Diagonally implicit Runge-Kutta methods for 3D shallow water applications
P.J. van der Houwen; B.P. Sommeijer (Ben)
1999-01-01
textabstractWe construct A-stable and L-stable diagonally implicit Runge-Kutta methods of which the diagonal vector in the Butcher matrix has a minimal maximum norm. If the implicit Runge-Kutta relations are iteratively solved by means of the approximately factorized Newton process, then such
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove
2010-01-01
control applied to high order methods for temporal discretization in reservoir simulation. The family of Runge-Kutta methods is presented and in particular the explicit singly diagonally implicit Runge-Kutta (ESDIRK) method with an embedded error estimate is described. A predictive stepsize adjustment...... rule based on error estimates and convergence control of the integrated iterative solver is presented. We try to improve the predictive stepsize control through an extended communication between the convergence rate, the error control and the stepsize. Keywords: Reservoir simulation, implicit Runge-Kutta...
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove
2010-01-01
The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete....... Current reservoir simulators apply timestepping algorithms that are based on safeguarded heuristics, and can neither guarantee convergence in the underlying equation solver, nor provide estimates of the relations between convergence, integration error and stepsizes. We establish predictive stepsize...... control applied to high order methods for temporal discretization in reservoir simulation. The family of Runge-Kutta methods is presented and in particular the explicit singly diagonally implicit Runge-Kutta (ESDIRK) method with an embedded error estimate is described. A predictive stepsize adjustment...
Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review
Kennedy, Christopher A.; Carpenter, Mark H.
2016-01-01
A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.
CONVERGENCE OF PARALLEL DIAGONAL ITERATION OF RUNGE-KUTTA METHODS FOR DELAY DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Xiao-hua Ding; Mingzhu Liu
2004-01-01
Implicit Runge-Kutta method is highly accurate and stable for stiff initial value prob-lem. But the iteration technique used to solve implicit Runge-Kutta method requires lots of computational efforts. In this paper, we extend the Parallel Diagonal Iterated Runge-Kutta(PDIRK) methods to delay differential equations(DDEs). We give the convergence region of PDIRK methods, and analyze the speed of convergence in three parts for the P-stability region of the Runge-Kutta corrector method. Finally, we analysis the speed-up factor through a numerical experiment. The results show that the PDIRK methods to DDEs are efficient.
Institute of Scientific and Technical Information of China (English)
蒋长锦
2002-01-01
A nonlinear system with 3 equations and 3 unknowns was got by using symplectic conditions to reduce the system with 8 equations and 4 unknowns, which the coefficients of 4-stage and 4-order diagonally implicit symplectic Runge-Kutta methods must satisfy. An optimal problem was constructed from the nonlinear system. We investigated on the minimum points of the optimal problem and obtained 9 approximate of them. The 9 computational solutions are obtaind respectively,when Broyden-Flecher-Shanno quasi-Newton methods for solve nonlinear equations was used. These solutions can be regarded as the coefficients of fourth-stage and fourth-order diagonally implicit Runge-Kutta methods respectively.
Semi-implicit Runge.Kutta Method for Solving Stiff Ordinary Differential Equations
Institute of Scientific and Technical Information of China (English)
LONGYongxing; MOUZongze; DONGJiaqi; ZHAOHuaiguo
2003-01-01
Runge-Kutta method is widely applied to solve the initial value problem of ordinary differential equations. The implicitRunge-Kutta with better numerical stability for the numerical integration of stiff differential systems,but the formulate has traditionally been on solving the nonlinear equations resulting from a modified Newton iteration in every time.Semi-implicit formulate have the major computationally advantage that it is necessary to solve only linear systems of algebraic equations to find the Ka.
Partially implicit Runge-Kutta methods for wave-like equations in spherical-type coordinates
Cordero-Carrión, Isabel
2012-01-01
Partially implicit Runge-Kutta methods are presented in this work in order to numerically evolve in time a set of partial differential equations. These methods are designed to overcome numerical instabilities appearing during the evolution of a system of equations due to potential numerical unstable terms in the sources, such as stiff terms or the presence of factors as a result of a particular chosen system of coordinates. In this article, partially implicit Runge-Kutta methods for several convergence orders have been derived and stability properties have been analyzed. These methods are shown to be appropriated to avoid the development of numerical instabilities in the evolution in time of wave-like equations in spherical-type coordinates, in contrast to the explicit Runge-Kutta methods.
Langer, Stefan
2014-11-01
For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge-Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier-Stokes (RANS) equations. The implicit Runge-Kutta method is interpreted as a preconditioned explicit Runge-Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss-Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss-Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart-Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge-Kutta methods.
Implicit - symplectic partitioned (IMSP) Runge-Kutta schemes for predator-prey dynamics
Diele, F.; Marangi, C.; Ragni, S.
2012-09-01
In the study of the effects of habitat fragmentation on biodiversity the role of spatial processes reveals of great interest since both the variation of size of the domains as well as their heterogeneity largely affects the dynamics of species. In order to begin a preliminary study about the effects of habitat fragmentation on wolf - wild boar pair populating the Italian "Alta Murgia" Natura 2000 site, object of interest for FP7 project BIOSOS, (BIOdiversity multi-SOurce Monitoring System: from Space TO Species), spatially explicit models described by reaction-diffusion partial differential equations are considered. Numerical methods based on partitioned Runge-Kutta schemes which use an implicit scheme for the stiff diffusive term and a partitioned symplectic scheme for the reaction function are here proposed. We are motivated by the classical results about Lotka-Volterra model described by ordinary differential equations to which the spatially explicit model reduces for diffusion coefficients tending to zero: for their accurate solution symplectic schemes have to be used for an optimal long run preservation of the dynamics invariant. Moreover, for models based on logistic growth and Holling type II functional predator response we verify the better performance of our schemes when compared with classical implicit-explicit (IMEX) schemes on chaotic dynamics given in literature.
AbuAlSaud, Moataz
2012-07-01
The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.
Elkina, N V; Fedotov, A M; Herzing, C; Ruhl, H
2014-05-01
The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the nonphysical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covariant four-vector form in order to control both the energy and momentum of radiating particles. Our study reveals that implicit time-symmetric collocation methods of the Runge-Kutta-Nyström type are superior in accuracy and better at maintaining the mass-shell condition than their explicit counterparts. We carry out an extensive study of numerical accuracy by comparing the analytical and numerical solutions of the Landau-Lifshitz equation. Finally, we present the results of the simulation of particle scattering by a focused laser pulse. Due to radiation reaction, particles are less capable of penetrating into the focal region compared to the case where radiation reaction is neglected. Our results are important for designing forthcoming experiments with high intensity laser fields.
Duan, Shu-Chao
2016-01-01
We construct eight implicit-explicit (IMEX) Runge-Kutta (RK) schemes up to third order of the type in which all stages are implicit so that they can be used in the zero relaxation limit in a unified and convenient manner. These all-stages-implicit (ASI) schemes attain the strong-stability-preserving (SSP) property in the limiting case, and two are SSP for not only the explicit part but also the implicit part and the entire IMEX scheme. Three schemes can completely recover to the designed accuracy order in two sides of the relaxation parameter for both equilibrium and non-equilibrium initial conditions. Two schemes converge nearly uniformly for equilibrium cases. These ASI schemes can be used for hyperbolic systems with stiff relaxation terms or differential equations with some type constraints.
Abdulle, Assyr; Vilmart, Gilles
2013-06-01
A partitioned implicit-explicit orthogonal Runge-Kutta method (PIROCK) is proposed for the time integration of diffusion-advection-reaction problems with possibly severely stiff reaction terms and stiff stochastic terms. The diffusion terms are solved by the explicit second order orthogonal Chebyshev method (ROCK2), while the stiff reaction terms (solved implicitly) and the advection and noise terms (solved explicitly) are integrated in the algorithm as finishing procedures. It is shown that the various coupling (between diffusion, reaction, advection and noise) can be stabilized in the PIROCK method. The method, implemented in a single black-box code that is fully adaptive, provides error estimators for the various terms present in the problem, and requires from the user solely the right-hand side of the differential equation. Numerical experiments and comparisons with existing Chebyshev methods, IMEX methods and partitioned methods show the efficiency and flexibility of our new algorithm.
Kanevsky, Alex
2004-01-01
My goal is to develop and implement efficient, accurate, and robust Implicit-Explicit Runge-Kutta (IMEX RK) methods [9] for overcoming geometry-induced stiffness with applications to computational electromagnetics (CEM), computational fluid dynamics (CFD) and computational aeroacoustics (CAA). IMEX algorithms solve the non-stiff portions of the domain using explicit methods, and isolate and solve the more expensive stiff portions using implicit methods. Current algorithms in CEM can only simulate purely harmonic (up to lOGHz plane wave) EM scattering by fighter aircraft, which are assumed to be pure metallic shells, and cannot handle the inclusion of coatings, penetration into and radiation out of the aircraft. Efficient MEX RK methods could potentially increase current CEM capabilities by 1-2 orders of magnitude, allowing scientists and engineers to attack more challenging and realistic problems.
Three-stage Stiffly Accurate Runge-Kutta Methods for Stiff Stochastic Differential Equations
Institute of Scientific and Technical Information of China (English)
WANG PENG
2011-01-01
In this paper we discuss diagonally implicit and semi-implicit methods based on the three-stage stiffly accurate Runge-Kutta methods for solving Stratonovich stochastic differential equations (SDEs). Two methods, a three-stage stiffly accurate semi-implicit (SASI3) method and a three-stage stiffly accurate diagonally implicit (SADI3) method, are constructed in this paper. In particular, the truncated random variable is used in the implicit method. The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of stiff SDEs.
Approximating Runge-Kutta matrices by triangular matrices
W. Hoffmann; J.J.B. de Swart (Jacques)
1995-01-01
textabstractThe implementation of implicit Runge-Kutta methods requires the solution of large systems of non-linear equations. Normally these equations are solved by a modified Newton process, which can be very expensive for problems of high dimension. The recently proposed triangularly implicit
A Generalized Runge-Kutta Method of order three
DEFF Research Database (Denmark)
Thomsen, Per Grove
2002-01-01
The report presents a numerical method for the solution of stiff systems of ODE's and index one DAE's. The type of method is a 4- stage Generalized Linear Method that is reformulated in a special Semi Implicit Runge Kutta Method of SDIRK type. Error estimation is by imbedding a method of order 4...
A comparison of Runge-Kutta modifications
Praagman; N.; Vorst; J.van der; Koster; J.
1984-01-01
Vijf klassen van Runge-Kutta methoden voor het numeriek integreren van beginwaardeproblemen worden vergeleken. Aangetoond wordt dat de beste resultaten, bedoeld is het kleinste aantal rechterlid bewerkingen bij een gegeven tolerantie, verkregen worden met een blok Runge-Kutta methode met een
A Runge-Kutta Nystrom algorithm.
Bettis, D. G.
1973-01-01
A Runge-Kutta algorithm of order five is presented for the solution of the initial value problem where the system of ordinary differential equations is of second order and does not contain the first derivative. The algorithm includes the Fehlberg step control procedure.
A SIMPLE WAY CONSTRUCTING SYMPLECTIC RUNGE-KUTTA METHODS
Institute of Scientific and Technical Information of China (English)
Geng Sun
2000-01-01
With the help of symplecticity conditions of Partitioned Runge-Kutta methods, a simple way constructing symplectic methods is derived. Examples including sev eral classes of high order symplectic Runge-Kutta methods are given, and showed up the relationship between existing high order Runge-Kutta methods.
Stability of Runge-Kutta-Nystrom methods
Alonso-Mallo, I.; Cano, B.; Moreta, M. J.
2006-05-01
In this paper, a general and detailed study of linear stability of Runge-Kutta-Nystrom (RKN) methods is given. In the case that arbitrarily stiff problems are integrated, we establish a condition that RKN methods must satisfy so that a uniform bound for stability can be achieved. This condition is not satisfied by any method in the literature. Therefore, a stable method is constructed and some numerical comparisons are made.
Spatially Partitioned Embedded Runge--Kutta Methods
Ketcheson, David I.
2013-10-30
We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.
Composite group of explicit Runge-Kutta methods
Hamid, Fatin Nadiah Abd; Rabiei, Faranak; Ismail, Fudziah
2016-06-01
In this paper,the composite groups of Runge-Kutta (RK) method are proposed. The composite group of RK method of third and second order, RK3(2) and fourth and third order RK4(3) base on classical Runge-Kutta method are derived. The proposed methods are two-step in nature and have less number of function evaluations compared to the existing Runge-Kutta method. The order conditions up to order four are obtained using rooted trees and composite rule introduced by J. C Butcher. The stability regions of RK3(2) and RK4(3) methods are presented and initial value problems of first order ordinary differential equations are carried out. Numerical results are compared with existing Runge-Kutta method.
Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation
Institute of Scientific and Technical Information of China (English)
Wei-peng HU; Zi-chen DENG; Song-mei HAN; Wei FAN
2009-01-01
Nonlinear wave equations have been extensively investigated in the last several decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation,is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical resuits for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors.
Trigonometrical fitting conditions for two derivative Runge Kutta methods
Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.
2016-12-01
Trigonometrically fitted two derivative explicit Runge-Kutta methods are considered in this work. We give order conditions for trigonometrically fitted methods that use several evaluations of the f and the g functions. We present modified methods based on methods with several f evaluations and one g evaluation.
Runge-Kutta methods and viscous wave equations
J.G. Verwer (Jan)
2008-01-01
htmlabstractWe study the numerical time integration of a class of viscous wave equations by means of Runge-Kutta methods. The viscous wave equation is an extension of the standard second-order wave equation including advection-diffusion terms differentiated in time. The viscous wave equation can be
Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties
Capuano, F.; Coppola, G.; Rández, L.; de Luca, L.
2017-01-01
The application of pseudo-symplectic Runge-Kutta methods to the incompressible Navier-Stokes equations is discussed in this work. In contrast to fully energy-conserving, implicit methods, these are explicit schemes of order p that preserve kinetic energy to order q, with q > p. Use of explicit methods with improved energy-conservation properties is appealing for convection-dominated problems, especially in case of direct and large-eddy simulation of turbulent flows. A number of pseudo-symplectic methods are constructed for application to the incompressible Navier-Stokes equations and compared in terms of accuracy and efficiency by means of numerical simulations.
Numerically optimal Runge-Kutta pairs with interpolants
Verner, J.
2010-03-01
Explicit Runge-Kutta pairs are known to provide efficient solutions to initial value differential equations with inexpensive derivative evaluations. Two criteria for selection are proposed with a view to deriving pairs of all orders 6(5) to 9(8) which minimize computation while achieving a user-specified accuracy. Coefficients of improved pairs, their stability regions and coefficients of appended optimal interpolatory Runge-Kutta formulas are provided on the author's website (www.math.sfu.ca/~jverner). This note reports results of tests on these pairs to illustrate their effectiveness in solving nonstiff initial value problems. These pairs and interpolants may be used for implementation, or else to provide comparison targets for other new types of methods such as explicit general linear methods.
Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method
Directory of Open Access Journals (Sweden)
Yu. I. Dimitrienko
2015-01-01
Full Text Available Thermo creep deformations for most heat-resistant alloys, as a rule, nonlinearly depend on stresses and are practically non- reversible. Therefore, to calculate the properties of these materials the theory of plastic flow is most widely used. Finite-element computations of a stress-strain state of structures with account of thermo creep deformations up to now are performed using main commercial software, including ANSYS package. However, in most cases to solve nonlinear creep equations, one should apply explicit or implicit methods based on the Euler method of approximation of time-derivatives. The Euler method is sufficiently efficient in terms of random access memory in computations, however this method is cumbersome in computation time and does not always provide a required accuracy for creep deformation computations.The paper offers a finite-element algorithm to solve a three-dimensional problem of thermo creep based on the Runge-Kutta finite-difference schemes of different orders with respect to time. It shows a numerical test example to solve the problem on the thermo creep of a beam under tensile loading. The computed results demonstrate that using the Runge-Kutta method with increasing accuracy order allows us to obtain a more accurate solution (with increasing accuracy order by 1 a relative error decreases, approximately, by an order too. The developed algorithm proves to be efficient enough and can be recommended for solving the more complicated problems of thermo creep of structures.
Runge Kutta Algorithm applied to a Hydrology Problem
Narayanan, M.
2003-12-01
In this paper, the author utilizes a fourth order Runge Kutta Algorithm technique to solve a design problem in Hydrology and Fluid Mechanics. Principles of Fuzzy Logic Design methodologies were utilized to analyze the problem and arrive at an appropriate solution. The problem posed was to examine the depletion of water from a reservoir. A suitable model was to be created to represent different parameters that contributed to the depletion, such as evaporation, drainage and seepage, irrigation channels, city water supply pipes, etc. The reservoir was being fed via natural resources such as rain, streams, rivers, etc. A model of a catchment area and a reservoir lake is simulated as a tank and exit discharge is represented as fluid output via a long pipe. The Input to the reservoir is assumed to be continuous-time and time varying. In other words, the flow rate of fluid input is presumed to change with time. The required objective is to maintain a predetermined level of water in the reservoir, regardless of input conditions. This is accomplished by adjusting the depletion rate. This means that some of the Irrigation channels may have to be closed or some of the city water supply lines need to be shut off. The differential equation governing the system can be easily derived using Bernoulli's' equation. If hd is the desired height of water in the reservoir and h(t) represents the height of water in the reservoir at any given time, K represents a positive constant. (dh/dt) + K [ h(t) - hd ] = 0 The closed loop system is simulated by using fourth-order Runge-Kutta algorithm. The controller output u(t) can be calculated using the above equation. The Runge-Kutta algorithm is a very popular method, which is widely used for obtaining a numerical solution to a given differential equation. The Runge-Kutta algorithm is considered to be quite accurate for a broad range of scientific and engineering applications, and as such, the method is heavily used by many scholars and
Institute of Scientific and Technical Information of China (English)
Rui QI; Cheng-jian ZHANG; Yu-jie ZHANG
2012-01-01
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k,l)-algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid.The finitedimensional and infinite-dimensional dissipativity results of (k,l)-algebraically stable Runge-Kutta methods are obtained.
The numerical solution of differential-algebraic systems by Runge-Kutta methods
Hairer, Ernst; Lubich, Christian
1989-01-01
The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.
D-CONVERGENCE OF RUNGE-KUTTA METHODS FOR STIFF DELAY DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Cheng-ming Huang; Hong-yuan Fu; Shou-fu Li; Guang-nan Chen
2001-01-01
This paper is concerned with the numerical solution of delay differential equations(DDEs).We focus on the error behaviour of Runge-Kutta methods for stiff DDEs. We investigate D-convergence properties of algebraically stable Runge-Kutta methods with three kinds of interpolation procedures.
Runge-Kutta collocation methods for differential-algebraic equations of indices 2 and 3
Skvortsov, L. M.
2012-10-01
Stiffly accurate Runge-Kutta collocation methods with explicit first stage are examined. The parameters of these methods are chosen so as to minimize the errors in the solutions to differential-algebraic equations of indices 2 and 3. This construction results in methods for solving such equations that are superior to the available Runge-Kutta methods.
On the multisymplecticity of partitioned Runge-Kutta and splitting methods
B.N. Ryland; R.I. McLachlan; J.E. Frank (Jason)
2007-01-01
htmlabstractAlthough Runge-Kutta and partitioned Runge-Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger
Symmetric Uniformly Accurate Gauss-Runge-Kutta Method
Directory of Open Access Journals (Sweden)
Dauda G. YAKUBU
2007-08-01
Full Text Available Symmetric methods are particularly attractive for solving stiff ordinary differential equations. In this paper by the selection of Gauss-points for both interpolation and collocation, we derive high order symmetric single-step Gauss-Runge-Kutta collocation method for accurate solution of ordinary differential equations. The resulting symmetric method with continuous coefficients is evaluated for the proposed block method for accurate solution of ordinary differential equations. More interestingly, the block method is self-starting with adequate absolute stability interval that is capable of producing simultaneously dense approximation to the solution of ordinary differential equations at a block of points. The use of this method leads to a maximal gain in efficiency as well as in minimal function evaluation per step.
Exponentially fitted explicit Runge-Kutta-Nystrom methods
Franco, J. M.
2004-05-01
Exponentially fitted Runge-Kutta-Nystrom (EFRKN) methods for the numerical integration of second-order IVPs with oscillatory solutions are derived. These methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(λt),exp(-λt)}, , or equivalently {sin(ωt),cos(ωt)} when λ=iω, . Explicit EFRKN methods with two and three stages and algebraic orders 3 and 4 are constructed. In addition, a 4(3) embedded pair of explicit EFRKN methods based on the FSAL technique is obtained, which permits to introduce an error and step length control with a small cost added. Some numerical experiments show the efficiency of our explicit EFRKN methods when they are compared with other exponential fitting type codes proposed in the scientific literature.
Stochastic Runge-Kutta Software Package for Stochastic Differential Equations
Gevorkyan, M N; Korolkova, A V; Kulyabov, D S; Sevastyanov, L A
2016-01-01
As a result of the application of a technique of multistep processes stochastic models construction the range of models, implemented as a self-consistent differential equations, was obtained. These are partial differential equations (master equation, the Fokker--Planck equation) and stochastic differential equations (Langevin equation). However, analytical methods do not always allow to research these equations adequately. It is proposed to use the combined analytical and numerical approach studying these equations. For this purpose the numerical part is realized within the framework of symbolic computation. It is recommended to apply stochastic Runge--Kutta methods for numerical study of stochastic differential equations in the form of the Langevin. Under this approach, a program complex on the basis of analytical calculations metasystem Sage is developed. For model verification logarithmic walks and Black--Scholes two-dimensional model are used. To illustrate the stochastic "predator--prey" type model is us...
Internal Error Propagation in Explicit Runge--Kutta Methods
Ketcheson, David I.
2014-09-11
In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.
Runge-Kutta methods with minimum storage implementations
Ketcheson, David I.
2010-03-01
Solution of partial differential equations by the method of lines requires the integration of large numbers of ordinary differential equations (ODEs). In such computations, storage requirements are typically one of the main considerations, especially if a high order ODE solver is required. We investigate Runge-Kutta methods that require only two storage locations per ODE. Existing methods of this type require additional memory if an error estimate or the ability to restart a step is required. We present a new, more general class of methods that provide error estimates and/or the ability to restart a step while still employing the minimum possible number of memory registers. Examples of such methods are found to have good properties. © 2009 Elsevier Inc. All rights reserved.
STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR NONLINEAR SYSTEMS OF PANTOGRAPH EQUATIONS
Institute of Scientific and Technical Information of China (English)
Yue-xin Yu; Shou-fu Li
2005-01-01
This paper is concerned with numerical stability of nonlinear systems of pantograph equations. Numerical methods based on (k, l)-algebraically stable Runge-Kutta methods are suggested. Global and asymptotic stability conditions for the presented methods are derived.
Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations
Institute of Scientific and Technical Information of China (English)
2007-01-01
The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.
B-Theory of Runge-Kutta methods for stiff Volterra functional differential equations
Institute of Scientific and Technical Information of China (English)
LI; Shoufu(李寿佛)
2003-01-01
B-stability and B-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra func-tional differential equations (VFDEs) are established which provide unified theoretical foundation for the studyof Runge-Kutta methods when applied to nonlinear stiff initial value problems (IVPs) in ordinary differentialequations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs) and VFDEs ofother type which appear in practice.
Stability Analysis of Runge-Kutta Methods for Delay Integro-Differential Equations
Institute of Scientific and Technical Information of China (English)
甘四清; 郑纬民
2004-01-01
Considering a linear system of delay integro-differential equations with a constant delay whose zero solution is asympototically stable, this paper discusses the stability of numerical methods for the system. The adaptation of Runge-Kutta methods with a Lagrange interpolation procedure was focused on inheriting the asymptotic stability of underlying linear systems. The results show that an A-stable Runge-Kutta method preserves the asympototic stability of underlying linear systems whenever an unconstrained grid is used.
A generalization of the Runge-Kutta iteration
Haelterman, R.; Vierendeels, J.; van Heule, D.
2009-02-01
Iterative solvers in combination with multi-grid have been used extensively to solve large algebraic systems. One of the best known is the Runge-Kutta iteration. We show that a generally used formulation [A. Jameson, Numerical solution of the Euler equations for compressible inviscid fluids, in: F. Angrand, A. Dervieux, J.A. Désidéri, R. Glowinski (Eds.), Numerical Methods for the Euler Equations of Fluid Dynamics, SIAM, Philadelphia, 1985, pp. 199-245] does not allow to form all possible polynomial transmittance functions and we propose a new formulation to remedy this, without using an excessive number of coefficients. After having converted the optimal parameters found in previous studies (e.g. [B. Van Leer, C.H. Tai, K.G. Powell, Design of optimally smoothing multi-stage schemes for the Euler equations, AIAA Paper 89-1923, 1989]) we compare them with those that we obtain when we optimize for an integrated 2-grid V-cycle and show that this results in superior performance using a low number of stages. We also propose a variant of our new formulation that roughly follows the idea of the Martinelli-Jameson scheme [A. Jameson, Analysis and design of numerical schemes for gas dynamics 1, artificial diffusion, upwind biasing, limiter and their effect on multigrid convergence, Int. J. Comput. Fluid Dyn. 4 (1995) 171-218; J.V. Lassaline, Optimal multistage relaxation coefficients for multigrid flow solvers. http://www.ryerson.ca/~jvl/papers/cfd2005.pdf] used on the advection-diffusion equation which that can be extended to other types. Gains in the order of 30%-50% have been shown with respect to classical iterative schemes on the advection equation. Better results were also obtained on the advection-diffusion equation than with the Martinelli-Jameson coefficients, but with less than half the number of matrix-vector multiplications.
Lund, E; Gavrilenko, I; Strandlie, A
2009-01-01
In this paper we study several fixed step and adaptive Runge-Kutta methods suitable for transporting track parameters through an inhomogeneous magnetic field. Moreover, we present a new adaptive Runge-Kutta-Nystrom method which estimates the local error of the extrapolation without introducing extra stages to the original Runge-Kutta-Nystrom method. Furthermore, these methods are compared for propagation accuracy and computing cost efficiency in the simultaneous track and error propagation (STEP) algorithm of the common ATLAS tracking software. The tests show the new adaptive Runge-Kutta-Nystrom method to be the most computing cost efficient.
Strong Stability Preserving Explicit Runge--Kutta Methods of Maximal Effective Order
Hadjimichael, Yiannis
2013-07-23
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge--Kutta methods. Relative to classical Runge--Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order conditions but yield higher order accuracy when composed with special starting and stopping methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods---like classical order five methods---require the use of nonpositive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge--Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice.
Second-order stabilized explicit Runge-Kutta methods for stiff problems
Martín-Vaquero, J.; Janssen, B.
2009-10-01
Stabilized Runge-Kutta methods (they have also been called Chebyshev-Runge-Kutta methods) are explicit methods with extended stability domains, usually along the negative real axis. They are easy to use (they do not require algebra routines) and are especially suited for MOL discretizations of two- and three-dimensional parabolic partial differential equations. Previous codes based on stabilized Runge-Kutta algorithms were tested with mildly stiff problems. In this paper we show that they have some difficulties to solve efficiently problems where the eigenvalues are very large in absolute value (over 10 5). We also develop a new procedure to build this kind of algorithms and we derive second-order methods with up to 320 stages and good stability properties. These methods are efficient numerical integrators of very large stiff ordinary differential equations. Numerical experiments support the effectiveness of the new algorithms compared to well-known methods as RKC, ROCK2, DUMKA3 and ROCK4.
van de Vyver, Hans
2006-04-01
This paper provides an investigation of the stability properties of a family of exponentially fitted Runge-Kutta-Nystrom (EFRKN) methods. P-stability is a very important property usually demanded for the numerical solution of stiff oscillatory second-order initial value problems. P-stable EFRKN methods with arbitrary high order are presented in this work. We have proved our results based on a symmetry argument.
Institute of Scientific and Technical Information of China (English)
WANG ShunJin; ZHANG Hua
2007-01-01
Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Parsani, M; Deconinck, W
2012-01-01
Explicit Runge-Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretization on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge-Kutta schemes available in literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
Parsani, Matteo
2013-04-10
Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
CONVERGENCE RESULTS OF RUNGE-KUTTA METHODS FOR MULTIPLY-STIFF SINGULAR PERTURBATION PROBLEMS
Institute of Scientific and Technical Information of China (English)
Ai-guo Xiao
2002-01-01
The main purpose of this paper is to present some convergence results for algebraically stable Runge-Kutta methods applied to some classes of one- and two-parameter multiplystiff singular perturbation problems whose stiffness is caused by small parameters and some other factors. A numerical example confirms our results.
Numerical Solution of Fuzzy Differential Equations by Runge-Kutta Verner Method
Directory of Open Access Journals (Sweden)
T. Jayakumar
2015-01-01
Full Text Available In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.
Directly Solving Special Second Order Delay Differential Equations Using Runge-Kutta-Nyström Method
Directory of Open Access Journals (Sweden)
M. Mechee
2013-01-01
Full Text Available Runge-Kutta-Nyström (RKN method is adapted for solving the special second order delay differential equations (DDEs. The stability polynomial is obtained when this method is used for solving linear second order delay differential equation. A standard set of test problems is solved using the method together with a cubic interpolation for evaluating the delay terms. The same set of problems is reduced to a system of first order delay differential equations and then solved using the existing Runge-Kutta (RK method. Numerical results show that the RKN method is more efficient in terms of accuracy and computational time when compared to RK method. The methods are applied to a well-known problem involving delay differential equations, that is, the Mathieu problem. The numerical comparison shows that both methods are in a good agreement.
Generalized Runge-Kutta Method with respect to the Non-Newtonian Calculus
Directory of Open Access Journals (Sweden)
Uğur Kadak
2015-01-01
Full Text Available Theory and applications of non-Newtonian calculus have been evolving rapidly over the recent years. As numerical methods have a wide range of applications in science and engineering, the idea of the design of such numerical methods based on non-Newtonian calculus is self-evident. In this paper, the well-known Runge-Kutta method for ordinary differential equations is developed in the frameworks of non-Newtonian calculus given in generalized form and then tested for different generating functions. The efficiency of the proposed non-Newtonian Euler and Runge-Kutta methods is exposed by examples, and the results are compared with the exact solutions.
Metodiev, E M; Fandaros, M; Haciomeroglu, S; Huang, D; Huang, K L; Patil, A; Prodromou, R; Semertzidis, O A; Sharma, D; Stamatakis, A N; Orlov, Y F; Semertzidis, Y K
2015-01-01
A set of analytical benchmarks for tracking programs are required for precision storage ring experiments. To determine the accuracy of precision tracking programs in electric and magnetic rings, a variety of analytical estimates of particle and spin dynamics in the rings are developed and compared to the numerical results of tracking simulations. Initial discrepancies in the comparisons indicated the need for improvement of several of the analytical estimates. As an example, we find that the fourth order Runge-Kutta/Predictor-Corrector method was accurate but slow, and that it passed all the benchmarks it was tested against, often to the sub-part per billion level. Thus high precision analytical estimates and tracking programs based on fourth order Runge-Kutta/Predictor-Corrector integration can be used to benchmark faster tracking programs for accuracy.
NONLINEAR STABILITY OF NATURAL RUNGE-KUTTA METHODS FOR NEUTRAL DELAY DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Cheng-jian Zhang
2002-01-01
This paper first presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDEs). Then the numerical analogous results, of the natural Runge-Kutta (NRK) methods for the same class of nonlinear NDDEs,are given. In particular, it is shown that the (k, l)-algebraic stability of a RK method for ODEs implies the generalized asymptotic stability and the global stability of the induced NRK method.
Discovery and Optimization of Low-Storage Runge-Kutta Methods
2015-06-01
more stage evaluation than RK4, it takes fewer operations to attain the same error level. This savings is one reason why some low storage methods are an...for automatically generating Runge-Kutta trees, order conditions, and truncation error coefficients,” ACM Transac- tions on Mathematical Software...methods. We then focus on optimizing the truncation error coefficients for LSRK to discover new methods. Reusing the tools from the optimization method, we
Gleim, Tobias; Schröder, Bettina; Kuhl, Detlef
2017-07-01
This paper deals with the numerical simulation of multi-field problems in the context of functionally graded materials. The corresponding manufacturing sequences are mostly characterized by strong interacting fields with different physical behaviors, which additionally have high dynamic responses. In order to solve these distinct processes with a high accuracy in the time, various RUNGE-KUTTA methods are investigated. Furthermore, a h-error estimator and an embedded error estimator are considered for a qualitative evaluation of the results.
High-order implicit time-marching methods for unsteady fluid flow simulation
Boom, Pieter David
Unsteady computational fluid dynamics (CFD) is increasingly becoming a critical tool in the development of emerging technologies and modern aircraft. In spite of rapid mathematical and technological advancement, these simulations remain computationally intensive and time consuming. More efficient temporal integration will promote a wider use of unsteady analysis and extend its range of applicability. This thesis presents an investigation of efficient high-order implicit time-marching methods for application in unsteady compressible CFD. A generalisation of time-marching methods based on summation-by-parts (SBP) operators is described which reduces the number of stages required to obtain a prescribed order of accuracy, thus improving their efficiency. The classical accuracy and stability theory is formally extended for these generalised SBP (GSBP) methods, including superconvergence and nonlinear stability. Dual-consistent SBP and GSBP time-marching methods are shown to form a subclass of implicit Runge-Kutta methods, which enables extensions of nonlinear accuracy and stability results. A novel family of fully-implicit GSBP Runge-Kutta schemes based on Gauss quadrature are derived which are both algebraically stable and L-stable with order 2s - 1, where s is the number of stages. In addition, a numerical tool is developed for the construction and optimisation of general linear time-marching methods. The tool is applied to the development of several low-stage-order L-stable diagonally-implicit methods, including a diagonally-implicit GSBP Runge-Kutta scheme. The most notable and efficient method developed is a six-stage fifth-order L-stable stiffly-accurate explicit-first-stage singly-diagonally-implicit Runge-Kutta (ESDIRK5) method with stage order two. The theoretical results developed in this thesis are supported by numerical simulations, and the predicted relative efficiency of the schemes is realised.
Equations of condition for high order Runge-Kutta-Nystrom formulae
Bettis, D. G.
1974-01-01
Derivation of the equations of condition of order eight for a general system of second-order differential equations approximated by the basic Runge-Kutta-Nystrom algorithm. For this general case, the number of equations of condition is considerably larger than for the special case where the first derivative is not present. Specifically, it is shown that, for orders two through eight, the number of equations for each order is 1, 1, 1, 2, 3, 5, and 9 for the special case and is 1, 1, 2, 5, 13, 34, and 95 for the general case.
Optimized low-order explicit Runge-Kutta schemes for high- order spectral difference method
Parsani, Matteo
2012-01-01
Optimal explicit Runge-Kutta (ERK) schemes with large stable step sizes are developed for method-of-lines discretizations based on the spectral difference (SD) spatial discretization on quadrilateral grids. These methods involve many stages and provide the optimal linearly stable time step for a prescribed SD spectrum and the minimum leading truncation error coefficient, while admitting a low-storage implementation. Using a large number of stages, the new ERK schemes lead to efficiency improvements larger than 60% over standard ERK schemes for 4th- and 5th-order spatial discretization.
Generalized Runge-Kutta Method with respect to the Non-Newtonian Calculus
Uğur Kadak; Muharrem Özlük
2015-01-01
Theory and applications of non-Newtonian calculus have been evolving rapidly over the recent years. As numerical methods have a wide range of applications in science and engineering, the idea of the design of such numerical methods based on non-Newtonian calculus is self-evident. In this paper, the well-known Runge-Kutta method for ordinary differential equations is developed in the frameworks of non-Newtonian calculus given in generalized form and then tested for different generating functio...
A Study on Third Order Runge-Kutta Techniques for Solving Practical Problems
Directory of Open Access Journals (Sweden)
Sukumar SENTHILKUMAR
2014-08-01
Full Text Available In this paper, an analysis has been carried out to examine Nystrom third order, Heun third order and Classical Runge-Kutta third order methods to solve image processing and numerical problems which are demonstrated in brief. The methods adapted are fully capable to cope with the linearity and nonlinearity of the physical problems with versatile physical nature. Example problems and its corresponding results are exhibited which reveal the efficiency and reliability of the employed techniques. Furthermore, validity of an obtained solution is verified in comparison with the simulation output for an image processing problem and numerically computed results for an engineering problem and initial value problems.
Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays
Institute of Scientific and Technical Information of China (English)
Chengming HUANG; Stefan VANDEWALLE
2009-01-01
This paper is concerned with the study of the stability of Runge Kutta-Pouzet methods for Volterra integro-differential equations with delays.We are interested in the comparison between the analytical and numerical stability regions.First,we focus on scalar equations with real coefficients.It is proved that all Gauss-Pouzet methods can retain the asymptotic stability of the analytical solution.Then,we consider the multidimensional case.A new stability condition for the stability of the analytical solution is given.Under this condition,the asymptotic stability of Gauss-Pouzet methods is investigated.
Comparison of reduced models for blood flow using Runge-Kutta discontinuous Galerkin methods
Puelz, Charles; Canic, Suncica; Rusin, Craig G
2015-01-01
Reduced, or one-dimensional blood flow models take the general form of nonlinear hyperbolic systems, but differ greatly in their formulation. One class of models considers the physically conserved quantities of mass and momentum, while another class describes mass and velocity. Further, the averaging process employed in the model derivation requires the specification of the axial velocity profile; this choice differentiates models within each class. Discrepancies among differing models have yet to be investigated. In this paper, we systematically compare several reduced models of blood flow for physiologically relevant vessel parameters, network topology, and boundary data. The models are discretized by a class of Runge-Kutta discontinuous Galerkin methods.
Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes
Hundsdorfer, Willem
2013-01-01
Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for one-dimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total variation diminishing (TVD) property. The study of these properties will be done within the framework of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods.
a New Methodology for the Construction of Optimized RUNGE-KUTTA-NYSTRÖM Methods
Papadopoulos, D. F.; Simos, T. E.
In this paper, a new Runge-Kutta-Nyström method of fourth algebraic order is developed. The new method has zero phase-lag, zero amplification error and zero first integrals of the previous properties. Numerical results indicate that the new method is very efficient for solving numerically the Schrödinger equation. We note that for the first time in the literature we use the requirement of vanishing the first integrals of phase-lag and amplification error in the construction of efficient methods for the numerical solution of the Schrödinger equation.
Energy Technology Data Exchange (ETDEWEB)
Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.
1991-09-01
A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs.
Subramanian, S. V.; Bozzola, R.
1987-01-01
Numerical solutions of the unsteady Euler equations are obtained using the classical fourth order Runge Kutta time marching scheme. This method is fully explicit and is applied to the governing equations in the finite volume, conservation law form. In order to determine the efficiency of this scheme for solving turbomachinery flows, steady blade-to-blade solutions are obtained for compressor and turbine cascades under subsonic and transonic flow conditions. Computed results are compared with other numerical methods and wind tunnel measurements. The study also focuses on other important numerical aspects influencing the performance of the algorithm and the solution accuracy such as grid types, boundary conditions and artificial viscosity. For this purpose, H, O, and C type computational grids as well as characteristic and extrapolation type boundary conditions are included in solution procedures.
Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems.
Beyhan, Selami
2013-07-01
This paper proposes a novel nonlinear gradient-based observer for synchronization and observer-based control of chaotic systems. The model is based on a Runge-Kutta model of the chaotic system where the evolution of the states or parameters is derived based on the error-square minimization. The stability and convergence conditions of observer and control methods are analyzed using a Lyapunov stability approach. In numerical simulations, the proposed observer and well-known sliding-mode observer are compared for the synchronization of a Lü chaotic system and observer-based stabilization of a Chen chaotic system. The noisy case for synchronization and parameter uncertainty case for stabilization are also considered for both observer-based methods. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
A class of high-order Runge-Kutta-Chebyshev stability polynomials
O'Sullivan, Stephen
2015-01-01
The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order $N$ is presented. Roots of FRKC stability polynomials of degree $L = MN$ are used to construct explicit schemes comprising $L$ forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to $\\sim L^2$. The associated stability domain scales as $M^2$ along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher group composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKC schemes are efficient ...
On spurious steady-state solutions of explicit Runge-Kutta schemes
Sweby, P. K.; Yee, H. C.; Griffiths, D. F.
1990-01-01
The bifurcation diagram associated with the logistic equation v sup n+1 = av sup n (1-v sup n) is by now well known, as is its equivalence to solving the ordinary differential equation u prime = alpha u (1-u) by the explicit Euler difference scheme. It has also been noted by Iserles that other popular difference schemes may not only exhibit period doubling and chaotic phenomena but also possess spurious fixed points. Runge-Kutta schemes applied to both the equation u prime = alpha u (1-u) and the cubic equation u prime = alpha u (1-u)(b-u) were studied computationally and analytically and their behavior was contrasted with the explicit Euler scheme. Their spurious fixed points and periodic orbits were noted. In particular, it was observed that these may appear below the linearized stability limits of the scheme and, consequently, computation may lead to erroneous results.
Exponential Runge-Kutta schemes for inhomogeneous Boltzmann equations with high order of accuracy
Li, Qin
2012-01-01
We consider the development of exponential methods for the robust time discretization of space inhomogeneous Boltzmann equations in stiff regimes. Compared to the space homogeneous case, or more in general to the case of splitting based methods, studied in Dimarco Pareschi (SIAM J. Num. Anal. 2011) a major difficulty is that the local Maxwellian equilibrium state is not constant in a time step and thus needs a proper numerical treatment. We show how to derive asymptotic preserving (AP) schemes of arbitrary order and in particular using the Shu-Osher representation of Runge-Kutta methods we explore the monotonicity properties of such schemes, like strong stability preserving (SSP) and positivity preserving. Several numerical results confirm our analysis.
Subramanian, S. V.; Bozzola, R.
1985-01-01
Numerical solutions of the unsteady Euler equations are obtained using the classical fourth order Runge Kutta time marching scheme. This method is fully explicit and is applied to the governing equations in the finite volume, conservation law form. In order to determine the efficiency of this scheme for solving turbomachinery flows, steady blade-to-blade solutions are obtained for compressor and turbine cascades under subsonic and transonic flow conditions. Computed results are compared with other numerical methods and wind tunnel measurements. The present study also focuses on other important numerical aspects influencing the performance of the algorithm and the solution accuracy such as grid types, boundary conditions, and artificial viscosity. For this purpose, H, O, and C type computational grids as well as characteristic and extrapolation type boundary conditions are included in the solution procedure.
Frank, J.E.
2006-01-01
In this note we show that multisymplectic Runge-Kutta box schemes, of which the Gauss-Legendre methods are the most important, preserve a discrete conservation law of wave action. The result follows by loop integration over an ensemble of flow realizations, and the local energy-momentum conservation
Institute of Scientific and Technical Information of China (English)
姚齐国; 李林
2011-01-01
结合负阻振荡电路,采用五阶Runge-Kutta-Fehlberg方法分别用C语言程序和MATLAB进行求解,均得出了正确的结果,同时介绍了用MATLAB对C程序计算结果的调用.经比较,两种方法各有所长.在图形显示方面,MATLAB更具优越性
The design and applications of Runge-Kutta methods for the simulation of planetary orbits
Rabbi, S. M. Fajlay
Since the merger of physics and mathematics at the beginning of 1800s, system of finding solution to n-body problem has been intriguing mathematicians. The resulting differential equations can be solved by a variety of approaches -- for example, the Runge-Kutta Methods (RKn). In this thesis, after a brief historical overview of planetary science, RK3 methods are derived as a three-parameter family of solution methods. A particular instance of this family, FR3, is generated and subsequently tested to show it is indeed a third-order method. The planetary system is modeled as a system of differential of equations using laws of classical mechanics, and the models of planetary motions are generated applying RK4 methods. Kepler's laws of planetary motion are proved empirically using observed data taken from NASA. A new way of expressing Kepler's third law is presented: the orbital velocity of a planet decreases as inverse square root of its orbital radius. Simulation of Sun-Earth-Moon as well as solar system is conducted and compared to that of Dahir's and found is a very similar result. Also, the result of the entire solar system simulation closely matches to that of NASA. Initial position-velocity vectors are generated from NASA-JPL's ephemeris data using post-processing codes obtained from the University of Colorado.
Directory of Open Access Journals (Sweden)
Igumnov Leonid
2015-01-01
Full Text Available The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
A New Family of Phase-Fitted and Amplification-Fitted Runge-Kutta Type Methods for Oscillators
Directory of Open Access Journals (Sweden)
Zhaoxia Chen
2012-01-01
Full Text Available In order to solve initial value problems of differential equations with oscillatory solutions, this paper improves traditional Runge-Kutta (RK methods by introducing frequency-depending weights in the update. New practical RK integrators are obtained with the phase-fitting and amplification-fitting conditions and algebraic order conditions. Two of the new methods have updates that are also phase-fitted and amplification-fitted. The linear stability and phase properties of the new methods are examined. The results of numerical experiments on physical and biological problems show the robustness and competence of the new methods compared to some highly efficient integrators in the literature.
Institute of Scientific and Technical Information of China (English)
李得海; 袁运斌; 欧吉坤; 闫伟
2010-01-01
研究了12阶Runge-kutta 2次算法由加速度直接积分位置得到卫星轨道,并将其应用于人造卫星轨道积分.实验结果表明,与传统单步法、同阶多步法相比,12阶Runge-kutta 2次算法在积分精度和稳定性方面具有明显的优势,但相同步长下较其他方法计算耗时多,运算复杂.综合考虑,可以利用其积分误差随步长增加而维持稳定的特点,通过适当增加步长降低计算耗时,满足高轨卫星轨道预报与精密定轨的应用需求.
Directory of Open Access Journals (Sweden)
Kasim Hussain
2015-01-01
Full Text Available We present two pairs of embedded Runge-Kutta type methods for direct solution of fourth-order ordinary differential equations (ODEs of the form y(iv=f(x,y denoted as RKFD methods. The first pair, which we will call RKFD5(4, has orders 5 and 4, and the second one has orders 6 and 5 and we will call it RKFD6(5. The techniques used in the derivation of the methods are that the higher order methods are very precise and the lower order methods give the best error estimate. Based on these pairs, we have developed variable step codes and we have used them to solve a set of special fourth-order problems. Numerical results show the robustness and the efficiency of the new RKFD pairs as compared with the well-known embedded Runge-Kutta pairs in the scientific literature after reducing the problems into a system of first-order ordinary differential equations (ODEs and solving them.
Fehlberg, E.
1974-01-01
Runge-Kutta-Nystrom formulas of the seventh, sixth, and fifth order were derived for the general second order (vector) differential equation written as the second derivative of x = f(t, x, the first derivative of x). The formulas include a stepsize control procedure, based on a complete coverage of the leading term of the local truncation error in x, and they require no more evaluations per step than the earlier Runge-Kutta formulas for the first derivative of x = f(t, x). The developed formulas are expected to be time saving in comparison to the Runge-Kutta formulas for first-order differential equations, since it is not necessary to convert the second-order differential equations into twice as many first-order differential equations. The examples shown saved from 25 percent to 60 percent more computer time than the earlier formulas for first-order differential equations, and are comparable in accuracy.
Symplectic Runge-Kutta Method for Structural Dynamics%结构动力学方程的辛RK方法
Institute of Scientific and Technical Information of China (English)
郭静; 邢誉峰
2014-01-01
针对有阻尼和外载荷的线性动力学常微分方程,给出了s级2s阶隐式Gauss-Legendre辛RK(Gauss-Legendre symplectic Runge-Kutta,GLSRK)方法的一种显式高效的执行格式,首次给出了Gauss-Legendre辛RK方法和经典RK方法(classical RK,CRK)的谱半径和单步相位误差的显式表达式,并将两者进行了比较.线性多自由度系统和非线性Rayleigh系统数值算例表明,对结构动力学系统而言,辛RK方法远比经典RK方法优越,在运动学特性和长时间数值模拟方面尤为明显.
Construction and Analysis of Multi-Rate Partitioned Runge-Kutta Methods
2012-06-01
xiii LIST OF ACRONYMS, ABBREVIATIONS, AND TERMS ABP Adams-Bashforth method of order p BDFP Backwards Differentiation Formula of order p...the Adams methods. 1. Adams Methods Within the Adams family of multi-step methods, the two most commonly used are Adams-Bashforth of order p, ( ABP ...look at ABP , as these methods are explicit in time, whereas the AMP are all implicit in time. The general formula for the Adams-Bashforth method
Alonso-Mallo, I.; Cano, B.; Moreta, M. J.
2005-04-01
In this paper, we study the order reduction which turns up when explicit Runge-Kutta-Nystrom methods are used to discretize linear second order hyperbolic equations by means of the method of lines. The order observed in practice, including its fractional part, is obtained. It is also proved that the order reduction can be completely avoided taking the boundary values of the intermediate stages of the time semidiscretization. The numerical experiments confirm that the optimal order can be reached.
Directory of Open Access Journals (Sweden)
D. F. Papadopoulos
2013-01-01
Full Text Available A new modified Runge-Kutta-Nyström method of fourth algebraic order is developed. The new modified RKN method is based on the fitting of the coefficients, due to the nullification not only of the phase lag and of the amplification error, but also of their derivatives. Numerical results indicate that the new modified method is much more efficient than other methods derived for solving numerically the Schrödinger equation.
Directory of Open Access Journals (Sweden)
Sankar Prasad Mondal
2016-01-01
Full Text Available The numerical algorithm for solving “first-order linear differential equation in fuzzy environment” is discussed. A scheme, namely, “Runge-Kutta-Fehlberg method,” is described in detail for solving the said differential equation. The numerical solutions are compared with (i-gH and (ii-gH differential (exact solutions concepts system. The method is also followed by complete error analysis. The method is illustrated by solving an example and an application.
Directory of Open Access Journals (Sweden)
Yanping Yang
2016-01-01
Full Text Available The construction of exponentially fitted two-derivative Runge-Kutta (EFTDRK methods for the numerical solution of first-order differential equations is investigated. The revised EFTDRK methods proposed, with equation-dependent coefficients, take into consideration the errors produced in the internal stages to the update. The local truncation errors and stability of the new methods are analyzed. The numerical results are reported to show the accuracy of the new methods.
Tsitouras, Ch.; Papageorgiou, G.; Kalvouridis, T.
1992-12-01
Runge-Kutta-Nystrom (RKN) codes for the solution of the initial value problem for the general second-order differential system were developed recently, although the methodology on which they are based was known many years ago. The efficiency of several general Runge-Kutta-Nystrom (GRKN) methods is examined by posing some criteria of cost and accuracy. These methods supplied with the corresponding interpolants are applied to some problems of celestial dynamics. The results obtained show that these codes have good responses in the approximation of the solution of these problems.
Franco, J. M.; Gómez, I.
2013-04-01
The construction of high-order exponentially fitted Runge-Kutta-Nyström (EFRKN) methods of explicit type for the numerical solution of oscillatory differential systems is analyzed. Based on two basic symmetric and symplectic EFRKN methods of reference we present two procedures for constructing high-order explicit methods. The first procedure is based on composition methods and it allows the construction of high-order explicit EFRKN methods which are symmetric and symplectic. The second procedure is based on combining different EFRKN methods in order to construct embedded pairs of explicit parallel EFRKN methods which can be implemented in variable-step codes without additional cost. The numerical experiments carried out show the qualitative behavior and the efficiency of the new EFRKN methods when they are compared with some standard methods proposed in the scientific literature for solving second-order nonstiff differential systems. Catalogue identifier: AEOO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 2527 No. of bytes in distributed program, including test data, etc.: 107433 Distribution format: tar.gz Programming language: Fortran 77. Computer: Standard PC. Operating system: Windows. It might work with others. Successfully tested by CPC on Linux. RAM: For the test problems used less than 1 MB. Classification: 4.3, 4.12, 16.3, 17.17. Nature of problem: Some models in astronomy and astrophysics, quantum mechanics and nuclear physics lead to second-order oscillatory differential systems. The solution of these oscillatory models requires accurate and efficient numerical methods. The codes SVI-IIEXPOreferee.for and SVI-IIvarreferee.for were developed for this purpose. Solution method: We propose high-order exponentially fitted Runge-Kutta
Yang, Hongli; Zeng, Xianyang; Wu, Xinyuan; Ru, Zhengliang
2014-11-01
In the study of extended Runge-Kutta-Nyström (abbr. ERKN) methods for the integration of multi-frequency oscillatory systems, a quite complicated set of algebraic conditions arises which must be satisfied for a method to achieve some specified order. A theory of tri-colored tree was proposed by Yang et al. (2009), for achieving the order conditions of ERKN methods which are designed specially for multi-frequency and multidimensional perturbed oscillators. The tri-colored tree theory for the order conditions in that paper is useful, but not completely satisfactory due to the existence of redundant trees. In this paper, a simplified tri-colored theory and the order conditions for ERKN integrators are developed by constructing a set of simplified special extended Nyström trees (abbr. SSENT) and defining some real-valued mappings on it. In order to simplify the tri-colored tree theory, two special mappings, the extended elementary differential and the sign mapping for a tree are investigated in detail. This leads to a novel Nyström-tree theory for the order conditions for ERKN methods without any redundant trees, which simplifies the tri-colored theory.
Multigrid diagonal implicit solutions for compressible turbulent flows and their evaluation
Varma, Rama Rajaraja
A numerical scheme to solve the two dimensional Navier-Stokes equations is developed and applied to several compressible turbulent flows over airfoils. A method for evaluating the quality of these solutions is then developed and illustrated with representative examples. The distinguishing features of the numerical scheme are its implicitness for improving stability, the diagonalization of the matrices in the implicit operator for computational efficiency, and the implementation within a multigrid procedure for convergence acceleration. A finite volume approximation is used for spatial discretization of the governing equations to handle complicated geometries. Artificial dissipation is added in the form of an adaptive blend of second and fourth differences of the solution to maintain robustness and stability. The viscous terms are treated explicitly to maintain the diagonal form. Results of simulations of viscous transonic flows past airfoils are presented. The computed flow field quantities are compared with those from other computations and experiments to confirm the accuracy of the method. Comparisons of convergence rates are made to demonstrate the efficiency of the method. In solutions to the Navier-Stokes equations it is important that the added numerical dissipation does not overwhelm the real viscous dissipation. In order to verify this, it is necessary to be able to estimate quantitatively the effect of numerical dissipation. A method for estimating the integrated effect of numerical dissipation on solutions to the Navier-Stokes equations is developed in this dissertation. The method is based on integration of the momentum equations and the computation of corrections due to numerical dissipation to the drag integral. These corrections can then be considered as estimates of the error due to dissipation. Solutions to the Navier-Stokes equations for laminar and turbulent flows over airfoils are used to illustrate the method. The errors due to numerical
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for non-linear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form a preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the
High Order Adjoint Derivatives using ESDIRK Methods for Oil Reservoir Production Optimization
DEFF Research Database (Denmark)
Capolei, Andrea; Stenby, Erling Halfdan; Jørgensen, John Bagterp
2012-01-01
In production optimization, computation of the gradients is the computationally expensive step. We improve the computational efficiency of such algorithms by improving the gradient computation using high-order ESDIRK (Explicit Singly Diagonally Implicit Runge-Kutta) temporal integration methods...
Cinnella, P.; Content, C.
2016-12-01
Restrictions on the maximum allowable time step of explicit time integration methods for direct and large eddy simulations of compressible turbulent flows at high Reynolds numbers can be very severe, because of the extremely small space steps used close to solid walls to capture tiny and elongated boundary layer structures. A way of increasing stability limits is to use implicit time integration schemes. However, the price to pay is a higher computational cost per time step, higher discretization errors and lower parallel scalability. In quest for an implicit time scheme for scale-resolving simulations providing the best possible compromise between these opposite requirements, we develop a Runge-Kutta implicit residual smoothing (IRS) scheme of fourth-order accuracy, based on a bilaplacian operator. The implicit operator involves the inversion of scalar pentadiagonal systems, for which efficient parallel algorithms are available. The proposed method is assessed against two explicit and two implicit time integration techniques in terms of computational cost required to achieve a threshold level of accuracy. Precisely, the proposed time scheme is compared to four-stages and six-stages low-storage Runge-Kutta method, to the second-order IRS and to a second-order backward scheme solved by means of matrix-free quasi-exact Newton subiterations. Numerical results show that the proposed IRS scheme leads to reductions in computational time by a factor 3 to 5 for an accuracy comparable to that of the corresponding explicit Runge-Kutta scheme.
Dehghan, Mehdi; Mohammadi, Vahid
2017-08-01
In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.
Directory of Open Access Journals (Sweden)
Andresa Pescador
2016-04-01
Full Text Available O presente artigo apresenta as equações diferenciais de primeira ordem, as quais constituem um ramo muito importante da matemática, pois têm uma grande aplicabilidade, tanto na matemática, como na física, biologia e também na economia. O objetivo deste estudo foi analisar a resolução de uma equação diferencial de primeira ordem, em especial a equação que define a lei de resfriamento de Newton. Verificar seu comportamento utilizando algumas aplicações, que podem ser utilizadas em sala de aula como instrumento de auxílio ao professor na abordagem destes conteúdos trazendo respostas aos questionamentos dos estudantes e motivando-os na construção de seu conhecimento. Para a resolução de uma das aplicações apresentadas buscou-se como complemento sua resolução através de dois métodos numéricos, método de Euler e método de Runge-Kutta. E por fim, fez-se uma comparação da aproximação da solução dada pela resolução numérica com a resolução analítica cuja solução é exata.
Another approach to Runge-Kutta methods
Traas, C.R.
2004-01-01
The condition equations are derived by the introduction of a system of equivalent differential equations, avoiding the usual formalism with trees and elementary differentials. Solutions to the condition equations are found by direct optimization, avoiding the necessity to introduce simplifying
The Full Implicit Runge-Kutta Method of Solving Point Reactor Kinetics Equations%全隐式龙格库塔法求解点堆动力学方程
Institute of Scientific and Technical Information of China (English)
王伟吉; 叶金亮; 方成跃
2014-01-01
强刚性问题时数值求解点堆中子动力学方程组的难点之一.该文用基于高斯勒让特求积公式节点的全隐式龙格库塔法(简称GLFIRK)求解点堆动力学方程组.该方法是B稳定的,而且计算精度高,对于E级GLFIRK,其计算精度为2E阶.该文在阶跃、线性和正弦等不同反应性加入条件下对点堆动力学方程组进行了计算,计算结果表明,该方法计算精度高、计算速度较快、适应能力较好,可满足一定的工程应用要求.
点隐式龙格-库塔方法的应用研究%Some Investigations on Applications of Point-implicit Runge-Kurtta Method
Institute of Scientific and Technical Information of China (English)
李典; 杨永
2011-01-01
为了提高求解器的效率,在显式龙格-库塔时间推进的欧拉方程求解器之上,发展了点隐式龙格-库塔时间推进格式.给出了其推导过程和非结构网格下中心格式和迎风格式(Roe和Van Leer格式)预处理算子的构造方法.NACA0012翼型和RAE2822翼型的跨音速无粘流动模拟表明:与显式龙格-库塔方法相比,方法能提高求解效率且内存需求相当,具有一定的工程应用价值.%In order to improve the efficiency of flow solver ,a point- implicit Runge - Kutta method is raised on the basis of the Euler solver with an explicit Runge- Kutta method time marching.The derivation of preconditioner is presented.Its constructions,according to the central and upwind ( Roe- antl Van Leerscheme) spatial discretization,based on unstructured grid are given,respectively.The simulations of the transonic inviscid flow around NACA0012 and RAE2822 show that comparing with the explicit RungeKutta method,the efficientcy is improved by the presented algorithm with a moderate memory increment.
Institute of Scientific and Technical Information of China (English)
杨怀英; 唐小平; 刘宽厚
2014-01-01
The Runge-Kutta method is a common technology for solving the Ordinary Differential Equations ( ODE) and is characterized by high precision, strong stability and some other advantages. In this paper, based on a new four-stage fourth order Runge-Kutta meth-od, the authors first combined the four-stage calculation formula with a new two-stage iteration formula, thus achieving the purpose of saving computational memory. And then, the time high-order discrete form of the acoustic wave equation was derived and, in combina-tion with the pseudospectral method, some researches on the high-accuracy and high-definition acoustic wave field simulation technology of the four-stage fourth order Runge-Kutta time high-order pseudospectral method were carried out, with an investigation of the stability and dispersion of the method. Finally, homogeneous media, layered media and lens model were selected for wave field simulation test. The simulation results show that the four-stage fourth order Runge-Kutta time high-order pseudospectral method has strong stability and high wave field definition and can effectively remove the dispersion and adapt itself to large simulation parameter range, thus being a high efficient wave field simulation method with great application potential.%龙格-库塔法是常用于求解常微分方程（ ODE）的一项技术，该技术具有精度高、稳定性强等特点。笔者以一种新的四级四阶龙格-库塔法为基础，先将其四级计算公式合并为新的两级计算迭代公式，从而达到节约计算内存的目的；再以此为基础推导出声波方程的时间高阶离散形式，并与伪谱法技术相结合，研究四级四阶龙格-库塔时间高阶伪谱法声波高精度、高清晰度的波场模拟技术，进而研究该方法的稳定性与频散特性；最后，分别选取均匀介质、层状介质和透镜体模型进行波场模拟试验。模拟结果表明，该方法具有稳定性强、能有效去除
Institute of Scientific and Technical Information of China (English)
李晓燕; 孙乐平; 毛宏坤
2011-01-01
The two-step Runge-Kutta methods for the differential-algebraic equations with several delays are developed and it is proved that the methods are asymptotically stable under the assumption that the coefficient matrices are all upper triangular. This assumption is regarded as true for DDAEs which have a wide range of applications.%研究了用两步龙格库塔方法求解多延迟微分代数方程的渐进稳定性,并且证明了在微分代数方程矩阵都是上三角矩阵的假设下,两步龙格库塔法求解此类方程是渐进稳定的.这种假设对于有广泛应用的海参伯格微分代数方程是正确的.
Institute of Scientific and Technical Information of China (English)
王琦
2011-01-01
By application of Runge-Kutta methods to solving the functional multi-delay differential equations with piecewise continuous arguments,the conditions under which the numerical solution is asymptotically stable are obtained.By means of the theory of Padé approximation,the necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are obtained and some numerical experiments are given.%将Runge-Kutta方法用于求解自变量分段连续型混合泛函多延迟微分方程,得到了数值解渐近稳定的条件.利用Padé逼近理论得到了数值解的渐近稳定区域包含解析解的渐近稳定区域的充分必要条件,并给出了几个数值算例.
Energy Technology Data Exchange (ETDEWEB)
López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es
2017-03-15
Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.
Implicit compressible flow solvers on unstructured meshes
Nagaoka, Makoto; Horinouchi, Nariaki
1993-09-01
An implicit solver for compressible flows using Bi-CGSTAB method is proposed. The Euler equations are discretized with the delta-form by the finite volume method on the cell-centered triangular unstructured meshes. The numerical flux is calculated by Roe's upwind scheme. The linearized simultaneous equations with the irregular nonsymmetric sparse matrix are solved by the Bi-CGSTAB method with the preconditioner of incomplete LU factorization. This method is also vectorized by the multi-colored ordering. Although the solver requires more computational memory, it shows faster and more robust convergence than the other conventional methods: three-stage Runge-Kutta method, point Gauss-Seidel method, and Jacobi method for two-dimensional inviscid steady flows.
Efficient integration of stiff kinetics with phase change detection for reactive reservoir processes
DEFF Research Database (Denmark)
Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove;
2007-01-01
We propose the use of implicit one-step Explicit Singly Diagonal Implicit Runge-Kutta (ESDIRK) methods for integration of the stiff kinetics in reactive, compositional and thermal processes that are solved using operator-splitting type approaches. To facilitate the algorithmic development we...
Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation
DEFF Research Database (Denmark)
Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove
2007-01-01
of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...
Institute of Scientific and Technical Information of China (English)
冯德山; 杨道学; 王珣
2016-01-01
应用迭代插值方法构造了插值小波尺度函数,并将该尺度函数的导数用于离散Maxwell方程组的空间微分,使用四阶Runge Kutta(four order Runge Kutta, RK4)算法计算时间导数,导出了插值小波尺度法的探地雷达(ground penetrating radar, GPR)正演公式,与常规的基于中心差分的时域有限差分算法(finite difference time domain, FDTD)相比,插值小波尺度算法提高了GPR波动方程的空间与时间离散精度。首先,采用具有解析解的层状模型,分别将FDTD算法及插值小波尺度法应用于层状模型正演,单道雷达数据与解析解拟合表明：相同的网格剖分方式,插值小波尺度法比FDTD具有更高的精度。然后,将辅助微分方程完全匹配层(auxiliary differential equation perfecting matched layer, ADE-PML)边界条件应用到插值小波尺度法GPR正演中,在均匀介质模型中对比了FDTD-CPML(坐标伸缩完全匹配层), FDTD-RK4ADE-PML、插值小波尺度RK4ADE-PML的反射误差,结果表明：插值小波尺度RK4ADE-PML吸收效果优于另外两种条件下的吸收边界。最后,应用加载UPML(各向异性完全匹配层)的FDTD和RK4ADE-PML的插值小波尺度法开展了二维GPR模型的正演,展示了RK4ADE-PML对倏逝波的良好吸收效果。%Ground penetrating radar (GPR) forward is one of the geophysical research directions. Through the forward of geological model, the database of radar model can be enriched and the characteristics of typical geological radar echo images can be understood, which in turn can guide the data interpretation of GPR measured profile, thereby improving the GPR data interpretation level. In this article, the interpolating wavelet scale function by using iterative interpolation method is presented, and the derivative of scale function is used in spatial differentiation of discrete Maxwell equations. The forward modeling formula of GPR based on the interpolation wavelet scale method is derived by
Semi-implicit spectral deferred correction methods for ordinary differential equations
Energy Technology Data Exchange (ETDEWEB)
Minion, Michael L.
2002-10-06
A semi-implicit formulation of the method of spectral deferred corrections (SISDC) for ordinary differential equations with both stiff and non-stiff terms is presented. Several modifications and variations to the original spectral deferred corrections method by Dutt, Greengard, and Rokhlin concerning the choice of integration points and the form of the correction iteration are presented. The stability and accuracy of the resulting ODE methods are explored analytically and numerically. The SISDC methods are intended to be combined with the method of lines approach to yield a flexible framework for creating higher-order semi-implicit methods for partial differential equations. A discussion and numerical examples of the SISDC method applied to advection-diffusion type equations are included. The results suggest that higher-order SISDC methods are more efficient than semi-implicit Runge-Kutta methods for moderately stiff problems in terms of accuracy per function evaluation.
Production Optimization for Two-Phase Flow in an Oil Reservoir
DEFF Research Database (Denmark)
2012-01-01
settings of injection and production wells are computed by solution of a large scale constrained optimal control problem. We describe a gradient based method to compute the optimal control strategy of the water flooding process. An explicit singly diagonally implicit Runge-Kutta (ESDIRK) method...
Single Shooting and ESDIRK Methods for adjoint-based optimization of an oil reservoir
DEFF Research Database (Denmark)
2012-01-01
are large-scale problems and require specialized numerical algorithms. In this paper, we combine a single shooting optimization algorithm based on sequential quadratic programming (SQP) with explicit singly diagonally implicit Runge-Kutta (ESDIRK) integration methods and a continuous adjoint method...
Solution of Constrained Optimal Control Problems Using Multiple Shooting and ESDIRK Methods
DEFF Research Database (Denmark)
Capolei, Andrea; Jørgensen, John Bagterp
2012-01-01
In this paper, we describe a novel numerical algorithm for solution of constrained optimal control problems of the Bolza type for stiff and/or unstable systems. The numerical algorithm combines explicit singly diagonally implicit Runge-Kutta (ESDIRK) integration methods with a multiple shooting...
NMPC for Oil Reservoir Production Optimization
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove
2011-01-01
this problem numerically using a single shooting sequential quadratic programming (SQP) based optimization method. Explicit singly diagonally implicit Runge-Kutta (ESDIRK) methods are used for integration of the stiff system of differential equations describing the two-phase flow, and the adjoint method...
Modesti, Davide
2016-01-01
We develop a semi-implicit algorithm for time-accurate simulation of the compressible Navier-Stokes equations, with special reference to wall-bounded flows. The method is based on linearization of the partial convective fluxes associated with acoustic waves, in such a way to suppress, or at least mitigate the acoustic time step limitation. Together with replacement of the total energy equation with the entropy transport equation, this approach avoids the inversion of block-banded matrices involved in classical methods, which is replaced by less demanding inversion of standard banded matrices. The method is extended to deal with implicit integration of viscous terms and to multiple space dimensions through approximate factorization, and used as a building block of third-order Runge-Kutta time stepping scheme. Numerical experiments are carried out for isotropic turbulence, plane channel flow, and flow in a square duct. All available data support higher computational efficiency than existing methods, and saving ...
On Error Estimation in Runge-Kutta Methods
Directory of Open Access Journals (Sweden)
Gbolahan BOLARIN
2011-06-01
Full Text Available The increase in PCs' capabilities and communication bandwidth over the last decade has made distributed computing a more practical idea for solving computational problems. We have developed a decentralized P2P system called ParCop (Parallel Cooperation. ParCop enables each peer in a P2P network to view the rest of the network as a supercomputer, by running ParCop system software on the machine as a daemon service. ParCop allows participants to execute different applications on shared resources owned by other participants. In this paper, we present the new capabilities of ParCop system: efficient resource discovery by using the Blackboard Resource Discovery Mechanism (BRDM, adaptation in dynamic networks, effective data caching, efficient scaling and the provision of a secure environment. We also present three scheduling policies that allow peers in ParCop environment to take scheduling decisions based on the information coming from the peers in the network. The use of these scheduling policies minimizes the processing time of applications in ParCop, improves the ability of dealing with peers which have different capabilities and requirements, and achieves efficient load balancing.
Rational functions with maximal radius of absolute monotonicity
Loczi, Lajos
2014-05-19
We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage, order p Runge-Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with 2 or 3 parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge-Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.
Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.
2017-05-01
We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.
Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation
DEFF Research Database (Denmark)
Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove;
2007-01-01
of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based...
Adaptive Optimal -Stage Runge-Kutta Methods for Solving Reaction-Diffusion-Chemotaxis Systems
Directory of Open Access Journals (Sweden)
Jui-Ling Yu
2011-01-01
time step sizes are given explicitly. Yet, theorems about stability and convergence of the algorithm are provided in analyzing robustness and efficiency. Numerical experiment results on a testing problem and a real application problem are shown.
Highly efficient strong stability preserving Runge-Kutta methods with Low-Storage Implementations
Ketcheson, David I.
2008-01-01
Strong stability-preserving (SSP) Runge–Kutta methods were developed for time integration of semidiscretizations of partial differential equations. SSP methods preserve stability properties satisfied by forward Euler time integration, under a modified time-step restriction. We consider the problem of finding explicit Runge–Kutta methods with optimal SSP time-step restrictions, first for the case of linear autonomous ordinary differential equations and then for nonlinear or nonautonomous equations. By using alternate formulations of the associated optimization problems and introducing a new, more general class of low-storage implementations of Runge–Kutta methods, new optimal low-storage methods and new low-storage implementations of known optimal methods are found. The results include families of low-storage second and third order methods that achieve the maximum theoretically achievable effective SSP coefficient (independent of stage number), as well as low-storage fourth order methods that are more efficient than current full-storage methods. The theoretical properties of these methods are confirmed by numerical experiment.
Static Kirchhoff Rods under the Action of External Forces: Integration via Runge-Kutta Method
Directory of Open Access Journals (Sweden)
Ademir L. Xavier Jr.
2014-01-01
at once Kirchhoff and filament reference system equations under appropriate initial boundary conditions. To show the application of the method, we display several numerical solutions for filaments including cases showing the effect of gravity.
Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations
2015-06-01
Discretizations 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mundis , N., Edoh, A. and Sankaran, V. 5d...Schemes for High-order Spatial and Temporal Discretizations Nathan L. Mundis ∗ Ayaboe K. Edoh† Venkateswaran Sankaran‡ * ERC, Inc., †University of...the wave number being the parameter) are overlaid on the contour map of the amplification factor in the complex plane for the chosen temporal scheme
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Garrido, L. M.; Pascual, P.
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Chaotic diagonal recurrent neural network
Institute of Scientific and Technical Information of China (English)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.
The diagonalization of cubic matrices
Cocolicchio, D.; Viggiano, M.
2000-08-01
This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.
Directory of Open Access Journals (Sweden)
Dengfeng Liu
2014-01-01
Full Text Available The core of the Chinese rice wine making is a typical simultaneous saccharification and fermentation (SSF process. In order to control and optimize the SSF process of Chinese rice wine brewing, it is necessary to construct kinetic model and study the influence of temperature on the Chinese rice wine brewing process. An unstructured kinetic model containing 12 kinetics parameters was developed and used to describe the changing of kinetic parameters in Chinese rice wine fermentation at 22, 26, and 30°C. The effects of substrate and product inhibitions were included in the model, and four variable, including biomass, ethanol, sugar and substrate were considered. The R-square values for the model are all above 0.95 revealing that the model prediction values could match experimental data very well. Our model conceivably contributes significantly to the improvement of the industrial process for the production of Chinese rice wine.
Xia, Yidong
The objective this work is to develop a parallel, implicit reconstructed discontinuous Galerkin (RDG) method using Taylor basis for the solution of the compressible Navier-Stokes equations on 3D hybrid grids. This third-order accurate RDG method is based on a hierarchical weighed essentially non- oscillatory reconstruction scheme, termed as HWENO(P1P 2) to indicate that a quadratic polynomial solution is obtained from the underlying linear polynomial DG solution via a hierarchical WENO reconstruction. The HWENO(P1P2) is designed not only to enhance the accuracy of the underlying DG(P1) method but also to ensure non-linear stability of the RDG method. In this reconstruction scheme, a quadratic polynomial (P2) solution is first reconstructed using a least-squares approach from the underlying linear (P1) discontinuous Galerkin solution. The final quadratic solution is then obtained using a Hermite WENO reconstruction, which is necessary to ensure the linear stability of the RDG method on 3D unstructured grids. The first derivatives of the quadratic polynomial solution are then reconstructed using a WENO reconstruction in order to eliminate spurious oscillations in the vicinity of strong discontinuities, thus ensuring the non-linear stability of the RDG method. The parallelization in the RDG method is based on a message passing interface (MPI) programming paradigm, where the METIS library is used for the partitioning of a mesh into subdomain meshes of approximately the same size. Both multi-stage explicit Runge-Kutta and simple implicit backward Euler methods are implemented for time advancement in the RDG method. In the implicit method, three approaches: analytical differentiation, divided differencing (DD), and automatic differentiation (AD) are developed and implemented to obtain the resulting flux Jacobian matrices. The automatic differentiation is a set of techniques based on the mechanical application of the chain rule to obtain derivatives of a function given as
Batell, Brian
2012-09-01
The focus of this brief review is on new physics (NP) sources of CP violation, especially related to the flavor-diagonal phenomena of electric dipole moments (EDMs) of elementary particles and atoms. Using weak scale supersymmetry as an example, we illustrate various aspects of the "new physics CP-problem". We also explore the interplay between flavor-changing and flavor-diagonal CP violation in the context of the recent hints from the Tevatron for new sources of CP violation in the B-meson systems.
Direct Numerical Simulation of Interfacial Flows: Implicit Sharp-Interface Method (I-SIM)
Energy Technology Data Exchange (ETDEWEB)
Robert Nourgaliev; Theo Theofanous; HyeongKae Park; Vincent Mousseau; Dana Knoll
2008-01-01
In recent work (Nourgaliev, Liou, Theofanous, JCP in press) we demonstrated that numerical simulations of interfacial flows in the presence of strong shear must be cast in dynamically sharp terms (sharp interface treatment or SIM), and that moreover they must meet stringent resolution requirements (i.e., resolving the critical layer). The present work is an outgrowth of that work aiming to overcome consequent limitations on the temporal treatment, which become still more severe in the presence of phase change. The key is to avoid operator splitting between interface motion, fluid convection, viscous/heat diffusion and reactions; instead treating all these non-linear operators fully-coupled within a Newton iteration scheme. To this end, the SIM’s cut-cell meshing is combined with the high-orderaccurate implicit Runge-Kutta and the “recovery” Discontinuous Galerkin methods along with a Jacobian-free, Krylov subspace iteration algorithm and its physics-based preconditioning. In particular, the interfacial geometry (i.e., marker’s positions and volumes of cut cells) is a part of the Newton-Krylov solution vector, so that the interface dynamics and fluid motions are fully-(non-linearly)-coupled. We show that our method is: (a) robust (L-stable) and efficient, allowing to step over stability time steps at will while maintaining high-(up to the 5th)-order temporal accuracy; (b) fully conservative, even near multimaterial contacts, without any adverse consequences (pressure/velocity oscillations); and (c) highorder-accurate in spatial discretization (demonstrated here up to the 12th-order for smoothin-the-bulk-fluid flows), capturing interfacial jumps sharply, within one cell. Performance is illustrated with a variety of test problems, including low-Mach-number “manufactured” solutions, shock dynamics/tracking with slow dynamic time scales, and multi-fluid, highspeed shock-tube problems. We briefly discuss preconditioning, and we introduce two physics
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-12-01
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge-Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.
Solution of Constrained Optimal Control Problems Using Multiple Shooting and ESDIRK Methods
DEFF Research Database (Denmark)
Capolei, Andrea; Jørgensen, John Bagterp
2012-01-01
In this paper, we describe a novel numerical algorithm for solution of constrained optimal control problems of the Bolza type for stiff and/or unstable systems. The numerical algorithm combines explicit singly diagonally implicit Runge-Kutta (ESDIRK) integration methods with a multiple shooting...... algorithm. As we consider stiff systems, implicit solvers with sensitivity computation capabilities for initial value problems must be used in the multiple shooting algorithm. Traditionally, multi-step methods based on the BDF algorithm have been used for such problems. The main novel contribution...... of this paper is the use of ESDIRK integration methods for solution of the initial value problems and the corresponding sensitivity equations arising in the multiple shooting algorithm. Compared to BDF-methods, ESDIRK-methods are advantageous in multiple shooting algorithms in which restarts and frequent...
Baird, Henry S.; Bentley, Jon L.
2005-01-01
We propose a design methodology for "implicit" CAPTCHAs to relieve drawbacks of present technology. CAPTCHAs are tests administered automatically over networks that can distinguish between people and machines and thus protect web services from abuse by programs masquerading as human users. All existing CAPTCHAs' challenges require a significant conscious effort by the person answering them -- e.g. reading and typing a nonsense word -- whereas implicit CAPTCHAs may require as little as a single click. Many CAPTCHAs distract and interrupt users, since the challenge is perceived as an irrelevant intrusion; implicit CAPTCHAs can be woven into the expected sequence of browsing using cues tailored to the site. Most existing CAPTCHAs are vulnerable to "farming-out" attacks in which challenges are passed to a networked community of human readers; by contrast, implicit CAPTCHAs are not "fungible" (in the sense of easily answerable in isolation) since they are meaningful only in the specific context of the website that is protected. Many existing CAPTCHAs irritate or threaten users since they are obviously tests of skill: implicit CAPTCHAs appear to be elementary and inevitable acts of browsing. It can often be difficult to detect when CAPTCHAs are under attack: implicit CAPTCHAs can be designed so that certain failure modes are correlated with failed bot attacks. We illustrate these design principles with examples.
Spectral diagonal ensemble Kalman filters
Kasanický, Ivan; Vejmelka, Martin
2015-01-01
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
A note on generalized nonlinear diagonal dominance
Gan, Tai-Bin; Huang, Ting-Zhu; Gao, Jian
2006-01-01
In this paper, an open problem, proposed by A. Frommer, about nonlinear generalized diagonal dominance, is solved on some weak restriction, a counterexample is presented if such a restriction is omitted, and some new properties of nonlinear generalized diagonally dominant functions are investigated.
Simultaneous diagonalization of two quaternion matrices
Institute of Scientific and Technical Information of China (English)
ZhouJianhua
2003-01-01
The simultaneous diagonalization by congruence of pairs of Hermitian quatemion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quatemion matrix. It is proved that any two semi-positive definite Hermitian quatemion matrices can be simultaneously diagonalized by congruence.
Krylov subspace methods for the solution of large systems of ODE's
DEFF Research Database (Denmark)
Thomsen, Per Grove; Bjurstrøm, Nils Henrik
1998-01-01
In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified.......In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified....
Investigation of acceleration effects on missile aerodynamics using computational fluid dynamics
CSIR Research Space (South Africa)
Gledhill, Irvy MA
2009-01-01
Full Text Available ) or upwind TVD flux difference splitting. An explicit Runge-Kutta local time-stepping is used for steady state calculations, and an implicit time-integration with dual time-stepping is used for the time accurate computations. To enhance the convergence... the slip airfoil surface in the dimensions modelled. A second order central difference scheme was used with Jameson dissipation [14], [13]. An implicit five stage Runge-Kutta scheme with backward Euler time differencing, 5 W-cycle multi-grid levels...
Propagation in Diagonal Anisotropic Chirowaveguides
Directory of Open Access Journals (Sweden)
S. Aib
2017-01-01
Full Text Available A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented. The waveguide is filled with a chiral material having diagonal anisotropic constitutive parameters. The propagation characterization in this medium is based on algebraic formulation of Maxwell’s equations combined with the constitutive relations. Three propagation regions are identified: the fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region. This paper focuses completely on the propagation in the first region, where the dispersion modal equations are obtained and solved. The cut-off frequencies calculation leads to three cases of the plane wave propagation in anisotropic chiral medium. The particularity of these results is the possibility of controlling the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed.
A class of Bell diagonal states and entanglement witnesses
Chruscinski, D; Mlodawski, K; Matsuoka, T
2010-01-01
We analyze special class of bipartite states - so called Bell diagonal states. In particular we provide new examples of bound entangled Bell diagonal states and construct the class of entanglement witnesses diagonal in the magic basis.
On triangular algebras with noncommutative diagonals
Institute of Scientific and Technical Information of China (English)
2008-01-01
We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.
Diagonal loading least squares time delay estimation
Institute of Scientific and Technical Information of China (English)
LI Xuan; YAN Shefeng; MA Xiaochuan
2012-01-01
Least squares （LS） time delay estimation is a classical and effective method. However, the performance is degraded severely in the scenario of low ratio of signal-noise （SNR） due to the instability of matrix inversing. In order to solve the problem, diagonal loading least squares （DL-LS） is proposed by adding a positive definite matrix to the inverse matrix. Furthermore, the shortcoming of fixed diagonal loading is analyzed from the point of regularization that when the tolerance of low SNR is increased, veracity is decreased. This problem is resolved by reloading. The primary estimation＇s reciprocal is introduced as diagonal loading and it leads to small diagonal loading at the time of arrival and larger loading at other time. Simulation and pool experiment prove the algorithm has better performance.
On triangular algebras with noncommutative diagonals
Institute of Scientific and Technical Information of China (English)
DONG AiJu
2008-01-01
We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections.Moreover we prove that our triangular algebra is maximal.
Diagonal chromatography to study plant protein modifications
Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris
2016-01-01
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and
A parallel method for numerical solution of delay differential equations
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A parallel diagonally-iterated Runge-Kutta (PDIRK) method is constructed to solve stiff initial value problems for delay differential equations. The order and stability of this PDIRK method has been analyzed, and the iteration parameters of the method are tuned in such a way that fast convergence to the value of corrector is achieved.
Institute of Scientific and Technical Information of China (English)
胡伟鹏; 邓子辰; 韩松梅; 范玮
2009-01-01
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.
1980-10-01
shortcut is available; note that on the right-hand side of Equation (26) the first term leads to Eular Convolution and the second to Mean Value...Convolution. Eular Convolution and Mean Value Convolution are just special cases of R-K(2,a) Convolution (see Table 2). TABLE 2. SPECIAL CASES OF R-K(2,a)C...Convolution Eular 0 Mean Value for 1/2 1/2 Trapezoidal I For a single real pole filter, F(s) - 1 (28) and any input, G(s), the approximation using R-K(2
Graham Hoover, William; Clinton Sprott, Julien; Griswold Hoover, Carol
2016-10-01
We describe the application of adaptive (variable time step) integrators to stiff differential equations encountered in many applications. Linear harmonic oscillators subject to nonlinear thermal constraints can exhibit either stiff or smooth dynamics. Two closely related examples, Nosé's dynamics and Nosé-Hoover dynamics, are both based on Hamiltonian mechanics and generate microstates consistent with Gibbs' canonical ensemble. Nosé's dynamics is stiff and can present severe numerical difficulties. Nosé-Hoover dynamics, although it follows exactly the same trajectory, is smooth and relatively trouble-free. We emphasize the power of adaptive integrators to resolve stiff problems such as the Nosé dynamics for the harmonic oscillator. The solutions also illustrate the power of computer graphics to enrich numerical solutions.
Diagonal chromatography to study plant protein modifications.
Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris
2016-08-01
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Implicit finite-difference methods for the Euler equations
Pulliam, T. H.
1985-01-01
The present paper is concerned with two-dimensional Euler equations and with schemes which are in use of the time of this writing. Most of the development presented carries over directly to three dimensions. The characteristics of the two-dimensional Euler equations in Cartesian coordinates are considered along with generalized curvilinear coordinate transformations, metric relations, invariants of the transformation, flux Jacobian matrices and eigensystems, numerical algorithms, flux split algorithms, implicit and explicit nonlinear control (smoothing), upwind differencing in supersonic regions, unsteady and steady-state computation, the diagonal form of implicit algorithm, metric differencing and invariants, boundary conditions, geometry and mesh generation, and sample solutions.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-06-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
ON THE SOLVABILITY OF GENERAL LINEAR METHODS FOR DISSIPATIVE DYNAMICAL SYSTEMS
Institute of Scientific and Technical Information of China (English)
Ai-guo Xiao
2000-01-01
The main purpose of the present paper is to examine the existence and local uniqueness of solutions of the implicit equations arising in the application of a weakly algebraically stable general linear methods to dissipative dynamical systems, and to extend the existing relevant results of Runge-Kutta methods by Humphries and Stuart(1994).
Diagonal and off-diagonal quark number susceptibilities at high temperatures
Ding, H -T; Ohno, H; Petreczky, P; Schadler, H -P
2015-01-01
We present continuum extrapolated lattice QCD results for up to fourth order diagonal and off-diagonal quark number susceptibilities in the high temperature region of 300-700 MeV. Lattice QCD calculations are performed using 2+1 flavors of highly improved staggered quarks with nearly physical quark masses and at four different lattice spacings. Comparisons of our results with recent weak coupling perturbative calculations yield reasonably good agreements for the entire temperature range.
New Criteria for Judging Generalized Strictly Diagonally Dominant Matrix
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-song
2015-01-01
Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc. But it is diﬃcult to judge a matrix is or not generalized strictly diagonally dominant matrix. In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.
Introduction to Hubbard model and exact diagonalization
Directory of Open Access Journals (Sweden)
S. Akbar Jafari
2008-06-01
Full Text Available Hubbard model is an important model in the theory of strongly correlated electron systems. In this contribution we introduce this model and the concepts of electron correlation by building on a tight binding model. After enumerating various methods of tackling the Hubbard model, we introduce the numerical method of exact diagonalization in detail. The book keeping and practical implementation aspects are illustrated with analytically solvable example of two-site Hubbard model.
Diagonalizing sensing matrix of broadband RSE
Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji
2006-03-01
For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described.
Isotopic Implicit Surface Meshing
Boissonnat, Jean-Daniel; Cohen-Steiner, David; Vegter, Gert
2004-01-01
This paper addresses the problem of piecewise linear approximation of implicit surfaces. We first give a criterion ensuring that the zero-set of a smooth function and the one of a piecewise linear approximation of it are isotopic. Then, we deduce from this criterion an implicit surface meshing algor
Implicit Theories of Persuasion.
Roskos-Ewoldsen, David R.
1997-01-01
Explores whether individuals have implicit theories of persuasion. Examines how persuasive strategies are cognitively represented--identifies types of tactics in attitude change and social acceptability of persuasive strategies. Finds implicit theories of persuasion reflect the audience's familiarity with the topic. Finds also that implicit…
DEFF Research Database (Denmark)
Anderson, Joel; Antalikova, Radka
2014-01-01
Denmark is currently experiencing the highest immigration rate in its modern history. Population surveys indicate that negative public attitudes toward immigrants actually stem from attitudes toward their (perceived) Islamic affiliation. We used a framing paradigm to investigate the explicit...... and implicit attitudes of Christian and Atheist Danes toward targets framed as Muslims or as immigrants. The results showed that explicit and implicit attitudes were more negative when the target was framed as a Muslim, rather than as an immigrant. Interestingly, implicit attitudes were qualified...... by the participants’ religion. Specifically, analyses revealed that Christians demonstrated more negative implicit attitudes toward immigrants than Muslims. Conversely, Atheists demonstrated more negative implicit attitudes toward Muslims than Atheists. These results suggest a complex relationship between religion...
Chen, Yang; Zou, Ling; Zhou, Bin
2017-07-01
The high mounting precision of the fiber underwater acoustic array leads to an array manifold without perturbation. Besides, the targets are either static or slowly moving in azimuth in underwater acoustic array signal processing. Therefore, the covariance matrix can be estimated accurately by prolonging the observation time. However, this processing is limited to poor bearing resolution due to small aperture, low SNR and strong interferences. In this paper, diagonal rejection (DR) technology for Minimum Variance Distortionless Response (MVDR) was developed to enhance the resolution performance. The core idea of DR is rejecting the main diagonal elements of the covariance matrix to improve the output signal to interference and noise ratio (SINR). The definition of SINR here implicitly assumes independence between the spatial filter and the received observations at which the SINR is measured. The power of noise converges on the diagonal line in the covariance matrix and then it is integrated into the output beams. With the diagonal noise rejected by a factor smaller than 1, the array weights of MVDR will concentrate on interference suppression, leading to a better resolution capability. The algorithm was theoretically proved with optimal rejecting coefficient derived under both infinite and finite snapshots scenarios. Numerical simulations were conducted with an example of a linear array with eight elements half-wavelength spaced. Both resolution and Direction-of-Arrival (DOA) performances of MVDR and DR-based MVDR (DR-MVDR) were compared under different SNR and snapshot numbers. A conclusion can be drawn that with the covariance matrix accurately estimated, DR-MVDR can provide a lower sidelobe output level and a better bearing resolution capacity than MVDR without harming the DOA performance.
Diagonal gates in the Clifford hierarchy
Cui, Shawn X.; Gottesman, Daniel; Krishna, Anirudh
2017-01-01
The Clifford hierarchy is a set of gates that appears in the theory of fault-tolerant quantum computation, but its precise structure remains elusive. We give a complete characterization of the diagonal gates in the Clifford hierarchy for prime-dimensional qudits. They turn out to be pmth roots of unity raised to polynomial functions of the basis state to which they are applied, and we determine which level of the Clifford hierarchy a given gate sits in based on m and the degree of the polynomial.
Exact diagonalization of quantum-spin models
Lin, H. Q.
1990-10-01
We have developed a technique to replace hashing in implementing the Lanczös method for exact diagonalization of quantum-spin models that enables us to carry out numerical studies on substantially larger lattices than previously studied. We describe the algorithm in detail and present results for the ground-state energy, the first-excited-state energy, and the spin-spin correlations on various finite lattices for spins S=1/2, 1, 3/2, and 2. Results for an infinite system are obtained by extrapolation. We also discuss the generalization of our method to other models.
Diagonally non-computable functions and fireworks
Bienvenu, Laurent; Patey, Ludovic
2014-01-01
A set C of reals is said to be negligible if there is no probabilistic algorithm which generates a member of C with positive probability. Various classes have been proven to be negligible, for example the Turing upper-cone of a non-computable real, the class of coherent completions of Peano Arithmetic or the class of reals of minimal degrees. One class of particular interest in the study of negligibility is the class of diagonally non-computable (DNC) functions, proven by Kucera to be non-neg...
Awareness of Implicit Attitudes
Hahn, Adam; Judd, Charles M.; Hirsh, Holen K.; Blair, Irene V.
2013-01-01
Research on implicit attitudes has raised questions about how well people know their own attitudes. Most research on this question has focused on the correspondence between measures of implicit attitudes and measures of explicit attitudes, with low correspondence interpreted as showing that people have little awareness of their implicit attitudes. We took a different approach and directly asked participants to predict their results on upcoming IAT measures of implicit attitudes toward five different social groups. We found that participants were surprisingly accurate in their predictions. Across four studies, predictions were accurate regardless of whether implicit attitudes were described as true attitudes or culturally learned associations (Studies 1 and 2), regardless of whether predictions were made as specific response patterns (Study 1) or as conceptual responses (Studies 2–4), and regardless of how much experience or explanation participants received before making their predictions (Study 4). Study 3 further suggested that participants’ predictions reflected unique insight into their own implicit responses, beyond intuitions about how people in general might respond. Prediction accuracy occurred despite generally low correspondence between implicit and explicit measures of attitudes, as found in prior research. All together, the research findings cast doubt on the belief that attitudes or evaluations measured by the IAT necessarily reflect unconscious attitudes. PMID:24294868
Diagonal stripes in the spin glass phase of cuprates
Energy Technology Data Exchange (ETDEWEB)
Seibold, G., E-mail: goetz@physik.tu-cottbus.d [Institut fuer Physik, BTU Cottbus, Post Box 101344, 03013 Cottbus (Germany); Lorenzana, J. [SMC-INFM-CNR and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le Aldo Moro 5, I-00185 Roma (Italy)
2010-12-15
Based on the unrestricted Gutzwiller approximation we study the possibility that the diagonal incommensurate spin scattering in the spin glass phase of lanthanum cuprates originates from stripe formation. Similar to the metallic phase two types of diagonal stripe structures appear to be stable: (a) site-centered textures which have one hole per site along the stripe and (b) ferromagnetic stair-case structures which are the diagonal equivalent to bond-centered stripes in the metallic phase and which on average have a filling of 3/4 holes per stripe site. We give a detailed analysis of the stability of both diagonal textures with regard to the vertical ones.
Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays
Directory of Open Access Journals (Sweden)
T. S. Doan
2012-01-01
Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
Quantum Monte Carlo diagonalization method as a variational calculation
Energy Technology Data Exchange (ETDEWEB)
Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio
1997-05-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Generalized coordinate Bethe ansatz for non diagonal boundaries
Crampe, N
2011-01-01
We compute the spectrum and the eigenstates of the open XXX model with non-diagonal (triangular) boundary matrices. Since the boundary matrices are not diagonal, the usual coordinate Bethe ansatz does not work anymore, and we use a generalization of it to solve the problem.
Optimization of fuzzy logic analysis by diagonals for pattern recognition
Habiballa, Hashim; Hires, Matej
2017-07-01
The article presents an optimization of the fuzzy logic analysis method for pattern recognition. The enhancements of the original method through the usage of additional two types of pattern components - leftwise diagonal and rightwise diagonal ones. The method is described in theoretical background and further articles show the implementation and experimental verification of the approach.
Solving block linear systems with low-rank off-diagonal blocks is easily parallelizable
Energy Technology Data Exchange (ETDEWEB)
Menkov, V. [Indiana Univ., Bloomington, IN (United States)
1996-12-31
An easily and efficiently parallelizable direct method is given for solving a block linear system Bx = y, where B = D + Q is the sum of a non-singular block diagonal matrix D and a matrix Q with low-rank blocks. This implicitly defines a new preconditioning method with an operation count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice the cost of calculating Qw for some w. When implemented on a parallel machine the processor utilization can be as good as that of those operations. Order estimates are given for the general case, and an implementation is compared to block SSOR preconditioning.
Implicit measure for yoga research: Yoga implicit association test
Directory of Open Access Journals (Sweden)
Judu V Ilavarasu
2014-01-01
Conclusions: Implicit measures may be used in the yoga field to assess constructs, which are difficult to self-report or may have social desirability threat. Y-IAT may be used to evaluate implicit preference toward yoga.
Directory of Open Access Journals (Sweden)
Karen Lahousse
2008-04-01
Full Text Available Il a souvent été proposé que les éléments spatio-temporels en position initiale de phrase spécifient le cadre de l’événement dénoté par la proposition et ont une interprétation thématique ou topicale. Alors que les topiques spatio-temporels explicites ont souvent été étudiés, Erteschik-Schir (1997, 1999 propose l’idée que les topiques spatio-temporels, ou topiques scéniques (stage topics peuvent aussi être implicites.Dans cet article, nous offrons des arguments en faveur de la notion de topique scénique implicite. Nous montrons qu’un certain nombre de cas d’inversion nominale en français, une configuration syntaxique qui est favorisée par la présence d’un topique scénique explicite, s’expliquent par la présence d’un topique scénique implicite. Le fait que les topiques scéniques implicites interagissent avec la structure syntaxique de la même façon que les topiques scéniques explicites constitue un argument empirique en faveur de leur existence.It has often been proposed that sentence-initial spatio-temporal elements specify the frame in which the whole proposition takes place and are topical (i.e. thematic. Whereas considerable attention has been paid to explicit spatio-temporal topics, Erteschik-Shir (1997, 1999 argues that spatio-temporal topics, or stage topics, can also be implicit.In this article we provide evidence in favour of the notion of implicit stage topic. We show that a certain number of nominal inversion cases in French, a syntactic configuration which is triggered by the presence of an explicit stage topic, are explained by the presence of an implicit stage topic. The fact that implicit stage topics interact with syntactic structure the same way explicit stage topics do constitutes a strong empirical argument in favour of their existence.
Mindfulness - en implicit utopi?
DEFF Research Database (Denmark)
Nielsen, Anne Maj
2014-01-01
mindfulness is used for individualized stress-reduction in order to keep up with existing or worsened working conditions instead of stress-reducing changes in the common working conditions. Mindfulness research emphasizes positive outcomes in coping with demands and challenges in everyday life especially...... considering suffering (for example stress and pain). While explicit constructions of Utopia present ideas of specific societal communities in well-functioning harmony, the interest in mindfulness can in contradistinction be considered an implicit critique of present life-conditions and an “implicit utopia...
Generalización a Rn de algunos métodos de interpolación conocidos en ecuaciones diferenciales
Directory of Open Access Journals (Sweden)
Vernor Arguedas Troyo
2009-02-01
Full Text Available We present the Runge-Kutta methods of several one-step levels in Rn , as well as algorithms in pseudo-code for the implicit and explicit methods. We study the problem of error control in Rn and we give numerical examples in tables or parameter schemata. Keywords: n-dimensional runge-Katta methods, explicit and implicit methods, interpolation, pseudo-algorithms, parametric schema.
Liu, Zhe; Lin, Lei; Xie, Lian; Gao, Huiwang
2016-10-01
To improve the efficiency of the terrain-following σ-coordinate non-hydrostatic ocean model, a partially implicit finite difference (PIFD) scheme is proposed. By using explicit terms instead of implicit terms to discretize the parts of the vertical dynamic pressure gradient derived from the σ-coordinate transformation, the coefficient matrix of the discrete Poisson equation that the dynamic pressure satisfies can be simplified from 15 diagonals to 7 diagonals. The PIFD scheme is shown to run stably when it is applied to simulate five benchmark cases, namely, a standing wave in a basin, a surface solitary wave, a lock-exchange problem, a periodic wave over a bar and a tidally induced internal wave. Compared with the conventional fully implicit finite difference (FIFD) scheme, the PIFD scheme produces simulation results of equivalent accuracy at only 40-60% of the computational cost. The PIFD scheme demonstrates strong applicability and can be easily implemented in σ-coordinate ocean models.
Implicit Learning as an Ability
Kaufman, Scott Barry; DeYoung, Caroline G.; Gray, Jeremy R.; Jimenez, Luis; Brown, Jamie; Mackintosh, Nicholas
2010-01-01
The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber,…
Teleportation of an arbitrary mixture of diagonal states of multiqudit
Institute of Scientific and Technical Information of China (English)
Du Qian-Hua; Lin Xiu-Min; Chen Zhi-Hua; Lin Gong-Wei; Chen Li-Bo; Gu Yong-Jian
2008-01-01
This paper proposes a scheme to teleport an arbitrary mixture of diagonal states of multiqutrit via classical correlation and classical communication. To teleport an arbitrary mixture of diagonal states of N qutrits, N classically correlated pairs of two qutrits are used as channel. The sender (Alice) makes Fourier transform and conditional gate (i.e., XOR(3) gate) on her qutrits and does measurement in appropriate computation bases. Then she sends N ctrits to the receiver (Bob). Based on the received information, Bob performs the corresponding unitary transformation on his qutrits and obtains the teleported state. Teleportation of an arbitrary mixture of diagonal states of multiqudit is also discussed.
NONLINEAR BENDING THEORY OF DIAGONAL SQUARE PYRAMID RETICULATED SHALLOW SHELLS
Institute of Scientific and Technical Information of China (English)
肖潭; 刘人怀
2001-01-01
Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle .
Diagonal representation for a generic matrix valued quantum Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF UFR de Mathematiques, BP74, Saint Martin d' Heres Cedex (France); Mohrbach, Herve [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Metz Cedex 3 (France)
2009-12-15
A general method to derive the diagonal representation for a generic matrix valued quantum Hamiltonian is proposed. In this approach new mathematical objects like non-commuting operators evolving with the Planck constant promoted as a running variable are introduced. This method leads to a formal compact expression for the diagonal Hamiltonian which can be expanded in a power series of the Planck constant. In particular, we provide an explicit expression for the diagonal representation of a generic Hamiltonian to the second order in the Planck constant. This result is applied, as a physical illustration, to Dirac electrons and neutrinos in external fields. (orig.)
Using off-diagonal confinement as a cooling method
Rousseau, Valery; Hettiarachchilage, Kalani; Moreno, Juana; Jarrell, Mark; Sheehy, Dan
2011-03-01
We show that the recently proposed ``off-diagonal confining" (ODC) method (Phys. Rev. Lett. 104, 167201 (2010)) can lead to temperatures that are smaller than with the conventional ``diagonal confining" (DC) method, depending on the control parameters of the system. We determine these parameters using exact diagonalizations for the hard-core case, then we extend our results to the soft-core case by performing quantum Monte Carlo simulations for both DC and ODC systems at fixed temperatures, and analysing the corresponding entropies. This work was supported by NSF OISE-0952300.
ORDER RESULTS OF GENERAL LINEAR METHODS FOR MULTIPLY STIFF SINGULAR PERTURBATION PROBLEMS
Institute of Scientific and Technical Information of China (English)
Si-qing Gan; Geng Sun
2002-01-01
In this paper we analyze the error behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. We obtain the global error estimate of algebraically and diagonally stable general linear methods. The main result of this paper can be viewed as an extension of that obtained by Xiao [13] for the case of Runge-Kutta methods.
EXTREME POINTS IN DIAGONAL-DISJOINT IDEALS OF NEST ALGEBRAS
Institute of Scientific and Technical Information of China (English)
董浙; 鲁世杰
2002-01-01
In this paper, the extreme points of the unit ball of diagonal-disjoint ideals in nest algebras are characterized completely; Furthermore, it is shown that every extreme point of the unit ball of 2 has essential-norm one.
Multivariate Diagonal Coinvariant Spaces for Complex Reflection Groups
Bergeron, Francois
2011-01-01
For finite complex reflexion groups, we consider the graded $W$-modules of diagonally harmonic polynomials in $r$ sets of variables, and show that associated Hilbert series may be described in a global manner, independent of the value of $r$.
Multivariable Decoupling Control System Based on Generalized Diagonal Dominance
Directory of Open Access Journals (Sweden)
S. Jamebozorg
2015-03-01
Full Text Available In this paper, the design of static precompensator for the reduction of interaction in linear multivariable systems is proposed. In the previous studies, the diagonal dominance of systems in special frequency range has been less paid attention to. In the proposed method, some static compensators with matrix coefficients are combined so that the final static compensator can make system diagonal dominance in a wide range of frequencies. These coefficients are obtained with optimization algorithm. In this method, to achieve diagonal dominance with less conservativeness, the criterion of generalized diagonal dominance is used. The proposed method does not have any limitation for systems with high interaction or non-minimum phase systems. In comparison with some common methods, it has a simpler structure with easy implementation. Simulation examples demonstrate the usefulness of the proposed method
Chinese implicit leadership theory.
Ling, W; Chia, R C; Fang, L
2000-12-01
In a 1st attempt to identify an implicit theory of leadership among Chinese people, the authors developed the Chinese Implicit Leadership Scale (CILS) in Study 1. In Study 2, they administered the CILS to 622 Chinese participants from 5 occupation groups, to explore differences in perceptions of leadership. Factor analysis yielded 4 factors of leadership: Personal Morality, Goal Efficiency, Interpersonal Competence, and Versatility. Social groups differing in age, gender, education level, and occupation rated these factors. Results showed no significant gender differences, and the underlying cause for social group differences was education level. All groups gave the highest ratings to Interpersonal Competence, reflecting the enormous importance of this factor, which is consistent with Chinese collectivist values.
Online blind source separation based on joint diagonalization
Institute of Scientific and Technical Information of China (English)
Li Ronghua; Zhou Guoxu; Fang Zuyuan; Xie Shengli
2009-01-01
A now algorithm is proposed for joint diagonalization. With a modified objective function, the now algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, with the new objective function, the proposed algorithm can work well in online blind source separation (BSS) for the first time, although this family of algorithms is always thought to be valid only in batch-mode BSS by far. Simulations show that it is a very competitive joint diagonalization algorithm.
Self-excitation of a diagonal MHD channel
Energy Technology Data Exchange (ETDEWEB)
Doperchuk, I.I.; Koneyev, S.M.A.
1982-01-01
Questions are examined of self-excitation of a diagonal MHD channel. Conditions are obtained for self-excitation using 0-dimensional approximation. An algorithm is presented for calculating the optimal self-exciting diagonal channel with regard for development and separation of the boundary layers, presence of near-electrode drops in voltage. Graphs are presented for the transitional regimes of channel operation with intermediate point of connection of the excitation winding.
Directory of Open Access Journals (Sweden)
Jean-François Degbomont
2010-10-01
Full Text Available This paper addresses the symbolic representation of non-convex real polyhedra, i.e., sets of real vectors satisfying arbitrary Boolean combinations of linear constraints. We develop an original data structure for representing such sets, based on an implicit and concise encoding of a known structure, the Real Vector Automaton. The resulting formalism provides a canonical representation of polyhedra, is closed under Boolean operators, and admits an efficient decision procedure for testing the membership of a vector.
Discriminative Block-Diagonal Representation Learning for Image Recognition.
Zhang, Zheng; Xu, Yong; Shao, Ling; Yang, Jian
2017-07-04
Existing block-diagonal representation studies mainly focuses on casting block-diagonal regularization on training data, while only little attention is dedicated to concurrently learning both block-diagonal representations of training and test data. In this paper, we propose a discriminative block-diagonal low-rank representation (BDLRR) method for recognition. In particular, the elaborate BDLRR is formulated as a joint optimization problem of shrinking the unfavorable representation from off-block-diagonal elements and strengthening the compact block-diagonal representation under the semisupervised framework of LRR. To this end, we first impose penalty constraints on the negative representation to eliminate the correlation between different classes such that the incoherence criterion of the extra-class representation is boosted. Moreover, a constructed subspace model is developed to enhance the self-expressive power of training samples and further build the representation bridge between the training and test samples, such that the coherence of the learned intraclass representation is consistently heightened. Finally, the resulting optimization problem is solved elegantly by employing an alternative optimization strategy, and a simple recognition algorithm on the learned representation is utilized for final prediction. Extensive experimental results demonstrate that the proposed method achieves superb recognition results on four face image data sets, three character data sets, and the 15 scene multicategories data set. It not only shows superior potential on image recognition but also outperforms the state-of-the-art methods.
Implicit learning as an ability.
Kaufman, Scott Barry; Deyoung, Colin G; Gray, Jeremy R; Jiménez, Luis; Brown, Jamie; Mackintosh, Nicholas
2010-09-01
The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber, 1993; Stanovich, 2009) have suggested that individual differences in implicit learning are minimal relative to individual differences in explicit learning. In the current study of English 16-17year old students, we investigated the association of individual differences in implicit learning with a variety of cognitive and personality variables. Consistent with prior research and theorizing, implicit learning, as measured by a probabilistic sequence learning task, was more weakly related to psychometric intelligence than was explicit associative learning, and was unrelated to working memory. Structural equation modeling revealed that implicit learning was independently related to two components of psychometric intelligence: verbal analogical reasoning and processing speed. Implicit learning was also independently related to academic performance on two foreign language exams (French, German). Further, implicit learning was significantly associated with aspects of self-reported personality, including intuition, Openness to Experience, and impulsivity. We discuss the implications of implicit learning as an ability for dual-process theories of cognition, intelligence, personality, skill learning, complex cognition, and language acquisition.
Chatterjee, Arghya; Nayak, Tapan K; Sahoo, Nihar Ranjan
2016-01-01
Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics (QCD) phase transition and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second-order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas (HRG) model as well as with a hadronic transport model, UrQMD. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sNN = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.
Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar
2016-12-01
Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.
Auditory spatial resolution in horizontal, vertical, and diagonal planes.
Grantham, D Wesley; Hornsby, Benjamin W Y; Erpenbeck, Eric A
2003-08-01
Minimum audible angle (MAA) and minimum audible movement angle (MAMA) thresholds were measured for stimuli in horizontal, vertical, and diagonal (60 degrees) planes. A pseudovirtual technique was employed in which signals were recorded through KEMAR's ears and played back to subjects through insert earphones. Thresholds were obtained for wideband, high-pass, and low-pass noises. Only 6 of 20 subjects obtained wideband vertical-plane MAAs less than 10 degrees, and only these 6 subjects were retained for the complete study. For all three filter conditions thresholds were lowest in the horizontal plane, slightly (but significantly) higher in the diagonal plane, and highest for the vertical plane. These results were similar in magnitude and pattern to those reported by Perrott and Saberi [J. Acoust. Soc. Am. 87, 1728-1731 (1990)] and Saberi and Perrott [J. Acoust. Soc. Am. 88, 2639-2644 (1990)], except that these investigators generally found that thresholds for diagonal planes were as good as those for the horizontal plane. The present results are consistent with the hypothesis that diagonal-plane performance is based on independent contributions from a horizontal-plane system (sensitive to interaural differences) and a vertical-plane system (sensitive to pinna-based spectral changes). Measurements of the stimuli recorded through KEMAR indicated that sources presented from diagonal planes can produce larger interaural level differences (ILDs) in certain frequency regions than would be expected based on the horizontal projection of the trajectory. Such frequency-specific ILD cues may underlie the very good performance reported in previous studies for diagonal spatial resolution. Subjects in the present study could apparently not take advantage of these cues in the diagonal-plane condition, possibly because they did not externalize the images to their appropriate positions in space or possibly because of the absence of a patterned visual field.
GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems
Niemeyer, Kyle E
2016-01-01
The task of integrating a large number of independent ODE systems arises in various scientific and engineering areas. For nonstiff systems, common explicit integration algorithms can be used on GPUs, where individual GPU threads concurrently integrate independent ODEs with different initial conditions or parameters. One example is the fifth-order adaptive Runge-Kutta-Cash-Karp (RKCK) algorithm. In the case of stiff ODEs, standard explicit algorithms require impractically small time-step sizes for stability reasons, and implicit algorithms are therefore commonly used instead to allow larger time steps and reduce the computational expense. However, typical high-order implicit algorithms based on backwards differentiation formulae (e.g., VODE, LSODE) involve complex logical flow that causes severe thread divergence when implemented on GPUs, limiting the performance. Therefore, alternate algorithms are needed. A GPU-based Runge-Kutta-Chebyshev (RKC) algorithm can handle moderate levels of stiffness and performs s...
Correlations and diagonal entropy after quantum quenches in XXZ chains
Piroli, Lorenzo; Vernier, Eric; Calabrese, Pasquale; Rigol, Marcos
2017-02-01
We study quantum quenches in the XXZ spin-1 /2 Heisenberg chain from families of ferromagnetic and antiferromagnetic initial states. Using Bethe ansatz techniques, we compute short-range correlators in the complete generalized Gibbs ensemble (GGE), which takes into account all local and quasilocal conservation laws. We compare our results to exact diagonalization and numerical linked cluster expansion calculations for the diagonal ensemble, finding excellent agreement and thus providing a very accurate test for the validity of the complete GGE. Furthermore, we use exact diagonalization to compute the diagonal entropy in the postquench steady state. We show that the Yang-Yang entropy for the complete GGE is consistent with twice the value of the diagonal entropy in the largest chains or the extrapolated result in the thermodynamic limit. Finally, the complete GGE is quantitatively contrasted with the GGE built using only the local conserved charges (local GGE). The predictions of the two ensembles are found to differ significantly in the case of ferromagnetic initial states. Such initial states are better suited than others considered in the literature to experimentally test the validity of the complete GGE and contrast it to the failure of the local GGE.
Net efficiency of roller skiing with a diagonal stride.
Nakai, Akira; Ito, Akira
2011-02-01
The aims of this study were: (a) to determine net efficiency during roller skiing with a diagonal stride at various speeds; (b) to assess the development of net efficiency across speeds; and (c) to examine the characteristics of efficiency in diagonal roller skiing. Two-dimensional kinematics and oxygen uptake were determined in eight male collegiate cross-country ski athletes who roller skied with the diagonal stride at various speeds on a level track. Net efficiency was calculated from rates of internal and external work and net energy expenditure. Individual net efficiency ranged from 17.7% to 52.1%. Net efficiency in the entire group of athletes increased with increasing speed, reached a maximum value of 37.3% at 3.68 m · s(-1), before slowly decreasing. These findings indicate that roller skiing with the diagonal stride at high speed is a highly efficient movement and that an optimal speed exists at which net efficiency can be maximally enhanced in diagonal roller skiing.
Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's
Pulliam, Thomas H.
2010-01-01
The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.
Implicitly positive about alcohol? Implicit positive associations predict drinking behavior
Houben, K.; Wiers, R.W.H.J.
2008-01-01
Research using unipolar Implicit Association Tests (IATs) demonstrated that positive but not negative implicit alcohol associations are related to drinking behavior. However, the relative nature of the IAT with respect to target concepts (i.e., alcohol vs. soft drinks) obscures the interpretation of
Implicitly positive about alcohol? Implicit positive associations predict drinking behavior
Houben, K.; Wiers, R.W.H.J.
2008-01-01
Research using unipolar Implicit Association Tests (IATs) demonstrated that positive but not negative implicit alcohol associations are related to drinking behavior. However, the relative nature of the IAT with respect to target concepts (i.e., alcohol vs. soft drinks) obscures the interpretation of
Stiff modes in spinvalve simulations with OOMMF
Energy Technology Data Exchange (ETDEWEB)
Mitropoulos, Spyridon [Department of Computer and Informatics Engineering, TEI of Eastern Macedonia and Thrace, Kavala (Greece); Tsiantos, Vassilis, E-mail: tsianto@teikav.edu.gr [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Ovaliadis, Kyriakos [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Kechrakos, Dimitris [Department of Education, ASPETE, Heraklion, Athens (Greece); Donahue, Michael [Applied and Computational Mathematics Division, NIST, Gaithersburg, MD (United States)
2016-04-01
Micromagnetic simulations are an important tool for the investigation of magnetic materials. Micromagnetic software uses various techniques to solve differential equations, partial or ordinary, involved in the dynamic simulations. Euler, Runge-Kutta, Adams, and BDF (Backward Differentiation Formulae) are some of the methods used for this purpose. In this paper, spinvalve simulations are investigated. Evidence is presented showing that these systems have stiff modes, and that implicit methods such as BDF are more effective than explicit methods in such cases.
Oil Reservoir Production Optimization using Optimal Control
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan
2011-01-01
Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...... the adjoint method. We use an Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method for the integration and a quasi-Newton Sequential Quadratic Programming (SQP) algorithm for the constrained optimization. We use this algorithm in a numerical case study to optimize the production of oil from an oil...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%....
Stable time integration suppresses unphysical oscillations in the bidomain model
Directory of Open Access Journals (Sweden)
Saeed eTorabi Ziaratgahi
2014-07-01
Full Text Available The bidomain model is a popular model for simulating electrical activity in cardiac tissue. It is a continuum-based model consisting of non-linear ordinary differential equations (ODEs describing spatially averaged cellular reactions and a system of partial differential equations (PDEs describing electrodiffusion on tissue level. Because of this multi-scale, ODE/PDE structure of the model, operator-splitting methods that treat the ODEs and PDEs in separate steps are natural candidates as numerical solution methods. Second-order methods can generally be expected to be more effective than first-order methods under normal accuracy requirements. However, the simplest and the most commonly applied second-order method for the PDE step, the Crank--Nicolson (CN method, may generate unphysical oscillations. In this paper, we investigate the performance of a two-stage, L-stable singly diagonally implicit Runge--Kutta method for solving the PDEs of the bidomain model. Numerical experiments show that the enhanced stability property of this method leads to more physically realistic numerical simulations compared to both the CN and backward Euler methods.
Institute of Scientific and Technical Information of China (English)
刘玉华; 张金良; 李留涛
2012-01-01
广义Burgers—Huxley方程是一个非常重要的模型，在流体力学、化学反应、生物工程、自动控制等领域有着广泛的应用．借助于有限差分、对角隐式Runge—Kutta-NystrSm（DIRKN），对广义Burgers·Huxley方程的精确解进行了数值模拟，由模拟的图形及误差可以看出本文的方法是有效的，但是若方程的非线性较强时，数值结果的误差相对较大．%The generalized Burgers-Huxley equation is an important model, it has wide applications in fluid mechanics, chemical reaction, bioengineering, automatic control, etc. In this paper, the exact solutions of the generalized Burgers-Huxley equation are numerically simulated using the finite difference method and diagonal implicit Runge-Kutta-Nystrom method. From the simulation figures and errors, the method used in this paper is efficient, if the nonlinearity is strong, the error becomes bigger.
Diagonal invariant ideals of Toeplitz algebras on discrete groups
Institute of Scientific and Technical Information of China (English)
许庆祥
2002-01-01
Diagonal invariant ideals of Toeplitz algebras defined on discrete groups are introduced and studied. In terms of isometric representations of Toeplitz algebras associated with quasi-ordered groups, a character of a discrete group to be amenable is clarified. It is proved that when G is Abelian, a closed two-sided non-trivial ideal of the Toeplitz algebra defined on a discrete Abelian ordered group is diagonal invariant if and only if it is invariant in the sense of Adji and Murphy, thus a new proof of their result is given.
Diagonal Limit for Conformal Blocks in d Dimensions
Hogervorst, Matthijs; Rychkov, Slava
2013-01-01
Conformal blocks in any number of dimensions depend on two variables z, zbar. Here we study their restrictions to the special "diagonal" kinematics z = zbar, previously found useful as a starting point for the conformal bootstrap analysis. We show that conformal blocks on the diagonal satisfy ordinary differential equations, third-order for spin zero and fourth-order for the general case. These ODEs determine the blocks uniquely and lead to an efficient numerical evaluation algorithm. For equal external operator dimensions, we find closed-form solutions in terms of finite sums of 3F2 functions.
Diagonally loaded SMI algorithm based on inverse matrix recursion
Institute of Scientific and Technical Information of China (English)
Cao Jianshu; Wang Xuegang
2007-01-01
The derivation of a diagonally loaded sample-matrix inversion (LSMI) algorithm on the busis of inverse matrix recursion (i.e. LSMI-IMR algorithm) is conducted by reconstructing the recursive formulation of covariance matrix. For the new algorithm, diagonal loading is by setting initial inverse matrix without any addition of computation. In addition, acorresponding improved recursive algorithm is presented, which is low computational complexity. This eliminates the complex multiplications of the scalar coefficient and updating matrix, resulting in significant computational savings.Simulations show that the LSMI-IMR algorithm is valid.
Benchmarking Compressed Sensing, Super-Resolution, and Filter Diagonalization
Markovich, Thomas; Sanders, Jacob N; Aspuru-Guzik, Alan
2015-01-01
Signal processing techniques have been developed that use different strategies to bypass the Nyquist sampling theorem in order to recover more information than a traditional discrete Fourier transform. Here we examine three such methods: filter diagonalization, compressed sensing, and super-resolution. We apply them to a broad range of signal forms commonly found in science and engineering in order to discover when and how each method can be used most profitably. We find that filter diagonalization provides the best results for Lorentzian signals, while compressed sensing and super-resolution perform better for arbitrary signals.
Implicit Memory in Multiple Sclerosis
Directory of Open Access Journals (Sweden)
G. Latchford
1993-01-01
Full Text Available A number of neuropsychological studies have revealed that memory problems are relatively common in patients with multiple sclerosis (MS. It may be useful to compare MS with conditions such as Huntington's disease (HD, which have been referred to as subcortical dementia. A characteristic of these conditions may be an impairment in implicit (unconscious memory, but not in explicit (conscious memory. The present study examined the functioning of explicit and implicit memory in MS. Results showed that implicit memory was not significantly impaired in the MS subjects, and that they were impaired on recall but not recognition. A correlation was found between implicit memory performance and disability status in MS patients. Findings also suggest the possibility of long-term priming of implicit memory in the control subjects. The implications of these results are discussed.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
DEFF Research Database (Denmark)
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Penguins and Pandas: A Note on Teaching Cantor's Diagonal Argument
Rauff, James V.
2008-01-01
Cantor's diagonal proof that the set of real numbers is uncountable is one of the most famous arguments in modern mathematics. Mathematics students usually see this proof somewhere in their undergraduate experience, but it is rarely a part of the mathematical curriculum of students of the fine arts or humanities. This note describes contexts that…
Convergence of GAOR Iterative Method with Strictly Diagonally Dominant Matrices
Directory of Open Access Journals (Sweden)
Guangbin Wang
2011-01-01
Full Text Available We discuss the convergence of GAOR method for linear systems with strictly diagonally dominant matrices. Moreover, we show that our results are better than ones of Darvishi and Hessari (2006, Tian et al. (2008 by using three numerical examples.
Why the South Pacific Convergence Zone is diagonal
van der Wiel, Karin; Matthews, Adrian J.; Joshi, Manoj M.; Stevens, David P.
2016-03-01
During austral summer, the majority of precipitation over the Pacific Ocean is concentrated in the South Pacific Convergence Zone (SPCZ). The surface boundary conditions required to support the diagonally (northwest-southeast) oriented SPCZ are determined through a series of experiments with an atmospheric general circulation model. Continental configuration and orography do not have a significant influence on SPCZ orientation and strength. The key necessary boundary condition is the zonally asymmetric component of the sea surface temperature (SST) distribution. This leads to a strong subtropical anticyclone over the southeast Pacific that, on its western flank, transports warm moist air from the equator into the SPCZ region. This moisture then intensifies (diagonal) bands of convection that are initiated by regions of ascent and reduced static stability ahead of the cyclonic vorticity in Rossby waves that are refracted toward the westerly duct over the equatorial Pacific. The climatological SPCZ is comprised of the superposition of these diagonal bands of convection. When the zonally asymmetric SST component is reduced or removed, the subtropical anticyclone and its associated moisture source is weakened. Despite the presence of Rossby waves, significant moist convection is no longer triggered; the SPCZ disappears. The diagonal SPCZ is robust to large changes (up to ±6 °C) in absolute SST (i.e. where the SST asymmetry is preserved). Extreme cooling (change <-6 °C) results in a weaker and more zonal SPCZ, due to decreasing atmospheric temperature, moisture content and convective available potential energy.
Thermodynamics of Rh nuclear spins calculated by exact diagonalization
DEFF Research Database (Denmark)
Lefmann, K.; Ipsen, J.; Rasmussen, F.B.;
2000-01-01
We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positive...
Green function diagonal for a class of heat equations
Kwiatkowski, Grzegorz
2011-01-01
A construction of the heat kernel diagonal is considered as element of generalized Zeta function, that, being meromorfic function, its gradient at the origin defines determinant of a differential operator in a technique for regularizing quadratic path integral. Some classes of explicit expression in the case of finite-gap potential coefficient of the heat equation are constructed.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
DEFF Research Database (Denmark)
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Penile torsion correction by diagonal corporal plication sutures
Directory of Open Access Journals (Sweden)
Brent W. Snow
2009-02-01
Full Text Available Penile torsion is commonly encountered. It can be caused by skin and dartos adherence or Buck’s fascia attachments. The authors suggest a new surgical approach to solve both problems. If Buck’s fascia involvement is demonstrated by artificial erection then a new diagonal corporal plication suture is described to effectively solve this problem.
Tamil Nadu and the Diagonal Divide in Sex Ratios
A.S. Bedi (Arjun Singh); S. Srinivasan (Sharada)
2009-01-01
textabstractBetween 1961 and 2001, India’s 0-6 sex ratio has steadily declined. Despite evidence to the contrary, this ratio is often characterised in terms of a diagonal divide with low 0-6 sex ratios in northern and western India and normal 0-6 sex ratios in eastern and southern India. While unexp
Implicitization of rational maps
Botbol, Nicolas
2011-01-01
Motivated by the interest in computing explicit formulas for resultants and discriminants initiated by B\\'ezout, Cayley and Sylvester in the eighteenth and nineteenth centuries, and emphasized in the latest years due to the increase of computing power, we focus on the implicitization of hypersurfaces in several contexts. Our approach is based on the use of linear syzygies by means of approximation complexes, following [Bus\\'e Jouanolou 03], where they develop the theory for a rational map $f:P^{n-1}\\dashrightarrow P^n$. Approximation complexes were first introduced by Herzog, Simis and Vasconcelos in [Herzog Simis Vasconcelos 82] almost 30 years ago. The main obstruction for this approximation complex-based method comes from the bad behavior of the base locus of $f$. Thus, it is natural to try different compatifications of $A^{n-1}$, that are better suited to the map $f$, in order to avoid unwanted base points. With this purpose, in this thesis we study toric compactifications $T$ for $A^{n-1}$. We provide re...
Implicit Numerical Methods in Meteorology
Augenbaum, J.
1984-01-01
The development of a fully implicit finite-difference model, whose time step is chosen solely to resolve accurately the physical flow of interest is discussed. The method is based on an operator factorization which reduces the dimensionality of the implicit approach: at each time step only (spatially) one-dimensional block-tridiagonal linear systems must be solved. The scheme uses two time levels and is second-order accurate in time. Compact implicit spatial differences are used, yielding fourth-order accuracy both vertically and horizontally. In addition, the development of a fully interactive computer code is discussed. With this code the user will have a choice of models, with various levels of accuracy and sophistication, which are imbedded, as subsets of the fully implicit 3D code.
Bankruptcy as Implicit Health Insurance
Neale Mahoney
2012-01-01
This paper examines the interaction between health insurance and the implicit insurance that people have because they can file (or threaten to file) for bankruptcy. With a simple model that captures key institutional features, I demonstrate that the financial risk from medical shocks is capped by the assets that could be seized in bankruptcy. For households with modest seizable assets, this implicit “bankruptcy insurance” can crowd out conventional health insurance. I test these predictions u...
Institute of Scientific and Technical Information of China (English)
WANG Gang; JIANG Yuewen; YE Zhengyin
2012-01-01
The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology,low numerical complexity and modest memory requirements.In original LU-SGS scheme,the implicit system matrix is construeted based on the splitting of convective flux Jacobian according to its spectral radius.Although this treatment has the merit of reducing computational complexity and helps to ensure the diagonally dominant property of the implicit system marx,it can also cause serious distortions on the implicit system matrix because too many approximations are introduced by this splitting method if the contravariant velocity is small or close to sonic speed.To overcome this shortcoming,an improved LU-SGS scheme with a hybrid construction method for the implicit system matrix is developed in this paper.The hybrid way is that:on the cell faces having small contravariant velocity or transonic contravariant velocity,the accurate derivative of the convective flux term is used to construct more accurate implicit system matrix,while the original Jacobian splitting method is adopted on the other cell faces to reduce computational complexity and ensure the diagonally dominant property of the implicit system matrix.To investigate the convergence performance of the improved LU-SGS scheme,2D and 3D turbulent flows around the NACA0012 airfoil,RAE2822 airfoil and LANN wing are simulated on hybrid unstructured meshes.The numerical results show that the improved LU-SGS scheme is significantly more efficient than the original LU-SGS scheme.
Real-time study of missiles and rockets simulation based on Runge-Kutta algorithm%基于RK算法的弹箭仿真实时研究
Institute of Scientific and Technical Information of China (English)
黄振全; 陈志武
2013-01-01
依据计算机实时仿真与非实时仿真的定义和区别,介绍了弹箭实时仿真系统的组成.在此基础上分析了弹箭实时仿真的实时性,特别是对基于RK算法的弹箭实时仿真算法的特点进行了探讨.最后通过对RTRK4算法的比较,得出了弹箭系统仿真中具有最大稳定域的RTRK4算法实时性最好的结论.
Non-diagonal four-dimensional cohomogeneity-one Einstein metrics in various signatures
Dunajski, Maciej
2016-01-01
Most known four-dimensional cohomogeneity-one Einstein metrics are diagonal in the basis defined by the left-invariant one-forms, though some essentially non-diagonal ones are known. We consider the problem of explicitly seeking non-diagonal Einstein metrics, and we find solutions which in some cases exhaust the possibilities. In particular we construct new examples of neutral signature non--diagonal Bianchi type VIII Einstein metrics with self--dual Weyl tensor.
Diagonal multi-soliton matrix elements in finite volume
Pálmai, T
2012-01-01
We consider diagonal matrix elements of local operators between multi-soliton states in finite volume in the sine-Gordon model, and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Tak\\'acs which were only valid for diagonal scattering. In order to test the conjecture we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.
Natures of Rotating Stall Cell in a Diagonal Flow Fan
Institute of Scientific and Technical Information of China (English)
N. SHIOMI; K. KANEKO; T. SETOGUCHI
2005-01-01
In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)"technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.
Block-bordered diagonalization and parallel iterative solvers
Energy Technology Data Exchange (ETDEWEB)
Alvarado, F.; Dag, H.; Bruggencate, M. ten [Univ. of Wisconsin, Madison, WI (United States)
1994-12-31
One of the most common techniques for enhancing parallelism in direct sparse matrix methods is the reorganization of a matrix into a blocked-bordered structure. Incomplete LDU factorization is a very good preconditioner for PCG in serial environments. However, the inherent sequential nature of the preconditioning step makes it less desirable in parallel environments. This paper explores the use of BBD (Blocked Bordered Diagonalization) in connection with ILU preconditioners. The paper shows that BBD-based ILU preconditioners are quite amenable to parallel processing. Neglecting entries from the entire border can result in a blocked diagonal matrix. The result is a great increase in parallelism at the expense of additional iterations. Experiments on the Sequent Symmetry shared memory machine using (mostly) power system that matrices indicate that the method is generally better than conventional ILU preconditioners and in many cases even better than partitioned inverse preconditioners, without the initial setup disadvantages of partitioned inverse preconditioners.
Off-diagonal Bethe ansatz for exactly solvable models
Wang, Yupeng; Cao, Junpeng; Shi, Kangjie
2015-01-01
This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
GEAR CRACK EARLY DIAGNOSIS USING BISPECTRUM DIAGONAL SLICE
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equations for computing bispectrum slices are obtained.To meet the needs of online monitoring, a simplified method of computing bispectrum diagonal slice is adopted.Industrial gearbox vibration signals measured from normal and tooth cracked conditions are analyzed using the above method.Experiments results indicate that bispectrum can effectively suppress the additive Gaussian noise and chracterize the QPC phenomenon.It is also shown that the 1-D bispectrum diagonal slice can capture the non-Gaussian and nonlinear feature of gearbox vibration when crack occurred, hence, this method can be employed to gearbox real time monitoring and early diagnosis.
Strong Linear Correlation Between Eigenvalues and Diagonal Matrix Elements
Shen, J J; Zhao, Y M; Yoshinaga, N
2008-01-01
We investigate eigenvalues of many-body systems interacting by two-body forces as well as those of random matrices. We find a strong linear correlation between eigenvalues and diagonal matrix elements if both of them are sorted from the smaller values to larger ones. By using this linear correlation we are able to predict reasonably all eigenvalues of given shell model Hamiltonian without complicated iterations.
Diagonalization and representation results for nonpositive sesquilinear form measures
Hytönen, Tuomas; Pellonpää, Juha-Pekka; Ylinen, Kari
2008-02-01
We study decompositions of operator measures and more general sesquilinear form measures E into linear combinations of positive parts, and their diagonal vector expansions. The underlying philosophy is to represent E as a trace class valued measure of bounded variation on a new Hilbert space related to E. The choice of the auxiliary Hilbert space fixes a unique decomposition with certain properties, but this choice itself is not canonical. We present relations to Naimark type dilations and direct integrals.
The Diagonal Compression Field Method using Circular Fans
DEFF Research Database (Denmark)
Hansen, Thomas
2005-01-01
This paper presents a new design method, which is a modification of the diagonal compression field method, the modification consisting of the introduction of circular fan stress fields. The traditional method does not allow changes of the concrete compression direction throughout a given beam...... fields may be used whenever changes in the concrete compression direction are desired. To illustrate the new design method, a specific example of a prestressed concrete beam is calculated....
A method of diagonalization for sfermion mass matrices
Aranda, Alfredo; Noriega-Papaqui, R
2009-01-01
We present a method of diagonalization for the sfermion mass matrices of the minimal supersymmetric standard model (MSSM). It provides analytical expressions for the masses and mixing angles of rather general hermitian sfermion mass matrices, and allows the study of scenarios that extend the usual constrained - MSSM. Three signature cases are presented explicitly and a general study of flavor changing neutral current processes is outlined in the discussion.
Efficient variational diagonalization of fully many-body localized Hamiltonians
Pollmann, Frank; Khemani, Vedika; Cirac, J. Ignacio; Sondhi, S. L.
2016-07-01
We introduce a variational unitary matrix product operator based variational method that approximately finds all the eigenstates of fully many-body localized one-dimensional Hamiltonians. The computational cost of the variational optimization scales linearly with system size for a fixed depth of the UTN ansatz. We demonstrate the usefulness of our approach by considering the Heisenberg chain in a strongly disordered magnetic field for which we compare the approximation to exact diagonalization results.
Quantum Diagonalization Method in the TAVIS-CUMMINGS Model
Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Suzuki, Tatsuo; Wada, Yukako
2005-06-01
To obtain the explicit form of evolution operator in the Tavis-Cummings model we must calculate the term ${e}^{-itg(S_{+}\\otimes a+S_{-}\\otimes a^{\\dagger})}$ explicitly which is very hard. In this paper we try to make the quantum matrix $A\\equiv S_{+}\\otimes a+S_{-}\\otimes a^{\\dagger}$ diagonal to calculate ${e}^{-itgA}$ and, moreover, to know a deep structure of the model. For the case of one, two and three atoms we give such a diagonalization which is first nontrivial examples as far as we know, and reproduce the calculations of ${e}^{-itgA}$ given in quant-ph/0404034. We also give a hint to an application to a noncommutative differential geometry. However, a quantum diagonalization is not unique and is affected by some ambiguity arising from the noncommutativity of operators in quantum physics. Our method may open a new point of view in Mathematical Physics or Quantum Physics.
Optimized Paraunitary Filter Banks for Time-Frequency Channel Diagonalization
Directory of Open Access Journals (Sweden)
Ju Ziyang
2010-01-01
Full Text Available We adopt the concept of channel diagonalization to time-frequency signal expansions obtained by DFT filter banks. As a generalization of the frequency domain channel representation used by conventional orthogonal frequency-division multiplexing receivers, the time-frequency domain channel diagonalization can be applied to time-variant channels and aperiodic signals. An inherent error in the case of doubly dispersive channels can be limited by choosing adequate windows underlying the filter banks. We derive a formula for the mean-squared sample error in the case of wide-sense stationary uncorrelated scattering (WSSUS channels, which serves as objective function in the window optimization. Furthermore, an enhanced scheme for the parameterization of tight Gabor frames enables us to constrain the window in order to define paraunitary filter banks. We show that the design of windows optimized for WSSUS channels with known statistical properties can be formulated as a convex optimization problem. The performance of the resulting windows is investigated under different channel conditions, for different oversampling factors, and compared against the performance of alternative windows. Finally, a generic matched filter receiver incorporating the proposed channel diagonalization is discussed which may be essential for future reconfigurable radio systems.
Optimized Paraunitary Filter Banks for Time-Frequency Channel Diagonalization
Ju, Ziyang; Hunziker, Thomas; Dahlhaus, Dirk
2010-12-01
We adopt the concept of channel diagonalization to time-frequency signal expansions obtained by DFT filter banks. As a generalization of the frequency domain channel representation used by conventional orthogonal frequency-division multiplexing receivers, the time-frequency domain channel diagonalization can be applied to time-variant channels and aperiodic signals. An inherent error in the case of doubly dispersive channels can be limited by choosing adequate windows underlying the filter banks. We derive a formula for the mean-squared sample error in the case of wide-sense stationary uncorrelated scattering (WSSUS) channels, which serves as objective function in the window optimization. Furthermore, an enhanced scheme for the parameterization of tight Gabor frames enables us to constrain the window in order to define paraunitary filter banks. We show that the design of windows optimized for WSSUS channels with known statistical properties can be formulated as a convex optimization problem. The performance of the resulting windows is investigated under different channel conditions, for different oversampling factors, and compared against the performance of alternative windows. Finally, a generic matched filter receiver incorporating the proposed channel diagonalization is discussed which may be essential for future reconfigurable radio systems.
UNDERSTANDING OF PROSPECTIVE MATHEMATICS TEACHERS OF THE CONCEPT OF DIAGONAL
Directory of Open Access Journals (Sweden)
Ülkü Ayvaz
2017-06-01
Full Text Available This study aims to investigate the concept images of prospective mathematics teachers about the concept of diagonal. With this aim, case study method was used in the study. The participants of the study were consisted of 7 prospective teachers educating at the Department of Mathematics Education. Criterion sampling method was used to select the participants and the criterion was determined as taking the course of geometry in the graduate program. Data was collected in two steps: a diagnostic test form about the definition and features of diagonal was applied to participants firstly and according to the answers of the participants to the diagnostic test form, semi-structured interviews were carried out. Data collected form the diagnostic test form and the semi-structured interviews were analyzed with descriptive analysis. According to the results of the study, it is understood that the prospective teachers had difficulties with the diagonals of parallelogram, rhombus and deltoid. Moreover, it is also seen that the prospective teachers were inadequate to support their ideas with further explanations although they could answer correctly. İt is thought that the inadequacy of the prospective teachers stems from the inadequacy related to proof.DOI: http://dx.doi.org/10.22342/jme.8.2.4102.165-184
Quantum Diagonalization Method in the Tavis-Cummings Model
Fujii, K; Kato, R; Suzuki, T; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Suzuki, Tatsuo; Wada, Yukako
2004-01-01
To obtain the explicit form of evolution operator in the Tavis-Cummings model we must calculate the term ${e}^{-itg(S_{+}\\otimes a+S_{-}\\otimes a^{\\dagger})}$ explicitly which is very hard. In this paper we try to make the quantum matrix $A\\equiv S_{+}\\otimes a+S_{-}\\otimes a^{\\dagger}$ diagonal to calculate ${e}^{-itgA}$ and, moreover, to know a deep structure of the model. For the case of one, two and three atoms we give such a diagonalization which is first nontrivial examples as far as we know, and reproduce the calculations of ${e}^{-itgA}$ given in quant-ph/0404034. We also give a hint to an application to a noncommutative differential geometry. However, a quantum diagonalization is not unique and is affected by some ambiguity arising from the noncommutativity of operators in quantum physics. Our method may open a new point of view in Mathematical Physics or Quantum Physics.
[Using the Implicit Association Test (IAT) to measure implicit shyness].
Aikawa, Atsushi; Fujii, Tsutomu
2011-04-01
Previous research has shown that implicitly measured shyness predicted spontaneous shy behavior in social situations, while explicit self-ratings of shyness predicted controlled shy behavior (Asendorpf, Banse, & Mücke, 2002). The present study examined whether these same results would be replicated in Japan. In Study 1, college students (N=47) completed a shyness Implicit Association Test (IAT for shyness) and explicit self-ratings of shyness. In Study 2, friends (N=69) of the Study 1 participants rated those participants on various personality scales. Covariance structure analysis, revealed that only implicit self-concept measured by the shyness IAT predicted other-rated high interpersonal tension (spontaneous shy behavior). Also, only explicit self-concept predicted other-rated low praise seeking (controlled shy behavior). The results of this study are similar to the findings of the previous research.
Rosta, Edina; Warshel, Arieh
2012-01-01
Understanding the relationship between the adiabatic free energy profiles of chemical reactions and the underlining diabatic states is central to the description of chemical reactivity. The diabatic states form the theoretical basis of Linear Free Energy Relationships (LFERs) and thus play a major role in physical organic chemistry and related fields. However, the theoretical justification for some of the implicit LFER assumptions has not been fully established by quantum mechanical studies. This study follows our earlier works(1,2) and uses the ab initio frozen density functional theory (FDFT) method(3) to evaluate both the diabatic and adiabatic free energy surfaces and to determine the corresponding off-diagonal coupling matrix elements for a series of S(N)2 reactions. It is found that the off-diagonal coupling matrix elements are almost the same regardless of the nucleophile and the leaving group but change upon changing the central group. Furthermore, it is also found that the off diagonal elements are basically the same in gas phase and in solution, even when the solvent is explicitly included in the ab initio calculations. Furthermore, our study establishes that the FDFT diabatic profiles are parabolic to a good approximation thus providing a first principle support to the origin of LFER. These findings further support the basic approximation of the EVB treatment.
Hermite variational implicit surface reconstruction
Institute of Scientific and Technical Information of China (English)
PAN RongJiang; MENG XiangXu; WHANGBO TaegKeun
2009-01-01
We propose a new technique for reconstructing surfaces from a large set of unorganized 3D data points and their associated normal vectors. The surface is represented as the zero level set of an implicit vol-ume model which fits the data points and normal constraints. Compared with variational implicit sur-faces, we make use of surface normal vectors at data points directly in the implicit model and avoid of introducing manufactured off-surface points. Given n surface point/normal pairs, the proposed method only needs to solve an n×n positive definite linear system. It allows fitting large datasets effectively and robustly. We demonstrate the performance of the proposed method with both globally supported and compactly supported radial basis functions on several datasets.
Implicit normativity in scientific advice
DEFF Research Database (Denmark)
Folker, Anna Paldam; Andersen, Hanne; Sandøe, Peter
2008-01-01
This paper focuses on implicit normative considerations underlying scientific advice-those normative questions, decisions, or issues that scientific advisers and the general public are not fully aware of but that nevertheless have implications for the character of the advice given. Using nutritio......This paper focuses on implicit normative considerations underlying scientific advice-those normative questions, decisions, or issues that scientific advisers and the general public are not fully aware of but that nevertheless have implications for the character of the advice given. Using...... nutritional science as an example, we identify three such implicit normative issues. The first concerns the aim of scientific advice: whether it is about avoiding harm or promoting good. The second concerns the intended beneficiaries of the advice: whether advice should be framed to benefit the society...... of these issues among scientific advisers and a wider public....
Can implicit motivation be measured?
DEFF Research Database (Denmark)
Kraus, Alexandra; Scholderer, Joachim
such promising conceptual frameworks within consumer research would not only be helpful for understanding human appetite but also has implications for predicting consumer behaviour. Since the affective liking system has strong similarities to contemporary attitude theories, implicit and explicit measures...... of evaluation could be applied. However, no comparable procedures have been developed for the motivational wanting component; generally accepted “low-tech” measures are therefore still lacking! Thus, the aim of this study was to develop and test implicit measures of wanting that can be used as dependent...... variables in consumer and sensory research. Modified versions of three IAT paradigms were developed, including the conventional implicit association test (IAT) and two recent modifications, the single-block IAT (SB-IAT) and the recoding-free IAT (IAT-RF). All three tests were designed to measure...
Discretization and implicit mapping dynamics
Luo, Albert C J
2015-01-01
This unique book presents the discretization of continuous systems and implicit mapping dynamics of periodic motions to chaos in continuous nonlinear systems. The stability and bifurcation theory of fixed points in discrete nonlinear dynamical systems is reviewed, and the explicit and implicit maps of continuous dynamical systems are developed through the single-step and multi-step discretizations. The implicit dynamics of period-m solutions in discrete nonlinear systems are discussed. The book also offers a generalized approach to finding analytical and numerical solutions of stable and unstable periodic flows to chaos in nonlinear systems with/without time-delay. The bifurcation trees of periodic motions to chaos in the Duffing oscillator are shown as a sample problem, while the discrete Fourier series of periodic motions and chaos are also presented. The book offers a valuable resource for university students, professors, researchers and engineers in the fields of applied mathematics, physics, mechanics,...
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Implicit normativity in scientific advice
DEFF Research Database (Denmark)
Folker, Anna Paldam; Andersen, Hanne; Sandøe, Peter
2008-01-01
This paper focuses on implicit normative considerations underlying scientific advice-those normative questions, decisions, or issues that scientific advisers and the general public are not fully aware of but that nevertheless have implications for the character of the advice given. Using...... of these issues among scientific advisers and a wider public....... nutritional science as an example, we identify three such implicit normative issues. The first concerns the aim of scientific advice: whether it is about avoiding harm or promoting good. The second concerns the intended beneficiaries of the advice: whether advice should be framed to benefit the society...
Diagonal queue medical image steganography with Rabin cryptosystem.
Jain, Mamta; Lenka, Saroj Kumar
2016-03-01
The main purpose of this work is to provide a novel and efficient method to the image steganography area of research in the field of biomedical, so that the security can be given to the very precious and confidential sensitive data of the patient and at the same time with the implication of the highly reliable algorithms will explode the high security to the precious brain information from the intruders. The patient information such as patient medical records with personal identification information of patients can be stored in both storage and transmission. This paper describes a novel methodology for hiding medical records like HIV reports, baby girl fetus, and patient's identity information inside their Brain disease medical image files viz. scan image or MRI image using the notion of obscurity with respect to a diagonal queue least significant bit substitution. Data structure queue plays a dynamic role in resource sharing between multiple communication parties and when secret medical data are transferred asynchronously (secret medical data not necessarily received at the same rate they were sent). Rabin cryptosystem is used for secret medical data writing, since it is computationally secure against a chosen-plaintext attack and shows the difficulty of integer factoring. The outcome of the cryptosystem is organized in various blocks and equally distributed sub-blocks. In steganography process, various Brain disease cover images are organized into various blocks of diagonal queues. The secret cipher blocks and sub-blocks are assigned dynamically to selected diagonal queues for embedding. The receiver gets four values of medical data plaintext corresponding to one ciphertext, so only authorized receiver can identify the correct medical data. Performance analysis was conducted using MSE, PSNR, maximum embedding capacity as well as by histogram analysis between various Brain disease stego and cover images.
Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin; /SLAC; Auerbach, Assa; /Stanford U., Phys. Dept. /Technion; Chandra, V.Ravi; /Technion
2011-11-04
We present a modified Lanczos algorithm to diagonalize lattice Hamiltonians with dramatically reduced memory requirements. The lattice of size N is partitioned into two subclusters. At each iteration the Lanczos vector is projected into a set of n{sub svd} smaller subcluster vectors using singular value decomposition. For low entanglement entropy S{sub ee}, (satisfied by short range Hamiltonians), we expect the truncation error to vanish as exp(-n{sup 1/S{sub ee}}{sub svd}). Convergence is tested for the Heisenberg model on Kagome clusters of up to 36 sites, with no symmetries exploited, using less than 15GB of memory. Generalization to multiple partitioning is discussed.
Exact diagonalization: the Bose-Hubbard model as an example
Zhang, J. M.; Dong, R. X.
2010-05-01
We take the Bose-Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.
Performance Theory of Diagonal Conducting Wall MHD Accelerators
Litchford, R. J.
2003-01-01
The theoretical performance of diagonal conducting wall crossed field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm's law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm's law by imposing appropriate configuration and loading constraints. A current dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities lead to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed field accelerator operation.
Experimental Investigation of Stator Flow in Diagonal Flow Fan
Institute of Scientific and Technical Information of China (English)
Jie Wang; Yoichi Kinoue; Norimasa Shiomi; Toshiaki Setoguchi; Kenji Kaneko; Yingzi Jin
2008-01-01
perimental investigations were conducted for the internal flow of the stator of the diagonal flow fan. Comer separation near the hub surface and the suction surface of the stator blade are focused on. At the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease near the suction surface at around the hub surface by the influence of the comer wall. At low flow rate of 80-90 % of the design flow rate, the comer separation between the suction surface and the hub surface can be found, which become widely spread at 80 % of the design flow rate.
Experimental investigation of stator flow in diagonal flow fan
Wang, Jie; Kinoue, Yoichi; Shiomi, Norimasa; Setoguchi, Toshiaki; Kaneko, Kenji; Jin, Yingzi
2008-12-01
Experimental investigations were conducted for the internal flow of the stator of the diagonal flow fan. Corner separation near the hub surface and the suction surface of the stator blade are focused on. At the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease near the suction surface at around the hub surface by the influence of the corner wall. At low flow rate of 80-90 % of the design flow rate, the corner separation between the suction surface and the hub surface can be found, which become widely spread at 80 % of the design flow rate.
Thermodynamics of Rh nuclear spins calculated by exact diagonalization
DEFF Research Database (Denmark)
Lefmann, K.; Ipsen, J.; Rasmussen, F.B.
2000-01-01
We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positive...... and negative temperatures follow the second-order high-temperature series expansions for \\T\\ > 3 nK. Our findings do not agree with the measurements of the former Rh experiment in Helsinki, where a deviation is seen at much higher temperatures. (C) 2000 Elsevier Science B.V. All rights reserved....
Diagonal Cracking and Shear Strength of Reinforced Concrete Beams
DEFF Research Database (Denmark)
Zhang, Jin-Ping
1997-01-01
found by the usual plastic theory, a physical explanation is given for this phenomenon and a way to estimate the shear capacity of reinforced concrete beams, based on the theory of plasticity, is described. The theoretical calculations are shown to be in fairly good agreement with test results from......The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...
Implicit memory in music and language
National Research Council Canada - National Science Library
Ettlinger, Marc; Margulis, Elizabeth H; Wong, Patrick C M
2011-01-01
.... In this paper, we review independent bodies of work in music and language that suggest an important role for implicitly acquired knowledge, implicit memory, and their associated neural structures...
Hybrid contractions with implicit relations
Directory of Open Access Journals (Sweden)
U. C. Gairola
2015-01-01
Full Text Available In this paper, we prove the existence of fixed points for two set-valued mappings and two single-valued mappings satisfying generalized contractive conditions by using the concept of weakly compatible mappings with control functions and implicit relations in complete metric spaces. Our results extend and generalize the corresponding result in Mehta and Joshi [21].
Can implicit motivation be measured?
DEFF Research Database (Denmark)
Kraus, Alexandra; Scholderer, Joachim
of evaluation could be applied. However, no comparable procedures have been developed for the motivational wanting component; generally accepted “low-tech” measures are therefore still lacking! Thus, the aim of this study was to develop and test implicit measures of wanting that can be used as dependent...
Ego depletion impairs implicit learning.
Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J
2014-01-01
Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.
Implicit Learning of Nonlocal Musical Rules: Implicitly Learning More Than Chunks
Kuhn, Gustav; Dienes, Zoltan
2005-01-01
Dominant theories of implicit learning assume that implicit learning merely involves the learning of chunks of adjacent elements in a sequence. In the experiments presented here, participants implicitly learned a nonlocal rule, thus suggesting that implicit learning can go beyond the learning of chunks. Participants were exposed to a set of…
On the performance of diagonal lattice space-time codes
Abediseid, Walid
2013-11-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.
Alcohol dimers--how much diagonal OH anharmonicity?
Kollipost, Franz; Papendorf, Kim; Lee, Yu-Fang; Lee, Yuan-Pern; Suhm, Martin A
2014-08-14
The OH bond of methanol, ethanol and t-butyl alcohol becomes more anharmonic upon hydrogen bonding and the infrared intensity ratio between the overtone and the fundamental transition of the bridging OH stretching mode decreases drastically. FTIR spectroscopy of supersonic slit jet expansions allows to quantify these effects for isolated alcohol dimers, enabling a direct comparison to anharmonic vibrational predictions. The diagonal anharmonicity increase amounts to 15-18%, growing with increasing alkyl substitution. The overtone/fundamental IR intensity ratio, which is on the order of 0.1 or more for isolated alcohols, drops to 0.004-0.001 in the hydrogen-bonded OH group, making overtone detection very challenging. Again, alkyl substitution enhances the intensity suppression. Vibrational second order perturbation theory appears to capture these effects in a semiquantitative way. Harmonic quantum chemistry predictions for the hydrogen bond-induced OH stretching frequency shift (the widely used infrared signature of hydrogen bonding) are insufficient, and diagonal anharmonicity corrections from experiment make the agreement between theory and experiment worse. Inclusion of anharmonic cross terms between hydrogen bond modes and the OH stretching mode is thus essential, as is a high level electronic structure theory. The isolated molecule results are compared to matrix isolation data, complementing earlier studies in N2 and Ar by the more weakly interacting Ne and p-H2 matrices. Matrix effects on the hydrogen bond donor vibration are quantified.
The "diagonal effect": a systematic error in oblique antisaccades.
Koehn, John D; Roy, Elizabeth; Barton, Jason J S
2008-08-01
Antisaccades are known to show greater variable error and also a systematic hypometria in their amplitude compared with visually guided prosaccades. In this study, we examined whether their accuracy in direction (as opposed to amplitude) also showed a systematic error. We had human subjects perform prosaccades and antisaccades to goals located at a variety of polar angles. In the first experiment, subjects made prosaccades or antisaccades to one of eight equidistant locations in each block, whereas in the second, they made saccades to one of two equidistant locations per block. In the third, they made antisaccades to one of two locations at different distances but with the same polar angle in each block. Regardless of block design, the results consistently showed a saccadic systematic error, in that oblique antisaccades (but not prosaccades) requiring unequal vertical and horizontal vector components were deviated toward the 45 degrees diagonal meridians. This finding could not be attributed to range effects in either Cartesian or polar coordinates. A perceptual origin of the diagonal effect is suggested by similar systematic errors in other studies of memory-guided manual reaching or perceptual estimation of direction, and may indicate a common spatial bias when there is uncertain information about spatial location.
Natural Diagonal Riemannian Almost Product and Para-Hermitian Cotangent Bundles
Druta-Romaniuc, Simona-Luiza
2011-01-01
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. We find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. We prove the characterization theorem for the natural diagonal (almost) para-K\\"ahlerian structures on the total spaces of the cotangent bundle.
Directory of Open Access Journals (Sweden)
Xiaotian Xu
2015-09-01
Full Text Available The small polaron, a one-dimensional lattice model of interacting spinless fermions, with generic non-diagonal boundary terms is studied by the off-diagonal Bethe ansatz method. The presence of the Grassmann valued non-diagonal boundary fields gives rise to a typical U(1-symmetry-broken fermionic model. The exact spectra of the Hamiltonian and the associated Bethe ansatz equations are derived by constructing an inhomogeneous T–Q relation.
Diagonal complexes and the integral homology of the automorphism group of a free product
Griffin, James
2010-01-01
We calculate the integral (co)homology of the group of symmetric automorphisms of a free product. We proceed by constructing a moduli space of cactus products and to describe this space a theory of diagonal complexes is introduced. In doing so we offer a generalisation of the theory of right-angled Artin groups in that each diagonal complex defines what we call a diagonal right-angled Artin group (DRAAG).
Revealing children's implicit spelling representations.
Critten, Sarah; Pine, Karen J; Messer, David J
2013-06-01
Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned by increasingly explicit levels of spelling representation. However, their proposal that implicit representations may underlie early 'visually based' spelling remains unresolved. Children (N = 101, aged 4-6 years) were given a recognition task (Critten et al., 2007) and a novel production task, both involving verbal justifications of why spellings are correct/incorrect, strategy use and word pattern similarity. Results for both tasks supported an implicit level of spelling characterized by the ability to correctly recognize/produce words but the inability to explain operational strategies or generalize knowledge. Explicit levels and multiple representations were also in evidence across the two tasks. Implications for cognitive mechanisms underlying spelling development are discussed.
Ha, Sanghyun; You, Donghyun
2015-11-01
Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of both incompressible and compressible Navier-Stokes equations. A semi-implicit ADI finite-volume method for integration of the incompressible and compressible Navier-Stokes equations, which are discretized on a structured arbitrary grid, is parallelized for GPU computations using CUDA (Compute Unified Device Architecture). In the semi-implicit ADI finite-volume method, the nonlinear convection terms and the linear diffusion terms are integrated in time using a combination of an explicit scheme and an ADI scheme. Inversion of multiple tri-diagonal matrices is found to be the major challenge in GPU computations of the present method. Some of the algorithms for solving tri-diagonal matrices on GPUs are evaluated and optimized for GPU-acceleration of the present semi-implicit ADI computations of incompressible and compressible Navier-Stokes equations. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning Grant NRF-2014R1A2A1A11049599.
Securities regulation and implicit penalties
Institute of Scientific and Technical Information of China (English)
Donghua; Chen; Yuyan; Guan; Gang; Zhao; Feifei; Wu
2011-01-01
The extant literature offers extensive support for the significant role played by institutions in financial markets,but implicit regulation and monitoring have yet to be examined.This study fills this void in the literature by employing unique Chinese datasets to explore the implicit regulation and penalties imposed by the Chinese government in regulating the initial public offering(IPO) market.Of particular interest are the economic consequences of underwriting IPO deals for client firms that violate regulatory rules in China’s capital market.We provide evidence to show that the associated underwriters’ reputations are impaired and their market share declines.We further explore whether such negative consequences result from a market disciplinary mechanism or a penalty imposed by the government.To analyze the possibility of a market disciplinary mechanism at work,we investigate(1) the market reaction to other client firms whose IPO deals were underwritten by underwriters associated with a violation at the time the violation was publicly disclosed and(2) the under-pricing of IPO deals undertaken by these underwriters after such disclosure.To analyze whether the government imposes an implicit penalty,we examine the application processing time for future IPO deals underwritten by the associated underwriters and find it to be significantly longer than for IPO deals underwritten by other underwriters.Overall,there is little evidence to suggest that the market penalizes underwriters for the rule-violating behavior of their client firms in China.Instead,the Chinese government implicitly penalizes them by imposing more stringent criteria on and lengthening the processing time of the IPO deals they subsequently underwrite.
Securities regulation and implicit penalties
Directory of Open Access Journals (Sweden)
Donghua Chen
2011-06-01
Full Text Available The extant literature offers extensive support for the significant role played by institutions in financial markets, but implicit regulation and monitoring have yet to be examined. This study fills this void in the literature by employing unique Chinese datasets to explore the implicit regulation and penalties imposed by the Chinese government in regulating the initial public offering (IPO market. Of particular interest are the economic consequences of underwriting IPO deals for client firms that violate regulatory rules in China’s capital market. We provide evidence to show that the associated underwriters’ reputations are impaired and their market share declines. We further explore whether such negative consequences result from a market disciplinary mechanism or a penalty imposed by the government. To analyze the possibility of a market disciplinary mechanism at work, we investigate (1 the market reaction to other client firms whose IPO deals were underwritten by underwriters associated with a violation at the time the violation was publicly disclosed and (2 the under-pricing of IPO deals undertaken by these underwriters after such disclosure. To analyze whether the government imposes an implicit penalty, we examine the application processing time for future IPO deals underwritten by the associated underwriters and find it to be significantly longer than for IPO deals underwritten by other underwriters. Overall, there is little evidence to suggest that the market penalizes underwriters for the rule-violating behavior of their client firms in China. Instead, the Chinese government implicitly penalizes them by imposing more stringent criteria on and lengthening the processing time of the IPO deals they subsequently underwrite.
The Diagonal Compression Field Method using Circular Fans
DEFF Research Database (Denmark)
Hansen, Thomas
2006-01-01
In a concrete beam with transverse stirrups the shear forces are carried by inclined compression in the concrete. Along the tensile zone and the compression zone of the beam the transverse components of the inclined compressions are transferred to the stirrups, which are thus subjected to tension....... Since the eighties the diagonal compression field method has been used to design transverse shear reinforcement in concrete beams. The method is based on the lower-bound theorem of the theory of plasticity, and it has been adopted in Eurocode 2. The paper presents a new design method, which...... with low shear stresses. The larger inclination (the smaller -value) of the uniaxial concrete stress the more transverse shear reinforcement is needed; hence it would be optimal if the -value for a given beam could be set to a low value in regions with high shear stresses and thereafter increased...
Cold bosons in optical lattices: a tutorial for exact diagonalization
Raventós, David; Graß, Tobias; Lewenstein, Maciej; Juliá-Díaz, Bruno
2017-06-01
Exact diagonalization (ED) techniques are a powerful method for studying many-body problems. Here, we apply this method to systems of few bosons in an optical lattice, and use it to demonstrate the emergence of interesting quantum phenomena such as fragmentation and coherence. Starting with a standard Bose-Hubbard Hamiltonian, we first revise the characterisation of the superfluid to Mott insulator (MI) transitions. We then consider an inhomogeneous lattice, where one potential minimum is made much deeper than the others. The MI phase due to repulsive on-site interactions then competes with the trapping of all atoms in the deep potential. Finally, we turn our attention to attractively interacting systems, and discuss the appearance of strongly correlated phases and the onset of localisation for a slightly biased lattice. The article is intended to serve as a tutorial for ED of Bose-Hubbard models.
Non-Diagonal and Mixed Squark Production at Hadron Colliders
Bozzi, G; Klasen, M
2005-01-01
We calculate squared helicity amplitudes for non-diagonal and mixed squark pair production at hadron colliders, taking into account not only loop-induced QCD diagrams, but also previously unconsidered electroweak channels, which turn out to be dominant. Mixing effects are included for both top and bottom squarks. Numerical results are presented for several SUSY benchmark scenarios at both the CERN LHC and the Fermilab Tevatron, including the possibilities of light stops or sbottoms. The latter should be easily observed at the Tevatron in associated production of stops and sbottoms for a large range of stop masses and almost independently of the stop mixing angle. Asymmetry measurements for light stops at the polarized BNL RHIC collider are also briefly discussed.
Exact Diagonalization of Heisenberg SU(N) models.
Nataf, Pierre; Mila, Frédéric
2014-09-19
Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labeled by the set of standard Young tableaux in which the matrix of the Heisenberg SU(N) model (the quantum permutation of N-color objects) takes an explicit and extremely simple form. Since the relative dimension of the full Hilbert space to that of the singlet space on n sites increases very fast with N, this formulation allows us to extend exact diagonalizations of finite clusters to much larger values of N than accessible so far. Using this method, we show that, on the square lattice, there is long-range color order for SU(5), spontaneous dimerization for SU(8), and evidence in favor of a quantum liquid for SU(10).
Eye movements during mental time travel follow a diagonal line.
Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt
2014-11-01
Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel.
Performance Theory of Diagonal Conducting Wall Magnetohydrodynamic Accelerators
Litchford, R. J.
2004-01-01
The theoretical performance of diagonal conducting wall crossed-field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm s law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm s law by imposing appropriate configuration and loading constraints. A current-dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects, including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities leads to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed-field accelerator operation.
Quantum transport in chains with noisy off-diagonal couplings.
Pereverzev, Andrey; Bittner, Eric R
2005-12-22
We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the time evolution of the system reduces to the [Lindblad, Commun. Math. Phys. 48, 119 (1976)] equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfies discrete versions of the heat and diffusion equations. Transport coefficients are given in terms of model Hamiltonian parameters. We discuss conditions on the Hamiltonian under which the noise-averaged expectation value of the total energy remains constant. For chains placed between two heat reservoirs, the gradient of the energy density along the chain is linear.
An Off Diagonal Marcinkiewicz Interpolation Theorem on Lorentz Spaces
Institute of Scientific and Technical Information of China (English)
Yi Yu LIANG; Li Guang LIU; Da Chun YANG
2011-01-01
Let(X,μ)be a measure space.In this paper,using some ideas from Grafakos and Kalton,the authors establish an of diagonal Marcinkiewicz interpolation theorem for a quasilinear operator T in Lorentz spaces Lp,q(X)with p,q∈(0,∞],which is a corrected version of Theorem 1.4.19 in[Grafakos,L.:Classical Fourier Analysis,Second Edition,Graduate Texts in Math.,No.249,Springer,New York,2008]and which,in the case that T is linear or nonnegative sublineaa,P∈[1,∞)and q∈[1,∞),was obtained by Stein and Weiss [Introduction to Fourier Analysis on Euclidean Spaces,Princeton University Press,Princeton,N.J.,1971].
Efficient numerical diagonalization of hermitian 3x3 matrices
Kopp, J
2006-01-01
A very common problem in science is the numerical diagonalization of symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be very inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with a new, carefully designed analytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. This analytical algorithm outperforms the other algorithms by more than a factor of 2, but may be less accurate if the eigenvalues differ greatly in magnitude. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from http://www.mpi-hd.mpg.de/~jkopp/3x3/ .
Diagonalization of the XXZ Hamiltonian by Vertex Operators
Davies, B; Jimbo, M; Miwa, T; Nakayashiki, A; Davies, Brian; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Nakayashiki, Atsushi
1993-01-01
We diagonalize the anti-ferroelectric XXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of affine U_q( sl(2) ). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit --- the $su(2)$-invariant Thirring model.
Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)
2013-08-15
This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.
Vibratory gyroscopes : identification of mathematical model from test data
CSIR Research Space (South Africa)
Shatalov, MY
2007-05-01
Full Text Available by an adaptive Runge-Kutta method with the same initial conditions as from the test data. Results of comparison of the test data and results of numerical integration of equations (6) are shown in Fig.3-6. Fig. 3. Runge-Kutta and test data of in-phase X...-channel components (---- - Runge-Kutta integration; - - - - test data) Fig. 4. Runge-Kutta and test data of quadrature X-channel components (---- - Runge-Kutta integration; - - - - test data) Fig. 5. Runge-Kutta and test data of in-phase Y...
On the diagonal susceptibility of the two-dimensional Ising model
Energy Technology Data Exchange (ETDEWEB)
Tracy, Craig A. [Department of Mathematics, University of California, Davis, California 95616 (United States); Widom, Harold [Department of Mathematics, University of California, Santa Cruz, California 95064 (United States)
2013-12-15
We consider the diagonal susceptibility of the isotropic 2D Ising model for temperatures below the critical temperature. For a parameter k related to temperature and the interaction constant, we extend the diagonal susceptibility to complex k inside the unit disc, and prove the conjecture that the unit circle is a natural boundary.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T-Q relation and the Bethe ansatz equations are derived.
Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions
Cao, Junpeng; Shi, Kangjie; Wang, Yupeng
2013-01-01
With the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the $XXX$ spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated $T-Q$ relation and the Bethe ansatz equations are derived.
Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries
Gombor, Tamas
2015-01-01
The finite volume problem of O(2N) sigma models with integrable diagonal boundaries on a finite interval is investigated. The double row transfer matrix is diagonalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle rapidities and the accompanying Bethe Ansatz equations are derived.
Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries
Energy Technology Data Exchange (ETDEWEB)
Gombor, Tamás [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Institute for Theoretical Physics, Roland Eötvös University,1117 Budapest, Pázmány s. 1/A (Hungary); Palla, László [Institute for Theoretical Physics, Roland Eötvös University,1117 Budapest, Pázmány s. 1/A (Hungary)
2016-02-24
The finite volume problem of O(2N) sigma models with integrable diagonal boundaries on a finite interval is investigated. The double row transfer matrix is diagonalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle rapidities and the accompanying Bethe Ansatz equations are derived.
Implicit Social Biases in People With Autism.
Birmingham, Elina; Stanley, Damian; Nair, Remya; Adolphs, Ralph
2015-11-01
Implicit social biases are ubiquitous and are known to influence social behavior. A core diagnostic criterion of autism spectrum disorders (ASD) is abnormal social behavior. We investigated the extent to which individuals with ASD might show a specific attenuation of implicit social biases, using Implicit Association Tests (IATs) involving social (gender, race) and nonsocial (nature, shoes) categories. High-functioning adults with ASD showed intact but reduced IAT effects relative to healthy control participants. We observed no selective attenuation of implicit social (vs. nonsocial) biases in our ASD population. To extend these results, we supplemented our healthy control data with data collected from a large online sample from the general population and explored correlations between autistic traits and IAT effects. We observed no systematic relationship between autistic traits and implicit social biases in our online and control samples. Taken together, these results suggest that implicit social biases, as measured by the IAT, are largely intact in ASD.
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
Implicit Social Biases in People With Autism
2015-01-01
Implicit social biases are ubiquitous and are known to influence social behavior. A core diagnostic criterion of autism spectrum disorders (ASD) is abnormal social behavior. We investigated the extent to which individuals with ASD might show a specific attenuation of implicit social biases, using Implicit Association Tests (IATs) involving social (gender, race) and nonsocial (nature, shoes) categories. High-functioning adults with ASD showed intact but reduced IAT effects relative to healthy ...
An implicit Smooth Particle Hydrodynamic code
Energy Technology Data Exchange (ETDEWEB)
Knapp, Charles E. [Univ. of New Mexico, Albuquerque, NM (United States)
2000-05-01
An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.
Implicit and explicit processes in social cognition
DEFF Research Database (Denmark)
Frith, Christopher; Frith, Uta
2008-01-01
are automatic and are often opposed to conscious strategies. While we are aware of explicit processes in social interaction, we cannot always use them to override implicit processes. Many studies show that implicit processes facilitate the sharing of knowledge, feelings, and actions, and hence, perhaps......In this review we consider research on social cognition in which implicit processes can be compared and contrasted with explicit, conscious processes. In each case, their function is distinct, sometimes complementary and sometimes oppositional. We argue that implicit processes in social interaction...
Using Implicit Measures to Highlight Science Teachers' Implicit Theories of Intelligence
Mascret, Nicolas; Roussel, Peggy; Cury, François
2015-01-01
Using an innovative method, a Single-Target Implicit Association Test (ST-IAT) was created to explore the implicit theories of intelligence among science and liberal arts teachers and their relationships with their gender. The results showed that for science teachers--especially for male teachers--there was a negative implicit association between…
Using Implicit Measures to Highlight Science Teachers' Implicit Theories of Intelligence
Mascret, Nicolas; Roussel, Peggy; Cury, François
2015-01-01
Using an innovative method, a Single-Target Implicit Association Test (ST-IAT) was created to explore the implicit theories of intelligence among science and liberal arts teachers and their relationships with their gender. The results showed that for science teachers--especially for male teachers--there was a negative implicit association between…
O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A
2016-02-01
How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record
[Improvement of child survival in Mexico: the diagonal approach].
Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Olaiz, Gustavo; Partida, Virgilio; García-García, Ma de Lourdes; Valdespino, José Luis
2007-01-01
Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.
Improvement of child survival in Mexico: the diagonal approach.
Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Oláiz, Gustavo; Partida, Virgilio; García-García, Lourdes; Valdespino, José Luis
2006-12-01
Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.
On the Gravitational Energy Associated with Spacetimes of Diagonal Metric
Korunur, M; Salti, M; Korunur, Murat; Havare, Ali; Salti, Mustafa
2006-01-01
In order to evaluate the energy distribution (due to matter and fields including gravitation) associated with a spacetime model of generalized diagonal metric, we consider the Einstein, Bergmann-Thomson and Landau-Lifshitz energy and/or momentum definitions both in Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation). We find the same energy distribution using Einstein and Bergmann-Thomson formulations, but we also find that the energy-momentum prescription of Landau-Lifshitz disagree in general with these definitions. We also give eight different well-known spacetime models as examples, and considering these models and using our results, we calculate the energy distributions associated with them. Furthermore, we show that for the Bianci type-I all the formulations give the same result. This result agrees with the previous works of Cooperstock-Israelit, Rosen, Johri {\\it et al.}, Banerjee-Sen, Xulu, Vargas and Salt{\\i} {\\it et al.} and supports the viewpoints...
Efficient Numerical Diagonalization of Hermitian 3 × 3 Matrices
Kopp, Joachim
A very common problem in science is the numerical diagonalization of symmetric or hermitian 3 × 3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an alytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from .
Parallel explicit and implicit control of reaching.
Directory of Open Access Journals (Sweden)
Pietro Mazzoni
Full Text Available BACKGROUND: Human movement can be guided automatically (implicit control or attentively (explicit control. Explicit control may be engaged when learning a new movement, while implicit control enables simultaneous execution of multiple actions. Explicit and implicit control can often be assigned arbitrarily: we can simultaneously drive a car and tune the radio, seamlessly allocating implicit or explicit control to either action. This flexibility suggests that sensorimotor signals, including those that encode spatially overlapping perception and behavior, can be accurately segregated to explicit and implicit control processes. METHODOLOGY/PRINCIPAL FINDINGS: We tested human subjects' ability to segregate sensorimotor signals to parallel control processes by requiring dual (explicit and implicit control of the same reaching movement and testing for interference between these processes. Healthy control subjects were able to engage dual explicit and implicit motor control without degradation of performance compared to explicit or implicit control alone. We then asked whether segregation of explicit and implicit motor control can be selectively disrupted by studying dual-control performance in subjects with no clinically manifest neurologic deficits in the presymptomatic stage of Huntington's disease (HD. These subjects performed successfully under either explicit or implicit control alone, but were impaired in the dual-control condition. CONCLUSION/SIGNIFICANCE: The human nervous system can exert dual control on a single action, and is therefore able to accurately segregate sensorimotor signals to explicit and implicit control. The impairment observed in the presymptomatic stage of HD points to a possible crucial contribution of the striatum to the segregation of sensorimotor signals to multiple control processes.
Sub-Ohmic spin-boson model with off-diagonal coupling: ground state properties.
Lü, Zhiguo; Duan, Liwei; Li, Xin; Shenai, Prathamesh M; Zhao, Yang
2013-10-28
We have carried out analytical and numerical studies of the spin-boson model in the sub-ohmic regime with the influence of both the diagonal and the off-diagonal coupling accounted for, via the Davydov D1 variational ansatz. While a second-order phase transition is known to be exhibited by this model in the presence of diagonal coupling only, we demonstrate the emergence of a discontinuous first order phase transition upon incorporation of the off-diagonal coupling. A plot of the ground state energy versus magnetization highlights the discontinuous nature of the transition between the isotropic (zero magnetization) state and nematic (finite magnetization) phases. We have also calculated the entanglement entropy and a discontinuity found at a critical coupling strength further supports the discontinuous crossover in the spin-boson model in the presence of off-diagonal coupling. It is further revealed via a canonical transformation approach that for the special case of identical exponents for the spectral densities of the diagonal and the off-diagonal coupling, there exists a continuous crossover from a single localized phase to doubly degenerate localized phase with differing magnetizations.
Implicit and Explicit Instruction of Spelling Rules
Kemper, M. J.; Verhoeven, L.; Bosman, A. M. T.
2012-01-01
The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-intervention-posttest control group design. Experiment 1…
Implicit and explicit instruction of spelling rules
Kemper, M.J.; Verhoeven, L.T.W.; Bosman, A.M.T.
2012-01-01
The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-interventio
Implicit and Explicit Exercise and Sedentary Identity
Berry, Tanya R.; Strachan, Shaelyn M.
2012-01-01
We examined the relationship between implicit and explicit "exerciser" and "sedentary" self-identity when activated by stereotypes. Undergraduate participants (N = 141) wrote essays about university students who either liked to exercise or engage in sedentary activities. This was followed by an implicit identity task and an explicit measure of…
On generic representation of implicit induction procedures
Naidich, D.
1996-01-01
We develop a generic representation of implicit induction proof procedures within the cover set induction framework. Our work further develops the approach of cover set induction on propositional orderings. We show that in order to represent a substantially wide range of implicit induction procedure
Finger Search in the Implicit Model
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Nielsen, Jesper Asbjørn Sindahl; Truelsen, Jakob
2012-01-01
We address the problem of creating a dictionary with the finger search property in the strict implicit model, where no information is stored between operations, except the array of elements. We show that for any implicit dictionary supporting finger searches in q(t) = Ω(logt) time, the time to mo...... returned by the last query...
Understanding Implicit Bias: What Educators Should Know
Staats, Cheryl
2016-01-01
The desire to ensure the best for children is precisely why educators should become aware of the concept of implicit bias: the attitudes or stereotypes that affect our understanding, actions, and decisions in an unconscious manner. Operating outside of our conscious awareness, implicit biases are pervasive, and they can challenge even the most…
Why Explicit Knowledge Cannot Become Implicit Knowledge
VanPatten, Bill
2016-01-01
In this essay, I review one of the conclusions in Lindseth (2016) published in "Foreign Language Annals." That conclusion suggests that explicit learning and practice (what she called form-focused instruction) somehow help the development of implicit knowledge (or might even become implicit knowledge). I argue for a different…
Implicit and explicit features of paintings.
Marković, Slobodan; Radonjić, Ana
2008-01-01
Implicit features of the paintings are properties that are imposed by the observer (e.g. how pleasant, interesting, tense a painting appears), whereas explicit features refer to properties that can be directly perceived (form, color, depth, etc.). The aim of Experiments 1 and 2 was to investigate the underlying structure of implicit and explicit features of paintings using the factor analysis of elementary judgments. In the preliminary studies, representative sets of paintings and elementary implicit and explicit dimensions (in the form of bipolar scales) were selected. Four implicit factors were extracted: Regularity, Relaxation, Hedonic Tone and Arousal. Four explicit factors were extracted: Form, Color, Space and Complexity. The following significant correlations between implicit and explicit factors were obtained: Regularity-Form, Regularity-Space, Hedonic Tone-Form and Arousal-Complexity. In Experiment 3 the role of implicit and explicit factors in similarity-dissimilarity ratings was specified. Significant correlations between the position of paintings in MDS space and mean judgments of explicit factors Color, Space and Complexity and implicit factor Relaxation were obtained, suggesting that similarity ratings of paintings are primarily based on explicit features. The causal relation of explicit and implicit features is discussed.
Implicit and explicit instruction of spelling rules
Kemper, M.J.; Verhoeven, L.T.W.; Bosman, A.M.T.
2012-01-01
The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a
Implicit and Explicit Instruction of Spelling Rules
Kemper, M. J.; Verhoeven, L.; Bosman, A. M. T.
2012-01-01
The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-intervention-posttest control group design. Experiment 1…
Scroggins, W Anthony; Mackie, Diane M; Allen, Thomas J; Sherman, Jeffrey W
2016-02-01
In three experiments, we used a novel Implicit Association Test procedure to investigate the impact of group memberships on implicit bias and implicit group boundaries. Results from Experiment 1 indicated that categorizing targets using a shared category reduced implicit bias by increasing the extent to which positivity was associated with Blacks. Results from Experiment 2 revealed that shared group membership, but not mere positivity of a group membership, was necessary to reduce implicit bias. Quadruple process model analyses indicated that changes in implicit bias caused by shared group membership are due to changes in the way that targets are evaluated, not to changes in the regulation of evaluative bias. Results from Experiment 3 showed that categorizing Black targets into shared group memberships expanded implicit group boundaries.
Comparative study on diagonal equivalent methods of masonry infill panel
Amalia, Aniendhita Rizki; Iranata, Data
2017-06-01
ratio of height to width of 1 to 1.5. Load used in the experiment was based on Uniform Building Code (UBC) 1991. Every method compared was calculated first to get equivalent diagonal strut width. The second step was modelling method using structure analysis software as a frame with a diagonal in a linear mode. The linear mode was chosen based on structure analysis commonly used by structure designers. The frame was loaded and for every model, its load and deformation values were identified. The values of load - deformation of every method were compared to those of experimental test specimen by Mehrabi and open frame. From comparative study performed, Holmes' and Bazan-Meli's equations gave results the closest to the experimental test specimen by Mehrabi. Other equations that gave close values within the limit (by comparing it to the open frame) are Saneinejad-Hobbs, Stafford-Smith, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Papia and Chen-Iranata.
Zahr, M. J.; Persson, P.-O.
2016-12-01
The fully discrete adjoint equations and the corresponding adjoint method are derived for a globally high-order accurate discretization of conservation laws on parametrized, deforming domains. The conservation law on the deforming domain is transformed into one on a fixed reference domain by the introduction of a time-dependent mapping that encapsulates the domain deformation and parametrization, resulting in an Arbitrary Lagrangian-Eulerian form of the governing equations. A high-order discontinuous Galerkin method is used to discretize the transformed equation in space and a high-order diagonally implicit Runge-Kutta scheme is used for the temporal discretization. Quantities of interest that take the form of space-time integrals are discretized in a solver-consistent manner. The corresponding fully discrete adjoint method is used to compute exact gradients of quantities of interest along the manifold of solutions of the fully discrete conservation law. These quantities of interest and their gradients are used in the context of gradient-based PDE-constrained optimization. The adjoint method is used to solve two optimal shape and control problems governed by the isentropic, compressible Navier-Stokes equations. The first optimization problem seeks the energetically optimal trajectory of a 2D airfoil given a required initial and final spatial position. The optimization solver, driven by gradients computed via the adjoint method, reduced the total energy required to complete the specified mission nearly an order of magnitude. The second optimization problem seeks the energetically optimal flapping motion and time-morphed geometry of a 2D airfoil given an equality constraint on the x-directed impulse generated on the airfoil. The optimization solver satisfied the impulse constraint to greater than 8 digits of accuracy and reduced the required energy between a factor of 2 and 10, depending on the value of the impulse constraint, as compared to the nominal configuration.
A Summary of Design Formulas for Beams Having Thin Webs in Diagonal Tension
Kuhn, Paul
1933-01-01
This report presents an explanation of the fundamental principles and a summary of the essential formulas for the design of diagonal-tension field beams, i.e. beams with very thin webs, as developed by Professor Wagner of Germany.
Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable bit error rates
Ranade, K S; Ranade, Kedar S.; Alber, Gernot
2005-01-01
The general conditions are discussed which quantum state purification protocols have to fulfill in order to be capable of purifying Bell-diagonal qubit-pair states, provided they consist of steps that map Bell-diagonal states to Bell-diagonal states and they finally apply a suitably chosen Calderbank-Shor-Steane code to the outcome of such steps. As a main result a necessary and a sufficient condition on asymptotic correctability are presented, which relate this problem to the magnitude of a characteristic exponent governing the relation between bit and phase errors under the purification steps. These conditions allow a straightforward determination of maximum tolerable bit error rates of quantum key distribution protocols whose security analysis can be reduced to the purification of Bell-diagonal states.
Free field approach to diagonalization of boundary transfer matrix : recent advances
Kojima, Takeo
2011-01-01
We diagonalize infinitely many commuting operators $T_B(z)$. We call these operators $T_B(z)$ the boundary transfer matrix associated with the quantum group and the elliptic quantum group. The boundary transfer matrix is related to the solvable model with a boundary. When we diagonalize the boundary transfer matrix, we can calculate the correlation functions for the solvable model with a boundary. We review the free field approach to diagonalization of the boundary transfer matrix $T_B(z)$ associated with $U_q(A_2^{(2)})$ and $U_{q,p}(\\hat{sl_N})$. We construct the free field realizations of the eigenvectors of the boundary transfer matrix $T_B(z)$. This paper includes new unpublished formula of the eigenvector for $U_q(A_2^{(2)})$. It is thought that this diagonalization method can be extended to more general quantum group $U_q(g)$ and elliptic quantum group $U_{q,p}(g)$.
Localization in band random matrix models with and without increasing diagonal elements.
Wang, Wen-ge
2002-06-01
It is shown that localization of eigenfunctions in the Wigner band random matrix model with increasing diagonal elements can be related to localization in a band random matrix model with random diagonal elements. The relation is obtained by making use of a result of a generalization of Brillouin-Wigner perturbation theory, which shows that reduced Hamiltonian matrices with relatively small dimensions can be introduced for nonperturbative parts of eigenfunctions, and by employing intermediate basis states, which can improve the method of the reduced Hamiltonian matrix. The latter model deviates from the standard band random matrix model mainly in two aspects: (i) the root mean square of diagonal elements is larger than that of off-diagonal elements within the band, and (ii) statistical distributions of the matrix elements are close to the Lévy distribution in their central parts, except in the high top regions.
QUASI-DIAGONALIZATION FOR A SINGULARLY PERTURBED DIFFERENTIAL SYSTEM WITH TWO PARAMETERS
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
By two successive linear transformations,a singularly perturbed differential system with two parameters is quasi-diagonalized. The method of variation of constants and the principle of contraction map are used to prove the existence of the transformations.
线性变换对角化问题浅析%Diagonalization of Linear Transformation
Institute of Scientific and Technical Information of China (English)
王玉梅
2011-01-01
For the linear transform and matrix diagonalization diagonalization similar to the link between the easily understood by matrix diagonalization to study the relative complexity of diagonalization of the linear transformation, and then by studying the eige%对于线性变换对角化与矩阵相似对角化之间的联系,通过对易理解的矩阵的对角化问题来研究相对复杂线性变换的对角化问题,然后通过研究特征值与特征向量的性质,再研究对角化的必要条件与充分条件,从而更轻松的理解并掌握线性变换的对角化问题。
Diagonal Kernel Point Estimation of th-Order Discrete Volterra-Wiener Systems
Directory of Open Access Journals (Sweden)
Pirani Massimiliano
2004-01-01
Full Text Available The estimation of diagonal elements of a Wiener model kernel is a well-known problem. The new operators and notations proposed here aim at the implementation of efficient and accurate nonparametric algorithms for the identification of diagonal points. The formulas presented here allow a direct implementation of Wiener kernel identification up to the th order. Their efficiency is demonstrated by simulations conducted on discrete Volterra systems up to fifth order.
Pietracaprina, Francesca; Gogolin, Christian; Goold, John
2016-01-01
The diagonal ensemble is the infinite time average of a quantum state following unitary dynamics. In analogy to the time average of a classical phase space dynamics, it is intimately related to the ergodic properties of the quantum system giving information on the spreading of the initial state in the eigenstates of the Hamiltonian. In this work we apply a concept from quantum information, known as total correlations, to the diagonal ensemble. Forming an upper-bound on the multipartite entang...
The Spectrum and the Spectral Type of the Off-Diagonal Fibonacci Operator
Damanik, David
2008-01-01
We consider Jacobi matrices with zero diagonal and off-diagonals given by elements of the hull of the Fibonacci sequence and show that the spectrum has zero Lebesgue measure and all spectral measures are purely singular continuous. In addition, if the two hopping parameters are distinct but sufficiently close to each other, we show that the spectrum is a dynamically defined Cantor set, which has a variety of consequences for its local and global fractal dimension.
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.
Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states
Wang, Xin-Wen; Tang, Shi-Qing; Yuan, Ji-Bing; Zhang, Deng-Yu
2017-06-01
It has been shown that a nearly pure Greenberger-Horne-Zeilinger (GHZ) state could be distilled from a large (even infinite) number of GHZ-diagonal states that can be obtained by depolarizing general multipartite mixed states (non-GHZ-diagonal states) through sequences of (probabilistic) local operations and classical communications. We here demonstrate that perfect GHZ states can be extracted, with certain probabilities, from two copies of non-GHZ-diagonal mixed states when some conditions are satisfied. This result implies that it is not necessary to depolarize these entangled mixed states to the GHZ-diagonal type, and that they are better than GHZ-diagonal states for distillation of pure GHZ states. We find a wide class of multipartite entangled mixed states that fulfill the requirements. Moreover, we display that the obtained result can be applied to practical noisy environments, e.g., amplitude-damping channels. Our findings provide an important complementarity to conventional GHZ-state distillation protocols (designed for GHZ-diagonal states) in theory, as well as having practical applications.
In Vivo Imaging Reveals Composite Coding for Diagonal Motion in the Drosophila Visual System
Zhou, Wei; Chang, Jin
2016-01-01
Understanding information coding is important for resolving the functions of visual neural circuits. The motion vision system is a classic model for studying information coding as it contains a concise and complete information-processing circuit. In Drosophila, the axon terminals of motion-detection neurons (T4 and T5) project to the lobula plate, which comprises four regions that respond to the four cardinal directions of motion. The lobula plate thus represents a topographic map on a transverse plane. This enables us to study the coding of diagonal motion by investigating its response pattern. By using in vivo two-photon calcium imaging, we found that the axon terminals of T4 and T5 cells in the lobula plate were activated during diagonal motion. Further experiments showed that the response to diagonal motion is distributed over the following two regions compared to the cardinal directions of motion—a diagonal motion selective response region and a non-selective response region—which overlap with the response regions of the two vector-correlated cardinal directions of motion. Interestingly, the sizes of the non-selective response regions are linearly correlated with the angle of the diagonal motion. These results revealed that the Drosophila visual system employs a composite coding for diagonal motion that includes both independent coding and vector decomposition coding. PMID:27695103
Diagonal Loading of Robust General-Rank Beamformer for Direction of Arrival Mismatch
Directory of Open Access Journals (Sweden)
Z.U. Khan
2013-05-01
Full Text Available This study presents a technique which utilizes the movement of the peak of the main beam towards the presumed signal direction with negative diagonal loading for robust general-rank beamformer. The main beam symmetry along presumed signal direction is improved by this movement. When desired signal is contained in the data snapshots, the conventional beamformers face the problem of performance degradation even if there is a small mismatch between the presumed and the actual signal direction. Diagonal loading is a popular technique to mitigate this problem. There is no definite criterion to find diagonal loading level. A new diagonal loading method has been proposed in the literature which utilizes the movement of the peak of main beam towards the presumed signal direction with positive diagonal loading. The proposed technique works iteratively for the selection of negative diagonal loading level to move the main beam at a position to get the beam symmetry at desired level and hence the desired robustness. The mismatched signal will not be cancelled as long as it is within the half of the width of the main beam. But there is the tradeoff between this robustness and interference cancelling capability.
Generalized Strongly Nonlinear Implicit Quasivariational Inequalities
Directory of Open Access Journals (Sweden)
Salahuddin
2009-01-01
Full Text Available We prove an existence theorem for solution of generalized strongly nonlinear implicit quasivariational inequality problems and convergence of iterative sequences with errors, involving Lipschitz continuous, generalized pseudocontractive and generalized -pseudocontractive mappings in Hilbert spaces.
Imagining intergroup contact reduces implicit prejudice.
Turner, Rhiannon N; Crisp, Richard J
2010-03-01
Recent research has demonstrated that imagining intergroup contact can be sufficient to reduce explicit prejudice directed towards out-groups. In this research, we examined the impact of contact-related mental imagery on implicit prejudice as measured by the implicit association test. We found that, relative to a control condition, young participants who imagined talking to an elderly stranger subsequently showed more positive implicit attitudes towards elderly people in general. In a second study, we demonstrated that, relative to a control condition, non-Muslim participants who imagined talking to a Muslim stranger subsequently showed more positive implicit attitudes towards Muslims in general. We discuss the implications of these findings for furthering the application of indirect contact strategies aimed at improving intergroup relations.
Reflection and Refraction on Implicit Surfaces
Institute of Scientific and Technical Information of China (English)
Wei Hu; Kai-Huai Qin; Hua-Wei Wang; Ya-Feng Li
2006-01-01
Implicit surfaces are often used in computer graphics. They can be easily modeled and rendered, and many objects are composed of them in our daily life. In this paper, based on the concept of virtual objects, a novel method of real-time rendering is presented for reflection and refraction on implicit surface. The method is used to construct virtual objects from real objects quickly, and then render the virtual objects as if they were real objects except for one more step of merging their images with the real objects' images. Characteristics of implicit surfaces are used to compute virtual objects effectively and quickly. GPUs (Graphics Processing Units) are used to compute virtual vertices quickly and further accelerate the computing and rendering processes. As a result, realistic effects of reflections and refractions on implicit surfaces are rendered in real time.
On Implicit and Explicit Knowledge in SLA
Institute of Scientific and Technical Information of China (English)
郭爱萍
2011-01-01
Many linguists probe into a controversial question about implicit knowledge and explicit knowledge which are very important in second language acquisition（SLA） and second language teaching.According to the theoretical research and pedagogical practice,the
Implicit attitudes towards risky and safe driving
DEFF Research Database (Denmark)
Martinussen, Laila Marianne; Sømhovd, Mikael Julius; Møller, Mette;
; further, self-reports of the intention to drive safely (or not) are socially sensitive. Therefore, we examined automatic preferences towards safe and risky driving with a Go/No-go Association Task (GNAT). The results suggest that (1) implicit attitudes towards driving behavior can be measured reliably...... with the GNAT; (2) implicit attitudes towards safe driving versus towards risky driving may be separable constructs. We propose that research on driving behavior may benefit from routinely including measures of implicit cognition. A practical advantage is a lesser susceptibility to social desirability biases......, compared to self-report methods. Pending replication in future research, the apparent dissociation between implicit attitudes towards safe versus risky driving that we observed may contribute to a greater theoretical understanding of the causes of unsafe and risky driving behavior....
Gifted Students' Implicit Beliefs about Intelligence and Giftedness
Makel, Matthew C.; Snyder, Kate E.; Thomas, Chandler; Malone, Patrick S.; Putallaz, Martha
2015-01-01
Growing attention is being paid to individuals' implicit beliefs about the nature of intelligence. However, implicit beliefs about giftedness are currently underexamined. In the current study, we examined academically gifted adolescents' implicit beliefs about both intelligence and giftedness. Overall, participants' implicit beliefs about…
Gifted Students' Implicit Beliefs about Intelligence and Giftedness
Makel, Matthew C.; Snyder, Kate E.; Thomas, Chandler; Malone, Patrick S.; Putallaz, Martha
2015-01-01
Growing attention is being paid to individuals' implicit beliefs about the nature of intelligence. However, implicit beliefs about giftedness are currently underexamined. In the current study, we examined academically gifted adolescents' implicit beliefs about both intelligence and giftedness. Overall, participants' implicit beliefs about…
Implicit theories and ability emotional intelligence
ROSARIO eCABELLO; Pablo eFernández-Berrocal
2015-01-01
Previous research has shown that people differ in their implicit theories about the essential characteristics of intelligence and emotions. Some people believe these characteristics to be predetermined and immutable (entity theorists), whereas others believe that these characteristics can be changed through learning and behavior training (incremental theorists). The present study provides evidence that in healthy adults (N = 688), implicit beliefs about emotions and emotional intelligence (EI...
Implicitization of surfaces via geometric tropicalization
Cueto, Maria Angelica
2011-01-01
In this paper we describe tropical methods for implicitization of surfaces. We construct the corresponding tropical surfaces via the theory of geometric tropicalization due to Hacking, Keel and Tevelev, which we enrich with a formula for computing tropical multiplicities of regular points in any dimension. We extend previous results for tropical implicitization of generic surfaces due to Sturmfels, Tevelev and Yu and provide methods for the non-generic case.
Implicit attitudes in sexuality: gender differences.
Geer, James H; Robertson, Gloria G
2005-12-01
This study examined the role of gender in both implicit and explicit attitudes toward sexuality. Implicit attitudes are judgments or evaluations of social objects that are automatically activated, often without the individual's conscious awareness of the causation. In contrast, explicit attitudes are judgments or evaluations that are well established in awareness. As described in Oliver and Hyde's (1993) meta-analysis of self-report (explicit) data, women report greater negative attitudes toward sexuality than do men. In the current study, we used the Sexual Opinion Survey (SOS) developed by Fisher, Byrne, White, and Kelley (1988) to index explicit attitudes and the Implicit Association Test (IAT) developed by Greenwald, McGhee, and Schwartz (1998) to index implicit attitudes. Research has demonstrated that the IAT reveals attitudes that participants may be reluctant to express. Independent variables examined were participant gender, social acceptability of sexual words, and order of associated evaluations in the IAT (switching from positive to negative evaluations or the reverse). The IAT data revealed a significant Order x Gender interaction that showed that women had more negative implicit attitudes toward sexuality than did men. There was also a significant Order x Acceptability interaction, indicating that implicit attitudes were more strongly revealed when the sexual words used in the IAT were more socially unacceptable. As expected, on the SOS, women had more negative explicit attitudes toward sexuality. There was no significant correlation between explicit and implicit attitudes. These data suggest that at both automatic (implicit) and controlled (explicit) levels of attitudes, women harbor more negative feelings toward sex than do men.
Energy Technology Data Exchange (ETDEWEB)
Bunkin, S.B.; Islamov, R.S.; Konev, Y.B.; Kochetov, I.V.
1982-07-01
A technique is described for numerical analysis of kinetic processes in a system of anharmonic oscillators, based on using implicit numerical integration and replacement of derivatives by means of backward differentiation expressions. A comparison is made with calculations by the Runge--Kutta method, and it is shown that the computer time is reduced by a factor of more than 10 when the backward differentiation method is used. The influence of the natural isotopic composition of carbon monoxide molecules on the gain and lasing properties is investigated and shown to be only slight.
An investigation of GPU-based stiff chemical kinetics integration methods
Curtis, Nicholas J; Sung, Chih-Jen
2016-01-01
A fifth-order implicit Runge-Kutta method and two fourth-order exponential integration methods equipped with Krylov subspace approximations were implemented for the GPU and paired with the analytical chemical kinetic Jacobian software pyJac. The performance of each algorithm was evaluated by integrating thermochemical state data sampled from stochastic partially stirred reactor simulations and compared with the commonly used CPU-based implicit integrator CVODE. We estimated that the implicit Runge-Kutta method running on a single GPU is equivalent to CVODE running on 12-38 CPU cores for integration of a single global integration time step of 1e-6 s with hydrogen and methane models. In the stiffest case studied---the methane model with a global integration time step of 1e-4 s---thread divergence and higher memory traffic significantly decreased GPU performance to the equivalent of CVODE running on approximately three CPU cores. The exponential integration algorithms performed more slowly than the implicit inte...
Lightning Surge Analysis Including Diagonal Wires Based on the FDTD Method
Yamamoto, Kazuo; Iki, Hiroyuki
This paper presents an arbitrary diagonal wire on an rectangular surface composing a cubic cell in an electromagnetic analysis based on the orthogonal FDTD (Finite-Difference Time-Domain) Algorithm. One of the numerical electromagnetic analyzing algorithms is the FDTD method based on Maxwell’s equation. The basic FDTD method divides the analyzed space into cubic cells and directly calculates the electrical and magnetic fields of the cells by discretizing the Maxwell’s equation of electromagnetic fields, where the derivatives with respect to time and space are replaced by a numerical difference. The development of computer performance brings about an actual execution of the FDTD method on a usual personal computer recently. In dealing with a diagonal and curved wire, the boundaries of which do not coincide with the finite-difference grid lines, the staircase approximation has been commonly used. However, the approximation causes the large error in a resonant frequency and a propagation time of a system including the diagonal or curved wire. The proposed method can express a diagonal and curved wires on a rectangular surface composing a cubic cell by transforming the general integral form of Maxwell’s equation to the different integral form around the wires. This proposed method is also useful to calculate surge propagation on an arbitrary three-dimensional skeleton structure including a diagonal or curved grid such as a tower model and so on.
Volume localized spin echo correlation spectroscopy with suppression of 'diagonal' peaks.
Banerjee, Abhishek; Chandrakumar, N
2014-02-01
Two dimensional homonuclear (1)H correlation spectroscopy is of considerable interest for volume localized spectral studies, both in vivo and in vitro, of biological as well as material objects. The information principally sought from correlation spectra resides in the cross-peaks, which are often masked however by the presence of diagonal peaks in COSY, or 'pseudo-diagonal' peaks at F1=0 in SECSY. It has therefore been a concern to suppress these diagonal or 'pseudo-diagonal' peaks, in order to ensure that cross-peak information is fully discernible. We present here a report of our work on volume localized DIagonal Suppressed Spin Echo Correlation specTroscopy (LDISSECT) and demonstrate its performance in comparison to the standard volume localized SECSY experiment, employing brain metabolite phantoms in a gel. The sequence works in the inhomogeneous, multi-component environment by exploiting the short acquisition time to suppress undesired information by employing an additional rf pulse. A brief description of the pulse sequence, its theory, and simulations are also included, besides experimental benchmarking on two brain metabolite phantoms in gel phase.
Sex determination in modern Greeks using diagonal measurements of molar teeth.
Zorba, Eleni; Moraitis, Konstantinos; Eliopoulos, Constantine; Spiliopoulou, Chara
2012-04-10
Sex determination is a necessary step in the investigation of unidentified human remains from a forensic context. Teeth, as one of the strongest tissues in the human body, can be used for this purpose. Most studies of sexual dimorphism in teeth are based on the traditional mesiodistal and buccolingual crown measurements. The purpose of this study is to examine the degree of sexual dimorphism in permanent molars of modern Greeks using crown and cervical diagonal diameters, and to evaluate their applicability in sex determination. A total of 344 permanent molars in 107 individuals (53 male and 54 female) from the Athens Collection were examined. Crown and cervical diagonal diameters of both maxillary and mandibular molars were measured. It was found that males have larger molars than females and in 19 out of 24 dimensions measured male molars exceeded female molars significantly (Pdiagonal diameters have found to be more sexually diamorphic than crown diagonal diameters. In discriminant function analysis the variables entered more frequently were the cervical diagonal diameters mainly of mandibular molars. Classification accuracy was found to be 93% for the total sample, 77.4% for upper jaw, and 88.4% for the lower jaw. Accuracy rates were higher for cervical than crown diagonal diameters. The data generated from the present study suggest that this metric method can be useful and reliable for sex determination, especially when the traditional dental measurements are not applicable.
三体Bell对角态的纠缠%Entanglement of Tripartite Bell Diagonal States
Institute of Scientific and Technical Information of China (English)
赵慧; 张兴华
2011-01-01
给出了三体2(×)2(×)3Bell对角态纠缠判定的一个必要条件和3(×)3(×)3Bell对角态纠缠的充分条件,进一步研究了3(×)3(×)3Bell对角态纠缠与密度矩阵部分转置的关系以及Bell对角态负性的数学表达式.%A necessary condition of entanglement for tripartite 2 (⊕)2 (⊕)3 Bell diagonal states and a sufficient condition of entanglement for 3 (⊕)3 (⊕)3 Bell diagonal states are presented. Moreover, the relation between entanglement of 3(⊕)3(⊕)3 Bell diagonal states and partial transpose of density matrix is investigated. And an analytical expression of negative for Bell diagonal states is presented.Key words: Bell diagonal states; entanglement; density matrix Robust Estimation for Varying Coefficient Model Abstract: This paper considers robust estimation of varying coefficient models with emphasis on resistance against outliers. By combining B-splines method with taut string method, a robust estimation procedure is proposed. Based on local quadratic approximation, an iterative algorithm is introduced. Simulation study indicates that the proposed method is robust.
Ames, S.L.; Grenard, J.L.; Stacy, A.W.; Xiao, L.; He, Q.; Wong, S.W; Xue, G.; Wiers, R.W.; Bechara, A.
2013-01-01
This research evaluated the neural correlates of implicit associative memory processes (habit-based processes) through the imaging (fMRI) of a marijuana Implicit Association Test. Drug-related associative memory effects have been shown to consistently predict level of drug use. To observe difference
Ames, S.L.; Grenard, J.L.; Stacy, A.W.; Xiao, L.; He, Q.; Wong, S.W; Xue, G.; Wiers, R.W.; Bechara, A.
2013-01-01
This research evaluated the neural correlates of implicit associative memory processes (habit-based processes) through the imaging (fMRI) of a marijuana Implicit Association Test. Drug-related associative memory effects have been shown to consistently predict level of drug use. To observe
Ames, S.L.; Grenard, J.L.; Stacy, A.W.; Xiao, L.; He, Q.; Wong, S.W; Xue, G.; Wiers, R.W.; Bechara, A.
2013-01-01
This research evaluated the neural correlates of implicit associative memory processes (habit-based processes) through the imaging (fMRI) of a marijuana Implicit Association Test. Drug-related associative memory effects have been shown to consistently predict level of drug use. To observe difference
Directory of Open Access Journals (Sweden)
Arif GÜRAY
2002-01-01
Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.
Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking.
Andrews, Judy A; Hampson, Sarah E; Greenwald, Anthony G; Gordon, Judith; Widdop, Chris
2010-09-01
The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with "sweets" as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with "healthy foods" as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking.
How explicit and implicit test instructions in an implicit learning task affect performance.
Directory of Open Access Journals (Sweden)
Arnaud Witt
Full Text Available Typically developing children aged 5 to 8 years were exposed to artificial grammar learning. Following an implicit exposure phase, half of the participants received neutral instructions at test while the other half received instructions making a direct, explicit reference to the training phase. We first aimed to assess whether implicit learning operated in the two test conditions. We then evaluated the differential impact of age on learning performances as a function of test instructions. The results showed that performance did not vary as a function of age in the implicit instructions condition, while age effects emerged when explicit instructions were employed at test. However, performance was affected differently by age and the instructions given at test, depending on whether the implicit learning of short or long units was assessed. These results suggest that the claim that the implicit learning process is independent of age needs to be revised.
Covariant Renormalizable Anisotropic Theories and Off-Diagonal Einstein-Yang-Mills-Higgs Solutions
Vacaru, Sergiu I
2011-01-01
We use an important decoupling property of gravitational field equations in the general relativity theory and modifications, written with respect to nonholonomic frames with 2+2 spacetime decomposition. This allows us to integrate the Einstein equations in very general forms with generic off--diagonal metrics depending on all spacetime coordinates via generating and integration functions containing (broken and un-broken) symmetry parameters. We associate families of off-diagonal Einstein manifolds to certain classes of covariant gravity theories which have a nice ultraviolet behavior and seem to be (super) renormalizable in a sense of covariant modifications of Ho\\v{r}ava-Lifshits gravity. The apparent breaking of Lorentz invariance is present in some "partner" anisotropically induced theories due to nonlinear coupling with effective parametric interactions determined by nonholonomic constraints and generic off-diagonal gravitational and matter fields configurations. Finally, we show how the constructions can...
Wrapping corrections for non-diagonal boundaries in AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Bajnok, Zoltán [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Nepomechie, Rafael I. [Physics Department, P.O. Box 248046, University of Miami,Coral Gables, FL 33124 (United States)
2016-02-03
We consider an open string stretched between a Y=0 brane and a Y{sub θ}=0 brane. The latter brane is rotated with respect to the former by an angle θ, and is described by a non-diagonal boundary S-matrix. This system interpolates smoothly between the Y−Y (θ=0) and the Y−Ȳ (θ=π/2) systems, which are described by diagonal boundary S-matrices. We use integrability to compute the energies of one-particle states at weak coupling up to leading wrapping order (4, 6 loops) as a function of the angle. The results for the diagonal cases exactly match with those obtained previously.
Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data.
Pang, Herbert; Tong, Tiejun; Zhao, Hongyu
2009-12-01
High-dimensional data such as microarrays have brought us new statistical challenges. For example, using a large number of genes to classify samples based on a small number of microarrays remains a difficult problem. Diagonal discriminant analysis, support vector machines, and k-nearest neighbor have been suggested as among the best methods for small sample size situations, but none was found to be superior to others. In this article, we propose an improved diagonal discriminant approach through shrinkage and regularization of the variances. The performance of our new approach along with the existing methods is studied through simulations and applications to real data. These studies show that the proposed shrinkage-based and regularization diagonal discriminant methods have lower misclassification rates than existing methods in many cases.
Rossi-Arnaud, Clelia; Pieroni, Laura; Spataro, Pietro; Baddeley, Alan
2012-09-01
Previous studies, using a modified version of the sequential Corsi block task to examine the impact of symmetry on visuospatial memory, showed an advantage of vertical symmetry over non-symmetrical sequences, but no effect of horizontal or diagonal symmetry. The present four experiments investigated the mechanisms underlying the encoding of vertical, horizontal and diagonal configurations using simultaneous presentation and a dual-task paradigm. Results indicated that the recall of vertically symmetric arrays was always better than that of all other patterns and was not influenced by any of the concurrent tasks. Performance with horizontally or diagonally symmetrical patterns differed, with high performing participants showing little effect of concurrent tasks, while low performers were disrupted by concurrent visuospatial and executive tasks. A verbal interference had no effect on either group. Implications for processes involved in the encoding of symmetry are discussed, together with the crucial importance of individual differences.
Gevaert, Kris; Van Damme, Petra; Martens, Lennart; Vandekerckhove, Joël
2005-10-01
Diagonal electrophoresis/chromatography was described 40 years ago and was used to isolate specific sets of peptides from simple peptide mixtures such as protease digests of purified proteins. Recently, we have adapted the core technology of diagonal chromatography so that the technique can be used in so-called gel-free, peptide-centric proteome studies. Here we review the different procedures we have developed over the past few years, sorting of methionyl, cysteinyl, amino terminal, and phosphorylated peptides. We illustrate the power of the technique, termed COFRADIC (combined fractional diagonal chromatography), in the case of a peptide-centric analysis of a sputum sol phase sample of a patient suffering from chronic obstructive pulmonary disease (COPD). We were able to identify an unexpectedly high number of intracellular proteins next to known biomarkers.
Tysinger, Thomas Lee
1992-07-01
Efficient numerical procedures are developed for the solution of the Navier-Stokes equations. The Navier-Stokes equations are a system of conservation laws which govern the motion of compressible, viscous, heat-conducting fluids. A conservative finite volume formulation is used for spatial discretization of the governing equations, resulting in a system of ordinary differential equations. To advance the system in time, an Alternating Direction Implicit (ADI) procedure suitable for the Navier-Stokes equations is developed. The resulting implicit system is diagonalized to improve the computational efficiency of the scheme. Viscous contributions are added to the scheme implicitly in a way that enhances the stability, yet does not disturb the efficiency of the algorithm. Rapid convergence to a steady state solution is achieved with a recursive multigrid algorithm. The stability and efficiency of the scheme are demonstrated with simulations of flow over wing sections. Furthermore, the algorithm has been implemented within the framework of multiple-block structured grids in which the spatial domain is decomposed into multiple blocks and the solution is advanced in parallel on the different blocks. Generic utilities have been developed to implement such a scheme in distributed computing environments. The multiple-block algorithm is designed so that the explicit residual calculation is identical to that of the single-block scheme, and therefore converged solutions for both schemes must be the same. To accelerate convergence, horizontal, vertical, and asynchronous multigrid algorithms are tested. Significant speedups have been achieved in a multiprocessor environment, while convergence rates similar to those of the single-clock schemes are observed.
Exact solution of the trigonometric SU(3) spin chain with generic off-diagonal boundary reflections
Li, Guang-Liang; Cao, Junpeng; Hao, Kun; Wen, Fakai; Yang, Wen-Li; Shi, Kangjie
2016-09-01
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the SUq (3)R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the SUq (n) algebra.
Exact solution of the trigonometric SU(3) spin chain with generic off-diagonal boundary reflections
Li, Guang-Liang; Hao, Kun; Yang, Wen-Li; Shi, Kangjie
2016-01-01
The nested off-diagonal Bethe Ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe Ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the $SU_q(n)$ algebra.
Exact solution of the trigonometric SU(3 spin chain with generic off-diagonal boundary reflections
Directory of Open Access Journals (Sweden)
Guang-Liang Li
2016-09-01
Full Text Available The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the SUq(3 R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T–Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the SUq(n algebra.
Boundary energy of the open XXX chain with a non-diagonal boundary term
Nepomechie, Rafael I.; Wang, Chunguang
2014-01-01
We analyze the ground state of the open spin-1/2 isotropic quantum spin chain with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots split evenly into two sets: those that remain finite, and those that become infinite. We argue that the former satisfy conventional Bethe equations, while the latter satisfy a generalization of the Richardson-Gaudin equations. We derive an expression for the leading correction to the boundary energy in terms of the boundary parameters.
Boundary energy of the open XXX chain with a non-diagonal boundary term
Nepomechie, Rafael I
2013-01-01
We analyze the ground state of the open spin-1/2 isotropic quantum spin chain with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots split evenly into two sets: those that remain finite, and those that become infinite. We argue that the former satisfy conventional Bethe equations, while the latter satisfy a generalization of the Richardson-Gaudin equations. We derive an expression for the leading correction to the boundary energy in terms of the boundary parameters.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)
2015-08-15
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.
Time-dependent renormalized Redfield theory II for off-diagonal transition in reduced density matrix
Kimura, Akihiro
2016-09-01
In our previous letter (Kimura, 2016), we constructed time-dependent renormalized Redfield theory (TRRT) only for diagonal transition in a reduced density matrix. In this letter, we formulate the general expression for off-diagonal transition in the reduced density matrix. We discuss the applicability of TRRT by numerically comparing the dependencies on the energy gap of the exciton relaxation rate by using the TRRT and the modified Redfield theory (MRT). In particular, we roughly show that TRRT improves MRT for the detailed balance about the excitation energy transfer reaction.
Single-Channel Noise Reduction using Unified Joint Diagonalization and Optimal Filtering
DEFF Research Database (Denmark)
Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom;
2014-01-01
In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint...... diagonalization corresponding to the least significant eigenvalues are used to form a filter, which effectively estimates the noise when applied to the observed signal. This estimate is then subtracted from the observed signal to form an estimate of the desired signal, i.e., the speech signal. In doing this, we...
On the Reduction of a Complex Matrix to Triangular or Diagonal by Consimilarity
Institute of Scientific and Technical Information of China (English)
Tongsong Jiang; Musheng Wei
2006-01-01
Two n × n complex matrices A and B are said to be consimilar if S-1 AS = B for some nonsingular n × n complex matrix S. This paper, by means of real representation of a complex matrix, studies problems of reducing a given n × n complex matrix A to triangular or diagonal form by consimilarity, not only gives necessary and sufficient conditions for contriangularization and condiagonalization of a complex matrix, but also derives an algebraic technique of reducing a matrix to triangular or diagonal form by consimilarity.
On the Marginal Distribution of the Diagonal Blocks in a Blocked Wishart Random Matrix
Directory of Open Access Journals (Sweden)
Kjetil B. Halvorsen
2016-01-01
Full Text Available Let A be a (m1+m2×(m1+m2 blocked Wishart random matrix with diagonal blocks of orders m1×m1 and m2×m2. The goal of the paper is to find the exact marginal distribution of the two diagonal blocks of A. We find an expression for this marginal density involving the matrix-variate generalized hypergeometric function. We became interested in this problem because of an application in spatial interpolation of random fields of positive definite matrices, where this result will be used for parameter estimation, using composite likelihood methods.
Bias-corrected diagonal discriminant rules for high-dimensional classification.
Huang, Song; Tong, Tiejun; Zhao, Hongyu
2010-12-01
Diagonal discriminant rules have been successfully used for high-dimensional classification problems, but suffer from the serious drawback of biased discriminant scores. In this article, we propose improved diagonal discriminant rules with bias-corrected discriminant scores for high-dimensional classification. We show that the proposed discriminant scores dominate the standard ones under the quadratic loss function. Analytical results on why the bias-corrected rules can potentially improve the predication accuracy are also provided. Finally, we demonstrate the improvement of the proposed rules over the original ones through extensive simulation studies and real case studies.
Implicit partisanship: taking sides for no reason.
Greenwald, Anthony G; Pickrell, Jacqueline E; Farnham, Shelly D
2002-08-01
After spending 45 s studying the names of 4 members of a hypothetical group, subjects showed both implicit liking and implicit identification with the group. These effects of studying names were much larger than the mere exposure (R. B. Zajonc, 1968) effects of either 6 (Experiment 2) or 10 (Experiment 3) extra exposures to each name. This implicit partisanship effect differs from the minimal group effect (H. Tajfel, 1970) because its procedure involves no membership in the target group. It also differs from the mere exposure effect because the target stimuli are presented once as members of a group rather than multiple times as unrelated individuals. A plausible (but not established) interpretation is that the attitude and identification effects are consequences of mere categorization.
Accelerating Reinforcement Learning through Implicit Imitation
Boutilier, C; 10.1613/jair.898
2011-01-01
Imitation can be viewed as a means of enhancing learning in multiagent environments. It augments an agent's ability to learn useful behaviors by making intelligent use of the knowledge implicit in behaviors demonstrated by cooperative teachers or other more experienced agents. We propose and study a formal model of implicit imitation that can accelerate reinforcement learning dramatically in certain cases. Roughly, by observing a mentor, a reinforcement-learning agent can extract information about its own capabilities in, and the relative value of, unvisited parts of the state space. We study two specific instantiations of this model, one in which the learning agent and the mentor have identical abilities, and one designed to deal with agents and mentors with different action sets. We illustrate the benefits of implicit imitation by integrating it with prioritized sweeping, and demonstrating improved performance and convergence through observation of single and multiple mentors. Though we make some stringent ...
Précis of implicit nationalism.
Hassin, Ran R; Ferguson, Melissa J; Kardosh, Rasha; Porter, Shanette C; Carter, Travis J; Dudareva, Veronika
2009-06-01
While the study of nationalism has received much attention throughout the social sciences and humanities, the experimental investigation of it lags behind. In this paper we review recent advances in the examination of implicit nationalism. In the first set of experiments we survey, the Palestinian, Israeli, Italian, and Russian flags were primed (or not, in the control conditions) and their effects on political thought and behavior were tested. In the second set the American or the Israeli flag was primed (or not) and prejudice toward African-Americans or Palestinians (respectively) was examined. The results of all experiments suggest that the implicit activation of national cues has far-reaching implications on political thought and behavior as well as on attitudes toward minorities. Under the assumption that the image of national flags is associated in memory with national ideologies, these results suggest that national ideologies can be implicitly pursued in a way that significantly affects our thoughts and behaviors.
Implicit Memory in Music and Language
Directory of Open Access Journals (Sweden)
Marc eEttlinger
2011-09-01
Full Text Available Research on music and language in recent decades has focused on their overlapping neurophysiological, perceptual, and cognitive underpinnings, ranging from the mechanism for encoding basic auditory cues to the mechanism for detecting violations in phrase structure. These overlaps have most often been identified in musicians with musical knowledge that was acquired explicitly, through formal training. In this paper, we review independent bodies of work in music and language that suggest an important role for implicitly acquired knowledge, implicit memory, and their associated neural structures in the acquisition of linguistic or musical grammar. These findings motivate potential new work that examines music and language comparatively in the context of the implicit memory system.
Implicit memory for music in Alzheimer's disease.
Halpern, A R; O'Connor, M G
2000-07-01
Short, unfamiliar melodies were presented to young and older adults and to Alzheimer's disease (AD) patients in an implicit and an explicit memory task. The explicit task was yes-no recognition, and the implicit task was pleasantness ratings, in which memory was shown by higher ratings for old versus new melodies (the mere exposure effect). Young adults showed retention of the melodies in both tasks. Older adults showed little explicit memory but did show the mere exposure effect. The AD patients showed neither. The authors considered and rejected several artifactual reasons for this null effect in the context of the many studies that have shown implicit memory among AD patients. As the previous studies have almost always used the visual modality for presentation, they speculate that auditory presentation, especially of nonverbal material, may be compromised in AD because of neural degeneration in auditory areas in the temporal lobes.
Emotion and Implicit Timing: The Arousal Effect
Droit-Volet, Sylvie; Berthon, Mickaël
2017-01-01
This study tested the effects of emotion on implicit time judgment. The participants did not receive any overt temporal instructions. They were simply trained to respond as quickly as possible after a response signal, which was separated from a warning signal by a reference temporal interval. In the testing phase, the inter-signal interval was shorter, equal or longer than the reference interval and was filled by emotional pictures (EP) of different arousal levels: high, moderate, and low. The results showed a U-shaped curve of reaction time plotted against the interval duration, indicating an implicit processing of time. However, this RT-curve was shifted toward the left, with a significantly lower peak time for the high-arousal than for the low-arousal EP. This emotional time distortion in an implicit timing task suggests an automatic effect of emotion on the internal clock rate. PMID:28261125
A random map implementation of implicit filters
Morzfeld, Matthias; Atkins, Ethan; Chorin, Alexandre J
2011-01-01
Implicit particle filters for data assimilation generate high-probability samples by representing each particle location as a separate function of a common reference variable. This representation requires that a certain underdetermined equation be solved for each particle and at each time an observation becomes available. We present a new implementation of implicit filters in which we find the solution of the equation via a random map. As examples, we assimilate data for a stochastically driven Lorenz system with sparse observations and for a stochastic Kuramoto-Sivashinski equation with observations that are sparse in both space and time.
POLARONS IN THE 3-BAND PEIERLS-HUBBARD MODEL - AN EXACT DIAGONALIZATION STUDY
DOBRY, A; GRECO, A; LORENZANA, J; RIERA, J
1994-01-01
We have studied the three-band Peierls-Hubbard model describing the Cu-O layers in high-T(c) superconductors by using Lanczos diagonalization and assuming infinite mass for the ions. When the system is doped with one hole, and for lambda (the electron-lattice coupling strength) greater than a critic
Relation between Feynman cycles and off-diagonal long-range order.
Ueltschi, Daniel
2006-10-27
The usual order parameter for Bose-Einstein condensation involves the off-diagonal correlation function of Penrose and Onsager, but an alternative is Feynman's notion of infinite cycles. We present a formula that relates both order parameters. We discuss its validity with the help of rigorous results and heuristic arguments. The conclusion is that infinite cycles do not always represent the Bose condensate.
Off-diagonal long-range order in generalized Hubbard models
Michielsen, Kristel; Raedt, Hans De
1997-01-01
We present stochastic diagonalization results for the ground-state energy and the largest eigenvalue of the two-fermion density matrix of the BCS reduced Hamiltonian, the Hubbard model, and the Hubbard model with correlated hopping. The system-size dependence of this eigenvalue is used to study the
Cao, Shancheng; Ouyang, Huajiang
2017-01-01
The structural characteristic deflection shapes (CDS’s) such as mode shapes and operational deflection shapes are highly sensitive to structural damage in beam- or plate-type structures. Nevertheless, they are vulnerable to measurement noise and could result in unacceptable identification errors. In order to increase the accuracy and noise robustness of damage identification based on CDS’s using vibration responses of random excitation, joint approximate diagonalization (JAD) technique and gapped smoothing method (GSM) are combined to form a sensitive and robust damage index (DI), which can simultaneously detect the existence of damage and localize its position. In addition, it is possible to apply this approach to damage identification of structures under ambient excitation. First, JAD method which is an essential technique of blind source separation is investigated to simultaneously diagonalize a set of power spectral density matrices corresponding to frequencies near a certain natural frequency to estimate a joint unitary diagonalizer. The columns of this joint diagonalizer contain dominant CDS’s. With the identified dominant CDS’s around different natural frequencies, GSM is used to extract damage features and a robust damage identification index is then proposed. Numerical and experimental examples of beams with cracks are used to verify the validity and noise robustness of JAD based CDS estimation and the proposed DI. Furthermore, damage identification using dominant CDS’s estimated by JAD method is demonstrated to be more accurate and noise robust than by the commonly used singular value decomposition method.
Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas; Galgon, Martin; Fehske, Holger; Hager, Georg; Lang, Bruno; Wellein, Gerhard
2016-11-01
We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 102 innermost eigenpairs of a topological insulator matrix with dimension 109 derived from quantum physics applications.
Stability of matrices with sufficiently strong negative-dominant-diagonal submatrices
Nieuwenhuis, H.J.; Schoonbeek, L.
1997-01-01
A well-known sufficient condition for stability of a system of linear first-order differential equations is that the matrix of the homogeneous dynamics has a negative dominant diagonal. However, this condition cannot be applied to systems of second-order differential equations. In this paper we intr
The effects of pelvic diagonal movements and resistance on the lumbar multifidus
Lee, Ji-Yeon; Lee, Dong-Yeop; Hong, Ji-Heon; Yu, Jae-Ho; Kim, Jin Seop
2017-01-01
[Purpose] The purpose of this study was to compare the effects of pelvic diagonal movements, made with and without resistance, on the thickness of lumbar multifidus muscles. [Subjects and Methods] Participants in this study were healthy subjects who had no musculoskeletal disorders or lumbar-related pain. Participants were positioned on their side and instructed to lie with their hip flexor at 40 degrees. Ultrasonography was used for measurement, and the values of two calculations were averaged. [Results] The thickness of ipsilateral lumbar multifidus muscles showed a significant difference following the exercise of pelvic diagonal movements. The results of anterior elevation movements and posterior depression movements also demonstrated significant difference. There was no significant difference in lumbar multifidus muscles thickness between movements made with and without resistance. [Conclusion] These findings suggest that pelvic diagonal movements can be an effective method to promote muscular activation of the ipsilateral multifidus. Furthermore, researchers have concluded that resistance is not required during pelvic diagonal movements to selectively activate the core muscles. PMID:28356650
Off-diagonal Yukawa Couplings in the s-channel Charged Higgs Production at LHC
Hashemi, Majid
2015-01-01
The search for the heavy charged Higgs (mH+ > mtop) has been mainly based on the o?ff-shell top pair production process. However, resonance production in s-channel single top events is an important channel to search for this particle. In a previous work, it was shown that this process, i.e., qq' -> H+ -> tb + h.c., can lead to comparable results to what is already obtained from LHC searches through gb -> tH- process. What was obtained was, however, based on diagonal Yukawa couplings between incoming quarks assuming cs as the main incoming pair due to the CKM matrix element being close to unity. The aim of this paper is to show that off-diagonal couplings, like cb, may lead to substantial contributions to the cross section, even if the corresponding CKM matrix element is two orders of magnitude smaller. For this reason, the cross section is calculated for each initial state including all diagonal and off-diagonal terms, and all is finally added together to get the total cross section which is observed to be ~ ...
Pietracaprina, F.; Gogolin, C.; Goold, J.
2017-03-01
The diagonal ensemble is the infinite time average of a quantum state following unitary dynamics in systems without degeneracies. In analogy to the time average of a classical phase-space dynamics, it is intimately related to the ergodic properties of the quantum system giving information on the spreading of the initial state in the eigenstates of the Hamiltonian. In this work we apply a concept from quantum information, known as total correlations, to the diagonal ensemble. Forming an upper bound on the multipartite entanglement, it quantifies the combination of both classical and quantum correlations in a mixed state. We generalize the total correlations of the diagonal ensemble to more general α -Renyi entropies and focus on the cases α =1 and α =2 with further numerical extensions in mind. Here we show that the total correlations of the diagonal ensemble is a generic indicator of ergodicity breaking, displaying a subextensive behavior when the system is ergodic. We demonstrate this by investigating its scaling in a range of spin chain models focusing not only on the cases of integrability breaking but also emphasize its role in understanding the transition from an ergodic to a many-body localized phase in systems with disorder or quasiperiodicity.
Yildiz Ulus, Aysegul
2013-01-01
This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…
Congestion Control for ATM Networks Based on Diagonal Recurrent Neural Networks
Institute of Scientific and Technical Information of China (English)
HuangYunxian; YanWei
1997-01-01
An adaptive control model and its algorithms based on simple diagonal recurrent neural networks are presented for the dynamic congestion control in broadband ATM networks.Two simple dynamic queuing models of real networks are used to test the performance of the suggested control scheme.
DEFF Research Database (Denmark)
Zhang, Shuai; Zhao, Kun; Ying, Zhinong
2015-01-01
A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...
Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity
Directory of Open Access Journals (Sweden)
Sergiu I. Vacaru
2016-01-01
Full Text Available Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (inhomogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann–Lamaître–Robertson–Walker (FLRW coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé–Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Sergiu I., E-mail: sergiu.vacaru@uaic.ro [University “Al. I. Cuza” Iaşi, Rector' s Department, 14 Alexandru Lapuşneanu Street, Corpus R, UAIC, Office 323, Iaşi, 700057 (Romania); Max-Planck-Institute for Physics, Werner-Heisenberg-Institute, Foehringer Ring 6, München, D-80805 (Germany); Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover (Germany)
2016-01-10
Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann–Lamaître–Robertson–Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé–Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations
Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan
2017-07-01
Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.
对角方阵的变换群%Transformaion Group of Diagonal Square Matrices
Institute of Scientific and Technical Information of China (English)
张世德; 李程
2011-01-01
In this paper,we show that the transformaion group of diagonal square matrices is a subgroup of direct product Sn × Sn of symetric groups of order n, if the sets of elements of each row, each column and the two diagonals are kept constant, respectively. The diagonal Latin squares, pair of orthogonal daigonal Latin squares, magic squares, magic squares of high dgree, addition multiplacation magic squares are diagonal square matrices. This paper plays an important role in the study of construction and enumeration of the objects above.%在不改变对角方阵各行、各列、主对角线、次对角线的元素之集的条件下,其变换群是n次对称群Sn的直积Sn×Sn的子群,因对角拉丁方、对角拉丁方正交侣、幻方、高次幻方、加乘幻方均属此类方阵,本文对构作这类对象及研究它们的计数有重要意义.
Mahomed, Ozayr Haroon; Asmall, Shaidah; Freeman, Melvyn
2014-11-01
The integrated chronic disease management model provides a systematic framework for creating a fundamental change in the orientation of the health system. This model adopts a diagonal approach to health system strengthening by establishing a service-linked base to training, supervision, and the opportunity to try out, assess, and implement integrated interventions.
Youdas, James W; Adams, Kady E; Bertucci, John E; Brooks, Koel J; Steiner, Meghan M; Hollman, John H
2015-01-01
The aim of this study was to simultaneously quantify electromyographic (EMG) activation levels (% maximum voluntary isometric contraction [MVIC]) within the gluteus medius muscles on both moving and stance limbs across the performance of four proprioceptive neuromuscular facilitation (PNF) spiral-diagonal patterns in standing using resistance provided by elastic tubing. Differential EMG activity was recorded from the gluteus medius muscle of 26 healthy participants. EMG signals were collected with surface electrodes at a sampling frequency of 1000 Hz during three consecutive repetitions of each spiral-diagonal movement pattern. Significant differences existed among the four-spiral-diagonal movement patterns (F3,75 = 19.8; p < 0.001). The diagonal two flexion [D2F] pattern produced significantly more gluteus medius muscle recruitment (50 SD 29.3% MVIC) than any of the other three patterns and the diagonal one extension [D1E] (39 SD 37% MVIC) and diagonal two extension [D2E] (35 SD 29% MVIC) patterns generated more gluteus medius muscle recruitment than diagonal one flexion [D1F] (22 SD 21% MVIC). From a clinical efficiency standpoint, a fitness professional using the spiral-diagonal movement pattern of D2F and elastic tubing with an average peak tension of about 9% body mass may be able to concurrently strengthen the gluteus medius muscle on both stance and moving lower limbs.
Implicit Recognition Based on Lateralized Perceptual Fluency
Directory of Open Access Journals (Sweden)
Iliana M. Vargas
2012-02-01
Full Text Available In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this “implicit recognition” results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.
Implicit Hamiltonian formulation of bond graphs
Golo, G.; Schaft, A.J. van der; Breedveld, P.C.; Maschke, B.M.
2003-01-01
This paper deals with mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that equations describing a bond graph model correspond to an implicit port-controlled Hamiltonian system wi
Implicit variational principle for contact Hamiltonian systems
Wang, Kaizhi; Wang, Lin; Yan, Jun
2017-02-01
We establish an implicit variational principle for the contact Hamiltonian systems generated by the Hamiltonian H(x, u, p) with respect to the contact 1-form α =\\text{d}u-p\\text{d}x under Tonelli and Lipschitz continuity conditions.
Implicit Learning of Semantic Preferences of Verbs
Paciorek, Albertyna; Williams, John N.
2015-01-01
Previous studies of semantic implicit learning in language have only examined learning grammatical form-meaning connections in which learning could have been supported by prior linguistic knowledge. In this study we target the domain of verb meaning, specifically semantic preferences regarding novel verbs (e.g., the preference for a novel verb to…
Implicit Reading in Chinese Pure Alexia
Shan, Chunlei; Zhu, Renjing; Xu, Mingwei; Luo, Benyan; Weng, Xuchu
2010-01-01
A number of recent studies have shown that some patients with pure alexia display evidence of implicit access to lexical and semantic information about words that they cannot read explicitly. This phenomenon has not been investigated systematically in Chinese patients. We report here a case study of a Chinese patient who met the criteria for pure…
Implicit Measures of Association in Psychopathology Research
Roefs, Anne; Huijding, Jorg; Smulders, Fren T. Y.; MacLeod, Colin M.; de Jong, Peter J.; Wiers, Reinout W.; Jansen, Anita T. M.
2011-01-01
Studies obtaining implicit measures of associations in Diagnostic and Statistical Manual of Mental Disorders (4th ed., Text Revision; American Psychiatric Association, 2000) Axis 1 psychopathology are organized into three categories: (a) studies comparing groups having a disorder with controls, (b)
Implicit Measures of Association in Psychopathology Research
Roefs, Anne; Huijding, Jorg; Smulders, Fren T. Y.; MacLeod, Colin M.; de Jong, Peter J.; Wiers, Reinout W.; Jansen, Anita T. M.
2011-01-01
Validity;Measures (Individuals);Studies obtaining implicit measures of associations in "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., Text Revision; American Psychiatric Association, 2000) Axis I psychopathology are organized into three categories: (a) studies comparing groups having a disorder with controls, (b) experimental…
Implicit measures of association in psychopathology research
Roefs, A.; Huijding, J.; Smulders, F.T.Y.; MacLeod, C.M.; de Jong, P.J.; Wiers, R.W.; Jansen, A.T.M.
2011-01-01
Studies obtaining implicit measures of associations in Diagnostic and Statistical Manual of Mental Disorders (4th ed., Text Revision; American Psychiatric Association, 2000) Axis I psychopathology are organized into three categories: (a) studies comparing groups having a disorder with controls, (b)
Crosslinguistic Differences in Implicit Language Learning
Leung, Janny H. C.; Williams, John N.
2014-01-01
We report three experiments that explore the effect of prior linguistic knowledge on implicit language learning. Native speakers of English from the United Kingdom and native speakers of Cantonese from Hong Kong participated in experiments that involved different learning materials. In Experiment 1, both participant groups showed evidence of…
Adapting implicit methods to parallel processors
Energy Technology Data Exchange (ETDEWEB)
Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D. [Univ. of Missouri, Rolla, MO (United States)
1994-12-31
When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.
Implicit moral evaluations: A multinomial modeling approach.
Cameron, C Daryl; Payne, B Keith; Sinnott-Armstrong, Walter; Scheffer, Julian A; Inzlicht, Michael
2017-01-01
Implicit moral evaluations-i.e., immediate, unintentional assessments of the wrongness of actions or persons-play a central role in supporting moral behavior in everyday life. Yet little research has employed methods that rigorously measure individual differences in implicit moral evaluations. In five experiments, we develop a new sequential priming measure-the Moral Categorization Task-and a multinomial model that decomposes judgment on this task into multiple component processes. These include implicit moral evaluations of moral transgression primes (Unintentional Judgment), accurate moral judgments about target actions (Intentional Judgment), and a directional tendency to judge actions as morally wrong (Response Bias). Speeded response deadlines reduced Intentional Judgment but not Unintentional Judgment (Experiment 1). Unintentional Judgment was stronger toward moral transgression primes than non-moral negative primes (Experiments 2-4). Intentional Judgment was associated with increased error-related negativity, a neurophysiological indicator of behavioral control (Experiment 4). Finally, people who voted for an anti-gay marriage amendment had stronger Unintentional Judgment toward gay marriage primes (Experiment 5). Across Experiments 1-4, implicit moral evaluations converged with moral personality: Unintentional Judgment about wrong primes, but not negative primes, was negatively associated with psychopathic tendencies and positively associated with moral identity and guilt proneness. Theoretical and practical applications of formal modeling for moral psychology are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Implicit emotion regulation affects outcome evaluation.
Yang, Qiwei; Tang, Ping; Gu, Ruolei; Luo, Wenbo; Luo, Yue-jia
2015-06-01
Efficient implicit emotion regulation processes, which run without awareness, are important for human well-being. In this study, to investigate the influence of implicit emotion regulation on psychological and electrophysiological responses to gains and losses, participants were required to select between two Chinese four-character idioms to match the meaning of the third one before they performed a monetary gambling task. According to whether their meanings were related to emotion regulation, the idioms fell into two categories. Event-related potentials and self-rating emotional experiences to outcome feedback were recorded during the task. Priming emotion regulation reduced subjective emotional experience to both gains and losses and the amplitudes of the feedback-related negativity, while the P3 component was not influenced. According to these results, we suggest that the application of implicit emotion regulation effectively modulated the subjective emotional experience and the motivational salience of current outcomes without the cost of cognitive resources. This study implicates the potential significance of implicit emotion regulation in decision-making processes.
Explicit and implicit assessment of gender roles.
Fernández, Juan; Quiroga, M Ángeles; Escorial, Sergio; Privado, Jesús
2014-05-01
Gender roles have been assessed by explicit measures and, recently, by implicit measures. In the former case, the theoretical assumptions have been questioned by empirical results. To solve this contradiction, we carried out two concatenated studies based on a relatively well-founded theoretical and empirical approach. The first study was designed to obtain a sample of genderized activities of the domestic sphere by means of an explicit assessment. Forty-two raters (22 women and 20 men, balanced on age, sex, and level of education) took part as raters. In the second study, an implicit assessment of gender roles was carried out, focusing on the response time given to the sample activities obtained from the first study. A total of 164 adults (90 women and 74 men, mean age = 43), with experience in living with a partner and balanced on age, sex, and level of education, participated. Taken together, results show that explicit and implicit assessment converge. The current social reality shows that there is still no equity in some gender roles in the domestic sphere. These consistent results show considerable theoretical and empirical robustness, due to the double implicit and explicit assessment.
Implicit theories and ability emotional intelligence
Directory of Open Access Journals (Sweden)
ROSARIO eCABELLO
2015-05-01
Full Text Available Previous research has shown that people differ in their implicit theories about the essential characteristics of intelligence and emotions. Some people believe these characteristics to be predetermined and immutable (entity theorists, whereas others believe that these characteristics can be changed through learning and behavior training (incremental theorists. The present study provides evidence that in healthy adults (N = 688, implicit beliefs about emotions and emotional intelligence (EI may influence performance on the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT. Adults in our sample with incremental theories about emotions and EI scored higher on the MSCEIT than entity theorists, with implicit theories about EI showing a stronger relationship to scores than theories about emotions. Although our participants perceived both emotion and EI as malleable, they viewed emotions as more malleable than EI. Women and young adults in general were more likely to be incremental theorists than men and older adults. Furthermore, we found that emotion and EI theories mediated the relationship of gender and age with ability EI. Our findings suggest that people’s implicit theories about EI may influence their emotional abilities, which may have important consequences for personal and professional EI training.
Implicit theories and ability emotional intelligence
Cabello, Rosario; Fernández-Berrocal, Pablo
2015-01-01
Previous research has shown that people differ in their implicit theories about the essential characteristics of intelligence and emotions. Some people believe these characteristics to be predetermined and immutable (entity theorists), whereas others believe that these characteristics can be changed through learning and behavior training (incremental theorists). The present study provides evidence that in healthy adults (N = 688), implicit beliefs about emotions and emotional intelligence (EI) may influence performance on the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Adults in our sample with incremental theories about emotions and EI scored higher on the MSCEIT than entity theorists, with implicit theories about EI showing a stronger relationship to scores than theories about emotions. Although our participants perceived both emotion and EI as malleable, they viewed emotions as more malleable than EI. Women and young adults in general were more likely to be incremental theorists than men and older adults. Furthermore, we found that emotion and EI theories mediated the relationship of gender and age with ability EI. Our findings suggest that people’s implicit theories about EI may influence their emotional abilities, which may have important consequences for personal and professional EI training. PMID:26052309
Implicit recognition based on lateralized perceptual fluency.
Vargas, Iliana M; Voss, Joel L; Paller, Ken A
2012-02-06
In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this "implicit recognition" results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.
Household portfolios and implicit risk aversion
Bucciol, A.; Miniaci, R.
2008-01-01
We derive from a sample of US households the distribution of the risk aversion implicit in their portfolio choice. Our estimate minimizes the distance between the certainty equivalent return generated with observed portfolios and portfolios that are optimal in a mean-variance framework. Taking into
Implicit measures of association in psychopathology research
Roefs, A.; Huijding, J.; Smulders, F.T.Y.; MacLeod, C.M.; de Jong, P.J.; Wiers, R.W.; Jansen, A.T.M.
2011-01-01
Studies obtaining implicit measures of associations in Diagnostic and Statistical Manual of Mental Disorders (4th ed., Text Revision; American Psychiatric Association, 2000) Axis I psychopathology are organized into three categories: (a) studies comparing groups having a disorder with controls, (b)
Implicit Measures of Association in Psychopathology Research
Roefs, Anne; Huijding, Jorg; Smulders, Fren T. Y.; MacLeod, Colin M.; de Jong, Peter J.; Wiers, Reinout W.; Jansen, Anita T. M.
2011-01-01
Studies obtaining implicit measures of associations in Diagnostic and Statistical Manual of Mental Disorders (4th ed., Text Revision; American Psychiatric Association, 2000) Axis 1 psychopathology are organized into three categories: (a) studies comparing groups having a disorder with controls, (b)
Crosslinguistic Differences in Implicit Language Learning
Leung, Janny H. C.; Williams, John N.
2014-01-01
We report three experiments that explore the effect of prior linguistic knowledge on implicit language learning. Native speakers of English from the United Kingdom and native speakers of Cantonese from Hong Kong participated in experiments that involved different learning materials. In Experiment 1, both participant groups showed evidence of…
Eye Movements in Implicit Artificial Grammar Learning
Silva, Susana; Inácio, Filomena; Folia, Vasiliki; Petersson, Karl Magnus
2017-01-01
Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased…
Implicit theories and ability emotional intelligence.
Cabello, Rosario; Fernández-Berrocal, Pablo
2015-01-01
Previous research has shown that people differ in their implicit theories about the essential characteristics of intelligence and emotions. Some people believe these characteristics to be predetermined and immutable (entity theorists), whereas others believe that these characteristics can be changed through learning and behavior training (incremental theorists). The present study provides evidence that in healthy adults (N = 688), implicit beliefs about emotions and emotional intelligence (EI) may influence performance on the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Adults in our sample with incremental theories about emotions and EI scored higher on the MSCEIT than entity theorists, with implicit theories about EI showing a stronger relationship to scores than theories about emotions. Although our participants perceived both emotion and EI as malleable, they viewed emotions as more malleable than EI. Women and young adults in general were more likely to be incremental theorists than men and older adults. Furthermore, we found that emotion and EI theories mediated the relationship of gender and age with ability EI. Our findings suggest that people's implicit theories about EI may influence their emotional abilities, which may have important consequences for personal and professional EI training.
Implicit Assumptions in High Potentials Recruitment
Posthumus, Jan; Bozer, Gil; Santora, Joseph C.
2016-01-01
Purpose: Professionals of human resources (HR) use different criteria in practice than they verbalize. Thus, the aim of this research was to identify the implicit criteria used for the selection of high-potential employees in recruitment and development settings in the pharmaceutical industry. Design/methodology/approach: A semi-structured…
The single category implicit association test as a measure of implicit social cognition.
Karpinski, Andrew; Steinman, Ross B
2006-07-01
The Single Category Implicit Association Test (SC-IAT) is a modification of the Implicit Association Test that measures the strength of evaluative associations with a single attitude object. Across 3 different attitude domains--soda brand preferences, self-esteem, and racial attitudes--the authors found evidence that the SC-IAT is internally consistent and makes unique contributions in the ability to understand implicit social cognition. In a 4th study, the authors investigated the susceptibility of the SC-IAT to faking or self-presentational concerns. Once participants with high error rates were removed, no significant self-presentation effect was observed. These results provide initial evidence for the reliability and validity of the SC-IAT as an individual difference measure of implicit social cognition.
Examining the Implicit Relational Assessment Procedure: Four Preliminary Studies
Drake, Chad E.; Kellum, Karen Kate; Wilson, Kelly G.; Luoma, Jason B.; Weinstein, Jonathan H.; Adams, Catherine H.
2010-01-01
The Implicit Relational Assessment Procedure (IRAP) is a relatively new measure of implicit cognition that tests cognition as relational behavior instead of an associative activity and thus may provide a more specific measure of cognitive repertoires, including those for social biases, than better known implicit measures such as the Implicit…
Implicit Statistical Learning and Language Skills in Bilingual Children
Yim, Dongsun; Rudoy, John
2013-01-01
Purpose: Implicit statistical learning in 2 nonlinguistic domains (visual and auditory) was used to investigate (a) whether linguistic experience influences the underlying learning mechanism and (b) whether there are modality constraints in predicting implicit statistical learning with age and language skills. Method: Implicit statistical learning…
Implicit Statistical Learning and Language Skills in Bilingual Children
Yim, Dongsun; Rudoy, John
2013-01-01
Purpose: Implicit statistical learning in 2 nonlinguistic domains (visual and auditory) was used to investigate (a) whether linguistic experience influences the underlying learning mechanism and (b) whether there are modality constraints in predicting implicit statistical learning with age and language skills. Method: Implicit statistical learning…
Chinese Undergraduates' Explicit and Implicit Attitudes toward Persons with Disabilities
Chen, Shuang; Ma, Li; Zhang, Jian-Xin
2011-01-01
The present study is aimed at examining implicit and explicit attitudes toward persons with disabilities among Chinese college students. The "Implicit Association Test" was used to measure their implicit attitudes, whereas their explicit attitudes toward persons with disabilities were measured by using a scale of three items.…
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
How to assess students’ explicit and implicit knowledge
Institute of Scientific and Technical Information of China (English)
韩森宇
2015-01-01
Evidences suggest that language aptitude is involved in the development of explicit as well as implicit knowledge. Tests of implicit knowledge ask students to rely on feel or intuition, rather than on linguistic knowledge. Based on previous researches, this paper is to explore ways to assess students’ implicit knowledge, and which aspects should be improved in the existing grammar tests.
Implicit Referential Meaning with Reference to English Arabic Translation
Al-Zughoul, Basem
2014-01-01
The purpose of this study is to investigate how English implicit referential meaning is translated into Arabic by analyzing sentences containing implicit referential meanings found in the novel "Harry Potter and the Prisoner of Azkaban". The analysis shows that the translation of English implicit referential meaning into Arabic can be…
Snagowski, Jan; Wegmann, Elisa; Pekal, Jaro; Laier, Christian; Brand, Matthias
2015-10-01
Recent studies show similarities between cybersex addiction and substance dependencies and argue to classify cybersex addiction as a behavioral addiction. In substance dependency, implicit associations are known to play a crucial role, and such implicit associations have not been studied in cybersex addiction, so far. In this experimental study, 128 heterosexual male participants completed an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) modified with pornographic pictures. Further, problematic sexual behavior, sensitivity towards sexual excitation, tendencies towards cybersex addiction, and subjective craving due to watching pornographic pictures were assessed. Results show positive relationships between implicit associations of pornographic pictures with positive emotions and tendencies towards cybersex addiction, problematic sexual behavior, sensitivity towards sexual excitation as well as subjective craving. Moreover, a moderated regression analysis revealed that individuals who reported high subjective craving and showed positive implicit associations of pornographic pictures with positive emotions, particularly tended towards cybersex addiction. The findings suggest a potential role of positive implicit associations with pornographic pictures in the development and maintenance of cybersex addiction. Moreover, the results of the current study are comparable to findings from substance dependency research and emphasize analogies between cybersex addiction and substance dependencies or other behavioral addictions. Copyright © 2015. Published by Elsevier Ltd.
DEFF Research Database (Denmark)
Petersen, Christian Leth; Hansen, Ole Per
1996-01-01
We have investigated the AC conductivity elements in the quantum Hall regime of two-dimensional electron gases coupled capacitively to electrodes with Corbino geometry. The samples are GaAlAs/GaAs single heterostructures, and the measurements are made at low frequencies, up to 20 kHz. The diagonal...... conductivity is derived from magnetocapacitance measurements. It increases with increasing frequency according to a power law at integer filling factors. The exponent of the power law depends on both temperature and filling factor. Ratios between Hall conductivities at different filling factors are obtained...
Directory of Open Access Journals (Sweden)
Sebastián B. Lamot
2007-08-01
Full Text Available El surco diagonal es un signo encontrado en el lóbulo de la oreja, que estaría relacionado con la enfermedad arterial coronaria. Nuestro objetivo fue estudiar la utilidad del signo. Se examinaron 104 pacientes (entre 30 y 80 años clasificados por sexo y edad. Cuarenta y nueve tenían enfermedad arterial coronaria diagnosticada por coronariografía (obstrucción > del 70% en una de las grandes arterias y/o gamagrafía de perfusión miocárdica con Talio 201 (defecto fijo. El grupo control estuvo compuesto por 55 pacientes (asintomáticos, con electrocardiograma normal. Los datos obtenidos fueron sensibilidad (61.2%, especificidad (78.2%, valor predictivo positivo de (71.4% y valor predictivo negativo (69.3%.. Observamos una relación significativa entre la presencia de surco diagonal y enfermedad arterial coronaria. Consideramos que este signo podría resultar de utilidad en la práctica clínica, fundamentalmente para los pacientes entre 30 y 60 años.The diagonal earlobe crease is a sign theorically related to coronary artery disease. The purpose of this study was to prove the usefulness of this sign. A total of 104 patients were examined (ages 30 to 80 grouped by age and sex. Forty nine of them were diagnosed of having coronary artery disease by coronary angiography (a 70% obstruction of one of the major arteries, and/or myocardial perfusion imaging with Thallium 201 (fixed defects. The control group included 55 patients (asymptomatic with normal electrocardiogram. Data here obtained included sensitivity (61.2%, specificity (78.2%, positive predictive value (71.4% and negative predictive value (69.3%. We found a significant relation between the presence of the diagonal earlobe crease and coronary artery disease. We consider it a sign that could prove useful in clinical practice, mainly among patients aged between 30 and 60.
Köllner, Martin G.
2015-01-01
This thesis tested a principle according to which implicit motives influence implicit instrumental conditioning processes. Analyzing results from four studies I investigated possible scaling effects of implicit motives, motivational dispositions working outside of conscious awareness that select, energize and orient behavior, on implicit instrumental conditioning processes in a sequence learning paradigm. I focused on the power motive (n Power), the capacity to experience having impact on oth...
Sen, Shuvam
2012-01-01
In this paper, a new family of implicit compact finite difference schemes for computation of unsteady convection-diffusion equation with variable convection coefficient is proposed. The schemes are fourth order accurate in space and second or lower order accurate in time depending on the choice of weighted time average parameter. The proposed schemes, where transport variable and its first derivatives are carried as the unknowns, combine virtues of compact discretization and Pad\\'{e} scheme for spatial derivative. These schemes which are based on five point stencil with constant coefficients, named as \\emph{(5,5) Constant Coefficient 4th Order Compact} [(5,5)CC-4OC], give rise to a diagonally dominant system of equations and shows higher accuracy and better phase and amplitude error characteristics than some of the standard methods. These schemes are capable of using a grid aspect ratio other than unity and are unconditionally stable. They efficiently capture both transient and steady solutions of linear and ...
Institute of Scientific and Technical Information of China (English)
张理论; 宋君强; 李晓梅
2004-01-01
Semi-implicit spectral element schemes for 2-D shallow water equation are given, and numerical techniques are discussed. The EBE (element by element) idea is generalized to unsymmetric caes. We design mass-matrix diagonal pre-conditioned conjugate gradient method. The parallel computing is covered, and implemented on PC cluster. The research shows that spectral element has high precision and good scalability for shallow water simulation, and fits on the high-latency PC cluster perfectly.
Institute of Scientific and Technical Information of China (English)
HU De-chao; FAN Bei-lin; WANG Guang-qian; ZHANG Hong-wu
2011-01-01
A 3-D numerical formulation is proposed on the horizontal Cartesian, vertical sigma-coordinate grid for modeling non-hydrostatic pressure free-surface flows.The pressure decomposition technique and θ semi-implicit method are used, with the solution procedure being split into two steps.First, with the implicit parts of non-hydrostatic pressures excluded, the provisional velocity field and free surface are obtained by solving a 2-D Poisson equation.Second, the theory of the differential operator is employed to derive the 3-D Poisson equation for non-hydrostatic pressures, which is solved to obtain the non-hydrostatic pressures and to update the provisional velocity field.When the non-orthogonal sigma-coordinate transformation is introduced, additional terms come into being, resulting in a 15-diagonal, diagonally dominant but unsymmetric linear system in the 3-D Poisson equation for non-hydrostatic pressures.The Biconjugate Gradient Stabilized (BiCGstab) method is used to solve the resulting 3-D unsymmetric linear system instead of the conjugate gradient method, which can only be used for symmetric, positive-definite linear systems.Three test cases are used for validations.The successful simulations of the small-amplitude wave, a supercritical flow over a ramp and a turbulent flow in the open channel indicate that the new model can simulate well non-hydrostatic flows, supercritical flows and turbulent flows.
Efficient extrapolation methods for electro- and magnetoquasistatic field simulations
Directory of Open Access Journals (Sweden)
M. Clemens
2003-01-01
Full Text Available In magneto- and electroquasi-static time domain simulations with implicit time stepping schemes the iterative solvers applied to the large sparse (non-linear systems of equations are observed to converge faster if more accurate start solutions are available. Different extrapolation techniques for such new time step solutions are compared in combination with the preconditioned conjugate gradient algorithm. Simple extrapolation schemes based on Taylor series expansion are used as well as schemes derived especially for multi-stage implicit Runge-Kutta time stepping methods. With several initial guesses available, a new subspace projection extrapolation technique is proven to produce an optimal initial value vector. Numerical tests show the resulting improvements in terms of computational efficiency for several test problems. In quasistatischen elektromagnetischen Zeitbereichsimulationen mit impliziten Zeitschrittverfahren zeigt sich, dass die iterativen Lösungsverfahren für die großen dünnbesetzten (nicht-linearen Gleichungssysteme schneller konvergieren, wenn genauere Startlösungen vorgegeben werden. Verschiedene Extrapolationstechniken werden für jeweils neue Zeitschrittlösungen in Verbindung mit dem präkonditionierten Konjugierte Gradientenverfahren vorgestellt. Einfache Extrapolationsverfahren basierend auf Taylorreihenentwicklungen werden ebenso benutzt wie speziell für mehrstufige implizite Runge-Kutta-Verfahren entwickelte Verfahren. Sind verschiedene Startlösungen verfügbar, so erlaubt ein neues Unterraum-Projektion- Extrapolationsverfahren die Konstruktion eines optimalen neuen Startvektors. Numerische Tests zeigen die aus diesen Verfahren resultierenden Verbesserungen der numerischen Effizienz.
Montero, Pedro J
2012-01-01
Brown has recently introduced a covariant formulation of the BSSN equations which is well suited for curvilinear coordinate systems. This is particularly desirable as many astrophysical phenomena are symmetric with respect to the rotation axis or are such that curvilinear coordinates adapt better to their geometry. However, the singularities associated with such coordinate systems are known to lead to numerical instabilities unless special care is taken (e.g., regularization at the origin). Cordero-Carrion will present a rigorous derivation of partially implicit Runge-Kutta methods in forthcoming papers, with the aim of treating numerically the stiff source terms in wave-like equations that may appear as a result of the choice of the coordinate system. We have developed a numerical code solving the BSSN equations in spherical symmetry and the general relativistic hydrodynamic equations written in flux-conservative form. A key feature of the code is that it uses a second-order partially implicit Runge-Kutta me...
An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations
Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.
2016-08-01
In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.
Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice.
Cunningham, William A; Nezlek, John B; Banaji, Mahzarin R
2004-10-01
Two studies investigated relationships among individual differences in implicit and explicit prejudice, right-wing ideology, and rigidity in thinking. The first study examined these relationships focusing on White Americans' prejudice toward Black Americans. The second study provided the first test of implicit ethnocentrism and its relationship to explicit ethnocentrism by studying the relationship between attitudes toward five social groups. Factor analyses found support for both implicit and explicit ethnocentrism. In both studies, mean explicit attitudes toward out groups were positive, whereas implicit attitudes were negative, suggesting that implicit and explicit prejudices are distinct; however, in both studies, implicit and explicit attitudes were related (r = .37, .47). Latent variable modeling indicates a simple structure within this ethnocentric system, with variables organized in order of specificity. These results lead to the conclusion that (a) implicit ethnocentrism exists and (b) it is related to and distinct from explicit ethnocentrism.
Reference List About Implicit and Unconscious Bias
DEFF Research Database (Denmark)
Munar, Ana Maria; Villeseche, Florence; Weidemann, Cecilie Dam
The compilation of this reference list is one of the initiatives of the action plan developed by the Council for Diversity and Inclusion at Copenhagen Business School (CBS). This reference list is the first in a series of efforts initiated by this Council to develop an academic resource pool...... and knowledge base on diversity- and inclusion-related topics. An implicit and/or unconscious bias is a bias that we are unaware of and is therefore expressed unwillingly and unknowingly. As recent studies on implicit bias indicate “we now know that the operation of prejudice and stereotyping in social judgment...... and behavior does not require personal animus, hostility, or even awareness. In fact, prejudice is often ‘unconscious’ or ‘implicit’ – that is, unwitting, unintentional, and uncontrollable even among the most well-intentioned people. […] Prejudice also lives and thrives in the banal workings of normal...
Multilevel Drift-Implicit Tau-Leap
Ben Hammouda, Chiheb
2016-01-06
The dynamics of biochemical reactive systems with small copy numbers of one or more reactant molecules is dominated by stochastic effects. For those systems, discrete state-space and stochastic simulation approaches were proved to be more relevant than continuous state-space and deterministic ones. In systems characterized by having simultaneously fast and slowtimescales, the existing discrete space-state stochastic path simulation methods such as the stochastic simulation algorithm (SSA) and the explicit tauleap method can be very slow. Implicit approximations were developed in the literature to improve numerical stability and provide efficient simulation algorithms for those systems. In this work, we propose an efficient Multilevel Monte Carlo method in the spirit of the work by Anderson and Higham (2012) that uses drift-implicit tau-leap approximations at levels where the explicit tauleap method is not applicable due to numerical stability issues. We present numerical examples that illustrate the performance of the proposed method.
Implicit cognitive processes in binge-eating disorder and obesity.
Brauhardt, Anne; Rudolph, Almut; Hilbert, Anja
2014-06-01
Binge-eating disorder (BED) is characterized by recurrent binge eating episodes, associated eating disorder and general psychopathology, and commonly occurs in obese individuals. Explicit self-esteem and explicit weight bias have been linked to BED, while little is known about implicit cognitive processes such as implicit self-esteem and implicit weight bias. Obese participants with BED and an individually matched obese only group (OB) and normal weight control group (CG; each N = 26) were recruited from the community to examine group differences and associations in explicit and implicit self-esteem and weight bias, as well as the impact of implicit cognitive processes on global eating disorder psychopathology. Implicit cognitive processes were assessed using the Implicit Association Test. Significantly lower explicit self-esteem, as well as higher exposure to explicit weight bias, compared to CG and OB was found in the BED group. All groups showed positive implicit self-esteem, however, it was significantly lower in BED when compared to CG. BED and CG demonstrated equally high implicit weight bias whereas OB did not. Explicit and implicit measures were not significantly correlated. Global eating disorder psychopathology was predicted by explicit and implicit self-esteem. The results of the present study add to the importance of implicit self-esteem and implicit weight bias beyond explicit measures in BED, while both were previously shown to be associated with onset and maintenance of BED. In conclusion, implicit cognitive processes should be focused on in interventions for BED to investigate their impact on psychological treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Decomposed Implicit Models of Piecewise - Linear Networks
Directory of Open Access Journals (Sweden)
J. Brzobohaty
1992-05-01
Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.
Implicit finite difference methods on composite grids
Mastin, C. Wayne
1987-01-01
Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.
Desingularization of implicit analytic differential equations
Energy Technology Data Exchange (ETDEWEB)
Cendra, Hernan [Universidad Nacional del Sur, Av. Alem 1253, 8000 BahIa Blanca and CONICET (Argentina); Etchechoury, MarIa [Laboratorio de Electronica Industrial, Control e Instrumentacion, Facultad de IngenierIa, Universidad Nacional de La Plata, La Plata (Argentina)
2006-09-01
The question of finding solutions to a given implicit differential equation (IDE) is an important one, in part because it appears very naturally in several problems in physics, engineering and many other fields. In this work, we show how to reduce a given analytic IDE to an analytic IDE of locally constant rank. This can be done by using some fundamental results on subanalytic subsets and desingularization of closed subanalytic subsets. An example from nonholonomic mechanics is studied using these methods.
Implicit Coordination Strategies for Effective Team Communication.
Butchibabu, Abhizna; Sparano-Huiban, Christopher; Sonenberg, Liz; Shah, Julie
2016-06-01
We investigated implicit communication strategies for anticipatory information sharing during team performance of tasks with varying degrees of complexity. We compared the strategies used by teams with the highest level of performance to those used by the lowest-performing teams to evaluate the frequency and methods of communications used as a function of task structure. High-performing teams share information by anticipating the needs of their teammates rather than explicitly requesting the exchange of information. As the complexity of a task increases to involve more interdependence among teammates, the impact of coordination on team performance also increases. This observation motivated us to conduct a study of anticipatory information sharing as a function of task complexity. We conducted an experiment in which 13 teams of four people performed collaborative search-and-deliver tasks with varying degrees of complexity in a simulation environment. We elaborated upon prior characterizations of communication as implicit versus explicit by dividing implicit communication into two subtypes: (a) deliberative/goal information and (b) reactive status updates. We then characterized relationships between task structure, implicit communication, and team performance. We found that the five teams with the fastest task completion times and lowest idle times exhibited higher rates of deliberative communication versus reactive communication during high-complexity tasks compared with the five teams with the slowest completion times and longest idle times (p = .039). Teams in which members proactively communicated information about their next goal to teammates exhibited improved team performance. The findings from our work can inform the design of communication strategies for team training to improve performance of complex tasks. © 2016, Human Factors and Ergonomics Society.
An advanced implicit solver for MHD
Udrea, Bogdan
A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel
Fundamental Group and Euler Characteristic of Permutation Products and Fat Diagonals
Kallel, Sadok
2010-01-01
Permutation products and their various "fat diagonal" subspaces are studied from the topological and geometric point of view. We first write down an expression for the fundamental group of any permutation product of a connected space $X$, having the homotopy type of a simplicial complex, in terms of $\\pi_1(X)$ and $H_1(X;{\\mathbb Z})$. We then prove that the fundamental group of the configuration space of $n$-points on $X$ of which multiplicities do not exceed $n/2$ coincides with $H_1(X;{\\mathbb Z})$. Useful additivity properties for the Euler characteristic are then spelled out and used to give explicit formulae for the Euler characteristics of various fat diagonals. Several examples and calculations are included.
Li, Yifan; Liang, Xihui; Zuo, Ming J.
2017-02-01
This paper presents a novel signal processing scheme, diagonal slice spectrum assisted optimal scale morphological filter (DSS-OSMF), for rolling element fault diagnosis. In this scheme, the concept of quadratic frequency coupling (QFC) is firstly defined and the ability of diagonal slice spectrum (DSS) in detection QFC is derived. The DSS-OSMF possesses the merits of depressing noise and detecting QFC. It can remove fault independent frequency components and give a clear representation of fault symptoms. A simulated vibration signal and experimental vibration signals collected from a bearing test rig are employed to evaluate the effectiveness of the proposed method. Results show that the proposed method has a superior performance in extracting fault features of defective rolling element bearing. In addition, comparisons are performed between a multi-scale morphological filter (MMF) and a DSS-OSMF. DSS-OSMF outperforms MMF in detection of an outer race fault and a rolling element fault of a rolling element bearing.
Direct current hopping conductance in one-dimensional diagonal disordered systems
Institute of Scientific and Technical Information of China (English)
Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Xiao Jian-Rong
2006-01-01
Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
Ngo, Van A
2013-01-01
We propose a combination between the theory of diagonal entropy representing far-from-equilibrium ensembles and Jarzynski Equality to explore thermalization effects on thermodynamic quantities such as temperature, entropy, mechanical work and free-energy changes. Applying the theory to a quantum harmonic oscillator, we find that diagonal entropy offers a definition of temperature for closed systems far from equilibrium, and a better sampling of reaction pathways than the conventional von Neumann entropy. We also apply the theory to a many-body system of hard-core boson lattice, and discuss the ideas of how to estimate temperature, entropy and measure work distribution functions. The theory suggests a powerful technique to study non-equilibrium dynamics in quantum systems by means of performing work in a series of quenches.
Quasilocal charges and the complete GGE for field theories with non-diagonal scattering
Vernier, Eric
2016-01-01
It has recently been shown that some integrable spin chains possess a set of quasilocal conserved charges, with the classic example being the spin-$\\frac{1}{2}$ XXZ Heisenberg chain. These charges have been proven to be essential for properly describing stationary states after a quantum quench, and must be included in the generalized Gibbs ensemble (GGE). We find that similar charges are also necessary for the GGE description of integrable quantum field theories with non-diagonal scattering. A stationary state in a non-diagonal scattering theory is completely specified by fixing the mode-ocuppation density distributions of physical particles, as well auxiliary particles which carry no energy or momentum. We show that the set of conserved charges with integer Lorentz spin, related to the integrability of the model, are unable to fix the distributions of these auxiliary particles, since these charges can only fix kinematical properties of physical particles. The field theory analogs of quasilocal lattice charge...
Exact Solutions in Modified Massive Gravity and Off-Diagonal Wormhole Deformations
Vacaru, Sergiu I
2014-01-01
There are explored off-diagonal deformations of "prime" metrics in Einstein gravity (for instance, for wormhole configurations) into "target" exact solutions in f(R,T)-modified and massive/ bi-metric gravity theories. The new classes of solutions may posses, or not, Killing symmetries and can be characterized by effective induced masses, anisotropic polarized interactions and cosmological constants. For nonholonomic deformations with (conformal) ellipsoid/ toroid and/or solitonic symmetries and, in particular, for small eccentricity rotoid configurations, we can generate wormholes like objects matching external black ellipsoid - de Sitter geometries. We conclude that there are nonholonomic transforms and/or non-trivial limits to exact solutions in general relativity when modified/ massive gravity effects are modeled by off-diagonal and/or nonholonomic parametric interactions.
Jain, Mamta; Kumar, Anil; Choudhary, Rishabh Charan
2016-09-09
In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.
Off-Diagonal Deformations of Kerr Metrics and Black Ellipsoids in Heterotic Supergravity
Vacaru, Sergiu I
2016-01-01
Geometric methods for constructing exact solutions of motion equations with first order $\\alpha ^{\\prime }$ corrections to the heterotic supergravity action implying a non-trivial Yang-Mills sector and six dimensional, 6-d, almost-K\\"{a}hler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections. In particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The correspond...
Exact solutions in modified massive gravity and off-diagonal wormhole deformations
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Sergiu I. [Alexandru Ioan Cuza University, Rector' s Office, Iasi (Romania); CERN, Theory Division, Geneva 23 (Switzerland)
2014-03-15
We explore off-diagonal deformations of 'prime' metrics in Einstein gravity (for instance, for wormhole configurations) into 'target' exact solutions in f(R,T)-modified and massive/bi-metric gravity theories. The new classes of solutions may, or may not, possess Killing symmetries and can be characterized by effective induced masses, anisotropic polarized interactions, and cosmological constants. For nonholonomic deformations with (conformal) ellipsoid/ toroid and/or solitonic symmetries and, in particular, for small eccentricity rotoid configurations, we can generate wormhole-like objects matching an external black ellipsoid--de Sitter geometries. We conclude that there are nonholonomic transforms and/or non-trivial limits to exact solutions in general relativity when modified/massive gravity effects are modeled by off-diagonal and/or nonholonomic parametric interactions. (orig.)
A Diagnostic Supportive Sign for the Cause of Death Diagonal Ear Lobe Crease
Directory of Open Access Journals (Sweden)
Birol Demirel
2005-08-01
Full Text Available Coronary artery disease is a major cause of natural death. The high incidence and mortality of these diseases arised a need to investigate possible risk factors beyond well known. Diagonal ear lobe crease (DEC, was the physical sign, described in 1973. We investigated the possibility of DEC as a helpful predictive sign in the postmortem examination of forensic sudden death cases. The angiographic results revealed that whenever the percentages of the stenosis in left descending coronary artery, circumflex artery and right coronary artery increased, the incidence of the DEC did so accordingly. These results were correlated with the previous studies reporting significant correlation between coronary artery disease and the DEC. Particularly, in the absence of supportive medical history and without a physical sign of trauma, the presence of DEC could well be a supportive sign for the physician to consider the coronary artery disease as a cause of death. Key words: Diagonal ear lobe crease, coronary artery disease, death investigation
Identifiability of Complex Blind Source Separation via Non-Unitary Joint Diagonalization
Kleinsteuber, Martin
2011-01-01
Identifiability analysis of complex Blind Source Separation (BSS), i.e. to study under what conditions the BSS problem can be solved, is a long-standing and most critical problem in the community. It serves not only as the indicator to solvability of the BSS problem, but also as the constructive ground for developing efficient algorithms. Various BSS methods are based on jointly diagonalizing a set of matrices, which are generated using second- or higher-order statistics. The present work provides a general result on the uniqueness conditions of matrix joint diagonalization. It unifies all existing results on the identifiability conditions of complex BSS, with respect to non-circularity, non-stationarity, non-whiteness, and non-Gaussianity. Additionally, following the main identifiability result, a solution for complex BSS is proposed. It is given in closed form in terms of an eigenvalue and a singular value decomposition of two matrices.
Benchmarking the Multidimensional Stellar Implicit Code MUSIC
Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.
2017-04-01
We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.
Implicit and explicit communication in decentralized control
Grover, Pulkit
2010-01-01
There has been substantial progress recently in understanding toy problems of purely implicit signaling. These are problems where the source and the channel are implicit -- the message is generated endogenously by the system, and the plant itself is used as a channel. In this paper, we explore how implicit and explicit communication can be used synergistically to reduce control costs. The setting is an extension of Witsenhausen's counterexample where a rate-limited external channel connects the two controllers. Using a semi-deterministic version of the problem, we arrive at a binning-based strategy that can outperform the best known strategies by an arbitrarily large factor. We also show that our binning-based strategy attains within a constant factor of the optimal cost for an asymptotically infinite-length version of the problem uniformly over all problem parameters and all rates on the external channel. For the scalar case, although our results yield approximate optimality for each fixed rate, we are unabl...
Algorithms for Implicit Hitting Set Problems
Chandrasekaran, Karthekeyan; Moreno-Centeno, Erick; Vempala, Santosh
2011-01-01
A hitting set for a collection of sets is a set that has a non-empty intersection with each set in the collection; the hitting set problem is to find a hitting set of minimum cardinality. Motivated by instances of the hitting set problem where the number of sets to be hit is large, we introduce the notion of implicit hitting set problems. In an implicit hitting set problem the collection of sets to be hit is typically too large to list explicitly; instead, an oracle is provided which, given a set H, either determines that H is a hitting set or returns a set that H does not hit. We show a number of examples of classic implicit hitting set problems, and give a generic algorithm for solving such problems optimally. The main contribution of this paper is to show that this framework is valuable in developing approximation algorithms. We illustrate this methodology by presenting a simple on-line algorithm for the minimum feedback vertex set problem on random graphs. In particular our algorithm gives a feedback vert...
Self-similar solutions with fat tails for a coagulation equation with diagonal kernel
Niethammer, Barbara
2011-01-01
We consider self-similar solutions of Smoluchowski's coagulation equation with a diagonal kernel of homogeneity $\\gamma < 1$. We show that there exists a family of second-kind self-similar solutions with power-law behavior $x^{-(1+\\rho)}$ as $x \\to \\infty$ with $\\rho \\in (\\gamma,1)$. To our knowledge this is the first example of a non-solvable kernel for which the existence of such a family has been established.
Energy Technology Data Exchange (ETDEWEB)
Chulaevsky, Victor, E-mail: victor.tchoulaevski@univ-reims.fr [Universite de Reims, Departement de Mathematiques (France)
2012-12-15
We propose a simplified version of the Multi-Scale Analysis of Anderson models on a lattice and, more generally, on a countable graph with polynomially bounded growth of balls, with diagonal disorder represented by an IID or strongly mixing correlated potential. We apply the new scaling procedure to discrete Schroedinger operators and obtain localization bounds on eigenfunctions and eigenfunction correlators in arbitrarily large finite subsets of the graph which imply the spectral and strong dynamical localization in the entire graph.
Institute of Scientific and Technical Information of China (English)
王宗国; 覃绍京; 康凯; 王垂林
2012-01-01
We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
Energy Technology Data Exchange (ETDEWEB)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.
1996-10-01
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of
A Parallel Algorithm for Solving Block-diagonal Structured Large Linear System
Institute of Scientific and Technical Information of China (English)
SHEN Jie; ZHANG Zhong-lin; CHENG Ji-lin
2001-01-01
A parallel algorithm for solving block-diagonal structured large linear system is presented.This algorithm is based on the "gradient-simplex" method. It partitions a large linear system into several small linear subsystems so that they can be solved in parallel. The algorithm has the merit of high speed and is suitable for the large linear systems with less coupling constrains. The efficiency and applicability of the method is also analyzed.
Spin-12 XYZ model revisit: General solutions via off-diagonal Bethe ansatz
Directory of Open Access Journals (Sweden)
Junpeng Cao
2014-09-01
Full Text Available The spin-12 XYZ model with both periodic and anti-periodic boundary conditions is studied via the off-diagonal Bethe ansatz method. The exact spectra of the Hamiltonians and the Bethe ansatz equations are derived by constructing the inhomogeneous T–Q relations, which allow us to treat both the even N (the number of lattice sites and odd N cases simultaneously in a unified approach.
Models with orthogonal block structure, with diagonal blockwise variance-covariance matrices
Carvalho, Francisco; Mexia, João T.; Covas, Ricardo
2017-07-01
We intend to show that in the family of models with orthogonal block structure, OBS, we may single out those with blockwise diagonal variance-covariance matrices, DOBS. Namely we show that for every model with observation vector y with OBS, there is a model y °=P y , with P orthogonal which is DOBS and that the estimation of relevant parameters may be carried out for y ° .
Generalized Coordinate Bethe Ansatz for open spin chains with non-diagonal boundaries
Ragoucy, E
2011-01-01
We introduce a generalization of the original Coordinate Bethe Ansatz that allows to treat the case of open spin chains with non-diagonal boundary matrices. We illustrate it on two cases: the XXX and XXZ chains. Short review on a joint work with N. Crampe (L2C) and D. Simon (LPMA), see arXiv:1009.4119, arXiv:1105.4119 and arXiv:1106.3264.
Boundary form factors in the Smirnov--Fateev model with a diagonal boundary $S$ matrix
Lashkevich, Michael
2008-01-01
The boundary conditions with diagonal boundary $S$ matrix and the boundary form factors for the Smirnov--Fateev model on a half line has been considered in the framework of the free field representation. In contrast to the case of the sine-Gordon model, in this case the free field representation is shown to impose severe restrictions on the boundary $S$ matrix, so that a finite number of solutions is only consistent with the free field realization.
Generalized Synchronization of Different Chaotic Systems Based on Nonnegative Off-Diagonal Structure
Directory of Open Access Journals (Sweden)
Ling Guo
2013-01-01
Full Text Available The generalized synchronization problem is studied in this paper for different chaotic systems with the aid of the direct design method. Based on Lyapunov stability theory and matrix theory, some sufficient conditions guaranteeing the stability of a nonlinear system with nonnegative off-diagonal structure are obtained. Then the control scheme is designed from the stable system by the direct design method. Finally, two numerical simulations are provided to verify the effectiveness and feasibility of the proposed method.
Generalized cost-criterion-based learning algorithm for diagonal recurrent neural networks
Wang, Yongji; Wang, Hong
2000-05-01
A new generalized cost criterion based learning algorithm for diagonal recurrent neural networks is presented, which is with form of recursive prediction error (RPE) and has second convergent order. A guideline for the choice of the optimal learning rate is derived from convergence analysis. The application of this method to dynamic modeling of typical chemical processes shows that the generalized cost criterion RPE (QRPE) has higher modeling precision than BP trained MLP and quadratic cost criterion trained RPE (QRPE).
Exact diagonalization of the D-dimensional spatially confined quantum harmonic oscillator
Directory of Open Access Journals (Sweden)
Kunle Adegoke
2016-01-01
Full Text Available In the existing literature various numerical techniques have been developed to quantize the confined harmonic oscillator in higher dimensions. In obtaining the energy eigenvalues, such methods often involve indirect approaches such as searching for the roots of hypergeometric functions or numerically solving a differential equation. In this paper, however, we derive an explicit matrix representation for the Hamiltonian of a confined quantum harmonic oscillator in higher dimensions, thus facilitating direct diagonalization.
DIAGONALLY COMPENSATED REDUCTION AND MULTISPLITTING OF A SYMMETRIC POSITIVE DEFINITE MATRIX
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a special form (e.g. the dissection form [11]). The main tool for deriving our methods is the diagonally compensated reduction (cf. [1]). The convergence of such methods is also discussed by using this tool.
Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.
Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai
2011-01-01
Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs.
The decoherence of quantum entanglement and teleportation in Bell-diagonal states
Institute of Scientific and Technical Information of China (English)
QIN Meng; LI Yan-Biao; WANG Xiao; BAI Zhong
2012-01-01
We study the dynamics of entanglement and teleportation in Bell-diagonal states. Using the concepts of concurrence and fidelity,the analytical expressions of the entanglement,the output entanglement and the average fidelity with decoherence are obtained for this model.We discover a class of initial states in which the output entanglement and the average fidelity are destroyed by decoherence. The quality of teleportation depends on the system parameters and time.
Cludius, Barbara; Schmidt, Alexander F; Moritz, Steffen; Banse, Rainer; Jelinek, Lena
2017-06-01
Cognitive models of obsessive-compulsive disorder (OCD) highlight the role of cognitive biases for the development of the disorder. One of these biases, an inflated sense of responsibility has been associated with higher anger scores and latent aggression on self-report scales, especially in patients with compulsive checking. Validity of self-report assessment is, however, compromised by inaccuracy, social desirability, and low metacognitive awareness of traits and behaviors in patients. The aim of the present study was to extend the research on latent aggression in individuals with OCD by using an indirect, implicit measure of aggression. Fifty-eight patients with OCD and 25 healthy controls were assessed with an Aggressiveness-Implicit Association Test (IAT), which is a reaction time task that assesses the strength of associations between the concept of "aggressiveness" and "me" compared to others. Contrary to our expectation, OCD patients with checking symptoms showed a more peaceful implicit self-concept than healthy controls. This result was corroborated by negative correlations between checking symptoms and implicit aggressiveness in the OCD sample. No self-report measures on aggression or anger were included in the study. In comparison to previous research using self-report measures, our study indicates that implicit aspects of aggression do indeed differ from controlled aspects in patients with checking compulsions. Future research is necessary to better understand the role of aggressiveness in OCD and to derive implications for therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adaptive PVD Steganography Using Horizontal, Vertical, and Diagonal Edges in Six-Pixel Blocks
Directory of Open Access Journals (Sweden)
Anita Pradhan
2017-01-01
Full Text Available The traditional pixel value differencing (PVD steganographical schemes are easily detected by pixel difference histogram (PDH analysis. This problem could be addressed by adding two tricks: (i utilizing horizontal, vertical, and diagonal edges and (ii using adaptive quantization ranges. This paper presents an adaptive PVD technique using 6-pixel blocks. There are two variants. The proposed adaptive PVD for 2×3-pixel blocks is known as variant 1, and the proposed adaptive PVD for 3×2-pixel blocks is known as variant 2. For every block in variant 1, the four corner pixels are used to hide data bits using the middle column pixels for detecting the horizontal and diagonal edges. Similarly, for every block in variant 2, the four corner pixels are used to hide data bits using the middle row pixels for detecting the vertical and diagonal edges. The quantization ranges are adaptive and are calculated using the correlation of the two middle column/row pixels with the four corner pixels. The technique performs better as compared to the existing adaptive PVD techniques by possessing higher hiding capacity and lesser distortion. Furthermore, it has been proven that the PDH steganalysis and RS steganalysis cannot detect this proposed technique.
Institute of Scientific and Technical Information of China (English)
Mosayeb Dalvand; Ghanbar Ebrahimi; Mehdi Tajvidi; Mohammad Layeghi
2014-01-01
We investigated bending moment resistance under diagonal compression load of corner doweled joints with plywood members. Joint members were made of 11-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 mm) in joint members were chosen variables in our experiment. By increasing the connector’s diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment re-sistance under diagonal compressive load was increased by increasing the dowel’s depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N·m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N·m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.
Thermalization away from integrability and the role of operator off-diagonal elements.
Konstantinidis, N P
2015-05-01
We investigate the rate of thermalization of local operators in the one-dimensional anisotropic antiferromagnetic Heisenberg model with next-nearest neighbor interactions that break integrability. This is done by calculating the scaling of the difference of the diagonal and canonical thermal ensemble values as a function of system size, and by directly calculating the time evolution of the expectation values of the operators with the Chebyshev polynomial expansion. Spatial and spin symmetry is exploited and the Hamiltonian is divided into subsectors according to their symmetry. The rate of thermalization depends on the proximity to the integrable limit. When integrability is weakly broken thermalization is slow, and becomes faster the stronger the next-nearest neighbor interaction is. Three different regimes for the rate of thermalization with respect to the strength of the integrability breaking parameter are identified. These are shown to be directly connected with the relative strength of the low and higher energy difference off-diagonal operator matrix elements in the symmetry eigenbasis of the Hamiltonian. Close to the integrable limit the off-diagonal matrix elements peak at higher energies and high-frequency fluctuations are important and slow down thermalization. Away from the integrable limit a strong low-energy peak gradually develops that takes over the higher frequency fluctuations and leads to quicker thermalization.
Diagonal-free 3D/4D HN,HN-TROSY-NOESY-TROSY.
Diercks, Tammo; Truffault, Vincent; Coles, Murray; Millet, Oscar
2010-02-24
Structural biology by NMR spectroscopy relies on measuring interproton distances via NOE cross-signals in nuclear Overhauser effect spectroscopy (NOESY) spectra. In proteins, the subset of H(N)-H'(N) NOE contacts is most important for deriving initial structural models and for spectral assignment by "NOE walking". Here we present a fully optimized NMR experiment for measuring these pivotal contacts: diagonal-free 3D/4D HN,HN-TROSY-NOESY-TROSY. It combines all of the critical requirements for extracting the optimal H(N)-H'(N) distance information: the highest resolution by consistent transverse relaxation-optimized spectroscopy (TROSY) evolution, the largest spectral dispersion in two (15)N dimensions, and maximal coverage and purity through specific suppression of the intense diagonal signals that are the main source of overlap, artifacts, and bias in any NOESY spectrum. Most notably, diagonal suppression here comes without compromising the NOE cross-signal intensities. This optimized experiment appears to be ideal for a broad range of structural studies, particularly on large deuterated, partially unfolded, helical, and membrane proteins.
Block-diagonal discriminant analysis and its bias-corrected rules.
Pang, Herbert; Tong, Tiejun; Ng, Michael
2013-06-01
High-throughput expression profiling allows simultaneous measure of tens of thousands of genes at once. These data have motivated the development of reliable biomarkers for disease subtypes identification and diagnosis. Many methods have been developed in the literature for analyzing these data, such as diagonal discriminant analysis, support vector machines, and k-nearest neighbor methods. The diagonal discriminant methods have been shown to perform well for high-dimensional data with small sample sizes. Despite its popularity, the independence assumption is unlikely to be true in practice. Recently, a gene module based linear discriminant analysis strategy has been proposed by utilizing the correlation among genes in discriminant analysis. However, the approach can be underpowered when the samples of the two classes are unbalanced. In this paper, we propose to correct the biases in the discriminant scores of block-diagonal discriminant analysis. In simulation studies, our proposed method outperforms other approaches in various settings. We also illustrate our proposed discriminant analysis method for analyzing microarray data studies.
Who owns implicit attitudes? Testing a metacognitive perspective.
Cooley, Erin; Payne, B Keith; Loersch, Chris; Lei, Ryan
2015-01-01
Metacognitive inferences about ownership for one's implicit attitudes have the power to turn implicit bias into explicit prejudice. In Study 1, participants were assigned to construe their implicit attitudes toward gay men as belonging to themselves (owned) or as unrelated to the self (disowned). Construing one's implicit responses as owned led to greater implicit-explicit attitude correspondence. In Study 2, we measured ownership for implicit attitudes as well as self-esteem. We predicted that ownership inferences would dictate explicit attitudes to the degree that people had positive views of the self. Indeed, higher ownership for implicit bias was associated with greater implicit-explicit attitude correspondence, and this effect was driven by participants high in self-esteem. Finally, in Study 3, we manipulated inferences of ownership and measured self-esteem. Metacognitions of ownership affected implicit-explicit attitude correspondence but only among those with relatively high self-esteem. We conclude that subjective inferences about implicit bias affect explicit prejudice. © 2014 by the Society for Personality and Social Psychology, Inc.
De Boeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A.
1996-01-01
We demonstrate a novel technique for efficient vibrational mode suppression in stimulated photon echo by diagonal time-gating. This is especially important if the system exhibits non-Markovian optical dynamics.
Jankiewicz, Justyna
2004-01-01
We study the properties of time evolution of the $K^{0}-\\bar{K}^{0} $ system in spectral formulation. Within the one--pole model we find the exact form of the diagonal matrix elements of the effective Hamiltonian for this system. It appears that, contrary to the Lee--Oehme--Yang (LOY) result, these exact diagonal matrix elements are different if the total system is CPT--invariant but CP--noninvariant.
Ranade, K S; Alber, Gernot; Ranade, Kedar S.
2007-01-01
The concept of asymptotic correctability of Bell-diagonal quantum states is generalised to elementary quantum systems of higher dimensions. Based on these results basic properties of quantum state purification protocols are investigated which are capable of purifying tensor products of Bell-diagonal states and which are based on $B$-steps of the Gottesman-Lo-type with the subsequent application of a Calderbank-Shor-Steane quantum code. Consequences for maximum tolerable error rates of quantum cryptographic protocols are discussed.
Institute of Scientific and Technical Information of China (English)
XIE Bing-Hao; ZHANG Hong-Biao; CHEN Jing-Ling
2002-01-01
An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.
A New Upper Bound for A-1 of a Strictly α-Diagonally Dominant M-Matrix
Directory of Open Access Journals (Sweden)
Zhanshan Yang
2013-01-01
Full Text Available A new upper bound for A-1 of a real strictly diagonally dominant M-matrix A is present, and a new lower bound of the smallest eigenvalue λminA of A is given, which improved the results in the literature. Furthermore, an upper bound for A-1 of a real strictly α-diagonally dominant M-matrix is shown.
Special function of nestin+neurons in the medial septum-diagonal band of Broca in adult rats
Institute of Scientific and Technical Information of China (English)
Yuhong Zhao; Kaihua Guo; Dongpei Li; Qunfang Yuan; Zhibin Yao
2014-01-01
Nestin+neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin+neu-rons to the olfactory bulb and the time course of nestin+neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin+neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6%of nestin+neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin+neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin+neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin+neurons decreased to a minimum later than nestin-/ChAT+neurons in the medial sep-tum-diagonal band of Broca. The results suggest that nestin+cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin+cholinergic neurons may have a stronger tolerance to injury than Nestin-/ChAT+neurons. The difference between nestin+and nestin-/ChAT+neurons during the recovery process requires further investigations.
Implicit social cognition: attitudes, self-esteem, and stereotypes.
Greenwald, A G; Banaji, M R
1995-01-01
Social behavior is ordinarily treated as being under conscious (if not always thoughtful) control. However, considerable evidence now supports the view that social behavior often operates in an implicit or unconscious fashion. The identifying feature of implicit cognition is that past experience influences judgment in a fashion not introspectively known by the actor. The present conclusion--that attitudes, self-esteem, and stereotypes have important implicit modes of operation--extends both the construct validity and predictive usefulness of these major theoretical constructs of social psychology. Methodologically, this review calls for increased use of indirect measures--which are imperative in studies of implicit cognition. The theorized ordinariness of implicit stereotyping is consistent with recent findings of discrimination by people who explicitly disavow prejudice. The finding that implicit cognitive effects are often reduced by focusing judges' attention on their judgment task provides a basis for evaluating applications (such as affirmative action) aimed at reducing such unintended discrimination.
Implicit and explicit learning in individuals with agrammatic aphasia.
Schuchard, Julia; Thompson, Cynthia K
2014-06-01
Implicit learning is a process of acquiring knowledge that occurs without conscious awareness of learning, whereas explicit learning involves the use of overt strategies. To date, research related to implicit learning following stroke has been largely restricted to the motor domain and has rarely addressed implications for language. The present study investigated implicit and explicit learning of an auditory word sequence in 10 individuals with stroke-induced agrammatic aphasia and 18 healthy age-matched participants using an adaptation of the Serial Reaction Time task. Individuals with aphasia showed significant learning under implicit, but not explicit, conditions, whereas age-matched participants learned under both conditions. These results suggest significant implicit learning ability in agrammatic aphasia. Furthermore, results of an auditory sentence span task indicated working memory deficits in individuals with agrammatic aphasia, which are discussed in relation to explicit and implicit learning processes.
Implicit and explicit timing in oculomotor control.
Directory of Open Access Journals (Sweden)
Ilhame Ameqrane
Full Text Available The passage of time can be estimated either explicitly, e.g. before leaving home in the morning, or implicitly, e.g. when catching a flying ball. In the present study, the latency of saccadic eye movements was used to evaluate differences between implicit and explicit timing. Humans were required to make a saccade between a central and a peripheral position on a computer screen. The delay between the extinction of a central target and the appearance of an eccentric target was the independent variable that could take one out of four different values (400, 900, 1400 or 1900 ms. In target trials, the delay period lasted for one of the four durations randomly. At the end of the delay, a saccade was initiated by the appearance of an eccentric target. Cue&target trials were similar to target trials but the duration of the delay was visually cued. In probe trials, the duration of the upcoming delay was cued, but there was no eccentric target and subjects had to internally generate a saccade at the estimated end of the delay. In target and cue&target trials, the mean and variance of latency distributions decreased as delay duration increased. In cue&target trials latencies were shorter. In probe trials, the variance increased with increasing delay duration and scalar variability was observed. The major differences in saccadic latency distributions were observed between visually-guided (target and cue&target trials and internally-generated saccades (probe trials. In target and cue&target trials the timing of the response was implicit. In probe trials, the timing of the response was internally-generated and explicitly based on the duration of the visual cue. Scalar timing was observed only during probe trials. This study supports the hypothesis that there is no ubiquitous timing system in the brain but independent timing processes active depending on task demands.
Implicitly learned suppression of irrelevant spatial locations.
Leber, Andrew B; Gwinn, Rachael E; Hong, Yoolim; O'Toole, Ryan J
2016-12-01
How do we ignore a salient, irrelevant stimulus whose location is predictable? A variety of studies using instructional manipulations have shown that participants possess the capacity to exert location-based suppression. However, for the visual search challenges we face in daily life, we are not often provided explicit instructions and are unlikely to consciously deliberate on what our best strategy might be. Instead, we might rely on our past experience-in the form of implicit learning-to exert strategic control. In this paper, we tested whether implicit learning could drive spatial suppression. In Experiment 1, participants searched displays in which one location contained a target, while another contained a salient distractor. An arrow cue pointed to the target location with 70 % validity. Also, unbeknownst to the participants, the same arrow cue predicted the distractor location with 70 % validity. Results showed facilitated RTs to the predicted target location, confirming target enhancement. Critically, distractor interference was reduced at the predicted distractor location, revealing that participants used spatial suppression. Further, we found that participants had no explicit knowledge of the cue-distractor contingencies, confirming that the learning was implicit. In Experiment 2, to seek further evidence for suppression, we modified the task to include occasional masked probes following the arrow cue; we found worse probe identification accuracy at the predicted distractor location than control locations, providing converging evidence that observers spatially suppressed the predicted distractor locations. These results reveal an ecologically desirable mechanism of suppression, which functions without the need for conscious knowledge or externally guided instructions.
Implicit Theories and Offender Representativeness in Judgments About Sexual Crime
Harper, CA; Bartels, RM
2016-01-01
Implicit theories structure the way people understand and respond to various human actions. Typically, people believe attributes are either fixed (entitists) or malleable (incrementalists). The present study aimed to examine: (a) whether attitudes towards sexual offenders differ depending upon one’s implicit theory about human nature and sexual offenders, and (b) whether implicit theories are associated with judgments made about different types of child abuser. A sample of 252 community parti...
Discrete-Time Models for Implicit Port-Hamiltonian Systems
Castaños, Fernando; Michalska, Hannah; Gromov, Dmitry; Hayward, Vincent
2015-01-01
Implicit representations of finite-dimensional port-Hamiltonian systems are studied from the perspective of their use in numerical simulation and control design. Implicit representations arise when a system is modeled in Cartesian coordinates and when the system constraints are applied in the form of additional algebraic equations (the system model is in a DAE form). Such representations lend themselves better to sample-data approximations. An implicit representation of a port-Hamiltonian sys...
Applications of implicit restarting in optimization and control Dan Sorensen
Energy Technology Data Exchange (ETDEWEB)
Sorensen, D. [Rice Univ., Houston, TX (United States)
1996-12-31
Implicit restarting is a technique for combining the implicitly shifted QR mechanism with a k-step Arnoldi or Lanczos factorization to obtain a truncated form of the implicitly shifted QR-iteration suitable for large scale eigenvalue problems. The software package ARPACK based upon this technique has been successfully used to solve large scale symmetric and nonsymmetric (generalized) eigenvalue problems arising from a variety of applications.
Implicit beliefs about ideal body image predict body image dissatisfaction
Heider, Niclas; Spruyt, Adriaan; De Houwer, Jan
2015-01-01
We examined whether implicit measures of actual and ideal body image can be used to predict body dissatisfaction in young female adults. Participants completed two Implicit Relational Assessment Procedures (IRAPs) to examine their implicit beliefs concerning actual (e.g., I am thin) and desired ideal body image (e.g., I want to be thin). Body dissatisfaction was examined via self-report questionnaires and rating scales. As expected, differences in body dissatisfaction exerted a differential i...
Implicit Beliefs about Ideal Body Image Predict Body Image Dissatisfaction
Niclas eHeider; Adriaan eSpruyt; Jan eDe Houwer
2015-01-01
We examined whether implicit measures of actual and ideal body image can be used to predict body dissatisfaction in young female adults. Participants completed two Implicit Relational Assessment Procedures (IRAPs) to examine their implicit beliefs concerning actual (e.g., I am thin) and desired ideal body image (e.g., I want to be thin). Body dissatisfaction was examined via self-report questionnaires and rating scales. As expected, differences in body dissatisfaction exerted a differential i...
Implicit self-esteem in borderline personality and depersonalization disorder
2012-01-01
Self-identity is disrupted in people with borderline personality disorder (BPD) and depersonalization disorder (DPD), fluctuating with sudden shifts in affect in BPD and experienced as detached in DPD. Measures of implicit self-esteem, free from conscious control and presentation biases, may highlight how such disruptions of self-concept differentially affect these two populations on an unconscious level. We examined implicit self-esteem using the Implicit Association Test, along with measure...
How to assess students’ explicit and implicit knowledge
Institute of Scientific and Technical Information of China (English)
韩森宇
2015-01-01
Evidences suggest that language aptitude is involved in the development of explicit as well as implicit knowledge.Tests of implicit knowledge ask students to rely on feel or intuition,rather than on linguistic knowledge.Based on previous researches,this paper is to explore ways to assess students’implicit knowledge,and which aspects should be improved in the existing grammar tests.
Predicting film genres with implicit ideals.
Olney, Andrew McGregor
2012-01-01
We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.
RELIABILITY ANALYSIS FOR IMPLICIT LIMIT STATE EQUATION
Institute of Scientific and Technical Information of China (English)
WANG Yan-ping; L(U) Zhen-zhou; YUE Zhu-feng
2005-01-01
In order to obtain the failure probability of the implicit limit state equation accurately, advanced mean value second order (AMVSO) method was presented, and advanced mean value (AMV) in conjunction with the response surface method (RSM)was also presented. The implementations were constructed on the basis of the advanced mean value first order (AMVFO) method and the RSM. The examples show that the accuracy of the AMVSO is higher than that of the AMVFO. The results of the AMV in conjunction with the RSM are not sensitive to the positions of the sampling points for determining the response surface equation, which illustrates the robustness of the presented method.
Predicting film genres with implicit ideals
Directory of Open Access Journals (Sweden)
Andrew McGregor Olney
2013-01-01
Full Text Available We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.