WorldWideScience

Sample records for dialkylbiaryl phosphine ligands

  1. Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects

    Science.gov (United States)

    Wu, Kevin; Doyle, Abigail G.

    2017-08-01

    The field of Ni-catalysed cross-coupling has seen rapid recent growth because of the low cost of Ni, its earth abundance, and its ability to promote unique cross-coupling reactions. Whereas advances in the related field of Pd-catalysed cross-coupling have been driven by ligand design, the development of ligands specifically for Ni has received minimal attention. Here, we disclose a class of phosphines that enable the Ni-catalysed Csp3 Suzuki coupling of acetals with boronic acids to generate benzylic ethers, a reaction that failed with known ligands for Ni and designer phosphines for Pd. Using parameters to quantify phosphine steric and electronic properties together with regression statistical analysis, we identify a model for ligand success. The study suggests that effective phosphines feature remote steric hindrance, a concept that could guide future ligand design tailored to Ni. Our analysis also reveals that two classic descriptors for ligand steric environment—cone angle and % buried volume—are not equivalent, despite their treatment in the literature.

  2. Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its Eu~Ⅲ complex

    Institute of Scientific and Technical Information of China (English)

    许辉; 魏莹; 赵保敏; 黄维

    2010-01-01

    The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...

  3. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  4. Coordination chemistry with phosphine and phosphine oxide-substituted hydroxyferrocenes.

    Science.gov (United States)

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P

    2010-08-28

    New unsymmetrical hydroxyferrocenes were synthesised from dibromoferrocene. The oxygen heteroatom was introduced via lithiation and quenching with bis-trimethylsilylperoxide followed by hydrolysis to unmask the hydroxyl functionality. The coordination chemistry of 1'-(diphenylphosphino)-1-hydroxyferrocene 2 was explored with palladium and rhodium precursors. A dinuclear palladium methyl complex with bridging ferrocenyloxo groups was obtained from the reaction between 2 and (cyclooctadiene)methylchloropalladium(II). With tetracarbonyldichlorodirhodium(I), two complexes were isolated. The major product was a bis ligand cis phosphine ligated complex with one ligand bound in a chelating mode and one with a pendant hydroxyl group. A minor product was crystallographically characterised as a dinuclear ferrocenyloxo-bridged rhodium carbonyl complex. The coordination chemistry of 2 and the corresponding phosphine oxide 3 was examined with group 4 metals and the resulting complexes examined as ethylene polymerisation catalysts. The ligands were found to bind in either a chelating fashion or with pendant phosphine donors. In all cases, low to moderately active ethylene polymerisation catalysts were found. The catalysts were very unstable and catalyst residues were observed in the isolated polymer indicating a short catalyst lifetime.

  5. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  6. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C.; Stoltz, Brian M.

    2010-01-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  7. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  8. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines.

    Science.gov (United States)

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik

    2012-04-01

    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  9. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  10. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-10-10

    Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H–) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H– ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand–metal bonding for researchers to explore both experimentally and computationally.

  11. Hydroformylation of propene and 1-hexene catalysed by a alpha-zirconium phosphate supported rhodium-phosphine complex

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Andersson, C; Hjortkjær, Jes

    2001-01-01

    The reaction of the amphiphilic ligand {4-[bis(diethylaminoethyl)aminomethyl]diphenyl}phosphine with alpha -zirconium phosphate, of intermediate surface area (24m(2) g(-1)), provided a phosphine functionalised support in which electrostatic interaction between ammonium groups on the ligand and de......-protonated surface hydroxyl groups on the support provided the binding force. The X-ray powder diffractogram of the material showed that the binding lowers the crystallinity of the carrier and that the ligand is not intercalated but bound at the outer surface and at the entrances to the interlamellar space. Reaction...... of the phosphine functionalised support with Rh(CO)(2)(acac) led to CO-phosphine exchange and formation of an immobilised complex of the composition LRh(CO)(acac) (L = surface bound phosphine). When applied as catalyst in continuous gas-phase hydroformylation of propene and in liquid phase hydroformylation of 1...

  12. Monochloro non-bridged half-metallocene-type zirconium complexes containing phosphine oxide-(thio)phenolate chelating ligands as efficient ethylene polymerization catalysts.

    Science.gov (United States)

    Tang, Xiao-Yan; Wang, Yong-Xia; Liu, San-Rong; Liu, Jing-Yu; Li, Yue-Sheng

    2013-01-14

    A series of novel monochloro half-zirconocene complexes containing phosphine oxide-(thio)phenolate chelating ligands of the type, ClCp'Zr[X-2-R(1)-4-R(2)-6-(Ph(2)P=O)C(6)H(2)](2) (Cp' = C(5)H(5), 2a: X = O, R(1) = Ph, R(2) = H; 2b: X = O, R(1) = F, R(2) = H; 2c: X = O, R(1) = (t)Bu, R(2) = H; 2d: X = O, R(1) = R(2) = (t)Bu; 2e: X = O, R(1) = SiMe(3), R(2) = H; 2f: X = S, R(1) = SiMe(3), R(2) = H; Cp' = C(5)Me(5), 2g: X = O, R(1) = SiMe(3), R(2) = H), have been synthesized in high yields. These complexes were identified by (1)H {(13)C} NMR and elemental analyses. Structures for 2b, 2c and 2f were further confirmed by X-ray crystallography. Structural characterization of these complexes reveals crowded environments around the zirconium. Complexes 2b and 2c adopt six-coordinate, distorted octahedral geometry around the zirconium center, in which the equatorial positions are occupied by three oxygen atoms of two chelating phosphine oxide-bridged phenolate ligands and a chlorine atom. The cyclopentadienyl ring and one oxygen atom of the ligand are coordinated on the axial position. Complex 2f also folds a six-coordinate, distorted octahedral geometry around the Zr center, consisting of a Cp-Zr-O (in P=O) axis [177.16°] and a distorted plane of two sulfur atoms and one oxygen atom of two chelating phosphine oxide-bridged thiophenolate ligands as well as a chlorine atom. When activated by modified methylaluminoxane (MMAO), all the complexes exhibited high activities towards ethylene polymerization at high temperature (75 °C), giving high molecular weight polymers with unimodal molecular weight distribution. The formation of 14-electron, cationic metal alkyl species might come from the Zr-O (in phenol ring) bond cleavage based on the DFT calculations study.

  13. Rhenium and technetium complexes with phenylbis(2-pyridyl)phosphine and tris(2-pyridyl)phosphine

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo A, S. A. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Hagenbach, A.; Abram, U., E-mail: ssaucedo@uaz.edu.m [Institut fur Chemie und Biochemie, Freie Universitat Berlin, Fabeckstr. 34-36, D-14195, Berlin (Germany)

    2010-10-15

    Reactions of common technetium and rhenium precursors with 2-pyridyl phosphines produce novel, air stable tricarbonyl and oxo complexes. (NEt{sub 4}){sub 2}[Re(CO){sub 3}Br{sub 3}] or (NEt{sub 4}){sub 2}[Tc(CO){sub 3}Cl{sub 3}] react with phenylbis(2-pyridyl)phosphine (PPhpy{sub 2}) or tris(2-pyridyl)phosphine (Ppy{sub 3}) under formation of neutral tricarbonyl complexes of the composition [M(CO){sub 3}X(L)] (M = Re, X = Br; M = Tc, X = Cl, L = PPhpy{sub 2} or Ppy{sub 3}), where the ligands coordinate only with two for their nitrogen atoms. Removal of the bromo ligands from (NEt{sub 4}){sub 2}[Re(CO){sub 3}(Br){sub 3}] with AgNO{sub 3}, to force a tripodal coordination, and the subsequent reaction with the Ppy{sub 3} results in the formation of the complex [Re(CO){sub 3}(NO{sub 3})(Ppy{sub 3}{sup -}N,N{sup '})] with a monodentate coordinated nitrato ligand. (NBu{sub 4})[ReOCl{sub 4}] reacts with PPhpy{sub 2} to give the asymmetric, oxo-bridged rhenium (V) dimer (NBu{sub 4})[Re{sub 2}O{sub 2}Cl{sub 5}({mu}-PPhpy{sub 2}{sup -}P,N,N,N{sup '})({mu}-O)], while a similar reaction with (ReOCl{sub 3}(PPh{sub 3}){sub 2}] in boiling Thf results in reduction of the metal and gives (ReCl{sub 3}(OPPhpy{sub 2})(PPh{sub 3})]. The products have been characterized spectroscopically and by X-ray structure analyses. (Author)

  14. Polymer producing palladium complexes of unidentate phosphines in the methoxycarbonylation of ethene.

    Science.gov (United States)

    Smith, Graeme; Vautravers, Nicolas R; Cole-Hamilton, David J

    2009-02-07

    A wide range of unidentate phosphines have been studied as ligands for the palladium-catalysed methoxycarbonylation of ethene in the presence of methanesulfonic acid using methanol as the solvent. At high phosphine to Pd ratios, methyl propanoate is formed at a low rate. However, at P-Pd ratios of 4 : 1, some unidentate phosphines promote the formation of polyketone with moderate rates. Analysis of all the phosphines shows that good electron donating power, combined with small size, favours polyketone formation.

  15. Complexation of diphenyl(phenylacetenyl)phosphine to rhodium(III) tetraphenyl porphyrins

    DEFF Research Database (Denmark)

    Stulz, Eugen; Scott, Sonya M; Bond, Andrew D

    2003-01-01

    ). The methylide on rhodium in 3 is not displaced, leading selectively to the mono-phosphine complex (DPAP)(Me)Rh(TPP) (5). The first and second association constants, as determined by isothermal titration calorimetry and UV-vis titrations, are in the range 10(4)-10(7) M(-1) (in CH(2)Cl(2)). Using LDI-TOF mass....... The largest values of DeltaG degrees are found for 6. The thermodynamic and UV-vis data reveal that the methylide and the phosphine ligand have an almost identical electronic trans-influence on the sixth ligand....

  16. Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and coordination properties.

    Science.gov (United States)

    David, Tomáš; Procházková, Soňa; Havlíčková, Jana; Kotek, Jan; Kubíček, Vojtěch; Hermann, Petr; Lukeš, Ivan

    2013-02-21

    Three symmetrical methylene-bis[(aminomethyl)phosphinic acids] bearing different substituents on the central carbon atom, (NH(2)CH(2))PO(2)H-C(R(1))(R(2))-PO(2)H(CH(2)NH(2)) where R(1) = OH, R(2) = Me (H(2)L(1)), R(1) = OH, R(2) = Ph (H(2)L(2)) and R(1),R(2) = H (H(2)L(3)), were synthesized. Acid-base and complexing properties of the ligands were studied in solution as well as in the solid state. The ligands show unusually high basicity of the nitrogen atoms (log K(1) = 9.5-10, log K(2) = 8.5-9) if compared with simple (aminomethyl)phosphinic acids and, consequently, high stability constants of the complexes with studied divalent metal ions. The study showed the important role of the hydroxo group attached to the central carbon atom of the geminal bis(phosphinate) moiety. Deprotonation of the hydroxo group yields the alcoholate anion which tends to play the role of a bridging ligand and induces formation of polynuclear complexes. Solid-state structures of complexes [H(2)N=C(NH(2))(2)][Cu(2)(H(-1)L(2))(2)]CO(3)·10H(2)O and Li(2)[Co(4)(H(-1)L(1))(3)(OH)]·17.5H(2)O were determined by X-ray diffraction. The complexes show unexpected geometries forming dinuclear and cubane-like structures, respectively. The dinuclear copper(II) complex contains a bridging μ(2)-alcoholate group with the (-)O-P(=O)-CH(2)-NH(2) fragments of each ligand molecule chelated to the different central ion. In the cubane cobalt(II) complex, one μ(3)-hydroxide and three μ(3)-alcoholate anions are located in the cube vertices and both phosphinate groups of one ligand molecule are chelating the same cobalt(II) ion while each of its amino groups are bound to different neighbouring metal ions. All such three metal ions are bridged by the alcoholate group of a given ligand.

  17. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    Science.gov (United States)

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  18. 'Click' dendritic phosphines: design, synthesis, application in Suzuki coupling, and recycling by nanofiltration

    NARCIS (Netherlands)

    Janssen, M.C.C.; Vogt, D.; Müller, C.

    2009-01-01

    A new synthetic route towards stable molecular-weight enlarged monodentate phosphine ligands via click chemistry was developed. These ligands were applied in the Pd-catalyzed Suzuki-Miyaura coupling of aryl halides and phenyl boronic acid. The supported systems show very similar activities compared

  19. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.

    2016-12-17

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol, BDT) and a phosphine (triphenylphosphine, TPP) together as ligands and synthesized an atomically precise gold NC with the formula [Au28(BDT)4(TPP)9]2+. This NC exhibited multiple absorption features and a charge of +2, which are distinctly different from the reported all-thiolated [Au28(SR)20]0 NC (SR: monothiolate). The composition of [Au28(BDT)4(TPP)9]2+ NC was deduced from high-resolution electrospray ionization mass spectrometry (ESI MS) and it was further corroborated by thermogravimetric analysis (TGA). Differential pulse voltammetry (DPV) revealed a HOMO–LUMO gap of 1.27 eV, which is in good agreement with the energy gap of 1.3 eV obtained from its UV–vis spectrum. The successful synthesis of atomically precise, dithiol-protected Au28 NC would stimulate theoretical and experimental research into bidentate ligands as a new path for expanding the library of different metal NCs, which have so far been dominated by monodentate thiols.

  20. Palladium(II) complexes supported by a bidentate bis(secondary)phosphine linked by pyridine

    KAUST Repository

    Winston, Matthew S.; Bercaw, John E.

    2014-01-01

    A series of complexes of the type (PNP-H2)PdX2 (X=Cl, Br, I) have been synthesized, where PNP-H2 is a bis(secondary)phosphine ligand linked by a pyridine, 2,6-(2'-(Ph(H)P)(C6H4))2(C5H3N). Due to chirality at phosphorus, the parent ligand exists as a

  1. Complexation of amidocarbamoyl phosphine oxides with Ln+3 (Ln = La, Nd, Pm, Sm and Eu) cation series: structural and thermodynamical features

    International Nuclear Information System (INIS)

    Hosseinnejad, Tayebeh; Kazemi, Tayebeh

    2016-01-01

    In the present study, we have mainly investigated the nature of interactions in Ln 3+ (Ln = La, Nd, Pm, Sm, Eu) complexes with amidocarbamoyl methyl phosphine oxide (CMPO) and amidocarbamoyl propyl phosphine oxide (CPPO) ligands based on density functional theory (DFT) approaches. In the first step, thermodynamical properties for complexation of CMPO and CPPO ligands with Ln 3+ cation series have been determined in the gas phase and with the presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) computations. The trend of metal-ligand interaction strength has been analyzed and compared with the trend of ionic hardness within the series of lanthanide cations and different size of alkyl chain of amidocarbamoyl phosphine oxide ligand. The calculated thermochemical results in the gas and solution phases reveals that there is a consistency between increasing trend in the hardness of Ln 3+ cation series and also electron-donating property of alkyl chain with increasing in thermodynamical stability of [Ln-CMPO] 3+ and [Ln-CPPO] 3+ complex series. We have also demonstrated that in the complexation reaction of all complex series, using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene. It should be stated that this issue has been observed in many experiments. Finally, analysis of calculated deformation energies and also the variation in bond order of some selected key bonds in CMPO and CPPO ligands and their corresponded Ln 3+ complexes series show a similar trend with increasing in the hardness of Ln 3+ cation series and electron-donating of alkyl chain of amidocarbamoyl phosphine oxide ligand.

  2. Complexes of groups 3,4, the lanthanides and the actinides containing neutral phophorus donor ligands

    International Nuclear Information System (INIS)

    Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.

    1990-01-01

    Of relevance to this review are complexes of the early transition elements, in particular groups 3 and 4 and the lanthanides and actinides. In this review the authors have attempted to collect all the data up to the end of 1988 for complexed of groups 3 and 4, the lanthanides and the actinides that contain phosphorus donor ligands. The 1989s have seen a renaissance of the use of phosphine donors for the early d elements (groups 3 and 4) and the f elements. Neutral phosphorus donors are defined as primary (PH 2 R), secondary (PH 2 ) or tertiary phosphines (PR 3 ), including complexes of phosphine, PH 3 . Also reviewed are complexes of PF 3 and phosphites, P(OR) 3 . Specifically excluded are phosphido derivates, PR 2 . The ability of a neutral phosphorus donor to bind the metals of groups 3 and 4, the lanthanides and the actinides is now well established. While there are still no examples of lanthanum or actinium phosphine complexes, such derivatives should be accessible at least for lanthanum. series. However, there is no obvious chemical reason to suggest that such derivatives cannot be generated. The phosphine ligands that appear to generate the most stable phosphine-metal interaction are chelating phosphines such as dmpe, trmpe and trimpsi. In addition, the use of the chelate effect in conjunction with a hard ligand such as the amide in - N(SiMe 2 CH 2 PMe 2 ) 2 , or an alkoxide as found in - OC(BU t ) 2 CH 2 PMe 2 , also appears to be effective in anchoring the phosphine donor to the metal. The majority of low oxidation state derivatives of the group 4 elements are stabilized by phosphine donors in contrast with other parts of the transition series where one finds that classic π-acceptor-type ligands such as CO or RNC are utilized. 233 refs

  3. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  4. Complexation of amidocarbamoyl phosphine oxides with Ln{sup +3} (Ln = La, Nd, Pm, Sm and Eu) cation series: structural and thermodynamical features

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinnejad, Tayebeh; Kazemi, Tayebeh [Alzahra Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry

    2016-05-01

    In the present study, we have mainly investigated the nature of interactions in Ln{sup 3+} (Ln = La, Nd, Pm, Sm, Eu) complexes with amidocarbamoyl methyl phosphine oxide (CMPO) and amidocarbamoyl propyl phosphine oxide (CPPO) ligands based on density functional theory (DFT) approaches. In the first step, thermodynamical properties for complexation of CMPO and CPPO ligands with Ln{sup 3+} cation series have been determined in the gas phase and with the presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) computations. The trend of metal-ligand interaction strength has been analyzed and compared with the trend of ionic hardness within the series of lanthanide cations and different size of alkyl chain of amidocarbamoyl phosphine oxide ligand. The calculated thermochemical results in the gas and solution phases reveals that there is a consistency between increasing trend in the hardness of Ln{sup 3+} cation series and also electron-donating property of alkyl chain with increasing in thermodynamical stability of [Ln-CMPO]{sup 3+} and [Ln-CPPO]{sup 3+} complex series. We have also demonstrated that in the complexation reaction of all complex series, using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene. It should be stated that this issue has been observed in many experiments. Finally, analysis of calculated deformation energies and also the variation in bond order of some selected key bonds in CMPO and CPPO ligands and their corresponded Ln{sup 3+} complexes series show a similar trend with increasing in the hardness of Ln{sup 3+} cation series and electron-donating of alkyl chain of amidocarbamoyl phosphine oxide ligand.

  5. The role of ligands in the optical and electronic spectra of CdSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Sergei, Ivanov A [Los Alamos National Laboratory; Victor, Klimov I [Los Alamos National Laboratory; Sergei, Tretiak [Los Alamos National Laboratory

    2008-01-01

    We investigate the impact of ligands on morphology, electronic structure, and optical response of the Cd33Se33 cluster, which already overlapps in size with the smallest synthesized CdSe quantum dots (QDs). Our Density Functional Theory (DFT) calculations demonstrate significant surface reorganization both for the bare cluster and for the cluster capped by amine and phosphine oxide ligand models. We observe strong surface-ligand interactions leading to substantial charge redistribution and polarization effects on the surface. This effect results in the appearance of hybridized states, where the electronic density is spread over the cluster and the ligands. Neither the ligand's nor hybridized molecular orbitals appear as trap states inside or near the band gap of the QD. Instead, being optically dark, dense hybridized states from the edges of the valence and the conduction bands could open new relaxation channels for high energy photoexcitations. Comparing quantum dots passivated by different ligands, we found that hybridized states are denser in at the edge of the conduction band of the cluster ligated with phosphine oxide molecules than that with primary amines. Such a different manifestation of ligand binding may potentially lead to the faster electron relaxation in dots passivated by phosphine oxide than by amine ligands, which is in agreement with experimental data.

  6. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    Science.gov (United States)

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.

  7. Redox-​Active Ligand-​Induced Homolytic Bond Activation

    NARCIS (Netherlands)

    Broere, D.L.J.; Metz, L.L.; de Bruin, B.; Reek, J.N.H.; Siegler, M.A.; van der Vlugt, J.I.

    2015-01-01

    Coordination of the novel redox-​active phosphine-​appended aminophenol pincer ligand (PNOH2) to PdII generates a paramagnetic complex with a persistent ligand-​centered radical. The complex undergoes fully reversible single-​electron oxidn. and redn. Homolytic bond activation of diphenyldisulfide

  8. Mechanisms of Phosphine Toxicity

    Directory of Open Access Journals (Sweden)

    Nisa S. Nath

    2011-01-01

    Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  9. Technetium(I) complexes Tc(CO)3BrL2 (L = phosphine, pyridine, isocyanide)

    International Nuclear Information System (INIS)

    Lorenz, B.; Findeisen, M.; Olk, B.; Schmidt, K.

    1988-01-01

    Technetium pentacarbonyl bromide reacts with π-acceptor ligands L (L = phosphine, pyridine, isocyanide) to form disubstituted compounds of the type Tc(CO) 3 BrL 2 . The stereochemistry of the complexes was established by infrared and 1 H-NMR measurement. Chemical shifts and the half-widths of the 99 Tc-NMR signals are discussed. (author)

  10. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  11. Resistance of stored-product insects to phosphine

    International Nuclear Information System (INIS)

    Pimentel, Marco Aurelio Guerra; Faroni, Leda Rita D'Antonino; Batista, Maurilio Duarte; Silva, Felipe Humberto da

    2008-01-01

    The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate. (author)

  12. Complexation and biodistribution study of 111In complexes of bifunctional phosphinic acid analogues of H4DOTA

    Czech Academy of Sciences Publication Activity Database

    Forsterová, Michaela; Zimová, Jana; Petrík, M.; Lázníček, M.; Lázníčková, A.; Hermann, P.; Melichar, František

    2007-01-01

    Roč. 2, č. 337 (2007), s. 34-34 ISSN 1619-7070 R&D Projects: GA AV ČR 1QS100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : bifunctional H4DOTA ligands * phosphinic acid analogues, * complexation of 111In Subject RIV: FR - Pharmacology ; Medidal Chemistry

  13. : Recyclable, ligand free palladium(II) catalyst for Heck reaction

    Indian Academy of Sciences (India)

    well as heterogeneous palladium catalysts, generated from either palladium(0) compounds or palladium(II) acetate or chloride salts.6 Several ligands such as phosphines, phoshites, carbenes, thioethers have been successfully employed for this reaction.7 However, homogeneous catalysis results in problems of recovery.

  14. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    Science.gov (United States)

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  16. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2016-08-10

    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  17. A modular approach to neutral P,N-ligands: synthesis and coordination chemistry

    Directory of Open Access Journals (Sweden)

    Vladislav Vasilenko

    2016-04-01

    Full Text Available We report the modular synthesis of three different types of neutral κ2-P,N-ligands comprising an imine and a phosphine binding site. These ligands were reacted with rhodium, iridium and palladium metal precursors and the structures of the resulting complexes were elucidated by means of X-ray crystallography. We observed that subtle changes of the ligand backbone have a significant influence on the binding geometry und coordination properties of these bidentate P,N-donors.

  18. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  19. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Zuryn, Steven; Kuang, Jujiao; Ebert, Paul

    2008-03-01

    Phosphine is a fumigant used to protect stored commodities from infestation by pest insects, though high-level phosphine resistance in many insect species threatens the continued use of the fumigant. The mechanisms of toxicity and resistance are not clearly understood. In this study, the model organism, Caenorhabditis elegans, was employed to investigate the effects of phosphine on its proposed in vivo target, the mitochondrion. We found that phosphine rapidly perturbs mitochondrial morphology, inhibits oxidative respiration by 70%, and causes a severe drop in mitochondrial membrane potential (DeltaPsim) within 5 h of exposure. We then examined the phosphine-resistant strain of nematode, pre-33, to determine whether resistance was associated with any changes to mitochondrial physiology. Oxygen consumption was reduced by 70% in these mutant animals, which also had more mitochondrial genome copies than wild-type animals, a common response to reduced metabolic capacity. The mutant also had an unexpected increase in the basal DeltaPsim, which protected individuals from collapse of the membrane potential following phosphine treatment. We tested whether directly manipulating mitochondrial function could influence sensitivity toward phosphine and found that suppression of mitochondrial respiratory chain genes caused up to 10-fold increase in phosphine resistance. The current study confirms that phosphine targets the mitochondria and also indicates that direct alteration of mitochondrial function may be related to phosphine resistance.

  20. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine.

    Science.gov (United States)

    Zheng, Dehua; Wang, Mei; Chen, Lin; Wang, Ning; Sun, Licheng

    2014-02-03

    A diiron dithiolate complex with a pendant phosphine coordinated to one of the iron centers, [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe2(CO)5}] (1), was prepared and structurally characterized. The pendant phosphine is dissociated together with a CO ligand in the presence of excess PMe3, to afford [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe(CO)2(PMe3)}2] (2). Redox reactions of 2 and related complexes were studied in detail by in situ IR spectroscopy. A series of new Fe(II)Fe(I) ([3](+) and [6](+)), Fe(II)Fe(II) ([4](2+)), and Fe(I)Fe(I) (5) complexes relevant to Hox, Hox(CO), and Hred states of the [FeFe]-hydrogenase active site were detected. Among these complexes, the molecular structures of the diferrous complex [4](2+) with the internal amine and the pendant phosphine co-coordinated to the same iron center and the triphosphine diiron complex 5 were determined by X-ray crystallography. To make a comparison, the redox reactions of an analogous complex, [(μ-SCH2)2N(CH2C6H5){Fe(CO)2(PMe3)}2] (7), were also investigated by in situ IR spectroscopy in the absence or presence of extrinsic PPh3, which has no influence on the oxidation reaction of 7. The pendant phosphine in the second coordination sphere makes the redox reaction of 2 different from that of its analogue 7.

  1. P(O)R2-Directed Enantioselective C-H Olefination toward Chiral Atropoisomeric Phosphine-Olefin Compounds.

    Science.gov (United States)

    Li, Shi-Xia; Ma, Yan-Na; Yang, Shang-Dong

    2017-04-07

    An effective synthesis of chiral atropoisomeric biaryl phosphine-olefin compounds via palladium-catalyzed enantioselective C-H olefination has been developed for the first time. The reactions are operationally simple, tolerate wide functional groups, and have a good ee value. Notably, P(O)R 2 not only acts as the directing group to direct C-H activation in order to make a useful ligand but also serves to facilitate composition of the product in a useful manner in this transformation.

  2. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  3. Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide ligands. A relativistic density functional study

    International Nuclear Information System (INIS)

    Wang, Cong-Zhi; Lan, Jian-Hui; Feng, Yi-Xiao; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun; Wei, Yue-Zhou

    2014-01-01

    The extraction complexes of Pu(IV) with n-octyl(phenyl)-N,N-diisobutyl-methylcarbamoyl phosphine oxide (CMPO) and diphenyl-N,N-diisobutyl carbamoyl phosphine oxide (Ph 2 CMPO) have been studied by using density functional theory (DFT) combined with relativistic small-core pseudopotentials. For most complexes, the CMPO and Ph 2 CMPO molecules are coordinated as bidentate chelating ligands through the carbonyl oxygen and phosphoric oxygen atoms. The metal-ligand bonding is mainly ionic for all of these complexes. The neutral PuL(NO 3 ) 4 and PuL 2 (NO 3 ) 4 complexes are predicted to be the most thermodynamically stable molecules according to the metal-ligand complexation reactions. In addition, hydration energies may also play a significant role in the extractability of CMPO and Ph 2 CMPO for the plutonium cations. In most cases, the complexes with CMPO possess qualitatively similar geometries and electron structures to those with Ph 2 CMPO, and they also have comparable metal-ligand binding energies. Thus, replacement of alkyl groups by phenyl groups at the phosphorus atom of CMPO seems to have no obvious influence on the extraction of Pu(IV). (orig.)

  4. Palladium(II) complexes supported by a bidentate bis(secondary)phosphine linked by pyridine

    KAUST Repository

    Winston, Matthew S.

    2014-10-01

    A series of complexes of the type (PNP-H2)PdX2 (X=Cl, Br, I) have been synthesized, where PNP-H2 is a bis(secondary)phosphine ligand linked by a pyridine, 2,6-(2\\'-(Ph(H)P)(C6H4))2(C5H3N). Due to chirality at phosphorus, the parent ligand exists as a mixture of nearly equivalent rac and meso diastereomers non-interconverting at room temperature. When ligated to Pd(II) halides, however, the diastereomeric ratio is dependent upon the halide. The chloro, bromo, and iodo complexes have been characterized crystallographically. Conformationally similar meso diastereomers of each dihalide are roughly C s symmetric in the solid state, while the rac diastereomers (identified only for X=Br, I) show substantially different solid-state conformations. © 2014 Elsevier B.V.

  5. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  6. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  7. Lanthanum tris[di(chloromethyl)phosphinate] dihydrate: crystal structure

    International Nuclear Information System (INIS)

    Aleksandrov, G.G.; Sergienko, V.S.; Afonin, E.G.

    2001-01-01

    X-ray diffraction analysis of the LaL 3 · 2H 2 O crystals, HL - di(chloromethyl)phosphinic acid, is conducted. Every of two crystallografically non-equivalent atoms La(1), La(2) is bound with six O(P) atoms of six L - anions performing function of bidentate μ 2 -bridge ligand in the top of pentagonal bipyramid and with O(w) atom of water molecule. La(H 2 O)L 3 particles of the both types are associated in polymer chains along the x axis of the crystal. Chains are conducted through hydrogen bonds O-H···O between coordinated and crystallization molecules of water as well as through short contacts Cl···Cl. Monophase state of polycrystal sample of complex was shown by method of X-ray diffraction of powder [ru

  8. Unprecedented selective aminolysis: Aminopropyl phosphine as a building block for a new family of air stable mono-, bis-, and tris-primary phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.R.; Pillarsetty, N.; Gali, H.; Katti, K.V.

    2000-02-23

    A serious impediment to using primary and secondary phosphines as general-purpose reagents to develop new chemistry is associated with their unpleasant pyrophoric nature and extreme hydrolytic, thermal, and oxidative instabilities. In particular, primary phosphines with ``user friendly'' properties (e.g., good oxidative/thermal stability, low volatility) would be extremely important not only from the synthetic point of view but also for potential application (e.g., in dendrimers formation). As part of ongoing research on the fundamental main group and organic chemistry of functionalized phosphorus compounds, the authors report, herein, unprecedented selectivity in the reaction of 3-aminopropyl primary phosphine 3, with the methyl ester in the presence of free acid, amide, and thiol to produce air stable amide, carboxylate, and thiol functionalized primary phosphines.

  9. Phosphine from rocks: mechanically driven phosphate reduction?

    Science.gov (United States)

    Glindemann, Dietmar; Edwards, Marc; Morgenstern, Peter

    2005-11-01

    Natural rock and mineral samples released trace amounts of phosphine during dissolution in mineral acid. An order of magnitude more phosphine (average 1982 ng PH3 kg rock and maximum 6673 ng PH3/kg rock) is released from pulverized rock samples (basalt, gneiss, granite, clay, quartzitic pebbles, or marble). Phosphine was correlated to hardness and mechanical pulverization energy of the rocks. The yield of PH3 ranged from 0 to 0.01% of the total P content of the dissolved rock. Strong circumstantial evidence was gathered for reduction of phosphate in the rock via mechanochemical or "tribochemical" weathering at quartz and calcite/marble inclusions. Artificial reproduction of this mechanism by rubbing quartz rods coated with apatite-phosphate to the point of visible triboluminescence, led to detection of more than 70 000 ng/kg PH3 in the apatite. This reaction pathway may be considered a mechano-chemical analogue of phosphate reduction from lightning or electrical discharges and may contribute to phosphine production via tectonic forces and processing of rocks.

  10. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes

    DEFF Research Database (Denmark)

    Clarke, Celia; Fox, David J; Pedersen, Daniel Sejer

    2009-01-01

    Phosphine oxides are lithiated much faster than phosphine sulfides and phosphine boranes. Phosphine sulfides are in turn lithiated much more readily than phosphine boranes. It was possible to trap a phosphine sulfide THF in one case which upon treatment with t-BuOK gave cyclopropane, showing...... that phosphine sulfides readily undergo both phosphinoyl transfer and cyclopropane ring closure just like their phosphine oxide counterparts. The obtained data show that phosphine oxides are easily lithiated and undergo phosphoryl transfer much more readily and faster than phosphine sulfides and phosphine...... boranes. The observations suggest that it would be possible to perform reactions involving phosphine oxides in the presence of phosphine boranes or phosphine sulfides, potentially allowing regioselective alkylation of phosphine oxides in the presence of phosphine boranes or phosphine sulfides....

  11. Investigations on synthesis, coordination behaviour and actinide recovery of unexplored phosphine oxides

    International Nuclear Information System (INIS)

    Veerashekhar Goud, E.; Pavankumar, B.B.; Das, Dhrubajyothi

    2016-01-01

    The search for the development of an optimum extractant for effective separation of a particular metal from a mixture is an active field of research in both chemistry and chemical engineering. These extractants find extensive application in extractive metallurgy and in nuclear fuel cycle (for the separation of actinides from other fission products). In the case of the latter, solvent extraction and ion exchange are two widely employed separation techniques. In this connection, the present paper reports synthesis and structural characterization of various new phosphine oxide derivatives. The coordination behavior of these ligands is studied with some selected lanthanides and actinides shows the proposed structures of La(III) and Th(IV) metal complexes. The purity and structural characterization of the ligands and their corresponding metal complexes are analyzed by various analytical and spectroscopic techniques. Additionally, we have applied Density functional theory (DFT) calculations to understand the electronic structure of some metal complexes formed during the extraction process. (author)

  12. Theoretical study of adsorption of organic phosphines on transition metal surfaces

    Science.gov (United States)

    Lou, Shujie; Jiang, Hong

    2018-04-01

    The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.

  13. Novel phosphine-peptide hybrids as selective catalysts

    DEFF Research Database (Denmark)

    Nygaard, David

    (His(Trt), Gln, Gln(Trt), Cys(tBu), Thr(OtBu), azido- Dab, Asp(OtBu), Arg(Pmc))) yielding a range of novel modified peptides. Peptides containing one secondary amine were phosphinylated and captured as either phosphine-boranes or oxides. Both borane and oxide protection of phosphine-peptide hybrids...... was discovered and the compounds were structurally elucidated via NMR and mass spectroscopy. Two of these compounds were incorporated into peptides. An existing method of obtaining peptides containing secondary amines in the peptide backbone have been expanded for incorporation of functional amino acids as well...... palladium chloride dimer did not yield an observable phosphine-palladium complex. A peptide containing two secondary amine sites was synthesized, phosphinylated and complexed to respectively palladium and copper. The palladium complex was utilized successfully as a palladium catalyst in a model Sonogashira...

  14. Study on Effects of Electron Donors on Phosphine Production from Anaerobic Activated Sludge

    Directory of Open Access Journals (Sweden)

    Jianping Cao

    2017-07-01

    Full Text Available The effects of different types and concentrations of electron donors (glucose, starch, methanol and sodium acetate on the formation of phosphine from anaerobic activated sludge that has been domesticated for a prolonged period were studied in small batch experiments. The results show that types and concentrations of electron donor have significant effects on the production of phosphine from anaerobic activated sludge. Among them, glucose was the most favourable electron donor, whereas sodium acetate was the least favourable electron donor for the removal of phosphorus and the production of phosphine. Higher concentrations of electron donors were more favourable for the reduction of phosphate into phosphine, and supplying more than nine times the amount of electron donor as theoretically required for the reduction of phosphate into phosphine was favourable for the production of phosphine.

  15. Ligand-controlled reactivity, selectivity, and mechanism of cationic ruthenium-catalyzed hydrosilylations of alkynes, ketones, and nitriles: a theoretical study.

    Science.gov (United States)

    Yang, Yun-Fang; Chung, Lung Wa; Zhang, Xinhao; Houk, K N; Wu, Yun-Dong

    2014-09-19

    Density functional theory calculations with the M06 functional have been performed on the reactivity, selectivity, and mechanism of hydrosilylations of alkynes, ketones, and nitriles catalyzed by cationic ruthenium complexes [CpRu(L)(MeCN)2](+), with L = P(i)Pr3 or MeCN. The hydrosilylation of alkynes with L = P(i)Pr3 involves an initial silyl migration mechanism to generate the anti-Markovnikov product, in contrast to the Markovnikov product obtained with L = MeCN. The bulky phosphine ligand directs the silyl group to migrate to Cβ of the alkyne. This explains the anti-Markovnikov selectivity of the catalyst with L = P(i)Pr3. By contrast, the silane additions to either ketone or nitrile proceed through an ionic SN2-Si outer-sphere mechanism, in which the substrate attacks the Si center. The P(i)Pr3 ligand facilitates the activation of the Si-H bond to furnish a η(2)-silane complex, whereas a η(1)-silane complex is formed for the MeCN ligand. This property of the phosphine ligand enables the catalytic hydrosilylation of ketones and nitriles in addition to that of alkynes.

  16. Synthesis and Characterization of a Triphos Ligand Derivative and the Corresponding Pd II Complexes: Triphos Ligand Derivative and Corresponding Pd II Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Deanna L.; Boro, Brian J.; Grubel, Katarzyna; Helm, Monte L.; Appel, Aaron M.

    2015-11-16

    The synthesis of the new bis(2-(diphenylphosphino)ethyl)methylhydroxyphosphine tridentate phosphine ligand, LCH2OH/Ph, is reported. The ligand reacts with [Pd(Cl)2(PhCN)2 to form [Pd(LCH2OH/Ph)Cl]Cl. Exchange of the chloride ions for triflate (OTf–) using AgOTf yielded pure [Pd(LCH2OH/Ph)OTf]OTf. In addition to spectral characterization the free ligand, LCH2OH/Ph, and Pd(II) complex, [Pd(LCH2OH/Ph)OTf]OTf, are structurally characterized. This research was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for DOE.

  17. Phosphine Exposure Among Emergency Responders - Amarillo, Texas, January 2017.

    Science.gov (United States)

    Hall, Emily M; Patel, Ketki; Victory, Kerton R; Calvert, Geoffrey M; Nogueira, Leticia M; Bojes, Heidi K

    2018-04-06

    Phosphine is a highly toxic gas that forms when aluminum phosphide, a restricted-use pesticide* typically used in agricultural settings, reacts with water. Acute exposure can lead to a wide range of respiratory, cardiovascular, and gastrointestinal symptoms, and can be fatal (1). On January 2, 2017, the Texas Department of State Health Services (DSHS) was notified by the Texas Panhandle Poison Center of an acute phosphine exposure incident in Amarillo, Texas. DSHS investigated potential occupational phosphine exposures among the 51 on-scene emergency responders; 40 (78.4%) did not use respiratory protection during response operations. Fifteen (37.5%) of these 40 responders received medical care for symptoms or as a precaution after the incident, and seven (17.5%) reported new or worsening symptoms consistent with phosphine exposure within 24 hours of the incident. Emergency response organizations should ensure that appropriate personal protective equipment (PPE) is used during all incidents when an unknown hazardous substance is suspected. Additional evaluation is needed to identify targeted interventions that increase emergency responder PPE use during this type of incident.

  18. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Jung, Kyung Yoon; Kim, Young Sik

    2010-01-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(NCMe)] + and Ir(F 2 Meppy)(PPhMe 2 ) 2 -(H)(CN), [F 2 Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe 2 leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)-(NCMe)] + and Ir(F 2 Meppy)(PPh-Me 2 ) 2 (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  19. Resistance of stored-product insects to phosphine; Resistencia de insetos de produtos armazenados a fosfina

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marco Aurelio Guerra [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal. Setor de Entomologia]. E-mail: marcoagp@gmail.com; Faroni, Leda Rita D' Antonino; Batista, Maurilio Duarte; Silva, Felipe Humberto da [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola. Setor de Armazenamento]. E-mail: lfaroni@ufv.br; mauriliodbatista@yahoo.com.br; felipehumberto@gmail.com

    2008-12-15

    The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate. (author)

  20. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    International Nuclear Information System (INIS)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M.; Sa, Gilberto F.

    2013-01-01

    The Tb 3+ -β-diketonate complexes [Tb(DBM) 3 L], [Tb(DBM) 2 (NO 3 )L 2 ] and [Tb(DBM)(NO 3 ) 2 (HMPA) 2 ] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd 3+ complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  1. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M., E-mail: teotonioees@quimica.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Quimica; Brito, Hermi F. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Fundamental; Felinto, Maria Claudia F.C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Sa, Gilberto F. [Universidade Federal de Pernambuco (UFPE/CCEN), Recife, PE (Brazil). Centro de Ciencias Exatas e da Natureza. Departamento de Quimica Fundamental

    2013-04-15

    The Tb{sup 3+}-{beta}-diketonate complexes [Tb(DBM){sub 3}L], [Tb(DBM){sub 2}(NO{sub 3})L{sub 2}] and [Tb(DBM)(NO{sub 3}){sub 2} (HMPA){sub 2}] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd{sup 3+} complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  2. Theoretical and experimental study of actinide complexes with monoamides and organophosphorus ligands in solution

    International Nuclear Information System (INIS)

    Ribokaite, Kristina

    2013-01-01

    Monoamides and organophosphate are of great interest for the nuclear fuel cycle. Such ligands can selectively extract actinides in liquid-liquid extraction processes. The structure of the extractant (its functional group and its alkyl substituents) has a predominant role in the selective separation of actinides. This thesis concerns the theoretical and experimental studies of model systems in the aim of better understanding of the effect on molecular structures of the complexes. Structures of actinides complexes formed with model ligands in simple media (water or methanol in the presence of nitrate ions) have been characterized. At first, the complexation of uranyl by monoamide and phosphine oxide was studied in water and methanol. Molecular Dynamics simulations and DFT calculations were used to quantify the stability of uranyl complexes with those ligands, and to determine their structural properties. The theoretical results were then compared with experimental results obtained by UV-visible, infrared, Raman and EXAFS on the same chemical systems. The results were used to highlight the greater stability of uranyl complexes with phosphine oxide and monoamides. Further spectroscopic measurements combined with molecular modeling were used to gain a better understanding of the coordination mode of nitrate ion around the uranyl in both water and methanol. Finally, DFT calculations were used to study the influence of the structure of the monoamide or organophosphorus ligand and their interaction with the actinides (IV, VI) including steric effects in the first coordination sphere. (author) [fr

  3. Tris[2-(deuteriomethylsulfanylphenyl]phosphine deuteriochloroform 0.125-solvate

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2008-05-01

    Full Text Available The title deuterated tripodal phosphine, C21H12D9PS3·0.125CDCl3, crystallizes as two independent molecules, one of which lies on a general position and the other about a threefold rotation axis, and as a deuteriochloroform solvate. The solvent molecule is disordered about a site of symmetry 3, so that the ratio of phosphine to solvent is 8:1. The P atom adopts a pyramidal coordination geometry.

  4. Organotin complexes with phosphines

    International Nuclear Information System (INIS)

    Passos, B. de F.T.; Jesus Filho, M.F. de; Filgueiras, C.A.L.; Abras, A.

    1988-01-01

    A series of organotin complexes was prepared involving phosphines bonded to the organotin moiety. The series include derivatives of SnCl x Ph 4-x (where x varied from zero to four with the phosphines Ph 3 P, (Ph 2 P)CH 2 , (Ph 2 P) 2 (CH 2 ) 2 , cis-(Ph 2 P)CH 2 , and CH 3 C(CH 2 PPh 2 ) 3 . A host of new complexes was obtained, showing different stoichiometries, bonding modes, and coordination numbers around the tin atom. These complexes were characterized by several different chemical and physical methods. The 119 Sn Moessbauer parameters varied differently. Whereas isomer shift values did not great variation for each group of complexs with the same organotin parent (SnCl x Ph 4-x ), reflecting a small change in s charge distribution on the Sn atom upon complexation, quadrupole splitting results varied widely, however, when the parent organotin compound was wholly symmetric (SnCl 4 and SnPPh 4 ), the complexes also tended to show quadrupole splitting values approaching zero. (author)

  5. Time-dependent density functional theory study of the luminescence properties of gold phosphine thiolate complexes.

    Science.gov (United States)

    Guidez, Emilie B; Aikens, Christine M

    2015-04-09

    The origin of the emission of the gold phosphine thiolate complex (TPA)AuSCH(CH3)2 (TPA = 1,3,5-triaza-7-phosphaadamantanetriylphosphine) is investigated using time-dependent density functional theory (TDDFT). This system absorbs light at 3.6 eV, which corresponds mostly to a ligand-to-metal transition with some interligand character. The P-Au-S angle decreases upon relaxation in the S1 and T1 states. Our calculations show that these two states are strongly spin-orbit coupled at the ground state geometry. Ligand effects on the optical properties of this complex are also discussed by looking at the simple AuP(CH3)3SCH3 complex. The excitation energies differ by several tenths of an electronvolt. Excited state optimizations show that the excited singlet and triplet of the (TPA)AuSCH(CH3)2 complex are bent. On the other hand, the Au-S bond breaks in the excited state for the simple complex, and TDDFT is no longer an adequate method. The excited state energy landscape of gold phosphine thiolate systems is very complex, with several state crossings. This study also shows that the formation of the [(TPA)AuSCH(CH3)2]2 dimer is favorable in the ground state. The inclusion of dispersion interactions in the calculations affects the optimized geometries of both ground and excited states. Upon excitation, the formation of a Au-Au bond occurs, which results in an increase in energy of the low energy excited states in comparison to the monomer. The experimentally observed emission of the (TPA)AuSCH(CH3)2 complex at 1.86 eV cannot be unambiguously assigned and may originate from several excited states.

  6. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Ho Wan [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Jung, Kyung Yoon [International Design School for Advanced Studies, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Sik, E-mail: youngkim@hongik.ac.k [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of)

    2010-09-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}-(H)(CN), [F{sub 2}Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe{sub 2} leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)-(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPh-Me{sub 2}){sub 2} (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  7. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.; Bootharaju, Megalamane Siddaramappa; Sinatra, Lutfan; Basset, Jean-Marie; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol

  8. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu-Chieh; Otten, Edwin; Couzijn, Erik P. A.; Lutz, Martin; Minnaard, Adriaan J.

    2013-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio-and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides.

  9. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu Chieh; Otten, Edwin; Couzijn, Erik P A; Lutz, Martin|info:eu-repo/dai/nl/304828971; Minnaard, Adriaan J.

    2014-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio- and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides. © 2014 The Royal Society

  10. Uptake of actinides by sulphonated phosphinic acid resin from acid medium

    International Nuclear Information System (INIS)

    Jaya Mohandas; Srinivasa Rao, V.; Vijayakumar, N.; Kumar, T.; Velmurugan, S.; Narasimhan, S.V.

    2014-01-01

    The removal of uranium and americium from nitric acid solutions by sulphonated phosphinic acid resin has been investigated. The capacity of the sulphonated resin exceeds the capacities of phosphinic acid resin and commercial cation exchange resin. Other advantages of the sulphonated resin for uranium and americium removal include reduced sensitivity to acidity and inert salt concentration. (author)

  11. Prevention of phosphine-induced cytotoxicity by nutrients in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Marzieh Rashedinia

    2016-01-01

    Interpretation & conclusions: The results supported the hypothesis that phosphine-induced cytotoxicity was due to decrease of ATP levels. ATP suppliers could prevent its toxicity by generating ATP through glycolysis. α-keto compounds such as dihydroxyacetone and α-ketoglutarate may bind to phosphine and restore mitochondrial respiration.

  12. Characterizing Exoplanet Atmospheres : A Complete Line List for Phosphine

    Science.gov (United States)

    Sousa-Silva, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ability to characterise the atmospheres of cool stars, brown dwarfs and exoplanets requires fundamental data for all species contributing significantly to their opacity. However, with notable exceptions such as water and ammonia, existing molecular line lists are not sufficiently accurate or complete to allow for a full spectroscopic analysis of these bodies. ExoMol (www.exomol.com [1]) is a project that aims to rectify this by generating comprehensive line lists for all molecules likely to be detected in the atmospheres of cool astrophysical objects in the foreseeable future. The spectral data is generated by employing ab initio quantum mechanical methods, performing empirical refinement based on experimental spectroscopic data and harnessing high performance computing. Here we present our work on phosphine, (PH3), an equilateral pyramidal molecule (the phosphorus analogue to ammonia). Phosphine is known to be important for the atmospheres of giant-planets, cool stars and many other astronomical bodies. Rotational transition features of phosphine have been found in the far- infrared spectra of Saturn and Jupiter [2, 3], where it is a marker for vertical convection zones. A computed room temperature line list of phosphine is presented here [4], illustrated in the accompanying figure 1. This line list is a precursor to a high temperature equivalent to be produced in the near future, necessary for the analysis of cool stars and brown dwarfs. All the transitions' energy levels and Einstein A-coefficients were computed using the program TROVE [5].

  13. Gas chromatography of alkylphosphonic and dialkyl phosphinic acids

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.; Barrera Pinero, R.; Ramirez Caceres, A.; Martin Munoz, M.

    1978-01-01

    After carrying out an optimization study on the separation conditions for the TMSr- derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctyl phosphine oxide, their retention indices (I) at two temperatures and on the OV-1 and OV-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analyzed taking into account the variables affecting the quantitative results, These results were unbiased but they had a lower precision than that usually achievable in gas chromatography. (Author) 24 refs

  14. Structures and Redox Properties of Metal Complexes of the Electron-Deficient Diphosphine Chelate Ligand R,R-QuinoxP

    Czech Academy of Sciences Publication Activity Database

    Das, A. K.; Bulak, E.; Sarkar, B.; Lissner, F.; Schleid, T.; Niemeyer, M.; Fiedler, Jan; Kaim, W.

    2008-01-01

    Roč. 27, č. 2 (2008), s. 218-223 ISSN 0276-7333 R&D Projects: GA MŠk OC 139; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2,3-bis(tert-butylmethylphosphino)quinoxaline * radical complexes * phosphine ligand Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.815, year: 2008

  15. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  16. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  17. Synthesis of a novel class of nitrido Tc-99m radiopharmaceuticals with phosphino-thiol ligands showing transient heart uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bolzati, Cristina; Uccelli, Licia; Boschi, Alessandra; Malago, Erica; Duatti, Adriano E-mail: dta@unife.it; Tisato, Francesco; Refosco, Fiorenzo; Pasqualini, Roberto; Piffanelli, Adriano

    2000-05-01

    A novel class of technetium-99m radiopharmaceuticals showing high heart uptake is described. These complexes were prepared through a simple and efficient procedure, and their molecular structure fully characterized. They are formed by a terminal Tc{identical_to}N multiple bond and two bidentate phosphine-thiol ligands [R{sub 2}P-(CH{sub 2}){sub n}SH, n=2,3] coordinated to the metal ion through the neutral phosphorus atom and the deprotonated thiol sulfur atom. The resulting geometry was trigonal bipyramidal. Biodistribution studies were carried out in rats. The complexes exhibited high initial heart uptake and elimination through liver and kidneys. The washout kinetic from heart was dependent on the nature of the lateral R groups on the phosphine-thiol ligands. When R=phenyl, heart activity was rapidly eliminated within 10-20 min. Instead, when R=tolyl,cyclohexyl, persistent heart uptake was observed. Extraction of activity from myocardium tissue showed that no change of the chemical identity of the tracer occurred after heart uptake. On the contrary, metabolization to more hydrophilic species occurred in liver and kidneys.

  18. Comparative effects of gamma irradiation and phosphine fumigation on the quality of white ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J.-H.Joong-Ho; Byun, M.-W.Myung-Woo; Kim, K.-S.Kang-Soo; Kang, I.-J.Il-Jun

    2000-03-01

    The hygienic, physicochemical, and organoleptic qualities of white ginseng were monitored during 6 months under accelerated conditions (40 deg. C, 90% r.h.) by observing its microbial populations, disinfestation, and some quality attributes following either gamma irradiation at 2.5-10 kGy or commercial phosphine (PH{sub 3}) fumigation. In a comparative study, both treatments were found to be effective for disinfecting the stored samples. Phosphine showed no appreciable decontaminating effects on microorganisms contaminated including coliforms, while 5 kGy irradiation was sufficient to control all microorganisms related to the quality of the packed samples. Irradiation at 5 kGy caused negligible changes in physicochemical attributes of the samples, such as ginsenosides, amino acids, fatty acids, and organoleptic properties, whereas phosphine fumigation was found detrimental to sensory flavor (P<0.01). Quality deterioration occurred in the commercially-packed samples was in the following order: the control, 10 kGy-, phosphine-, and 2.5-5 kGy-treated samples. Accordingly, irradiation at <5 kGy was found to be an effective alternative to phosphine fumigation for white ginseng. (author)

  19. Stability and Unimolecular Reactivity of Palladate(II) Complexes [Ln PdR3 ]- (L=Phosphine, R=Organyl, n=0 and 1).

    Science.gov (United States)

    Kolter, Marlene; Koszinowski, Konrad

    2016-10-24

    The reduction of Pd II precatalysts to catalytically active Pd 0 species is a key step in many palladium-mediated cross-coupling reactions. Besides phosphines, the stoichiometrically used organometallic reagents can afford this reduction, but do so in a poorly understood way. To elucidate the mechanism of this reaction, we have treated solutions of Pd(OAc) 2 and a phosphine ligand L in tetrahydrofuran with RMgCl (R=Ph, Bn, Bu) as well as other organometallic reagents. Analysis of these model systems by electrospray- ionization mass spectrometry found palladate(II) complexes [L n PdR 3 ] - (n=0 and 1), thus pointing to the occurrence of transmetallation reactions. Upon gas-phase fragmentation, the [L n PdR 3 ] - anions preferentially underwent a reductive elimination to yield Pd 0 species. The sequence of the transmetallation and reductive elimination, thus, constitutes a feasible mechanism for the reduction of the Pd(OAc) 2 precatalyst. Other species of interest observed include the Pd IV complex [PdBn 5 ] - , which did not fragment via a reductive elimination but lost BnH instead. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrophosphorylation of alkynes with phosphinous acids

    International Nuclear Information System (INIS)

    Nifant'ev, E.E.; Solovetskaya, L.A.; Magdeeva, R.K.

    1986-01-01

    A feature of the homolytic hydrophosphorylation of alkynes, as compared with alkenes, is more ready addition of phosphinous acids in presence of benzoyl peroxides. A difference was found in the hydrophosphorylation of acetylenes with dibutylphosphinous acid and with diarylphosphinous acids: the latter tend to form diaddition products

  1. Phosphine resistance in Rhyzopertha dominica (Fabricius ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of phosphine resistance in 16 Rhyzopertha dominica (Fabricius) populations that were collected from ten provinces and one municipality in China following the Food and Agriculture Organization's (FAO) standard method. Results showed that the 50% lethal concentration ...

  2. Reaction of urea thiourea and their derivatives with tertiary phosphine transition metal halides

    International Nuclear Information System (INIS)

    Adam, Eltayeb Mahala

    2000-03-01

    This thesis describes preparation characterization and some properties of a number of new compounds such as (ph 3 p)2 ML where M= cobalt (11), nickel (11), and copper (11), and L= urea, thiourea, phenylthiourea, sym diphenylurea and sym diphenylthiourea.These compounds have been prepared according according to the reaction of dichloro bis (triphenylphosphine) transition metal with urea, thiourea or some of their derivative ligands in 1:1 molar ratio.The work in this thesis is divided into three section firstly:- In the introduction chapter part one includes general definitions of coordination chemistry and related compounds and abroad definition of transition elements.Part two includes the theoretical back ground about transition metal complexes having urea, thiourea or some of their substituted derivative ligands.Part two also discusses the type of bonding between these ligands and the transition metal atom.Secondly: Chapter two describes the general techniques followed in this work such as purification of solvents recrystallization, preparation of starting materials and also gives full detailed procedures of the preparation of a number of new compounds.Thirdly: Discussion with detailed in chapter three, the results of the research are presented the preparation and characterization of a number of new compounds isolated from reaction between urea, thiourea or some of their substituted derivatives and dichloro bis (triphenyl phosphine) transition metal complex giving a general formula (ph 3 )2ML where M=cobalt, nickel, and copper, and urea, thiourea or some of their substituted derivatives ligands. The products of these experiments have been identified using infrared spectra, melting points and molar conductance. The results obtained indicated that all the compounds forming the nitrogen to metal bonds leading to the formation of a four- membered chelate ring, they are relatively thermally stable compounds, and also these compounds are non-electrolytes.(Author)

  3. Secondary emission from a CuBe target due to bombardment with parent and fragment ions of ammonia and phosphine

    International Nuclear Information System (INIS)

    Maerk, T.D.

    1977-01-01

    The secondary electron emission of the first dynode of a CuBe alloy sixteen dynode electron multiplier has been studied in the course of electron impact ionization studies of ammonia and phosphine. Relative secondary electron emission coefficients have been obtained for the singly and doubly charged parent and fragment ions of ammonia, ammonia-d 3 , phosphine and phosphine-d 3 for kinetic energies of 5,25 and 10,5 keV. It has been found, that in general deuterated ions have smaller γ coefficients, that ammonia ions have larger γ coefficients than corresponding phosphine ions, and that the γ coefficients increase with the complexity of the ion under study. (Auth.)

  4. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Decin, L. [Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 Amsterdam (Netherlands); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Teyssier, D. [European Space Astronomy Centre, Urb. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid (Spain)

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  5. Intumescent formulations based on lignin and phosphinates for the bio-based textiles

    Science.gov (United States)

    Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J.

    2017-10-01

    This study investigates new intumescent formulations based on lignin and phosphinates to improve the flame retardant properties of Polyamide 11, while preserving the bio-based characteristics of this latter. Lignin has the advantage of being a bio-based compound and can be effectively used as carbon source for the design of intumescent systems in combination with other flame retardant additives. Metal phosphinates belong to a novel class of phosphorus flame retardants. Despite their increasing use, there is lack of scientific understanding as far as their fire retardancy mechanism is considered, especially in char forming polymeric materials. In this context, Polyamide 11 was melt blended with lignin and metal phosphinates. The possibility of melt spinning the prepared blends were assessed through melt flow index (MFI) tests; thermogravimetric (TG) analyses and cone calorimetry tests were exploited for investigating the thermal stability and the combustion behaviour of the obtained products, respectively. MFI results indicate that some formulations are suitable for melt spinning processes to generate flame retardant multifilament. Furthermore, the combination of lignin and phosphinates provides charring properties to polyamide 11. Finally, cone calorimetry data confirmed that the designed intumescent formulations could remarkably reduce PHRR through formation of protective char layer, hence slowing down the combustion process.

  6. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    Science.gov (United States)

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  7. Interaction of tertiary phosphines with lignin-type, alpha,beta-unsaturated aldehydes in water.

    Science.gov (United States)

    Moiseev, Dmitry V; Patrick, Brian O; James, Brian R; Hu, Thomas Q

    2007-10-29

    To learn more about the bleaching action of pulps by (hydroxymethyl)phosphines, lignin chromophores, such as the alpha,beta-unsaturated aromatic aldehydes, sinapaldehyde, coniferylaldehyde, and coumaraldehyde, were reacted with the tertiary phosphines R2R'P [R = R' = Me, Et, (CH2)3OH, iPr, cyclo-C6H11, (CH2)2CN; R = Me or Et, R' = Ph; R = Ph, R' = Me, m-NaSO3-C6H4] in water at room temperature under argon. In all cases, initial nucleophilic attack of the phosphine occurs at the activated C=C bond to form a zwitterionic monophosphonium species. With the phosphines PR3 [R = Me, Et, (CH2)3OH] and with R2R'P (R = Me or Et, R' = Ph), the zwitterion undergoes self-condensation to give a bisphosphonium zwitterion that can react with aqueous HCl to form the corresponding dichloride salts (as a mixture of R,R- and S,S-enantiomers); X-ray structures are presented for the bisphosphonium chlorides synthesized from the Et3P and Me3P reactions with sinapaldehyde. With the more bulky phosphines, iPr3P, MePPh2, (cyclo-C6H11)3P, and Na[Ph2P(m-SO3-C6H4)], only an equilibrium of the monophosphonium zwitterion with the reactant aldehyde is observed. The weakly nucleophilic [NC(CH2)2]3P does not react with sinapaldehyde. An analysis of some exceptional 1H NMR data within the prochiral phosphorus centers of the bisphosphonium chlorides is also presented.

  8. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium (II) complexes

    KAUST Repository

    Jian, Zhongbao

    2014-12-08

    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6H4)2PC6H4SO2NHC6H3(2,6-R1,R2)]PdMe}2[A]2 (X1+-A: R1=R2=H: H1+-A; R1=R2=CH(CH3)2: DIPP1+-A; R1=H, R2=CF3: CF31+-A; A=BF4 or SbF6) and neutral palladium(II) methyl complexes {[(2-MeOC6H4)2PC6H4SO2NC6H3(2,6-R1,R2)]PdMe(L)} (X1-acetone: L=acetone; X1-dmso: L=dimethyl sulfoxide; X1-pyr: L=pyridine) chelated by a phosphine-sulfonamide were synthesized and fully characterized. Stoichiometric insertion of methyl acrylate (MA) into all complexes revealed that a 2,1 regiochemistry dominates in the first insertion of MA. Subsequently, for the cationic complexes X1+-A, β-H elimination from the 2,1-insertion product X2+-AMA-2,1 is overwhelmingly favored over a second MA insertion to yield two major products X4+-AMA-1,2 and X5+-AMA. By contrast, for the weakly coordinated neutral complexes X1-acetone and X1-dmso, a second MA insertion of the 2,1-insertion product X2MA-2,1 is faster than β-H elimination and gives X3MA as major products. For the strongly coordinated neutral complexes X1-pyr, no second MA insertion and no β-H elimination (except for DIPP2-pyrMA-2,1) were observed for the 2,1-insertion product X2-pyrMA-2,1. The cationic complexes X1+-A exhibited high catalytic activities for ethylene dimerization, affording butenes (C4) with a high selectivity of up to 97.7% (1-butene: 99.3%). Differences in activities and selectivities suggest that the phosphine-sulfonamide ligands remain coordinated to the metal center in a bidentate fashion in the catalytically active species. By comparison, the neutral complexes X1-acetone, X1-dmso, and X1-pyr showed very low activity towards ethylene to give traces of oligomers. DFT analyses taking into account the two possible coordination modes (O or N) of the sulfonamide ligand for the cationic system CF31+ suggested that the experimentally observed high activity in ethylene dimerization is the result of a facile first ethylene insertion into the O-coordinated PdMe isomer and

  9. Polymerization behavior of butyl bis(hydroxymethyl)phosphine oxide ...

    Indian Academy of Sciences (India)

    lenovo

    Polymerization behavior of butyl bis(hydroxymethyl)phosphine oxide: Phosphorus containing polyethers for. Li‒ion conductivities. Heeralal Vignesh Babu, Billakanti Srinivas and Krishnamurthi Muralidharan*. School of Chemistry, University of Hyderabad, Hyderabad - 500046, India. Table of Contents. TGA plots of SPE2.

  10. Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-Polymerization

    Directory of Open Access Journals (Sweden)

    Yue-Sheng Li

    2013-03-01

    Full Text Available A series of novel half-titanocene complexes CpTiCl2[S-2-R-6-(PPh2C6H3] (Cp = C5H5, 2a, R = H; 2b, R = Ph; 2c, R = SiMe3 have been synthesized by treating CpTiCl3 with the sodium of the ligands, 2-R-6-(PPh2C6H3SNa, which were prepared by the corresponding ligands and NaH. These complexes have been characterized by 1H, 13C and 31P NMR as well as elemental analyses. Structures for 2a–b were further confirmed by X-ray crystallography. Complexes 2a–b adopt five-coordinate, distorted square-pyramid geometry around the titanium center, in which the equatorial positions are occupied by sulfur and phosphorus atoms of the chelating phosphine-thiophenolate and two chlorine atoms, and the cyclopentadienyl ring is coordinated on the axial position. The complexes 2a–c were investigated as the catalysts for ethylene polymerization and copolymerization of ethylene with norbornene in the presence of MMAO or Ph3CB(C6F54/iBu3Al as the cocatalyst. All complexes exhibited low to moderate activities towards homopolymerization of ethylene. However, they displayed moderate to high activities towards copolymerization of ethylene with norbornene.

  11. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  12. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer

    International Nuclear Information System (INIS)

    Jin, Hyung Dae; Chang, Chih-Hung; Garrison, Anna; Tseng, T; Paul, Brian K

    2010-01-01

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 μm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s -1 ) was achieved using a microreactor with a size of 1.687 cm 3 . This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  13. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests.

    Science.gov (United States)

    Jagadeesan, Rajeswaran; Nayak, Manoj K

    2017-07-01

    Susceptibility to phosphine (PH 3 ) and sulfuryl fluoride (SF) and cross-resistance to SF were evaluated in two life stages (eggs and adults) of key grain insect pests, Rhyzopertha dominca (F.), Sitophilus oryzae (L.), Cryptolestes ferrugineus (Stephens), and Tribolium castaneum (Herbst). This study was performed with an aim to integrate SF into phosphine resistance management programmes in Australia. Characterisation of susceptibility and resistance to phosphine in eggs and adults showed that C. ferrugineus was the most tolerant as well as resistant species. Mortality responses of eggs and adults to SF at 25 °C revealed T. castaneum to be the most tolerant species followed by S. oryzae, C. ferrugineus and R. dominica. A high dose range of SF, 50.8-62.2 mg L -1 over 48 h, representing c (concentration) × t (time) products of 2438-2985 gh m -3 , was required for complete control of eggs of T. castaneum, whereas eggs of the least tolerant R. dominca required only 630 gh m -3 for 48 h (13.13 mg L -1 ). Mortality response of eggs and adults of phosphine-resistant strains to SF in all four species confirmed the lack of cross-resistance to SF. Our research concludes that phosphine resistance does not confer cross-resistance to SF in grain insect pests irrespective of the variation in levels of tolerance to SF itself or resistance to phosphine in their egg and adult stages. While our study confirms that SF has potential as a 'phosphine resistance breaker', the observed higher tolerance in eggs stresses the importance of developing SF fumigation protocols with longer exposure periods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Oxygenated Phosphine Fumigation for Control of Light Brown Apple Moth (Lepidoptera: Tortricidae) Eggs on Cut-Flowers.

    Science.gov (United States)

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2015-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), eggs were subjected to oxygenated phosphine fumigation treatments under 70% oxygen on cut flowers to determine efficacy and safety. Five cut flower species: roses, lilies, tulips, gerbera daisy, and pompon chrysanthemums, were fumigated in separate groups with 2,500 ppm phosphine for 72 h at 5°C. Egg mortality and postharvest quality of cut flowers were determined after fumigation. Egg mortalities of 99.7-100% were achieved among the cut flower species. The treatment was safe to all cut flowers except gerbera daisy. A 96-h fumigation treatment with 2,200 ppm phosphine of eggs on chrysanthemums cut flowers also did not achieve complete control of light brown apple moth eggs. A simulation of fumigation in hermetically sealed fumigation chambers with gerbera daisy showed significant accumulations of carbon dioxide and ethylene by the end of 72-h sealing. However, oxygenated phosphine fumigations with carbon dioxide and ethylene absorbents did not reduce the injury to gerbera daisy, indicating that it is likely that phosphine may directly cause the injury to gerbera daisy cut flowers. The study demonstrated that oxygenated phosphine fumigation is effective against light brown apple moth eggs. However, it may not be able to achieve the probit9 quarantine level of control and the treatment was safe to most of the cut flower species. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  15. Enthalpies of ligand substitution for [Mo(η5C5H5)(CO)2(NO)] – The role of π-bonding effects in metal–ligand bond strengths

    International Nuclear Information System (INIS)

    Majumdar, Subhojit; Captain, Burjor; Cazin, Catherine S.J.; Nolan, Steven P.; Hoff, Carl D.

    2014-01-01

    Graphical abstract: - Highlights: • Enthalpies of ligand substitution are measured for Mo(C 5 H 5 )(CO) 2 (NO). • Phosphines and N-heterocyclic carbenes are stronger ligands and displace CO. • Backbonding to π ∗ orbitals is an important part of complex stability. • FTIR studies show shifts to lower wavenumbers of ν-CO and ν-NO. • Structural studies show lengthening of the C-O and N-O bonds. - Abstract: Enthalpies of ligand substitution for [Mo(η 5 -C 5 H 5 )(CO) 2 (NO)] producing [Mo(η 5 -C 5 H 5 )Mo(CO)(L)(NO)] have been measured by solution calorimetry at 30 °C in THF for L = P(OMe) 3 2 2 Ph 3 (SIPr = 1,3-bis(2,6-bis(diisopropylphenyl)imidazolinylidene; IPr = 1,3-bis(2,6-bis(diisopropylphenyl)-imidazol-2-ylidene)). The accepting metal fragment [Mo(η 5 -C 5 H 5 )(CO)(NO)] has a vacant site containing strongly π-accepting carbonyl and nitrosyl ligands and this is shown to influence the stability of the product complex. Infrared studies of both ν CO and ν NO show that metal-to-ligand backbonding increases in the order P(OMe) 3 3 5 -C 5 H 5 )(CO)(IPr)(NO)] and [Mo(η 5 -C 5 H 5 )(CO)(SIPr)(NO)] are reported

  16. Nucleoside-O-Methyl-(H)-Phosphinates: Novel Monomers for the Synthesis of Methylphosphonate Oligonucleotides Using H-Phosphonate Chemistry.

    Science.gov (United States)

    Kostov, Ondřej; Páv, Ondřej; Rosenberg, Ivan

    2017-09-18

    This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Rhodium Phosphine-π-Arene Intermediates in the Hydroamination of Alkenes

    Science.gov (United States)

    Liu, Zhijian; Yamamichi, Hideaki; Madrahimov, Sherzod T.; Hartwig, John F.

    2011-01-01

    A detailed mechanistic study of the intramolecular hydroamination of alkenes with amines catalyzed by rhodium complexes of a biaryldialkylphosphine are reported. The active catalyst is shown to contain the phosphine ligand bound in a κ1, η6 form in which the arene is π-bound to rhodium. Addition of deuterated amine to an internal olefin showed that the reaction occurs by trans addition of the N-H bond across the C=C bond, and this stereochemistry implies that the reaction occurs by nucleophilic attack of the amine on a coordinated alkene. Indeed, the cationic rhodium fragment binds the alkene over the secondary amine, and the olefin complex was shown to be the catalyst resting state. The reaction was zero-order in substrate, when the concentration of olefin was high, and a primary isotope effect was observed. The primary isotope effect, in combination with the observation of the alkene complex as the resting state, implies that nucleophilic attack of the amine on the alkene is reversible and is followed by turnover-limiting protonation. This mechanism constitutes an unusual pathway for rhodium-catalyzed additions to alkenes and is more closely related to the mechanism for palladium-catalyzed addition of amide N-H bonds to alkenes. PMID:21309512

  18. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    Science.gov (United States)

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  19. A method for hydrogenating and carbonylizing unsaturated compounds in the presence of catalysts based on phosphine and metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J C; Dyer, G

    1982-12-22

    The hydrogenation of unsaturated organic compounds or the attachment to them of CO is accomplished with contact with a synthesis gas in the presence of a stereospecific catalyst (Kt), a compound of a metal of the platinum group (preferably Rhodium, but also Platinum, Palladium, Ruthenium or Iridium) and an asymmetrical bis-phosphine of the formula A-(CH2)n-B, where A and B are phosphine groups. R2P and R'2P or RRhP, where R is an aryl radical, R' is aralkyl, alcarylic or alkyl radical, n = 1 to 10, or an asymmetrical monophosphine of the formula R2-R'P. The complex compound also includes Hydrogen, CO and (or) halogen (preferably Chlorine) as ligands. The physical properties of the obtained complex compounds of the carbonylchlorbisphosphines or Rh are presented: trans-(RhC1-(CO)(Ph2P(CH2)6PPh2))2; trans-(RhC1(CO)(C2H5PhP-(CH2)6PPh2))2; trans-(RhC1(CO)(cycloC6H11PhP(CH2)6-PPh2))2; trans-(RhC1(CO)(C2H5PhP(CH2)4PPh2)2; trans-(RhC1(CO)(C2H5PhP(Ch2))2 and PhC1(CO)4(p-C6H4CH2)2P(Ch2)6PPh2). The isolated complexes are light yellow crystalline substances.

  20. Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliou, Stamatia; Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Mulligan, Rory; Joachimiak, Andrzej; Mucha, Artur

    2014-10-09

    Seven crystal structures of alanyl aminopeptidase from Neisseria meningitides (the etiological agent of meningitis, NmAPN) complexed with organophosphorus compounds were resolved to determine the optimal inhibitor-enzyme interactions. The enantiomeric phosphonic acid analogs of Leu and hPhe, which correspond to the P1 amino acid residues of well-processed substrates, were used to assess the impact of the absolute configuration and the stereospecific hydrogen bond network formed between the aminophosphonate polar head and the active site residues on the binding affinity. For the hPhe analog, an imperfect stereochemical complementarity could be overcome by incorporating an appropriate P1 side chain. The constitution of P1'-extended structures was rationally designed and the lead, phosphinic dipeptide hPhePψ[CH2]Phe, was modified in a single position. Introducing a heteroatom/heteroatom-based fragment to either the P1 or P1' residue required new synthetic pathways. The compounds in the refined structure were low nanomolar and subnanomolar inhibitors of N. meningitides, porcine and human APNs, and the reference leucine aminopeptidase (LAP). The unnatural phosphinic dipeptide analogs exhibited a high affinity for monozinc APNs associated with a reasonable selectivity versus dizinc LAP. Another set of crystal structures containing the NmAPN dipeptide ligand were used to verify and to confirm the predicted binding modes; furthermore, novel contacts, which were promising for inhibitor development, were identified, including a π-π stacking interaction between a pyridine ring and Tyr372.

  1. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  2. Synthesis of quaternary aryl phosphonium salts: photoredox-mediated phosphine arylation.

    Science.gov (United States)

    Fearnley, A F; An, J; Jackson, M; Lindovska, P; Denton, R M

    2016-04-11

    We report a synthesis method for the construction of quaternary aryl phoshonium salts at ambient temperature. The regiospecific reaction involves the coupling of phosphines with aryl radicals derived from diaryliodonium salts under photoredox conditions.

  3. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Science.gov (United States)

    2010-07-01

    ... are: (i) Industrial, commercial, and consumer activities. Requirements as specified in § 721.80(s... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide (generic). 721.10087 Section 721.10087 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  4. BINAP-Ru and -Rh catalysts covalently immobilised on silica and their repeated application in asymmetric hydrogenation

    NARCIS (Netherlands)

    McDonald, A.R.|info:eu-repo/dai/nl/304832634; Müller, C.; Vogt, D.; van Klink, G.P.M.|info:eu-repo/dai/nl/170637964; van Koten, G.|info:eu-repo/dai/nl/073839191

    2008-01-01

    We present the facile immobilisation of a chiral diphosphine ligand, BINAP, on a silica (high pore volume, low surface area). The protected ligand has been immobilised as a phosphine oxide and deprotected on the surface to prevent side reactions of unprotected phosphines with surface silanol groups.

  5. Synthesis and Structure Determination of a New Au20 Nanocluster Protected by Tripodal Tetraphosphine Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Brown Univ., Providence, RI (United States); Zhang, Qianfan [Brown Univ., Providence, RI (United States); Williard, Paul G. [Brown Univ., Providence, RI (United States); Wang, Lai-Sheng [Brown Univ., Providence, RI (United States)

    2014-03-31

    We report the synthesis and structure determination of a new Au20 nanocluster coordinated by four tripodal tetraphosphine (PP3) ligands {PP3 = tris[2-(diphenylphosphino)ethyl]phosphine}. Single-crystal Xray crystallography and electrospray ionization mass spectrometry show that the cluster assembly can be formulated as [Au20(PP3)4]Cl4. The Au20 cluster consists of an icosahedral Au13 core and a seven-Au-atom partial outer shell arranged in a local C3 symmetry. One PP3 ligand coordinates to four Au atoms in the outer shell, while the other three PP3 ligands coordinate to one Au atom from the outer shell and three Au atoms from the surface of the Au13 core, giving rise to an overall chiral 16-electron Au cluster core with C3 symmetry.

  6. Tri(t-butyl)phosphine-assisted selective hydrosilylation of terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.

  7. Electrochemistry of transition metal complex catalysts. Part 9. One- and two-electron oxidation of iridium complexes with cyclohexane-derived tripod phosphine ligands

    International Nuclear Information System (INIS)

    Buchmann, Silke; Mayer, Hermann A.; Speiser, Bernd; Seiler, Michael; Feth, Martin P.; Bertagnolli, Helmut; Steinbrecher, Stefan; Plies, Erich

    2003-01-01

    The redox chemistry of Ir tripod-type tri-phosphine complexes in dichloromethane is investigated by cyclic voltammetry, hold-ramp experiments, and preparative electrolysis at Pt electrodes. Products are identified by spectroscopic data, as well as EDX and EXAFS results. Complexes with the Ir central atom in the oxidation states +I, +II and +III are detected and several follow-up reactions are possible from those. Most of the intermediates and products are characterized. In particular, experiments in the presence of CO contribute to the assignment of peaks in the cyclic voltammograms. The experimental results for the individual steps are summarized in a comprehensive redox reaction mechanism (mesh scheme) for which most steps are characterized by redox potentials

  8. Zwitterion enhanced performance in palladium-​phosphine catalyzed ethylene methoxycarbonylation

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia-Suarez, Eduardo J.; Xiong, Jianmin

    2014-01-01

    Zwitterions were used for the first time as promoters in ethylene methoxycarbonylation for the production of methyl propionate. They were found to improve the catalytic performance of the Pd–phosphine system. The presence of zwitterions could contribute to stabilize transition states and active...

  9. Bright electroluminescence from a chelate phosphine oxide Eu{sup III} complex with high thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Hui [School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, Heilongjiang Province (China); Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Yin Kun; Wang Lianhui [Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Huang Wei [Institute of Advanced Materials (IAM), Fudan University, 220 Handan Road, Shanghai 200433 (China)], E-mail: wei-huang@njupt.edu.cn

    2008-10-01

    The chelate phosphine oxide ligand 1,8-bis(diphenylphosphino)naphthalene oxide (NaPO) was used to prepare complex 1 tris(2-thenoyltrifluoroacetonate)(1,8-bis(diphenylphosphino)naphthalene oxide)europium(III). The rigid structure of NaPO makes 1 have more compact structure resulting in a temperature of glass transition as high as 147 deg. C, which is the highest in luminescent Eu{sup III} complexes, and a higher decomposition temperature of 349 deg. C. The improvement of carrier transfer ability of NaPO was proved by Gaussian simulation. The multi-layered electroluminescent device based on 1 had a low turn-on voltage of 6.0 V, the maximum brightness of 601 cd m{sup -2} at 21.5 V and 481.4 mA cm{sup -2}, and the excellent voltage-independent spectral stability. These properties demonstrated NaPO cannot only be favorable to form the rigid and compact complex structure, and increase the thermal and morphological stability of the complex, but also reduce the formation of the exciplex.

  10. A Novel Bis(phosphido)pyridine [PNP] 2− Pincer Ligand and Its Potassium and Bis(dimethylamido)zirconium(IV) Complexes

    KAUST Repository

    Winston, Matthew S.

    2010-12-13

    A novel PNP bis(secondary phosphine)pyridine pincer ligand, 2,6-bis(2-(phenylphosphino)phenyl)pyridine, has been prepared in high yield, and the properties of the doubly deprotonated form as a ligand in K 4(PNP)2(THF)6 and (PNP)Zr(NMe2) 2 have been investigated. The neutral PNP ligand has been isolated as a mixture of noninterconverting diastereomers, due to the presence of two chirogenic phosphorus atoms of the secondary phopshines, but coordination of the dianionic form to potassium and zirconium allows for isolation of a single diastereomer in near-quantitative yield. The structure of a bis(dimethylamido) zirconium(IV) derivative of the bis(phosphido)pyridine ligand and DFT calculations suggest that the phosphides do not π-bond to early transition metals, likely due to geometric strain and possibly orbital size mismatch between phosphorus and zirconium. As a result, the soft phosphides are prone to formation of insoluble oligomers with substantial bridging of the phosphido lone pairs to other zirconium centers. © 2010 American Chemical Society.

  11. A Novel Bis(phosphido)pyridine [PNP] 2− Pincer Ligand and Its Potassium and Bis(dimethylamido)zirconium(IV) Complexes

    KAUST Repository

    Winston, Matthew S.; Bercaw, John E.

    2010-01-01

    A novel PNP bis(secondary phosphine)pyridine pincer ligand, 2,6-bis(2-(phenylphosphino)phenyl)pyridine, has been prepared in high yield, and the properties of the doubly deprotonated form as a ligand in K 4(PNP)2(THF)6 and (PNP)Zr(NMe2) 2 have been investigated. The neutral PNP ligand has been isolated as a mixture of noninterconverting diastereomers, due to the presence of two chirogenic phosphorus atoms of the secondary phopshines, but coordination of the dianionic form to potassium and zirconium allows for isolation of a single diastereomer in near-quantitative yield. The structure of a bis(dimethylamido) zirconium(IV) derivative of the bis(phosphido)pyridine ligand and DFT calculations suggest that the phosphides do not π-bond to early transition metals, likely due to geometric strain and possibly orbital size mismatch between phosphorus and zirconium. As a result, the soft phosphides are prone to formation of insoluble oligomers with substantial bridging of the phosphido lone pairs to other zirconium centers. © 2010 American Chemical Society.

  12. Molybdenum-95 nuclear magnetic resonance of a series of phosphine and phosphite substituted molybdenum carbonyls Mo(CO)sub(6-n)Lsub(n)(n = 1,2,3,4,5)

    International Nuclear Information System (INIS)

    Jaitner, P.; Wohlgenannt, W.

    1982-01-01

    Molybdenum-95 NMR spectra of a series of phosphine and phosphite substituted molybdenum carbonyls Mo(CO)sub(6-n)Lsub(n)n[L = P(OCH 3 ) 3 n = 1,2,3,4,5, L = P(OC 2 H 5 ) 3 n = 1,2,3, L = P(C 6 H 5 ) 3 n = 1] including isomers (cis, trans, fac, mer) are reported. A large range of chemical shifts is found for the title compounds. The coupling constants 1 J( 95 Mo- 31 P) are derived either from 95 Mo-NMR spectra or 31 P-NMR spectra. Syntheses of the measured compounds were performed by thermal or photochemical ligand sustitution. (Author)

  13. Geographic Variation in Phosphine Resistance Among North American Populations of the Red Flour Beetle (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Cato, A J; Elliott, Brent; Nayak, Manoj K; Phillips, Thomas W

    2017-06-01

    The red flour beetle, Tribolium castaneum (Herbst), is a common stored-product pest found worldwide. Phosphine, hydrogen phosphide (PH3), is the most commonly used fumigant for stored grains, for which genetically based resistance has been recorded for several pest species. This study assessed phosphine resistance in 25 T. castaneum populations from across the United States and Canada using a discriminating dose bioassay. Dose-mortality assays were conducted with adults from seven of these populations to categorize weak and strong resistance phenotypes. Phosphine resistance was detected in 12 out of the 25 populations, and the frequency of resistance within populations varied from 2% in Victoria, TX, to 100% in Red Level, AL. Two resistant populations from Kansas that had been sampled three years earlier were found to have similar resistance frequencies in the current study. None of the four Canadian populations had any detectable resistance among the insects tested. Resistance ratio calculations from LC50 value in resistant populations relative to the LC50 for the laboratory susceptible strain allowed resistance phenotypes to be assigned as either weak resistance, at 5- to 26-fold resistance relative to susceptible, or strong resistance at 95- to 127-fold relative to susceptible. This study suggests that proper resistance assessment techniques can help to determine occurrence of phosphine resistance in populations of T. castaneum and can further characterize the strength of resistance present. These data can be used to support resistance management programs that consider either cessation or modification of phosphine fumigation to control T. castaneum. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Photoemission on gold-55-clusters derived from gold-phosphine AuP(C6H5)3Cl

    International Nuclear Information System (INIS)

    Quinten, M.; Sander, I.; Steiner, P.; Kreibig, U.; Fauth, K.; Schmid, G.

    1991-01-01

    We measured XPS and UPS spectra of gold clusters with 55 atoms, embedded in an electrically isolating phosphine matrix, and of gold-phosphine, from which the clusters were chemically derived. Compared to the spectra of bulk gold the valence band spectrum and the core level spectra of the clusters showed shifts of the peaks and the fermi level to higher binding energies. The shift of the peaks could qualitatively be interpreted by a final state effect. We succeeded in a separation of bulk and surface contributions to the core level spectra and in a reasonable quantitative analysis of the valence band spectrum of the clusters. The Au 4f core level spectrum of gold-phosphine showed two peaks at 1.5 eV higher binding energies than the corresponding peaks of the clusters. (orig.)

  15. Synthesis, spectroscopic studies and reactivity of triphenylphosphine ruthenium (II) complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Rivera, A.B.

    1989-01-01

    Reported is the chemistry of triphenylphosphine ruthenium (II) complexes of general formula RuCl 2 (PPh 3 ) 2 L 2 and RuCl 2 (PPh 3 ) 2 A, obtained from the reaction of RuCl 2 (PPh 3 ) 3 with N-heterocyclic ligands L, or A (of ambidentate nature). The electronic spectra exhibit two strong metal-to-ligand charge-transfer bands, ascribed to the b 1 (dxz)->b 1 (pi) and a 2 (dxy)->a 2 (pi) transitions, and a third, weak band ascribed to the b 2 (dyz)->a 2 (pi) transition. The electronic states and the vibrational modes of the complexes were characterized by means of their resonance Raman and infrared absorption spectra. Thermogravimetric and thermodifferential analysis indicated that the melting process is succeeded by an exothermic reaction, and that the weigh loss starts to occur only after this step. The complexes dissociated in CHCl 3 solution, showing preferential labilization of the phosphine ligands, as in the case of the hydrogenation catalyst Ru(PPh 3 ) 3 Cl 2 . In the presence of CO, RuCl 2 (CO) 2 L 2 complexes were gennerated. Several derivatives were isolated and characterized. (author) [pt

  16. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Souvik [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Nguyen, Thuy-Ai D. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Gan, Lu [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Jones, Anne K. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA

    2015-01-01

    Peptide based models for [FeFe]-hydrogenase were synthesized utilizing unnatural phosphine-amino acids and their electrocatalytic properties were investigated in mixed aqueous-organic solvents.

  17. The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, G.; Cacchi, S.

    2006-01-01

    The mechanism of the Pd-catalyzed hydroarylation and hydrovinylation reaction of alkynes has been studied by a combination of experimental and theoretical methods (B3LYP), with an emphasis on the phosphine-free version. The regioselectivity of the hydroarylation and hydrovinylation shows unexpected...

  18. Phosphine Toxicity: A Story of Disrupted Mitochondrial Metabolism

    Science.gov (United States)

    2016-05-24

    Phosphine and selected metal phosphides. Environ. Health Criteria 73. 5. Reeve, I. 2014. Estimation of exposure to persons in Califor- nia ...Gill. 2011. Aluminum phosphide poisoning: an unsolved riddle. J. Appl. Toxicol. 31: 499– 505 . 9. Lam, W.W., R.F. Toia & J. Casida. 1991. Oxidatively...Trends Biochem. Sci. 35: 505 –513. 43. Turrens, J.F. 2003. Mitochondrial formation of reactive oxy- gen species. J. Physiol. 552: 335–344. 44. Fridovich

  19. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    Science.gov (United States)

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  20. 153Sm -DOTA-phosphine-ruthenium and gold bimetallic complexes as new radio-theranostics

    International Nuclear Information System (INIS)

    Adriaenssens, L.; Liu, Q.; Picquet, F.; Picquet, M.; Denat, F.; Le Gendre, P.; Bodio, E.; Mendes, F.; Campello, P.; Marques, F.; Marques, C.; Gano, L.; Santos, I.

    2015-01-01

    Full text of publication follows. Since the pioneer discovery of cisplatin for biological applications by Rosenberg in the 1960's [Ref.1] metal complexes have become the most currently investigated and used class of compounds in cancer chemotherapy [Ref.2]. However in most cases, their mechanisms of action are still poorly understood. Imaging drugs aimed at understanding their mechanism of action and studying their pharmacokinetics is thus one of the key challenges of medicinal chemists today. To take up this challenge new DOTA-phosphine compounds were synthesized. It is a versatile tool to image organometallic complexes, and allowed the access to an unprecedented family of theranostics featuring Au and Ru complexes for the therapeutic moiety and 153 Sm for the imaging part. The radiolabelling of the ligand was studied and the stability of corresponding complexes was evaluated. Their cytotoxicity was also tested on cancer cells, and their biodistribution was determined in vivo. References: [1] Rosenberg, B.; VanCamp, L.; Krigas, T., Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode, Nature 1965, 205, 698-699; [2] Zhang, C. X.; Lippard, S. J., New metal complexes as potential therapeutics, Curr. Opin. Chem. Biol. 2003, 7, 481-489. (authors)

  1. Stability studies on 99mTechnetium(III) complexes with tridentate/monodentate thiol ligands and phosphine ('3+1+1' complexes)

    International Nuclear Information System (INIS)

    Seifert, Sepp; Drews, Antje; Gupta, Antje; Pietzsch, Hans-Juergen; Spies, Hartmut; Johannsen, Bernd

    2000-01-01

    The preparation and characterisation of 3+1+1 technetium complexes of the general formula [Tc(SES)(RS)(PMe 2 Ph)] (SES=tridentate dithiol ligand, E=S, O, NMe; RSH=monothiol ligand) at the n.c.a. level is described. The Tc(III) complexes are prepared in a one-step procedure starting from pertechnetate in yields of 85-95% of radiochemical purity. A comparison of their chromatographic data with the fully characterised 99 Tc complexes indicate the identity of the investigated compounds. Stability studies show that the 99m Tc complexes undergo some alteration in solution. They are oxidised to the 3+1 oxotechnetium (V) complexes and/or decompose in aqueous solution. In challenge experiments performed with glutathione, exchange of the monothiolato ligand occurs in the same manner as known for the 3+1 complexes

  2. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  3. Tripodal (N-alkylated) CMP(O) and malonamide ligands: synthesis, extraction of metal ions, and potentiometric studies

    International Nuclear Information System (INIS)

    Janczewski, D.; Reinhoudt, D.N.; Verboom, W.; Malinowska, E.; Pietrzak, M.; Hill, C.; Allignol, C.

    2007-01-01

    Tripodal ligands build on the C-pivot (9b-e, 13b-d, and 17a-d) and tri-alkyl-benzene platforms (10a,b, 11, 12, 14a,b, and 18a,b) bearing (N-alkylated) carbamoyl-methyl-phosphine oxide (CMPO), carbamoyl-methyl-phosphonate (CMP), and malonamide moieties were synthesized. Extraction studies with Am 3+ and Eu 3+ show that in general there is a positive influence of the N-alkyl substituents in C-pivot CMP(O) ligands on the D(distribution) coefficients. The tri-alkyl-benzene CMPO ligands 10a,b, 11, and 12 have considerably larger D coefficients than the corresponding C-pivot analogues 9a-e, although hardly having any selectivity, while N-alkylation gives rise to smaller D coefficients. Although less effective the extraction behavior of the C-pivot CMP analogues 13b-d shows more or less the same trend as the corresponding CMPO ligands 9b-e upon substitution of the carboxamide N-atom with different alkyl chains. The different malonamide ligands 17a-d and 18a,b are bad extractants, while N-alkylation makes them even worse. Potentiometric studies of CMP(O) and malonamide ligands in polymeric membranes on Pb 2+ , Cu 2+ , Ca 2+ , Mg 2+ , Na + , and K + salts revealed that N-alkyl substituents increase the stability constants of ion-ionophore complexes compared to unsubstituted ligands. In polymeric membrane electrodes the ligands induce a selectivity pattern that differs significantly from the so-called Hofmeister series, giving the highest selectivity coefficients for UO 2 2+ among all examined cations (Pb 2+ , Cu 2+ , Ca 2+ , Mg 2+ , Na + , K + ). (authors)

  4. Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases.

    Science.gov (United States)

    Chen, Weiyi; Niu, Xiaojun; An, Shaorong; Sheng, Hong; Tang, Zhenghua; Yang, Zhiquan; Gu, Xiaohong

    2017-12-01

    Phosphine (PH 3 ), as a gaseous phosphide, plays an important role in the phosphorus cycle in ecosystems. In this study, the emission and distribution of phosphine, carbon dioxide (CO 2 ) and methane (CH 4 ) in paddy fields were investigated to speculate the future potential impacts of enhanced greenhouse effect on phosphorus cycle involved in phosphine by the method of Pearson correlation analysis and multiple linear regression analysis. During the whole period of rice growth, there was a significant positive correlation between CO 2 emission flux and PH 3 emission flux (r=0.592, p=0.026, n=14). Similarly, a significant positive correlation of emission flux was also observed between CH 4 and PH 3 (r=0.563, p=0.036, n=14). The linear regression relationship was determined as [PH 3 ] flux =0.007[CO 2 ] flux +0.063[CH 4 ] flux -4.638. No significant differences were observed for all values of matrix-bound phosphine (MBP), soil carbon dioxide (SCO 2 ), and soil methane (SCH 4 ) in paddy soils. However, there was a significant positive correlation between MBP and SCO 2 at heading, flowering and ripening stage. The correlation coefficients were 0.909, 0.890 and 0.827, respectively. In vertical distribution, MBP had the analogical variation trend with SCO 2 and SCH 4 . Through Pearson correlation analysis and multiple stepwise linear regression analysis, pH, redox potential (Eh), total phosphorus (TP) and acid phosphatase (ACP) were identified as the principal factors affecting MBP levels, with correlative rankings of Eh>pH>TP>ACP. The multiple stepwise regression model ([MBP]=0.456∗[ACP]+0.235∗[TP]-1.458∗[Eh]-36.547∗[pH]+352.298) was obtained. The findings in this study hold great reference values to the global biogeochemical cycling of phosphorus in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium(II) complexes.

    Science.gov (United States)

    Jian, Zhongbao; Falivene, Laura; Wucher, Philipp; Roesle, Philipp; Caporaso, Lucia; Cavallo, Luigi; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2015-01-26

    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NHC6 H3 (2,6-R(1) ,R(2) )]PdMe}2 [A]2 ((X) 1(+) -A: R(1) =R(2) =H: (H) 1(+) -A; R(1) =R(2) =CH(CH3 )2 : (DIPP) 1(+) -A; R(1) =H, R(2) =CF3 : (CF3) 1(+) -A; A=BF4 or SbF6 ) and neutral palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NC6 H3 (2,6-R(1) ,R(2) )]PdMe(L)} ((X) 1-acetone: L=acetone; (X) 1-dmso: L=dimethyl sulfoxide; (X) 1-pyr: L=pyridine) chelated by a phosphine-sulfonamide were synthesized and fully characterized. Stoichiometric insertion of methyl acrylate (MA) into all complexes revealed that a 2,1 regiochemistry dominates in the first insertion of MA. Subsequently, for the cationic complexes (X) 1(+) -A, β-H elimination from the 2,1-insertion product (X) 2(+) -AMA-2,1 is overwhelmingly favored over a second MA insertion to yield two major products (X) 4(+) -AMA-1,2 and (X) 5(+) -AMA . By contrast, for the weakly coordinated neutral complexes (X) 1-acetone and (X) 1-dmso, a second MA insertion of the 2,1-insertion product (X) 2MA-2,1 is faster than β-H elimination and gives (X) 3MA as major products. For the strongly coordinated neutral complexes (X) 1-pyr, no second MA insertion and no β-H elimination (except for (DIPP) 2-pyrMA-2,1 ) were observed for the 2,1-insertion product (X) 2-pyrMA-2,1 . The cationic complexes (X) 1(+) -A exhibited high catalytic activities for ethylene dimerization, affording butenes (C4 ) with a high selectivity of up to 97.7 % (1-butene: 99.3 %). Differences in activities and selectivities suggest that the phosphine-sulfonamide ligands remain coordinated to the metal center in a bidentate fashion in the catalytically active species. By comparison, the neutral complexes (X) 1-acetone, (X) 1-dmso, and (X) 1-pyr showed very low activity towards ethylene to give traces of oligomers. DFT analyses taking into account the two possible coordination modes (O or N) of the sulfonamide ligand for the cationic system (CF3) 1(+) suggested

  6. New Flame-Retardant Poly(ester-imide)s Containing Phosphine Oxide Moieties in the Main Chain: Synthesis and Properties

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    Six new flame-retardant poly(ester-imide)s (9a-f) with high inherent viscosity and containing phosphine oxide moieties in the main chain were synthesized from the polycondensation reaction of N,N-(3,3-diphenylphenyl phosphine oxide) bistrimellitimide diacid chloride (7) with 6 aromatic diols (8a-f) by 2 different methods:--solution and microwave-assisted polycondensation. The results showed that compared to solution polycondensation, the microwave-assisted polycondensation reaction us...

  7. Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Longyong; Zhang, Chunjie; Kang, Sen; Tan, Ning; Xiao, Guyu; Yan, Deyue [College of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2010-03-15

    A series of novel sulfonated poly(arylene thioether phosphine oxide)s with hexafluoroisopropylidene moieties (sPTPOF) were prepared by polycondensation of sulfonated bis(4-fluorophenyl)phenyl phosphine oxide and bis(4-fluorophenyl)phenyl phosphine oxide with 4,4'-(hexafluoroisopropylidene) diphenthiol. The incorporation of hexafluoroisopropylidene moieties to the resulting polymers is effective to increase the hydrophobicity of non-sulfonated segments and to decrease the swelling while maintaining high proton conductivity. For instance, sPTPOF-100 showed a proton conductivity of 0.090 S/cm as well as a swelling of 5.3% at 80 C. In addition, the sPTPOF polymers exhibited excellent thermal properties and oxidative stability. AFM phase images illustrated that the sPTPOF membranes show a special nanophase-separated morphology, namely, the connectivity of ionic channels increased obviously but their width only slightly increased with increasing sulfonation degree. This special microstructure is favorable for promoting proton transport and restraining the swelling. The sPTPOF polymers are a promising material for proton exchange membranes. (author)

  8. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  9. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  10. Phosphine Resistance in Adult and Immature Life Stages of Tribolium castaneum (Coleoptera: Tenebrionidae) and Plodia interpunctella (Lepidoptera: Pyralidae) Populations in California.

    Science.gov (United States)

    Gautam, S G; Opit, G P; Hosoda, E

    2016-12-01

    Phosphine resistance in stored-product insects occurs worldwide and is a major challenge to continued effective use of this fumigant. We determined resistance frequencies and levels of resistance in Tribolium castaneum and Plodia interpunctella collected from California almond storage and processing facilities. Discriminating doses of phosphine were established for eggs and larvae of P. interpunctella and eggs of T. castaneum using laboratory susceptible strains of the two species. For T. castaneum and P. interpunctella eggs, discriminating doses were 62.4 and 107.8 ppm, respectively, over a 3-d fumigation period, and for P. interpunctella larvae, discriminating dose was 98.7 ppm over a 20-h fumigation period. Discriminating dose tests on adults and eggs showed that 4 out of 11 T. castaneum populations tested had resistance frequencies that ranged from 42 to 100% for adults and 54 to 100% for eggs. LC99 values for the susceptible and the most resistant adults of T. castaneum were 7.4 and 356.9 ppm over 3 d, respectively. LC99 values for T. castaneum eggs were 51.5 and 653.9 ppm, respectively. Based on adult data, the most resistant T. castaneum beetle population was 49× more resistant than the susceptible strain. Phosphine resistance frequencies in P. interpunctella eggs ranged from 4 to 20%. Results show phosphine resistance is present in both species in California. Future research will investigate phosphine resistance over a wider geographic area. In addition, the history of pest management practices in facilities where insects tested in this study originated will be determined in order to develop phosphine resistance management strategies for California almond storage and processing facilities. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE

    Science.gov (United States)

    Kelrich, A.; Dubrovskii, V. G.; Calahorra, Y.; Cohen, S.; Ritter, D.

    2015-02-01

    We present experimental results showing how the growth rate, morphology and crystal structure of Au-catalyzed InP nanowires (NWs) fabricated by selective area metal organic molecular beam epitaxy can be tuned by the growth parameters: temperature and phosphine flux. The InP NWs with 20-65 nm diameters are grown at temperatures of 420 and 480 °C with the PH3 flow varying from 1 to 9 sccm. The NW tapering is suppressed at a higher temperature, while pure wurtzite crystal structure is preferred at higher phosphine flows. Therefore, by combining high temperature and high phosphine flux, we are able to fabricate non-tapered and stacking fault-free InP NWs with the quality that other methods rarely achieve. We also develop a model for NW growth and crystal structure which explains fairly well the observed experimental tendencies.

  12. Tripodal (N-alkylated) CMP(O) and malonamide ligands: synthesis, extraction of metal ions, and potentiometric studies

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D.; Reinhoudt, D.N.; Verboom, W. [Twente Univ., Lab. of Supramolecular Chemistry and Technology, Mesa Research Institute for Nanotechnology, Enschede (Netherlands); Malinowska, E.; Pietrzak, M. [Warsaw Univ. of Technology, Dept. of Analytical Chemistry, Faculty of Chemistry (Poland); Hill, C.; Allignol, C. [CEA Valrho, 30 - Marcoule (France)

    2007-01-15

    Tripodal ligands build on the C-pivot (9b-e, 13b-d, and 17a-d) and tri-alkyl-benzene platforms (10a,b, 11, 12, 14a,b, and 18a,b) bearing (N-alkylated) carbamoyl-methyl-phosphine oxide (CMPO), carbamoyl-methyl-phosphonate (CMP), and malonamide moieties were synthesized. Extraction studies with Am{sup 3+} and Eu{sup 3+} show that in general there is a positive influence of the N-alkyl substituents in C-pivot CMP(O) ligands on the D(distribution) coefficients. The tri-alkyl-benzene CMPO ligands 10a,b, 11, and 12 have considerably larger D coefficients than the corresponding C-pivot analogues 9a-e, although hardly having any selectivity, while N-alkylation gives rise to smaller D coefficients. Although less effective the extraction behavior of the C-pivot CMP analogues 13b-d shows more or less the same trend as the corresponding CMPO ligands 9b-e upon substitution of the carboxamide N-atom with different alkyl chains. The different malonamide ligands 17a-d and 18a,b are bad extractants, while N-alkylation makes them even worse. Potentiometric studies of CMP(O) and malonamide ligands in polymeric membranes on Pb{sup 2+}, Cu{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, and K{sup +} salts revealed that N-alkyl substituents increase the stability constants of ion-ionophore complexes compared to unsubstituted ligands. In polymeric membrane electrodes the ligands induce a selectivity pattern that differs significantly from the so-called Hofmeister series, giving the highest selectivity coefficients for UO{sub 2}{sup 2+} among all examined cations (Pb{sup 2+}, Cu{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}). (authors)

  13. Nonacarbonyl-1κ3C,2κ3C,3κ3C-μ-bis(diphenylarsinomethane-1:2κ2As:As'-[tris(2-chloroethyl phosphite-3κP]-triangulo-triruthenium(0

    Directory of Open Access Journals (Sweden)

    Omar bin Shawkataly

    2010-08-01

    Full Text Available In the title triangulo-triruthenium(0 compound, [Ru3(C25H22As2(C6H12Cl3O3P(CO9], the bis(diphenylarsinomethane ligand bridges an Ru—Ru bond and the monodentate phosphine ligand bonds to the third Ru atom. Both the arsine and phosphine ligands are equatorial with respect to the Ru3 triangle. In addition, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. In the crystal packing, the molecules are linked by intermolecular C—H...O hydrogen bonds into a three-dimensional framework. Weak intermolecular C—H...π interactions further stabilize the crystal structure.

  14. The resolution of acyclic P-stereogenic phosphine oxides via the formation of diastereomeric complexes: A case study on ethyl-(2-methylphenyl)-phenylphosphine oxide.

    Science.gov (United States)

    Bagi, Péter; Varga, Bence; Szilágyi, András; Karaghiosoff, Konstantin; Czugler, Mátyás; Fogassy, Elemér; Keglevich, György

    2018-04-01

    As an example of acyclic P-chiral phosphine oxides, the resolution of ethyl-(2-methylphenyl)-phenylphosphine oxide was elaborated with TADDOL derivatives, or with calcium salts of the tartaric acid derivatives. Besides the study on the resolving agents, several purification methods were developed in order to prepare enantiopure ethyl-(2-methylphenyl)-phenylphosphine oxide. It was found that the title phosphine oxide is a racemic crystal-forming compound, and the recrystallization of the enantiomeric mixtures could be used for the preparation of pure enantiomers. According to our best method, the (R)-ethyl-(2-methylphenyl)-phenylphosphine oxide could be obtained with an enantiomeric excess of 99% and in a yield of 47%. Complete racemization of the enantiomerically enriched phosphine oxide could be accomplished via the formation of a chlorophosphonium salt. Characterization of the crystal structures of the enantiopure phosphine oxide was complemented with that of the diastereomeric intermediate. X-ray analysis revealed the main nonbonding interactions responsible for enantiomeric recognition. © 2018 Wiley Periodicals, Inc.

  15. Design, synthesis and evaluation of carbamoyl-methyl-phosphine sulfide (CMPS)-based chelates for separation of lanthanides and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Matlokaa, K.; Saha, A.K.; Srinivasan, P.; Scott, M.J. [Florida Univ., Dept. of Chemistry, FL (United States)

    2007-10-15

    C{sub 3}-symmetric tri-phenoxy-methane platforms were substituted with carbamoyl-methyl-phosphine sulfide arms and these tris-CMPS compounds were evaluated as extractants for f-element metal ions from 1 M nitric acid solution. Their properties were compared to the carbamoyl-methyl-phosphine oxide derivatives on the same tri-phenoxy-methane platform (tris-CMPO). The terbium complex of tris-CMPS was crystallized and examined via X-ray structural analysis to provide valuable insight into the binding properties of the soft tripodal chelate. (authors)

  16. Studies on the effects of phosphine on Salmonella enterica serotype Enteritidis in culture medium and in black pepper (Piper nigrum).

    Science.gov (United States)

    Castro, M F P M; Rezende, A C B; Benato, E A; Valentini, S R T; Furlani, R P Z; Tfouni, S A V

    2011-04-01

    The effect of phosphine on Salmonella enterica serotype Enteritidis inoculated in culture medium and in black pepper grains (Piper nigrum), as well as on the reduction of the microbial load of the dried and moisturized product, was verified. The postfumigation effect was verified in inoculated samples with 0.92 and 0.97 water activity (a(w)) exposed to 6 g/m(3) phosphine for 72 h, dried to 0.67 a(w), and stored for 24, 48, and 72 h. No decreases were observed in Salmonella Enteritidis populations in culture medium when fumigant concentrations up to 6 g/m(3) were applied for 48 h at 35°C. However, the colonies showed reductions in size and atypical coloration as the phosphine concentration increased. No reduction in Salmonella counts occurred on the inoculated dried samples after fumigation. On the other hand, when phosphine at concentrations of 6 g/m(3) was applied on moisturized black pepper for 72 h, decreases in Salmonella counts of around 80% were observed. The counts of total aerobic mesophilic bacterium populations of the dried and moisturized black pepper were not affected by the fumigant treatment. The results of the postfumigation studies indicated that Salmonella Enteritidis was absent in the fumigated grains after drying and storage for 72 h, indicating a promising application for this technique. It was concluded that for Salmonella Enteritidis control, phosphine fumigation could be applied to black pepper grains before drying and the producers should rigidly follow good agricultural practices, mainly during the drying process, in order to avoid product recontamination. Additional work is needed to confirm the findings with more Salmonella serotypes and strains.

  17. Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@csio.res.in; Sharma, Amit L.; Tuteja, Satish K.; Paul, A.K.

    2014-08-15

    Highlights: • SWCNTs have been conjugated with bis(2,4,4-trimethylpentyl) phosphinic acid (PA/d). • SWCNT-PA/d adduct is demonstrated for electrochemical sensing of Cr(VI). • Linear response is obtained for 0.01–10 ppb Cr(VI). • Sensitivity and the limit of detection are 35 ± 4 nA/ppb and 0.01 ppb, respectively. • Proposed sensing of Cr(VI) is selective with respect to many other metals. - Abstract: Single-walled carbon nanotubes (SWCNTs) have been functionalized with a phosphinic acid derivative ‘bis(2,4,4-trimethylpentyl) phosphinic acid’ (PA/d). It has been achieved by treating the chlorinated SWCNTs with PA/d at 80 °C. Successful functionalization and different nanomaterial properties have been investigated by UV–vis–NIR, FTIR, Raman spectroscopy, AFM and FE-SEM. PA/d conjugated SWCNTs (CNT–PA) are dispersible in some common organic solvents, e.g. CH{sub 2}Cl{sub 2}, DMF, CHCl{sub 3}, and THF. The ‘CNT–PA’ complex was spin-casted on boron doped silicon wafer. Thus fabricated sensing electrode is demonstrated for sensitive and selective electrochemical sensing of chromium(VI) ions. A linear response is obtained over a wide range of Cr(VI) concentration (0.01–10 ppb). The sensor's sensitivity and the limit of detection are observed to be 35 ± 4 nA/ppb and 0.01 ppb, respectively. The practical utility of the proposed sensor is demonstrated by determining the Cr(VI) concentration in an industrial effluent sample and an underground water sample.

  18. Acute phosphine poisoning on board a bulk carrier: analysis of factors leading to a fatal case.

    Science.gov (United States)

    Loddé, Brice; Lucas, David; Letort, Jean-Marie; Jegaden, Dominique; Pougnet, Richard; Dewitte, Jean-Dominique

    2015-01-01

    To determine accidental factors, clinical presentation and medical care in cases of seafarers presenting phosphine poisoning symptoms on board a bulk carrier. To consider primary prevention of this pathology, which can have extremely severe consequences. To analyse circumstances resulting in toxic exposure to phosphine in the sea transport sector. To obtain information from medical reports regarding the seafarer's rescue. To identify the causes of this accidental poisoning and how to establish an early, appropriate diagnosis thus avoiding other cases. In February 2008, on board a bulk carrier with a cargo of peas, a 56-year-old seafarer with intense abdominal and chest pains, associated with dizziness, was rescued by helicopter 80 miles away from the coast. Despite being admitted rapidly to hospital, his heart rate decreased associated with respiratory distress. He lost consciousness and convulsed. He finally died of pulmonary oedema, major metabolic acidosis and acute multi organ failure. The following day, the captain issued a rescue call from the same vessel for a 41-year-old man also with abdominal pain, vomiting and dizziness. The ECG only revealed type 1 Brugada syndrome. Then 11 other seafarers were evacuated for observation. 3 showed clinical abnormalities. Collective poisoning was suspected. Medical team found out that aluminium phosphide pellets had been put in the ship's hold for pest control before the vessel's departure. Seafarers were poisoned by phosphine gas spreading through cabins above the hold. It was found that the compartments and ducts were not airtight. Unfortunately, a seafarer on board a bulk carrier died in 2008 because of acute phosphine poisoning. Fumigation performed using this gas needs to be done with extreme care. Systematic checks need to be carried out before sailing to ensure that the vessel's compartments are airtight.

  19. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  20. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    Science.gov (United States)

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  1. Gas chromatography of alkylphosphonic and dialkyl phosphinic acids; Cromatografia en fase gaseosa de acidos alquifosfonicos y dialquilfosinicos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L; Barrera Peniero, R; Ramirez Caceres, A; Marin Munoz, M

    1978-07-01

    After carrying out an optimization study on the separation conditions for the TMSr- derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctyl phosphine oxide, their retention indices (I) at two temperatures and on the OV-1 and OV-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analyzed taking into account the variables affecting the quantitative results, These results were unbiased but they had a lower precision than that usually achievable in gas chromatography. (Author) 24 refs.

  2. Determination of pKa values of diastereomers of phosphinic pseudopeptides by CZE

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Kašička, Václav; Jiráček, Jiří; Collinsová, Michaela

    2006-01-01

    Roč. 27, č. 23 (2006), s. 4648-4657 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/04/0098; GA ČR(CZ) GA203/05/2539 Institutional research plan: CEZ:AV0Z40550506 Keywords : diastereomer separation * phosphinic pseudopeptides * pKa determination Subject RIV: CC - Organic Chemistry Impact factor: 4.101, year: 2006

  3. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  4. Phosphine and methylphosphine production by simulated lightning - s study for the volatile phosphorus cycle and cloud formation in the earth atmosphere

    OpenAIRE

    Glindemann, D.; Edwards, M.; Schrems, Otto

    2004-01-01

    Phosphine (PH3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften 83 (1996a,131, Atmos. Environ. 37 (2003) 2429). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds.Here we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) f...

  5. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Joachimiak, Andrzej; Mucha, Artur

    2016-07-01

    N0 -substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki ¼ 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2- diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region.

  6. ExoMol line lists - VII. The rotation-vibration spectrum of phosphine up to 1500 K

    Science.gov (United States)

    Sousa-Silva, Clara; Al-Refaie, Ahmed F.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2015-01-01

    A comprehensive hot line list is calculated for 31PH3 in its ground electronic state. This line list, called SAlTY, contains almost 16.8 billion transitions between 7.5 million energy levels and it is suitable for simulating spectra up to temperatures of 1500 K. It covers wavelengths longer than 1 μm and includes all transitions to upper states with energies below hc × 18 000 cm-1 and rotational excitation up to J = 46. The line list is computed by variational solution of the Schrödinger equation for the rotation-vibration motion employing the nuclear-motion program TROVE. A previously reported ab initio dipole moment surface is used as well as an updated `spectroscopic' potential energy surface, obtained by refining an existing ab initio surface through least-squares fitting to the experimentally derived energies. Detailed comparisons with other available sources of phosphine transitions confirms SAlTY's accuracy and illustrates the incompleteness of previous experimental and theoretical compilations for temperatures above 300 K. Atmospheric models are expected to severely underestimate the abundance of phosphine in disequilibrium environments, and it is predicted that phosphine will be detectable in the upper troposphere of many substellar objects. This list is suitable for modelling atmospheres of many astrophysical environments, namely carbon stars, Y dwarfs, T dwarfs, hot Jupiters and Solar system gas giant planets. It is available in full from the Strasbourg data centre, CDS, and at www.exomol.com.

  7. Beta-Phosphinoethylboranes as Ambiphilic Ligands in Nickel-Methyl Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fischbach, Andreas; Bazinet, Patrick R.; Waterman, Rory; Tilley, T. Don

    2007-10-28

    The ambiphilic {beta}-phosphinoethylboranes Ph{sub 2}PCH{sub 2}CH{sub 2}BR{sub 2} (BR{sub 2} = BCy{sub 2} (1a), BBN (1b)), which feature a ethano spacer CH{sub 2}CH{sub 2} between the Lewis acidic boryl and Lewis basic phosphino groups, were synthesized in nearly quantitative yields via the hydroboration of vinyldiphenylphosphine. Compounds 1a and 1b were fully characterized by elemental analysis, and by NMR and IR spectroscopy. X-ray crystallographic studies of compound 1b revealed infinite helical chains of the molecules connected through P{hor_ellipsis}B donor-acceptor interactions. The ability of these ambiphilic ligands to concurrently act as donors and acceptors was highlighted by their reactions with (dmpe)NiMe{sub 2}. Zwitterionic complexes (dmpe)NiMe(Ph{sub 2}PCH{sub 2}CH{sub 2}BCy{sub 2}Me) (2a) and (dmpe)NiMe(Ph{sub 2}PCH{sub 2}CH{sub 2}[BBN]Me) (2b) were generated via the abstraction of one of the methyl groups, forming a borate, and intramolecular coordination of the phosphine moiety to the resulting cationic metal center. Compound 2b was characterized by X-ray crystallography. Furthermore, B(C{sub 6}F{sub 5}){sub 3} abstracts the methyl group of a coordinated borate ligand to generate a free, 3-coordinate borane center in [(dmpe)NiMe(1a)]{sup +}[MeB(C{sub 6}F{sub 5}){sub 3}]{sup -} (3).

  8. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  9. Direct amination of secondary alcohols using Ammonia

    NARCIS (Netherlands)

    Pingen, D.L.L.; Müller, C.; Vogt, D.

    2010-01-01

    Hydrogen shuttle: For the first time secondary alcohols and ammonia can be directly converted into primary amines with a selectivity of up to 99¿% by using a simple ruthenium/phosphine catalyst (see scheme; R1, R2= alkyl, aryl, alkenyl; M=[Ru3(CO)12]; and L=phosphine ligand).

  10. A New Flame-Retardant Polyamide Containing Phosphine Oxide and N,N-(4,4-diphenylether) Moieties in the Main Chain: Synthesis and Characterization

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    A new flame-retardant polyamide containing phosphine oxide moieties in the main chain was synthesized from the solution polycondensation reaction of bis(3-aminophenyl) phenyl phosphine oxide with N,N-(4,4-diphenylether) bis trimellitimide, using thionyl chloride, N-methyl-2-pyrolidone, and pyridine as condensing agents. This new polymer was obtained in high yield (92%), has high inherent viscosity (0.73 dL/g), and was characterized by elemental analysis, FT-IR spectroscopy, thermal gr...

  11. Crystallographic and Spectroscopic Characterization of Americium Complexes Containing the Bis[(phosphino)methyl]pyridine-1-oxide (NOPOPO) Ligand Platform

    Energy Technology Data Exchange (ETDEWEB)

    Corbey, Jordan F. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Rapko, Brian M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Wang, Zheming [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Surbella, Robert G. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Schwantes, Jon M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2018-02-06

    Abstract The crystal structures of americium species containing a common multi-functional phosphine oxide ligand, reported for its ability to extract f elements from acidic solutions, namely 2,6-[Ph2P(O)CH2]2C5H3-NO, L, have finally been determined after over three decades of separations studies involving these species and their surrogates. The molecular compounds Am(L)(NO3)3, Am 1:1, and [Am(L)2(NO3)][NO3]2, Am 2:1, along with their neodymium and europium analogs were synthesized and characterized using single-crystal X-ray crystallography, attenuated total reflectance Fourier transform infrared (ATR) spectroscopy and luminescence spectroscopy to provide a comprehensive comparison with new and known analogous complexes.

  12. Analysis of the critical step in catalytic carbodiimide transformation: proton transfer from amines, phosphines, and alkynes to guanidinates, phosphaguanidinates, and propiolamidinates with Li and Al catalysts.

    Science.gov (United States)

    Rowley, Christopher N; Ong, Tiow-Gan; Priem, Jessica; Richeson, Darrin S; Woo, Tom K

    2008-12-15

    While lithium amides supported by tetramethylethylenediamine (TMEDA) are efficient catalysts in the synthesis of substituted guanidines via the guanylation of an amine with carbodiimide, as well as the guanylation of phosphines and conversion of alkynes into propiolamidines, aluminum amides are only efficient catalysts for the guanylation of amides. Density functional theory (DFT) calculations were used to explain this difference in activity. The origin of this behavior is apparent in the critical step where a proton is transferred from the substrate to a metal guanidinate. The activation energies of these steps are modest for amines, phosphines, and alkynes when a lithium catalyst was used, but are prohibitively high for the analogous reactions with phosphines and alkynes for aluminum amide catalysts. Energy decomposition analysis (EDA) indicates that these high activations energies are due to the high energetic cost of the detachment of a chelating guanidinate nitrogen from the aluminum in the proton transfer transition state. Amines are able to adopt an ideal geometry for facile proton transfer to the aluminum guanidinate and concomitant Al-N bond formation, while phosphines and alkynes are not.

  13. Azido, triazolyl, and alkynyl complexes of gold(I): syntheses, structures, and ligand effects.

    Science.gov (United States)

    Robilotto, Thomas J; Deligonul, Nihal; Updegraff, James B; Gray, Thomas G

    2013-08-19

    Gold(I) triazolyl complexes are prepared in [3 + 2] cycloaddition reactions of (tertiary phosphine)gold(I) azides with terminal alkynes. Seven such triazolyl complexes, not previously prepared, are described. Reducible functional groups are accommodated. In addition, two new (N-heterocyclic carbene)gold(I) azides and two new gold(I) alkynyls are described. Eight complexes are crystallographically authenticated; aurophilic interactions appear in one structure only. The packing diagrams of gold(I) triazolyls all show intermolecular hydrogen bonding between N-1 of one molecule and N-3 of a neighbor. This hydrogen bonding permeates the crystal lattice. Density-functional theory calculations of (triphenylphosphine)gold(I) triazolyls and the corresponding alkynyls indicate that the triazolyl is a stronger trans-influencer than is the alkynyl, but the alkynyl is more electron-releasing. These results suggest that trans-influences in two-coordinate gold(I) complexes can be more than a simple matter of ligand donicity.

  14. New chiral phosphinephosphinite ligands: Application to stereoselective synthesis of a key intermediate of 1{beta}-methyl carbapenems by Rh(I)-catalyzed asymmetric hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takao; Yoshida, Akifumi; Matsumura, Kazuhiko [Takasago International Corp., Kanagawa (Japan)] [and others

    1995-12-31

    Transition metal catalyzed asymmetric hydroformylation is an attractive and highly useful homologation process for organic synthesis. Recently, the authors reported that the Rh(I) complexes of phosphinephosphite BINAPHOS are highly efficient catalysts for enantioselective hydroformylation of a variety of olefins. This time, the authors have designed and synthesized new chiral phosphinephosphinite ligands having binaphthyl backbone, (R)-2-diarylphosphino-2{prime}-diarylphosphinoxy-1,1{prime}-binaphthy1 (hereafter abbreviated (R)-BIPNITE). The Rh(I) complexes of these ligands are effective catalysts for the asymmetric hydroformylation of 4-vinylazetidin-2-one to give the corresponding oxo-aldehyde 3{beta} as the major product in very high diastereoselectivities and in good regioselectivities. Interestingly, modifications of the aryl substituents in phosphine and phosphinite moieties afforded higher selectivities. Aldehyde 3{beta} was easily oxidized with NaClO{sub 2} to 4, a key intermediate of 1{beta}-methyl carbapenems. Thus, the present method provides a new practical route to a versatile key intermediate for the synthesis of carbapenem antibiotics.

  15. Tris(2-ethylhexyl)phosphine oxide as an effective solvent mediator for constructing a serotonin-selective membrane electrode

    International Nuclear Information System (INIS)

    Ueda, Keisuke; Yonemoto, Rei; Komagoe, Keiko; Masuda, Kazufumi; Hanioka, Nobumitsu; Narimatsu, Shizuo; Katsu, Takashi

    2006-01-01

    A series of solvent mediators containing a phosphoryl (P=O) group, such as tris(2-ethylhexyl)phosphate, bis(2-ethylhexyl) 2-ethylhexylphosphonate, 2-ethylhexyl bis(2-ethylhexyl)phosphinate, and tris(2-ethylhexyl)phosphine oxide, were used to construct serotonin-selective membrane electrodes. We found that replacing the alkoxy groups attached to phosphorus atoms in P=O groups with alkyl groups strengthened the response of the electrode to serotonin, suppressing remarkably interference from inorganic cations, such as Na + . Thus, an electrode combining tris(2-ethylhexyl)phosphine oxide with an ion-exchanger, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate, gave a detection limit of 9 x 10 -6 M with a slope of 55.2 mV per concentration decade in physiological saline containing 150 mM NaCl and 10 mM NaH 2 PO 4 /Na 2 HPO 4 (pH 7.4). This is the best detection limit of any serotonin-selective electrode developed to date. The selectivity of this electrode for serotonin was over 10 3 times that for inorganic cations, such as Na + and K + , and lipophilic quaternary ammonium ions, such as acetylcholine and (C 2 H 5 ) 4 N + . Using the electrode, we measured the amount of serotonin released from platelets and found that the results agreed well with those obtained by a conventional fluorimetric assay of serotonin

  16. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker

    DEFF Research Database (Denmark)

    Noye, Pernille; Li, Qingfeng; Pan, Chao

    2008-01-01

    Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produ......Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP.......e. within the temperature range of operation of PBI-based fuel cells....

  17. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    Science.gov (United States)

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  18. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization

    KAUST Repository

    Liu, Wen; Pan, Weijing; Wang, Peng; Li, Wei; Mu, Jingshan; Weng, Gengsheng; Jia, Xiaoyu; Gong, Dirong; Huang, Kuo-Wei

    2015-01-01

    Incomplete oxidation of (N-di-tert-butylphosphino)-6-(2-methyl-2’H-benzoimidazole)-2-aminepyridine dichlorocobalt (PN3CoCl2) in DMF results in a unique co-crystal I formed with three parts including DMF, unit A and unit B complex with Co1 and Co2, respectively, (PN3 ligand in unit A: (N-di-tert-butylphosphino)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine, and O=PN3 ligand in unit B: (N-di-tert-butylphosphinoxide)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine) with 1:1:1 molar ratio. Co1 and Co2 complexes both display a five-coordinated distorted-square-pyramidal geometry around the metal center. The Co1 center is coordinated with PN3 ligand via two N atoms from pyridine, benzoimidazole moiety as well as one P atom, and the Co2 center is coordinated with the oxidized ligandO=PN3 via two N atoms from pyridine, benzoimidazole moiety as well as one O atom from DMF molecule, while the oxidized phosphine moiety (O=P) being excluded from the coordination sphere. Activated with AlEt2Cl, the co-crystallized complexes I are able to actively convert butadiene to polybutadiene, affording cis-1,4 polybutadiene with cis-1,4 unit up to 95.5-97.8% and number average molecular weight of cal. 105g/mol. The high cis-1,4 selectivity and monomodal GPC curve of resultant polymer imply that the identical active species generated from two distinctive cobalt centers.

  19. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization

    KAUST Repository

    Liu, Wen

    2015-08-03

    Incomplete oxidation of (N-di-tert-butylphosphino)-6-(2-methyl-2’H-benzoimidazole)-2-aminepyridine dichlorocobalt (PN3CoCl2) in DMF results in a unique co-crystal I formed with three parts including DMF, unit A and unit B complex with Co1 and Co2, respectively, (PN3 ligand in unit A: (N-di-tert-butylphosphino)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine, and O=PN3 ligand in unit B: (N-di-tert-butylphosphinoxide)-6-(2’-methyl-2’H-benzoimidazole)-2-aminepyridine) with 1:1:1 molar ratio. Co1 and Co2 complexes both display a five-coordinated distorted-square-pyramidal geometry around the metal center. The Co1 center is coordinated with PN3 ligand via two N atoms from pyridine, benzoimidazole moiety as well as one P atom, and the Co2 center is coordinated with the oxidized ligandO=PN3 via two N atoms from pyridine, benzoimidazole moiety as well as one O atom from DMF molecule, while the oxidized phosphine moiety (O=P) being excluded from the coordination sphere. Activated with AlEt2Cl, the co-crystallized complexes I are able to actively convert butadiene to polybutadiene, affording cis-1,4 polybutadiene with cis-1,4 unit up to 95.5-97.8% and number average molecular weight of cal. 105g/mol. The high cis-1,4 selectivity and monomodal GPC curve of resultant polymer imply that the identical active species generated from two distinctive cobalt centers.

  20. A Search for Phosphine in Circumstellar Envelopes: PH3 in IRC +10216 and CRL 2688?

    Science.gov (United States)

    Tenenbaum, E. D.; Ziurys, L. M.

    2008-06-01

    We present the results of a search for the JK = 10→ 00 transition of PH3 (phosphine) at 267 GHz toward several circumstellar envelopes using the Arizona Radio Observatory 10 m Submillimeter Telescope (SMT). In the carbon-rich shells of IRC +10216 and CRL 2688, we have detected emission lines exactly at the PH3 frequency. Toward the oxygen-rich supergiant VY Canis Majoris, only an upper limit was obtained, while in the evolved carbon-rich proto-planetary nebula CRL 618, the transition is contaminated by vibrationally excited HC3N (ν7 = 4). The line shape in IRC +10216 appears to consist of two distinct components: a flat-topped profile with a width of ~28 km s-1, as is typical for this source, and a narrower feature approximately 4 km s-1 wide. The narrow component likely arises from the inner envelope (r < 8R*) where the gas has not reached the terminal expansion velocity, or it is nonthermal emission. Based on the broader component, the abundance of PH3 with respect to H2 is estimated to be 5 × 10-8 in a region with a radius of r < 150R*. If the narrower component is thermal, it implies a phosphine abundance of ~5 × 10-7 close to the stellar photosphere (r < 8R*). In CRL 2688, the PH3 abundance is less constrained, with plausible values ranging from 3 × 10-8 to 4 × 10-7, assuming a spherical distribution. Phosphine appears to be present in large concentrations in the inner envelope of C-rich AGB stars, and thus may function as a parent molecule for other phosphorus species.

  1. Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots

    Science.gov (United States)

    Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker

    2018-01-01

    A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.

  2. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  3. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  4. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert; Credendino, Raffaele; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  5. An Intramolecular Heck reaction that Prefers a 5-endo- to a 6-exo-trig Cyclization Pathway

    DEFF Research Database (Denmark)

    Vital, Paulo; Norrby, Per-Ola; Tanner, David Ackland

    2006-01-01

    A regioselective aromatic Claisen rearrangement was used to prepare 17a, the precursor of triflate 17e. The intramolecular Heck reaction of 17e is promoted only by bidentate phosphine ligands, giving exclusively and in excellent yield 20, the product of a 5-endo-trig cyclization, despite the poss......A regioselective aromatic Claisen rearrangement was used to prepare 17a, the precursor of triflate 17e. The intramolecular Heck reaction of 17e is promoted only by bidentate phosphine ligands, giving exclusively and in excellent yield 20, the product of a 5-endo-trig cyclization, despite...

  6. Supramolecular Allosteric Cofacial Porphyrin Complexes

    International Nuclear Information System (INIS)

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-01-01

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh I or Cu I sites) and two cofacially aligned porphyrins (Zn II sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh I or Cu I transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  7. Olefin Metathesis with Ru-Based Catalysts Exchanging the Typical N-Heterocyclic Carbenes by a Phosphine–Phosphonium Ylide

    Directory of Open Access Journals (Sweden)

    Laia Arnedo

    2017-03-01

    Full Text Available Density functional theory (DFT calculations have been used to describe the first turnover of an olefin metathesis reaction calling for a new in silico family of homogenous Ru-based catalysts bearing a phosphine–phosphonium ylide ligand, with ethylene as a substrate. Equal to conventional Ru-based catalysts bearing an N-heterocyclic carbene (NHC ligand, the activation of these congeners occurs through a dissociative mechanism, with a more exothermic first phosphine dissociation step. In spite of a stronger electron-donating ability of a phosphonium ylide C-ligand with respect to a diaminocarbene analogue, upper energy barriers were calculated to be on average ca. 5 kcal/mol higher than those of Ru–NHC standards. Overall, the study also highlights advantages of bidentate ligands over classical monodentate NHC and phosphine ligands, with a particular preference for the cis attack of the olefin. The new generation of catalysts is constituted by cationic complexes potentially soluble in water, to be compared with the typical neutral Ru–NHC ones.

  8. LaCl 3. 7H 2 O: An efficient catalyst for the synthesis of phosphinates ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1 ... Abstract. An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates (3a-l) through Michaelis-Arbuzov reaction by the reaction of various heterocyclic halides (Cl or Br) (1a-l) with dimethyl ...

  9. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, J P; Benson, R [Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Chemistry

    1980-05-15

    Photolysis of phosphine (PH/sub 3/) has been investigated because of its potential significance in the atmosphere chemistry of Jupiter. It is reported that P/sub 2/H/sub 4/is the initial product of PH/sub 3/ photolysis and that it is the principal intermediate in the formation of red phosphorus. It is stated that these findings require substantial revision of the previously accepted mechanism for PH/sub 3/ photolysis.

  10. Tertiary phosphine complexes of rhenium: a spectroscopic study

    International Nuclear Information System (INIS)

    Fergusson, J.E.; Heveldt, P.F.

    1976-01-01

    Complexes of the type ReOX 3 L 2 , ReNX 2 L 3 , ReX 3 (NO)L 2 and ReX 2 (NO)L 3 have been studied using, UV visible, IR and H 1 , C 13 NMR spectroscopy. (X is a halogen, Cl, Br, I and L is a tertiary phosphine Et 3 P and Et 2 PhP). Evidence obtained on the blue cis isomer ReOCl 3 L 2 suggests that the halogens are arranged on a face of the octahedral complex. Assignments of ν(Re-X) and ν(Re-P) vibrations have been made. Three complexes of technetium, [TcCl 4 (Ph 3 P) 2 ], [TcCl 3 (Et 2 PhP) 3 ] and [TcCl 3 (NO)(Et 2 PhP) 2 ] have been isolated. (author)

  11. Reaction paths of phosphine dissociation on silicon (001)

    International Nuclear Information System (INIS)

    Warschkow, O.; McKenzie, D. R.; Curson, N. J.; Schofield, S. R.; Marks, N. A.; Wilson, H. F.; Radny, M. W.; Smith, P. V.; Reusch, T. C. G.; Simmons, M. Y.

    2016-01-01

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH 3 ) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH 2 +H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH 2 fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH 3 stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments

  12. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature of coordinating solvents, surface bound ligands, synthesis duration and temperature. NC synthesis in reaction environments with weakly bound phosphine surface ligand led to the coalescence of nascent particles leading to ensembles with broad lognormal particle diameter distributions. Synthesis in the presence of amine or alkene ligands mitigated particle coalescence. High-resolution transmission electron micrographs revealed that NCs grown in the presence of weak ligands had a high crystal defect density whereas NCs grown in amine solutions were predominantly defect-free. We applied infrared spectroscopy to study the NC surface chemistry and showed that alkene ligands project the NCs from surface oxidation. Photoluminescence spectroscopy measurements showed that alkene ligands passivate surface traps, as indicated by infrared fluorescence, conversely oxidized phosphine and amine passivated NCs did not fluoresce. © 2010 The Royal Society of Chemistry.

  13. Development of novel highly selective phosphinic pseudopeptide inhibitors of Zn-metalloenzyme betaine: homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Collinsová, Michaela

    2002-01-01

    Roč. 96, č. 4 (2002), s. 210-211 ISSN 0009-2770. [Sigma-Aldrich konference mladých chemiků, biochemiků a molekulárních biologů. 22.05.2002-25.05.2002, Velké Meziříčí] Institutional research plan: CEZ:AV0Z4055905 Keywords : phosphinic pseudopeptides Subject RIV: CE - Biochemistry

  14. Structures of metal complexes with anions of di(hydroxymethyl)phosphinic and di(chloromethyl)phosphinic acids

    International Nuclear Information System (INIS)

    Sergienko, V.S.; Aleksandrov, G.G.

    2001-01-01

    The structural peculiarities of the different metals [Cu, Ni, rare earths (La, Nd, Er, Lu), Ag, Li, Na, Sr] with anions of di-substituted monophosphonic acids - di(hydroxymethyl) phosphonic acid (HOCH 2 ) 2 PO 2 - (L 1 ) and di(chloromethyl) phosphonic acid (ClCH 2 ) 2 PO 2 - (L 2 ), and the methods of coordinating ligands L 1 and L 2 with these metals were viewed. Coordination number of metal decreases from eight in the case of La, Nd to seven for Er, and further to six for Lu with decreasing size of rare earth element. M-O bond lengths decrease the same way. The LiL 2 · H 2 O structure was determined, Li atom shows tetrahedron coordination by three oxygen atoms of the three ligands L 2 and atom O(ω) of water molecule. The ligand L 1 are acting as a tetradentate chelate μ 3 -bridge function in the structure of the Sr(L 1 ) 2 compound. The interval of Sr-O distances comprises 2.521 - 2.683 A [ru

  15. Reaction paths of phosphine dissociation on silicon (001)

    Energy Technology Data Exchange (ETDEWEB)

    Warschkow, O.; McKenzie, D. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Curson, N. J. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Schofield, S. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Physics and Astronomy, University College, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Marks, N. A. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Discipline of Physics & Astronomy, Curtin University, GPO Box U1987, Perth, WA (Australia); Wilson, H. F. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); CSIRO Virtual Nanoscience Laboratory, Parkville, VIC 3052 (Australia); School of Applied Sciences, RMIT University, Melbourne, VIC 3000 (Australia); Radny, M. W.; Smith, P. V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Reusch, T. C. G.; Simmons, M. Y. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-07

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH{sub 3}) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH{sub 2}+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH{sub 2} fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH{sub 3} stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.

  16. A theoretical study on the photoionization of the valence orbitals of phosphine

    Directory of Open Access Journals (Sweden)

    Nascimento Edmar M.

    2006-01-01

    Full Text Available We report a theoretical study on the photoionization of phosphine in the static-exchange level and frozen core approximation, using the method of continued fractions. The main subject of the present study is to investigate in which extent the Hartree-Fock description of the target applied to molecular photoionization is valid. Also, the role played by multichannel coupling is analysed. Our study shows that single-channel Hartree-Fock calculations can provide reliable results except for photon energies near the photoionization threshold.

  17. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    Science.gov (United States)

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  18. Passivation of nanocrystalline TiO2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells

    KAUST Repository

    Wang, Mingkui

    2009-01-01

    We report a new class of molecular insulators that electronically passivate the surface of nanocrystalline titania films for high performance dye sensitized solar cells (DSC). Using electrical impedance measurements we demonstrate that co-adsorption of dineohexyl bis-(3,3-dimethyl-butyl)-phosphinic acid (DINHOP), along with the amphiphilic ruthenium sensitizer Z907Na increased substantially the power output of the cells mainly due to a retardation of interfacial recombination of photo-generated charge carriers. The use of phosphinates as anchoring groups opens up new avenues for modification of the surface by molecular insulators, sensitizers and other electro-active molecules to realize the desired optoelectronic performance of devices based on oxide junctions. © 2009 The Royal Society of Chemistry.

  19. Malonamide, phosphine oxide and calix[4]arene functionalized ionic liquids: synthesis and extraction of actinides and lanthanides

    International Nuclear Information System (INIS)

    Ternova, Dariia

    2014-01-01

    Radioactive waste treatment is a crucial problem nowadays. This work was dedicated to the development of the new extracting systems for radionuclides on the basis of 'green' solvents Ionic Liquids (Ils). For this purpose Ils were functionalized with various extracting patterns: phosphine oxide, carbamoyl phosphine oxide groups and malonamide fragment. Also the calix[4]arene platforms were used for the synthesis of functionalized ionic liquids (Fils) and their precursors. The Fils of both types cationic and anionic have been obtained. The synthesized Fils were tested for the liquid-liquid extraction of radionuclides. lt was found that extraction well occurs due to the extracting patterns, however a charge of a modified ion influences extraction.The various extracting experiments and mathematical modelling have been performed to determine the mechanisms of extraction. These studies showed that each extracting system is characterized by a different set of extracting equilibria, based mostly on cationic exchange. (author)

  20. Metal-organophosphine and metal-organophosphonium frameworks with layered honeycomb-like structures.

    Science.gov (United States)

    Humphrey, Simon M; Allan, Phoebe K; Oungoulian, Shaunt E; Ironside, Matthew S; Wise, Erica R

    2009-04-07

    Phosphanotriylbenzenecarboxylic acid (ptbcH(3); P(C(6)H(4)-p-CO(2)H)(3)) and its methyl phosphonium iodide derivative (mptbcH(3)I; {H(3)CP(C(6)H(4)-p-CO(2)H)(3)}I) have been used as organic building blocks in reaction with Zn(ii) salts to obtain a series of related two-dimensional coordination polymers with honeycomb-like networks. The variable coordination number and oxidation states available to phosphorus have been exploited to produce a family of related phosphine coordination materials (PCMs) using a single ligand precursor. The phosphine carboxylate trianion, ptbc(3-), reacted with Zn(ii) to form 3,3-connected undulating hexagonal sheets based on tetrahedral P and Zn nodes, where Zn-ptbc = 1 : 1. When hydroxide was used as an additional framework ligand, Zn(4)(OH)(2) clusters were obtained. The clusters support 6,3-connected bilayers that consist of pairs of fused hexagonal sheets (Zn-ptbc = 2 : 1) with intra-layer pore spaces. The Zn(4)(OH)(2) clusters are also coordinated by solvent, which was preferentially displaced when the bilayer material was synthesized in the presence of ethylene diamine. Treatment of ptbc(3-) with MeI resulted in methylation of the phosphine to give the P(v) phosphonium iodide salt derivative. The formally dianionic methylphosphonium tricarboxylate building block, mptbc(2-), has the same trigonal-pyramidal bridging geometry as the parent phosphine. However, mptbc(2-) reacted with Zn(ii) on a 1 : 1 stoichiometric ratio to give an unusual trilayer sheet polymer that is based exclusively on 3-connected nodes. Solid-state (31)P NMR studies confirmed that the phosphine ligands were resistant to oxidation upon solvothermal reaction under aerobic conditions.

  1. Accidental Phosphine Gas Poisoning with Fatal Myocardial Dysfunction in Two Families

    International Nuclear Information System (INIS)

    Akhtar, S.; Rehman, A.; Haque, A.; Bano, S.

    2015-01-01

    Aluminum phosphide is commonly used as a rodenticide and insecticide and is one of the most fatal poisons. The active ingredient is Phosphine gas which inhibits cytochrome oxidase and cellular oxygen utilization. The clinical symptoms are due to multiorgan involvement including cardiac toxicity which is the most common cause of mortality. Severity of clinical manifestations depends upon the amount of the gas to which a person is exposed. There is no specific antidote available. High index of suspicion and early aggressive treatment is the key to success. We report 2 cases of aluminum phosphide toxicity in 2 families due to incidental exposure after fumigation. (author)

  2. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli

    2015-06-02

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  3. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli; Yu, Zhaoyuan; Hoon, Ding Long; Huang, Kuo-Wei; Lan, Yu; Lu, Yixin

    2015-01-01

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  4. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase.

    Science.gov (United States)

    Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Thomas, Mathew; Wang, Yihan; Zhou, Tianjun; Romero, Jan; Kohlmann, Anna; Li, Feng; Qi, Jiwei; Cai, Lisi; Dwight, Timothy A; Xu, Yongjin; Xu, Rongsong; Dodd, Rory; Toms, Angela; Parillon, Lois; Lu, Xiaohui; Anjum, Rana; Zhang, Sen; Wang, Frank; Keats, Jeffrey; Wardwell, Scott D; Ning, Yaoyu; Xu, Qihong; Moran, Lauren E; Mohemmad, Qurish K; Jang, Hyun Gyung; Clackson, Tim; Narasimhan, Narayana I; Rivera, Victor M; Zhu, Xiaotian; Dalgarno, David; Shakespeare, William C

    2016-05-26

    In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.

  5. Synthesis, structures, and dearomatization by deprotonation of iron complexes featuring bipyridine-based PNN pincer ligands.

    Science.gov (United States)

    Zell, Thomas; Langer, Robert; Iron, Mark A; Konstantinovski, Leonid; Shimon, Linda J W; Diskin-Posner, Yael; Leitus, Gregory; Balaraman, Ekambaram; Ben-David, Yehoshoa; Milstein, David

    2013-08-19

    The synthesis and characterization of new iron pincer complexes bearing bipyridine-based PNN ligands is reported. Three phosphine-substituted pincer ligands, namely, the known (t)Bu-PNN (6-((di-tert-butylphosphino)methyl)-2,2'-bipyridine) and the two new (i)Pr-PNN (6-((di-iso-propylphosphino)methyl)-2,2'-bipyridine) and Ph-PNN (6-((diphenylphosphino)methyl)-2,2'-bipyridine) ligands were synthesized and studied in ligation reactions with iron(II) chloride and bromide. These reactions lead to the formation of two types of complexes: mono-chelated neutral complexes of the type [(R-PNN)Fe(X)2] and bis-chelated dicationic complexes of the type [(R-PNN)2Fe](2+). The complexes [(R-PNN)Fe(X)2] (1: R = (t)Bu, X = Cl, 2: R = (t)Bu, X = Br, 3: R = (i)Pr, X = Cl, and 4: R = (i)Pr, X = Br) are readily prepared from reactions of FeX2 with the free R-PNN ligand in a 1:1 ratio. Magnetic susceptibility measurements show that these complexes have a high-spin ground state (S = 2) at room temperature. Employing a 2-fold or higher excess of (i)Pr-PNN, diamagnetic hexacoordinated dicationic complexes of the type [((i)Pr-PNN)2Fe](X)2 (5: X = Cl, and 6: X = Br) are formed. The reactions of Ph-PNN with FeX2 in a 1:1 ratio lead to similar complexes of the type [(Ph-PNN)2Fe](FeX4) (7: X = Cl, and 8: X = Br). Single crystal X-ray studies of 1, 2, 4, 6, and 8 do not indicate electron transfer from the Fe(II) centers to the neutral bipyridine unit based on the determined bond lengths. Density functional theory (DFT) calculations were performed to compare the relative energies of the mono- and bis-chelated complexes. The doubly deprotonated complexes [(R-PNN*)2Fe] (9: R = (i)Pr, and 10: R = Ph) were synthesized by reactions of the dicationic complexes 6 and 8 with KO(t)Bu. The dearomatized nature of the central pyridine of the pincer ligand was established by X-ray diffraction analysis of single crystals of 10. Reactivity studies show that 9 and 10 have a slightly different behavior in

  6. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  7. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert

    2015-09-29

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  8. Simple tertiary phosphines to hexaphosphane ligands: Syntheses ...

    Indian Academy of Sciences (India)

    In this context, we have developed new synthetic methodologies for making unusual inorganic ... their rich transition metal chemistry and catalytic applications. ..... required during the catalytic and biological processes. ... atoms to oxophilic titanium centres to form 33 is due ..... Our work was supported by the Department of.

  9. Synthesis of 2-azaspiro[4.4]nonan-1-ones via phosphine-catalysed [3+2]-cycloadditions

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Sarah R.; Williams, Morwenna C.; Pyne, Stephen G.; Ung, Alison T.; Skelton, Brian W.; White, Allan H.; Turner, Peter (UWA); (Wollongong); (Sydney)

    2008-10-03

    The phosphine-catalyzed [3+2]-cycloaddition of the 2-methylene {gamma}-lactams 4 and 5 and the acrylate 6 with the ylides derived from the ethyl ester, the amide or the chiral camphor sultam derivative of 2-butynoic acid (7a-c) give directly, or indirectly after reductive cyclization, spiro-heterocyclic products. The acid 32 underwent Curtius rearrangement and then acid hydrolysis to give two novel spiro-cyclic ketones, 41 and 42.

  10. Solid state luminescence of CuI and CuNCS complexes with phenanthrolines and a new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine

    International Nuclear Information System (INIS)

    Starosta, Radosław; Komarnicka, Urszula K.; Puchalska, Małgorzata

    2014-01-01

    A new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 (1) has been synthesized and characterized by the NMR spectra. Also, three new copper(I) iodide or isothiocyanate complexes with 1 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmp) [CuI(phen)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1P) CuI(dmp)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1I) and [CuNCS(dmp)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1T), have been synthesized and characterized by elemental analysis as well as studied by NMR, UV–vis, IR and luminescence spectroscopies. An X-ray structure of 1P complex revealed that the geometry around Cu(I) center in this complex is distorted pseudo-tetrahedral. Investigated complexes exhibit orange, rather weak photoluminescence in the solid state. This relatively low intensity may be related to the high flattening deformations of the molecular geometries in the excited triplet states On the basis of TDDFT calculations we confirmed that the absorbance and luminescence bands of (MX,MPR 3 )LCT as well as of (MX)LCT types result mainly from the transitions from the copper–iodine (or isothiocyanate) bonds and a small admixture of copper–phosphine bonds to antibonding orbitals of phen or dmp diimines. -- Highlights: • A novel tris(aminomethyl)phosphine is obtained from N-methyl-2-phenylethanamine. • Three new CuI and CuNCS complexes with phen or dmp and a novel phosphine are presented. • The obtained complexes are luminescent in the solid state. • Main absorbance and luminescence bands are of (MX,MPR 3 )LCT as well as (MX)LCT types

  11. Synthesis, characterization, and reactivity of ruthenium hydride complexes of N-centered triphosphine ligands.

    Science.gov (United States)

    Phanopoulos, Andreas; Brown, Neil J; White, Andrew J P; Long, Nicholas J; Miller, Philip W

    2014-04-07

    The reactivity of the novel tridentate phosphine ligand N(CH2PCyp2)3 (N-triphos(Cyp), 2; Cyp = cyclopentyl) with various ruthenium complexes was investigated and compared that of to the less sterically bulky and less electron donating phenyl derivative N(CH2PPh2)3 (N-triphos(Ph), 1). One of these complexes was subsequently investigated for reactivity toward levulinic acid, a potentially important biorenewable feedstock. Reaction of ligands 1 and 2 with the precursors [Ru(COD)(methylallyl)2] (COD = 1,5-cycloocatadiene) and [RuH2(PPh3)4] gave the tridentate coordination complexes [Ru(tmm){N(CH2PR2)3-κ(3)P}] (R = Ph (3), Cyp (4); tmm = trimethylenemethane) and [RuH2(PPh3){N(CH2PR2)3-κ(3)P}] (R = Ph (5), Cyp (6)), respectively. Ligands 1 and 2 displayed different reactivities with [Ru3(CO)12]. Ligand 1 gave the tridentate dicarbonyl complex [Ru(CO)2{N(CH2PPh2)3-κ(3)P}] (7), while 2 gave the bidentate, tricarbonyl [Ru(CO)3{N(CH2PCyp2)3-κ(2)P}] (8). This was attributed to the greater electron-donating characteristics of 2, requiring further stabilization on coordination to the electron-rich Ru(0) center by more CO ligands. Complex 7 was activated via oxidation using AgOTf and O2, giving the Ru(II) complexes [Ru(CO)2(OTf){N(CH2PPh2)3-κ(3)P}](OTf) (9) and [Ru(CO3)(CO){N(CH2PPh2)3-κ(3)P}] (11), respectively. Hydrogenation of these complexes under hydrogen pressures of 3-15 bar gave the monohydride and dihydride complexes [RuH(CO)2{N(CH2PPh2)3-κ(3)P}] (10) and [RuH2(CO){N(CH2PPh2)3-κ(3)P}] (12), respectively. Complex 12 was found to be unreactive toward levulinic acid (LA) unless activated by reaction with NH4PF6 in acetonitrile, forming [RuH(CO)(MeCN){N(CH2PPh2)3-κ(3)P}](PF6) (13), which reacted cleanly with LA to form [Ru(CO){N(CH2PPh2)3-κ(3)P}{CH3CO(CH2)2CO2H-κ(2)O}](PF6) (14). Complexes 3, 5, 7, 8, 11, and 12 were characterized by single-crystal X-ray crystallography.

  12. Influence of environmental, structural, and behavioral factors on the presence of phosphine in worker areas during fumigations in grain elevators.

    Science.gov (United States)

    Reed, C

    2001-02-01

    Data-logging gas monitors with electrochemical cells sensitive to phosphine (PH3) were used to characterize concentrations of this common grain fumigant in and around grain elevators during fumigations. Twenty-four grain fumigations were observed, and each was monitored over a 5- to 8-day period. Phosphine gas, generated from aluminum phosphide fumigant applied to the grain, generally moved upward toward the grain surface and exited the bin at bin-top openings to the outside air or to enclosed worker areas. The upward air currents appeared to be the result of chimney effects, e.g., pressure differences resulting from buoyant air inside the warm grain and cooler, denser, ambient air. Significant wind effects on the PH3 concentration were also observed in the air between the grain surface and the bin roof. In enclosed areas located at the bin-top level, monitors located near the fill port or the fumigant dispenser recorded PH3 concentrations in excess of the exposure limit of 0.3 parts per million (ppm) about 35% of the time during grain fumigations. Phosphine concentrations between 0.31 and 1.0 ppm were observed 17.3% of the time, and concentrations in the ranges of 1.01-3.0, 3.01-10.0, and >10 ppm constituted 11.8%, 5.5%, and 0.3% of all readings, respectively, in bin-top worker areas. The likelihood of recording PH3 concentrations >0.3 ppm depended on ventilation practices. Fans in tunnels and open windows at aboveground locations appeared to greatly reduce the likelihood of high PH3 concentrations in enclosed areas.

  13. THE COMBINED EFFECT OF ORGANIC PHOSPHINATE BASED FLAME RETARDANT AND ZINC BORATE ON THE FIRE BEHAVIOR OF POLY(BUTYLENE TEREPHTHALATE

    Directory of Open Access Journals (Sweden)

    Mustafa Erdem ÜREYEN

    2016-12-01

    Full Text Available Neat poly(butylene terephthalate is highly combustible. It is not self-extinguishing, and after ignition it burns with dripping. To meet the fire safety requirements, it should be rendered flame retardant. The most common flame retardants for PBT are based on halogenated (most often brominated or phosphorus compounds. Although their efficiency is lower than halogen based flame retardants, expensive phosphorus based flame retardants for polyester are preferred, because of low smoke generation, nontoxicity and low corrosion properties. Zinc borate has been widely used with other flame retardants in wood products and in several polymers. In this work the fire behavior of zinc borate, phosphinic acid and zinc borate/phosphinic acid combination doped poly(butylene terephthalate was investigated. Firstly, the mean particle size of zinc borate (2ZnO.3B2O3.3.5H2O powders were reduced by attrition milling. Samples were produced by twin screw micro compounder. The fire properties of the ZnB, DPA and ZnB/DPA doped PBT were investigated and compared to each other by LOI and thermal analysis. LOI values of ZnB/PBT samples were found very low even with higher filling content. At higher loading of ZnB, the dripping of the sample strongly decreased and char residue increased. It was seen that organic diethyl phosphinic acid based additives DPA is particularly effective with PBT. It was found that the combination of DPA and ZnB can be used to increase the char residue, decrease spread of flame and the melt dripping of PBT.

  14. [1,3-Bis(diphenyl-phosphino)pentane-κP,P']tetra-carbonyl-chromium(0).

    Science.gov (United States)

    Shawkataly, Omar Bin; Thangadurai, Daniel T; Pankhi, Mohd Aslam A; Shahinoor Dulal Islam, S M; Fun, Hoong-Kun

    2009-02-04

    In the title compound, [Cr(C(29)H(30)P(2))(CO)(4)], the Cr atom is octa-hedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr-P and Cr-C bond lengths are 2.377 and 1.865 Å, respectively.

  15. [1,3-Bis(diphenylphosphinopentane-κ2P,P′]tetracarbonylchromium(0

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available In the title compound, [Cr(C29H30P2(CO4], the Cr atom is octahedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr—P and Cr—C bond lengths are 2.377 and 1.865 Å, respectively.

  16. Metabolism of aspirin and procaine in mice pretreated with O-4-nitrophenyl methyl(phenyl)phosphinate or O-4-nitrophenyl diphenylphosphinate

    International Nuclear Information System (INIS)

    Joly, J.M.; Brown, T.M.

    1986-01-01

    Concentrations of [carboxyl- 14 C]procaine in blood of mice were increased threefold for 27 min by exposure to O-4-nitrophenyl diphenylphosphinate 2 hr prior to [carboxyl- 14 C]procaine injection ip, while there was no effect of O-4-nitrophenyl methyl(phenyl)phosphinate pretreatment. There was no effect of either organophosphinate on the primary hydrolysis of [acetyl-l- 14 C]aspirin when assessed by the expiration of [ 14 C]carbon dioxide; however, O-4-nitrophenyl diphenylphosphinate pretreatment produced transient increases in blood concentrations of both [carboxyl- 14 C]aspirin and [carboxyl- 14 C]salicylic acid following administration of [carboxyl- 14 C]aspirin. Liver carboxylesterase activity in O-4-nitrophenyl diphenylphosphinate pretreated mice was 11% of control activity. These results indicate the potential for drug interaction with O-4-nitrophenyl diphenylphosphinate but not with O-4-nitrophenyl methyl(phenyl)phosphinate. It appears that liver carboxylesterase activity has a minor role in hydrolysis of aspirin in vivo, but may be more important in procaine metabolism

  17. (Carbonyl-1κC)bis-[2,3(η)-cyclo-penta-dien-yl][μ(3)-(S-methyl trithio-carbonato)methylidyne-1:2:3κC,S'':C:C](triphenyl-phosphine-1κP)(μ(3)-sulfido-1:2:3κS)dicobalt(II)iron(II) trifluoro-methane-sulfonate.

    Science.gov (United States)

    Manning, Anthony R; McAdam, C John; Palmer, Anthony J; Simpson, Jim

    2008-04-10

    The asymmetric unit of the title compound, [FeCo(2)(C(5)H(5))(2)(C(3)H(3)S(3))S(C(18)H(15)P)(CO)]CF(3)SO(3), consists of a triangular irondicobalt cluster cation and a trifluoro-methane-sulfonate anion. In the cation, the FeCo(2) triangle is symmetrically capped on one face by an S atom and on the other by a C atom linked to a methyl trithio-carbonate residue that bridges the Fe-C bond. Each Co atom carries a cyclo-penta-dienyl ligand while the Fe atom coordinates to one carbonyl and one triphenyl-phosphine ligand. In the crystal structure, the cation is linked to the anion by a number of weak non-classical C-H⋯O and C-H⋯F hydrogen bonds and weak S⋯O (3.317 Å) and S⋯F (3.198 Å) inter-actions. The structure is further stabilized by additional inter-molecular C-H⋯O, C-H⋯F and O⋯O (2.942 Å) contacts, together with an unusual S⋯π(Cp) inter-action (S⋯centroid distance = 3.385 Å), generating an extended network.

  18. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABAB receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation

    Science.gov (United States)

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, LA; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, JP; Nilsson, K; Oja, SS; Saransaari, P; von Unge, S

    2012-01-01

    BACKGROUND AND PURPOSE Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABAB receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABAB receptors. To understand the structure–activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. EXPERIMENTAL APPROACH The compounds were characterized in terms of GABAB agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. KEY RESULTS 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. CONCLUSIONS AND IMPLICATIONS An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABAB receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABAB receptor agonism may afford therapeutic effects. PMID:21950457

  19. [1,3-Bis(diphenyl­phosphino)pentane-κ2 P,P′]tetra­carbonyl­chromium(0)

    Science.gov (United States)

    Shawkataly, Omar bin; Thangadurai, Daniel T.; Pankhi, Mohd. Aslam A.; Shahinoor Dulal Islam, S. M.; Fun, Hoong-Kun

    2009-01-01

    In the title compound, [Cr(C29H30P2)(CO)4], the Cr atom is octa­hedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr—P and Cr—C bond lengths are 2.377 and 1.865 Å, respectively. PMID:21582044

  20. Phosphine reduced IgG. A new method for 99mTc labeling immunoglobulins

    International Nuclear Information System (INIS)

    Arteaga de Murphy, C.; Melendez-Alafort, L.; Martinez-Rivero, O.; Gomez, E.; Ferro-Flores, G.

    1997-01-01

    A new technetium labeling method for immunoglobulins reduced with tris(2-carboxy-ethyl)phosphine hydrochloride is presented. The Sandoglobulina IgG source was assayed for purity and optimum reagent's concentration and incubation times were determined. It was purified by column chromatography and labelled with Sn 2+ reduced technetium in the presence of MDP. The kit is easy to prepare, labeling efficiency is >(97±1.9)% and stable for 6 hours.The immunoreactivity of the 99 Tc-IgG was verified by electrophoresis and Western blot tests. The IgG retained its structure after both the reducing and labeling processes and it was the only labeled species. (author)

  1. Anomalous phosphine sensitivity coefficients as probes for a possible variation of the proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Špirko, V.

    2018-02-01

    A robust variational approach is used to investigate the sensitivity of the rotation-vibration spectrum of phosphine (PH3) to a possible cosmological variation of the proton-to-electron mass ratio, μ. Whilst the majority of computed sensitivity coefficients, T, involving the low-lying vibrational states acquire the expected values of T ≈ -1 and T ≈ -1/2 for rotational and ro-vibrational transitions, respectively, anomalous sensitivities are uncovered for the A1 - A2 splittings in the ν2/ν4, ν1/ν3 and 2ν _4^{ℓ=0}/2ν _4^{ℓ=2} manifolds of PH3. A pronounced Coriolis interaction between these states in conjunction with accidentally degenerate A1 and A2 energy levels produces a series of enhanced sensitivity coefficients. Phosphine is expected to occur in a number of different astrophysical environments and has potential for investigating a drifting constant. Furthermore, the displayed behaviour hints at a wider trend in molecules of C_{3v}(M) symmetry, thus demonstrating that the splittings induced by higher-order ro-vibrational interactions are well suited for probing μ in other symmetric top molecules in space, since these low-frequency transitions can be straightforwardly detected by radio telescopes.

  2. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABA(B) receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation.

    Science.gov (United States)

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, L A; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, J P; Nilsson, K; Oja, S S; Saransaari, P; von Unge, S

    2012-03-01

    Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABA(B) receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABA(B) receptors. To understand the structure-activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. The compounds were characterized in terms of GABA(B) agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABA(B) receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABA(B) receptor agonism may afford therapeutic effects. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  3. Bridging Binding Modes of Phosphine-Stabilized Nitrous Oxide to Zn(C6F5)2

    NARCIS (Netherlands)

    Neu, Rebecca C.; Otten, Edwin; Stephan, Douglas W.

    2009-01-01

    Reaction of [tBu3PN2O(B(C6H4F)3)] with 1, 1.5, or 2 equivalents of Zn(C6F5)2 affords the species [{tBu3PN2OZn(C6F5)2}2], [{tBu3PN2OZn(C6F5)2}2Zn(C6F5)2], and [tBu3PN2O{Zn(C6F5)2}2] displaying unique binding modes of Zn to the phosphine-stabilized N2O fragment.

  4. A computed room temperature line list for phosphine

    Science.gov (United States)

    Sousa-Silva, Clara; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0-8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the rotational spectrum. An analysis of the comparison between the theoretical data created and the existing experimental data is performed, and suggestions for future improvements and assignments to the HITRAN database are made.

  5. Occupational phosphine gas poisoning at veterinary hospitals from dogs that ingested zinc phosphide--Michigan, Iowa, and Washington, 2006-2011.

    Science.gov (United States)

    2012-04-27

    Zinc phosphide (Zn3P2) is a readily available rodenticide that, on contact with stomach acid and water, produces phosphine (PH3), a highly toxic gas. Household pets that ingest Zn3P2 often will regurgitate, releasing PH3 into the air. Veterinary hospital staff members treating such animals can be poisoned from PH3 exposure. During 2006-2011, CDC's National Institute for Occupational Safety and Health (NIOSH) received reports of PH3 poisonings at four different veterinary hospitals: two in Michigan, one in Iowa, and one in Washington. Each of the four veterinary hospitals had treated a dog that ingested Zn3P2. Among hospital workers, eight poisoning victims were identified, all of whom experienced transient symptoms related to PH3 inhalation. All four dogs recovered fully. Exposure of veterinary staff members to PH3 can be minimized by following phosphine product precautions developed by the American Veterinary Medical Association (AVMA). Exposure of pets, pet owners, and veterinary staff members to PH3 can be minimized by proper storage, handling, and use of Zn3P2 and by using alternative methods for gopher and mole control, such as snap traps.

  6. Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Page, Zachariah A. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Liu, Feng [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Russell, Thomas P. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Emrick, Todd [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA

    2014-01-01

    Ionic liquids (ILs) were utilized for the rapid air-stable Suzuki polymerization of polar zwitterionic thiophene monomers, precluding the need for volatile organic solvents, phosphine ligands and phase transfer catalysts typically used in conjugated polymer synthesis.

  7. Di-μ-chlorido-bis{[μ-1,8-bis(diisopropylphosphanyl-9,10-dihydro-9,10-ethanoanthracene-κ2P:P′]-μ-chlorido-μ-methylidene-dipalladium(II} tetrahydrofuran pentasolvate

    Directory of Open Access Journals (Sweden)

    Thomas Schnetz

    2010-04-01

    Full Text Available The title compound, [Pd4(CH22Cl4(C28H40P22]·5C4H8O, possesses a tetranuclear palladium core with four bridging chlorido ligands and two bridging methylene units, as well as two bridging anthracene-based bis-phosphine ligands. This tetranuclear complex can be considered as being composed of two μ-chlorido-bridged LPd2 units. The structural motif of these LPd2 units shows two doubly bridged palladium centers between the P atoms of the bis-phosphine ligand. One of these bridges is a μ-Cl atom, the other a μ-methylene group. The coordination environment around each palladium center is essentially square planar. We ascribe the oxidation state +II to the palladium centers and do not assume Pd—Pd bonds [shortest distances 2.8110 (5 and 2.8109 (6 Å]. Co-crystallized with the palladium complex we found five non-coordinating tetrahydrofuran solvent molecules, one of which is disordered over two positions in a 0.429 (9:0.571 (8 ratio.

  8. Solventless Substitution Reaction of Solid Phosphine Ligands with ...

    African Journals Online (AJOL)

    NJD

    the starting material into products at this temperature showed that the salt is the ... melt, since all the reactants are in the molten phase at this ..... an electron transfer chain (ETC) mechanism induced by the presence ... The heating device was.

  9. Hydrogenation of unactivated enamines to tertiary amines: rhodium complexes of fluorinated phosphines give marked improvements in catalytic activity

    Directory of Open Access Journals (Sweden)

    Sergey Tin

    2015-05-01

    Full Text Available In the hydrogenation of sluggish unactivated enamine substrates, Rh complexes of electron-deficient phosphines are demonstrated to be far more reactive catalysts than those derived from triphenylphosphine. These operate at low catalyst loadings (down to 0.01 mol % and are able to reduce tetrasubstituted enamines. The use of the sustainable and environmentally benign solvent (R-limonene for the reaction is also reported with the amine isolated by acid extraction.

  10. Synthesis of Carbocyclic Hydantocidins via Regioselective and Diastereoselective Phosphine-Catalyzed [3 + 2]-Cycloadditions to 5-Methylenehydantoins

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Tien Q.; Pyne, Stephen G.; Skelton, Brian W.; White, Allan H. (UWA); (Wollongong)

    2010-07-20

    The phosphine-catalyzed [3 + 2]-cycloaddition of 5-methylenehydantoins 4 with the ylides 5, derived from addition of tributylphosphine to the 2-butynoic acid derivatives, 6a-d, gives spiro-heterocyclic products. The camphor sultam derivative 6b gives optically active products. Noteable was that the ylides derived from ethyl 2-butynoate and the 3-(2-butynoyl)-1,3-oxazolidin-2-one derivatives 6c and 6d gave spiro-heterocyclic products with reverse regioselectivities. The N,N-dibenzylprotected cycloadduct has been converted to carbocyclic hydantocidin and 6,7-diepi-carbocyclic hydantocidin.

  11. Two novel mixed-ligand complexes containing organosulfonate ligands.

    Science.gov (United States)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  12. Study of reactivity of p-cymene ruthenium(II) dimer towards diphenyl ...

    Indian Academy of Sciences (India)

    Unknown

    The reaction of [{(η6-p-cymene)Ru(µ-Cl)}2Cl2] with functionalized phosphine viz, diphenyl-. 2-pyridylphosphine ... ing from the displacement of the p-cymene ligand. ... The structures of complexes 1 and 2 have been confirmed by single crystal.

  13. Phosphine reduced IgG. A new method for {sup 99m}Tc labeling immunoglobulins

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga de Murphy, C; Melendez-Alafort, L [Radiofarmacia Departamento de Medicina Nuclear, Instituto Nacional de Nutricion Salvador Zubiran, Mexico (Mexico); Martinez-Rivero, O [Laboratorio de Quimica Organica, Facultad de Quimica, Universidad de la Habana, Habana (Cuba); Gomez, E [Departamento de Fisiologia de la Nutricion, Instituto Nacional de Nutricion Salvador Zubiran, Mexico (Mexico); Ferro-Flores, G [Depeartamento del Reactor y Materiales Radioactivos, Instituto Nacional de Investigaciones Nucleares, Mexico (Mexico)

    1997-09-01

    A new technetium labeling method for immunoglobulins reduced with tris(2-carboxy-ethyl)phosphine hydrochloride is presented. The Sandoglobulina IgG source was assayed for purity and optimum reagent`s concentration and incubation times were determined. It was purified by column chromatography and labelled with Sn{sup 2+} reduced technetium in the presence of MDP. The kit is easy to prepare, labeling efficiency is >(97{+-}1.9)% and stable for 6 hours.The immunoreactivity of the {sup 99}Tc-IgG was verified by electrophoresis and Western blot tests. The IgG retained its structure after both the reducing and labeling processes and it was the only labeled species. (author). 11 refs.

  14. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  15. Phosphine-functionalized graphene oxide, a high-performance electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Ensafi, Ali A.; Golbon Haghighi, Mohsen; Jafari-Asl, Mehdi

    2018-01-01

    Here, a new approach for the synthesis of phosphine-functionalized graphene oxide (GO-PPh2) was developed. Using a simple method, diphenylphosphine group was linked to the hydroxyl group of OH-functionalized graphene that existing at the graphene surface. The electrochemical activity of GO-PPh2 for electrochemical oxygen reduction was checked. The results demonstrated that the new carbon hybrid material has a powerful potential for electrochemical oxygen reduction reaction (ORR). Moreover, GO-PPh2 as an electrocatalyst for ORR exhibited tolerance for methanol or ethanol as a result of crossover effect. In comparison with commercial Pt/C and Pt/rGO electrocatalysts, results showed that GO-PPh2 has a much higher selectivity, better durability, and much better electrochemical stability towards the ORR. The proposed method based on GO-PPh2 introduce an efficient electrocatalyst for further application in fuel cells.

  16. Intra-group separation of rare earths using new organic phosphorus ligands

    International Nuclear Information System (INIS)

    Hadic, Sanela

    2017-01-01

    Rare earth elements (REE) have unique magnetic, photophysical, and chemical properties and they are therefore used in numerous high-technology applications. However, to this day, the isolation of pure rare earths from primary and secondary raw materials is very challenging. In this work, the hydrometallurgical separation of neighboring rare earths (e.g., praseodymium/ neodymium) was optimized with novel selective extraction agents. The separation of rare earths (yttrium and all lanthanides except promethium) was investigated with fourteen new organophosphorus compounds. Oxygen-bearing phosphinic acids yielded good separation results for heavy rare earths (dysprosium to lutetium). For light rare earths (lanthanum to neodymium), particularly high separation factors were realized with synergistic systems containing an aromatic dithiophosphinic acid and a co-extractant, such as tris (2-ethylhexyl) phosphate (TEHP). Optimization studies of the latter extraction system revealed an extremely high separation factor (SF) of 4.21 between praseodymium and neodymium. Another focus of this work was to understand the extraction mechanism. With the aid of nuclear magnetic resonance spectroscopy ("1H-NMR) and time-resolved laser fluorescence spectroscopy (TRLFS), the complex stoichiometry of promising extraction systems was examined. Studies revealed a dependency between the selectivity for rare earths and the coordination number of the formed complexes. In addition, temperature-dependent extraction experiments were performed and thermodynamic data (ΔG, ΔH, and ΔS) determined. These data provided additional information about the origin of selectivity for neighboring rare earths. With regard to the industrial capability of the investigated extraction systems, the chemical durability of ligands was studied under process-relevant conditions. Qualitative and quantitative analytical methods (e.g., GC-MS) were used in long-term experiments to determine the ligand degradation. After

  17. Grafting heterogeneous catalyst with gamma radiation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  18. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures

    OpenAIRE

    Ibrahim, Khalid

    2006-01-01

    Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...

  19. DFT Investigation of the Palladium-Catalyzed Ene-Yne Coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Tanner, David Ackland; Skrydstrup, T.

    2010-01-01

    ). Concerning chemoselectivity, the calculations also clarify why the ene-yne coupling is able to dominate over plausible alternative reaction pathways such as alkene homocoupiing and alkyne polymerization. The role of the phosphine ligand at various stages of the catalytic cycle has also been delineated....

  20. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    Science.gov (United States)

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  1. A phosphine mediated sequential annulation process of 2-tosylaminochalcones with MBH carbonates to construct functionalized aza-benzobicyclo[4.3.0] derivatives.

    Science.gov (United States)

    Zhang, Qinglong; Zhu, Yannan; Jin, Hongxing; Huang, You

    2017-04-04

    A novel phosphine mediated sequential annulation process to construct functionalized aza-benzobicyclo[4.3.0] derivatives has been developed involving a one-pot sequential catalytic and stoichiometric process, which generates a series of benzobicyclo[4.3.0] compounds containing one quaternary center with up to 94% yield and 20 : 1 dr value. In this reaction, MBH carbonates act as 1,2,3-C 3 synthons.

  2. Chlorido{4-ethyl-1-[1-(pyrazin-2-ylethylidene]thiosemicabazidato-κS}bis(triphenylphosphane-κPsilver(I

    Directory of Open Access Journals (Sweden)

    Md. Alamgir Hossain

    2013-03-01

    Full Text Available The title compound, [Ag(C9H13N5SCl(C18H15P2], crystallizes with four independent molecules in the asymmetric unit, in each of which the Ag atom is in a distorted tetrahedral coordination, defined by the chloride ligand, the S atom of the neutral ligand and two P atoms derived from the triphenyl phosphine ligands. The thiosemicarbazone acts as a monodentate ligand through its thione S atom. An intramolecular N—H...Cl hydrogen bond occurs in two of the independent molecules. In the crystal, the molecules are assembled through N—H...Cl hydrogen bonds, forming chains along [101].

  3. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. On the Nature of the Intermediates and the Role of Chloride Ions in Pd-Catalyzed Allylic Alkylations: Added Insight from Density Functional Theory

    DEFF Research Database (Denmark)

    Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland

    2008-01-01

    The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...

  5. Novel cleavage and oligomerization reactions of nickel (o) complexes. Application to homogeneous deoxygenation and desulfurization

    International Nuclear Information System (INIS)

    Eisch, J.J.; Im, K.R.

    1979-01-01

    The ease of interaction of Ni(0) complexes with organic substrates has been shown to depend upon both the ligands on nickel and the solvent. The presence of α,α'-bipyridyl with the Ni(0) complex and the alkyne led to the isolation of a nickelacyclopropene, an observation in accord with the recently proposed metallocyclic pathway for the Ni(0)-catalyzed trimerization of alkynes. Allylic and benzylic ethers and epoxides have been observed to undergo oxidative insertion of Ni(0) into their C-O bonds with solvent (TMEDA > THF (tetrahydrofuran) > Et 2 O > C 6 H 6 ) and ligand (Et 3 P (tripthyl phosphine) > Ph 3 P (triphenyl phosphine); α,α'-bipy > COD) effects consistent with an electron-transfer attack by Ni(0). With such sulfur heterocycles as dibenzothiophene, phenoxathiin, phenothiazine, and thianthrene, a 1:1 admixture of (COD) 2 Ni with α,α'-bipyridyl gave as the principal product the desulfurized, ring-contracted cyclic product

  6. Synthesis and Characterization of Ag(I) and Pd(II) Complexes with a Pyridine Substituted N-Heterocyclic Carbene Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Young; Jung, Hyun Jin; Lee, Dong Heon [Chonbuk National Univ., Jeonju (Korea, Republic of); Park, Gyung Se [Kunsan National Univ., Kunsan (Korea, Republic of)

    2010-06-15

    We have used our new tridentate pyridine substituted N-heterocyclic carbene to generate an interesting trinuclear [((MepyCH{sub 2}){sub 2}-Im){sub 3}Ag{sub 3}]{sup 3+} complex, displaying very short Ag-Ag separations. A Pd(II)-NHC complex was prepared from [((MepyCH{sub 2}){sub 2}-Im){sub 3}Ag{sub 3}]{sup 3+} via a facile transmetallation, leading to a dimeric [(MepyCH{sub 2}){sub 2}-ImPdCl]{sub 2}{sup 2+} complex. Future plans are underway for the survey of the potential applications of these new NHC complexes as luminesent materials or homogeneous catalysts. Since Arduengo's discovery of the first isolable free carbene in 1991, N-heterocyclic carbenes (NHC) have been extensively utilized as ligands for transition metals. NHC are generally more stable than two extreme types of carbenes, the Fischer and the Schrock carbenes. They are good σ donors like most tertiary phosphins, PR{sub 3}, but the π-bonding with the metal is rather weak. The thriving studies of NHC-coordinated metal complexes produced a wide range of applications from homogeneous catalysts to materials science.

  7. Asymmetric Hydrogenation of Seven-Membered C=N-containing Heterocycles and Rationalization of the Enantioselectivity.

    Science.gov (United States)

    Balakrishna, Bugga; Bauzá, Antonio; Frontera, Antonio; Vidal-Ferran, Anton

    2016-07-18

    Iridium(I) complexes with phosphine-phosphite ligands efficiently catalyze the enantioselective hydrogenation of diverse seven-membered C=N-containing heterocyclic compounds (eleven examples; up to 97 % ee). The P-OP ligand L3, which incorporates an ortho-diphenyl substituted octahydrobinol phosphite fragment, provided the highest enantioselectivities in the hydrogenation of most of the heterocyclic compounds studied. The observed stereoselection was rationalized by means of DFT calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reductive Coupling of Carbon Monoxide in a Rhenium Carbonyl Complex with Pendant Lewis Acids

    OpenAIRE

    Miller, Alexander J. M.; Labinger, Jay A.; Bercaw, John E.

    2008-01-01

    Phosphinoborane ligands impart unique reactivity to a rhenium carbonyl cation relative to simple phosphine complexes. Addition of either triethylborohydride or a platinum hydride (that can be formed from H2) forms a rhenium boroxycarbene. This carbene, which crystallizes as a dimer, disproportionates over a period of days to afford the starting cation and a structurally unprecedented boroxy(boroxymethyl)carbene, in which a new C−C bond has been formed between two reduced CO ligands. This prod...

  9. Kinetic Investigation of Homogeneous H(2)-D(2) Equilibration Catalyzed by Pt-Au Cluster Compounds. Characterization of the Cluster [(H)Pt(AuPPh(3))(9)](NO(3))(2).

    Science.gov (United States)

    Rubinstein, Leon I.; Pignolet, Louis H.

    1996-11-06

    The new Pt-Au hydrido cluster compound [(H)Pt(AuPPh(3))(9)](NO(3))(2) (3) has been synthesized and characterized by NMR, FABMS, and single-crystal X-ray diffraction [triclinic, P&onemacr;, a = 17.0452(1) Å, b = 17.4045(2) Å, c = 55.2353(1) Å, alpha = 89.891(1) degrees, beta = 85.287(1) degrees, gamma = 75.173(1) degrees, V = 15784.0(2) Å(3), Z = 4 (two molecules in asymmetric unit), residual R = 0.089 for 45 929 observed reflections and 3367 variables, Mo Kalpha radiation]. The Pt(AuP)(9) core geometry is a distorted icosahedron with three vertices vacant. The Pt-Au, Au-Au, and Au-P distances are within the normal ranges observed in other Pt-Au clusters. This cluster is a catalyst for H(2)-D(2) equilibration in homogeneous solution phase and has been used in a general mechanistic study of this reaction catalyzed by Pt-Au clusters. We previously proposed that a key step in the mechanism for catalytic H(2)-D(2) equilibration is the dissociation of a PPh(3) ligand to give a cluster with an open Au site for bonding of H(2) or D(2). This was based on qualitative observations that PPh(3) inhibited the rate of HD production with [Pt(AuPPh(3))(8)](NO(3))(2) (1) as catalyst. In order to test this hypothesis, phosphine inhibition (on the rate of HD production) and phosphine ligand exchange kinetic experiments were carried out with [(H)(PPh(3))Pt(AuPPh(3))(7)](NO(3))(2) (2) and 3. In this paper we show that the rate constant for phosphine dissociation determined from the PPh(3) inhibition rate study of H(2)-D(2) equilibration with cluster 2 is nearly identical to the rate constant for dissociative phosphine ligand exchange. The slower rate for H(2)-D(2) equilibration observed with 3 compared with 2 (5.5 x 10(-3) vs 7.7 x 10(-2) turnover s(-1)) is explained by its smaller rate constant for phosphine dissociation (2.8 x 10(-5) vs 2.9 x 10(-4) s(-1)). The fact that clusters 2 and 3 show similar kinetic behaviors suggests that the PPh(3) dissociation step in the catalytic H(2

  10. Ligands in PSI structures

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Morse, Andrew; Elsliger, Marc-André; Wilson, Ian A.; Deacon, Ashley

    2010-01-01

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  11. Preparation of nuclear pure uranium trioxide from El Atshan crude yellow cake using Tri-octyl-phosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, A K; Serag, H M [Nuclear materials authority, (Egypt); Abdallah, A M [Faculty of science, university of mansoura, (Egypt)

    1995-10-01

    Tri n-octyl phosphine oxide (TOPO) has been investigated as a refinery extractant for crude yellow cake prepared from El Atshan ore, Eastern Desert, Egypt. Relevant factors namely: type and concentration of acid, TOPO concentration, effect of temperature, residence time and organic/ aqueous ratio have been studied and optimized. The required number of extraction and stages was determined. Further purification could be achieved for the final product by selective precipitation of uranium peroxide from the stripped solution using hydrogen peroxide followed by its calcination. Complete chemical analysis of the final product has proved its nuclear purity. 8 figs., 3 tabs.

  12. Preparation of nuclear pure uranium trioxide from El Atshan crude yellow cake using Tri-octyl-phosphine oxide

    International Nuclear Information System (INIS)

    Hammad, A.K.; Serag, H.M.; Abdallah, A.M.

    1995-01-01

    Tri n-octyl phosphine oxide (TOPO) has been investigated as a refinery extractant for crude yellow cake prepared from El Atshan ore, Eastern Desert, Egypt. Relevant factors namely: type and concentration of acid, TOPO concentration, effect of temperature, residence time and organic/ aqueous ratio have been studied and optimized. The required number of extraction and stages was determined. Further purification could be achieved for the final product by selective precipitation of uranium peroxide from the stripped solution using hydrogen peroxide followed by its calcination. Complete chemical analysis of the final product has proved its nuclear purity. 8 figs., 3 tabs

  13. Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio [Departament de Quimica Analitica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)], E-mail: antonio.domenech@uv.es; Koshevoy, Igor O.; Penno, Dirk; Ubeda, Maria Angeles [Departament de Quimica Inorganica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)

    2008-03-10

    The palladium(II) dinuclear complex with bridging cyclometalated phosphines, {l_brace}Pd{sub 2}[{mu}-(C{sub 6}H{sub 4})PPh{sub 2}]{sub 2}({mu}-O{sub 2}CCH{sub 3}){sub 2}{r_brace} (Pd{sub 2}L{sub 2}), having a paddlewheel structure, is reversibly oxidized in CH{sub 2}Cl{sub 2} to a dinuclear palladium(III) analogue via two successive one-electron steps. Solid state voltammetry of Pd{sub 2}L{sub 2} in contact with aqueous electrolytes produce as one-electron oxidation with two competing mechanisms involving anion intercalation/anion binding between/to metal centres, chloride ions acting as inhibitors for the first pathway. R- and S-Pd{sub 2}L{sub 2} produces a significant stereoselective electrocatalytic activity with respect to the oxidation of L- and D-glutamic acid in alkaline media.

  14. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  15. Tripodal polyphosphine ligands as inductors of chelate ring-opening processes in mononuclear palladium(II) and platinum(II) compounds. The X-ray crystal structure of two derivatives containing dangling phosphorus.

    Science.gov (United States)

    Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther

    2010-03-07

    The reaction of NP(3) (tris[2-(diphenylphosphino)ethyl]amine and PP(3) (tris[2-(diphenylphosphino)ethyl]phosphine) with the five-coordinate complexes [PdCl(NP(3))]Cl (1) and [MX(PP(3))]X [M = Pd: X = Cl(2), Br(3), I(4); M = Pt: X = Cl(5), Br(6), I(7)], respectively, followed by (31)P{(1)H}NMR when X = Cl, led to the formation of unprecedented four-coordinate halides in a 1 : 2 metal to ligand ratio, [M(AP(3))(2)]X(2) [A = N, M = Pd: X = Cl(8); A = P, M = Pd: X = Cl(9), Br(10), I(11); A = P, M = Pt: X = Cl(12), Br(13), I (14)], containing reactive dangling phosphorus. Given the non characterised precursors [M(ONO(2))(PP(3))](NO(3))], the interaction between the heteronuclear species [MAg(NO(3))(3)(PP(3))] [M = Pd(15), Pt(16)] and PP(3) was explored. It was found that the addition of 1 equivalent of phosphine afforded [MAg(NO(3))(PP(3))(2)](NO(3))(2) [M = Pd(15*), Pt(16*)] containing Ag(I) bound to two dangling phosphorus while the reaction with 2 equivalents led to the complexes [M(PP(3))(2)](NO(3))(2) [M = Pd (17), Pt (18)] in coexistence with [Ag(2)(mu-PP(3))(2)](NO(3))(2). The fate of Ag(I) on the reaction of the mixed metal compounds with excess PP(3) consisted of preventing dissociation, observed in solution for halides, and acting as an assistant for crystallization. Colourless single crystals of 18 and 10, studied by X-ray diffraction, were afforded by reaction of 16 with 4 equivalents of PP(3) and from solutions of 10 in chloroform coexisting with red crystals of 3, respectively. The structures revealed the presence of dications [M(PP(3))(2)](2+) that show two five-membered chelate rings to M(II) in a square-planar arrangement and four uncoordinated phosphine arms with the counter anions being symmetrically placed at 4.431 (Br(-)) and 13.823 (NO(3)(-)) A from M(II) above and below its coordination, MP(4), plane. Complexes 9 and 12 were shown to undergo an interesting reactivity in solution versus group 11 monocations. The reactions consisted of conversions

  16. Phosphine synthetic route features and postsynthetic treatment of InP quantum dots

    International Nuclear Information System (INIS)

    Mordvinova, Natalia; Vinokurov, Alexander; Dorofeev, Sergey; Kuznetsova, Tatiana; Znamenkov, Konstantin

    2014-01-01

    Highlights: • Quantum dots with average diameter of 3–5 nm were synthesized. • PH 3 was used as novel phosphorous precursor. • Electrophoresis was demonstrated to be an effective method of purification of QDs. • Photoeching leads to quantum yields about 20%. • The concentration and time dependencies for photoetching of QDs were obtained. -- Abstract: In this paper we report on the development of synthesis of InP quantum dots with a gaseous phosphine PH 3 as a source of phosphorus and myristic acid and TOP/TOPO as stabilizers. Samples synthesized using myristic acid as stabilizer at relatively low temperatures were found to contain admixture of In(OH) 3 . We studied the influence of HF concentration and duration of illumination on luminescence properties of InP quantum dots during photoetching process. Quantum yields of photoetched samples reached about 20%. Additionally, electrophoresis as a new technique of purification and size-depended separation of synthesized quantum dots was developed

  17. Electron transport in gold colloidal nanoparticle-based strain gauges

    Science.gov (United States)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  18. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  19. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  20. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  1. Toxicidade da combinação de dióxido de carbono e fosfina sob diferentes temperaturas para Tribolium castaneum Toxicity of the carbon dioxide and phosphine combination to Tribolium castaneum under different temperatures

    Directory of Open Access Journals (Sweden)

    Raimundo W. S. Aguiar

    2010-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da temperatura sobre a toxicidade da combinação de dióxido de carbono e fosfina, para os estágios de desenvolvimento de Tribolium castaneum (Herbst (Coleoptera: Tenebrionidae. A toxicidade da combinação de 5% de dióxido de carbono e 1 g m-3 de fosfina para os estágios de ovo, larvas de 5, 10 e 15 dias, pupa e adulto de T. castaneum, foi estudada nas temperaturas de 25, 30, 35, 40 e 45 °C, por meio de estimativas dos tempos de exposição letais para 50 e 95% dos insetos (TL50 e TL95. Curvas tempo-resposta foram estabelecidas mediante bioensaios com períodos crescentes de exposição à combinação do dióxido de carbono com a fosfina. Observou-se que os TL50 e TL95 reduziram com a elevação da temperatura em todos os estágios de T. castaneum avaliados. O estágio de larva de cinco dias foi a mais susceptível à combinação de dióxido de carbono e fosfina. De acordo com os resultados, a combinação do dióxido de carbono com a fosfina é alternativa potencial para diminuir a quantidade de fosfina aplicada em produtos armazenados, por apresentar alta toxicidade para todos os estágios de T. castaneum sob diferentes temperaturas.The objective of this work was to assess the effect of temperature on the toxicity of the carbon dioxide-phosphine combination for the developmental stages of Tribolium castaneum (Herbst (Coleoptera: Tenebrionidae. The toxicity of combination of 5% carbon dioxide and 1 g m-3 phosphine in the developmental stages of egg, larvae of 5, 10 and 15 days, pupae and adult of T. castaneum was studied under the temperatures of 25, 30, 35, 40 and 45 °C, through the estimation of lethal insect exposure times of 50 and 95% (LT50 and LT95. For that, time-response curves were established through bioassays with increasing periods of exposure to the combination of carbon dioxide and phosphine. A reduction of LT50 and LT95 was observed with temperature increase in all

  2. A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2-Substituted Pyridinium Salts

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    Herein we describe a new methodology for the asymmetric hydrogenation (AH) of 2-substituted pyridinium salts. An iridium catalyst based on a mixture of a chiral monodentate phosphoramidite and an achiral phosphine was shown to hydrogenate N-benzyl-2-arylpyiridinium bromides to the corresponding

  3. (Carbonyl-1κC)bis­[2,3(η5)-cyclo­penta­dien­yl][μ3-(S-methyl trithio­carbonato)methylidyne-1:2:3κ4 C,S′′:C:C](triphenyl­phosphine-1κP)(μ3-sulfido-1:2:3κ3 S)dicobalt(II)iron(II) trifluoro­methane­sulfonate

    Science.gov (United States)

    Manning, Anthony R.; McAdam, C. John; Palmer, Anthony J.; Simpson, Jim

    2008-01-01

    The asymmetric unit of the title compound, [FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3, consists of a triangular irondicobalt cluster cation and a trifluoro­methane­sulfonate anion. In the cation, the FeCo2 triangle is symmetrically capped on one face by an S atom and on the other by a C atom linked to a methyl trithio­carbonate residue that bridges the Fe—C bond. Each Co atom carries a cyclo­penta­dienyl ligand while the Fe atom coordinates to one carbonyl and one triphenyl­phosphine ligand. In the crystal structure, the cation is linked to the anion by a number of weak non-classical C—H⋯O and C—H⋯F hydrogen bonds and weak S⋯O (3.317 Å) and S⋯F (3.198 Å) inter­actions. The structure is further stabilized by additional inter­molecular C—H⋯O, C—H⋯F and O⋯O (2.942 Å) contacts, together with an unusual S⋯π(Cp) inter­action (S⋯centroid distance = 3.385 Å), generating an extended network. PMID:21202187

  4. Morphological Control of In x Ga 1–x P Nanocrystals Synthesized in a Nonthermal Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, Noah D. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Wheeler, Lance M. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Anderson, Nicholas C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Neale, Nathan R. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States

    2018-04-09

    We explore the growth of InxGa1-xP nanocrystals (x = 1, InP; x = 0, GaP; and 1 > x > 0, alloys) in a nonthermal plasma. By tuning the reactor conditions, we gain control over the morphology of the final product, producing either 10 nm diameter hollow nanocrystals or smaller 3 nm solid nanocrystals. We observe the gas-phase chemistry in the plasma reactor using plasma emission spectroscopy to understand the growth mechanism of the hollow versus solid morphology. We also connect this plasma chemistry to the subsequent native surface chemistry of the nanocrystals, which is dominated by the presence of both dative- and lattice-bound phosphine species. The dative phosphines react readily with oleylamine in an L-type ligand exchange reaction, evolving phosphines and allowing the particles to be dispersed in nonpolar solvents. Subsequent treatment by HF causes the solid InP1.5 and In0.5Ga0.5P1.3 to become photoluminescent, whereas the hollow particles remain nonemissive.

  5. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  6. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M

    2011-01-01

    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  7. Separation of lanthanides (III) and actinides (III) by calixarenes containing acetamide-phosphine oxides functions

    International Nuclear Information System (INIS)

    Garcia Carrera, A.; Dozol, J.F.; Rouquette, H.

    2001-01-01

    The carbamoyl methyl phosphine oxide CMPO is the well known extractant of the TRUEX process for extraction of actinides from highly salted acidic wastes. In the framework of an European research contract coordinated by CEA/DDCC. V. Boehmer (Mainz, Germany) synthesized calix(4)arenes bearing CMPO moieties either on the wide rim, or on the narrow rim. Some of these calixarenes used at a concentration 10 -3 M are more efficient than CMPO used at a two hundred fifty fold higher concentration. Moreover, calixarene skeleton leads to a strong selectivity among lanthanides, this selectivity is much less obvious for CMPO. Selectivity order is reversed according to whether CMPO unit is borne by the wide rim or the narrow rim. The most efficient calixarenes allow actinides to be separated from most of the lanthanides except the lightest ones. (authors)

  8. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Hassell, Anne M.; An, Gang; Bledsoe, Randy K.; Bynum, Jane M.; Carter, H. Luke III; Deng, Su-Jun J.; Gampe, Robert T.; Grisard, Tamara E.; Madauss, Kevin P.; Nolte, Robert T.; Rocque, Warren J.; Wang, Liping; Weaver, Kurt L.; Williams, Shawn P.; Wisely, G. Bruce; Xu, Robert; Shewchuk, Lisa M.

    2007-01-01

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  9. Investigation of the ROMP catalysis mechanism of norbornene using methods of density functional; Investigacao do mecanismo de catalise ROMP do norborneno utilizando metodos de funcional de densidade

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Pereira da, E-mail: carlosps1985@gmail.co [Institutor Federal de Educacao, Ciencia e Tecnologia do Piaui, Teresina, PI (Brazil); Lima, Francisco das Chagas Alves [Universidade Estadual do Piaui, Teresina, PI (Brazil). Coordenacao de Quimica; Leal, Regis Casimiro; Moita Neto, Jose Machado [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2010-07-01

    This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl{sub 2}(PH{sub 3}){sub 2}Ru=CH{sub 2}. The geometries and energy profile are similar to the Grubbs methylidene (Cl{sub 2}(PCy{sub 3}){sub 2}Ru=CH{sub 2} real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbornene) followed by dissociative substitution of a phosphine ligand with norbornene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol{sup -1}. (author)

  10. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  11. [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster

    KAUST Repository

    Alhilaly, Mohammad J.; Bootharaju, Megalamane Siddaramappa; Joshi, Chakra Prasad; Besong, Tabot M.D.; Emwas, Abdul-Hamid M.; Juarez-Mosqueda, Rosalba; Kaappa, Sami; Malola, Sami; Adil, Karim; Shkurenko, Aleksander; Hakkinen, Hannu; Eddaoudi, Mohamed; Bakr, Osman

    2016-01-01

    Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag-67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag-67(SPhMe2)(32)(PPh3)(8)](3+). The crystal structure shows an Ag-23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag-13, core was formed through an unprecedented centered cuboctahedron, i.e., Ag-13, unlike the common centered Ag-13 icosahedron geometry. Two types of ligand motifs, eight AgS3P and eight bridging thiols, were found to stabilize the whole cluster. The optical spectrum of this NC displayed highly structured multiple absorption peaks. The electronic structure and optical spectrum of Ag-67 were computed using time-dependent density functional theory (TDDFT) for both the full cluster [Ag-67(SPhMe2)(32)(PPh3)(8)](3+) and a reduced model [Ag-67(SH)(32)(PH3)(8)](3+). The lowest metal-to-metal transitions in the range 500-800 nm could be explained by considering the reduced model that shows almost identical electronic states to 32 free electrons in a jellium box. The successful synthesis of the large box-shaped Ag-67 NC facilitated by the combined use of phosphine and thiol paves the way for synthesizing other metal clusters with unprecedented shapes by judicious choice of thiols and phosphines.

  12. [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster

    KAUST Repository

    Alhilaly, Mohammad J.

    2016-10-13

    Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag-67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag-67(SPhMe2)(32)(PPh3)(8)](3+). The crystal structure shows an Ag-23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag-13, core was formed through an unprecedented centered cuboctahedron, i.e., Ag-13, unlike the common centered Ag-13 icosahedron geometry. Two types of ligand motifs, eight AgS3P and eight bridging thiols, were found to stabilize the whole cluster. The optical spectrum of this NC displayed highly structured multiple absorption peaks. The electronic structure and optical spectrum of Ag-67 were computed using time-dependent density functional theory (TDDFT) for both the full cluster [Ag-67(SPhMe2)(32)(PPh3)(8)](3+) and a reduced model [Ag-67(SH)(32)(PH3)(8)](3+). The lowest metal-to-metal transitions in the range 500-800 nm could be explained by considering the reduced model that shows almost identical electronic states to 32 free electrons in a jellium box. The successful synthesis of the large box-shaped Ag-67 NC facilitated by the combined use of phosphine and thiol paves the way for synthesizing other metal clusters with unprecedented shapes by judicious choice of thiols and phosphines.

  13. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng; Huang, Jianhua Z; Gao, Xin

    2014-01-01

    Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction

  14. Study of the properties of dialkyl thiophosphoric acids. Application to the extraction of U, in phosphoric and nitric solutions

    International Nuclear Information System (INIS)

    Benjelloun, N.

    1983-09-01

    A study is made of complex formation and liquid-liquid extraction of uranium (VI) by dialkyl-thiophosphoric acids of formula (RO) 2 POSH and by the synergic mixtures: dialkylthiophosphoric acids-phosphine oxides. The aqueous phases studied consist of concentrated phosphoric acid solutions and nitric acid solutions. Several methods, including distribution coefficient measurements, U.V., visible and infrared absorption spectrophotometries and magnetic resonance, were used to study the extraction mechanisms and the structures of species formed in the organic phase. The influence of different parameters (partition of extraction agent, dimerisation, acid ligand-phosphine oxide association, extraction of inorganic acids...) on the uranium (VI) distribution coefficients enabled the constants of complex formation in the aqueous phase and extraction in the organic phase to be determined. These various properties were compared with those of dialkyl phosphoric and dithiophosphoric acids. The mechanisms established prove that sulfur donors ligands form stable complexes with UO 2 2+ ions although U(VI) is considered as a ''hard class a'' acceptor according to Ahrland's classification [fr

  15. Blue phosphorescent mono-cyclometalated iridium(III) complexes

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Yang, Yoon A; Kim, Young Sik

    2010-01-01

    New deep blue phosphorescent iridium(III) complexes comprised of one cyclometalate, two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(Cl), Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(NCMe) + , and Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(CN), [F 2 Meppy = 2-(2', 4'- difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigated the strong field effects of ancillary ligands to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of the phosphine ligand with PPh 2 Me leads to more efficient deep-blue organic light-emitting devices (OLED) by thermal processing instead of through solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring, the electron-donating methyl group on the pyridyl ring, and the cyano strong field ancillary ligand increased the HOMO-LUMO gap and achieved a hypsochromic shift in the emission color. As a result, the maximum emission spectra of Ir(F 2 Meppy)-(PPh 2 Me) 2 (H)(Cl), Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(NCMe) + , and Ir(F 2 Meppy)(PPh 2 Me) 2- (H)(CN) were in the ranges of 440.5, 437, 436 nm, respectively.

  16. Emission Properties, Solubility, Thermodynamic Analysis and NMR Studies of Rare-Earth Complexes with Two Different Phosphine Oxides

    Directory of Open Access Journals (Sweden)

    Hiroki Iwanaga

    2010-07-01

    Full Text Available The paper proposes novel molecular designs for rare-earth complexes involving the introduction of two different phosphine oxide structures into one rare-earth ion. These designs are effective for improving solubility and emission intensity. Additionally, the complexes are indispensable for realizing high performances in LEDs and security media. The thermodynamic properties of Eu(III complexes are correlated with the solubility. Correlations between coordination structures and emission intensity were explained by NMR analysis. The luminous flux of red LED devices with Eu(III complexes is very high (20 mA, 870 m lumen. A new white LED has its largest spectra intensity in the red region and a human look much more vividly under this light.

  17. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  18. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng; Zheng, Bin; Huang, Kuo-Wei

    2014-01-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  19. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Science.gov (United States)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  20. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefins...

  1. Reduction of dinitrogen ligands

    International Nuclear Information System (INIS)

    Richards, R.L.

    1983-01-01

    Processes of dinitrogen ligand reduction in complexes of transition metals are considered. The basic character of the dinitrogen ligand is underlined. Data on X-ray photoelectronic spectroscopy and intensities of bands ν (N 2 ) in IR-spectra of nitrogen complexes are given. The mechanism of protonation of an edge dinitrogen ligand is discussed. Model systems and mechanism of nitrogenogenase are compared

  2. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  3. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2007-01-01

    An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  4. Relevance of phosphorus incorporation and hydrogen removal for Si:P {delta}-doped layers fabricated using phosphine

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y. [Centre for Quantum Computer Technology, School of Physics, The University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2005-05-01

    We present a study to determine the importance of phosphorus incorporation and hydrogen removal for the electrical activation of phosphorus dopants in Si:P {delta}-doped samples fabricated using phosphine dosing and molecular beam epitaxy (MBE). The carrier densities in these samples were determined from Hall effect measurements at 4 K sample temperature. An anneal to incorporate phosphorus atoms into substitutional lattice sites is critical to achieving full dopant activation after Si encapsulation by MBE. Whilst the presence of hydrogen can degrade the quality of the Si encapsulation layer, we show that it does not adversely impact the electrical activation of the phosphorus dopants. We discuss the relevance of our results to the fabrication of nano-scale Si:P devices. (copyright 2005 WILEY-VCH Verlag GmbH and C o. KGaA, Weinheim) (orig.)

  5. Schiff base ligand

    Indian Academy of Sciences (India)

    Unknown

    Low-temperature stoichiometric Schiff base reaction in air in 3 : 1 mole ratio between benz- aldehyde and triethylenetetramine (trien) in methanol yields a novel tetraaza µ-bis(bidentate) acyclic ligand L. It was .... electrochemical work was performed as reported in ..... change in ligand shape through change in oxidation.

  6. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Ammonia and phosphine

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2004-08-01

    Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for ammonia (NH 3 ) and phosphine (PH 3 ). About 820 (NH 3 ) and 190 (PH 3 ) papers were compiled respectively. Comprehensive author indexes for each molecule are included. The bibliography covers the period 1922 through 2000 for NH 3 and 1928 through 2000 for PH 3 . Finally, author's comments for NH 3 electron collision cross sections are given. (author)

  7. Hydrogen generation at ambient conditions: application in fuel cells.

    Science.gov (United States)

    Boddien, Albert; Loges, Björn; Junge, Henrik; Beller, Matthias

    2008-01-01

    The efficient generation of hydrogen from formic acid/amine adducts at ambient temperature is demonstrated. The highest catalytic activity (TOF up to 3630 h(-1) after 20 min) was observed in the presence of in situ generated ruthenium phosphine catalysts. Compared to the previously known methods to generate hydrogen from liquid feedstocks, the systems presented here can be operated at room temperature without the need for any high-temperature reforming processes, and the hydrogen produced can then be directly used in fuel cells. A variety of Ru precursors and phosphine ligands were investigated for the decomposition of formic acid/amine adducts. These catalytic systems are particularly interesting for the generation of H2 for new applications in portable electric devices.

  8. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    Science.gov (United States)

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  9. Investigation of the thermal degradation of PET, zinc phosphinate, OMPOSS and their blends-Identification of the formed species

    Energy Technology Data Exchange (ETDEWEB)

    Vannier, Aurore [Centre de Recherche et d' Etude sur les Procedes d' Ignifugation des Materiaux (CREPIM), Parc de la porte Nord, F-62200 Bruay-la-Buissiere (France); Duquesne, Sophie, E-mail: Sophie.duquesne@ensc-lille.fr [Laboratoire des Procedes d' Elaboration de Revetements Fonctionnels (PERF), UMR-CNRS 8008/LSPES - Ecole Nationale Superieure de Chimie de Lille, BP 90108, F-59652 Villeneuve d' Ascq (France); Bourbigot, Serge [Laboratoire des Procedes d' Elaboration de Revetements Fonctionnels (PERF), UMR-CNRS 8008/LSPES - Ecole Nationale Superieure de Chimie de Lille, BP 90108, F-59652 Villeneuve d' Ascq (France); Alongi, Jenny; Camino, Giovanni [Centro di Cultura per l' Ingegneria delle Materie Plastiche - Politechnico di Torino, V.le T. Michel, 5, 15100 Alessandria (Italy); Delobel, Rene [Centre de Recherche et d' Etude sur les Procedes d' Ignifugation des Materiaux (CREPIM), Parc de la porte Nord, F-62200 Bruay-la-Buissiere (France)

    2009-11-10

    The incorporation of both OMPOSS and Exolit OP950 (zinc phosphinate) into PET leads to increased fire retarding properties and a synergistic effect has been established between the three components. Here the thermal degradation of OMPOSS, Exolit OP950, PET and blends of them is investigated via thermal degradation in pyrolytic and thermo-oxidative conditions. All species formed during the degradation of the additives or the blends are identified by solid state NMR and X-ray diffraction in the condensed phase and by GC-MS in the gas phase. The investigation shows that no chemical interaction occurs between the additives, which suggests that the synergy responsible for the improvement of fire properties of the material has a physical origin.

  10. Investigation of the thermal degradation of PET, zinc phosphinate, OMPOSS and their blends-Identification of the formed species

    International Nuclear Information System (INIS)

    Vannier, Aurore; Duquesne, Sophie; Bourbigot, Serge; Alongi, Jenny; Camino, Giovanni; Delobel, Rene

    2009-01-01

    The incorporation of both OMPOSS and Exolit OP950 (zinc phosphinate) into PET leads to increased fire retarding properties and a synergistic effect has been established between the three components. Here the thermal degradation of OMPOSS, Exolit OP950, PET and blends of them is investigated via thermal degradation in pyrolytic and thermo-oxidative conditions. All species formed during the degradation of the additives or the blends are identified by solid state NMR and X-ray diffraction in the condensed phase and by GC-MS in the gas phase. The investigation shows that no chemical interaction occurs between the additives, which suggests that the synergy responsible for the improvement of fire properties of the material has a physical origin.

  11. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. New superhindered polydentate polyphosphine ligands P(CH2CH2P(t)Bu2)3, PhP(CH2CH2P(t)Bu2)2, P(CH2CH2CH2P(t)Bu2)3, and their ruthenium(II) chloride complexes.

    Science.gov (United States)

    Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M

    2012-03-05

    The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.

  13. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U

    2007-01-01

    is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were...... found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same...

  14. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite

    International Nuclear Information System (INIS)

    Li, Fangxu; Zhong, Hong; Zhao, Gang; Wang, Shuai; Liu, Guangyi

    2015-01-01

    Highlights: • Flotation of cassiterite is carried out using a new collector HPA. • Phosphorous and oxygen of HPA forms chelation with Sn. • HPA exhibits good selectivity to cassiterite against magnetite and hematite. • HPA chemisorbs on cassiterite surface by form of Sn–P and Sn–O–P bond. - Abstract: In this paper, the flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid (HPA) to cassiterite were investigated by adsorption experiments, micro-flotation tests, zeta potential measurements, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The micro-flotation results indicated that compared with styrene phosphonic acid (SPA), diphosphonic acid (DPA), benzohydroxamic acid (BHA) and salicylhydroxamic acid (SHA), HPA exhibited excellent collecting power to cassiterite and superior selectivity against magnetite or hematite over a wide pH range. The results of adsorption experiments and zeta potential deduced that HPA chemisorb on cassiterite surfaces. The results of FTIR inferred HPA chemisorb onto cassiterite surfaces through its P and O atoms with the P–H and O–H bonds broken. XPS analysis further demonstrated HPA react with Sn species by formation of Sn–O–P and Sn–P bond.

  15. Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex

    KAUST Repository

    Haslinger, Stefan

    2014-11-03

    This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.

  16. Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex

    KAUST Repository

    Haslinger, Stefan; Kü ck, Jens W.; Hahn, Eva M.; Cokoja, Mirza; Pö thig, Alexander; Basset, Jean-Marie; Kü hn, Fritz

    2014-01-01

    This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.

  17. Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection

    Directory of Open Access Journals (Sweden)

    Zhu Chang-Qing

    2008-01-01

    Full Text Available AbstractA new simple method for synthesis of core/shell CdSe/ZnS nanocrystals (NCs is present. By adapting the use of cadmium stearate, oleylamine, and paraffin liquid to a non-injection synthesis and by applying a subsequent ZnS shelling procedure to CdSe NCs cores using Zinc acetate dihydrate and sulfur powder, luminescent CdSe/ZnS NCs with quantum yields of up to 36% (FWHM 42–43 nm were obtained. A seeding-growth technique was first applied to the controlled synthesis of ZnS shell. This method has several attractive features, such as the usage of low-cost, green, and environmentally friendlier reagents and elimination of the need for air-sensitive, toxic, and expensive phosphines solvent. Furthermore, due to one-pot synthetic route for CdSe/ZnS NCs, the approach presented herein is accessible to a mass production of these NCs.

  18. Dithioacetals as C{sup 2+} cation synthons

    Energy Technology Data Exchange (ETDEWEB)

    Tien-Yau Luh [National Taiwan Univ., Taipei (China)

    1995-12-31

    The nickel-catalyzed cross coupling reactions of the benzylic and allylic dithioacetal group with Grignard reagents group giving olefins will be presented. The reaction provides a convenient procedure for the synthesis of various vinylsilanes and silyl-substituted conjugated dienes. Allylic dithioacetals undergo geminal dimethylation reactions when bidentate phosphine ligands are used. Treatment of dithioacetals with geminal dimetallic species affords the corresponding olefination products.

  19. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  20. Blue phosphorescent mono-cyclometalated iridium(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Ho Wan; Yang, Yoon A; Kim, Young Sik [Hongik University, Seoul (Korea, Republic of)

    2010-12-15

    New deep blue phosphorescent iridium(III) complexes comprised of one cyclometalate, two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(Cl), Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(NCMe){sup +}, and Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(CN), [F{sub 2}Meppy = 2-(2', 4'- difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigated the strong field effects of ancillary ligands to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of the phosphine ligand with PPh{sub 2}Me leads to more efficient deep-blue organic light-emitting devices (OLED) by thermal processing instead of through solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring, the electron-donating methyl group on the pyridyl ring, and the cyano strong field ancillary ligand increased the HOMO-LUMO gap and achieved a hypsochromic shift in the emission color. As a result, the maximum emission spectra of Ir(F{sub 2}Meppy)-(PPh{sub 2}Me){sub 2}(H)(Cl), Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(NCMe){sup +}, and Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2-}(H)(CN) were in the ranges of 440.5, 437, 436 nm, respectively.

  1. Reductive coupling of carbon monoxide in a rhenium carbonyl complex with pendant Lewis acids.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2008-09-10

    Phosphinoborane ligands impart unique reactivity to a rhenium carbonyl cation relative to simple phosphine complexes. Addition of either triethylborohydride or a platinum hydride (that can be formed from H2) forms a rhenium boroxycarbene. This carbene, which crystallizes as a dimer, disproportionates over a period of days to afford the starting cation and a structurally unprecedented boroxy(boroxymethyl)carbene, in which a new C-C bond has been formed between two reduced CO ligands. This product of C-C bond formation can be independently synthesized by addition of 2 equiv of hydride to the rhenium carbonyl cation.

  2. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  3. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  4. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  5. Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China

    International Nuclear Information System (INIS)

    Han Chao; Geng Jinju; Hong Yuning; Zhang Rui; Gu Xueyuan; Wang Xiaorong; Gao Shixiang; Glindemann, Dietmar

    2011-01-01

    Atmospheric phosphine (PH 3 ) fluxes from typical types of wetlands and PH 3 concentrations in adjacent atmospheric air were measured. The seasonal distribution of PH 3 in marsh and paddy fields were observed. Positive PH 3 fluxes are significantly related to high air temperature (summer season) and increased vegetation. It is concluded that vegetation speeds up the liberation of PH 3 from soils, while water coverage might function as a diffusion barrier from soils or sediments to the atmosphere. The concentrations of atmospheric PH 3 (ng m -3 ) above different wetlands decrease in the order of paddy fields (51.8 ± 3.1) > marsh (46.5 ± 20.5) > lake (37.0 ± 22.7) > coastal wetland (1.71 ± 0.73). Highest atmospheric PH 3 levels in marsh are found in summer. In paddy fields, atmospheric PH 3 concentrations in flourishing stages are higher than those in slowly growing stages. - Research highlights: → P could migrate as PH 3 gas in different wetland ecosystems. → Wetlands act as a source and sink of atmospheric PH 3 . → Positive PH 3 fluxes are significantly related to high temperature and increased vegetation. → Environmental PH 3 concentrations in China are generally higher. - Environmental PH 3 concentrations in China are generally higher compared to other parts of the world.

  6. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  7. A new efficient method for the preparation of 99mTc-radiopharmaceuticals containing the Tc≡N multiple bond

    International Nuclear Information System (INIS)

    Pasqualini, R.; Comazzi, V.; Bellande, E.; Duatti, A.; Marchi, A.

    1992-01-01

    An improved method for the preparation of 99m Tc-radiopharmaceuticals containing the Tc≡N multiple bond, in sterile and apyrogen conditions, is described. This method is based on the reaction of [ 99m Tc] pertechnetate with ligands derived from S-methyl dithiocarbazate [H 2 N-N(R)-C(=S)SCH 3 (R = H, CH 3 )] in the presence of HC1 and tertiary phosphines. It was found that these derivatives can behave both as sources of nitride nitrogen ions (N 3- ) and as coordinating ligands. The reaction leads to the formation of intermediate technetium-nitrido complexes in high yield. These intermediate species can be used as suitable prereduced substrates for the preparation of technetium-nitrido radiopharmaceuticals through simple substitution reactions with appropriate exchanging ligands. (Author)

  8. Phosphine Plasma Activation of α-Fe 2 O 3 for High Energy Asymmetric Supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2018-04-12

    We report a phosphine (PH3) plasma activation strategy for significantly boosting the electrochemical performance of supercapacitor electrodes. Using Fe2O3 as a demonstration, we show that the plasma activation simultaneously improves the conductivity, creates atomic-scale vacancies (defects), as well as increases active surface area, and thus leading to a greatly enhanced performance with a high areal capacitance of 340 mF cm-2 at 1 mA cm-2, compared to 66 mF cm-2 of pristine Fe2O3. Moreover, the asymmetric supercapacitor devices based on plasma-activated Fe2O3 anodes and electrodeposited MnO2 cathodes can achieve a high stack energy density of 0.42 mWh cm-3 at a stack power density of 10.3 mW cm-3 along with good stability (88% capacitance retention after 9000 cycles at 10 mA cm-2). Our work provides a simple yet effective strategy to greatly enhance the electrochemical performance of Fe2O3 anodes and to further promote their application in asymmetric supercapacitors.

  9. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    are macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  10. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphos Ph Complexes.

    Science.gov (United States)

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-04-10

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphos(Ph)) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphos(Ph) ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphos(Ph) ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ(3)P] (2) were isolated on cooling to RT. The (31)P{(1)H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ(3)P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ(3)P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ(3)P{CH3CO(CH2)2CO2H}-κ(2)O](PF6) (6).

  11. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    International Nuclear Information System (INIS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-01-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H_2ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H_2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd_2(2,6-ndc)_2(bpp)(DMF)]·2DMF (1) and [Cd_3(hmdb)_3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  12. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei, E-mail: hanlei@nbu.edu.cn

    2015-12-15

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  13. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  14. The Synthesis and X-ray Structural Characterization of mer and fac isomers of the Technetium(I) Nitrosyl Complex [TcCl(2)(NO)(PNPpr)].

    Science.gov (United States)

    Nicholson, T L; Mahmood, A; Refosco, F; Tisato, F; Müller, P; Jones, A G

    2009-08-01

    The nitrosyl complex H[TcNOCl(4)] reacts with the tridentate ligand bis[(2-diphenylphosphino)propyl]amine (PNPpr) to yield a mixture of the mer or fac isomers of [TcCl(2)(NO)(PNPpr)]. In acetonitrile, where the ligand is freely soluble, reaction occurs at room temperature to yield mostly the mer isomer with the linear nitrosyl ligand cis to the amine ligand; and the phosphine ligands arranged in a mutually trans orientation. The reaction in methanol requires reflux to dissolve the lipophilic ligand and generates the fac isomer of [TcCl2(NO)(PNPpr)] as the major product, with the tridentate ligand in a facial arrangement, leaving the chlorides and nitrosyl ligand in the remaining facial sites. The steric bulk of the tridentate ligand's diphenylphophino- moieties results in a significant distortion from octahedral geometry, with the P-Tc-P bond angle expanded to 99.48(4)°. The infrared spectra display absorptions from these nitrosyl ligands in the 1700 and 1800 cm(-1) regions for the fac and mer isomers respectively. The ESI(+) mass spectra each display the parent ion at 647 m/z.

  15. Intra-group separation of rare earths using new organic phosphorus ligands; Intragruppentrennung Seltener Erden mittels neuer phosphororganischer Liganden

    Energy Technology Data Exchange (ETDEWEB)

    Hadic, Sanela

    2017-10-01

    Rare earth elements (REE) have unique magnetic, photophysical, and chemical properties and they are therefore used in numerous high-technology applications. However, to this day, the isolation of pure rare earths from primary and secondary raw materials is very challenging. In this work, the hydrometallurgical separation of neighboring rare earths (e.g., praseodymium/ neodymium) was optimized with novel selective extraction agents. The separation of rare earths (yttrium and all lanthanides except promethium) was investigated with fourteen new organophosphorus compounds. Oxygen-bearing phosphinic acids yielded good separation results for heavy rare earths (dysprosium to lutetium). For light rare earths (lanthanum to neodymium), particularly high separation factors were realized with synergistic systems containing an aromatic dithiophosphinic acid and a co-extractant, such as tris (2-ethylhexyl) phosphate (TEHP). Optimization studies of the latter extraction system revealed an extremely high separation factor (SF) of 4.21 between praseodymium and neodymium. Another focus of this work was to understand the extraction mechanism. With the aid of nuclear magnetic resonance spectroscopy ({sup 1}H-NMR) and time-resolved laser fluorescence spectroscopy (TRLFS), the complex stoichiometry of promising extraction systems was examined. Studies revealed a dependency between the selectivity for rare earths and the coordination number of the formed complexes. In addition, temperature-dependent extraction experiments were performed and thermodynamic data (ΔG, ΔH, and ΔS) determined. These data provided additional information about the origin of selectivity for neighboring rare earths. With regard to the industrial capability of the investigated extraction systems, the chemical durability of ligands was studied under process-relevant conditions. Qualitative and quantitative analytical methods (e.g., GC-MS) were used in long-term experiments to determine the ligand degradation

  16. Specific ability of sulfur-ligands on removal of 203Hg-labeled organomercury from hemoglobin in comparison with nitrogen-ligands

    International Nuclear Information System (INIS)

    Hojo, Yasuji; Sugiura, Yukio; Tanaka, Hisashi

    1975-01-01

    Removal of 203 Hg-labeled organomercurials, bound to sulfhydryl groups of hemoglobin, by various chelating agents was investigated by the use of equilibrium dialysis. Organomercurials employed were chlormerodrin, methylmercury, ethylmercury and phenylmercury compounds. Higher and more specific effects of the sulfur-ligands, such as penicillamine and glutathione, on removal of organomercurial were found as compared with those of the nitrogen-ligands such as EDTA, glycine and polymethylenediamines. Linear correlation was observed between the degree of organomercury elimination from hemoglobin and the stability constant (log K 1 ) of 1:1 organomercury complex in both the sulfur- and nitrogen-ligand systems and at the same value of log K 1 , the elimination-effect of sulfur-ligands was extremely greater than that of the nitrogen-ligands. The relationship between the average percentage of removal and the Taft's polar substituent constant of organic moiety of the metal was also linear among the organomercury compounds other than chlormerodrin. The average removal percentage by sulfur-ligands increased in the order, ethylmercury>methylmercury>phenylmercury, while that of the nitrogen-ligands was not different among the organomercurials investigated. In addition, direct ligand-exchange reaction between hemoglobin-SH and the ligand coordinating-atom (S or N) against organomercurials rather than Ssub(N2) reaction via the ternary complex, hemoglobin-S-RHg-ligand, is postulated. (auth.)

  17. Recovery of plutonium from nitric acid containing oxalate and fluoride by a macroporous bifunctional phosphinic acid resin (MPBPA)

    International Nuclear Information System (INIS)

    Venugopal Chetty, K.; Godbole, A.G.; Swarup, R.; Vaidya, V.N.; Venugopal, V.; Vasudeva Rao, P.R.

    2006-01-01

    The sorption of Pu from nitric acid solutions containing oxalate/fluoride was studied using an indigenously available macroporous bifunctional phosphinic acid (MPBPA) resin. Batch experiments were carried out to obtain the distribution data of Pu(IV) with a view to optimize conditions for its recovery from nitric acid waste solutions containing oxalate or fluoride ions. The measurements showed high distribution ratio (D) values even in the presence of strong complexing ions, like oxalate and fluoride, indicating the possibility of recovery of Pu from these types of waste solution. Column studies were carried out using this resin to recover Pu from the oxalate supernatant waste solution, which showed that up to 99% of Pu could be adsorbed on the resin. Elution of Pu loaded on the resin was studied using different eluting agents. (author)

  18. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  19. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  20. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  1. A Mixed-Ligand Approach Enables the Asymmetric Hydrogenation of an α-Isopropylcinnamic Acid en Route to the Renin Inhibitor Aliskiren

    NARCIS (Netherlands)

    Boogers, Jeroen A.F.; Felfer, Ulfried; Kotthaus, Martina; Lefort, Laurent; Steinbauer, Gerhard; Vries, André H.M. de; Vries, Johannes G. de

    2007-01-01

    An asymmetric hydrogenation process for an α-isopropyl dihydrocinnamic acid derivative, an intermediate for the renin inhibitor aliskiren, has been developed using a rhodium catalyst ligated with a chiral monodentate phosphoramidite and a nonchiral phosphine. Whereas catalysts based on two

  2. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand

    NARCIS (Netherlands)

    Eijsink, Linda E; Perdriau, Sébastien C P; de Vries, Johannes G; Otten, Edwin

    2016-01-01

    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition

  3. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  4. Aryldiazo complexes. Syntheses and reactions of new complexes of osmium and ruthenium

    International Nuclear Information System (INIS)

    Haymore, B.L.; Ibers, J.A.

    1975-01-01

    Aryldiazo complexes, [M(CO) 2 (NNPh)(PPh 3 ) 2 ][PF 6 ](M = Os, Ru; Ph = C 6 H 5 ), were prepared by allowing diazonium salts to react with M(CO) 3 (PPh 3 ) 2 . Infrared spectra of the Ru complex suggest the presence of two isomers both in solution and in the solid state. These complexes react with a variety of coordinating anions (X - ), to form MX(CO) 2 (NNPh)(PPh 3 ) 2 . The osmium derivatives have ν(NN) near 1455 cm -1 , which is the lowest value yet reported for a nonbridging aryldiazo ligand. The first aryldiazo--hydrido complexes, MH(CO) 2 (NNPh)(PPh 3 ) 2 and MH(CO)(NNPh)(PPh 3 ) 2 , were prepared by deprotonation of the respective phenyldiazene complexes, MH(CO) 2 (HNNPh)(PPh 3 ) 2 + and MH(CO)(HNNPh)(PPh 3 ) 3 + . The compound OsCl 3 (NNPh)(PPh 3 ) 2 was also prepared. A large number of the foregoing complexes were synthesized with selective 2 H and 15 N labels. Infrared and NMR spectra show MX(CO) 2 (NNPh)(PPh 3 ) 2 and the analogous hydrido complex to be pseudooctahedral with trans phosphine ligands, cis carbonyl ligands, and a doubly bent phenyldiazenido (NNPh - ) ligand. Similarly, MH(CO)(NNPh)(PPh 3 ) 2 possesses a trigonal-bipyramidal geometry with trans phosphine ligands and an equatorial, singly bent phenyldiazoniumato (NNPh + ) ligand. Isotopic substitution of the diazo ligand shows that ν(NN) is often vibrationally coupled with phenyl vibrational modes and that two or three bands sometimes shift upon 15 N substitution. Vibrational coupling was also observed in the higher energy region (1850 to 1900 cm -1 ) in the compound RuCl 3 (NNC 6 D 5 )(PPh 3 ) 2 . The wide range in the values of ν(NN), RuCl 3 (NNPh)(PPh 3 ) 2 (1882 cm -1 ) vs. RuCl(CO) 2 (NNPh)(PPh 3 ) 2 (1462 cm -1 ), indicates that the N--N stretching frequencies are sensitive to the electronic and steric environment of the diazo ligand. The aryldiazo complexes are compared with analogous, isoelectronic nitrosyl complexes of Os and Ru

  5. Some organoperoxo complexes of antimony, niobium and tantalum and their oxidation properties

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.

    1999-05-01

    Several novel organoperoxo complexes of Nb(V), Ta(V) and Sb(V) have been synthesized and characterized. The complexes have the compositions [M(O 2 ) 2 L Cl] and [M(O 2 ) 2 L'] [L = monodentate and bidentate, neutral ligand; L' = bidentate, uninegative ligand]. These complexes are very reactive to both organic and inorganic substrates. Niobium and tantalum complexes were found to oxidize phosphines and arsines to their oxides. These also oxidize olefins to epoxides under stoichiometric conditions while under catalytic conditions, ring opening of the epoxides occur producing α-hydroxyketone when the substrate is trans-stilbene. The antimony complexes are decidedly inert towards oxidation. (author)

  6. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  8. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  9. Pd-Catalyzed N-Arylation of Secondary Acyclic Amides: Catalyst Development, Scope, and Computational Study

    Science.gov (United States)

    Hicks, Jacqueline D.; Hyde, Alan M.; Cuezva, Alberto Martinez; Buchwald, Stephen L.

    2009-01-01

    We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X) intermediate. PMID:19886610

  10. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    Science.gov (United States)

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  11. Role of ligands in permanganate oxidation of organics.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  12. Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Biswaranjan; Williams, Martin L.; Doak, Bradley C.; Vazirani, Mansha; Ilyichova, Olga [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); Wang, Geqing [La Trobe University, La Trobe Institute for Molecular Bioscience (Australia); Bermel, Wolfgang [Bruker Biospin GmbH (Germany); Simpson, Jamie S.; Chalmers, David K. [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); King, Glenn F. [The University of Queensland, Institute for Molecular Bioscience (Australia); Mobli, Mehdi, E-mail: m.mobli@uq.edu.au [The University of Queensland, Centre for Advanced Imaging (Australia); Scanlon, Martin J., E-mail: martin.scanlon@monash.edu [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia)

    2016-11-15

    We describe a general approach to determine the binding pose of small molecules in weakly bound protein–ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met {sup ε}CH{sub 3} assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-{sup 13}C,{sup 15}N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein–ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.

  13. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  14. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  15. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  16. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  17. Identifying Marine Copper-Binding Ligands in Seawater

    Science.gov (United States)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  18. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    1980-01-01

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine ( 125 I) and the receptor is digoxin antibody. (U.K.)

  19. Correcting binding parameters for interacting ligand-lattice systems

    Science.gov (United States)

    Hervy, Jordan; Bicout, Dominique J.

    2017-07-01

    Binding of ligands to macromolecules is central to many functional and regulatory biological processes. Key parameters characterizing ligand-macromolecule interactions are the stoichiometry, inducing the number of ligands per macromolecule binding site, and the dissociation constant, quantifying the ligand-binding site affinity. Both these parameters can be obtained from analyses of classical saturation experiments using the standard binding equation that offers the great advantage of mathematical simplicity but becomes an approximation for situations of interest when a ligand binds and covers more than one single binding site on the macromolecule. Using the framework of car-parking problem with latticelike macromolecules where each ligand can cover simultaneously several consecutive binding sites, we showed that employing the standard analysis leads to underestimation of binding parameters, i.e., ligands appear larger than they actually are and their affinity is also greater than it is. Therefore, we have derived expressions allowing to determine the ligand size and true binding parameters (stoichiometry and dissociation constant) as a function of apparent binding parameters retrieved from standard saturation experiments.

  20. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  1. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Paine, R.T.

    1994-01-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  2. Entangled zinc-ditetrazolate frameworks involving in situ ligand synthesis and topological modulation by various secondary N-donor ligands

    International Nuclear Information System (INIS)

    Li Yunwu; Chen Weilin; Wang Yonghui; Li Yangguang; Wang Enbo

    2009-01-01

    The introduction of various secondary N-donor ligands into an in situ ditetrazolate-ligand synthesis system of terephthalonitrile, NaN 3 and ZnCl 2 led to the formation of three new entangled frameworks Zn(pdtz)(4,4'-bipy).3H 2 O (1), [Zn(pdtz)(bpp)] 2 .3H 2 O (2) and Zn(pdtz) 0.5 (N 3 )(2,2'-bipy) (3) (4,4'-bipy=4,4'-bipyridine; bpp=1,3-bis(4-pyridyl)propane; 2,2'-bipy=2,2'-bipyridine; H 2 pdtz=5,5'-1,4-phenylene-ditetrazole). The formation of pdtz 2- ligand involves the Sharpless [2+3] cycloaddition reaction between terephthalonitrile and NaN 3 in the presence of Zn 2+ ion as a Lewis-acid catalyst under hydrothermal conditions. Compound 1 exhibits a fivefold interpenetrating 3D framework based on the diamondoid topology. Compound 2 displays a twofold parallel interpenetrating framework based on the wavelike individual network. Compound 3 possesses a 2D puckered network. These new Zn-ditetrazolate frameworks are highly dependent on the modulation of different secondary N-donor ligands. Their luminescent properties were investigated. - Graphical abstract: Three new entangled frameworks were prepared by an in situ ditetrazolate-ligand synthesis system assisted with various auxiliary N-donor ligands. The entangled structures can be modulated by different secondary ligands.

  3. Materials Sciences Research.

    Science.gov (United States)

    1974-07-01

    Committee: A. B. Kunz, R.. Marshall, M. Salamon, G. Stucky 3. Chemical Analytical Laboratory This laboratory is concerned, primarily, with trace ...respectively. The symbol L represents a phosphine or phosphite ligand, and x may vary from 0 to 5, although not all members of the series have been...which influence the migratory npitude 5. of the hydrogen in this type of system are not known. In both systems, strong catalysis by trace impurities

  4. Selective extraction of trivalent actinides with hard-soft mixed donor ligands: role of intra-ligand synergism

    International Nuclear Information System (INIS)

    Ghanty, Tapan K.

    2016-01-01

    In recent years, considerable attention has been given to understand the coordination chemistry of trivalent lanthanide (Ln) and actinide (An) with various ligands because of its close link with the nuclear waste management processes. It is well known that lanthanide-actinide separation is a challenging and difficult task because of very similar chemical properties of these two series of ions, which are associated with similar ionic radii and coordination numbers. Recently, we have introduced a new concept, 'intra-ligand synergism', where hard donor atom, such as, oxygen preferentially binds to trivalent actinides (An(III)) as compared to the valence iso-electronic trivalent lanthanides (Ln(III)) in presence of another soft donor centre. In the present work, the conventional concept of selective complexation of actinides with soft donor ligands (either S or N donor) has been modified through exploiting this concept, and thereby the higher selectivity of 1,10-phenanthroline-2,9-dicarboxylamide (PDAM) based ligands, namely PDAM and its isobutyl and decyl derivatives towards Am(III) ion has been predicted theoretically through density functional calculations. Subsequently, several such amide derivatives have been synthesized to optimize the solubility of the ligands in organic phase. Finally, solvent extraction experiments have been carried out to validate the theoretical prediction on the selectivity of oxygen donor ligands towards Am(III) as compared to Eu(III), and a maximum separation factor of about 51 has been achieved experimentally using 2,9-bis(N-decylaminocarbonyl)-1,10-phenanthroline ligand. The separation factor is increased with the decrease in pH, which is very interesting since extraction of the Am 3+ ion is considered to be important under highly acidic conditions from the nuclear waste management point of view. (author)

  5. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  6. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  7. Dockomatic - automated ligand creation and docking.

    Science.gov (United States)

    Bullock, Casey W; Jacob, Reed B; McDougal, Owen M; Hampikian, Greg; Andersen, Tim

    2010-11-08

    The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  8. Dockomatic - automated ligand creation and docking

    Directory of Open Access Journals (Sweden)

    Hampikian Greg

    2010-11-01

    Full Text Available Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. Results DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. Conclusions DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  9. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  10. Synthesis of novel '4+1' Tc(III)/Re(III) mixed-ligand complexes with dendritically modified ligands

    International Nuclear Information System (INIS)

    Gniazdowska, E.; Kuenstler, J.U.; Stephan, H.; Pietzsch, H.J.

    2006-01-01

    Coordination chemistry of technetium and rhenium attracts a considerable interest due to the nuclear medicine applications of their radionuclides. Inert, so-called '3+1' or '4+1' technetium/rhenium mixed-ligand complexes open a new way to application of 99 mTc/ 188 Re labeled compounds in tumor diagnosis and therapy. In the presented paper, authors describe the synthesis and study of novel 99 mTc/ 188 Re complexes with dendritically functionalized tetradentate (tripodal chelator 2,2',2''-nitrilotris(ethanethiol), NS 3 and carboxyl group-bearing ligand, NS 3 (COOH) 3 ) and monodentate (dendritically modified isocyanide, CN-R(COOMe) 3 and isocyanide-modified peptide, CN-GGY) ligands. To verify the identity of the prepared n.c.a. complexes, non-radioactive analogous '4+1' Re compounds were synthesized. The experimental data show that a dendritic modification of the tetradentate/monodentate ligands changes the complex lipophilicity and does not influence its stability

  11. Bexarotene ligand pharmaceuticals.

    Science.gov (United States)

    Hurst, R E

    2000-12-01

    Bexarotene (LGD-1069), from Ligand, was the first retinoid X receptor (RXR)-selective, antitumor retinoid to enter clinical trials. The company launched the drug for the treatment of cutaneous T-cell lymphoma (CTCL), as Targretin capsules, in the US in January 2000 [359023]. The company filed an NDA for Targretin capsules in June 1999, and for topical gel in December 1999 [329011], [349982] specifically for once-daily oral administration for the treatment of patients with early-stage CTCL who have not tolerated other therapies, patients with refractory or persistent early stage CTCL and patients with refractory advanced stage CTCL. The FDA approved Targretin capsules at the end of December 1999 for once-daily oral treatment of all stages of CTCL in patients refractory to at least one prior systemic therapy, at an initial dose of 300 mg/m2/day. After an NDA was submitted in December 1999 for Targretin gel, the drug received Priority Review status for use as a treatment of cutaneous lesions in patients with stage IA, IB or IIA CTCL [354836]. The FDA issued an approvable letter in June 2000, and granted marketing clearance for CTCL in the same month [370687], [372768], [372769], [373279]. Ligand had received Orphan Drug designation for this indication [329011]. At the request of the FDA, Ligand agreed to carry out certain post-approval phase IV and pharmacokinetic studies [351604]. The company filed an MAA with the EMEA for Targretin Capsules to treat lymphoma in November 1999 [348944]. The NDA for Targretin gel is based on a multicenter phase III trial that was conducted in the US, Canada, Europe and Australia involving 50 patients and a multicenter phase I/II clinical program involving 67 patients. Targretin gel was evaluated for the treatment of patients with early stage CTCL (IA-IIA) who were refractory to, intolerant to, or reached a response plateau for at least 6 months on at least two prior therapies. Efficacy results exceeded the protocol-defined response

  12. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening.

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S; Zsoldos, Zsolt; Simon, Aniko

    2008-01-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  13. LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S.; Zsoldos, Zsolt; Simon, Aniko

    2008-06-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  14. Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) with different diluents at temperature 303.15 K: an ultrasonic study

    International Nuclear Information System (INIS)

    Kamila, Susmita; Jena, Satyaban; Swain, Bipin Bihari

    2005-01-01

    Acoustical investigations for the binary mixtures of phosphinic acid (Cyanex 272), used as liquid-liquid extractant, have been made in various diluents such as benzene, toluene, and xylene from ultrasonic velocity and density measurements at temperature 303.15 K and atmospheric pressure. This study involves evaluation of different thermo-acoustic parameters along with the excess properties, which are interpreted in the light of molecular interaction between a polar extractant, Cyanex 272 with non-polar diluent, benzene and weakly polar diluents, toluene and xylene. The excess values are correlated using Redlich-Kister polynomial equation, and corresponding adjustable parameters are derived

  15. Cationic Protic Imidazolylidene NHC Complexes of Cp*IrCl+ and Cp*RhCl+ with a Pyridyl Tether Formed at Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Douglas B. Grotjahn

    2018-02-01

    Full Text Available Protic NHC (PNHC complexes with N1H, N2-alkyl/aryl imidazolylidene ligands are relatively rare, and routes for their synthesis differ from what is used to make non-protic analogs. Prior work from our group and others showed that in the presence of a tethering ligand (phosphine or in one case, pyridine, CpM and Cp*M (M = Ir, Ru PNHC complexes could be made by heating. Here, we find that the use of ionizing agents to activate [Cp*MIIICl(μ-Cl]2 (M = Ir, Rh allows for what we believe is unprecedented ambient temperature formation of PNHC complexes from neutral imidazoles; the product complexes are able to perform transfer hydrogenation.

  16. Tuning and Quantifying Steric and Electronic Effects of N-Heterocyclic Carbenes

    KAUST Repository

    Falivene, Laura

    2014-07-12

    This chapter states that the main handles for tuning steric and electronic effects are the substituents on N atoms, the nature of the C4-C5 bridge (either saturated or unsaturated), and the substituents on the C4 and C5 atoms. The initial intuition that steric properties of N-heterocyclic carbenes (NHCs) could be modulated and could impact catalytic behavior stimulated the development of steric descriptors to quantify the steric requirement of different NHCs and, possibly, to compare them with tertiary phosphines. NHCs can be classified as typically strong σ-basic/π-acid ligands, although they have been also shown to exhibit reasonable π-basic properties. This electronic modularity allows NHC ligands to adapt flexibly to different chemical environments represented by a transition metal and the other ligands. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. All rights reserved.

  17. Synthesis and characterization β-ketoamine ligands

    Science.gov (United States)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  18. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  19. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

    Science.gov (United States)

    Lindahl, Sarah E; Park, Hyunsoo; Pink, Maren; Zaleski, Jeffrey M

    2013-03-13

    Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and

  20. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Sangmin Seo

    2018-01-01

    Full Text Available We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs and ligands. The proposed method uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or similarity of receptors or ligands. The experimental results show that these new features can be effective in predicting GPCR-ligand binding (average area under the curve [AUC] of 0.944, because they are thought to include hidden properties of good ligand-receptor binding. Using the proposed method, we were able to identify novel ligand-GPCR bindings, some of which are supported by several studies.

  1. New pinene-derived pyridines as bidentate chiral ligands

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stewart-Liddon, A.; Teplý, Filip; Kobr, L.; Muir, K. W.; Haigh, D.; Kočovský, P.

    2008-01-01

    Roč. 64, č. 18 (2008), s. 4011-4025 ISSN 0040-4020 Institutional research plan: CEZ:AV0Z40550506 Keywords : chiral ligands * transition metal catalysis * asymmetric catalysis * pyridine ligands * oxazoline ligands Subject RIV: CC - Organic Chemistry Impact factor: 2.897, year: 2008

  2. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  3. EXAFS Studies of Some Copper(II) Mixed-Ligand Complexes

    International Nuclear Information System (INIS)

    Joshi, S. K.; Katare, R. K.; Shrivastava, B. D.

    2007-01-01

    X-ray K-absorption spectroscopic studies have been carried out on copper (II) mixed-ligand complexes with glutamic acid and aspartic acid as the primary ligands, where as water, pyridine, imidazole and benz-imidazole have been used as secondary ligands. Chemical shifts obtained from the X-ray absorption data have indicated that the glutamic acid complexes are more ionic as compared to their corresponding aspartic acid complexes having similar secondary ligands. Further, we have estimated the average metal-ligand bond distances from the from structure data. For the different complexes studied under the present investigation, the studies reveal that the bonding parameter α1 decreases with the increase in the percentage covalency of the metal-ligand bond. Thus, the bonding parameter α1 may be used for the estimation of percentage covalency of the metal-ligand bond in other similar complexes

  4. Enantioselective copper catalysed intramolecular C-H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent.

    Science.gov (United States)

    Shiely, Amy E; Slattery, Catherine N; Ford, Alan; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R

    2017-03-22

    Enantioselectivities in C-H insertion reactions, employing the copper-bis(oxazoline)-NaBARF catalyst system, leading to cyclopentanones are highest with sulfonyl substituents on the carbene carbon, and furthermore, the impact is enhanced by increased steric demand on the sulfonyl substituent (up to 91%ee). Enantioselective intramolecular C-H insertion reactions of α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones are reported for the first time.

  5. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  6. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  7. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  8. Moessbauer study of (Benzylideneacetone) Fe(Co)2L complexes with L=CO, phosphines and phosphites

    International Nuclear Information System (INIS)

    Vichi, E.J.S.; Stein, E.

    1988-01-01

    It is established that in iron complexes, both ligand-L-> Fe bonding and Fe -> L back bonding increase the s electron density at the iron nucleus (1), with a consequent decrease in the isomer shift (δ) obtained from the Moessbauer spectrum. Through θ-bonding, electrons are transferred from the ligand to the proper iron orbitals which have, at least, partial 4s character. Through Π-back bonding, d electrons of the metal are transferred to the proper orbitals of the ligand, decreasing the shielding of the metal 3s electrons. So, δ measures the effect of (θ+Π) bonding on s electron density at the iron nucleus. The quadrupole splitting (ΔE q ), which is related to the electric field gradient at the iron nucleus and involves only d or p electrons, measures the effect of (θ-Π) bonding. Here, the results of a Moessbauer spectroscopy study on title complexes are reported. (author)

  9. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    Science.gov (United States)

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  10. -Pincer Ligand Family through Ligand Post-Modification

    KAUST Repository

    Huang, Mei-Hui; Hu, Jinsong; Huang, Kuo-Wei

    2017-01-01

    A series of air-stable nickel complexes containing triazine-based PN3P-pincer ligands were synthesized and fully characterized. Complex 3 contains a de-aromatized central triazine ring from the deprotonation of one of the N–H arms. With a post-modification strategy, the Me-PN3P*NiCl complex (3) could be converted into a new class of diimine–traizine PN3P-pincer nickel complexes.

  11. -Pincer Ligand Family through Ligand Post-Modification

    KAUST Repository

    Huang, Mei-Hui

    2017-10-02

    A series of air-stable nickel complexes containing triazine-based PN3P-pincer ligands were synthesized and fully characterized. Complex 3 contains a de-aromatized central triazine ring from the deprotonation of one of the N–H arms. With a post-modification strategy, the Me-PN3P*NiCl complex (3) could be converted into a new class of diimine–traizine PN3P-pincer nickel complexes.

  12. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  13. Structural study of the uranyl and rare earth complexation functionalized by the CMPO; Etude structurale de la complexation de l'uranyle et des ions lanthanides par des calixarenes fonctionnalises par le CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Cherfa, S

    1998-12-10

    In view of reducing the volume of nuclear waste solutions, a possible way is to extract simultaneously actinide and lanthanide ions prior to their ulterior separation.. Historically, the two extractant families used for nuclear waste reprocessing are the phosphine oxides and the CMPO (Carbamoyl Methyl Phosphine Oxide). For a better understanding of the complexes formed during extraction, we undertook structural studies of the complexes formed between uranyl and lanthanide (III) ions and the two classes of ligands cited above. These studies have been performed by X-ray diffraction on single crystals. Recently, a new type of extractants of lanthanide (III) and actinide (III) ions has been developed. When the Organic macrocycle called calixarene (an oligomeric compound resulting from the poly-condensation of phenolic units) is functionalized by a CMPO ligand, the extracting power, in terms of yield and selectivity towards lightest lanthanides, is greatly enhanced compared to the one measured for the single CMPO. Our X-ray diffraction studies allowed us to characterise, in terms of stoichiometry and monodentate or bidentate coordination mode of the CMPO functions, the complexes of calix[4]arene-CMPO (with four phenolic units) with lanthanide nitrates and uranyl. These different steps of characterisation enabled us to determine the correlation between the structures of the complexes and both selectivity and exacerbation of the extracting power measured in the liquid phase. (author)

  14. Receptor-ligand binding sites and virtual screening.

    Science.gov (United States)

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  15. Minimal effective dose of phosphine to control the cashew root borer, Marshallius bondari Rosado-Neto (Coleoptera: Curculionidae Dose mínima efetiva de fosfina no controle da broca-da-raiz do cajueiro, Marshallius bondari Rosado-Neto (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Ervino Bleicher

    2010-06-01

    Full Text Available The objective of this research was to determine, in field conditions, the minimal of phosphine effective dose for the cashew root borer control. Three experiments were set up at three different periods: August, October and November, 1994, to control the cashew root borer, Marshallius bondari Rosado-Neto (Coleoptera: Curculionidae, in Piaui State, Brazil. One, two, three and six phosphine tablets of three gram each, per plant were tested. In the August essay, phosphine was inefficient to control the borer. In the October essay, control was achieved using as little as 2 tablets per plant and in November with one tablet per plant to control the adult borers in the soil. Higher efficiency was achieved when treatment was applied far away from the last rain, in other words, as soil dries out.Objetivou-se determinar, em condições de campo, a dose mínima de fosfina para o controle da broca da raiz do cajueiro. Foram instalados 3 experimentos em épocas distintas, sendo o primeiro em agosto, o segundo em outubro e o terceiro em novembro de 1994 para o controle de Marshallius bondari Rosado-Neto (Coleoptera: Curculionidae em cajueiro, Anacardium occidentale L. no município de Pio IX, Estado do Piauí. Foram testadas 1; 2; 3 e 6 pastilhas de fosfina na forma de fosfeto de alumínio, de 3 gramas cada, por planta. No ensaio conduzido em agosto nenhum tratamento foi eficiente para o controle de brocas adultas no solo. No ensaio instalado em outubro, a fosfina foi eficiente a partir de duas pastilhas por planta e no ensaio de novembro a partir de uma pastilha por planta para o controle de adultos no solo. A eficiência foi tanto maior quanto maior foi o tempo decorrido após a última chuva, estando, portanto, o solo mais seco.

  16. The affinity plutonium(IV) for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; Hancock, R.D.

    1994-01-01

    Established ligand design principles are used to predict the solution chemistry of Pu(IV) with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxyalkyl groups causing Pu(IV) to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N'N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N',N'-tetrakis(2-hydroxyethyl)-1,2-diaminoethane; N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with Pu(IV) showed that Pu(IV) has a considerable aqueous solution chemistry with these ligands. Data were processed by the ESTA library of programs and stability constants for all the systems are reported. Implications for selective ligand design for Pu(IV) are discussed. (orig.)

  17. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  18. Mixed ligand chelates of rare earths in aqueous solution

    International Nuclear Information System (INIS)

    Lakhani, S.U.; Thakur, G.S.; Sangal, S.P.

    1981-01-01

    Mixed ligand chelates of the 1:1 trivalent lanthanoids-EDTA, HEDTA and NTA chelates-1, 2-Dihydroxybenzene (Pyrocatechol) have been investigated at 35degC and 0.2 M ionic strength maintained by NaC10 4 . The formation of mixed ligand chelates has been found in all cases. The formation of mixed ligand chelates with EDTA shows the coordination number of lanthanoids to be eight, while the mixed ligand chelates with HEDTA and NTA shows the coordination number to be seven and six respectively. The stability constants of mixed ligand chelates are smaller than the binary complexes. The order of stability constants with respect to primary ligands follows the order NTA>HEDTA>EDTA. With respect to metal ions the stability constants increases with the decrease in ionic radii such as Gd< Er< Yb. (author)

  19. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    Science.gov (United States)

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.

  20. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  1. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  2. Expression of nociceptive ligands in canine osteosarcoma.

    Science.gov (United States)

    Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  3. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes

    International Nuclear Information System (INIS)

    Monteiro, Jorge H.S.K.; Formiga, André L.B.; Sigoli, Fernando A.

    2014-01-01

    The lanthanides(III) complexes [Ln(bza) 3 (H 2 O) n ]·mH 2 O, [Ln(ppa) 3 (H 2 O) n ]·mH 2 O and [Ln(abse) 3 (H 2 O) n ]·mH 2 O where Ln=Eu 3+ , Gd 3+ or Tb 3+ were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ∼2000 cm −1 between them. The [Eu(abse) 3 (H 2 O)] complex shows the higher degree of covalence which was verified by the centroid of 5 D 0 → 7 F 0 transition (17,248 cm −1 ). On the other hand the [Ln(abse) 3 (H 2 O) n ]·mH 2 O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa) 3 (H 2 O) n ]·mH 2 O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa) 3 ] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza) 3 (H 2 O) 2 ]·3/2(H 2 O) and [Eu(abse) 3 (H 2 O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by changing the triplet state energy in the range of ∼2000 cm −1 . The changes in the energy transfer rates from triplet state to europium(III) levels are not

  4. A Versatile Dinucleating Ligand Containing Sulfonamide Groups

    DEFF Research Database (Denmark)

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa

    2014-01-01

    ligand can be prepared in aqueous solutions using only divalent metal ions. Two of the copper(II) complexes, [Cu2(psmp)(OH)] and [Cu2(psmp)(OAc)2]-, demonstrate the anticipated 1:2 ligand/metal stoichiometry and show that the dimetallic binding site created for exogenous ligands possesses high inherent...... of antiferromagnetic coupling. This is corroborated computationally by broken-symmetry density functional theory, which for isotropic modeling of the coupling predicts an antiferromagnetic coupling strength of J = 70.5 cm-1....

  5. Implicit ligand theory for relative binding free energies

    Science.gov (United States)

    Nguyen, Trung Hai; Minh, David D. L.

    2018-03-01

    Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.

  6. Superior serum half life of albumin tagged TNF ligands

    International Nuclear Information System (INIS)

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus; Wajant, Harald

    2010-01-01

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  7. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  8. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  9. Synthesis and characterization of technetium(III) complexes with nitrogen heterocycles by O atom transfer from oxotechnetium(V) cores. Crystal structures of mer-[Cl3(pic)3Tc] and mer-[Cl3(pic)(PMe2Ph)2Tc] (pic = 4-picoline). Electrochemical parameters fore the reduction of TcII, TcIII, and TcIV

    International Nuclear Information System (INIS)

    Lu, Jun; Yamano, Akahito; Clarke, M.J.

    1990-01-01

    The combination of pyridine ligands, (OCl 4 Tc) - , and O atom acceptors of different cone angles, such as PMe 2 Ph or PPh 3 , results in Tc III complexes that vary in the coordination of the phosphine ligand. The compounds mer[Cl 3 (4-picoline) 3 Tc] and mer-(Cl 3 (4-picoline)(PMe 2 Ph) 2 Tc) have been obtained in good yield and have been characterized spectroscopically and by single-crystal x-ray diffraction. The crystal structure data are reported. Linear correlations of technetium reduction potentials in DMF with electrochemical ligand additivity parameters (E L 's) have been obtained for the Tc II,I , Tc III,II , and Tc IV,III couples. The slope and intercept (S M , I M ) pairs for each technetium oxidation-reduction couple, respectively, are (1.39, -2.07), (1.29, -0.91), and (1.00, 0.65). 32 refs., 3 figs., 6 tabs

  10. [Supercomputer investigation of the protein-ligand system low-energy minima].

    Science.gov (United States)

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  11. Statistical Estimation of the Protein-Ligand Binding Free Energy Based On Direct Protein-Ligand Interaction Obtained by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-09-01

    Full Text Available We have developed a method for estimating protein-ligand binding free energy (DG based on the direct protein-ligand interaction obtained by a molecular dynamics simulation. Using this method, we estimated the DG value statistically by the average values of the van der Waals and electrostatic interactions between each amino acid of the target protein and the ligand molecule. In addition, we introduced fluctuations in the accessible surface area (ASA and dihedral angles of the protein-ligand complex system as the entropy terms of the DG estimation. The present method included the fluctuation term of structural change of the protein and the effective dielectric constant. We applied this method to 34 protein-ligand complex structures. As a result, the correlation coefficient between the experimental and calculated DG values was 0.81, and the average error of DG was 1.2 kcal/mol with the use of the fixed parameters. These results were obtained from a 2 nsec molecular dynamics simulation.

  12. Palladium catalyst system comprising zwitterion and/or acid-​functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3...... methyl methacrylate and/or methacrylic acid. Catalyst systems according to the invention are suitable for reactions forming separable product and catalyst phases and supported ionic liquid phase SILP applications....

  13. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  14. Rational Ligand Design for U(VI) and Pu(IV)

    International Nuclear Information System (INIS)

    Szigethy, Geza

    2009-01-01

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO 2 2+ ). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation, these

  15. Rational Ligand Design for U(VI) and Pu(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Szigethy, Geza [Univ. of California, Berkeley, CA (United States)

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative

  16. Highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route.

    Science.gov (United States)

    Mordvinova, Natalia; Vinokurov, Alexander; Kuznetsova, Tatiana; Lebedev, Oleg I; Dorofeev, Sergey

    2017-01-24

    Here we report a simple method for the creation of highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots (QDs) on the basis of a phosphine synthetic route. In this method a Zn precursor was added to the reaction mixture at the beginning of the synthesis to form an In(Zn)P alloy structure, which promoted the formation of a ZnX shell. Core-shell InP/ZnX QDs exhibit highly intensive emission with a quantum yield over 50%. The proposed method is primarily important for practical applications. Advantages of this method compared to the widely used SILAR technique are discussed. We further demonstrate that the SILAR approach consisting of consequent addition of Zn and chalcogen precursors to pre-prepared non-doped InP colloidal nanoparticles is not quite suitable for shell growth without the addition of special activator agents or the use of very reactive precursors.

  17. Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands

    DEFF Research Database (Denmark)

    Tekle, Christina; van Deurs, Bo; Sandvig, Kirsten

    2008-01-01

    Can quantum dots (Qdots) act as relevant intracellular probes to investigate routing of ligands in live cells? The intracellular trafficking of Qdots that were coupled to the plant toxin ricin, Shiga toxin, or the ligand transferrin (Tf) was studied by confocal fluorescence microscopy. The Tf...

  18. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  19. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    Barnett, Sarah Ann

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO 3 ) 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO 3 ) 2 and Zn(NO 3 ) 2 . Whereas Zn(NO 3 ) 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO 3 ) 2 , including the first example of a doubly parallel interpenetrated 4.8 2 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  20. Dynamic ligand-based pharmacophore modeling and virtual ...

    Indian Academy of Sciences (India)

    Five ligand-based pharmacophore models were generated from 40 different .... the Phase module of the Schrodinger program.35 Each model consisted of six types of ... ligand preparation included the OPLS_2005 force field and to retain the ...

  1. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  2. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    Science.gov (United States)

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  3. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated...

  6. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  7. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...... in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular...

  8. New synthetic routes toward enantiopure nitrogen donor ligands.

    Science.gov (United States)

    Sala, Xavier; Rodríguez, Anna M; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; von Zelewsky, Alexander; Llobet, Antoni; Benet-Buchholz, Jordi

    2006-12-08

    New polypyridylic chiral ligands, having either C3 or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-alpha-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has been achieved through a new aldehyde building block ((-)-16). As an example, the synthesis of a chiral derivative of N,N-bis(2-pyridylmethyl)ethylamine (bpea) ligand, (-)-19, has been performed to illustrate the viability of the method. The coordinative ability of the ligands has been tested through the synthesis and characterization of complexes [Mn((-)-19)Br2], (-)-20, and [RuCl((-)-10)(bpy)](BF4), (-)-21. Some preliminary results related to the enantioselective catalytic epoxidation of styrene with the ruthenium complex are also presented.

  9. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  10. Automated ligand fitting by core-fragment fitting and extension into density

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Klei, Herbert; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2006-01-01

    An automated ligand-fitting procedure has been developed and tested on 9327 ligands and (F o − F c )exp(iϕ c ) difference density from macromolecular structures in the Protein Data Bank. A procedure for fitting of ligands to electron-density maps by first fitting a core fragment of the ligand to density and then extending the remainder of the ligand into density is presented. The approach was tested by fitting 9327 ligands over a wide range of resolutions (most are in the range 0.8-4.8 Å) from the Protein Data Bank (PDB) into (F o − F c )exp(iϕ c ) difference density calculated using entries from the PDB without these ligands. The procedure was able to place 58% of these 9327 ligands within 2 Å (r.m.s.d.) of the coordinates of the atoms in the original PDB entry for that ligand. The success of the fitting procedure was relatively insensitive to the size of the ligand in the range 10–100 non-H atoms and was only moderately sensitive to resolution, with the percentage of ligands placed near the coordinates of the original PDB entry for fits in the range 58–73% over all resolution ranges tested

  11. Selective separation of uranium from nuclear waste solution by bis (2,4,4-trimethylpentyl phosphinic) acid in ionic liquid and molecular diluents: a comparative study

    International Nuclear Information System (INIS)

    Singh, Manpreet; Sengupta, Arijit; Murali, M.S.; Adya, V.C.; Kadam, R.M.

    2016-01-01

    Room temperature ionic liquid has been world-wide considered as the potential 'green' alternatives to the molecular diluents. A comparative study was carried out for studying selective separation of uranium from radioactive waste solution using Bis(2,4,4-trimethylpentyl phosphinic) acid in molecular diluent (xylene) and ionic liquid (C 8 mimNTf 2 ). For ionic liquid based system, the extraction kinetics was found to be slower compared to the molecular diluents. This was attributed to the higher viscosity of ionic liquid. In ionic liquid the extraction occurs with the predominance of 'ion exchange' mechanism through (UO 2 (NO 3 ). 2L) + species, while for xylene based system 'solvation' mechanism predominates at higher feed acidity. The extraction process in ionic liquid was found to be thermodynamically more favoured than in xylene. The nature of the extracted species was found to be different in ionic liquid and xylene as obtained from difference in luminescence emission profiles and lifetime of the extracted complex. Ionic liquid based system was found to be radiolytically more stable than the molecular diluents based solvent system. Na 2 CO 3 solution was found to back extract the uranyl ion almost quantitatively (99.9 %) from the loaded organic phase but overall stripping from ionic liquid phase is comparatively poorer than that of xylene phase. The processing of Simulated High Level Waste (SHLW) of Pressurized Heavy Water Reactor (PHWR) or Research Reactor (RR) origin revealed that bis(2,4,4-trimethylpentyl phosphinic) acid can effectively be used for the preferential extraction of U with better selectivity for ionic liquid phase. But the ion exchange mechanism is one of the disadvantages for its plant scale application. (author)

  12. Interaction between alkaline earth cations and oxo-ligands. DFT study of the affinity of the Ca2+ cation for carbonyl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; Carneiro, José Walkimar de Mesquita; Romeiro, Gilberto Alves; Paes, Lilian Weitzel Coelho

    2011-02-01

    The affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).

  13. Models of protein–ligand crystal structures: trust, but verify

    Science.gov (United States)

    Deller, Marc C.

    2015-01-01

    X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575

  14. Models of protein-ligand crystal structures: trust, but verify.

    Science.gov (United States)

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  15. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  16. New synthetic routes toward enantiopure nitrogen donor ligands

    OpenAIRE

    Sala, Xavier; Rodríguez, Anna M.; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; Zelewsky, Alexander von; Llobet, Antoni; Benet-Buchholz, Jordi

    2008-01-01

    New polypyridylic chiral ligands, having either C₃ or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-α-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has...

  17. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  18. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    KAUST Repository

    Kaushik, Ananth P.

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes. © 2012 American Institute of Physics.

  19. Regulation mechanisms of the FLT3-ligand after irradiation

    International Nuclear Information System (INIS)

    Prat-Lepesant, M.

    2005-06-01

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  20. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

    Directory of Open Access Journals (Sweden)

    Julia Müller

    Full Text Available Fucosylation of Epidermal Growth Factor-like (EGF repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1. We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C²XXXX(S/TC³ (where C² and C³ are the second and third conserved cysteines within the EGF repeats found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.

  2. A grand unified model for liganded gold clusters

    Science.gov (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  3. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  4. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Burlakov, Victor M.; Besong, Tabot M.D.; Joshi, Chakra Prasad; AbdulHalim, L; Black, David; Whetten, Robert; Goriely, Alain; Bakr, Osman

    2015-01-01

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  5. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  6. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    Science.gov (United States)

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  7. Facile reactions of gold(i) complexes with tri(tert-butyl)azadiboriridine.

    Science.gov (United States)

    Shang, Rong; Saito, Souta; Jimenez-Halla, J Oscar C; Yamamoto, Yohsuke

    2018-04-17

    Direct structural evidence for group 11 metal-mediated B-B bond activation was obtained from reactions of tri(tert-butyl)azadiboriridine (1) with AuCl(L) complexes. The AuCl(SMe2) reaction afforded [η2-B,B-B(tBu)N(tBu)B(tBu)]AuCl (2) by ligand displacement. More donating phosphines as co-ligands led to B-B bond cleavage accompanied by either halide or L migration to form boron-gold complexes 3 (L = PPh3) and 4 (L = PMe3). A similar product 5, which is isostructural to 4, was obtained by the addition of dimethylaminopyridine (DMAP) to 2-4. Complexes 2-5 constitute rare examples of metal complexes bearing two Lewis acidic centres. The effect of the boryl ligand was demonstrated in the formation of a gold(i) complex 6 bearing a 5-membered heterocycle from 3 and tert-butylisonitrile. Plausible reaction mechanisms that led to these complexes and their bonding situation were explored computationally at the DFT level.

  8. Carbonyltrichlorotris(dimethylphenylphosphine)technetium-ethanol (1/1), the first seven-coordinate complex of technetium; position of this molecule in the Csub(3v) family

    Energy Technology Data Exchange (ETDEWEB)

    Bandoli, G; Clemente, D A; Mazzi, U [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1978-01-01

    The preparation and the crystal and molecular structure of the title complex are reported. The coordination polyhedron is that of a distorted capped octahedron Csub(3v) symmetry). The technetium atom is seven-coordnate and bonded to three phosphine ligands (capped face), three chlorine ligands (uncapped face), and to the carbonyl group, which occupies the unique capping position. Crystals are monoclinic, space group P2/sub 1//c, with cell dimensions a = 11.732(9), b = 11.807(9), c = 23.588(12) A, and ..beta..103.42(8)/sup 0/. The structure has been refined by least squares to a conventional R of 0.093 for 1 794 observed reflections. Metal-ligand bond lengths are: Tc-CO 1.86(2), Tc-C1 2.48(1). and Tc-p 2.44(1) A. Seven coordinate complexes are briefly reviewed: in particular, a description of Csub(3v) symmetry and its distortions has been developed in terms of repulsion theory and the angular-overlap model.

  9. Automated identification of crystallographic ligands using sparse-density representations

    International Nuclear Information System (INIS)

    Carolan, C. G.; Lamzin, V. S.

    2014-01-01

    A novel procedure for identifying ligands in macromolecular crystallographic electron-density maps is introduced. Density clusters in such maps can be rapidly attributed to one of 82 different ligands in an automated manner. A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination

  10. CXCR4 Ligands : The Next Big Hit?

    NARCIS (Netherlands)

    Walenkamp, Annemiek M. E.; Lapa, Constantin; Herrmann, Ken; Wester, Hans-Juergen

    2017-01-01

    The G protein-coupled protein receptor C-X-C chemokine receptor 4 (CXCR4) is an attractive target for cancer diagnosis and treatment, as it is overexpressed in many solid and hematologic cancers. Binding of its ligand, C-X-C chemokine ligand 12 (CXCL12), results in receptor internalization and

  11. Polymerization catalysts containing electron-withdrawing amide ligands

    Science.gov (United States)

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  12. Immobilisation of ligands by radio-derivatized polymers

    International Nuclear Information System (INIS)

    Varga, J.M.; Fritsch, P.

    1995-01-01

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs

  13. Synthesis and study of new oxazoline-based ligands

    OpenAIRE

    Tilliet, Mélanie

    2008-01-01

    This thesis deals with the study of oxazoline-based ligands in metal-catalyzed asymmetric reactions. The first part describes the synthesis of six new bifunctinal pyridine-bis(oxazoline) ligands and their applications in asymmetric metal-catalysis. These ligands, in addition to a Lewis acid coordination site, are equipped with a Lewis basic part in the 4-position of the oxazoline rings. Dual activation by means of this system was probed in cyanide addition to aldehydes. The second part is con...

  14. Selectivity in ligand recognition of G-quadruplex loops.

    Science.gov (United States)

    Campbell, Nancy H; Patel, Manisha; Tofa, Amina B; Ghosh, Ragina; Parkinson, Gary N; Neidle, Stephen

    2009-03-03

    A series of disubstituted acridine ligands have been cocrystallized with a bimolecular DNA G-quadruplex. The ligands have a range of cyclic amino end groups of varying size. The crystal structures show that the diagonal loop in this quadruplex results in a large cavity for these groups, in contrast to the steric constraints imposed by propeller loops in human telomeric quadruplexes. We conclude that the nature of the loop has a significant influence on ligand selectivity for particular quadruplex folds.

  15. Organotellurium ligands – designing and complexation reactions

    Indian Academy of Sciences (India)

    Unknown

    membered rings it is negative and ~30 ppm only. Keywords. Organotellurium ligands; hybrid telluroether; platinum metal complexes; tellurium-125 NMR. 1. Introduction. Tellurium is the noblest metalloid which may act as a Lewis acid as well as Lewis base. The ligand chemistry of tellurium, which acts as a 'soft' donor, was ...

  16. Preparation, Spectroscopic Investigation and Biological Activity of New Mixed Ligand Chelates

    International Nuclear Information System (INIS)

    Alassbaly, F.S.; Ajaily, M.M.E.

    2014-01-01

    Preparation and investigation of new Co(II), Ni(II), Zn(II) and Cr(III) chelates with mixed ligands including Schiff base (L1) formed from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol and anthranilic acid (L2) were studied. The obtained Schiff base and mixed ligand chelates were subjected to several physiochemical techniques, in terms of CHN elemental analyses, molar conductivity, magnetic moment measurements, infrared, proton nuclear magnetic resonance, electronic and mass spectra. The analytical data showed the formation of the Schiff base compound and the ratio of metal to ligands of the chelates are 1:1:1(M:L1:L2). The infrared spectral data exhibited that the used ligands behaving as bidentate ligands towards the metal ions. The proton nuclear magnetic resonance spectral data showed the signals of the active groups in the ligands which entered in chelation with Zn(II) metal ion. The electronic spectral results showed the existence of pie (phenyl ring) and n = pie (C=N) of the ligands and suggested the geometrical structures of the chelates. Meanwhile, the mass spectral data revealed the fragmentations of the Schiff base, anthranilic acid and their Ni(II) mixed ligand chelate has been preformed the only chelate conducted for justification. All the prepared mixed chelates were non-electrolyte in nature. The antibacterial activity of the Schiff base, anthranilic acid, metal salts and mixed ligand chelates were studied and found to be that mixed ligand chelates have the most biological activity in comparison to the free ligands and salts. (author)

  17. Free-energy relationships in ion channels activated by voltage and ligand

    Science.gov (United States)

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  18. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  19. Identification and characterization of PPARα ligands in the hippocampus.

    Science.gov (United States)

    Roy, Avik; Kundu, Madhuchhanda; Jana, Malabendu; Mishra, Rama K; Yung, Yeni; Luan, Chi-Hao; Gonzalez, Frank J; Pahan, Kalipada

    2016-12-01

    Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.

  20. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  1. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  2. Distinct Iron-binding Ligands in the Upper Water Column at Station ALOHA

    Science.gov (United States)

    Bundy, R.; Boiteau, R.; Repeta, D.

    2016-02-01

    The distribution and chemical properties of iron-binding organic ligands at station ALOHA were examined using a combination of solid phase extraction (SPE) followed by high pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). HPLC-ICPMS ligand measurements were complemented by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) analysis using salicylaldoxime as the added ligand. By HPLC-ICPMS, we find enhanced concentrations of distinct naturally-occurring polar iron-binding ligands present at the surface and in the chlorophyll maximum. Lower concentrations were found in the subsurface, where a suite of non-polar ligands was detected. Siderophores were present at the deepest depths sampled at station ALOHA, down to 400m. Incubation studies provided evidence for the production of iron-binding ligands associated with nutrient amended phytoplankton growth in surface waters, and as a result of microbial particle remineralization in the subsurface water column. Ligands classes identified via SPE were then compared to CLE-ACSV ligand measurements, as well as the conditional stability constants measured from model polar and non-polar siderophores, yielding insight to the sources of iron-binding ligands throughout the water column at station ALOHA.

  3. Synthesis of meta-substituted monodentate phosphinite ligands and ...

    Indian Academy of Sciences (India)

    SATEJ S DESHMUKH

    from organic synthesis, phosphinite ligands find appli- cations in a variety of ... thesis of meta-substituted phosphinite ligands is rarely reported.18 This is most ... 1.9 μm; mobile phase used, 90% methanol + 10% water +. 0.1% formic acid) ...

  4. Ruthenium catalysts bearing a benzimidazolylidene ligand for the metathetical ring-closure of tetrasubstituted cycloolefins

    KAUST Repository

    Borguet, Yannick

    2015-01-01

    © The Royal Society of Chemistry. Deprotonation of 1,3-di(2-tolyl)benzimidazolium tetrafluoroborate with a strong base afforded 1,3-di(2-tolyl)benzimidazol-2-ylidene (BTol), which dimerized progressively into the corresponding dibenzotetraazafulvalene. The complexes [RhCl(COD)(BTol)] (COD is 1,5-cyclooctadiene) and cis-[RhCl(CO)2(BTol)] were synthesized to probe the steric and electronic parameters of BTol. Comparison of the percentage of buried volume (%VBur) and of the Tolman electronic parameter (TEP) of BTol with those determined previously for 1,3-dimesitylbenzimidazol-2-ylidene (BMes) revealed that the two N-heterocyclic carbenes displayed similar electron donicities, yet the 2-tolyl substituents took a slightly greater share of the rhodium coordination sphere than the mesityl groups, due to a more pronounced tilt. The anti,anti conformation adopted by BTol in the molecular structure of [RhCl(COD)(BTol)] ensured nonetheless a remarkably unhindered access to the metal center, as evidenced by steric maps. Second-generation ruthenium-benzylidene and isopropoxybenzylidene complexes featuring the BTol ligand were obtained via phosphine exchange from the first generation Grubbs and Hoveyda-Grubbs catalysts, respectively. The atropisomerism of the 2-tolyl substituents within [RuCl2(=CHPh)(PCy3)(BTol)] was investigated by using variable temperature NMR spectroscopy, and the molecular structures of all four possible rotamers of [RuCl2(=CH-o-OiPrC6H4)(BTol)] were determined by X-ray crystallography. Both complexes were highly active at promoting the ring-closing metathesis (RCM) of model α,ω-dienes. The replacement of BMes with BTol was particularly beneficial to achieve the ring-closure of tetrasubstituted cycloalkenes. More specifically, the stable isopropoxybenzylidene chelate enabled an almost quantitative RCM of two challenging substrates, viz., diethyl 2,2-bis(2-methylallyl)malonate and N,N-bis(2-methylallyl)tosylamide, within a few hours at 60°C.

  5. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    Science.gov (United States)

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rhenium(V) and technetium(V) complexes of bis(o-hydroxyphenyl)phenylphosphine (PO22-) and (o-hydroxyphenyl)diphenylphosphine (PO-) ligands

    International Nuclear Information System (INIS)

    Luo, Hongyan; Setyawati, Ika; Rettig, S.J.; Orvig, C.

    1995-01-01

    The synthesis of several phosphine-based chelating compounds and chelates formed between these compounds and rhenium or technetium is discussed. Four categories of products result, (i) bis-(o-hydroxyphenyl) diphenylphosphine (PO) complexes, (ii) mono- (PO) complexes, (iii) bis-bis(o-hydroxyphenyl)-phenylphosphine (PO 2 ) complexes, and mixed-(PO) and (PO 2 ) complexes. Molecular structures of these compounds (including isomers) were probed by NMR, MS, and IR spectroscopies and by X-ray crystallography

  7. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  8. Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design.

    Science.gov (United States)

    Chandramohan, Arun; Tulsian, Nikhil K; Anand, Ganesh S

    2017-08-01

    Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.

  9. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.

    Science.gov (United States)

    Komiyama, Yusuke; Banno, Masaki; Ueki, Kokoro; Saad, Gul; Shimizu, Kentaro

    2016-03-15

    Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  10. Radiation sensitization by an iodine-labelled DNA ligand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R F; Murray, V; D' Cunha, G; Pardee, M; Haigh, A; Hodgson, G S [Peter MacCallum Cancer Inst., Melbourne (Australia); Kampouris, E; Kelly, D P [Melbourne Univ., Parkville (Australia)

    1990-05-01

    An iodinated DNA ligand, iodoHoechst 33258, which binds in the minor groove of DNA, enhances DNA strand breakage and cell killing by UV-A irradiation. The sites of UV-induced strand breaks reflect the known sequence specificity of the ligand. (author).

  11. Palladium-catalysed arylation of acetoacetate esters to yield 2-arylacetic acid esters

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2004-05-24

    Full Text Available , was developed simultaneously by Hart- wig and Buchwald.5 Typically the tert-butyl ester of propionic acid is treated with an aryl halide (bromide or chloride) in the presence of a strong base, palladium and a bulky phosphine ligand or a bulky imidazolinium CO2t... novel palladium- catalysed conditions for the arylation of acetoacetate esters resulting in the formation of 2-arylacetic acid esters. When we attempted the arylation of tert-butyl aceto- acetate 1a with bromobenzene 2a using mild reaction conditions (K3...

  12. Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors

    Science.gov (United States)

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-01-01

    Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259

  13. A feasibility study of unconventional planar ligand spacers in chalcogenide nanocrystals.

    Science.gov (United States)

    Lukose, Binit; Clancy, Paulette

    2016-05-18

    The solar cell efficiency of chalcogenide nanocrystals (quantum dots) has been limited in the past by the insulation between neighboring quantum dots caused by intervening, often long-chain, aliphatic ligands. We have conducted a computationally based feasibility study to investigate the use of ultra-thin, planar, charge-conducting ligands as an alternative to traditional long passive ligands. Not only might these radically unconventional ligands decrease the mean distance between adjacent quantum dots, but, since they are charge-conducting, they have the potential to actively enhance charge migration. Our ab initio studies compare the binding energies, electronic energy gaps, and absorption characteristics for both conventional and unconventional ligands, such as phthalocyanines, porphyrins and coronene. This comparison identified these unconventional ligands with the exception of titanyl phthalocyanine, that bind to themselves more strongly than to the surface of the quantum dot, which is likely to be less desirable for enhancing charge transport. The distribution of finite energy levels of the bound system is sensitive to the ligand's binding site and the levels correspond to delocalized states. We also observed a trap state localized on a single Pb atom when a sulfur-containing phenyldithiocarbamate (PTC) ligand is attached to a slightly off-stoichiometric dot in a manner that the sulfur of the ligand completes stoichiometry of the bound system. Hence, this is indicative of the source of trap state when thio-based ligands are bound to chalcogenide nanocrystals. We also predict that titanyl phthalocyanine in a mix with chalcogenide dots of diameter ∼1.5 Å can form a donor-acceptor system.

  14. Cytotoxicity of an 125I-labelled DNA ligand

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [ 125 I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the 125 I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to 125 I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging

  15. Identification and Biological Activity of Synthetic Macrophage Inducible C-Type Lectin Ligands

    Directory of Open Access Journals (Sweden)

    Chriselle D. Braganza

    2018-01-01

    Full Text Available The macrophage inducible C-type lectin (Mincle is a pattern recognition receptor able to recognize both damage-associated and pathogen-associated molecular patterns, and in this respect, there has been much interest in determining the scope of ligands that bind Mincle and how structural modifications to these ligands influence ensuing immune responses. In this review, we will present Mincle ligands of known chemical structure, with a focus on ligands that have been synthetically prepared, such as trehalose glycolipids, glycerol-based ligands, and 6-acylated glucose and mannose derivatives. The ability of the different classes of ligands to influence the innate, and consequently, the adaptive, immune response will be described, and where appropriate, structure–activity relationships within each class of Mincle ligands will be presented.

  16. Spectra of fluorinated rare earth β-diketonates with added ligands

    International Nuclear Information System (INIS)

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Rasshinina, T.A.; Krasovskaya, L.I.; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1984-01-01

    Different-ligand rare earth complexes are synthesized. Fluorated β-diketones, triethylphosphine oxide and trifluoracetic acid are used as active ligands. Mass-spectra of low and high resolution are taken at the energy of ionizing electrons of 70 eV, as well as luminescence spectra of complexes. Fragmentation ways of complexes decomposition under electron shock are studied. A series of changing the bound strength of additional ligands with europium in mixed complexes is determined. It is shown that the introduction of additional ligands can purposefully change physical and chemical properties of complexes

  17. Spectra of fluorinated rare earth. beta. -diketonates with added ligands

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Rasshinina, T.A.; Krasovskaya, L.I. (AN Belorusskoj SSR, Minsk. Inst. Fiziki; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1984-01-01

    Different-ligand rare earth complexes are synthesized. Fluorated ..beta..-diketones, triethylphosphine oxide and trifluoracetic acid are used as active ligands. Mass-spectra of low and high resolution are taken at the energy of ionizing electrons of 70 eV, as well as luminescence spectra of complexes. Fragmentation ways of complexes decomposition under electron shock are studied. A series of changing the bound strength of additional ligands with europium in mixed complexes is determined. It is shown that the introduction of additional ligands can purposefully change physical and chemical properties of complexes.

  18. Solvent extraction of calcium and strontium into nitrobenzene by using synergistic mixture of hydrogen dicarbollylcobaltate and diphenyl-N-butylcarbamoylmethyl phosphine oxide

    International Nuclear Information System (INIS)

    Makrlik, E.

    2010-01-01

    Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H + B - ) in the presence of diphenyl-N-butylcarbamoylmethyl phosphine oxide (DPBCMPO, L) has been investigated. The equilibrium data have been explained assuming that the species HL + , HL 2 + , ML 2 2+ , ML 3 2+ and ML 4 2+ (M 2+ = Ca 2+ , Sr 2+ ) are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined. In the considered nitrobenzene medium, it was found that the stability of the SrL 2,org 2+ complex is somewhat higher than that of species CaL 2,org 2+ , while the stability constants of the remaining strontium complexes SrL 3,org 2+ and SrL 4,org 2+ are smaller than those of the corresponding complex species CaL n 2+ (n = 3, 4). (author)

  19. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  20. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion.

    Science.gov (United States)

    Yao, Hiroshi; Iwatsu, Mana

    2016-04-05

    Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.

  1. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  2. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  3. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  4. Residue preference mapping of ligand fragments in the Protein Data Bank.

    Science.gov (United States)

    Wang, Lirong; Xie, Zhaojun; Wipf, Peter; Xie, Xiang-Qun

    2011-04-25

    The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71 798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.

  5. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    Woof, J.M.; Burton, D.R.

    1988-01-01

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  6. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    Science.gov (United States)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  7. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.

    Science.gov (United States)

    Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2 . We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.

  8. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  9. Ligand assisted cleavage of uranium oxo-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique, UMR-E 3 CEA-UJF, CEA/DSM/INAC, CEA-Grenoble, 38054 Grenoble, Cedex 09 (France); Filinchuk, Yaroslav [Swiss Norwegian Beam Lines (SNBL) at the European Synchrotron Radiation Facility (ESRF), rue Jules Horowitz, 38043 Grenoble (France)

    2010-07-01

    Dibenzoylmethanate replaces the bridging triflate ligands in uranium triflate poly-oxo-clusters and cleaves the U{sub 12}O{sub 20} core yielding the new [U{sub 6}O{sub 4}(OH){sub 4}({eta}-dbm){sub 12}] dibenzoylmethanate (dbm{sup -}) cluster which slowly dissociates into a monomeric complex. This reactivity demonstrates the importance of bridging ligands in stabilizing uranium poly-oxo-clusters. (authors)

  10. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  11. Essential role of conformational selection in ligand binding.

    Science.gov (United States)

    Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2014-02-01

    Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and

  12. Unexpected self-sorting self-assembly formation of a [4:4] sulfate:ligand cage from a preorganized tripodal urea ligand.

    Science.gov (United States)

    Pandurangan, Komala; Kitchen, Jonathan A; Blasco, Salvador; Boyle, Elaine M; Fitzpatrick, Bella; Feeney, Martin; Kruger, Paul E; Gunnlaugsson, Thorfinnur

    2015-04-07

    The design and synthesis of tripodal ligands 1-3 based upon the N-methyl-1,3,5-benzenetricarboxamide platform appended with three aryl urea arms is reported. This ligand platform gives rise to highly preorganized structures and is ideally suited for binding SO4 (2-) and H2 PO4 (-) ions through multiple hydrogen-bonding interactions. The solid-state crystal structures of 1-3 with SO4 (2-) show the encapsulation of a single anion within a cage structure, whereas the crystal structure of 1 with H2 PO4 (-) showed that two anions are encapsulated. We further demonstrate that ligand 4, based on the same platform but consisting of two bis-urea moieties and a single ammonium moiety, also recognizes SO4 (2-) to form a self-assembled capsule with [4:4] SO4 (2-) :4 stoichiometry in which the anions are clustered within a cavity formed by the four ligands. This is the first example of a self-sorting self-assembled capsule where four tetrahedrally arranged SO4 (2-) ions are embedded within a hydrophobic cavity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Steric and Stereochemical Modulation in Pyridyl- and Quinolyl-Containing Ligands

    Directory of Open Access Journals (Sweden)

    Zhaohua Dai

    2016-12-01

    Full Text Available Nitrogen-containing pyridine and quinoline are outstanding platforms on which excellent ionophores and sensors for metal ions can be built. Steric and stereochemical effects can be used to modulate the affinity and selectivity of such ligands toward different metal ions on the coordination chemistry front. On the signal transduction front, such effects can also be used to modulate optical responses of these ligands in metal sensing systems. In this review, steric modulation of achiral ligands and stereochemical modulation in chiral ligands, especially ionophores and sensors for zinc, copper, silver, and mercury, are examined using published structural and spectral data. Although it might be more challenging to construct chiral ligands than achiral ones, isotropic and anisotropic absorption signals from a single chiroptical fluorescent sensor provide not only detection but also differentiation of multiple analytes with high selectivity.

  14. Novel peptide ligand with high binding capacity for antibody purification

    DEFF Research Database (Denmark)

    Lund, L. N.; Gustavsson, P. E.; Michael, R.

    2012-01-01

    Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most...... commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide...... ligands have an advantage over biological ligands; they are cheaper to produce, ligand leakage by enzymatic degradation is either eliminated or significantly reduced, and they can in general better withstand cleaning in place (CIP) conditions such as 0.1 M NaOH. Here, we present a novel synthetic peptide...

  15. The affinity of the uranyl ion for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; De Sousa, A.S.; Hancock, R.D.

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO 2 2+ with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO 2 2+ to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO 2 2+ showed that UO 2 2+ has a considerable aqueous solution chemistry with these ligands. (orig.)

  16. (Phosphinoalkyl)silanes. 4.(1) Hydrozirconation as a Non-Photochemical Route to (Phosphinopropyl)silanes: Facile Assembly of the Bis(3-(diphenylphosphino)propyl)silyl ("biPSi") Ligand Framework. Access to the Related Poly(3-(dimethylsilyl)propyl)phosphines R(n)()P(CH(2)CH(2)CH(2)SiMe(2)H)(3)(-)(n)() (n = 1, R = Ph; n = 0).

    Science.gov (United States)

    Zhou, Xiaobing; Stobart, Stephen R.; Gossage, Robert A.

    1997-08-13

    Treatment of SiEt(3)(CH=CH(2)) with ZrCp(2)HCl (Schwartz's reagent) followed by reaction with PPh(2)Cl provides a high-yield (75%) route to Ph(2)PCH(2)CH(2)SiEt(3), and accordingly hydrozirconation of CH(2)=CHCH(2)SiHMe(2) affords the intermediate ZrCp(2)(CH(2)CH(2)CH(2)SiHMe(2))Cl (2). The latter, which is very sensitive to hydrolysis and reacts with HCl forming SiHMe(2)Pr(n)() and with NBS or I(2) affording SiHMe(2)CH(2)CH(2)CH(2)X (X = Br (3), I (4)), behaves similarly with PPh(2)Cl, PPhCl(2), or PBr(3) undergoing cleavage to the known Ph(2)PCH(2)CH(2)CH(2)SiMe(2)H (i.e. chelH, A) and the novel bis- and tris(silylpropyl)phosphines PhP(CH(2)CH(2)CH(2)SiMe(2)H)(2) (5) and P(CH(2)CH(2)CH(2)SiMe(2)H)(3) (6), respectively, with concomitant formation of ZrCp(2)Cl(2). Corresponding hydroboration of allylsilanes is facile, but subsequent phosphine halide cleavage yields (phosphinoalkyl)silanes only as constituents of intractable mixtures. Hydrozirconation followed by phosphination with PPh(2)Cl also converts SiHMe(CH(2)CH=CH(2))(2) to SiHMe(CH(2)CH(2)CH(2)PPh(2))(2) (i.e. biPSiH, B) together with a propyl analogue Ph(2)PCH(2)CH(2)CH(2)SiMe(Pr(n)())H (7) of A (ca. 2:1 ratio), as well as SiH(CH(2)CH=CH(2))(3) to a mixture (ca. 5:2:1 ratio) of SiH(CH(2)CH(2)CH(2)PPh(2))(3) (i.e. triPSiH, C), a new analogue SiH(Pr(n)())(CH(2)CH(2)CH(2)PPh(2))(2) (8) of B, and a further analogue Ph(2)PCH(2)CH(2)CH(2)SiHPr(n)()(2) (9) of A. A further analogue SiH(2)(CH(2)CH(2)CH(2)PPh(2))(2) (10) of biPSiH (B) is obtained similarly starting from SiH(2)(CH(2)CH=CH(2))(2). Steric control of silylalkyl cleavage from 2 is indicated by the fact that, like PPh(2)Cl (which forms B), two further biPSiH analogues SiH(Me)[CH(2)CH(2)CH(2)P(n-hex)(2)](2) (11) and SiH(Me)(CH(2)CH(2)CH(2)PPhBz)(2) (12) were obtained using P(n-hex)(2)Cl (i.e. n-hex = CH(3)(CH(2))(4)CH(2)-) or PPhBzCl (i.e. Bz = -CH(2)C(6)H(5)), respectively, whereas neither PPr(i)(2)Cl nor PBu(t)(2)Cl led to (phosphinoalkyl)silane formation

  17. Magnetic Ligand Fishing as a Targeting Tool for HPLC-HRMS-SPE-NMR: α-Glucosidase Inhibitory Ligands and Alkylresorcinol Glycosides from Eugenia catharinae.

    Science.gov (United States)

    Wubshet, Sileshi G; Brighente, Inês M C; Moaddel, Ruin; Staerk, Dan

    2015-11-25

    A bioanalytical platform combining magnetic ligand fishing for α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for structural identification of α-glucosidase inhibitory ligands, both directly from crude plant extracts, is presented. Magnetic beads with N-terminus-coupled α-glucosidase were synthesized and characterized for their inherent catalytic activity. Ligand fishing with the immobilized enzyme was optimized using an artificial test mixture consisting of caffeine, ferulic acid, and luteolin before proof-of-concept with the crude extract of Eugenia catharinae. The combination of ligand fishing and HPLC-HRMS-SPE-NMR identified myricetin 3-O-α-L-rhamnopyranoside, myricetin, quercetin, and kaempferol as α-glucosidase inhibitory ligands in E. catharinae. Furthermore, HPLC-HRMS-SPE-NMR analysis led to identification of six new alkylresorcinol glycosides, i.e., 5-(2-oxopentyl)resorcinol 4-O-β-D-glucopyranoside, 5-propylresorcinol 4-O-β-D-glucopyranoside, 5-pentylresorcinol 4-O-[α-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside, 5-pentylresorcinol 4-O-β-D-glucopyranoside, 4-hydroxy-3-O-methyl-5-pentylresorcinol 1-O-β-D-glucopyranoside, and 3-O-methyl-5-pentylresorcinol 1-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside.

  18. Force loading explains spatial sensing of ligands by cells

    Science.gov (United States)

    Oria, Roger; Wiegand, Tina; Escribano, Jorge; Elosegui-Artola, Alberto; Uriarte, Juan Jose; Moreno-Pulido, Cristian; Platzman, Ilia; Delcanale, Pietro; Albertazzi, Lorenzo; Navajas, Daniel; Trepat, Xavier; García-Aznar, José Manuel; Cavalcanti-Adam, Elisabetta Ada; Roca-Cusachs, Pere

    2017-12-01

    Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds

  19. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    2010-09-01

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  20. Synthesis of mixed ligand europium complexes: Verification of predicted luminescence intensification

    International Nuclear Information System (INIS)

    Lima, Nathalia B.D.; Silva, Anderson I.S.; Gonçalves, Simone M.C.; Simas, Alfredo M.

    2016-01-01

    Mixed ligand europium complexes are predicted to be more luminescent than what would be expected from their corresponding repeating ligand compounds according to a conjecture recently advanced by our research group; a conjecture that has already been validated for strongly luminescent europium complexes. In this article, we seek to further verify the validity of this conjecture for complexes which are much more symmetric, and which thus display lower levels of luminescence. Accordingly, we synthesized complexes Eu(DBM) 3 (L) 2 , and all novel mixed ligand combinations Eu(DBM) 3 (L,L') with L and L' equal to DBSO, PTSO, and TPPO. The syntheses were carried out via displacement reactions from the starting complex Eu(DBM) 3 (H 2 O) 2 , passing through the intermediates Eu(DBM) 3 (L) 2 and finally, by displacement of L by L', arriving at Eu(DBM) 3 (L,L'). The ligands L obey the following order of displacement TPPO>PTSO>DBSO>H 2 O, which had been previously described by our group. In the present article, we further show that this displacement order could have been predicted by Sparkle/RM1 thermochemical calculations. Subsequently, we determined the radiative decay rates, A rad , for all six compounds by photophysical measurements. As expected, results show that the measured A rad values for all novel mixed ligand complexes are larger than the average of the A rad values for the corresponding repeating ligand coordination compounds. In conclusion, the present article does broaden the scope of our conjecture, which enunciates that an increase in the diversity of ligands around the europium ion tends to intensify the luminescence. - Highlights: • Mixed ligand europium complexes are predicted to be more luminescent than repeating ligand ones. • Radiative decay rates increase with structural coordination asymmetry. • The non-ionic ligands displacement order in substitution reactions is TPPO>PTSO>DBSO>H 2 O. • Sparkle/RM1 correctly predicts the

  1. Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.

    2013-05-01

    Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.

  2. Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Alnemrat, Sufian; Hooper, Joseph P.

    2014-01-01

    We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O 2 molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O 2 diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material

  3. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  4. NKG2D and its ligands in cancer.

    Science.gov (United States)

    Dhar, Payal; Wu, Jennifer D

    2018-04-01

    NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.

  5. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed

  6. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  7. Complexes of rhodium (I) and iridium (I) with mixed phosphorus-oxygen and phosphorus-nitrogen glands

    International Nuclear Information System (INIS)

    Meintjies, E.; Singleton, E.; Schmutzler, R.; Sell, M.

    1985-01-01

    A series of four- and five-coordinate rhodium(I) and iridium(I) complexes of the type [MCl(cod)L] and [M(COD)L 2 ] sup(+)[M = Rh or Ir;cod = cycloocta-1,5-diene; L = P(C 6 H 4 OMe-o) 3 ,PMe 2 (C 6 H 4 OMe-o), PPh 2 (C 6 H 4 OMe-o),PPh 2 -(C 6 H 4 NMe 2 -o),PMe(C 6 H 4 OMe-o) 2 and PPh 2 (C 6 H 4 OPr sup(i)-o)] have been prepared from the reactions of [(MCl(cod)) 2 ] (M = Rh or Ir) with the appropriate stoichiometric amount of L in diethyl ether or methanol solution. N.m.r. evidence ( 1 H and 13 C) is presented for non-chelation in the case of the ether ligands and chelation for the amine ligand. Thus, the complexes [MCl(cod)L](L = ether ligand) are mononuclear square-planar species, whereas the amine ligand chelates to the metal atom, and a distorted trigonal bipyramidal structure is proposed. Attempts at displacing cod from the complexes [MCl(cod)L] with these ether and amine ligands, or with small phosphines, were unsuccessful. However, treatment of [MCl(cod)[P(C 6 H 4 OMe-o) 3

  8. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  9. Lanthanide(III) complexes with tridentate Schiff base ligand ...

    African Journals Online (AJOL)

    The X-ray study reveals isotopic Nd/Sm binuclear structures were each metal ion is nine-coordinated in the same fashion. Both metal centers have distorted tricapped trigonal prism geometry, with the Schiff base acting as tridentate ligand. The DPPH· radical scavenging effects of the Schiff base ligand and its Ln(III) ...

  10. Mixed-ligand complexes of technetium-III. Synthesis and characterization of [bis(diphenylphosphino)ethane]tetrakis(trimethylphosphite)tech netium(I) hexafluorophosphate, [Tc(DPPE)(TMP)4]PF6

    International Nuclear Information System (INIS)

    Abram, U.; Beyer, R.; Muenze, R.; Stach, J.; Kaden, L.; Lorenz, B.; Findeisen, M.

    1989-01-01

    The diamagnetic technetium(I) complex [Tc(DPPE)(TMP) 4 ]PF 6 was prepared from [Tc(N 2 )H(DPPE) 2 ] and characterized by elemental analysis. 1 H- and 99 Tc-NMR spectroscopy and fast atom bombardment mass spectrometry. [Tc(DPPE)(TMP) 4 ]PF 6 is a prototype compound for technetium complexes with mixed phosphine-phosphite coordination spheres. (author)

  11. Redox non-innocent ligands: versatile new tools to control catalytic reactions

    NARCIS (Netherlands)

    Lyaskovskyy, V.; de Bruin, B.

    2012-01-01

    In this (tutorial overview) perspective we highlight the use of "redox non-innocent" ligands in catalysis. Two main types of reactivity in which the redox non-innocent ligand is involved can be specified: (A) The redox active ligand participates in the catalytic cycle only by accepting/donating

  12. Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Hertoghs, Nina; Geijtenbeek, Teunis B. H.

    2016-01-01

    In this chapter we describe a fluorescent bead-binding assay, which is an efficient and feasible method to measure interaction between ligands and receptors on cells. In principle, any ligand can be coated on fluorescent beads either directly or via antibodies. Binding between ligand-coated beads

  13. Ligand-free, protein-bound technetium-99m. Evidence for tumour localisation

    International Nuclear Information System (INIS)

    Jakovljevic, A.C.; Pojer, P.M.

    1984-11-01

    An hypothesis that cations accumulate in tumours independent of ligand is tested. A preparation of technetium-99m known to be ligand-free (that is, the technetium is protein bound and no other ligand is injected) has been shown to accumulate in a T-cell lymphoma

  14. Ligand Exchange Kinetics of Environmentally Relevant Metals

    Energy Technology Data Exchange (ETDEWEB)

    Panasci, Adele Frances [Univ. of California, Davis, CA (United States)

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb to mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.

  15. Silver Nanoclusters: From Design Principles to Practical Applications

    KAUST Repository

    Abdulhalim, Lina G.

    2015-12-08

    A strategy based on reticulating metal ions and organic ligands into atomically precise gold and silver nanoclusters (NCs) with high monodispersity has been advanced to a point that allows the design of NCs with strict stoichiometries, functionalities and valence. Of the Ag NCs discovered, Ag44 is the most studied, not only due to its high absorption that transcends the visible spectrum suitable for photovoltaics but also because of its long excited state lifetime, as revealed by nanosecond transient absorption spectroscopy. A major principle discovered in this dissertation is the ability to produce Ag44 in scalable amounts and with high stability in addition to modulation of the functional groups of the organic ligands via a fast and complete ligand exchange process. This new discovery has led to the development of synthetic designs in which new sizes were obtained by varying the reaction parameters (e.g., ligands functionality, reaction temperature and time), namely, Ag29 using dithiols and phosphines. The synthesized NCs possess tetravalent functionalities that facilitate their crystallization and characterization. Furthermore, Ag29 glows red and is therefore a possible candidate for sensing and imaging applications.

  16. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman

    2007-01-01

    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  18. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    Science.gov (United States)

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, Mads Corvinius; Larsen, Anders Foller; Abdikadir, Faisal Hussein

    2014-01-01

    G-quadruplex (G4) ligands are currently receiving considerable attention as potential anticancer therapeutics. A series of phenanthroline-2,9-bistriazoles carrying tethered positive end groups has been synthesized and evaluated as G4 stabilizers. The compounds were efficiently assembled by copper......(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in CH2Cl2 and water in the presence of a complexing agent. Characterization of the target compounds on telomeric and c-KIT G4 sequences led to the identification of guanidinium-substituted compounds as potent G4 DNA ligands with high selectivity over duplex DNA....... The diisopropylguanidium ligands exhibited high selectivity for the proto-oncogenic sequence c-KIT over the human telomeric sequence in the surface plasmon resonance (SPR) assay, whereas the compounds appeared potent on both G4 structures in the FRET melting temperature assay. The phenanthroline-2,9-bistriazole ligands...

  20. Cloud computing approaches for prediction of ligand binding poses and pathways.

    Science.gov (United States)

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  1. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-01-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique

  2. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.; Baumgardner, William J.; Choi, Joshua J.; Hanrath, Tobias; Hennig, Richard G.

    2012-01-01

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind

  3. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities.

    Science.gov (United States)

    Lew, Erin D; Oh, Jennifer; Burrola, Patrick G; Lax, Irit; Zagórska, Anna; Través, Paqui G; Schlessinger, Joseph; Lemke, Greg

    2014-09-29

    The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.

  4. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    Directory of Open Access Journals (Sweden)

    Awatef Ayadi

    2015-08-01

    Full Text Available The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene]-4-yl-6-((2,4-dinitrophenylhydrazonomethylpyridine (L1 and 5-([2,2’-bi(1,3-dithiolylidene]-4-yl-2-((2,4-dinitrophenylhydrazonomethylpyridine (L2 are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts.

  5. Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors

    Science.gov (United States)

    Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.

    We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.

  6. The affinity of the uranyl ion for nitrogen donor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, N.V. (Atomic Energy Corp. of South Africa Ltd., Pretoria (South Africa). Dept. of Process Technology); De Sousa, A.S.; Hancock, R.D. (Univ. of the Witwatersrand, Johannesburg (South Africa). Centre for Molecular Design)

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO[sub 2][sup 2+] with nitrogen donor ligands which do not contain carboxylate donors. pK[sub a]'s of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO[sub 2][sup 2+] to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO[sub 2][sup 2+] showed that UO[sub 2][sup 2+] has a considerable aqueous solution chemistry with these ligands. (orig.).

  7. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  8. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    International Nuclear Information System (INIS)

    Poór, Miklós; Li, Yin; Matisz, Gergely; Kiss, László; Kunsági-Máté, Sándor; Kőszegi, Tamás

    2014-01-01

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin

  9. PPARγ and Its Ligands: Potential Antitumor Agents in the Digestive System.

    Science.gov (United States)

    Shu, Linjing; Huang, Renhuan; Wu, Songtao; Chen, Zhaozhao; Sun, Ke; Jiang, Yan; Cai, Xiaoxiao

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a versatile member of the ligand-activated nuclear hormone receptor superfamily of transcription factors, with expression in several different cell lines, especially in the digestive system. After being activated by its ligand, PPARγ can suppress the growth of oral, esophageal, gastric, colorectal, liver, biliary, and pancreatic tumor cells, suggesting that PPARγ ligand is a potential anticancer agent in PPARγ-expressing tumors. This review highlights key advances in understanding the effects of PPARγ ligands in the treatment of tumors in the digestive system.

  10. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    Science.gov (United States)

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  11. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots

    KAUST Repository

    Zhang, Haitao

    2011-12-14

    A novel method is reported to create inorganically connected nanocrystal (NC) assemblies for both II-VI and IV-VI semiconductors by removing surfactant ligands using (NH 4) 2S. This surface modification process differs from ligand exchange methods in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH 4) 2S and metal-surfactant ligand complexes enables the complete removal of surfactant ligands in seconds and converts the NC metal-rich shells into metal sulfides. The post-treated NCs are connected through metal-sulfide bonding and form a larger NCs film assembly, while still maintaining quantum confinement. Such "connected but confined" NC assemblies are promising new materials for electronic and optoelectronic devices. © 2011 American Chemical Society.

  12. Polymerization of 1,3-butadiene catalyzed by pincer cobalt(II) complexes derived from 2-(1-arylimino)-6-(pyrazol-1-yl)pyridine ligands

    KAUST Repository

    Gong, Dirong

    2013-08-01

    A new class of air stable and structurally well-defined cobalt complexes with unsymmetrical pincer type ligands ([2-(ArNCMe)-6-(Py)C5H 3N]CoCl2) (Ar = C6H5, Py = pyrazol-1-yl, 5a; Ar = 2,4,6-Me3C6H2, Py = pyrazol-1-yl, 5b; Ar = 2,6-iPr2C6H3, Py = pyrazol-1-yl, 5c; Ar = C6H5, Py = 3,5-Me 2pyrazol-1-yl, 5d; Ar = 2,4,6-Me3C6H 2, Py = 3,5-Me2pyrazol-1-yl, 5e; Ar = 2,6- iPr2C6H3, Py = 3,5-Me 2pyrazol-1-yl, 5f; Ar = 2,6-iPr2C 6H3, Py = 3,5-iPr2pyrazol-1-yl, 5g and [2-(OCMe)-6-(3,5-diphenylpyrazol-1-yl)C5H3N]CoCl 2 5h) were prepared and the molecular structures of 5a, 5c and 5f were determined by single crystal X-ray crystallography. Upon activation by methylaluminoxane (MAO) in toluene at room temperature, all complexes initiate polymerization of 1,3-butadiene (polymer yields: 65-99%), affording polybutadiene with excellent cis-1,4 regularity (97.5-98.7%). The polymer yields and properties in terms of molecular weight and distribution are well controlled by the substituents on iminoaryl rings and pyrazole rings. Selectivity switch from cis-1,4 to syndio-1,2 was also achievable by adding phosphine as microstructure regulator. © 2013 Elsevier B.V. All rights reserved.

  13. Adsorption of hairy particles with mobile ligands: Molecular dynamics and density functional study

    Science.gov (United States)

    Borówko, M.; Sokołowski, S.; Staszewski, T.; Pizio, O.

    2018-01-01

    We study models of hairy nanoparticles in contact with a hard wall. Each particle is built of a spherical core with a number of ligands attached to it and each ligand is composed of several spherical, tangentially jointed segments. The number of segments is the same for all ligands. Particular models differ by the numbers of ligands and of segments per ligand, but the total number of segments is constant. Moreover, our model assumes that the ligands are tethered to the core in such a manner that they can "slide" over the core surface. Using molecular dynamics simulations we investigate the differences in the structure of a system close to the wall. In order to characterize the distribution of the ligands around the core, we have calculated the end-to-end distances of the ligands and the lengths and orientation of the mass dipoles. Additionally, we also employed a density functional approach to obtain the density profiles. We have found that if the number of ligands is not too high, the proposed version of the theory is capable to predict the structure of the system with a reasonable accuracy.

  14. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.

    Science.gov (United States)

    Hirano, Toru; Arimitsu, Junsuke; Higa, Shinji; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    We have previously shown that flavonoids such as luteolin, apigenin and fisetin inhibit interleukin 4 and interleukin 13 production. In this study, we investigated whether luteolin can suppress CD40 ligand expression by basophils. A human basophilic cell line, KU812, was stimulated with A23187 and phorbol myristate acetate (PMA) with or without various concentrations of luteolin or other flavonoids for 12 h, and CD40 ligand expression was analyzed by FACS. The effect of luteolin on CD40 ligand mRNA expression was studied by semiquantitative reverse transcription PCR analysis. In addition, CD40 ligand expression was also measured in purified basophils that had been stimulated for 12 h with A23187 plus PMA with or without various concentrations of luteolin. CD40 ligand expression by KU812 cells was enhanced noticeably in response to A23187 and even more strikingly augmented by A23187 plus PMA. The expression was significantly suppressed by 10 or 30 microM of luteolin, whereas myricetin failed to inhibit. Reverse transcription PCR analyses demonstrated that luteolin inhibited CD40 ligand mRNA expression by stimulated KU812 cells. Of the six flavonoids examined, luteolin, apigenin, fisetin and quercetin at 30 microM showed a significant inhibitory effect on CD40 ligand expression. The incubation of purified basophils with A23187 plus PMA significantly enhanced CD40 ligand expression, and the presence of luteolin again had an inhibitory effect. Luteolin inhibits CD40 ligand expression by activated basophils.

  15. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    Science.gov (United States)

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. The Evaluation of Novel Camphor-derived Pyridyl Ligands as ...

    African Journals Online (AJOL)

    The structures of the copper (II) complexes of the ligands were calculated using ONIOM density functional theory and the results suggest that chiral induction to the alkene functional group is indeed lacking. This explains the moderate experimental selectivities obtained. Keywords: Camphor ligands, asymmetric catalysis, ...

  17. Mixed-Ligand Complexes Of Nickel (II) With 2-Acetylpyridine ...

    African Journals Online (AJOL)

    The preparation and spectral properties of five nickel (II) mixed-ligands complexes (Ni [2-Actsc.Y]CI2), derived from 2-acetylpyridinethiosermicarbazones and some nitrogen/sulphur monodentate ligands such as thiophene, ammonia, picoline, pyridine and aniline are described. The complexes have been characterized on ...

  18. Some new IIB group complexes of an imidazolidine ligand ...

    Indian Academy of Sciences (India)

    The spectral data indicate that the ligand is coordinated to zinc(II) as a bidentate ligand in imidazolidine form but it binds to ..... confirmed by determination of the minimum inhibitory ...... Yue F, Gang L, Xiu-Mei T, Ji-De W and Wei W 2008. Chin.

  19. Structural investigation of the complexation of uranyl and lanthanide ions by CMPO-functionalized calixarenes

    International Nuclear Information System (INIS)

    Cherfa, S.

    1998-12-01

    A way to reduce the volume of nuclear wastes is to make a simultaneous extraction of actinides and lanthanides for their ulterior separation. Historically, the two first series of extractants used for the reprocessing of these wastes are the phosphine oxides and the CMPO (carbamoyl methyl phosphine oxide). In order to better know the type of complexes formed during the extraction, have been carried out structural studies concerning these two series (uranyl complexes and lanthanide nitrates). These studies have been carried out by X-ray diffraction on monocrystals. More recently, a new series of extracting molecules of lanthanides (III) and actinides (III) have been developed. It has been shown that in functionalizing an organic macrocycle of calixarene type (cyclic oligomer resulting of the poly-condensation of phenolic units) by a ligand of CMPO type, the extracting power of these molecules in terms of yield and selectivity towards the lighter lanthanides was superior to those of the CMPO alone. This study, carried out by X-ray diffraction on monocrystals of complexes formed between these ligands calix[4]arenes-CMPO (with 4 phenolic units) with uranyl and lanthanides nitrates, has allowed to define the type of the formed complexes, that is to say to establish the stoichiometry and the coordination mode (monodentate or bidentate) of the CMPO functions. These different steps of characterization have allowed too to determine the correlations existing between the complexes structures in the one hand and the selectivity and the exacerbation of the extracting power measured in liquid phase on the other hand. (O.M.)

  20. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab