakis(trimethylphosphite)tech netium(I) hexafluorophosphate, [Tc(DPPE)(TMP)4]PF6

    International Nuclear Information System (INIS)

    Abram, U.; Beyer, R.; Muenze, R.; Stach, J.; Kaden, L.; Lorenz, B.; Findeisen, M.

    1989-01-01

    The diamagnetic technetium(I) complex [Tc(DPPE)(TMP) 4 ]PF 6 was prepared from [Tc(N 2 )H(DPPE) 2 ] and characterized by elemental analysis. 1 H- and 99 Tc-NMR spectroscopy and fast atom bombardment mass spectrometry. [Tc(DPPE)(TMP) 4 ]PF 6 is a prototype compound for technetium complexes with mixed phosphine-phosphite coordination spheres. (author)

  9. Moessbauer spectroscopic studies of the chemical effects associated with 57Co(electron capture)57Fe decay in tris-β-diketonatocobalt(III) compounds

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    Magnetic hyperfine structures (hfs) were found in the absorption Moessbauer spectra at 78 K of a paramagnetic iron(III) complex diluted in a diamagnetic cobalt(III) or aluminium(III) complex such as 57 Fe(acac) 3 in Co(acac) 3 , 57 Fe(oxin) 3 in Al(oxin) 3 , and 57 Fe(dbm) 3 in Co(dbm) 3 (acac=acetylacetonato, oxin=8-quinolinolato, and dbm=dibenzoylmethanato), showing that the magnetic hfs is caused by the spin-spin relaxation through the surrounding diamagnetic species. In the emission Moessbauer experiments, magnetic hfs was observed at 78 K in 57 Co-labelled Co(dbm) 3 , Co(oxin) 3 , and polystyrene-diluted Co(acac) 3 , while it was not observed in 57 Co-labelled Co(acac) 3 and Co(dpm) 3 (dpm=dipivaloylmethanato). The former possess pi -conjugated systems to a greater extent than the latter, either in the ligands or in the vicinity of the 57 Co-labelled Co(III) species. These results were explained in terms of the radiolytic stabilities of the matrices as well as those of 57 Co-labelled compounds by showing that the paramagnetic radicals produced in a diamagnetic matrix quench the magnetic hfs because of the increased spin-spin interaction, as a consequence of the local radiolysis by EC-decay. (author)

  10. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    Science.gov (United States)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.

    2018-05-01

    The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.

  11. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1:1 complexes.

    Science.gov (United States)

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Poussereau, Sandrine; Sorace, Lorenzo

    2004-04-07

    We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.

  12. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  13. Measurement of the dynamo effect in a plasma

    International Nuclear Information System (INIS)

    Ji, H.; Prager, S.C.; Almagri, A.F.; Sarff, J.S.; Hirano, Y.; Toyama, H.

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the α effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the α effect accounts for the dynamo current generation, even in the time dependence through a ''sawtooth'' cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD) model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ''electron diamagnetic dynamo'' is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor's conjecture

  14. High-beta plasma effects in a low-pressure helicon plasma

    International Nuclear Information System (INIS)

    Corr, C. S.; Boswell, R. W.

    2007-01-01

    In this work, high-beta plasma effects are investigated in a low-pressure helicon plasma source attached to a large volume diffusion chamber. When operating above an input power of 900 W and a magnetic field of 30 G a narrow column of bright blue light (due to Ar II radiation) is observed along the axis of the diffusion chamber. With this blue mode, the plasma density is axially very uniform in the diffusion chamber; however, the radial profiles are not, suggesting that a large diamagnetic current might be induced. The diamagnetic behavior of the plasma has been investigated by measuring the temporal evolution of the magnetic field (B z ) and the plasma kinetic pressure when operating in a pulsed discharge mode. It is found that although the electron pressure can exceed the magnetic field pressure by a factor of 2, a complete expulsion of the magnetic field from the plasma interior is not observed. In fact, under our operating conditions with magnetized ions, the maximum diamagnetism observed is ∼2%. It is observed that the magnetic field displays the strongest change at the plasma centre, which corresponds to the maximum in the plasma kinetic pressure. These results suggest that the magnetic field diffuses into the plasma sufficiently quickly that on a long time scale only a slight perturbation of the magnetic field is ever observed

  15. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  16. Merging formation of FRC and its application to high-beta ST formation

    International Nuclear Information System (INIS)

    Ono, Y.; Inomoto, M.; Ueda, Y.; Matsuyama, T.; Ohshima, Y.; Katsurai, M.

    2001-01-01

    Merging formation of field-reversed configuration (FRC) explored not only a new scenario of highly-efficient FRC formation/amplification experiment but also a new boundary research between FRC, spheromak and spherical tokamak (ST). A new finding is that the produced FRC is transformed stably into an ultra-high-β ST by applying external toroidal field B t,ext . The toroidal field was observed to vanish around magnetic axis after the B t,ext application to the FRC, indicating formation of diamagnetic ST. The hollow current profile of FRC was maintained during the equilibrium transition, eliminating a need for the difficult hollow-current-formation process of start-up discharge of high-β ST. The energy-conversion effect of merging transformed the force-free merging spheromaks with paramagnetic current into the FRC with diamagnetic current and the further application of B t,ext did the FRC into the ultra-high-β (>60%)/diamagnetic ST, indicating the close relationship between FRC and ST in second stability. (author)

  17. Kinetic theory of magnetic island stability in tokamaks

    International Nuclear Information System (INIS)

    Zabiego, M.; Garbet, X.

    1993-10-01

    The non linear behavior of low and large wave number tearing modes is studied. The emphasis is layed on diamagnetic effects. A kinetic equation, including transport processes associated with a background of microturbulence, is used to describe the electron component. Such transport processes are shown to play a significant role in the adjustment of density and temperature profile and also in the calculation of the island rotation frequency. The fluctuating electric potential is calculated self-consistently, using the differential response of electrons and ions. Four regimes are considered, related to island width (smaller or larger than an ion Larmor radius) and transport regime (electron-ion collisions or electro-viscosity dominated). It is shown that diamagnetism does not influence the island stability for small island width in the viscous regime, as long as the constant A constraint is maintained. It turns out that the release of this constraint may strongly modify the previously calculated stability thresholds. Finally, it is found that diamagnetism is destabilizing (stabilizing) for island width smaller (larger) than an ion Larmor radius, in both resistive and viscous regimes. A typical island evolution scenario is studied which shows that even large scale tearing modes with positive Δ ' could saturate to island width of order of a few ion Larmor radii. Illustrative Δ ' threshold and island saturation size are calculated. (authors). 31 refs., 5 figs., 3 tabs

  18. Sol-gel hybrid materials for aerospace applications: Chemical characterization and comparative investigation of the magnetic properties

    Science.gov (United States)

    Catauro, Michelina; Mozzati, Maria Cristina; Bollino, Flavia

    2015-12-01

    In the material science field, weightless conditions can be successfully used to understand the relationship between manufacturing process, structure and properties of the obtained materials. Aerogels with controlled microstructure could be obtained by sol-gel methods in microgravity environment, simulated using magnetic levitation if they are diamagnetic. In the present work, a sol-gel route was used to synthesize class I, organic-inorganic nanocomposite materials. Two different formulations were prepared: the former consisted in a SiO2 matrix in which different percentages of polyethylene glycol (PEG) were incorporated, the latter was a ZrO2 matrix entrapping different amounts of poly (ε-caprolactone) (PCL). Fourier Transform Infrared Spectroscopy (FT-IR) detected that the organic and the inorganic components in both the formulation interact by means of hydrogen bonds. X-ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials and Scanning Electron Microscope (SEM) showed that they have homogeneous morphology and are nanocomposites. Superconducting Quantum Interference Device (SQUID) magnetometry confirmed the expected diamagnetic character of those hybrid systems. The obtained results were compared to those achieved in previous studies regarding the influence of the polymer amount on the magnetic properties of SiO2/PCL and ZiO2/PEG hybrids, in order to understand how the diamagnetic susceptibility is influenced by variation of both the inorganic matrix and organic component.

  19. Neurons are sensitive to the magnetic fields applied within the range of MR intensity used for diagnostic purposes

    International Nuclear Information System (INIS)

    Azanza, M.J.

    1997-01-01

    A very high number of data, obtained from molecular and cell biology experimental work, show that living beings are sensitive to either the static magnetic fields (SMF) or the electromagnetic fields in the extremely low frequency (ELF) range (1). Considering the question of the intensity range of the SMF applied for clinical diagnosis, we have made experiments by applying SMF (0,3-0,7 T) directly to neurons. We have shown that there exist a neuron magneto sensitivity explained as a result of the diamagnetism of the phospholipid and protein molecules of the lipid bilayer plasma membrane. This diamagnetism is working together with electric dipolar interactions (a mixed up interaction coined as super diamagnetism) and binded membrane Ca''2+ cooperative coulomb explosion, which in turn operate Ca''2+ -dependent-K''+ membrane channels (2,3). The specific intrinsic metabolic characteristics of the neurons populations explain two types of responses: either a variation in the firing frequency (increases or decreases) or a decrease in the spikes amplitude. This second effect is explained by the inhibition of the Na''+ -K''+-ATP-ase ionic pumps, inactivated by the same superdiamagnetims mechanism. We show in this paper the dependence of the frequency and amplitude changes, of the electrophysiological activity of the neurons, with the intensity of the applied SMF. (Author) 30 refs

  20. Magnetic susceptibility measurements on Bi - Sn alloys

    International Nuclear Information System (INIS)

    Mustaffa bin Haji Abdullah

    1985-01-01

    Magnetic susceptibility measurements on eight samples of tin-rich and three samples of bismuth-rich Bi-Sn alloys were made from 85K to 300K by Faraday's method. The susceptibilities of the eight tin-rich samples are positive and greater than the susceptibility of pure tin. The values are approximately constant at low temperatures but decreasing a little bit with increasing temperature. This result is interpreted as due to the predominant contribution of the Pauli spin paramagnetic susceptibility. A small decrease in susceptibility with temperature is interpreted as due to the effect of the second order term in the expression for spin paramagnetic susceptibility. The fluctuation of the susceptibility for alloys of different composition is interpreted as due to the effect of the density of states at the Fermi levels. The three samples of bismuth-rich alloys show a transition to diamagnetic property, where the diamagnetism is increased with temperature. This result is predominant and due to the diamagnetic contribution from the ions. The increase in susceptibility with temperature is interpreted as due to an increase in the effective radii of the ions due to thermal expansion. (author)

  1. PLASMA ENVIRONMENT AROUND COMET 67P/CHURYUMOV–GERASIMENKO AT PERIHELION: MODEL COMPARISON WITH ROSETTA DATA

    Energy Technology Data Exchange (ETDEWEB)

    Madanian, H.; Cravens, T. E. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS (United States); Burch, J.; Goldstein, R. [Southwest Research Institute, San Antonio, Texas (United States); Rubin, M.; Altwegg, K. [Physikalisches Institut, University of Bern, CH-3012 Bern (Switzerland); Nemeth, Z. [Wigner Research Centre for Physics, Budapest (Hungary); Goetz, C.; Koenders, C., E-mail: cravens@ku.edu [Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany)

    2017-01-01

    The plasma environment near comet 67P/Churyumov–Gerasimenko (67P/CG) is dynamically affected by various factors, including the incident solar wind and outgassing from the nucleus. The Rosetta spacecraft MAGnetometer (MAG) instrument observations near perihelion showed crossing events into a magnetic field-free region at about 170 km from the nucleus in 2015 July at 1.26 au from the Sun. At each crossing, the magnitude of the magnetic field dropped by more than 20 nT to near zero. We compared the Ion and Electron Sensor (IES) electron differential flux energy spectrum inside and outside the crossing boundaries. The IES observations show a modest but consistent drop in electron flux for energies between 40 eV and a few hundred eV at each cavity crossing event. This drop in the electron spectra might be due to the absence or attenuation of solar wind electrons inside the observed diamagnetic regions, which might or might not be a diamagnetic cavity. There is no apparent simple linear correlation between the electron count rate measured by the IES at different energies and the magnitude of the magnetic field, however; at all energies, the highest electron count rates are recorded at the highest magnetic field magnitudes. From model-data comparisons it seems that inside diamagnetic regions, pure coma photoelectrons are not sufficient to explain the observations and that a trapping mechanism and/or infused solar wind electrons are necessary to explain the observed electron fluxes.

  2. Hall effect in the coma of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Huang, Z.; Tóth, G.; Gombosi, T. I.; Jia, X.; Combi, M. R.; Hansen, K. C.; Fougere, N.; Shou, Y.; Tenishev, V.; Altwegg, K.; Rubin, M.

    2018-04-01

    Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission, which studies comet 67P/Churyumov-Gerasimenko, challenges our understanding of the solar wind and comet interactions. The Rosetta Plasma Consortium observed regions of very weak magnetic field outside the predicted diamagnetic cavity. In this paper, we simulate the inner coma with the Hall magnetohydrodynamics equations and show that the Hall effect is important in the inner coma environment. The magnetic field topology becomes complex and magnetic reconnection occurs on the dayside when the Hall effect is taken into account. The magnetic reconnection on the dayside can generate weak magnetic field regions outside the global diamagnetic cavity, which may explain the Rosetta Plasma Consortium observations. We conclude that the substantial change in the inner coma environment is due to the fact that the ion inertial length (or gyro radius) is not much smaller than the size of the diamagnetic cavity.

  3. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  4. Fuel ion rotation measurement and its implications on H-mode theories

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Hinton, F.L.; Kim, Y.B.; Seraydarian, R.; Mandl, W.

    1993-10-01

    Poloidal and toroidal rotation of the fuel ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been investigated in the DIII-D tokamak by means of charge exchange recombination spectroscopy, resulting in the discovery that the fuel ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction. The radial electric field obtained from radial force balance analysis of the measured pressure gradients and rotation velocities is shown to be the same regardless of which ion species is used and therefore is a more fundamental parameter than the rotation flows in studying H-mode phenomena. It is shown that the three contributions to the radial electric field (diamagnetic, poloidal rotation, and toroidal rotation terms) are comparable and consequently the poloidal flow does not solely represent the E x B flow. In the high-shear edge region, the density scale length is comparable to the ion poloidal gyroradius, and thus neoclassical theory is not valid there. In view of this new discovery that the fuel and impurity ions rotate in opposite sense, L-H transition theories based on the poloidal rotation may require improvement

  5. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    International Nuclear Information System (INIS)

    Cotten, G.B.

    2000-01-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable

  6. Magnetic memory effects in high temperature superconductors

    International Nuclear Information System (INIS)

    Rockenbauer, A.

    1989-01-01

    Microwave absorption of high temperature oxide superconductors MBa 2 Cu 3 O 7 (M = Y, Er, Dy, Ho, Lu, Tm, Gd) at 77 K have been studied by ESR. In granular samples diamagnetic zero-field resonance and strong ESR baseline hysteresis have been observed: for increasing field sweep - a high, for decreasing one - a low, while in constant field the baseline approaches the middle position with kinetics typical of spin-glasses. The hysteresis amplitude, i.e. the deviation of high and low baselines, possesses maximum at zero field if the sample is cooled down in zero field. In case of field cooling both the diamagnetic resonance and hysteresis maximum are shifted as a function of relative direction of the fields where the samples are cooled and measured, respectively. The shift is caused by the remanent diamagnetism of trapped fluxons. The hysteresis critically depends on the modulation amplitude of magnetic field, and no hysteresis can be observed if the microwave absorption is detected without field modulation. By applying saw-tooth sweep the spin-glass can be driven between two extreme hysteresis states, and the ESR response is rectangular for large saw-tooth amplitude and linear - for small one, while for intermediate amplitudes the recording shows characteristic memory effects. The hysteresis memory is explained in terms of loop distribution of fluxons. In the single crystal the fluxon absorptions are also detected and the separation of fluxon lines can be related to the hysteresis in granular samples. (author)

  7. Polarization and magnetization of electronic matter

    International Nuclear Information System (INIS)

    Beck, G.

    1979-01-01

    The behaviour of a system of spin-electrons in a weak external electric or magnetic field is studied. Already in the case of a single free electron classical and quantum theory lead to different results concerning the Lorentz transformation of the magnetic moment (Thomas factor of spin-orbit coupling). The separation of the current into a convection and a spin part can be performed in a covariant way. While the convection current is responsible for the diamagnetism of a system, the spin current accounts for paramagnetic behaviour. After a Lorentz transformation of a diamagnetic system paraelectric components appear, while a paramagnetic system, after rransformation, exhibits dia-electric properties, epsilon 1) after a Lorentz transformation shows diamagnetic components, while a diaelectric system would acquire paramagnetic behaviour. Quantum electrodynamics leads to the result, that Dirac's electron vacuum behaves like a paramagnetic medium. It follows from this result, that the electron vacuum in a weak external electric field represents a diaelectric system. (Author) [pt

  8. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  9. Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev, E-mail: sanjeevchs@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [Department of Physics, CMR College of Engineering and Technology, Hyderabad (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron–electron and spin–orbit interactions as a function of magnetic field and temperature. The spin–orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron–electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron–electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin–orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin–orbit interaction shifts it to the lower magnetic field side. Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures. - Highlights: • Temperature has no effect on magnetization and susceptibility in the diamagnetic regime but reduces the height of the paramagnetic peak. • Electron-electron interaction reduces magnetization and susceptibility in the diamagnetic region. • Rashba spin–orbit interaction shifts the paramagnetic peak towards higher magnetic fields. • Dresselhaus spin–orbit interaction shifts the paramagnetic peak towards lower magnetic fields. • Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  10. Experimental studies of edge turbulence and confinement in Alcator C-Moda)

    Science.gov (United States)

    Cziegler, I.; Terry, J. L.; Hughes, J. W.; LaBombard, B.

    2010-05-01

    The steep gradient edge region and scrape-off-layer (SOL) on the low-field-side of Alcator C-Mod [I. H. Hutchinson, R. Boivin, F. Bombarda et al., Phys. Plasmas 1, 1511 (1994)] tokamak plasmas are studied using gas-puff-imaging diagnostics. In L-mode plasmas, the region extending ˜2 cm inside the magnetic separatrix has fluctuations showing a broad, turbulent spectrum, propagating in the electron diamagnetic drift direction, whereas features in the open field line region propagate in the ion diamagnetic drift direction. This structure is robust against toroidal field strength, poloidal null-point geometry, plasma current, and plasma density. Global parameter dependence of spectral and spatial structure of the turbulence inside the separatrix is explored and characterized, and both the intensity and spectral distributions are found to depend strongly on the plasma density normalized to the tokamak density limit. In H-mode discharges the fluctuations at and inside the magnetic separatrix show fundamentally different trends compared to L-mode, with the electron diamagnetic direction propagating turbulence greatly reduced in ELM-free [F. Wagner et al., Proceedings of the Thirteenth Conference on Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1982), Vol. I, p. 277], and completely dominated by the modelike structure of the quasicoherent mode in enhanced D-alpha regimes [A. E. Hubbard, R. L. Boivin, R. S. Granetz et al., Phys. Plasmas 8, 2033 (2001)], while the normalized SOL turbulence is largely unaffected.

  11. The influence of magnetic fields on protein crystal growth and quality; Zum Einfluss magnetischer Felder auf das Wachstum und die Qualitaet von Proteinkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Meents, Alke

    2005-08-01

    Magnetic fields can affect protein crystal growth in several ways. In homogeneous magnetic fields molecules and crystallites line up themselves along the magnetic field direction due to their magnetic anisotropy. Inhomogeneous magnetic fields exert a force on diamagnetic and paramagnetic compounds towards regions of lower or higher field strength. This effect can be used to create a microgravity-like environment for diamagnetic proteins and an environment comparable to hypergravity for paramagnetic proteins. Crystallization in homogeneous magnetic fields and a microgravity-like environment are reported to have a positive effect on crystal quality. The aim of this work was to systematically investigate the effect of protein crystallization in magnetic fields on the crystal quality by comparing a large number of crystals grown under identical conditions with- and without magnetic fields. Crystal quality was determined by means of high resolution rocking-curve measurements. Furthermore in certain cases complete diffraction datasets were collected. Any possible influence of magnetic fields on the mosaicity and the quality of the diffraction data was evaluated statistically by applying Wilcoxon-Ranksum tests. To investigate the effect of protein crystallization in homogeneous magnetic fields the diamagnetic proteins Thaumatin, Trypsin, and Lysozyme and paramagnetic Myoglobin were crystallized in magnetic fields of 5 T, 8.8 T, and 15.8 T. The analysis of crystal mosaicity and quality of the diffraction data of the diamagnetic proteins did not reveal a significant influence on the crystal quality. In contrast the crystals of paramagnetic Myoglobin grew up to 14 times larger than the ones in the control experiment. In addition they had a significant lower mosaicity, and diffracted to a higher resolution than ever reported before. Special pole pieces for an existing magnet were designed and build to grow protein crystals in an inhomogeneous magnetic field The experimental

  12. Edge localized mode control by resonant magnetic perturbations in tokamak plasmas

    International Nuclear Information System (INIS)

    Orain, Francois

    2014-01-01

    The growth of plasma instabilities called Edge Localized Modes (ELMs) in tokamaks results in the quasi-periodic relaxation of the edge pressure profile. These relaxations induce large heat fluxes which might be harmful for the divertor in ITER, thus ELM control is mandatory in ITER. One of the promising control methods planned in ITER is the application of external resonant magnetic perturbations (RMPs), already efficient for ELM mitigation/suppression in current tokamak experiments. However a better understanding of the interaction between ELMs, RMPs and plasma flows is needed to explain the experimental results and make reliable predictions for ITER. In this perspective, non-linear modeling of ELMs and RMPs is done with the reduced MHD code JOREK, in toroidal geometry including the X-point and the Scrape-Off Layer. The initial model has been further developed to describe self-consistent plasma flows - with the addition of the bi-fluid diamagnetic drifts, the neoclassical friction and a source of parallel rotation - and to simulate the RMP penetration consistently with the plasma response. As a first step, the plasma response to RMPs (without ELMs) is studied for JET, MAST and ITER realistic plasma parameters and geometry. The general behaviour of the plasma/RMP interaction is similar for the three studied cases: RMPs are generally screened by the formation of response currents, induced by the plasma rotation on the resonant surfaces. RMPs however penetrate at the very edge where an ergodic zone is formed. The amplification of the non-resonant spectrum of the magnetic perturbations is also observed in the core. The edge ergodization induces an enhanced transport at the edge, which slightly degrades the pedestal profiles. RMPs also generate the 3D-deformation of the plasma boundary with a maximum deformation near the X-point where lobe structures are formed. Then the full dynamics of a multi-ELM cycle (without RMPs) is modeled for the first time in realistic

  13. Hard x-ray measurements of the hot-electron rings in EBT-S

    International Nuclear Information System (INIS)

    Hillis, D.L.

    1982-06-01

    A thorough understanding of the hot electron rings in ELMO Bumpy Torus-Scale (EBT-S) is essential to the bumpy torus concept of plasma production, since the rings provide bulk plasma stability. The hot electrons are produced via electron cyclotron resonant heating using a 28-GHz cw gyrotron, which has operated up to power levels of 200 kW. The parameters of the energetic electron rings are studied via hard x-ray measurement techniques and with diamagnetic pickup coils. The hard x-ray measurements have used collimated NaI(Tl) detectors to determine the electron temperature T/sub e/ and electron density n/sub e/ for the hot electron annulus. Typical values of T/sub e/ are 400 to 500 keV and of n/sub e/ 2 to 5 x 10 11 cm -3 . The total stored energy of a single energetic electron ring as measured by diamagnetic pickup loops approaches approx. 40 J and is in good agreement with that deduced from hard x-ray measurements. By combining the experimental measurements from hard x-rays and the diamagnetic loops, an estimate can be obtained for the volume of a single hot electron ring. The ring volume is determined to be approx. 2.2 litres, and this volume remains approximately constant over the T-mode operating regime. Finally, the power in the electrons scattered out of the ring is measured indirectly by measuring the x-ray radiation produced when those electrons strike the chamber walls. The variation of this radiation with increasing microwave power levels is found to be consistent with classical scattering estimates

  14. Magnetic separation for environmental remediation

    International Nuclear Information System (INIS)

    Schake, A.R.; Avens, L.R.; Hill, D.D.; Padilla, D.D.; Prenger, F.C.; Romero, D.A.; Worl, L.A.; Tolt, T.L.

    1994-01-01

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO 2 , U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS

  15. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  16. Statistical Study in the mid-altitude cusp region: wave and particle data comparison using a normalized cusp crossing duration

    Science.gov (United States)

    Grison, B.; Escoubet, C. P.; Pitout, F.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.

    2009-04-01

    In the mid altitude cusp region the DC magnetic field presents a diamagnetic cavity due to intense ion earthward flux coming from the magnetosheath. A strong ultra low frequency (ULF) magnetic activity is also commonly observed in this region. Most of the mid altitude cusp statistical studies have focused on the location of the cusp and its dependence and response to solar wind, interplanetary magnetic field, dipole tilt angle parameters. In our study we use the database build by Pitout et al. (2006) in order to study the link of wave power in the ULF range (0.35-10Hz) measured by STAFF SC instrument with the ion plasma properties as measured by CIS (and CODIF) instrument as well as the diamagnetic cavity in the mid-altitude cusp region with FGM data. To compare the different crossings we don`t use the cusp position and dynamics but we use a normalized cusp crossing duration that permits to easily average the properties over a large number of crossings. As usual in the cusp, it is particularly relevant to sort the crossings by the corresponding interplanetary magnetic field (IMF) orientation in order to analyse the results. In particular we try to find out what is the most relevant parameter to link the strong wave activity with. The global statistic confirms previous single case observations that have noticed a simultaneity between ion injections and wave activity enhancements. We will also present results concerning other ion parameters and the diamagnetic cavity observed in the mid altitude cusp region.

  17. Nonlinear evolution of magnetic islands in a two fluid torus

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1996-01-01

    A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress

  18. A Non-Interfering Beam Radius Diagnostic Suitable For Induction Linacs

    International Nuclear Information System (INIS)

    Nexsen, W E

    2005-01-01

    High current electron induction linacs operate in a parameter regime that allows the use of a diamagnetic loop (DML) to measure the beam magnetic moment. Under certain easily met conditions the beam radius can be derived from the moment measurement. The DML has the advantage over the present methods of measuring beam radius in that it is an electrical measurement with good time resolution that does not interfere with the beam transport. I describe experiments on the LLNL accelerators, ETA-II and FXR that give confidence in the use of a DML as a beam diagnostic

  19. A semiempirical self-consistent CNDO/2M scheme for calculation of clusters simulating active sites on transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Korsunov, V A; Chuvylkin, N D; Zhidomirov, G M; Kazanskii, V B

    1978-09-01

    The developed CNDO/2M scheme, which allows for the presence of up to five different ''end quasi-atoms'' in a cluster, was implemented in a FORTRAN program and tested in calculation of ScO, ScF, and MnO/sub 4/- systems and of model clusters HOX(OH)/sub 3/ and HOXO/sub 3/ for X = Si and Ti. The calculation results showed that the CNDO/2M scheme is well-suited for qualitative quantum-chemical analysis of intermediate para- and diamagnetic oxygen containing complexes involved in heterogeneous processes catalyzed by TM oxides.

  20. Magnetic behavior of binary intermetallic compound YPd{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek [S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Mazumdar, Chandan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)], E-mail: chandan.mazumdar@saha.ac.in; Ranganathan, R. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2009-05-12

    We report the results of detailed magnetic studies on binary rare-earth-transition metal compound YPd{sub 3}. The results of temperature and magnetic field dependent DC-magnetic measurements along with the results of powder X-ray diffraction measurement and electrical transport have been discussed. The X-ray data suggest a well-defined ordered crystal lattice, free from any detectable impurity phase. Magnetization data exhibits predominant diamagnetic character at higher fields. However, the compound exhibits anomalous behavior at low fields.

  1. 3-D Hybrid Simulation of Quasi-Parallel Bow Shock and Its Effects on the Magnetosphere

    International Nuclear Information System (INIS)

    Lin, Y.; Wang, X.Y.

    2005-01-01

    A three-dimensional (3-D) global-scale hybrid simulation is carried out for the structure of the quasi-parallel bow shock, in particular the foreshock waves and pressure pulses. The wave evolution and interaction with the dayside magnetosphere are discussed. It is shown that diamagnetic cavities are generated in the turbulent foreshock due to the ion beam plasma interaction, and these compressional pulses lead to strong surface perturbations at the magnetopause and Alfven waves/field line resonance in the magnetosphere

  2. Magnetic susceptibility of functional groups

    International Nuclear Information System (INIS)

    Herr, T.; Ferraro, M.B.; Contreras, R.H.

    1990-01-01

    Proceeding with a series of works where new criteria are applied to the the calculation of the contribution of molecular fragments to certain properties, results are presented for a group of 1-X-benzenes and 1-X-naphtalenes for the magnetic susceptibility constant. Both the diamagnetic and paramagnetic parts are taken into account. To reduce the problems associated with the Gauge dependence originated in the approximations made, Gauge independent atomic orbitals (GIAO) orbitals are used in the atomic orbital basis. Results are discussed in terms of functional groups. (Author). 17 refs., 1 fig., 3 tabs

  3. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  4. Study of hot electrons in a ECR ion source

    International Nuclear Information System (INIS)

    Barue, C.

    1992-12-01

    The perfecting of diagnosis connected with hot electrons of plasma, and then the behaviour of measured parameters of plasma according to parameters of source working are the purpose of this thesis. The experimental results obtained give new information on hot electrons of an ECR ion source. This thesis is divided in 4 parts: the first part presents an ECR source and the experimental configuration (ECRIS physics, minimafios GHz, diagnosis used); the second part, the diagnosis (computer code of cyclotron emission and calibration); the third part gives experimental results in continuous regime (emission cyclotron diagnosis, bremsstrahlung); the fourth part, experimental results in pulsed regime (emission cyclotron diagnosis, diamagnetism) calibration)

  5. Magnetophoresis of flexible DNA-based dumbbell structures

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  6. Instrument for orientation of a deflection in a borehole

    Energy Technology Data Exchange (ETDEWEB)

    Vechkhaizer, Ya.I.; Buslaev, V.F.; Khafizof, Z.Kh.; Shafikov, F.Kh.

    1981-05-17

    The instrument contains a diamagnetic pipe, a dipmeter with a cylindrical ring, and a framework installed in it, an azimuthal rheochord with magnetic arrow, and an extender with a locknut. To shorten the lowering and raising operations and increase the reliability of orientation of the deflector in vertical and inclined borehole shafts it is equipped with an additional deflector with a cylindrical ring. Installed in it is an additional famework. The extender with locknut is placed between the main and auxillary dipmeters. The frameworks of both dipmeters are arrested with rings with the aid of fixers; the azimuthal rheochords are installed according to one generatrix.

  7. A new method for measuring the amplitude of de Haas-van Alphen oscillations

    International Nuclear Information System (INIS)

    Wilde, J. de; Meredith, D.J.

    1975-01-01

    Quantum (dHvA) oscillations in the diamagnetic susceptibility of a metal at low temperatures are usually studied by a torque balance or by the field modulation technique of Shoenberg and Stiles. A new method of measuring dHvA amplitudes in indium using a superconducting flux transformer and a ferrite core flux gate magnetometer is reported. The magnitude of the magnetization is typically 10 -6 T at 1K which is considerably greater than the minimum detectable signal of the magnetometer, and shielding the sensor from the magnetizing field of up to 4T is the main experimental problem. (Auth.)

  8. Whistler mode startup in the Michigan Mirror Machine

    International Nuclear Information System (INIS)

    Booske, J.; Getty, W.D.; Gilgenbach, R.M.; Goodman, T.; Whaley, D.; Olivieri, R.; Pitcher, E.; Simonetti, L.

    1985-01-01

    Results of investigations of whistler mode ECRH plasma startup in the Michigan Mirror Machine are presented. Electron-velocity-distribution and plasma-spatial-distribution time evolution are characterized by measurements from axially and radially moveable Langmuir probes, an endloss current detector, an electron cyclotron emission radiometer, a foil-filtered X-ray detector, and a diamagnetic loop at the mirror midplane. Measurements of the buildup of both electron density and perpendicular pressure (nkT/sub perpendicular/) are compared to predictions from various numerical models. Both modeling and data suggest the creation of a highly anisotropic electron velocity distribution function with a ''sloshing electron'' axial density profile

  9. Superconductivity in alkaline earth-substituted La2CuO/sub 4-y/

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Mueller, K.A.; Takashige, M.

    1987-01-01

    La 2 CuO/sub 4-y/ ceramics containing a few percent of Ca 2+ , Sr 2+ , and Ba 2+ ions have been prepared. Resistivity and susceptibility measurements exhibit superconductive onsets (as in earlier Ba 2+ -containing samples). The onset temperature La 2 CuO/sub 4-y/ with Sr 2+ is higher and its superconductivity-induced diamagnetism larger than that found with Ba 2+ and Ca 2+ . This is proof that the electronic change resulting from alkaline earth-doping, rather than the size effect, is responsible for superconductivity. The ionic radius of Sr 2+ is close to that of La 3+ for which it presumably substitutes

  10. OXIDATIVE ALKYLATION OF (ETA-5-C5ME5)2TIR (R=CL, ME, ET, CH=CH2, PH, OME, N=C(H)TERT-BU) TO (ETA-5-C5ME5)2TI(ME)R BY GROUP-12 ORGANOMETALLIC COMPOUNDS MME2

    NARCIS (Netherlands)

    LUINSTRA, GA; TEUBEN, JH

    1991-01-01

    Oxidative alkylation of Cp*2TiX (Cp*: eta-5-C5Me5; X = OMe, Cl, N = C(H)tBu) and Cp*2TiMe by CdMe2 or ZnMe2 gives diamagnetic Cp*2Ti(Me)X and Cp*2TiMe2 respectively, and cadmium or zinc. The reactions of Cp*2TiR (R = Et, CH = CH2, Ph) with MMe2 (M = Cd, Zn) give statistical mixtures of Cp*2Ti(Me)R,

  11. Rippling and drift instabilities in the straight cylinder tokamak

    International Nuclear Information System (INIS)

    Rogister, A.

    1984-01-01

    It is shown that the electron and ion diamagnetic drifts stabilize the rippling mode in the straigth cylindrical tokamak model. Parallel electron heat conduction is further stabilizing if the parameter etasub(e) = dlnTsub(e)/dlnN is positive. This has a consequence that the mode does not survive at temperatures exceeding, typically, 50 eV for standard values of magnetic field and density. The collisional drift wave is found to be always stable even when the effect of the tokamak current is included in the calculation. (orig.)

  12. [Magnetic fusion theory and experimental research and development

    International Nuclear Information System (INIS)

    1992-01-01

    Radial currents have been used for generating plasma rotation. Particularly, oscillating torque experiments were performed. The resulting changes in the particle and heat transport were studied. Controlled variation in the poloidal asymmetry as well as in the plasma potential were induced by biasing. The particle confinement appears to be related to the sign of the radial electric potential. This is connected to the radial electric field and the direction of rotation. The electron diamagnetic drift direction is better. This corresponds to negative electric fields and potential. The poloidal asymmetry was studied in relation to heat confinement

  13. Radical polarization in double switching of external magnetic field

    International Nuclear Information System (INIS)

    Lukzen, N.N.; Morozov, V.A.; Sagdeev, R.Z.

    1999-01-01

    Theoretical treatment of radical spin evolution under the action of double switching of external magnetic field is proposed. Account is taken of evolution of the radical spin state during laser pulse which generates paramagnetic particles. It is shown that the most effective beats in the nuclear magnetization of diamagnetic products of recombination occur upon the jump into zero magnetic field after laser pulse. The phase of observed beats bears information about the type of the initial radical polarization. The frequency of the beats is determined by radical hyperfine structure. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. OPTICAL STUDIES OF PENICILLIN GROUP IN RELATION TO THEIR MEDICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    R. Jeevan Kumar

    2017-11-01

    Full Text Available The study of Medical activity of antibiotics is gaining momentum now a days owing to the importance of their curative values.  The Medical Activity correlated to molecular interactions,can be studied by various physical techniques, at present optical methods like Refractometry and Polarization are used to study the activity of a few antibiotics like Penicillin.  The Refractive Indices Mean Molecular Polarizability Diamagnetic Susceptibilities and Electron Ionisation Cross Section are interpreted in terms of dosages and the toxic effects if any due to over dosages are discussed critically.

  15. Internal Kink Mode Dynamics in High-β NSTX Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Stutman, D.; Tritz, K.; Zhu, W.

    2004-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data

  16. Internal kink mode dynamics in high-β NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Zhu, W.; Stutman, D.; Tritz, K.

    2005-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode non-linear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experiment. (author)

  17. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A.

    1997-01-01

    Processes of formation and annihilation of coordination defects in As 2 Se 3 Bi y and (As 2 Se 3 )(Bi 2 Se 3 ) y amorphous chalcogenide semiconductors induced by influence of Co 60 gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As 2 Se 3 Bi y glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs

  18. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  19. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail: pdunne2@tcd.ie; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)

    2007-09-15

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  20. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...... radial bending. The experimental observations are compared with numerical solutions of a linear nonlocal cylindrical model for drift waves [ Ellis , Plasma Phys. 22, 113 (1980) ]. In the numerical model, a transition to bended mode structures is found if the plasma collisionality is increased....... This finding proves that the experimentally observed bended mode structures are the result of high electron collisionality. (C) 2004 American Institute of Physics....

  1. Self-assembly of a [Ni8] carbonate cube incorporating four μ4-carbonato linkers through fixation of atmospheric CO2 by ligated [Ni2] complexes.

    Science.gov (United States)

    Ghosh, Aloke Kumar; Pait, Moumita; Shatruk, Michael; Bertolasi, Valerio; Ray, Debashis

    2014-02-07

    The communication reports the synthesis, characterization, and magnetic behavior of a novel μ4-carbonato supported and imidazole capped ligated nickel cage [Ni8(μ-H2bpmp)4(μ4-CO3)4(ImH)8](NO3)4·2H2O (1) through self-assembly of ligand bound ferromagnetic Ni2 building blocks. Structural analysis indicates newer geometrical features for the coordination cage formation and dominant interdimer antiferromagnetic coupling resulting in a diamagnetic ground state.

  2. Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas.

    Science.gov (United States)

    Cole, A J; Hegna, C C; Callen, J D

    2007-08-10

    A model for field-error penetration is developed that includes nonresonant as well as the usual resonant field-error effects. The nonresonant components cause a neoclassical toroidal viscous torque that keeps the plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine resonant error-field penetration threshold scaling in Ohmic tokamak plasmas. Compared to previous theoretical results, we find the plasma is less susceptible to error-field penetration and locking, by a factor that depends on the nonresonant error-field amplitude.

  3. Linear analysis of neoclassical tearing mode based on the four-field reduced neoclassical MHD equation

    International Nuclear Information System (INIS)

    Furuya, Atsushi; Yagi, Masatoshi; Itoh, Sanae-I.

    2003-01-01

    The linear neoclassical tearing mode is investigated using the four-field reduced neoclassical MHD equations, in which the fluctuating ion parallel flow and ion neoclassical viscosity are taken into account. The dependences of the neoclassical tearing mode on collisionality, diamagnetic drift and q profile are investigated. These results are compared with the results from the conventional three-field model. It is shown that the linear neoclassical tearing mode is stabilized by the ion neoclassical viscosity in the banana regime even if Δ' > 0. (author)

  4. Effect of ion viscosity on neoclassical tearing mode

    International Nuclear Information System (INIS)

    Yoshida, Shigeki; Itoh, Sanae-I.; Yagi, Masatoshi; Azumi, Masafumi

    2004-01-01

    Linear stability analysis of neoclassical tearing mode (NTM) is performed on the basis of four-field reduced magnetohydrodynamic (MHD) model which takes account of fluctuating ion parallel flow and ion neoclassical viscosity. The dependence of the growth rate on the kinetic effects is investigated. It is shown that the linear NTM is stabilized by ion neoclassical viscosity and that the stabilizing effect of ion parallel compressibility is weak in the banana-plateau regime. It is found that not only ion neoclassical viscosity but also both ion and electron diamagnetic effects are important for the stabilization of NTM. (author)

  5. Analyzing Forensic Evidence Based on Density with Magnetic Levitation

    OpenAIRE

    Lockett, Matthew; Mirica, Katherine A.; Mace, Charles R.; Blackledge, Robert D.; Whitesides, George M.

    2013-01-01

    This paper describes a method for determining the density of contact trace objects with magnetic levitation (MagLev). MagLev measurements accurately determine the density (±0.0002 g/cm3) of a diamagnetic object and are compatible with objects that are nonuniform in shape and size. The MagLev device (composed of two permanent magnets with like poles facing) and the method described provide a means of accurately determining the density of trace objects. This method is inexpensive, rapid, and ve...

  6. Pressure study on the semiconductor-metal transition in a quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthi, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Tamilnadu (India)

    2009-06-15

    The effect of {gamma}-X band crossing due to the applied hydrostatic pressure on the semiconductor-metal transition in a quasi-two-dimensional system like GaAs/Al{sub x}Ga{sub 1-x}As quantum well has been shown through the drastic change in diamagnetic susceptibility of donors at critical concentration in the effective mass approximation using the variational principle. The nonparabolicity of the conduction band has been taken into account in the calculation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. X-ray pulsar magnetosphere

    International Nuclear Information System (INIS)

    Lipunov, V.

    1981-01-01

    A pulsar consists of a close binary star system whose one component is a neutron star and the other a normal star. This supplies the neutron star with fuel in form of star wind or a gas stream. A hot plasma-like matter falls onto the neutron star, penetrates in its magnetic field and interacts with it. The matter coming from the normal star has a great rotational moment and forms a hot diamagnetic disk around the neutron star. The plasma penetrates in the internal parts of the magnetosphere where hard x radiation is formed as a result of the plasma impingement on the neutron star surface. (M.D.)

  8. Method of formation of a high gradient magnetic field and the device for division of substances

    International Nuclear Information System (INIS)

    Il'yashenko, E. I.; Glebov, V. A.; Skeltorp, A. T.

    2005-01-01

    Full text: The method and the device [1] are intended for use as a high-sensitivity magnetic separator for different types of paramagnetic substances and materials from diamagnetic ones, for division of paramagnetic substances and materials on the magnitudes of their paramagnetic susceptibility, for division of diamagnetic substances and materials on magnitudes of their diamagnetic susceptibility. Scopes: to produce pure and super pure substances and materials in electronics, metallurgy and chemistry, separation of biological objects (red blood cells, magnetic bacteria, etc.) in biology and medicine, water treatment removing heavy metals and organic impurities, etc. The main condition for magnetic separation is the magnetic force which acts on a particle of the substance and which is proportional to the magnetic susceptibility of the substance, magnetic induction B and gradient ∇B of the applied magnetic field. Therefore, to increase the sensitivity and selectivity of magnetic separation it will be required to use the largest possible values of the magnetic induction and the gradient of a magnetic field, or their product - B∇B. The device declared in the present work includes the magnetic system such as the open domain structure, consisting of permanent magnets with magnetic anisotropy much greater than the induction of a material of magnets. However, the declared device differs from the open domain structure in that [1]: *the surface of the neighbor poles of magnets is covered with a mask made from sheets of adjustable thickness of a soft magnetic material; *the soft magnetic material of the mask is selected on the basis of the magnitudes of the induction of saturation and magnetic permeability for achievement of the required magnitude of the induction and gradient of the magnetic field; *between the sheets of the mask there is an adjustable gap located symmetrically relative to the junction line of the magnets; *the size and the form of the gap between the

  9. Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.

    1987-01-01

    We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles

  10. Theoretical and experimental discussion of Ixion, a possible thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, K; Hammel, J E; Longmire, C L; Nagle, D; Ribe, F L; Riesenfeld, W B [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    Theoretical discussions of the diamagnetic effects and of the mirror enhancement brought about by the ion centrifugal force are presented and experiments are discussed. The successive operation of three models of Ixion are reported. The models differ primarily in the ranges of electric and magnetic fields which were used and in the series inductances of the electrical leads which in each case connected Ixion to energized capacitor banks. The first two models are with metallic center electrodes, while the latest version, Ixion III, has a 'plasma center electrode' It is believed that these experiments demonstrate the containment of a rotating plasma, although impurities are limiting the energy that can be contained.

  11. State of atoms and interatomic interactions in complex perovskite-like oxides. Communication XVIII. Magnetic dilution in the LaCrO3-LaGaO3 system

    International Nuclear Information System (INIS)

    Chezhina, N.V.; Zolotukhina, N.V.; Bodritskaya, Eh.V.

    2005-01-01

    Solid solutions LaCr x Ga 1-x O 3 (0.01 ≤ x ≤ 0.10) were synthesized using the ceramic technique and characterized by X-ray powder diffraction and chemical analysis. Magnetic susceptibility of dilute solid solutions of lanthanum chromate in lanthanum gallate was studied in the temperature range 77-400 K. The calculated antiferromagnetic exchange parameter and distribution of chromium atoms over the diamagnetic matrix gave evidence for enhanced chromium aggregation and weakened magnetic exchange in lanthanum gallate compared to lanthanum aluminate [ru

  12. Observation of ion scale fluctuations in the pedestal region during the edge-localized-mode cycle on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Kramer, G. J.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Smith, D. R.; McKee, G. J. [Departments of Engineering Physics and Physics, University of Wisconsin, Madison, Wisconsin (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 (United States); Fonck, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Departments of Engineering Physics and Physics, University of Wisconsin, Madison, Wisconsin (United States)

    2013-01-15

    Characterization of the spatial structure of turbulence fluctuations during the edge localized mode cycle in the pedestal region is reported. Using the beam emission spectroscopy and the correlation reflectometry systems, measurements show spatial structure-k{sub Up-Tack }{rho}{sub i}{sup ped}-ranging from 0.2 to 0.7 propagating in the ion diamagnetic drift direction at the pedestal top. These propagating spatial scales are found to be anisotropic and consistent with ion-scale microturbulence of the type ion temperature gradient and/or kinetic ballooning modes.

  13. Non linear microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    Among the various instabilities which could explain the anomalous electron heat transport observed in tokamaks during additional heating, a microtearing turbulence is a reasonable candidate since it affects directly the magnetic topology. This turbulence may be described in a proper frame rotating around the majors axis by a static potential vector. In strong non linear regimes, the flow of electrons along the stochastic field lines induces a current. The point is to know whether this current can sustain the turbulence. The mechanisms of this self-consistency, involving the combined effects of the thermal diamagnetism and of the electric drift are presented here

  14. Levitation in paramagnetic liquids

    International Nuclear Information System (INIS)

    Dunne, P.A.; Hilton, J.; Coey, J.M.D.

    2007-01-01

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated

  15. Observation of Diamond Nitrogen-Vacancy Center Photoluminescence under High Vacuum in a Magneto-Gravitational Trap

    Science.gov (United States)

    Ji, Peng; Hsu, Jen-Feng; Lewandowski, Charles W.; Dutt, M. V. Gurudev; D'Urso, Brian

    2016-05-01

    We report the observation of photoluminescence from nitrogen-vacancy (NV) centers in diamond nanocrystals levitated in a magneto-gravitational trap. The trap utilizes a combination of strong magnetic field gradients and gravity to confine diamagnetic particles in three dimensions. The well-characterized NV centers in trapped diamond nanocrystals provide an ideal built-in sensor to measure the trap magnetic field and the temperature of the trapped diamond nanocrystal. In the future, the NV center spin state could be coupled to the mechanical motion through magnetic field gradients, enabling in an ideal quantum interface between NV center spin and the mechanical motion. National Science Foundation, Grant No. 1540879.

  16. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  17. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  18. Photoluminescence and magnetophotoluminescence studies in GaInNAs/GaAs quantum wells

    Science.gov (United States)

    Segura, J.; Garro, N.; Cantarero, A.; Miguel-Sánchez, J.; Guzmán, A.; Hierro, A.

    2007-04-01

    We investigate the effects of electron and hole localization in the emission of a GaInNAs/GaAs single quantum well at low temperatures. Photoluminescence measurements varying the excitation density and under magnetic fields up to 14 T have been carried out. The results indicate that electrons are strongly localized in these systems due to small fluctuations in the nitrogen content of the quaternary alloy. The low linear diamagnetic shift of the emission points out the weakness of the Coulomb correlation between electrons and holes and suggests an additional partial localization of the holes.

  19. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Dodel, G; Holzhauer, E [Stuttgart Univ. (Germany). Inst. fuer Plasmaforschung; Niedermeyer, H; Endler, M; Gerhardt, J; Giannone, L.; Wagner, F; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The 119 [mu]m laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs.

  20. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1991-01-01

    The 119 μm laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs

  1. Muonium substituted molecules

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1990-12-01

    The manner in which Muon Spin Rotation and Level Crossing Resonance are used to characterise muonium substituted organic radicals is described, and illustrated with spectra for the ethyl radical and related species. Comparison with electron spin resonance data for the unsubstituted radicals reveals significant structural and hyperfine isotope effects which can be traced to the effects of zero point motion. The first comparable results for a diamagnetic species, exhibiting a quadrupole isotope effect by comparison with conventional nuclear quadrupole resonance data, are presented and discussed. (author)

  2. Finite-size effects on the static properties of a single-chain magnet

    Science.gov (United States)

    Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.

    2005-08-01

    We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.

  3. Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study

    Science.gov (United States)

    Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.

    2004-05-01

    The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.

  4. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.; Abou-Hamad, E.; Alabedi, G.; Al-Taie, I.; Kim, Y.; Wagberg, T.; Goze-Bac, C.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  5. Coexistence of charge density wave and superconductivity in Cu0.10TiSe2

    Science.gov (United States)

    Jat, K. S.; Nagpal, V.; Sagar, A. D.; Neha, P.; Patnaik, S.

    2018-04-01

    We report the synthesis and characterization of Cu intercalated TiSe2 superconductor. The resistivity variation with temperature indicates superconducting transition onset at 3.1K and resistivity drops down to zero at 2.1K. The magnetization measurement provides the diamagnetic transition at 3 K. The upper critical field Hc2, lower critical field Hc1, Ginzburg Landau coherence length (ξ) and penetration depth(λ) are estimated to be 0.93 T, 0.01T, 18.8 nm and 181.5 nm respectively. At 100K, CDW type feature is observed. The coexistence of CDW phase and superconductivity is summarized.

  6. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  7. Magnetic properties of carbon nanotubes with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lipert, Kamil; Ritschel, Manfred; Leonhardt, Albrecht; Krupskaya, Yulia; Buechner, Bernd; Klingeler, Ruediger, E-mail: k.lipert@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany)

    2010-01-01

    In this paper we report on the magnetic properties of single- and multiwalled carbon nanotubes synthesized using different chemical vapour deposition methods and with variety of catalyst materials (ferromagnetic Fe, FeCo and diamagnetic Re). Different methods yield carbon nanotubes with different morphologies and different quantity of residual catalyst material. Catalyst particles are usually encapsulated in the nanotubes and influence the magnetic respond of the samples. Varying ferromagnetic properties depending on the shape, size and type of catalyst are discussed in detail. The data are compared with M(H) characteristics of carbon nanotubes without catalysts and with nonmagnetic rhenium, as a reference.

  8. Fabrication and characterizations of high-Tc superconducting ceramic/polymer 0--3 composites

    International Nuclear Information System (INIS)

    Du, J.; Unsworth, J.

    1994-01-01

    High-T c superconducting ceramic YBa 2 Cu 3 O 7-x /thermosetting plastic 0--3 composites were fabricated. The structure, physical property, magnetic susceptibility, levitation, and mechanical strength of the composites were accessed. The influence of filler content on these properties was also studied. Although the 0--3 composites lack an electrical superconducting path through materials, the intrinsic diamagnetic properties were preserved. The magnetic superconducting transition temperature was not degraded. The values of magnetic susceptibility and levitation force for the composites were basically proportional to the actual volume fraction of superconducting filler. These new composite materials are most suitable for the applications in levitating vehicles and mechanical bearings

  9. Synthesis and magnetic properties of cerium macrocyclic complexeswith tmtaaH2, tetramethyldibenzotetraaza[14]-annulene

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Marc D.; Fandos, Rosa; Andersen, Richard A.

    2006-02-21

    The complexes [Ce(tmtaa)2], [Ce(tmtaa)(tmtaaH)]and[Ce2(tmtaa)3(thf)2]are obtained from Ce[N(SiMe3)2]3 and tmtaaH2, themacrocyclic ligand 6,8,15,17-tetramethyldibenzotetraaza[14]-annulene,depending on the stoichiometry, solvent and temperature. The crystalstructure of Ce(tmtaa)2 is isostructural with Zr(tmtaa)2, howevermagnetic susceptibility measurements in the range 5-300 K show thatCe(tmtaa)2 is not diamagnetic, but is a temperature-independentparamagnet (TIP), similar to Ce(cot)2, cerocene.

  10. Flute-interchange stability in a hot electron plasma

    International Nuclear Information System (INIS)

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects

  11. The Correspondence of Michael Faraday Pt 6 1860-1867

    CERN Document Server

    Frank, James

    2012-01-01

    Michael Faraday (1791-1867) was one of the most important men of science in nineteenth century Britain. His discoveries of electro-magnetic rotations (1821) and electro-magnetic induction (1831) laid the foundations of the modern electrical industry. His discovery of the magneto-optical effect and diamagnetism (1845) led him to formulate the field theory of electro-magnetism, which forms one of the cornerstones of modern physics.These and a whole host of other fundamental discoveries in physics and chemistry, together with his lecturing at the Royal Institution, his work for the state (includi

  12. Alteration of the magnitude of the proton magnetic moment in nuclear magnetons in connection with the changes in the atomic mass values

    Energy Technology Data Exchange (ETDEWEB)

    Mamyrin, B.A.; Aruev, N.N.; Alekseenko, S.A.

    1983-06-01

    In connection with the revision of the table values of the atomic masses and the forthcoming coordination of the values of the fundamental physical constants, the result of measurement of the proton magnetic moment in nuclear Magnetons obtained in 1971 is re-examined by taking into account recent data. With the atomic masses recognized in 1982 the proton magnetic moment expressed in nuclear magnetons without a correction for diamagnetic screening of the proton in a water molecule is found to be ..mu..sub(p)'/..mu..sub(n)=2.7927729+-0.0000012 (4.3x10/sup -5/%).

  13. Proton ring trapping in a gated magnetic mirror

    International Nuclear Information System (INIS)

    Pedrow, P.D.; Greenly, J.B.; Hammer, D.A.; Sudan, R.N.

    1985-01-01

    An axis-encircling proton ring has been trapped for times (roughly-equal4 μs) much longer than the ion cyclotron period (roughly-equal80 ns). The rings, with mean radius 10 cm and with particle energies 15 protons during the first pass and 2 x 10 13 protons during the eighth and final pass. With a central solenoidal field of 0.8 T, the peak diamagnetism and azimuthal current density of the injected ring were typically 10 mT (100 G) and 10 A/cm 2 , respectively

  14. Status of Far Infrared Tangential Interferometry/Polarimetry (FIReTIP) on NSTX

    International Nuclear Information System (INIS)

    Park, H.K.; Edwards, S.; Guttadora, L.; Deng, B.; Domier, C.W.; Lee, K.C.; Johnson, M.; Luhmann, N.C. Jr.

    2000-01-01

    The Influence of paramagnetism and diamagnetism will significantly alter the vacuum toroidal magnetic field in the spherical torus. Therefore, plasma parameters dependent upon BT such as the q-profile and the local b value need an independent measurement of BT(r,t). The multi-chord Tangential Far Infrared Interferometer/Polarimeter (FIReTIP) system [1] currently under development for the National Spherical Torus Experiment (NSTX) will provide temporally and radially resolved toroidal field profile [BT(r,t)] and 2-D electron density profile [ne(r,t)] data. A two-channel interferometer will be operational this year and the full system will be ready by 2002

  15. The convergence of analytic high-β equilibrium in a finite aspect ratio tokamak

    International Nuclear Information System (INIS)

    Neches, R. Y.; Cowley, S. C.; Gourdain, P. A.; Leboeuf, J. N.

    2008-01-01

    The characteristics of near-unity-β equilibria are investigated with two codes. CUBE is a multigrid Grad-Shafranov solver [Gourdain et al., J. Comput. Phys. 216, 275 (2006)], and Ophidian was written to compute solutions using analytic unity-β equilibria [Cowley et al., Phys. Fluids B 3, 2066 (1991)]. Results from each method are qualitatively and quantitatively compared across a spectrum of mutually relevant parameters. These comparisons corroborate the theoretical results and provide benchmarks for high-resolution numerical results available from CUBE. Both tools facilitate the exploration of the properties of high-β equilibria, such as a highly diamagnetic plasma and its ramifications for stability and transport.

  16. Multiple frequency ECH (MFECH) in SM-1 and STM-1

    International Nuclear Information System (INIS)

    Lazar, N.; Barter, J.; Dandl, R.; DiVergilio, W.; Quon, B.; Wuerker, R.

    1982-01-01

    Plasma properties were studied in a simple mirror (SM-1) and a five-cell axisymmetric tandem mirror (STM-1) using multiple frequency ECH. The cold plasma properties depend predominantly on total power but the efficiency for producing the diamagnetic ring plasma depends critically on heating with multiple frequencies. The effects of frequency separation of the heating sources will be demonstrated. Noise fluctuations in the axial current are suppressed with increasing ring-β, but the observed frequency spectrum are not well understood. Annulus β in the multiple mirror is also dependent on MFECH. Plans for and experiments in the new facility will be described

  17. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)-isothiosemicarbazides

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-09-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic ..mu..-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O/sub 2/ bond is discussed.

  18. Energy confinement in JT-60 lower hybrid current driven plasmas

    International Nuclear Information System (INIS)

    Ushigusa, K.; Imai, T.; Naito, O.; Ikeda, Y.; Tsuji, S.; Uehara, K.

    1990-01-01

    The energy confinement in high power lower hybrid current driven (LHCD) plasmas has been studied in the JT-60 tokamak. At a plasma current of 1 MA, the diamagnetically estimated energy confinement time in LHCD plasmas has almost the same value as the confinement time in ohmically heated plasmas at n-bar e ∼ 1.0x10 19 m -3 . The confinement time of high power LHCD plasmas (P LH E varies as to P LH α n e β I p 0 with α + β ∼ -0.3. (author). Letter-to-the-editor. 12 refs, 5 figs

  19. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    . The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  20. Moessbauer investigation of magnetic hyperfine fields near bivalent Eu compounds under high pressure

    International Nuclear Information System (INIS)

    Abd Elmeguid, M.

    1979-01-01

    The paper deals with the pressure or volume dependence of hyperfine interactions of magnetically ordered, bivalent europium compounds. Emphasis is laid on the investigation of the pressure or volume dependence of magnetic hyperfine fields as they are found at the nuclear site of 151 Eu or of diamagnetic 119 Sn or 197 Au probe atoms. The measurements were carried out with the aid of the gamma resonance of 151 Eu (21.6 keV) 119 Sn (23.8 keV) and 167 Au (77.4 keV) at low temperatures and external pressures up to 65 kbar. (orig./WBU) [de

  1. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Porter, G.D.; Rognlien, T.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    2001-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and nite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  2. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Por, G.D. ter; Rognlien, T.D.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    1999-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the E x B drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  3. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Science.gov (United States)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  4. Susceptibility cancellation of a microcoil wound with a paramagnetic-liquid-filled copper capillary

    Science.gov (United States)

    Takeda, Kazuyuki; Takasaki, Tomoya; Takegoshi, K.

    2015-09-01

    Even though microcoils improve the sensitivity of NMR measurement of tiny samples, magnetic-field inhomogeneity due to the bulk susceptibility effect of the coil material can cause serious resonance-line broadening. Here, we propose to fabricate the microcoil using a thin, hollow copper capillary instead of a wire and fill paramagnetic liquid inside the capillary, so as to cancel the diamagnetic contribution of the copper. Susceptibility cancellation is demonstrated using aqueous solution of NiSO4. In addition, the paramagnetic liquid serves as coolant when it is circulated through the copper capillary, effectively transferring the heat generated by radiofrequency pulses.

  5. Interaction of ultrasound with vortices in type-II superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1996-01-01

    The theory of ultrasound in the mixed state of type-II superconductors is suggested which takes into account the Magnus force on vortices, the anti-Magnus force on ions, and diamagnetism of the mixed state. The acoustic Faraday effect (rotation of polarization of the transverse ultrasonic wave propagating along vortices) is linear in the Magnus force in any regime of the flux flow for wavelengths now used in the ultrasound experiments. Therefore, in contrast to previous predictions, the Faraday effect should be looked for only in clean superconductors with a strong Magnus force. copyright 1996 The American Physical Society

  6. Evidence of superstoichiometric H/D LENR active sites and high-temperature superconductivity in a hydrogen-cycled Pd/PdO

    International Nuclear Information System (INIS)

    Lipson, A.G.; Castano, C.H.; Miley, G.H.; Lyakhov, B.F.; Tsivadze, A.Yu.; Mitin, A.V.

    2006-01-01

    Electron transport and magnetic properties have been studied in a 12.5 μm thick Pd foil with a thermally grown oxide and a low-residual concentration of hydrogen. This foil was deformed by cycling across the Pd hydride miscibility gap and the residual hydrogen was trapped at dislocation cores. Anomalies of both resistance and magnetic susceptibility have been observed below 70 K, indicating the appearance of excess conductivity and a diamagnetic response that we interpret in terms of filamentary superconductivity. These anomalies are attributed to a condensed hydrogen-rich phase at dislocation cores. The role of deuterium rich dislocation cores as LENR active sites is discussed. (author)

  7. Evidence of Superstoichiometric H/d Lenr Active Sites and High-Temperature Superconductivity in a Hydrogen-Cycled Pd/PdO

    Science.gov (United States)

    Lipson, A. G.; Castano, C. H.; Miley, G. H.; Lyakhov, B. F.; Tsivadze, A. Yu.; Mitin, A. V.

    Electron transport and magnetic properties have been studied in a 12.5 μm thick Pd foil with a thermally grown oxide and a low-residual concentration of hydrogen. This foil was deformed by cycling across the Pd hydride miscibility gap and the residual hydrogen was trapped at dislocation cores. Anomalies of both resistance and magnetic susceptibility have been observed below 70 K, indicating the appearance of excess conductivity and a diamagnetic response that we interpret in terms of filamentary superconductivity. These anomalies are attributed to a condensed hydrogen-rich phase at dislocation cores. The role of deuterium rich dislocation cores as LENR active sites is discussed.

  8. Study of Moessbauer effect on LiFe5-x Alx O8, LiFe 5-x Gax O8 and LiGa5-x Fex O8 systems

    International Nuclear Information System (INIS)

    Barthem, V.M.T.S.

    1982-01-01

    The measures obtained by Moessbauer spectroscopy from LiFe 5-x Ga x O 8 and LiFe 5-x Al x O 8 systems are presented. A comparative study of the influences of dopant diamagnetic ions on magnetic structures of lithium ferrite was performed. The LiGa 5-x Fe x O 8 systems were analysed based on the existing data from LiAl 5-x Fe x O 8 systems, otaining informations about the iron ion behaviour in both matrices. (M.C.K.) [pt

  9. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors

    International Nuclear Information System (INIS)

    Zhuchenko, N.K.; Yagud, R.Z.

    1993-01-01

    Neutron depolarization measurements in the mixed state of both high-T c and low-T c weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo 6 S 8 and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields

  10. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors. Issledovanie magnitnykh neodnorodnostej v sverkhprovodnikakh so slabymi svyazyami metodom depolyarizatsii nejtronov

    Energy Technology Data Exchange (ETDEWEB)

    Zhuchenko, N K; Yagud, R Z [AN SSSR, Leningrad (Russian Federation). Inst. Yadernoj Fiziki

    1993-09-01

    Neutron depolarization measurements in the mixed state of both high-T[sub c] and low-T[sub c] weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo[sub 6]S[sub 8] and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields.

  11. Understanding Chemistry and Unique NMR Characters of Novel Amide and Ester Leflunomide Analogues

    Directory of Open Access Journals (Sweden)

    Morkos A. Henen

    2017-12-01

    Full Text Available A series of diverse substituted 5-methyl-isoxazole-4-carboxylic acid amides, imide and esters in which the benzene ring is mono or disubstituted was prepared. Spectroscopic and conformational examination was investigated and a new insight involving steric interference and interesting downfield deviation due to additional diamagnetic anisotropic effect of the amidic carbonyl group and the methine protons in 2,6-diisopropyl-aryl derivative (2 as conformationaly restricted analogues Leflunomide was discussed. Individual substituent electronic effects through π resonance of p-substituents and most stable conformation of compound (2 are discussed.

  12. Modelling of hysteresis in thin superconducting screens for mixed-mu suspension systems

    International Nuclear Information System (INIS)

    Asher, G.M.; Williams, J.T.; Walters, C.R.; Joyce, H.; Paul, R.J.A.

    1982-01-01

    Mixed-mu levitation is the principle whereby iron is levitated in a magnetic field and stabilized by the proximity of diamagnetic superconducting screens. In a dynamic environment, the screens are subject to changing magnetic fields thus causing hysteresis losses in the superconducting material. This paper is concerned with the modeling of such hysteresis. A finite difference approximation to the current and field distributions is employed, the current distribution being made consistent with critical current values by iteration. Square and disc shaped screen samples are studied and hysteresis curves computed. It is shown that the method represents a fair approximation to the hysteresis behavior of thin superconducting screens. 8 refs

  13. The Quadrumafios electron cyclotron resonance ion source: presentation and analysis of the results

    International Nuclear Information System (INIS)

    Girard, A.; Briand, P.; Gaudart, G.; Klein, J.P.; Bourg, F.; Debernardi, J.; Mathonnet, J.M.; Melin, G.; Su, Y.

    1993-01-01

    The Quadrumafios electron cyclotron resonance ion source (ECRIS) has been especially designed to permit physical studies of the plasma; this paper describes the source itself (which has been operated at 10 GHz in a first step), its preliminary performances, and the different diagnostics involved, which mainly concern the electron population (ECE, X rays, diamagnetism, microwave interferometer, and electron analyser). The results are presented and discussed: there is of course a close relationship between the parameters of the plasma and the performances of the source; this point will be discussed in the article. (authors). 5 refs., 9 figs

  14. Quantum theory of the solid state part B

    CERN Document Server

    Callaway, Joseph

    1974-01-01

    Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed

  15. ACCURATE MAGNETIZABILITIES OF THE ISOELECTRONIC SERIES BEH-, BH, AND CH+ - THE MCSCF-GIAO APPROACH

    DEFF Research Database (Denmark)

    Ruud, K.; Helgaker, T.; Bak, Keld L.

    1995-01-01

    is investigated and shown to be small. It is demonstrated that BeH- is diamagnetic, contrary to the prediction of a recent study. Our calculated magnetizabilities for the three molecules are: (204-207) x 10(-30) J T-2 (BH), (313-318) x 10(-30) J T-2 (CH+), and (- 62 +/- 5) x 10(-30) J T-2 (BeH-).......We present the first calculations of molecular magnetizabilities using London atomic orbitals at the multiconfigurational self-consistent field level. The natural connection is introduced to ensure a numerically stable evaluation of the magnetizability. Furthermore, the natural connection enables...

  16. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  17. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  18. Muonium states and dynamics in phosphorus and sulphur

    International Nuclear Information System (INIS)

    Cox, S.F.J.; Cottrell, S.P.; Hopkins, G.A.; Kay, M.; Pratt, F.L.

    1997-01-01

    The various states formed by positive muons implanted into phosphorus and sulphur have been characterized as a model for interstitial hydrogen, of which little is known in these elements. Repolarization studies reveal muonium-like states in each case, giving estimates of the hyperfine parameters and, for sulphur at least, an indication of the coexistence of a molecular radical state. The longitudinal-field relaxation functions suggest conversion of the paramagnetic states to diamagnetic, i.e. ionization or chemical reaction, in competition with strong spin-lattice relaxation

  19. First plasmas in Heliotron J

    International Nuclear Information System (INIS)

    Obiki, T.; Mizuuchi, T.; Nagasaki, K.

    2001-01-01

    Results obtained in the initial experiment phase of Heliotron J are reported. The electron beam mapping of the magnetic surfaces has revealed that the observed surfaces are in basic agreement with the calculated ones based on the measured ambient field around the device. For 53.2-GHz second harmonic ECH hydrogen plasmas, a fairly wide resonance range for breakdown by the TE 02 mode has been observed in Heliotron J as compared with that of Heliotron E. With ECH injection powers up to ∼ 400kW, diamagnetic stored energies up to ∼ 0.7 kJ were obtained without the optimized density control. (author)

  20. Superconducting fluctuation effect in CaFe0.88Co0.12AsF

    Science.gov (United States)

    Xiao, H.; Gao, B.; Ma, Y. H.; Li, X. J.; Mu, G.; Hu, T.

    2016-11-01

    Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF single crystals. Superconducting fluctuations, featured by magnetic field enhanced and exponential temperature dependent diamagnetism, are observed above the superconducting transition temperature T c, which is similar to that of cuprate superconductors, but less pronounced. In addition, the ratio of T c versus superfluid density follows well the Uemura line of high-T c cuprates, which suggests the exotic nature of the superconductivity in CaFe0.88Co0.12AsF.

  1. Set of programs for the conformational study by NMR of flexible molecules

    International Nuclear Information System (INIS)

    Chachaty, C.; Langlet, G.

    1984-09-01

    A series of programs of common modular structure have been written in APL for the interpretation of nuclear magnetic resonance and relaxation data in isotropic or anisotropic solutions (liquid crystals). After giving an outline of the computation methods, several examples are reported of the applications of these programs to conformational studies by means of the nuclear relaxation and of the diamagnetic of paramagnetic shifts of resonance lines. These programs are also convenient for studies of dipolar and quadrupolar splittings or chemical shift anisotropy in liquid crystals [fr

  2. Steady equilibrium of a cylindrically symmetric plasma sustained by fueling

    International Nuclear Information System (INIS)

    Tomita, Yukihiro; Momota, Hiromu

    1993-01-01

    By introducing a novel and natural method to obtain a steady equilibrium, it is shown that a pressure gradient produced by the particle injection or resultant diamagnetic current can sustain only an equilibrium of a diffused linear pinch. For an extremely elongated FRC where magnetic field vanishes at a certain point, a seed current is needed to sustain configuration in a steady state equilibrium. A directed flow of fusion produced protons forms a seed current and consequently it sustains a steady FRC equilibrium by fueling only once D- 3 He burning takes place. Effects of anomalous transports on the sustainment are discussed. (author)

  3. Faraday effect in Gd3Al5O12 and Gd3Ga5O12 rare earth garnets

    International Nuclear Information System (INIS)

    Valiev, U.V.; Klochkov, A.A.; Popov, A.I.; Sokolov, Y.B.

    1989-01-01

    The dispersion of the Faraday rotation of the garnets Gd 3 Ga 5 O 12 and Gd 3 Al 5 O 12 in the 440--700-nm region in the 85--295-K temperature interval and the spectral dependence of the Faraday effect in the garnets Y 3 Ga 5 O 12 and Y 3 Al 5 O 12 for wavelengths from 250 to 700 nm are investigated. The contributions to the Faraday rotation caused by the Gd 3+ ions and the diamagnetic lattice of the garnets are separated

  4. Towards a constructive approach of a gauge invariant, massive P(PHI)2 theory

    International Nuclear Information System (INIS)

    Schrader, R.

    1978-01-01

    As part of a possible constructive approach to a gauge invariant P(PHI) 2 theory, we consider massive, scalar, polynomially selfcoupled fields PHI in a fixed external Yang-Mills potential A in two dimensional euclidean space. For a large class of A's we show that the corresponding euclidean Green's functions for fields PHI have a lower mass gap for weak coupling which is uniform in A. The result is obtained by adapting the Glimm-Jaffe-Spencer cluster expansion to the present situation through Kato's inequality, which reflects the diamagnetic effect of the Yang-Mills potential. A dicussion of the corresponding gauge covariance is included. (orig.) [de

  5. Amorphous iron–chromium oxide nanoparticles with long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Iacob, Mihail [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Cazacu, Maria, E-mail: mcazacu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Turta, Constantin [Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Doroftei, Florica [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Botko, Martin; Čižmár, Erik; Zeleňáková, Adriana; Feher, Alexander [Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, SK-04154 Košice (Slovakia)

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of the NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.

  6. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Siraj, K., E-mail: khurram.uet@gmail.com [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z. [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Naseem, S.; Riaz, S. [Center for Solid State Physics, University of Punjab, Lahore (Pakistan)

    2011-05-15

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  7. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    International Nuclear Information System (INIS)

    Siraj, K.; Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z.; Naseem, S.; Riaz, S.

    2011-01-01

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  8. Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement

    Science.gov (United States)

    Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.

    2018-05-01

    Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.

  9. Automated recognition system for ELM classification in JET

    International Nuclear Information System (INIS)

    Duro, N.; Dormido, R.; Vega, J.; Dormido-Canto, S.; Farias, G.; Sanchez, J.; Vargas, H.; Murari, A.

    2009-01-01

    Edge localized modes (ELMs) are instabilities occurring in the edge of H-mode plasmas. Considerable efforts are being devoted to understanding the physics behind this non-linear phenomenon. A first characterization of ELMs is usually their identification as type I or type III. An automated pattern recognition system has been developed in JET for off-line ELM recognition and classification. The empirical method presented in this paper analyzes each individual ELM instead of starting from a temporal segment containing many ELM bursts. The ELM recognition and isolation is carried out using three signals: Dα, line integrated electron density and stored diamagnetic energy. A reduced set of characteristics (such as diamagnetic energy drop, ELM period or Dα shape) has been extracted to build supervised and unsupervised learning systems for classification purposes. The former are based on support vector machines (SVM). The latter have been developed with hierarchical and K-means clustering methods. The success rate of the classification systems is about 98% for a database of almost 300 ELMs.

  10. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    Science.gov (United States)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  11. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  12. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)

    2015-09-15

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  13. Lower-hybrid turbulence in a nonuniform magnetoplasma

    International Nuclear Information System (INIS)

    Stenzel, R.L.

    1991-01-01

    An experimental study of a pressure-gradient-driven instability in a large discharge plasma (1 m diam, 2.5 m length, n e congruent 10 12 cm 3 , B congruent 14 G) is presented. When the electron diamagnetic drift v d =∇(nkT e )xB/neB 2 exceeds the sound speed c s congruent(kT e /m i ) 1/2 ion-acoustic-like waves (T e much-gt T i ) are driven unstable. The growth rate maximizes near the lower-hybrid frequency ω lh congruent(ω ce ω ci ) 1/2 and the waves propagate essentially across B (k parallel much-lt k perpendicular congruent ω lh /c s ). The sound waves grow to large amplitudes (δn/n approx-gt 50%) and saturate by wave steepening (λ D perpendicular ce ) and refraction (∇T e ≠0) away from the destabilizing drift v d . Magnetic fluctuations result from electron diamagnetic currents and opposing Hall currents associated with the wave density fluctuations. Ions are essentially unmagnetized (ν in /ω ci >1) and slow compared to the magnetized electrons, v i /v d congruent(m e /m i ) 1/2 much-lt 1. In spite of the large amplitude waves little acceleration of electrons or ions is observed. The experiment employs a new technique of conditional averaging with digital oscilloscopes

  14. Structural, morphological and magnetic analysis of Cd–Co–S dilute magnetic semiconductor nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suresh [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Negi, N.S. [Department of Physics, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005 (India); Katyal, S.C. [Department of Physics, Jaypee Institute of Information Technology, Sec-128, Noida, Uttar Pradesh 201301 (India); Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Sharma, Vineet [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India)

    2014-10-01

    Cd{sub 1−x}Co{sub x}S dilute magnetic semiconductor nanofilms (0≤x≤0.08 at%) deposited by chemical bath deposition have been investigated using grazing angle x-ray diffraction, atomic force microscopy and vibrating sample magnetometer. The introduction of Co{sup 2+} ions in CdS structure induces structural disorders and hence, results in degradation of crystallinity. The crystallite size, interplanar spacing and lattice parameter ratio decrease with increasing Co{sup 2+} concentration in CdS. The diamagnetic state of CdS disappears with increase in Co concentration and films with x>0.02 exhibit ferromagnetism. This may be explained in terms of the spin–orbit interactions and Co{sup 2+} ion induced the lattice defects and phase separation. - Highlights: • Cd{sub 1−x}Co{sub x}S dilute magnetic semiconductor nanofilms (0≤x≤0.08 at%) deposited by CBD. • The diamagnetic state of CdS vanishes for x=0.02. • For x>0.02, dilute magnetic semiconductor nanofilms shows a ferromagnetic state.

  15. Photochemical modification of magnetic properties in organic low-dimensional conductors

    International Nuclear Information System (INIS)

    Naito, Toshio; Kakizaki, Akihiro; Wakeshima, Makoto; Hinatsu, Yukio; Inabe, Tamotsu

    2009-01-01

    Magnetic properties of organic charge transfer salts Ag(DX) 2 (DX=2,5-dihalogeno-N,N'-dicyanoquinonediimine; X=Cl, Br, I) were modified by UV irradiation from paramagnetism to diamagnetism in an irreversible way. The temperature dependence of susceptibility revealed that such change in magnetic behavior could be continuously controlled by the duration of irradiation. The observation with scanning electron microprobe revealed that the original appearance of samples, e.g. black well-defined needle-shaped shiny single crystals, remained after irradiation irrespective of the irradiation conditions and the duration. Thermochemical analysis and X-ray diffraction study demonstrated that the change in the physical properties were due to (partial) decomposition of Ag(DX) 2 to AgX, which was incorporated in the original Ag(DX) 2 lattices. Because the physical properties of low-dimensional organic conductors are very sensitive to lattice defects, even a small amount of AgX could effectively modify the electronic properties of Ag(DX) 2 without making the original crystalline appearance collapse. - Graphical abstract: By UV irradiation with appropriate masks, a part of single crystal of organic conductors irreversibly turned diamagnetic retaining their original crystalline shapes.

  16. Development of in situ two-coil mutual inductance technique in a multifunctional scanning tunneling microscope.

    Science.gov (United States)

    Duan, Ming-Chao; Liu, Zhi-Long; Ge, Jian-Feng; Tang, Zhi-Jun; Wang, Guan-Yong; Wang, Zi-Xin; Guan, Dandan; Li, Yao-Yi; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2017-07-01

    Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO 3 (111) substrate.

  17. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  18. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  19. Magnetic separation of general solid particles realised by a permanent magnet.

    Science.gov (United States)

    Hisayoshi, K; Uyeda, C; Terada, K

    2016-12-08

    Most existing solids are categorised as diamagnetic or weak paramagnetic materials. The possibility of magnetic motion has not been intensively considered for these materials. Here, we demonstrate for the first time that ensembles of heterogeneous particles (diamagnetic bismuth, diamond and graphite particles, as well as two paramagnetic olivines) can be dynamically separated into five fractions by the low field produced by neodymium (NdFeB) magnets during short-duration microgravity (μg). This result is in contrast to the generally accepted notion that ordinary solid materials are magnetically inert. The materials of the separated particles are identified by their magnetic susceptibility (χ), which is determined from the translating velocity. The potential of this approach as an analytical technique is comparable to that of chromatography separation because the extraction of new solid phases from a heterogeneous grain ensemble will lead to important discoveries about inorganic materials. The method is applicable for the separation of the precious samples such as lunar soils and/or the Hayabusa particles recovered from the asteroids, because even micron-order grains can be thoroughly separated without sample-loss.

  20. Charge exchange of muons in gases: I. Kinetic equations

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-06-01

    Kinetic equations for the spin density operators of the diamagnetic and paramagnetic states of the positive muon are obtained for the description of the slowing-down process encountered when high energy muons thermalize in a single component gas. The motion of this two species system is generated by the Liouville superoperators associated with the diamagnetic and paramagnetic spin Hamiltonians and by time-dependent rate superoperators which depict the probabilities per collision that an electron is captured or lost. These rates are translational averages of the appropriate Boltzmann collision operators. That is, they are momentum and position integrals of the product of either the electron capture or loss total cross section with the single particle translational density operators for the muon (or muonium) and a gas particle. These rates are time dependent because the muon (or muonium) translational density operator is time dependent. The initial amplitudes and phases of the observed thermal spin polarization in μSR experiments are then obtained in terms of the spin density operators emerging from the stopping regime

  1. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study

    KAUST Repository

    Bououdina, Mohamed

    2015-03-26

    We obtain a single cadmium oxide phase from powder synthesized by a thermal decomposition method of cadmium acetate dehydrate. The yielded powder is annealed in air, vacuum, and H2 gas in order to create point defects. Magnetization-field curves reveal the appearance of diamagnetic behavior with a ferromagnetic component for all the powders. Powder annealing under vacuum and H2 atmosphere leads to a saturation magnetization 1.15 memu g-1 and 1.2 memu g-1 respectively with an increase by 45% and 16% compared to the one annealed in air. We show that annealing in vacuum produces mainly oxygen vacancies while annealing in H2 gas creates mainly Cd vacancy leading to room temperature ferromagnetic (RTFM) component together with known diamagnetic properties. Ab initio calculations performed on the CdO nanoparticles show that the magnetism is governed by polarized hybrid states of the Cd d and O p orbitals together with the vacancy. © The Royal Society of Chemistry 2015.

  2. Magnetic diagnostics at Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarnia, K.; Andreeva, T.; Endler, M.; Hathiramani, D.; Grulke, O.; Neuner, U.; Svensson, J.; Thomsen, H.; Geiger, J.; Werner, A. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Cardella, A. [JT-60SA project, F4E c/o IPP, Garching (Germany); Carvalho, B. [Instituto de Plasmas e Fusao Nuclear Instituto Superior Tecnico, Lisbon (Portugal)

    2016-07-01

    An arrangement of magnetic sensors has been installed at the stellarator Wendelstein 7-X (W7-X) including over 300 individual 3D shaped sensors like diamagnetic loops, Rogowski, Saddle and Mirnov coils. Future long pulse operation of up to 1800 s demands an optimization of materials, thermal shielding and signal integration accuracy. The main objectives are the reconstruction of magnetic equilibria and monitoring the diamagnetic plasma energy. Generally, in stellarators a toroidal current drive is not necessary to maintain confinement. Minimization of toroidal currents is in fact one of the major optimization criteria of W7-X. It will be investigated by continuous and segmented Rogowski coils and Saddle coils measuring e.g. bootstrap and Pfirsch-Schlueter currents and their spatial distributions. A set of 125 toroidally and poloidally arranged Mirnov coils will give information on MHD and Alfven mode activity and edge localized modes (ELMs). A detailed overview of the magnetic diagnostic system is outlined, and initial results obtained during the first operation phase of W7-X are presented.

  3. Muons and Muonium in Molecular Physics

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to gain some insight on the most fundamental processes involved in the reaction of muons and muonium with organic molecules. Two components of the @mSR signal in an organic sample can be identified: a diamagnetic fraction precessing at (or very close to) the Larmor frequency and a paramagnetic fraction giving rise to frequencies characteristic of the muon's coupling with an unpaired electron spin.\\\\ \\\\ .uc 1) diamagnetic fraction \\\\ \\\\ We intend to study the occurence of an acid-base reaction of the type: .ce @m|+ + B @A (MuB)|+ and its competition with reactions that produce muonium. The best suited model systems for this process are aqueous solutions in which muon and electron scavengers, or anionic bases, in high concentration can be added. In order to further distinguish between different types of (MuB)|+ species the chemical shifts of these products will be studied.\\\\ \\\\ .uc 2) paramagnetic fraction \\\\ \\\\ Work will continue on muonic radicals formed by muonium addition at a ...

  4. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo [University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (Finland) (Italy); University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Finland) (Italy); Murshudov, Garib N., E-mail: garib@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Luchinat, Claudio, E-mail: garib@mrc-lmb.cam.ac.uk [University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (Finland) (Italy); University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Finland) (Italy)

    2014-04-01

    Paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and diamagnetic residual dipolar couplings can now be used in the program REFMAC5 from CCP4 as structural restraints together with X-ray crystallographic data. These NMR restraints can reveal differences between solid state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably ‘ideal’ geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.

  5. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tuan, E-mail: tuanna@hus.edu.vn [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Science and Technology Department, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan); Nguyen, Van Thanh; Nguyen, Huy Sinh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Pham, Thi Tuan Anh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, College of Hai Duong, Nguyen Thi Due, Hai Duong (Viet Nam); Do, Viet Thang [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, Haiphong University, 171 Phan Dang Luu, Kien An, Hai Phong (Viet Nam); Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan)

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  6. Observations of the effects of magnetic topology on the SOL characteristics of an electromagnetic coherent mode in the first experimental campaign of W7-X

    Science.gov (United States)

    Liu, S. C.; Liang, Y.; Drews, P.; Krämer-Flecken, A.; Han, X.; Nicolai, D.; Satheeswaran, G.; Wang, N. C.; Cai, J. Q.; Charl, A.; Cosfeld, J.; Fuchert, G.; Gao, Y.; Geiger, J.; Grulke, O.; Henkel, M.; Hirsch, M.; Hoefel, U.; Hollfeld, K. P.; Höschen, D.; Killer, C.; Knieps, A.; König, R.; Neubauer, O.; Pasch, E.; Rahbarnia, K.; Rack, M.; Sandri, N.; Sereda, S.; Schweer, B.; Wang, E. H.; Wei, Y. L.; Weir, G.; Windisch, T.; W7-X Team

    2018-04-01

    Turbulence is considered to play an important role in the edge cross field heat and particle transport in fusion devices. Scrape-off layer (SOL) turbulence characteristics were measured by the combined probe mounted on the multi-purpose manipulator during the first experimental campaign of W7-X. An electromagnetic coherent mode (EMCM) at 7 kHz has been observed by multiple diagnostics in both the plasma core and the SOL and exhibits a strong dependence of the magnetic topology. As demonstrated by the measurements of the combined probe, the EMCM starts to appear at a radius of R  =  6.15 m along the path of probe measurement and this location is shifted inwards in higher iota configurations. It propagates along the direction of electron diamagnetic drift in the far SOL with a poloidal velocity about 0.6 km s-1 while it turns to the opposite direction gradually in the near SOL in the laboratory frame, but keeps a velocity of about 0.6-0.7 km s-1 along the direction of electron diamagnetic drift in the plasma frame. This mode can be induced by raising the ECRH heating power in similar discharge conditions, which is probably linked to the gradient of electron temperature and pressure. The EMCM is enhanced significantly in the edge magnetic island with long connection length where the EMCM can grow up due to the long particle confinement time.

  7. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Kim, Y.K.

    2007-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) comprising Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer (CoFe 4/NiFeSiB 2/CoFe 4, CoFe 10, or NiFeSiB 10)/AlO x /CoFe 7/IrMn 10/Ru 60 (nm) have been examined with an emphasis given on understanding the interfacial mixing effects. The DMTJ, consisted of NiFeSiB, shows low switching field and low bias voltage dependence because the amorphous NiFeSiB has lower M S (=800 emu/cm 3 ) and offers smoother interfaces than polycrystalline CoFe. An interesting feature observed in the CoFe/NiFeSiB/CoFe sandwich free layered DMTJ is the presence of a wavy MR transfer curve at high-resistance region. Because the polycrystalline CoFe usually grows into a columnar structure, diamagnetic CoSi, paramagnetic FeSi, and/or diamagnetic CoB might have been formed during the sputter-deposition process. By employing electron energy loss spectrometry (EELS) and Auger electron spectroscopy (AES), we were able to confirm that Si and B atoms were arranged evenly in the top and bottom portions of AlO x /CoFe interfaces. This means that the interfacial mixing resulted in a distorted magnetization reversal process

  8. Lack of dependence on resonant error field of locked mode island size in ohmic plasmas in DIII-D

    Science.gov (United States)

    La Haye, R. J.; Paz-Soldan, C.; Strait, E. J.

    2015-02-01

    DIII-D experiments show that fully penetrated resonant n = 1 error field locked modes in ohmic plasmas with safety factor q95 ≳ 3 grow to similar large disruptive size, independent of resonant error field correction. Relatively small resonant (m/n = 2/1) static error fields are shielded in ohmic plasmas by the natural rotation at the electron diamagnetic drift frequency. However, the drag from error fields can lower rotation such that a bifurcation results, from nearly complete shielding to full penetration, i.e., to a driven locked mode island that can induce disruption. Error field correction (EFC) is performed on DIII-D (in ITER relevant shape and safety factor q95 ≳ 3) with either the n = 1 C-coil (no handedness) or the n = 1 I-coil (with ‘dominantly’ resonant field pitch). Despite EFC, which allows significantly lower plasma density (a ‘figure of merit’) before penetration occurs, the resulting saturated islands have similar large size; they differ only in the phase of the locked mode after typically being pulled (by up to 30° toroidally) in the electron diamagnetic drift direction as they grow to saturation. Island amplification and phase shift are explained by a second change-of-state in which the classical tearing index changes from stable to marginal by the presence of the island, which changes the current density profile. The eventual island size is thus governed by the inherent stability and saturation mechanism rather than the driving error field.

  9. Static Magnetic Cloak without a Superconductor

    Science.gov (United States)

    Jiang, Wei; Ma, Yungui; He, Sailing

    2018-05-01

    Similar to its electromagnetic counterpart, magnetic cloaking also has very important technological applications. However, the traditional method to build a static magnetic cloak requires the use of superconducting materials as the diamagnetic component, which seriously limits the practical potential because of the cryogenic condition. We show that a diamagnetic active current boundary combined with a high-permeability magnetic inner shell (MIS) can be designed to solve this problem, rendering an ideal magnetic cloaking effect at zero frequency. We first theoretically prove that a current boundary could magnetically behave as a superconductor to external observers. Based on this phenomena, we introduce a high-permeability MIS made of magnetically ultrasoft metallic sheets (permeability μ >103 ) and experimentally prove that the bilayer combination can exactly balance out the disturbance to the external probing field and, meanwhile, have a large invisible inner space. We also show that the active boundary currents can be accordingly configured to overcome the permeability and frequency band limits, leading to a robust cloak over the entire quasistatic frequency region. Our work creates an efficient way to circumvent the traditional limits of metamaterials to build magnetic cloaks for ultralow frequencies. The active-passive hybrid approach could be generally extended to yield other artificial magnetic devices or systems as well.

  10. Nonlinear simulation of edge-localized mode in spherical tokamak

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Hayashi, T.; Nakajima, N.; Khan, R.

    2006-10-01

    A numerical modeling for the dynamics of an edge-localized mode (ELM) crash in the spherical tokamak is proposed with a consecutive scenario which is initiated by the spontaneous growth of the ballooning mode instability by means of a three-dimensional nonlinear magnetohydrodynamic simulation. The simulation result shows a two-step relaxation process which is induced by the intermediate-n ballooning instability followed by the m/n=1/1 internal kink mode, where m and n represent the poloidal and toroidal mode numbers, respectively. By comparing with the experimental observations, we have found that the simulation result can reproduce several characteristic features of the so-called type-I ELM in an appropriate time scale: (1) relation to the ballooning instability, (2) intermediate-n precursors, (3) low-n structure on the crash, (4) formation and separation of the filament, and (5) considerable amount of loss of plasma. Furthermore, the model is verified by examining the effect of diamagnetic stabilization and comparing the nonlinear behavior with that of the peeling modes. The ion diamagnetic drift terms are found to stabilize some specific components linearly; nevertheless they are not so effective in the nonlinear dynamics such as the filament formation and the amount of loss. For the peeling mode case, no prominent filament structure is formed in contrast to the ballooning case. (author)

  11. Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity

    Directory of Open Access Journals (Sweden)

    A. Di Bernardo

    2015-11-01

    Full Text Available In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux—the diamagnetic Meissner effect—from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilization of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility, meaning that the superconductivity can either repel (diamagnetic or attract (paramagnetic external magnetic flux. Here, we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low-energy muons, where antiferromagnetic Ho (4.5 nm breaks time-reversal symmetry of the proximity-induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb, we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.

  12. Magnetic properties of thermally reduced graphene oxide decorated with PtNi nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huízar-Félix, A.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); Cruz-Silva, R. [Research Center for Exotic NanoCarbon, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Barandiarán, J.M. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); García-Gutiérrez, D.I. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Orue, I. [SGIKER Medidas Magnéticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); and others

    2016-09-05

    Nanocomposites of reduced graphene oxide (RGO) with PtNi nanoparticles were obtained by in situ thermal reduction of a physical mixture of GO and metallic precursors. RGO and PtNiRGO nanocomposites were studied by differential thermal analysis and thermogravimetry, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The method presented here is a one-step thermal reduction procedure that allows the deposition of bimetallic PtNi nanoparticles with tetragonal crystalline structure and particle size ranging from 3 nm to 30 nm on RGO. The magnetic properties of the RGO and PtNiRGO nanocomposites were measured by vibrating sample magnetometry, which revealed that the RGO exhibited diamagnetism at room temperature and paramagnetism at temperatures below 10 K. PtNiRGO nanocomposites show hysteresis and ferromagnetic ordering at room temperature with a Curie temperature of 658 K. In addition, its magnetic properties at low temperature were strongly influenced by the paramagnetic contribution of RGO and the morphology of the bimetallic nanoparticles. - Highlights: • Simultaneous synthesis method for growth of PtNi nanoparticles on RGO. • Microstructural features of PtNiRGO nanocomposite were studied with extensive characterization. • Diamagnetic behavior of RGO and ferromagnetic ordering for PtNiRGO nanocomposite.

  13. The study of magnetic properties and relaxation processes in Co/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hrubovčák, Pavol [Department of Condensed Matter Physics, P.J. Šafárik University, Park Angelinum 9, Košice (Slovakia); Zeleňáková, Adriana, E-mail: adriana.zelenakova@upjs.sk [Department of Condensed Matter Physics, P.J. Šafárik University, Park Angelinum 9, Košice (Slovakia); Zeleňák, Vladimir [Department of Inorganic Chemistry, P.J. Šafárik University, Moyzesova 11, Košice (Slovakia); Kováč, Jozef [Institute of Experimental Physics, SAS, Watsonova 41, Košice (Slovakia)

    2015-11-15

    Co/Au bimetallic fine nanoparticles were prepared employing the method of microemulsion using reverse micelle as nanoreactor, controlling the particles size. Magnetic and structural properties of two different samples Co/Au1 and Co/Au2 with almost comparable size of Co core and different size of Au layer were studied. The investigation of magnetic relaxation processes present in the particles was carried out by means of ac and dc magnetization data obtained at different temperatures and magnitudes of magnetic field. We observed the existence of superspin glass state characterized by the strong inter-particle interactions in the nanoparticle systems. In this paper, we discuss the attributes of novel superspin glass magnetic state reflected on various features (saturated FC magnetization at low temperatures, shift of the Cole–Cole arc downwards) and calculated parameters (relaxation time, critical exponent zv ∼ 10 and frequency dependent criterion p < 0.05). Comparison of the magnetic properties of two studied samples show that the thickness of diamagnetic Au shell significantly influences the magnetic interactions and change the relaxation dynamics. - Highlights: • Co/Au fine nanoparticles prepared by reverse micelle as nanoreactor, controlling the size. • Existence of superspin glass state confirmed from ac magnetic susceptibility study. • Individual particles exhibit the collective behavior below glass temperature T{sub SSG}. • Influence of diamagnetic shell on the magnetic properties of core–shell nanoparticles.

  14. Demonstration of real-time control for poloidal beta in KSTAR

    International Nuclear Information System (INIS)

    Han, Hyunsun; Hahn, S.H.; Bak, J.G.; Hyatt, A.; Johnson, R.; Woo, M.H.; Kim, J.S.; Bae, Y.S.

    2015-01-01

    Highlights: • Real time control system for poloidal beta has been designed in KSTAR. • Poloidal beta has been calculated based on the diamagnetic loop signals. • The neutral beam Injector plays a role as the actuator. • The control system has been validated in the KSTAR experiments. - Abstract: Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (β p ) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the β p is calculated in real time using the measured diamagnetic loop signal, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the requested power of NB which is operated with constant voltage, the on-time periods of the intervals were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the β p control, the β p estimation process and NB operation scheme implemented in the plasma control system (PCS), and the analysis on the preliminary experimental results

  15. Magnetophoretic separation of blood cells at the microscale

    International Nuclear Information System (INIS)

    Furlani, E P

    2007-01-01

    We present a method and model for the direct and continuous separation of red and white blood cells in plasma. The method is implemented at the microscale using a microfluidic system that consists of an array of integrated soft-magnetic elements embedded adjacent to a microfluidic channel. The microsystem is passive and is activated via application of a bias field that magnetizes the elements. Once magnetized, the elements produce a nonuniform magnetic field distribution in the microchannel, which gives rise to a force on blood cells as they pass through the microsystem. In whole blood, white blood cells behave as diamagnetic microparticles while red blood cells exhibit diamagnetic or paramagnetic behaviour depending on the oxygenation of their haemoglobin. We develop a mathematical model for predicting the motion of blood cells in the microsystem that takes into account the dominant magnetic, fluidic and buoyant forces on the cells. We use the model to study red/white blood cell transport, and our analysis indicates that the microsystem is capable of rapid and efficient red/white blood cell separation

  16. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  17. Near-field photon wave mechanics in the Lorenz gauge

    International Nuclear Information System (INIS)

    Keller, Ole

    2007-01-01

    Optical near-field interactions are studied theoretically in the perspective of photon wave mechanics paying particular attention to the dynamics in the wave-vector time domain. A unitary transformation is used to replace the scalar and longitudinal photon variables by so-called near-field and gauge photon variables. Dynamical equations are established for these types of photon variables, and it is shown that these equations are invariant against gauge transformations within the Lorenz gauge. The near-field photon is absent in the free-field limit, and the gauge photon can be eliminated by a suitable gauge transformation. Implicit solutions for the near-field, gauge, and transverse photon variables are obtained and discussed. The general theory is applied to an investigation of transverse photon propagation in a uniform solid-state plasma dominated by the diamagnetic field-matter interaction. It is found that the diamagnetic response can be incorporated in a quantum mechanical wave equation for a massive transverse photon. The Compton wave number of the massive photon equals the plasma wave number of the electron system. A dynamical equation describing the emission of a massive transverse photon from a mesoscopic source embedded in the plasma is finally established

  18. Anisotropic electrical, thermal and magnetic properties of Al{sub 13}Ru{sub 4} decagonal quasicrystalline approximant

    Energy Technology Data Exchange (ETDEWEB)

    Wencka, Magdalena [Polish Academy of Sciences, Poznan (Poland). Inst. of Molecular Physics; Vrtnik, Stanislav; Kozelj, Primoz; Dolinsek, Janez [Ljubljana Univ. (Slovenia). Faculty of Mathematics and Physics; Jozef Stefan Institute, Ljubljana (Slovenia); Jaglicic, Zvonko [Ljubljana Univ. (Slovenia). Inst. of Mathematics, Physics and Mechanics; Gille, Peter [Muenchen Univ. (Germany). Crystallography Section

    2017-09-01

    We present measurements of the anisotropic electrical and thermal transport coefficients (the electrical resistivity, the thermoelectric power, the thermal conductivity), the magnetization and the specific heat of the Al{sub 13}Ru{sub 4} monoclinic approximant to the decagonal quasicrystal, in comparison to the isostructural Al{sub 13}Fe{sub 4}. The electrical and thermal transport parameters of Al{sub 13}Ru{sub 4} were found to exhibit significant anisotropy, qualitatively similar to that found previously in the Al{sub 13}Fe{sub 4} (P. Popcevic, et al., Phys. Rev. B 2010, 81, 184203). The crystallographic b direction, corresponding to the stacking direction of the (a,c) atomic planes, is the most conducting direction for the electricity and heat. The thermopower is strongly anisotropic with a complicated temperature dependence, exhibiting maxima, minima, crossovers and sign change. The electronic density of states (DOS) at the Fermi energy is reduced to 35% of the DOS of Al metal. The magnetic susceptibility is diamagnetic and the diamagnetism is by a factor of 2 stronger for the magnetic field along the stacking b direction.

  19. Finite Larmor radius effects on Z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1987-10-01

    The effect of finite Larmor radius (FLR) on the stability of m=1 small axial wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the Incompressible FLR MHD model; a collisionless fluid model which consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD 2rdp/dr+m 2 B 2 /μ 0 >=0 predicts instability for internal modes unless the current density becomes singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall terms have a damping, however not stabilizing, effect, in agreement with earlier work. Specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m=1 modes are then fully stabilized over the cross-section for wavelengths λ/a max =3-5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (authors)

  20. Charge exchange of muons in gases. Kinetic equations

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    Kinetic equations for the spin-density operators of the diamagnetic and paramagnetic states of the positive muon are obtained for the description of the slowing-down process encountered when high-energy muons thermalize in a single-component gas. The motion of this two-species system is generated by the Liouville superoperators associated with the diamagnetic and paramagnetic spin Hamiltonians and by time-dependent rate superoperators which depict the probabilities per collision that an electron is captured or lost. These rates are translational averages of the appropriate Boltzmann collision operators. That is, they are momentum and position integrals of the product of either the electron capture or loss total cross section with the single-particle translational density operators for the muon (or muonium) and a gas particle. These rates are time dependent because the muon (or muonium) translational density operator is time dependent. The initial amplitudes and phases of the observed thermal spin polarization in muon-spin-rotation (μSR) experiments are then obtained in terms of the spin-density operators emerging from the stopping regime

  1. Magnetic separation of general solid particles realised by a permanent magnet

    Science.gov (United States)

    Hisayoshi, K.; Uyeda, C.; Terada, K.

    2016-12-01

    Most existing solids are categorised as diamagnetic or weak paramagnetic materials. The possibility of magnetic motion has not been intensively considered for these materials. Here, we demonstrate for the first time that ensembles of heterogeneous particles (diamagnetic bismuth, diamond and graphite particles, as well as two paramagnetic olivines) can be dynamically separated into five fractions by the low field produced by neodymium (NdFeB) magnets during short-duration microgravity (μg). This result is in contrast to the generally accepted notion that ordinary solid materials are magnetically inert. The materials of the separated particles are identified by their magnetic susceptibility (χ), which is determined from the translating velocity. The potential of this approach as an analytical technique is comparable to that of chromatography separation because the extraction of new solid phases from a heterogeneous grain ensemble will lead to important discoveries about inorganic materials. The method is applicable for the separation of the precious samples such as lunar soils and/or the Hayabusa particles recovered from the asteroids, because even micron-order grains can be thoroughly separated without sample-loss.

  2. Single-molecule magnets ``without'' intermolecular interactions

    Science.gov (United States)

    Wernsdorfer, W.; Vergnani, L.; Rodriguez-Douton, M. J.; Cornia, A.; Neugebauer, P.; Barra, A. L.; Sorace, L.; Sessoli, R.

    2012-02-01

    Intermolecular magnetic interactions (dipole-dipole and exchange) affect strongly the magnetic relaxation of crystals of single-molecule magnets (SMMs), especially at low temperature, where quantum tunneling of the magnetization (QTM) dominates. This leads to complex many-body problems [l]. Measurements on magnetically diluted samples are desirable to clearly sort out the behaviour of magnetically-isolated SMMs and to reveal, by comparison, the effect of intermolecular interactions. Here, we diluted a Fe4 SMM into a diamagnetic crystal lattice, affording arrays of independent and iso-oriented magnetic units. We found that the resonant tunnel transitions are much sharper, the tunneling efficiency changes significantly, and two-body QTM transitions disappear. These changes have been rationalized on the basis of a dipolar shuffling mechanism and of transverse dipolar fields, whose effect has been analyzed using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on the SMM behaviour and disclose the magnetic response of truly-isolated giant spins in a diamagnetic crystalline environment.[4pt] [1] W. Wernsdorfer, at al, PRL 82, 3903 (1999); PRL 89, 197201 (2002); Nature 416, 406 (2002); IS Tupitsyn, PCE Stamp, NV Prokof'ev, PRB 69, 132406 (2004).

  3. Separate structure of two branches of sheared slab ηi mode and effects of plasma rotation shear in weak magnetic shear region

    International Nuclear Information System (INIS)

    Jiquan Li; Kishimoto, Y.; Tuda, T.

    2000-01-01

    The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)

  4. Two-fluid limits on stellarator performance: Explanation of three stellarator puzzles and comparison to axisymmetric plasmas

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Strauss, H.R.; Park, W.; Fu, G.Y.; Breslau, J.A.; Chen, J.

    2005-01-01

    The basic two-fluid processes, those related to the nonlinearly self-consistent diamagnetic drifts of the electrons and ions, are shown to have fundamentally different effects on the steady state and beta limits of stellarator configurations, compared to MHD predictions. Nonlinear numerical simulation shows that the ideal MHD ballooning modes and the resistive MHD ballooning and interchange modes at relatively high mode numbers, that set the most severe theoretical limits on beta in stellarators with fixed boundary, are easily stabilized by two-fluid effects at realistic parameters, including finite Larmor radius effects related to the ion diamagnetic drift. Magnetic reconnection at low-order rational magnetic surfaces, on the other hand, is enhanced through the parallel component of the two-fluid electron pressure gradient in Ohm's law. The accelerated reconnection rates may impose the true intrinsic limit on beta in stellarators, as a 'soft' or confinement mediated limit in β e , due to steady confinement degradation in the presence of large magnetic islands. Study of the corresponding axisymmetric configurations shows that the helical component of the stellarator configuration provides an important amplifying factor for these effects. The two-fluid results may explain several previously puzzling experimental observations on stellarator behavior. (author)

  5. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Male, G; Lubin, T; Mezani, S; Leveque, J, E-mail: gael.male@green.uhp-nancy.fr [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Universite Henri Poincare, Faculte des Sciences et Technologies BP 70239, 54506 Vandoeuvre les Nancy CEDEX (France)

    2011-03-15

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  6. Magnetic and superconducting properties of Ir-doped EuFe2As2

    International Nuclear Information System (INIS)

    B Paramanik, U; Hossain, Z; L Paulose, P; Ramakrishnan, S; K Nigam, A; Geibel, C

    2014-01-01

    The magnetic and superconducting properties of 14% Ir-doped EuFe 2 As 2 are studied by means of dc and ac magnetic susceptibilities, electrical resistivity, specific heat and 151 Eu and 57 Fe Mössbauer spectroscopy (MS) measurements. Doping of Ir in EuFe 2 As 2 suppresses the Fe spin density wave transition and in turn gives rise to high temperature superconductivity below 22.5 K with a reentrant feature at lower temperature. Magnetization and 151 Eu Mössbauer data indicate that the Eu 2+ spins order magnetically below 18 K. 57 Fe MS studies show a line broadening in the absorption spectra below 18 K due to transferred hyperfine field from the magnetically ordered Eu sublattices. A pronounced λ-shape peak in the specific heat supports a second-order phase transition of Eu 2+ magnetic ordering with a strong ferromagnetic component, as confirmed by the magnetic field dependences of the transition. For a single crystal, the in-plane resistivity (ρ ab ) and out-of-plane susceptibility (χ c ) show superconducting transitions with zero resistance and diamagnetism, respectively. But the in-plane susceptibility (χ ab ) does not show any diamagnetic shielding against external fields. The observed non-zero resistance in the temperature range 10–17.5 K, below the superconducting transition temperature, suggests the possible existence of a spontaneous vortex state in this superconductor. (papers)

  7. Demonstration of real-time control for poloidal beta in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyunsun, E-mail: hyunsun@nfri.re.kr [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Hahn, S.H.; Bak, J.G. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Hyatt, A.; Johnson, R. [General Atomics, San Diego, CA (United States); Woo, M.H.; Kim, J.S.; Bae, Y.S. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2015-06-15

    Highlights: • Real time control system for poloidal beta has been designed in KSTAR. • Poloidal beta has been calculated based on the diamagnetic loop signals. • The neutral beam Injector plays a role as the actuator. • The control system has been validated in the KSTAR experiments. - Abstract: Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (β{sub p}) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the β{sub p} is calculated in real time using the measured diamagnetic loop signal, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the requested power of NB which is operated with constant voltage, the on-time periods of the intervals were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the β{sub p} control, the β{sub p} estimation process and NB operation scheme implemented in the plasma control system (PCS), and the analysis on the preliminary experimental results.

  8. Effects of the magnetic field on the structure of materials

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    1984-02-01

    This is a report of the ''Meeting on the effects of a magnetic field on the structure of materials'' held at KEK, Japan. The purpose of the Meeting was to study the diffraction of SR X-ray in a magnetic field. It was found that the effects of a magnetic field have been seen in various substnaces. The effects are due to the Zeeman effect, the Lamor diamagnetism, the Landau diamagnetism, the Meissner effect and the polarization effect. The topics discussed at the Meeting were the structure study of biological specimens by field orientation, the study of cell structure by field orientation, the phase transition under a strong pulse field, the behavior of high molecular liquid crystal in a magnetic field, the change of the f-electron density of the Tb 3+ ions in Tb IG in a magnetic field at low temperature, an electromagnet loaded on a goniometer and an in-situ observation system for the structure of magnetic domain, the control of structural phase transition by a magnetic field, the use of synchrotron orbit radiation for the structural analysis of random systems, and the field effect on chemical reactions. (Kato, T.)

  9. Global structure of mirror modes in the magnetosheath

    International Nuclear Information System (INIS)

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary

  10. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles

    International Nuclear Information System (INIS)

    Azzaza, S.; El-Hilo, M.; Narayanan, S.; Judith Vijaya, J.; Mamouni, N.; Benyoussef, A.; El Kenz, A.; Bououdina, M.

    2014-01-01

    Structural, optical and room temperature magnetic properties of Mn-doped MgO nanoparticles with Mn fractions (5–50 at.%), were investigated. The as-prepared pure MgO, with grain size of about 15 nm, exhibits two magnetization components, one is diamagnetic and another is superparamagnetic. After removing the diamagnetic contribution, the magnetization curve exhibits superparamagnetic behavior which may be attributed to vacancy defects. As the Mn content increases, the lattice parameter decreases, the ferromagnetism appears and the emission bands were considerably blue shifted. First principle electronic structure calculations reveal the decrease of both the gap and the Curie temperature with increasing Mn concentration. The obtained results suggest that both Mn doping and oxygen vacancies play an important role in the development of room temperature ferromagnetism. - Graphical abstract: The measured room temperature magnetization curve for the Mn doped MgO with 5 at.%, 10 at.% and 20 at.%. - Highlights: • Combination of experimental and calculation methods. • Decrease of both the gap and the Curie temperature with increasing Mn content. • Ferromagnetism in MgO originate from interactions between defects

  11. Combined MCD/DFT/TDDFT Study of the Electronic Structure of Axially Pyridine Coordinated Metallocorroles.

    Science.gov (United States)

    Rhoda, Hannah M; Crandall, Laura A; Geier, G Richard; Ziegler, Christopher J; Nemykin, Victor N

    2015-05-18

    A series of metallocorroles were investigated by UV-vis and magnetic circular dichroism spectroscopies. The diamagnetic distorted square-pyramidal main-group corrole Ga(tpfc)py (2), the diamagnetic distorted octahedral transition-metal adduct Co(tpfc)(py)2 (3), and paramagnetic distorted octahedral transition-metal complex Fe(tpfc)(py)2 (4) [H3tpfc = tris(perfluorophenyl)corrole] were studied to investigate similarities and differences in the electronic structure and spectroscopy of the closed- and open-shell metallocorroles. Similar to the free-base H3tpfc (1), inspection of the MCD Faraday B-terms for all of the macrocycles presented in this report revealed that a ΔHOMO MCD spectra. In addition, the MCD spectra of the cobalt and the iron complexes were also complicated by a number of charge-transfer states in the visible region. Iron complex 4 also exhibits a low-energy absorption in the NIR region (1023 nm). DFT and TDDFT calculations were used to elaborate the electronic structures and provide band assignments in UV-vis and MCD spectra of the metallocorroles. DFT and TDDFT calculations predict that the orientation of the axial pyridine ligand(s) has a very minor influence on the calculated electronic structures and absorption spectra in the target systems.

  12. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  13. Structural, electrical and magnetic properties of (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu, E-mail: xuexu9@163.com; Tan, Guoqiang, E-mail: tan3114@163.com; Liu, Wenlong; Ren, Huijun

    2014-04-01

    Highlights: • Nd–Co and Gd–Co codoped BiFeO{sub 3} thin films are synthesized by chemical solution deposition method. • Enhanced magnetic property is observed in BGFC thin film at room temperature. • The onset electric field of FN tunneling of the films is associated with band gaps. • Both ferromagnetism and diamagnetism coexist in the BNFC film. - Abstract: Rhombohedral (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films were deposited on FTO substrates by using a chemical solution deposition method. Raman scattering spectra reveal that the BiFeO{sub 3} lattices are able to incorporate Nd/Gd and Co ions with no effect on the basic rhombohedral structure. The chemical shift of Bi 4f, Fe 2p and O 1s core levels of the films is investigated by the X-ray photoelectron spectroscopy (XPS) analysis. The presence of defects in the films has been estimated through XPS study, which has a great effect on the dielectric dispersion and ferroelectric polarization. The intrinsic density of free electrons associated with band gap is the dominating factor which controls the FN tunneling conductance mechanism of the films. Both ferromagnetism and diamagnetism coexist in the BNFC film, while only ferromagnetism is observed in the BGFC film.

  14. Magnetic Properties of Gadolinium-Doped ZnO Films and Nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-08-29

    The magnetic properties of Gd-doped ZnO films and nanostructures are important to the development of next-generation spintronic devices. Here, we elucidate the significant role played by Gd-oxygen-deficiency defects in mediating/inducing ferromagnetic coupling in in situ Gd-doped ZnO thin films deposited at low oxygen pressure by pulsed laser deposition (PLD). Samples deposited at higher oxygen pressures exhibited diamagnetic responses. Vacuum annealing was used on these diamagnetic samples (grown at a relatively high oxygen pressures) to create oxygen- deficiency defects with the aim of demonstrating reproducibility of room-temperature ferromagnetism (RTFM). Samples annealed at oxygen environment exhibited super‐ paramagnetism and blocking-temperature effects. The samples possessed secondary phases; Gd segregation led to superparamagnetism. Theoretical studies showed a shift of the 4f level of Gd to the conduction band minimum (CBM) in Gd-doped ZnO nanowires, which led to an overlap with the Fermi level, resulting in strong exchange coupling and consequently RTFM.

  15. Magnetic-relaxation method of analysis of inorganic substances

    International Nuclear Information System (INIS)

    Popel', A.A.

    1978-01-01

    The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions

  16. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sallam, S.A., E-mail: shehabsallam@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt); Abbas, A.M. [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt)

    2013-04-15

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and {sup 1}H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift.

  17. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    International Nuclear Information System (INIS)

    Sallam, S.A.; Abbas, A.M.

    2013-01-01

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1 H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift

  18. Three-dimensional, two-species magnetohydrodynamic studies of the early time behaviors of the Combined Release and Radiation Effects Satellite G2 barium release

    International Nuclear Information System (INIS)

    Xie, Lianghai; Li, Lei; Wang, Jingdong; Zhang, Yiteng

    2014-01-01

    We present a three-dimensional, two-species (Ba + and H + ) MHD model to study the early time behaviors of a barium release at about 1 R E like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions are constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H + , which creates density hole and bumps in the background H + when barium ions expanding along the magnetic field lines

  19. Translational and rotational dynamic analysis of a superconducting levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A [Electric-Electronic Engineering Department, Ataturk University, Erzurum (Turkey); Hull, J R [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Gundogdu, Oe [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  20. Translational and rotational dynamic analysis of a superconducting levitation system

    International Nuclear Information System (INIS)

    Cansiz, A; Hull, J R; Gundogdu, Oe

    2005-01-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet

  1. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences

    International Nuclear Information System (INIS)

    Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo; Murshudov, Garib N.; Luchinat, Claudio

    2014-01-01

    Paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and diamagnetic residual dipolar couplings can now be used in the program REFMAC5 from CCP4 as structural restraints together with X-ray crystallographic data. These NMR restraints can reveal differences between solid state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably ‘ideal’ geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state

  2. Plasma confinement in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.; Bruskin, L.G.; Cho, T.

    1999-01-01

    The central-cell density and the diamagnetic signal were doubled due to plug potential formation by ECRH in the hot ion mode experiments on the GAMMA 10 tandem mirror. In order to obtain these remarkable results, the axisymmetrized heating patterns of ECRH and ICRF were optimized. Furthermore, conducting plates were installed adjacent to the surface of the plasma along the flat shaped magnetic flux tube located at the anchor transition regions; the plates may contribute to reduce some irregular electric fields produced possibly with ECRH in these thin flux tube regions. The conducting plates contributed to the reduction of the radial loss rate to be less than 3% of the total particle losses along with the improvements in the reproducibility of the experiments and the controllability of the potential confinement. The increases in the central-cell density and the diamagnetism in association with the increase in the plug potentials scaled well with increasing the ECRH powers. A plug potential of 0.6 kV and a density increase of 100% were achieved using an ECRH power of 140 kW injected into both plug regions. The plasma confinement was improved by an order of magnitude over a simple mirror confinement due to the tandem mirror potential formation. (author)

  3. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    International Nuclear Information System (INIS)

    Eggert, Sebastian; Kubik-Huch, Rahel A.; Peters, Alexander; Klarhoefer, Markus; Bolliger, Stephan A.; Thali, Michael J.; Anderson, Suzanne; Froehlich, Johannes M.

    2015-01-01

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  4. Doping dependence of Meissner effect in cuprate superconductors

    International Nuclear Information System (INIS)

    Feng Shiping; Huang Zheyu; Zhao Huaisong

    2010-01-01

    Within the t-t'-J model, the doping dependence of the Meissner effect in cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. Following the linear response theory, it is shown that the electromagnetic response consists of two parts, the diamagnetic current and the paramagnetic current, which exactly cancels the diamagnetic term in the normal state, and then the Meissner effect is obtained for all the temperature T ≤ T c throughout the superconducting dome. By considering the two-dimensional geometry of cuprate superconductors within the specular reflection model, the main features of the doping and temperature dependence of the local magnetic field profile, the magnetic field penetration depth, and the superfluid density observed on cuprate superconductors are well reproduced. In particular, it is shown that in analogy to the domelike shape of the doping dependent superconducting transition temperature, the maximal superfluid density occurs around the critical doping δ ∼ 0.195, and then decreases in both lower doped and higher doped regimes.

  5. Global structure of mirror modes in the magnetosheath

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.R.; Cheng, C.Z.

    1996-11-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary.

  6. Time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Salar Elahi, A; Ghoranneviss, M

    2010-01-01

    An attempt is made to investigate the time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak. For this purpose, four magnetic pickup coils were designed, constructed and installed on the outer surface of the IR-T1 and then the Shafranov parameter (asymmetry factor) was obtained from them. On the other hand, also a diamagnetic loop was designed and installed on IR-T1 and poloidal beta was determined from it. Therefore, the internal inductance and effective edge safety factor were measured. Also, the time evolution of the energy confinement time was measured using the diamagnetic loop. Experimental results on IR-T1 show that the maximum energy confinement time (which corresponds to minimum collisions, minimum microinstabilities and minimum transport) is at low values of the effective edge safety factor (2.5 eff (a) i <0.72). The results obtained are in agreement with those obtained with the theoretical approach [1-5].

  7. Charge exchange of muons in gases

    International Nuclear Information System (INIS)

    Turner, R.E.; Senba, M.

    1983-06-01

    The effects of the charge exchange process on muon spin dynamics have been investigated using a density operator formalism with special interest placed upon the diamagnetic muon and paramagnetic muonium signals observed after thermalization. In the charge exchange region the dynamics of the spin density operator is assumed to be determined by the muonium hyperfine interaction and by electron capture and loss processes for muons. Analytical expressions are obtained for the amplitudes and phases of the diamagnetic muon and paramagnetic muonium signals as a function of the duration of the charge exchange region, tsub(c), which is inversely proportional to the number density of the moderating gas. The theoretical signals exhibit three features which have, as yet, to be experimentally observed, namely: i) that the amplitudes associated with the muonium Larmor frequency and with the hyperfine frequency are not, in general, equal, ii) that all the amplitudes are, in general, damped oscillatory functions of tsub(c) (temperature/pressure) and iii) that phase jumps occur when an amplitude decreases to zero and then increases with falling pressure. Fits to the experimental argon data are discussed in light of the above points

  8. Development of magnetic sensors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Takechi, M., E-mail: takechi.manabu@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Matsunaga, G.; Sakurai, S.; Sasajima, T.; Yagyu, J.; Hoshi, R.; Kawamata, Y.; Kurihara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nishikawa, T.; Ryo, T.; Kagamihara, S. [Okazaki Manufacturing Company, Kobe, Hyogo 651-0087 (Japan); Nakamura, K. [RIAM, Kyushu Univ., Kasuga, Fukuoka 816-8580,Japan (Japan)

    2015-10-15

    JT-60SA has been designed and is being constructed to demonstrate and develop steady-state high-beta operation. Resistive wall mode (RWM) control, error field correction, and edge-localized mode (ELM) control will be performed using in-vessel coils. For these controls, we have developed a biaxial magnetic sensor to determine 3D magnetic configuration of the plasma. Moreover, for obtaining basic information about JT-60SA plasma, magnetic sensors, in particular, one-turn loops, Rogowski coils, diamagnetic loops, and saddle coils have been developed. Because the length of the vacuum vessel in the poloidal direction of JT-60SA is 16 m and almost twice as long as that of JT-60U, the length of the Rogowski coil and the diamagnetic loop of JT-60SA are also twice as long as those on JT-60U. We have devised new types of sensors and a connector for the mineral-insulated cable because construction and installation of these sensors are much more difficult in JT-60SA. We will report the design and specification of the magnetic sensors for JT-60SA from the physics and engineering aspects.

  9. Kinetic effects on the currents determining the stability of a magnetic island in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Poli, E., E-mail: emanuele.poli@ipp.mpg.de; Bergmann, A.; Casson, F. J.; Hornsby, W. A. [Max-Planck-Institut für Plasmaphysik (Germany); Peeters, A. G. [University of Bayreuth, Department of Physics (Germany); Siccinio, M.; Zarzoso, D. [Max-Planck-Institut für Plasmaphysik (Germany)

    2016-05-15

    The role of the bootstrap and polarization currents for the stability of neoclassical tearing modes is investigated employing both a drift kinetic and a gyrokinetic approach. The adiabatic response of the ions around the island separatrix implies, for island widths below or around the ion thermal banana width, density flattening for islands rotating at the ion diamagnetic frequency, while for islands rotating at the electron diamagnetic frequency the density is unperturbed and the only contribution to the neoclassical drive arises from electron temperature flattening. As for the polarization current, the full inclusion of finite orbit width effects in the calculation of the potential developing in a rotating island leads to a smoothing of the discontinuous derivatives exhibited by the analytic potential on which the polarization term used in the modeling is based. This leads to a reduction of the polarization-current contribution with respect to the analytic estimate, in line with other studies. Other contributions to the perpendicular ion current, related to the response of the particles around the island separatrix, are found to compete or even dominate the polarization-current term for realistic island rotation frequencies.

  10. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of

  11. Fast-wave ICRF minority-regime heating experiments on the Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G; Beaumont, B; Becoulet, A; Kuus, H; Saoutic, B; Martin, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (FR). Dept. de Recherches sur la Fusion Controlee; Shepard, T D; Haste, G R; Baity, F W [Oak Ridge National Lab., TN (US); Evans, T E [General Atomics, San Diego, CA (US)

    1992-12-31

    Up to 4 MW of rf power at 57 MHz has been coupled to Ohmic target plasmas during the first ICRF heating experiments on Tore Supra. A total of 12 MW of rf power will ultimately be available from six tetrode amplifiers and will be coupled to the plasmas using three ORNL/CEA-designed resonant double-loop antennas. During these first experiments, two antennas were used, with one or two energized at a time. The antenna loading with plasma was observed to be well over an order of magnitude greater than that without plasma. In addition, one kilo-electron-volt of electron heating, significant minority nonthermal ions, and significant increases in diamagnetic stored energy were observed. A comparison of in-phase and out-of-phase antenna operation showed the same increase in stored energy, less radiated power, and a larger drop in loop voltage for out-of-phase operation. Confinement scaling agrees with the ITER scaling law.

  12. Study of interaction in systems of MoCl/sub 5/-MeCl/sub 2/ (Me - Sn, Zn, Cd, Hg) - a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Golub, A M; Trachevskii, V V; Ul' ko, N V [Kievskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1978-04-01

    Interaction of Mo(5) with dichlorides of tin, zinc, cadmium and mercury in organic solvents was studied by preparative methods, by electron, epr, infrared spectrometry and by conductometry. A polynuclear diamagnetic compound with Mo(5):Sn(2) ratio of 2:1 formed in acetone. A coordination polynuclear compound of (MoOCl/sub 3/)/sub 2/xSnCl/sub 2/x2CH/sub 3/CN was isolated from acetonitrile. It is shown that formation of solvate-chloride and solvate complexes of Mo(5) in solvents depends both on the solvating capacity of the solvent and on stability of the MeCl/sup -3/ (Me is Sn, Zn, Cd, Hg) chloride complex, which grows in the Zn < Sn < Cd < Hg series.

  13. Casimir Energies for Isorefractive or Diaphanous Balls

    Directory of Open Access Journals (Sweden)

    Kimball A. Milton

    2018-03-01

    Full Text Available It is known that the Casimir self-energy of a homogeneous dielectric ball is divergent, although a finite self-energy can be extracted through second order in the deviation of the permittivity from the vacuum value. The exception occurs when the speed of light inside the spherical boundary is the same as that outside, so the self-energy of a perfectly conducting spherical shell is finite, as is the energy of a dielectric-diamagnetic sphere with ε μ = 1 , a so-called isorefractive or diaphanous ball. Here we re-examine that example and attempt to extend it to an electromagnetic δ -function sphere, where the electric and magnetic couplings are equal and opposite. Unfortunately, although the energy expression is superficially ultraviolet finite, additional divergences appear that render it difficult to extract a meaningful result in general, but some limited results are presented.

  14. Measurement of the generalized polarizabilities of the proton in virtual Compton scattering at Q2=0.92 and 1.76 GeV2.

    Science.gov (United States)

    Laveissière, G; Todor, L; Degrande, N; Jaminion, S; Jutier, C; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Boeglin, W U; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C-C; Chen, J-P; Chudakov, E; Cisbani, E; Dale, D S; de Jager, C W; De Leo, R; Deur, A; d'Hose, N; Dodge, G E; Domingo, J J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gomez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; LeRose, J J; Liang, M; Lindgren, R A; Liyanage, N; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E A J M; Papandreou, Z; Pasquini, B; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R; Prout, D L; Punjabi, V A; Pussieux, T; Quémenér, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saito, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tieulent, R; Tomasi-Gustaffson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Vanderhaeghen, M; Van De Vyver, R; Van der Meer, R L J; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W-M; Zhao, J; Zhou, Z-L

    2004-09-17

    We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from piN intermediate states.

  15. Appearance of a Minimal Length in $e^+ e^-$ Annihilation

    CERN Document Server

    Dymnikova, Irina; Ulbricht, Jürgen

    2014-01-01

    Experimental data reveal with a 5$\\sigma$ significance the existence of a characteristic minimal length $l_e$= 1.57 × 10$^{−17}$ cm at the scale E = 1.253 TeV in the annihilation reaction $e^+e^- \\to \\gamma\\gamma(\\gamma)$ . Nonlinear electrodynamics coupled to gravity and satisfying the weak energy condition predicts, for an arbitrary gauge invariant Lagrangian, the existence of spinning charged electromagnetic soliton asymptotically Kerr-Newman for a distant observer with the gyromagnetic ratio g=2 . Its internal structure includes a rotating equatorial disk of de Sitter vacuum which has properties of a perfect conductor and ideal diamagnetic, displays superconducting behavior, supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry, and gives some idea about the physical origin of a minimal length in annihilation.

  16. Uniform current density and divergence control in high power extraction ion diodes

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Coats, R.S.; Lockner, T.R.; Pointon, T.D.; Johnson, D.J.; Slutz, S.A.; Lemke, R.W.; Cuneo, M.E.; Mehlhorn, T.A.

    1996-01-01

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one-dimensional analysis of the diamagnetic compression of magnetic streamlines and the self-consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one-dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments. (author). 8 figs., 15 refs

  17. Uniform current density and divergence control in high power extraction ion diodes

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Coats, R.S.; Lockner, T.R.; Pointon, T.D.; Johnson, D.J.; Slutz, S.A.; Lemke, R.W.; Cuneo, M.E.; Melhorn, T.A.

    1996-01-01

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one dimensional analysis of the diamagnetic compression of magnetic streamlines and the self consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments

  18. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  19. Magnetic model for Mn{sub 2}La{sub 2} developed from spectroscopic studies with inelastic neutron scattering and frequency-domain Fourier-transform THz EPR

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, R.; Nehrkorn, J.; Stuiber, S.; Waldmann, O. [Physikalisches Institut, Universitaet Freiburg (Germany); Akhtar, M.N.; Lan, Y.; Powell, A.K. [Institut fuer Anorganische Chemie, Universitaet Karlsruhe, KIT (Germany); Mutka, H. [Institut Laue Langevin, Grenoble (France); Dreiser, J. [Swiss Light Source, Paul Scherrer Institut (Switzerland); Schnegg, A. [Helmholtz-Zentrum Berlin, Institut fuer Silizium-Photovoltaik (Germany); Holldack, K. [Helmholtz-Zentrum Berlin, Institut fuer Synchrotonstrahlung (Germany)

    2011-07-01

    Molecular nanomagnets which contain several magnetic centers with a large single-ion magnetic anisotropy are of general interest, because they could lead to interesting phenomena such as single-molecule magnet (SMM) behavior. We performed spectroscopic experiments on Mn{sub 2}La{sub 2} using inelastic neutron scattering at the direct time-of-flight disc chopper spectrometer IN5 at ILL and the newly developed frequency-domain Fourier-transform THz EPR at BESSY. Based on the experimental results a magnetic model has been developed. It is discussed why no SMM behavior was observed, even though Mn{sub 2}La{sub 2} exhibits a remarkably high energy barrier of about 37 K for spin relaxation. Furthermore our results can be applied to analogous clusters, with the diamagnetic La{sup I}II ions replaced by magnetic rare earth ions.

  20. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    Science.gov (United States)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  1. Higher critical current density achieved in Bi-2223 High-Tc superconductors

    Directory of Open Access Journals (Sweden)

    M.S. Shalaby

    2016-07-01

    Full Text Available Bi2Sr2Ca2Cu3Ox (Bi-2223 were prepared using a solid state reaction method at different sintering times and temperatures. Structural phase identifications have been done using X-Ray analysis and refinement by Reitveld method which proves the coexistence of Bi-2223 and Bi-2212 phases. The critical transition temperature Tc and critical current density Jc values were measured using superconducting quantum interference device magnetometer (SQUID and by the magneto-optics technique. A remarkable rapid decrease to the diamagnetic signal in the magnetization versus temperature M(T at 110 K and Jc around 1.2 × 107 A/m2 at 5 K are confirmed for the Bi-2223 compound.

  2. Elements of classical and quantum physics

    CERN Document Server

    Cini, Michele

    2018-01-01

    This book presents the basic elements of theoretical physics in a highly accessible, captivating way for university students in the third year of a degree in physics. It covers analytical mechanics, thermodynamics and statistical physics, special and general relativity and non-relativistic quantum theory, fully developing the necessary mathematical methods beyond standard calculus. The central theme is scientific curiosity and the main focus is on the experimental meaning of all quantities and equations. Several recent verifications of General Relativity are presented, with emphasis on the physical effects – why they were predicted to exist and what signals they were seen to produce. Similarly, the basic reasons why superconductors have zero resistance and are perfect diamagnets are pinpointed. Quantum Eraser Experiments and Delayed Choice Experiments are described. Many statements of Quantum Theory are a challenge to common sense and some crucial predictions have often been considered hard to believe and h...

  3. Study on Separation of Structural Isomer with Magneto-Archimedes method

    Science.gov (United States)

    Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.

    2017-09-01

    Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.

  4. Experiments on hot-electron ECRH in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Stallard, B.W.

    1983-01-01

    Experiments have begun on the Tandem Mirror Experiment Upgrade (TMX-U) using electron-cyclotron resonant heating (ECRH) to generate the hot electron populations required for thermal barrier operation (Energy E/sub eh/ approx. 50 keV, density n/sub eh/ 12 , and hot-to-cold fraction n/sub eh/n approx. 0.9). For this operation, rf power produced by 28-GHz gyrotrons is injected with extraordinary mode polarization at both fundamental and second harmonic locations. Our initial experiments, which concentrated on startup of the hot electrons, were carried out at low density ( 12 cm - 3 ) where Fokker-Planck calculations predict high heating efficiency when the electron temperature (T/sub e/) is low. Under these conditions, we produced substantial hot electron populations (diamagnetic energy > 400 J, E/sub eh/ in the range of 15 to 50 keV, and n/sub eh//n > 0.5)

  5. Magnetic susceptibility of LaxCe1-xF3 single crystals

    International Nuclear Information System (INIS)

    Paradowski, M.L.; Pacyna, A.W.; Bombik, A.; Korczak, W.; Korczak, S.Z.

    2000-01-01

    The magnetic susceptibility of La x Ce 1-x F 3 single crystals, for 0 eff and paramagnetic Curie temperature θ p have been obtained, using the Curie-Weiss law in the temperature range 100-300 K. The interconfiguration excited energy E ex , the spin-fluctuation temperature T sf , and the g-values, corresponding to three Kramers doublets in the 2 F 5/2 ground multiplet of Ce 3+ ion in La x Ce 1-x F 3 have been determined, using quantum theory of paramagnetic susceptibility. The mixed-valent and crystal field effects influence significantly the g-values. The effect of the dilution of the paramagnetic Ce 3+ ions with diamagnetic La 3+ ions is also discussed

  6. Low–intermediate–high confinement transition in HL-2A tokamak plasmas

    International Nuclear Information System (INIS)

    Cheng, J.; Dong, J.Q.; Yan, L.W.; Hong, W.Y.; Zhao, K.J.; Huang, Z.H.; Ji, X.Q.; Zhong, W.L.; Yu, D.L.; Nie, L.; Song, X.M.; Yang, Q.W.; Ding, X.T.; Duan, X.R.; Liu, Yong; Itoh, K.; Itoh, S.-I.; Zou, X.L.

    2014-01-01

    The dynamics of low–intermediate–high confinement transitions was studied using a four-step Langmuir probe in the HL-2A edge plasma. Two types (dubbed type-Y and type-J) of limit cycle oscillations (LCOs) with opposite temporal ordering between the radial electric field and turbulence were first observed. In type-Y, the turbulence grows first, followed by the localized electric field. In contrast, the electric field leads turbulence in type-J. In addition, the Reynolds stress gradient is found not enough to drive the LCO flow and the three-wave nonlinear coupling is weak there. The continuously increasing amplitude of magnetic fluctuations and the significant correlation between the magnetic fluctuation and the electron pressure gradient indicate an important role of diamagnetic drifts in the L–H transition. Mode numbers of magnetic fluctuations in the LCO frequency are identified to be m/n = 1/0. (paper)

  7. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  8. μSR-spectroscopy in solids

    International Nuclear Information System (INIS)

    Gygax, F.N.; Hintermann, A.; Rueegg, W.; Schenck, A.; Studer, W.; Wal, A.J. van der; Williams, D.L.I.; Brewer, J.H.

    1983-01-01

    An abnormally large muon Knight shift has been observed in the weakly diamagnetic semimetal antimony (Sb). An attempt to observe the Knight shift in a single crystal sample of SbBi (15 at.%) produced no detectable effect. This stimulated the authors' curiosity and they tried to measure the muon Knight shift in the same SbBi (15 at.%) sample with their stroboscopic high precision apparatus. The measured Knight shift and depolarization rate as a function of temperature and crystal orientation are displayed. The most striking features are the large and temperature-dependent anisotropy in the Knight shift and its change of sign around 80 K. The depolarization rate shows an equally strong temperature dependence both in the average rate and in its anisotropic behaviour. (Auth.)

  9. Self-sustained magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Chatenet, J H; Luciani, J F [Ecole Polytechnique, 91 - Palaiseau (France); Garbet, X [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1996-06-01

    Numerical simulations of a single magnetic island evolution are presented in the regime where the island width is smaller than an ion Larmor radius. It is shown that the island rotation is controlled by particle diffusion due to collisions or a background of microturbulence. As expected from the theory of a stationary island, there exist cases where linearly stable magnetic perturbation are nonlinearly self-sustained. This situation corresponds to large poloidal beta and temperature gradient. The drive is due to diamagnetic frequency effects. However, this situation is not generic, and islands can also decay. It is found that a magnetic island is self-sustained for a negative off-diagonal diffusion coefficient. This case occurs in a tokamak if the inward particle pinch is due to the temperature gradient. (author). 30 refs.

  10. Self-sustained magnetic islands

    International Nuclear Information System (INIS)

    Chatenet, J.H.; Luciani, J.F.; Garbet, X.

    1996-06-01

    Numerical simulations of a single magnetic island evolution are presented in the regime where the island width is smaller than an ion Larmor radius. It is shown that the island rotation is controlled by particle diffusion due to collisions or a background of microturbulence. As expected from the theory of a stationary island, there exist cases where linearly stable magnetic perturbation are nonlinearly self-sustained. This situation corresponds to large poloidal beta and temperature gradient. The drive is due to diamagnetic frequency effects. However, this situation is not generic, and islands can also decay. It is found that a magnetic island is self-sustained for a negative off-diagonal diffusion coefficient. This case occurs in a tokamak if the inward particle pinch is due to the temperature gradient. (author)

  11. Recent results in muonium solution kinetics

    International Nuclear Information System (INIS)

    Jean, Y.C.; Ito, Y.; Stadlbauer, J.M.; Ng, B.W.; Walker, D.C.

    1983-06-01

    Using muonium spin rotation (MSR) techniques the aqueous solution kinetics of several muonium addition reactions and spin conversion interactions have been studied. The addition reactions show both diffusion and activation-controlled reaction rates with isotope effects between 1 and 3 for diffusion-control and between 7 and 31 for activation-control reactions. Barrier energies are typically approximately 15 kJ/mole and approximately 30 kJ/mole, respectively, for these processes in water. Spin-conversion interactions involving Ni +2 (aq) and Ni(cyclam) +2 complexes showed that spin-conversion of 'triplet' Mu by a paramagnetic solute occurs at or near the diffusion-controlled limit while the chemical reaction with the diamagnetic configuration of Ni(cyclam) +2 occurred some 100 times slower at ksub(M) 18 M -1 s -1

  12. Effects of interfaces on nano-friction of vertically aligned multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Lou, J.; Kim, K.-S.

    2008-01-01

    Sliding friction properties of vertically aligned multi-walled carbon nanotube (VAMWNT) arrays have been investigated in current study in a quantitative manner. The VAMWNT arrays have been fabricated on an anodic aluminum oxide template by chemical vapor deposition at 650 deg. C. Friction force was measured in air by a modified atomic force microscopy (AFM) cantilever-bead assembly with 15 μm diameter borosilicate sphere attached to the end of the regular AFM cantilever. Quantitative measurements were achieved by using a novel in situ calibration methods recently developed based on diamagnetic levitation [Q. Li, K.-S. Kim, A. Rydberg, Rev. Sci. Instrum. 77 (2006) 065105-1-13]. The effects of different interfaces were studied using both cantilever-bead assembly coated with and without Al thin layer coatings. A reverse stick-slip behavior was observed in the current system as compared to the normal stick-slip behavior found in the literature

  13. Uniaxial ferromagnetism of local uranium moments in hexagonal UBeGe

    Science.gov (United States)

    Gumeniuk, Roman; Yaresko, Alexander N.; Schnelle, Walter; Nicklas, Michael; Kvashnina, Kristina O.; Hennig, Christoph; Grin, Yuri; Leithe-Jasper, Andreas

    2018-05-01

    The new intermetallic uranium beryllium germanide UBeGe and its thorium analogon ThBeGe crystallize with the hexagonal ZrBeSi type of structure. Studies of magnetic, thermal, and transport properties were performed on polycrystalline samples between 1.8 and 750K. UBeGe is a uniaxial ferromagnet and there are indications for two magnetic transitions at TC(1 )≈160 K and TC(2 )≈150 K . The high paramagnetic effective moment μeff≈3.1 μB , x-ray absorption near-edge spectroscopy (XANES, 17-300 K), as well as theoretical DFT calculations indicate localized U 5 f2 states in UBeGe. ThBeGe is a diamagnetic metallic material with low density of states at the Fermi level.

  14. Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Abbas, Kahina; Babić, Nikola; Peyrot, Fabienne

    2016-10-15

    Detection of superoxide produced by living cells has been an on-going challenge in biology for over forty years. Various methods have been proposed to address this issue, among which spin trapping with cyclic nitrones coupled to EPR spectroscopy, the gold standard for detection of radicals. This technique is based on the nucleophilic addition of superoxide to a diamagnetic cyclic nitrone, referred to as the spin trap, and the formation of a spin adduct, i.e. a persistent radical with a characteristic EPR spectrum. The first application of spin trapping to living cells dates back 1979. Since then, considerable improvements of the method have been achieved both in the structures of the spin traps, the EPR methodology, and the design of the experiments including appropriate controls. Here, we will concentrate on technical aspects of the spin trapping/EPR technique, delineating recent breakthroughs, inherent limitations, and potential artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Study of magnetic defects in Nb{sub 2}VSbO{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Typek, J., E-mail: typjan@zut.edu.pl [Institute of Physics, West Pomeranian University of Technology, Szczecin, Al. Piastow 48, 70-311 Szczecin (Poland); Cyran, A.; Zolnierkiewicz, G.; Bobrowska, M. [Institute of Physics, West Pomeranian University of Technology, Szczecin, Al. Piastow 48, 70-311 Szczecin (Poland); Filipek, E.; Piz, M. [Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Szczecin, Al. Piastow 42, 71-065 Szczecin (Poland)

    2017-02-15

    Magnetic properties of Nb{sub 2}VSbO{sub 10}, the compound formed in V–Sb–Nb oxide system, were investigated by dc magnetisation measurements using an MPMS-7 SQUID magnetometer and EPR conventional X–band Bruker E 500 spectrometer. Although the nominal valences of the constituting metal ions indicated a diamagnetic material, Nb{sub 2}VSbO{sub 10} displayed rich and interesting magnetic behaviour due to the existence of numerous defects related to oxygen vacancies. Isothermal magnetisation has revealed the presence of three spin subsystems – two different paramagnetic systems and antiferromagnetic spin clusters. EPR spectra showed the presence of three components, involving isolated and interacting V{sup 4+} ions as well as antiferromagnetic spin clusters. All these magnetic defects are the result of valence changes of metal ions due to charge compensation in the neighborhood of oxygen vacancies, most probably located on grains boundaries.

  16. Pressure-driven sound turbulence in a high-β plasma

    International Nuclear Information System (INIS)

    Stenzel, R.L.

    1990-01-01

    In a large laboratory plasma [1 m diamx2 m, n e ≤10 12 cm -3 , β 0 ≅15 G, β e =nkT e /(β 0 2 /2μ 0 )≅0.5], strong density fluctuations (δn/n≅50%) near the lower hybrid frequency (ω ce ω ci ) 1/2 are identified as cross-field sound waves (k perpendicular much-gt k parallel , ω/k perpendicular ≅c s ) driven unstable by the electron diamagnetic drift v d =∇pxB/neβ 2 , v d >c s . Wave steepening and refraction saturate the instability. Wave-enhanced transport but insignificant particle acceleration are observed

  17. Reviews Book: The Age of Wonder Equipment: Portoscope DVD: Around the World in 80 Images Book: Four Laws that Drive the Universe Book: Antimatter Equipment: Coffee Saver Starter Set Equipment: Graphite Levitation Kit Book: Critical Reading Video: Science Fiction-Science Fact Web Watch

    Science.gov (United States)

    2009-03-01

    WE RECOMMEND The Age of Wonder This book tells the stories of inspiring 19th-century scientists Antimatter A fast read that gives an intriguing tour of the antimatter world Science Fiction-Science Fact A video from a set of resources about the facts in science fiction WORTH A LOOK Portoscope Lightweight ×30 microscope that is easy on the purse Four Laws that Drive the Universe In just 124 pages Peter Atkins explains thermodynamics Coffee Saver Starter Kit A tool that can demonstrate the effect of reduced air pressure Graphite Levitation Kit Compact set that demonstrates diamagnetic behaviour Critical Reading A study guide on how to read scientific papers HANDLE WITH CARE Around the World in 80 Images Navigate through images from Envistat, country by country WEB WATCH This month's issue features real-time simulation program Krucible 2.0, which enables learners to run virtual experiments

  18. Structure, magnetic and superconducting properties of MoSr2HoCu2O8-δ

    International Nuclear Information System (INIS)

    Balchev, N.; Nenkov, K.; Mihova, G.; Kunev, B.; Pirov, J.; Dimitrov, D.A.

    2009-01-01

    Samples with nominal composition MoSr 2 HoCu 2 O 8-δ were synthesized and their magnetic and superconducting (SC) properties were investigated. The obtained samples are Mo-deficient. It was established that the magnetic order is of a long-range type. The coincidence of the experimental value of the Curie constant and the theoretical one of MoSr 2 HoCu 2 O 8-δ shows that the observed magnetic properties of the samples are determined by the highly dominating phase Mo-1212. The two-step resistive SC transition, together with the absence of both diamagnetism and a peak in the specific heat between the two critical temperatures may be associated with the presence of a granular superconductivity. The effect of the Mo-deficiency on the magnetic and SC properties of MoSr 2 HoCu 2 O 8-δ was discussed

  19. Fluid simulation of beryllium transport in the ITER gaseous divertor

    International Nuclear Information System (INIS)

    Knoll, D.A.; Campbell, R.B.; McHugh, P.R.

    1994-01-01

    The transport of either intrinsic or injected impurities will play a crucial role in the energy loss mechanisms in the ITER gaseous/cold plasma target divertor. Both 1-D and 2-D multi-charge state fluid codes are used to model the transport of beryllium in the ITER SOL. Our major conclusion is that in order to model the containment of impurities, the background flow field must be known in detail. Comparing 1-D and 2-D solutions, hydrogen flow reversal plays an important role in the entrainment process. Further, the flow of particles from the core plasma also has a strong impact on the resultant entrainment of the impurities in both 1-D and 2-D. It is imperative that those components of poloidal velocity due to E x B and diamagnetic drifts be included in the models. (orig.)

  20. Graphene levitation and orientation control using a magnetic field

    Science.gov (United States)

    Niu, Chao; Lin, Feng; Wang, Zhiming M.; Bao, Jiming; Hu, Jonathan

    2018-01-01

    This paper studies graphene levitation and orientation control using a magnetic field. The torques in all three spatial directions induced by diamagnetic forces are used to predict stable conditions for different shapes of millimeter-sized graphite plates. We find that graphite plates, in regular polygon shapes with an even number of sides, will be levitated in a stable manner above four interleaved permanent magnets. In addition, the orientation of micrometer-sized graphene flakes near a permanent magnet is studied in both air and liquid environments. Using these analyses, we are able to simulate optical transmission and reflection on a writing board and thereby reveal potential applications using this technology for display screens. Understanding the control of graphene flake orientation will lead to the discovery of future applications using graphene flakes.

  1. Superconductivity: 100th anniversary of its discovery and its future

    International Nuclear Information System (INIS)

    Kitazawa, Koichi

    2011-01-01

    The past and prospects of the superconducting technology are discussed as a systematic wide technology from the aspects of energy, transport and telecommunication. Superconductivity has unique characteristics, perpetual current, diamagnetism and Josephson effect. Since its discovery 100 years ago, it had taken nearly half a century to elucidate its mechanism and its application has still been restricted only to fields of extreme needs in the technical level. The major reason for the delay has apparently been the 'penalty of cooling', however, it is also due to the fact that a superconducting wire has to be a complex composite in a nanotechnology-processed structure. Also, owing to the discovery of high-temperature superconductors, it has recently become feasible to forecast a promising future of the superconducting technology in a long term. (author)

  2. The analysis of Alfven wave current drive and plasma heating in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.

    2002-01-01

    The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)

  3. Magneto-optical properties of biogenic photonic crystals in algae

    International Nuclear Information System (INIS)

    Iwasaka, M.; Mizukawa, Y.

    2014-01-01

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror

  4. On the theory of internal kink oscillations

    International Nuclear Information System (INIS)

    Breizman, B.N.; Candy, J.; Berk, H.L.

    1997-12-01

    In this paper the authors derive a time evolution equation for internal kink oscillations which is valid for both stable and unstable plasma regimes, and incorporates the nonlinear response of an energetic particle population. A linear analysis reveals a parallel between (i) the time evolution of the spatial derivative of the internal kink radial displacement and (ii) the time evolution of the perturbed particle distribution function in the field of an electrostatic wave (Landau problem). They show that diamagnetic drift effects make the asymptotic decay of internal kink perturbations in a stable plasma algebraic rather than exponential. However, under certain conditions the stable root of the dispersion relation can dominate the response of the on-axis displacement for a significant period of time. The form of the evolution equation naturally allows one to include a nonlinear, fully toroidal treatment of energetic particles into the theory of internal kink oscillations

  5. Influence of nitrogen on magnetic properties of indium oxide

    Science.gov (United States)

    Ashok, Vishal Dev; De, S. K.

    2013-07-01

    Magnetic properties of indium oxide (In2O3) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH4Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In2O3. Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH4Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH4Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation.

  6. Influence of nitrogen on magnetic properties of indium oxide

    International Nuclear Information System (INIS)

    Ashok, Vishal Dev; De, S K

    2013-01-01

    Magnetic properties of indium oxide (In 2 O 3 ) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH 4 Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In 2 O 3 . Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH 4 Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH 4 Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation. (paper)

  7. Progress report for 1975 - plasma physics group

    International Nuclear Information System (INIS)

    1975-01-01

    The year's activities have been dominated by the construction of components for the new toroidal device LT-4. This device was originally conceived as a successor to LT-3 which would provide improved geometry, better diagnostic accessibility and a considerably higher toroidal magnetic field (3.0T) powered by the department's homopolar generator. In order to get it operating as soon as possible it was decided to power it initially (Stage I) with the LT-3 capacitor banks. Connection of the toroidal field winding will be made to the HPG(Stage II) as soon as practicable. By the end of the year all components for Stage I of LT-4 were essentially completed and the machine was ready for final assembly and testing. Experiments which are proceeding with the LT-3 include measurements of diamagnetism, construction of magnetic probes, diffusion studies of runaway electrons, and the determination of ion temperatures from Doppler broadening measurements. (R.L.)

  8. Internal (m=1, n=1) and (m=2, n=1) resistive modes in the toroidal tokamak with circular cross-section

    International Nuclear Information System (INIS)

    Bussac, M.N.; Pellat, R.; Edery, D.; Soule, J.L.

    1977-01-01

    A linear analysis is presented of the toroidal coupling between the internal resistive modes (m=1, n=1) and (m=2, n=1) in the tokamak with circular cross-section. The resistive and diamagnetic effects are included in the singular layers where the safety factor q takes respectively the values one and two. By expanding the MHD equations in powers of epsilon, the local inverse of the aspect ratio, a system of two coupled equations is obtained for the harmonic amplitudes. When the shear is finite on q=1 the toroidal coupling is negligible. In the opposite limit, one can explain (a) the experimental behaviour of the (m=1, n=1) mode before the internal disruption, and (b) the simultaneous observation of the modes (m=1, n=1) and (m=2, n=1) before the main disruption. (author)

  9. Internal (m=1, n=1) and (m=2, n=1) resistive modes in the toroidal Tokomak with circular cross sections

    International Nuclear Information System (INIS)

    Bussac, M.N.; Pellat, R.; Edery, D.; Soule, J.L.

    1976-01-01

    A linear analysis is presented of the toroidal coupling between the internal resistive modes (m=1, n=1) and (m=2, n=1) in the Tokomak with circular cross sections. One includes the resistive and diamagnetic effects in the singular layers where the safety factor q takes respectively the values one and two. By expanding the MHD equations in powers of epsilon, the local inverse of the aspect ratio, one obtains a system of two coupled equations for the harmonic amplitudes. When the shear is finite on q=1, the toroidal coupling is negligible. In the opposite limit, one can explain: the experimental behaviour of the (m=1, n=1) mode before the internal disruption; the simultaneous observation of the modes (m=1, n=1) and [de

  10. Non-linear spectral splitting of Rydberg sodium in external fields

    International Nuclear Information System (INIS)

    Gao Wei; Yang Hai-Feng; Cheng Hong; Zhang Shan-Shan; Liu Hong-Ping; Liu Dan-Feng

    2015-01-01

    We have studied highly excited sodium in various electric fields, parallel electric and magnetic fields, with one σ and π photon irradiation, and even in a magnetic field with a complex laser polarization configuration. The σ spectra shows a simple linear Stark effect with the applied electric field, while the π spectra exhibits a strong non-linear dependence on the electric field. The π transitions in parallel fields show a similar behavior to that in a pure electric field but the spectra get more smooth due to the magnetic field. The diamagnetic spectrum with laser polarization angles between 0 and π/2 proves that it can be reproduced by simple linear combination of π and σ components, indicating there is no interference between the π and σ channels. A full quantum calculation considering the quantum defects accounts for all the observations. The quantum defects, especially for the channel np, play an important role in the spectral profile. (paper)

  11. Heating of energetic electrons and ELMO ring formation in symmetric mirror facility

    International Nuclear Information System (INIS)

    Quon, B.H.; Dandl, R.A.; Lazar, N.H.; Wuerker, R.F.

    1982-01-01

    The spatial structure of the high beta, hot-electron ECH plasma, (ELMO Ring), has been studied by using a Hall probe array diagnostic system which measures the diamagnetic field of the hot electron plasma in a large number of spatial locations. The steady state pressure profile obtained using a two-gaussian geometric model that best fits the measurements is found to peak at the mirror midplane near the vacuum field second harmonic resonant point. The radial width of the ring is typically 4 to 7 cm, and the axial length extends significantly beyond the second harmonic resonance zone of the total magnetic field. The radial thickness and the Ring beta are increased by multiple frequency ECH. The electron ring is observed to evolve from a sloshing-like turning point distribution which was observed in the early times following a microwave turnon, demonstrating stochastic processes involved in ELMO Ring formation

  12. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  13. Study of flow and loss processes at the ends of a linear theta pinch. Progress report, June 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    York, T.M.; Klevans, E.H.

    1978-02-01

    Experimental and analytical studies of end loss from a theta pinch have been carried out. Detailed diagnostic studies of a 25 cm long theta pinch operating with reversed trapped fields have been completed; spectroscopic studies, magnetic probe, pressure probe, double diamagnetic loop, luminosity studies and Thomson scattering studies of the plasma have been carried out over the 8 μsec duration of the transient loss. Two new diagnostic techniques have been developed based on the available Thomson scattering laser source. A study of plasma loss from a 10.5 long theta pinch with an axial Twyman-Green interferometer has been completed and reported. The basic studies needed for subsequent experimental work on heat conduction loss being diagnosed by Thomson scattering data in the end region, with and without mirror coil, has been completed as a part of the mirror field studies

  14. Structural, magnetic and electronic properties of rare earth ternary oxides Li Ln(II) 2 Ln(III)O4

    International Nuclear Information System (INIS)

    Malki, M.

    1987-06-01

    Properties of a new class of rare earth ternary oxides Li Ln(II) 2 Ln(III)O 4 where Ln(II) is a divalent metal (Sr, Eu) and Ln(III) a trivalent rare earth (Eu, Gd, Dy, Er and Y). These orthorhombic compounds (type Li Eu 3 O 4 ) allow the study of many magnetic phenomena and their evolution in function of the nature of Ln(II) and Ln(III): diamagnetic ions Sr 2+ , Y 3+ ; isotrope magnetic ions: Eu 2+ , Gd 3+ and anisotrope magnetic ions Dy 3+ , Er 3+ . Magnetic and electric properties are obtained by classical techniques and from hyperfine interaction by Moessbauer spectroscopy. The possibility to use several Moessbauer resonance (nuclei Eu 151, Gd 155, Dy 161 and Er 166) completes informations obtained by the macroscopic study [fr

  15. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.

    Science.gov (United States)

    Seegerer, Andreas; Nitschke, Philipp; Gschwind, Ruth M

    2018-06-18

    Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Optical motion control of maglev graphite.

    Science.gov (United States)

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  17. MagLev Cobra: Test Facilities and Operational Experiments

    International Nuclear Information System (INIS)

    Sotelo, G G; Dias, D H J N; De Oliveira, R A H; Ferreira, A C; De Andrade, R Jr; Stephan, R M

    2014-01-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa 2 Cu 3 O 7−δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  18. Topological protection of multiparticle dissipative transport

    Science.gov (United States)

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.

    2016-06-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.

  19. The influence of toroidicity, pressure and local profile changes on tearing mode stability

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Martin, T.J.; Cowley, S.C.

    1992-01-01

    Tearing modes appear to play a significant role in determining Tokamak behaviour. In high temperature plasmas realistic plasma models for the response at the resonant magnetic surfaces necessitate the use of asymptotic matching methods (the Δ' formulation) in calculations of linear stability and non-linear saturation. These calculations are complicated by toroidal and surface shape effects which cause coupling of different poloidal harmonics in a tearing mode. This leads to coupling of tearing modes centred on different resonant surfaces. However, when diamagnetic effects and sheared equilibrium flows are taken into account theory predicts that tearing will occur at only one surface. At all other surfaces the plasma response is determined by the ideal inertial equations. As a first approximation we treat this as infinite, and calculate the scalar Δ' m/n associated with one resonant surface at a time. (author) 8 refs., 2 figs., 2 tabs

  20. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch

    International Nuclear Information System (INIS)

    Chartas, G.; Hokin, S.

    1991-01-01

    The structure of internally resonant tearing modes has been studied in the Madison Symmetric Torus reversed-field pinch with a soft x-ray detector system consisting of an imaging array at one toroidal location and several detectors at different toroidal locations. The toroidal mode numbers of m = 1 structures are in the range n = -5, -6, -7. The modes propagate with phase velocity v = 1--6 x 10 6 cm/s, larger than the diamagnetic drift velocity v d ∼ 5 x 10 5 cm/s. Phase locking between modes with different n in manifested as a beating of soft x-ray signals which is found to be strongest near the resonant surfaces of the modes (r/a = 0.1 -- 0.5). 15 refs., 5 figs