WorldWideScience

Sample records for diagnostics microchips detection

  1. Detection of telomerase activity using microchip electrophoresis.

    Science.gov (United States)

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  3. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  4. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-03-09

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection. The GMRsensor is fabricated in a horseshoe shape in order to detect the majority of MPs that are trapped around the conducting structure. The GMR sensing elements are connected in a Wheatstone bridge circuit topology for optimum noise suppression. Full fabrication details of the micro-chip, characterization of the GMRsensors, and experimental results with MPs are presented in this paper. Experimental results showed that the micro-chip can detect MPs from low concentration samples after they were guided toward the GMRsensors by applying current to the conducting ring structure.

  5. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye.

    Science.gov (United States)

    Roy, Sharmili; Mohd-Naim, Noor Faizah; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2017-11-22

    Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 10 3 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.

  6. Recent developments in optical detection methods for microchip separations.

    Science.gov (United States)

    Götz, Sebastian; Karst, Uwe

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.

  7. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    Science.gov (United States)

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recent developments in optical detection methods for microchip separations

    NARCIS (Netherlands)

    Götz, S.; Karst, U.

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments

  9. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection

  10. Barcoded microchips for biomolecular assays.

    Science.gov (United States)

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  11. Fabrication of polyester microchannel with functional surface for electro-chromatography - Incorporation of detection devices into the microchip -

    International Nuclear Information System (INIS)

    Uchiyama, Katsumi; Qiu, Jing Miao; Hobo, Toshiyuki

    2001-01-01

    In recent years, new analytical techniques using microchip devise have been extensively studied (micro-TAS). One of the most successful examples is capillary electrophoresis (CE) with glass plate fabricated by photolithography followed by the chemical or physical etching process. Micro CE one of the most excellent separation techniques, performs separations in microchannel formed in appreciate substrate material. We developed a fabrication method for polyester micro channels with aikene alcohol inside the wall of the channel and demonstrated the usefulness of the polymer microchip. Although many researchers have been studying microchannel or micro-devices for analytical use, miniaturization of the total system including sample introduction, separation, detection and data treatment is still under development. Especially, the miniaturization of the detection system will be a hard bar to be overcome. Our method, based upon the in situ polymerization of polyester resin on an appreciate template, can be exported to let some parts incorporated directly into the microchip during the polymerization process. In this paper, we will describe the incorporation of detection components (light emitting diode and optical fiber) into polyester microchip and the application of the microchip to the analysis of amino acids separated by electrophoresis.

  12. Variability of microchip capillary electrophoresis with conductivity detection.

    Science.gov (United States)

    Tantra, Ratna; Robinson, Kenneth; Sikora, Aneta

    2014-02-01

    Microfluidic CE with conductivity detection platforms could have an impact on the future development of smaller, faster and portable devices. However, for the purpose of reliable identification and quantification, there is a need to understand the degree of irreproducibility associated with the analytical technique. In this study, a protocol was developed to remove baseline drift problems sometimes observed in such devices. The protocol, which consisted of pre-conditioning steps prior to analysis, was used to further assess measurement variability from 24 individual microchips fabricated from six separate batches of glass substrate. Results show acceptable RSD percentage for retention time measurements but large variability in their corresponding peak areas (with some microchips having variability of ∼50%). Sources of variability were not related to substrate batch but possibly to a number of factors such as applied voltage fluctuations or variations in microchannel quality, for example surface roughness that will subsequently affect microchannel dimensions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microchip ELISA coupled with cell phone to detect ovarian cancer HE4 biomarker in urine.

    Science.gov (United States)

    Wang, ShuQi; Akbas, Ragip; Demirci, Utkan

    2015-01-01

    Ovarian cancer is a leading cause of death from gynecologic cancers in the USA, and early diagnosis can potentially increase 5-year survival rate. Detection of biomarkers derived from hyperplasia of epithelial tissue by enzyme-linked immunosorbent assay (ELISA) proves to be a practical way of early diagnosis of ovarian cancer. However, ELISA is commonly performed in a laboratory setting, and it cannot be used in a clinical setting for on-site consultation. We have shown a microchip ELISA that detects HE4, an ovarian cancer biomarker, from urine using a cell phone integrated with a mobile application for imaging and data analysis. In microchip ELISA, HE4 from urine was first absorbed on the surface; the primary and secondary antibodies were subsequently anchored on the surface via immuno-reaction; and addition of substrate led to color development because of enzymatic labeling. The microchip after color development was imaged using a cell phone, and the color intensity was analyzed by an integrated mobile application. By comparing with an ELISA standard curve, the concentration of HE4 was reported on the cell phone screen. The presented microchip ELISA coupled with a cell phone is portable as opposed to traditional ELISA, and this method can facilitate the detection of ovarian cancer at the point-of-care (POC).

  14. Recent Advances in Mycotoxin Determination for Food Monitoring via Microchip

    Directory of Open Access Journals (Sweden)

    Yan Man

    2017-10-01

    Full Text Available Mycotoxins are one of the main factors impacting food safety. Mycotoxin contamination has threatened the health of humans and animals. Conventional methods for the detection of mycotoxins are gas chromatography (GC or liquid chromatography (LC coupled with mass spectrometry (MS, or enzyme-linked immunosorbent assay (ELISA. However, all these methods are time-consuming, require large-scale instruments and skilled technicians, and consume large amounts of hazardous regents and solvents. Interestingly, a microchip requires less sample consumption and short analysis time, and can realize the integration, miniaturization, and high-throughput detection of the samples. Hence, the application of a microchip for the detection of mycotoxins can make up for the deficiency of the conventional detection methods. This review focuses on the application of a microchip to detect mycotoxins in foods. The toxicities of mycotoxins and the materials of the microchip are firstly summarized in turn. Then the application of a microchip that integrates various kinds of detection methods (optical, electrochemical, photo-electrochemical, and label-free detection to detect mycotoxins is reviewed in detail. Finally, challenges and future research directions in the development of a microchip to detect mycotoxins are previewed.

  15. Electrophoresis microchip with integrated waveguides for simultaneous native UV fluorescence and absorbance detection

    DEFF Research Database (Denmark)

    Ohlsson, Pelle Daniel; Sala, Olga Ordeig; Mogensen, Klaus Bo

    2009-01-01

    Simultaneous label-free detection of UV absorbance and native UV-excited fluorescence in an electrophoresis microchip is presented. UV transparent integrated waveguides launch light at a wavelength of 254 nm from a mercury lamp along the length of a 1-mm. long detection cell. Transmitted UV light...

  16. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway

    Science.gov (United States)

    Saylor, Rachel A.; Reid, Erin A.; Lunte, Susan M.

    2016-01-01

    A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor L-DOPA metabolism in a rat brain slice. PMID:25958983

  17. Integration of a Graphite/PMMA CompositeElectrode into a Poly(methyl methacrylate) (PMMA) Substrate for Electrochemical Detection in Microchips

    Science.gov (United States)

    Regel, Anne; Lunte, Susan

    2013-01-01

    Traditional fabrication methods for polymer microchips, the bonding of two substrates together to form the microchip, can make the integration of carbon electrodes difficult. We have developed a simple and inexpensive method to integrate graphite/PMMA composite electrodes (GPCEs) into a PMMA substrate. These substrates can be bonded to other PMMA layers using a solvent-assisted thermal bonding method. The optimal composition of the GPCEs for electrochemical detection was determined using cyclic voltammetry with dopamine as a test analyte. Using the optimized GPCEs in an all-PMMA flow cell with flow injection analysis, it was possible to detect 50 nM dopamine under the best conditions. These electrodes were also evaluated for the detection of dopamine and catechol following separation by microchip electrophoresis (ME). PMID:23670816

  18. Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection.

    Science.gov (United States)

    Hou, Jue; Zhang, Huacheng; Yang, Qiang; Li, Mingzhu; Song, Yanlin; Jiang, Lei

    2014-06-02

    Ultratrace detection attracts great interest because it is still a challenge to the early diagnosis and drug testing. Enriching the targets from highly diluted solutions to the sensitive area is a promising method. Inspired by the fog-collecting structure on Stenocara beetle's back, a photonic-crystal (PC) microchip with hydrophilic-hydrophobic micropattern was fabricated by inkjet printing. This device was used to realize high-sensitive ultratrace detection of fluorescence analytes and fluorophore-based assays. Coupled with the fluorescence enhancement effect of a PC, detection down to 10(-16) mol L(-1) was achieved. This design can be combined with biophotonic devices for the detection of drugs, diseases, and pollutions of the ecosystem. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of arecoline in Semen Arecae decoction pieces by microchip capillary electrophoresis with contactless conductivity detection

    Directory of Open Access Journals (Sweden)

    Zi-You Cai

    2012-10-01

    Full Text Available A new method for the determination of arecoline in Semen Arecae decoction pieces by microchip capillary electrophoresis with contactless conductivity detection (MCE-CCD was proposed. The effects of various electrophoretic operating parameters on the analysis of arecoline were studied. Under the optimal conditions, arecoline was rapidly separated and detected in 1 min with good linearity over the concentration range of 20–1500 μM (r2=0.9991 and the detection limit of 5 μM (S/N=3. The method was used for the analysis of arecoline satisfactorily with a recovery of 96.8–104%. Keywords: Microchip capillary electrophoresis, Contactless conductivity detection, Arecoline, Semen Arecae

  20. Imprinted NanoVelcro Microchips for Isolation and Characterization of Circulating Fetal Trophoblasts: Toward Noninvasive Prenatal Diagnostics

    OpenAIRE

    Hou, Shuang; Chen, Jie-Fu; Song, Min; Zhu, Yazhen; Jan, Yu Jen; Chen, Szu Hao; Weng, Tzu-Hua; Ling, Dean-An; Chen, Shang-Fu; Ro, Tracy; Liang, An-Jou; Lee, Tom; Jin, Helen; Li, Man; Liu, Lian

    2017-01-01

    Circulating fetal nucleated cells (CFNCs) in maternal blood offer an ideal source of fetal genomic DNA for noninvasive prenatal diagnostics (NIPD). We developed a class of nanoVelcro microchips to effectively enrich a subcategory of CFNCs, i.e., circulating trophoblasts (cTBs) from maternal blood, which can then be isolated with single-cell resolution by a laser capture microdissection (LCM) technique for downstream genetic testing. We first established a nanoimprinting fabrication process to...

  1. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  2. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    Science.gov (United States)

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  3. CE microchips: an opened gate to food analysis.

    Science.gov (United States)

    Escarpa, Alberto; González, María Cristina; Crevillén, Agustín González; Blasco, Antonio Javier

    2007-03-01

    CE microchips are the first generation of micrototal analysis systems (-TAS) emerging in the miniaturization scene of food analysis. CE microchips for food analysis are fabricated in both glass and polymer materials, such as PDMS and poly(methyl methacrylate) (PMMA), and use simple layouts of simple and double T crosses. Nowadays, the detection route preferred is electrochemical in both, amperometry and conductivity modes, using end-channel and contactless configurations, respectively. Food applications using CE microchips are now emerging since food samples present complex matrices, the selectivity being a very important challenge because the total integration of analytical steps into microchip format is very difficult. As a consequence, the first contributions that have recently appeared in the relevant literature are based primarily on fast separations of analytes of high food significance. These protocols are combined with different strategies to achieve selectivity using a suitable nonextensive sample preparation and/or strategically choosing detection routes. Polyphenolic compounds, amino acids, preservatives, and organic and inorganic ions have been studied using CE microchips. Thus, new and exciting future expectations arise in the domain of food analysis. However, several drawbacks could easily be found and assumed within the miniaturization map.

  4. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    Science.gov (United States)

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  5. Allergen extracts and recombinant proteins: comparison of efficiency of in vitro allergy diagnostics using multiplex assay on a biological microchip.

    Science.gov (United States)

    Smoldovskaya, Olga; Feyzkhanova, Guzel; Arefieva, Alla; Voloshin, Sergei; Ivashkina, Olga; Reznikov, Yuriy; Rubina, Alla

    2016-01-01

    Immunological test systems for diagnostics of type I hypersensitivity involve the following types of antigens: whole allergen extracts, individual highly purified proteins and their recombinant analogues. The goal of this study was to compare the results obtained with whole allergen extracts (birch pollen, cat dander, and timothy grass pollen) and their respective recombinant proteins in biochip-based immunoassay. Multiplex fluorescent immunoassay of 139 patients' blood serum samples was carried out using biological microchips (biochips). sIgE concentrations for the chosen allergens and their recombinant components were measured. ROC analysis was used for comparison of the results and determination of diagnostic accuracy. The results for the birch pollen extract and its recombinant allergens have shown that the diagnostic accuracy of the methods utilizing the whole allergen extract, its major component Bet v 1 and the combination of major and minor components (Bet v 1 and Bet v 2) was the same. Values for diagnostic accuracy for the cat dander extract and its major recombinant component Fel d 1 were equal. In contrast with birch pollen and cat dander allergens, using of recombinant components of timothy grass pollen (Phl p 1, Phl p 5, Phl p 7 and Phl p 12) did not allow reaching the diagnostic accuracy of using natural extract. Multiplex analysis of samples obtained from patients with allergy to birch pollen and cat dander using biological microchips has shown that comparable accuracy was observed for the assay with natural extracts and recombinant allergens. In the case of timothy grass allergen, using the recombinant components may be insufficient.

  6. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  7. Detection system of capillary array electrophoresis microchip based on optical fiber

    Science.gov (United States)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  8. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    Science.gov (United States)

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  9. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    Directory of Open Access Journals (Sweden)

    Chiwan Koo

    Full Text Available Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  10. Integration of amperometric sensors for microchip capillary electrophoresis application

    International Nuclear Information System (INIS)

    Dicorato, F; Moore, E; Glennon, J

    2011-01-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  11. Integration of amperometric sensors for microchip capillary electrophoresis application

    Energy Technology Data Exchange (ETDEWEB)

    Dicorato, F; Moore, E [Life Sciences Interface Group, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Glennon, J, E-mail: eric.moore@tyndall.ie [Chemistry Department, University College Cork, College Road, Cork (Ireland)

    2011-08-17

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis ({mu}CE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  12. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells

    DEFF Research Database (Denmark)

    Spégel, Christer; Heiskanen, Arto; Pedersen, Simon

    2008-01-01

    A lab-on-a-chip device that enables positioning of single or small ensembles of cells on an aperture in close proximity to a mercaptopropionic acid (MPA) modified sensing electrode has been developed and characterized. The microchip was used for the detection of Ca2+-dependent quantal catecholamine...

  13. Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil.

    Science.gov (United States)

    Godoy-Caballero, María del Pilar; Acedo-Valenzuela, María Isabel; Galeano-Díaz, Teresa; Costa-García, Agustín; Fernández-Abedul, María Teresa

    2012-11-07

    The relevance of the development of microchip electrophoresis applications in the field of food analysis is considered in this work. A novel method to determine important phenolic compounds in extra virgin olive oil samples using a miniaturized chemical analysis system is presented in this paper. Three interesting phenolic compounds in olive oil and fruit (tyrosol, hydroxytyrosol and oleuropein glucoside) were studied by end-channel amperometric detection using a 100 μm gold wire as working electrode in glass microchip electrophoresis. The electrochemical behavior of these compounds was studied and the medium to carry out their detection was selected (0.1 M aqueous sulfuric acid). The best conditions for the separation were achieved in sodium tetraborate (10% methanol, pH 9.50) with different concentrations for the sample and the running buffer in order to allow the sample stacking phenomenon. The injection was carried out using 600 V for 3 s and the separation voltage was set at 1000 V. The quality of the method was evaluated through its analytical figures of merit and by its performance on real extra virgin olive oil samples. Determination of these compounds was carried out using the standard addition calibration method with good recoveries.

  14. Quantitative wavelenght-resolved fluorescence detection for microchip capillary electrophoresis

    NARCIS (Netherlands)

    Götz, S.

    2006-01-01

    This thesis describes the development and application of a new wavelengthresolved CCD-based fluorescence detector for microchip separations. In recent years, miniaturization has been one of the major trends in the development of new analytical separation systems. As the manipulated sample amounts

  15. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jü rgen

    2016-01-01

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  16. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  17. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2016-08-01

    Full Text Available The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA for the manipulation of superparamagnetic beads (SPBs, and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  18. Microchips on glass

    NARCIS (Netherlands)

    Nanver, L.; De Vreede, L.; Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  19. Polymeric microchip for the simultaneous determination of anions and cations by hydrodynamic injection using a dual-channel sequential injection microchip electrophoresis system.

    Science.gov (United States)

    Gaudry, Adam J; Nai, Yi Heng; Guijt, Rosanne M; Breadmore, Michael C

    2014-04-01

    A dual-channel sequential injection microchip capillary electrophoresis system with pressure-driven injection is demonstrated for simultaneous separations of anions and cations from a single sample. The poly(methyl methacrylate) (PMMA) microchips feature integral in-plane contactless conductivity detection electrodes. A novel, hydrodynamic "split-injection" method utilizes background electrolyte (BGE) sheathing to gate the sample flows, while control over the injection volume is achieved by balancing hydrodynamic resistances using external hydrodynamic resistors. Injection is realized by a unique flow-through interface, allowing for automated, continuous sampling for sequential injection analysis by microchip electrophoresis. The developed system was very robust, with individual microchips used for up to 2000 analyses with lifetimes limited by irreversible blockages of the microchannels. The unique dual-channel geometry was demonstrated by the simultaneous separation of three cations and three anions in individual microchannels in under 40 s with limits of detection (LODs) ranging from 1.5 to 24 μM. From a series of 100 sequential injections the %RSDs were determined for every fifth run, resulting in %RSDs for migration times that ranged from 0.3 to 0.7 (n = 20) and 2.3 to 4.5 for peak area (n = 20). This system offers low LODs and a high degree of reproducibility and robustness while the hydrodynamic injection eliminates electrokinetic bias during injection, making it attractive for a wide range of rapid, sensitive, and quantitative online analytical applications.

  20. Diamond electrophoretic microchips-Joule heating effects

    International Nuclear Information System (INIS)

    Karczemska, Anna T.; Witkowski, Dariusz; Ralchenko, Victor; Bolshakov, Andrey; Sovyk, Dmitry; Lysko, Jan M.; Fijalkowski, Mateusz; Bodzenta, Jerzy; Hassard, John

    2011-01-01

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare TM was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  1. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  2. Real-Time PCR using a PCR Microchip with Integrated Thermal System and Polymer Waveguides for the Detection of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. By using the integrated optical system of the real-time PCR chip, cadF – a virulence gene of Campylobacter jejuni, could specifically be detected. Two different DNA binding dyes, SYTOX...

  3. Biological cell controllable patch-clamp microchip

    Science.gov (United States)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  4. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    Science.gov (United States)

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Determination of ammonium on an integrated microchip with LED-induced fluorescence detection.

    Science.gov (United States)

    Xue, Shuhua; Uchiyama, Katsumi; Li, Hai-Fang

    2012-01-01

    A simply fabricated microfluidic device integrated with a fluorescence detection system has been developed for on-line determination of ammonium in aqueous samples. A 365-nm light-emitting diode (LED) as an excitation source and a minor band pass filter were mounted into a polydimethylsiloxane (PDMS)-based microchip for the purpose of miniaturization of the entire analytical system. The ammonium sample reacted with o-phthaldialdehyde (OPA) on-chip with sodium sulfite as reducing reagent to produce a fluorescent isoindole derivative, which can emit fluorescence signal at about 425 nm when excited at 365 nm. Effects of pH, flow rate of solutions, concentrations of OPA-reagent, phosphate and sulfite salt were investigated. The calibration curve of ammonium in the range of 0.018-1.8 microg/mL showed a good linear relationship with R2 = 0.9985, and the detection limit was (S/N = 3) 3.6 x 10(-4) microg/mL. The relative standard deviation was 2.8% (n = 11) by calculating at 0.18 microg/mL ammonium for repeated detection. The system was applied to determine the ammonium concentration in rain and river waters, even extent to other analytes fluorescence detection by the presented device.

  6. Amperometric Detection in Microchip Electrophoresis Devices: Effect of Electrode Material and Alignment on Analytical Performance

    Science.gov (United States)

    Fischer, David J.; Hulvey, Matthew K.; Regel, Anne R.; Lunte, Susan M.

    2012-01-01

    The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical (EC) detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and limits of detection (LOD) were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine (NE), and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest limit of detection (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for catechol in comparison to end-channel alignment. PMID:19802847

  7. Design and Fabrication of a PDMS Microchip Based Immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  8. Microchips and controlled-release drug reservoirs.

    Science.gov (United States)

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  9. A sol-gel-modified poly(methyl methacrylate) electrophoresis microchip with a hydrophilic channel wall.

    Science.gov (United States)

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-01-01

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was approximately 27.4 degrees compared with approximately 66.3 degrees for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13x10(-4) cm2 V(-1) s(-1) for the native-PMMA channel to 4.86x10(-4) cm2 V(-1) s(-1) for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74,882.3 m(-1) compared with 14,730.5 m(-1) for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  10. Integrated self-powered microchip biosensor for endogenous biological cyanide.

    Science.gov (United States)

    Deng, Liu; Chen, Chaogui; Zhou, Ming; Guo, Shaojun; Wang, Erkang; Dong, Shaojun

    2010-05-15

    In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open circuit potential 620 mV and power density 302 microW cm(-2), showing great potential as a small power resource of portable electronics. Most importantly, for the first time we demonstrated the feasibility of developing a self-powered biosensor based on the inhibitive effect on microchip enzyme biofuel cell. With cyanide employed as the model analyte, this method showed a linear range of 3.0 x 10(-7) to 5.0 x 10(-4) M and a detection limit with 1.0 x 10(-7) M under the optimal conditions. The detection limit was lower than the acceptable cyanide concentration in drinking water (1.9 x 10(-6) M) according to the World Health Organization (WHO). This self-powered sensor was successfully used to detect the cyanide concentration in a real sample, cassava, which is the main carbohydrate resource in South America and Africa. This presented biosensor combined with a resistor and a multimeter demonstrated the general applicability as a fast and simple detection method in the determination of endogenous biological cyanide.

  11. Monitoring the enzymatic conversion of urea to ammonium by conventional or microchip capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Schuchert-Shi, Aiping; Hauser, Peter C

    2008-05-15

    Capillary electrophoresis with contactless conductivity detection was used to directly quantify the ammonium produced in the enzymatic conversion of urea with urease. This allowed the characterization of the reaction without having to use more elaborate indirect optical methods for quantification. The maximum rate of reaction, V(max), was determined as 5.1 mmol x mL(-1) x min(-1), and the Michaelis-Menten constant, K(m), was determined as 16 mM. Furthermore, the method was successfully applied to the determination of urea in clinical samples of human blood by using a conventional capillary and a microchip device.

  12. A Peristaltic Pump Integrated on a 100% Glass Microchip Using Computer Controlled Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Yo Tanaka

    2014-05-01

    Full Text Available Lab-on-a-chip technology is promising for the miniaturization of chemistry, biochemistry, and/or biology researchers looking to exploit the advantages of a microspace. To manipulate fluid on a microchip, on-chip pumps are indispensable. To date, there have been several types of on-chip pumps including pneumatic, electroactive, and magnetically driven. However these pumps introduce polymers, metals, and/or silicon to the microchip, and these materials have several disadvantages, including chemical or physical instability, or an inherent optical detection limit. To overcome/avoid these issues, glass has been one of the most commonly utilized materials for the production of multi-purpose integrated chemical systems. However, glass is very rigid, and it is difficult to incorporate pumps onto glass microchips. This paper reports the use of a very flexible, ultra-thin glass sheet (minimum thickness of a few micrometers to realize a pump installed on an entirely glass-based microchip. The pump is a peristaltic-type, composed of four serial valves sealing a cavity with two penetrate holes using ultra-thin glass sheet. By this pump, an on-chip circulating flow was demonstrated by directly observing fluid flow, visualized via polystyrene tracking particles. The flow rate was proportional to the pumping frequency, with a maximum flow rate of approximately 0.80 μL/min. This on-chip pump could likely be utilized in a wide range of applications which require the stability of a glass microchip.

  13. In-situ photopatterning of hydrogel microarrays in polished microchips

    NARCIS (Netherlands)

    Gümüscü, B.; van den Berg, Albert; Eijkel, Jan C.T.

    2015-01-01

    We present a fabrication method which enables simple and eproducible photopatterning of micron- sized hydrogel arrays inside closed microchips. To achieve this, the glass cover of the microchip is thinned by mechanical grinding and polishing. This procedure reduces the spacing between the photomask

  14. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    Science.gov (United States)

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-01-01

    Simple Summary Microchip identification has become an important tool to reunite stray dogs and cats with their owners, and is now compulsory in most states of Australia. Improvement of the microchipping system in Australia is limited by a lack of published Australian data documenting the problems experienced by shelter staff when using microchip data to contact the owner of a stray animal. In this study we determine the character and frequency of inaccurate microchip data to identify weaknesses in the current microchipping system. This information could be used to develop strategies that increase the accuracy of microchip data that will increase the reclaiming of stray animals. Abstract A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of

  15. Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection

    NARCIS (Netherlands)

    Vrouwe, E.X.; Lüttge, Regina; van den Berg, Albert

    2004-01-01

    The direct measurement of lithium in whole blood is described. Using microchip capillary electrophoresis (CE) with defined sample loading and applying the principles of column coupling, alkali metals were determined in a drop of whole blood. Blood collected from a finger stick was mixed with

  16. A hydrodynamic microchip for formation of continuous cell chains

    Science.gov (United States)

    Khoshmanesh, Khashayar; Zhang, Wei; Tang, Shi-Yang; Nasabi, Mahyar; Soffe, Rebecca; Tovar-Lopez, Francisco J.; Rajadas, Jayakumar; Mitchell, Arnan

    2014-05-01

    Here, we demonstrate the unique features of a hydrodynamic based microchip for creating continuous chains of model yeast cells. The system consists of a disk shaped microfluidic structure, containing narrow orifices that connect the main channel to an array of spoke channels. Negative pressure provided by a syringe pump draws fluid from the main channel through the narrow orifices. After cleaning process, a thin layer of water is left between the glass substrate and the polydimethylsiloxane microchip, enabling leakage beneath the channel walls. A mechanical clamp is used to adjust the operation of the microchip. Relaxing the clamp allows leakage of liquid beneath the walls in a controllable fashion, leading to formation of a long cell chain evenly distributed along the channel wall. The unique features of the microchip are demonstrated by creating long chains of yeast cells and model 15 μm polystyrene particles along the side wall and analysing the hydrogen peroxide induced death of patterned cells.

  17. A method for UV-bonding in the fabrication of glass electrophoretic microchips.

    Science.gov (United States)

    Huang, Z; Sanders, J C; Dunsmor, C; Ahmadzadeh, H; Landers, J P

    2001-10-01

    This paper presents an approach for the development of methodologies amenable to simple and inexpensive microchip fabrication, potentially applicable to dissimilar materials bonding and chip integration. The method involves a UV-curable glue that can be used for glass microchip fabrication bonding at room temperature. This involves nothing more than fabrication of glue "guide channels" into the microchip architecture that upon exposure to the appropriate UV light source, bonds the etched plate and cover plate together. The microchip performance was verified by capillary zone electrophoresis (CZE) of small fluorescent molecules with no microchannel surface modification carried out, as well as with a DNA fragment separation following surface modification. The performance of these UV-bonded electrophoretic microchips indicates that this method may provide an alternative to high temperature bonding.

  18. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    Directory of Open Access Journals (Sweden)

    Emily Lancaster

    2015-05-01

    Full Text Available A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258 and cats (n = 6950 entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37% had problems with their data, including being registered to a previous owner or organisation (47%, all phone numbers incorrect/disconnected (29%, and the microchip not registered (14%. A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%. The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of microchip data to facilitate the reclaiming of stray dogs and cats.

  19. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Andrew [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)]. E-mail: af@aerodyne.com; Iannarilli, Frank J. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States); Wormhoudt, Joda C. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)

    2005-08-31

    A laser induced breakdown spectroscopy-based apparatus for the analysis of aluminum alloys which employs a microchip laser and a handheld spectrometer with an ungated, non-intensified CCD array has been built and tested. The microchip laser, which emits low energy pulses (4-15 {mu}J) at high repetition rates (1-10 kHz) at 1064 nm, produces, when focused, an ablation crater with a radius on the order of only 10 {mu}m. The resulting emission is focused onto an optical fiber connected to 0.10 m focal length spectrometer with a spectral range of 275-413 nm. The apparatus was tested using 30 different aluminum alloy reference samples. Two techniques for constructing calibration curves from the data, peak integration and partial least squares regression, were quantitatively evaluated. Results for Fe, Mg, Mn, Ni, Si, and Zn indicated limits of detection (LOD) that ranged from 0.05 to 0.14 wt.% and overall measurement errors which varied from 0.06 to 0.18 wt.%. Higher limits of detection and overall error for Cu (> 0.3 wt.%) were attributed to analysis problems associated with the presence of optically thick lines and a spectral interference from Zn. Improvements in design and component sensitivity should increase overall performance by at least a factor of 2, allowing for dependable aluminum alloy classification.

  20. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    International Nuclear Information System (INIS)

    Petroni, Jacqueline Marques; Lucca, Bruno Gabriel; Ferreira, Valdir Souza

    2017-01-01

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  1. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Jacqueline Marques [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil); Lucca, Bruno Gabriel, E-mail: bruno.lucca@ufes.br [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, São Mateus, ES, 29932-540 (Brazil); Ferreira, Valdir Souza [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil)

    2017-02-15

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  2. Microchip Coulter particle counter

    DEFF Research Database (Denmark)

    Larsen, Ulrik Darling; Blankenstein, Gert; Branebjerg, J.

    1997-01-01

    This paper presents a micro device employing the Coulter principle for counting and sizing of living cells and particles in liquid suspension. The microchip Coulter particle counter (μCPC) has been employed in a planar silicon structure covered with glass, which enables detailed observation during...

  3. Evaluation of pain and inflammation associated with hot iron branding and microchip transponder injection in horses.

    Science.gov (United States)

    Lindegaard, Casper; Vaabengaard, Dorte; Christophersen, Mogens T; Ekstøm, Claus T; Fjeldborg, Julie

    2009-07-01

    To compare effects of hot iron branding and microchip transponder injection regarding aversive behavioral reactions indicative of pain and inflammation in horses. 7 adult horses. In a randomized controlled clinical crossover study, behavioral reactions to hot iron branding and microchip transponder injection were scored by 4 observers. Local and systemic inflammation including allodynia were assessed and compared by use of physiologic and biochemical responses obtained repeatedly for the 168-hour study period. Serum cortisol concentration was measured repeatedly throughout the first 24 hours of the study. Sham treatments were performed 1 day before and 7 days after treatments. Hot iron branding elicited a significantly stronger aversive reaction indicative of pain than did microchip transponder injection (odds ratio [OR], 12.83). Allodynia quantified by means of skin sensitivity to von Frey monofilaments was significantly greater after hot iron branding than after microchip transponder injection (OR, 2.59). Neither treatment induced signs of spontaneously occurring pain that were observed during the remaining study period, and neither treatment induced increased serum cortisol concentrations. Comparison with sham treatments indicated no memory of an unpleasant event. The hot iron branding areas had significantly increased skin temperature and swelling (OR, 14.6). Systemic inflammation as measured via serum amyloid A concentration was not detected after any of the treatments. Microchip transponder injection induced less signs of pain and inflammation and did not seem to pose a higher long-term risk than hot iron branding. Consequently, results indicated that hot iron branding does inflict more pain and should be abandoned where possible.

  4. Production, Cost and Chip Characteristics of In-Woods Microchipping

    Science.gov (United States)

    J. Thompson; W. Sprinkle

    2013-01-01

    Emerging markets for biomass have increased the interest in producing microchips in the field. As a component of a large United States Department of Energy (DOE) funded project, microchipping has been trialed on a limited scale. The goal of the research was to evaluate the production, cost and chip characteristics of a mobile disc chipper configured to produce...

  5. Microchip capillary electrophoresis for point-of-care analysis of lithium

    NARCIS (Netherlands)

    Vrouwe, E.X.; Luttge, R.; Vermes, I.; Berg, van den A.

    2007-01-01

    Background: Microchip capillary electrophoresis (CE) is a promising method for chemical analysis of complex samples such as whole blood. We evaluated the method for point-of-care testing of lithium. Methods: Chemical separation was performed on standard glass microchip CE devices with a conductivity

  6. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    Science.gov (United States)

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  7. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  8. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis.

    Science.gov (United States)

    Petroni, Jacqueline Marques; Lucca, Bruno Gabriel; Ferreira, Valdir Souza

    2017-02-15

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An Electrochromatography Chip with Integrated Waveguides for UV Absorbance Detection

    DEFF Research Database (Denmark)

    Gustafsson, Omar; Mogensen, Klaus Bo; Ohlsson, Pelle Daniel

    2008-01-01

    A silicon-based microchip for electrochromatographic separations is presented. Apart from a microfluidic network, the microchip has integrated UV-transparent waveguides for detection and integrated couplers for optical fibers on the chip, yielding the most complete chromatography microchip to date...... to the waveguides. The entire oxidized silicon microchip structure is sealed with a glass lid. Reversed phase electrochromatographic separation of three neutral compounds is demonstrated using UV absorbance detection at 254 nm. Baseline separation of the analytes is achieved in less than two minutes....

  10. Physiological and behavioural responses of young horses to hot iron branding and microchip implantation.

    Science.gov (United States)

    Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C

    2012-02-01

    Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (PBranding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Pencil graphite leads as simple amperometric sensors for microchip electrophoresis.

    Science.gov (United States)

    Natiele Tiago da Silva, Eiva; Marques Petroni, Jacqueline; Gabriel Lucca, Bruno; Souza Ferreira, Valdir

    2017-11-01

    In this work we demonstrate, for the first time, the use of inexpensive commercial pencil graphite leads as simple amperometric sensors for microchip electrophoresis. A PDMS support containing one channel was fabricated through soft lithography and sanded pencil graphite leads were inserted into this channel to be used as working electrodes. The electrochemical and morphological characterization of the sensor was carried out. The graphite electrode was coupled to PDMS microchips in end-channel configuration and electrophoretic experiments were performed using nitrite and ascorbate as probe analytes. The analytes were successfully separated and detected in well-defined peaks with satisfactory resolution using the microfluidic platform proposed. The repeatability of the pencil graphite electrode was satisfactory (RSD values of 1.6% for nitrite and 12.3% for ascorbate, regarding the peak currents) and its lifetime was estimated to be ca. 700 electrophoretic runs over a cost of ca. $ 0.05 per electrode. The limits of detection achieved with this system were 2.8 μM for nitrite and 5.7 μM for ascorbate. For proof of principle, the pencil graphite electrode was employed for the real analysis of well water samples and nitrite was successfully quantified at levels below its maximum contaminant level established in Brazil and US. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Liquid phase chromatography on microchips

    DEFF Research Database (Denmark)

    Kutter, Jörg Peter

    2012-01-01

    explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important...

  13. Feasibility of gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry in analysis of anabolic steroids.

    Science.gov (United States)

    Hintikka, Laura; Haapala, Markus; Franssila, Sami; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto

    2010-12-24

    Mass spectrometers equipped with atmospheric pressure ion sources (API-MS) have been designed to be interfaced with liquid chromatographs (LC) and have rarely been connected to gas chromatographs (GC). Recently, we introduced a heated nebulizer microchip and showed its potential to interface liquid microseparation techniques and GC with API-MS. This study demonstrates the feasibility of GC-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) in the analysis of underivatized anabolic steroids in urine. The APPI microchip provides high ionization efficiency and produces abundant protonated molecules or molecular ions with minimal fragmentation. The feasibility of GC-μAPPI-MS/MS in the analysis of six selected anabolic steroids in urine samples was studied with respect to intra-batch repeatability, linearity, linear range, and limit of detection (LOD). The method showed good sensitivity (LODs 0.2-1 ng/mL), repeatability (relative standard deviationanabolic steroids. Quantitative performance of the method was tested with two authentic urine samples, and the results were in good agreement with those obtained with conventional GC-electron ionization-MS after derivatization. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    thermometer. This work, however, can be quite time consuming and laborious, and further compromising the immediate well-fare of the pig, when restraining of the individual animal is necessary. Therefore, an electronic body monitoring system using implantable microchip transponders for measuring peripheral...... body temperature was tested, in order to evaluate the utility and reliability of this tool, in domestic pigs. The system is presently used and well optimized in small laboratory animals [1, 2]. We tested the microchip transponders during experimental infection of pigs with classical swine fever virus...... microchip transponder was injected deep subcutaneously by the left ear base of each individual. The transponder was before insertion programmed with ID identical to the individual pig’s ear tag number. The pigs were randomly divided into 3 groups: one group placebo-infected and two groups virus...

  15. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    Science.gov (United States)

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  16. Business Case Analysis for Microchip Logistics

    National Research Council Canada - National Science Library

    Vandenberghe, Jack

    2002-01-01

    .... The DLA Microchip Logistics (MICLOG) program is investigating the use of an automatic data collection system to improve item tracking and access to product information, and assist in automating the inventory induction process...

  17. Effects of improved microchannel structures on the separation characteristics of microchip capillary electrophoresis

    CERN Document Server

    Utsumi, Y; Ozaki, M; Terabe, S

    2003-01-01

    We fabricated the electrophoresis microchips using the UV polymerization technique. We employed plastic substrates that were suitable for rapid prototyping instead of glass and quartz. A thick UV negative photo resist was used to form molds and poly-dimethylsilozane (PDMS) was polymerized by a thermal curing process on the mold to obtain replica microchips. Electroosmotic flow (EOF) was measured to evaluate the surface. Rhodamine B and sulforhodamine B are successfully separated using the microchip. Characteristic differences between UV-fabricated and SR-fabricated microchips were evaluated by EOF measurement. It was observed that accurately defined microchannels fabricated by synchrotron radiation (SR) lithography show constant peak heights and FWHMs. Thus the advantage of the application of SR lithography to the mold fabrication is also demonstrated. (author)

  18. A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Sun; Kim, Shin Seon; Park, Jong Man [Konkuk University, Seoul (Korea, Republic of)

    2012-04-15

    An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length

  19. Quantitative analysis by microchip capillary electrophoresis – current limitations and problem-solving strategies

    NARCIS (Netherlands)

    Revermann, T.; Götz, S.; Künnemeyer, Jens; Karst, U.

    2008-01-01

    Obstacles and possible solutions for the application of microchip capillary electrophoresis in quantitative analysis are described and critically discussed. Differences between the phenomena occurring during conventional capillary electrophoresis and microchip-based capillary electrophoresis are

  20. Rapid detection of EBOLA VP40 in microchip immunofiltration assay

    Science.gov (United States)

    Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie

    2015-05-01

    In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.

  1. Multi-chamber and multi-layer thiol-ene microchip for cell culture

    DEFF Research Database (Denmark)

    Tan, H. Y.; Hemmingsen, Mette; Lafleur, Josiane P.

    2014-01-01

    We present a multi-layer and multi-chamber microfluidic chip fabricated using two different thiol-ene mixtures. Sandwiched between the thiol-ene chip layers is a commercially available membrane whose morphology has been altered with coatings of thiol-ene mixtures. Experiments have been conducted ...... with the microchip and shown that the fabricated microchip is suitable for long term cell culture....

  2. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    Science.gov (United States)

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  3. Microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse-transcription polymerase chain reaction for the rapid detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens.

    Science.gov (United States)

    Jia, Ruan; Chengjun, Sun; Heng, Chen; Chen, Zhou; Yuanqian, Li; Yongxin, Li

    2015-07-01

    Enterovirus 71 and Coxsackievirus A16 are the main pathogens causing hand-foot-mouth disease. In this paper, microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse transcript-polymerase chain reaction has been developed for the detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens. The specific reverse transcription-polymerase chain reaction amplicons labeled with SYBR Orange were separated by microchip capillary electrophoresis and detected by laser induced fluorescence detector within 7 min. The intraday and interday relative standard deviation of migration time for DNA Marker was in the range of 1.36-2.94 and 2.78-3.96%, respectively. The detection limits were as low as 2.06 × 10(3) copies/mL for Enterovirus 71 and 5 × 10(3) copies/mL for Coxsackievirus A16. No cross-reactivity was observed with rotavirus, astrovirus, norovirus, and adenovirus, which showed good specificity of the method. This assay was validated using 100 throat swab specimens that were detected by real-time reverse-transcript polymerase chain reaction in parallel and the two methods produced the same results. This study provided a rapid, sensitive and specific method for the detection of Enterovirus 71 and Coxsackievirus A16, which make a contribution to significant time and cost saving for the identification and treatment of patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A microfabricated electroosmotic pump coupled to a gas-diffusion microchip for flow injection analysis of ammonia

    International Nuclear Information System (INIS)

    Zhu, Zaifang; Lu, Joann J.; Liu, Shaorong; Almeida, M. Inês G. S.; Kolev, Spas D.; Pu, Qiaosheng

    2015-01-01

    We have microfabricated two functional components toward developing a microchip flow injection analysis (FIA) system, i.e., an open-channel electroosmotic pump and a gas-diffusion chip, consisting of two microfabricated glass wafers and a porous polytetrafluoroethylene membrane. This is the first application of gas-diffusion separation in a microchip FIA system. To demonstrate the feasibility of using these two components for performing gas-diffusion FIA, we have incorporated them together with a regular FIA injection valve and a capillary electrophoresis absorbance detector in a flow injection system for determination of ammonia in environmental water samples. This system has a limit of detection of 0.10 mg L −1 NH 3 , with a good repeatability (relative standard deviation of less than 5 % for 4.0 mg L −1 NH 3 ). Parameters affecting its performance are also discussed. (author)

  5. Microchip systems for imaging liquid and high temperature processes in TEM & SEM

    DEFF Research Database (Denmark)

    Jensen, Eric; Canepa, Silvia; Møller-Nilsen, Rolf Erling Robberstad

    2014-01-01

    Microchips systems have found their way into electron microscopes in order to make miniatureplatforms for controlled liquid and gaseous environments that also begin to include electricalcontacts and other types of interactions with the sample, such as application of forces andirradiation with light.......This presentation will explain the different types of microchip systems and give examples of someof the results we have achieved with our devices and examples of how such devices can be usedfor research related to energy storage and conversion.Heaters can be made in several ways, and monocrystalline silicon......]. Both systems will allowhigh resolution imaging of heterogeneous electrochemical processes such as those in batteries.Based on the suspended microfluidic channels, we are also developing microchips that enableultrafast freezing of processes in liquids....

  6. An electrochromatography chip with integrated waveguides for UV absorbance detection

    International Nuclear Information System (INIS)

    Gustafsson, O; Mogensen, K B; Ohlsson, P D; Kutter, J P; Liu, Y; Jacobson, S C

    2008-01-01

    A silicon-based microchip for electrochromatographic separations is presented. Apart from a microfluidic network, the microchip has integrated UV-transparent waveguides for detection and integrated couplers for optical fibers on the chip, yielding the most complete chromatography microchip to date in terms of the integration of optical components. The microfluidic network and the optical components are fabricated in a single etching step in silicon and subsequently thermally oxidized. The separation column consists of a regular array of microfabricated solid support structures with a monolayer of an octylsilane covalently bonded to the surfaces to provide chromatographic interaction. The chip features a 1 mm long U-shaped detection cell and planar silicon dioxide waveguides that couple light to and from the detection cell. Microfabricated on-chip fiber couplers assure perfect alignment of optical fibers to the waveguides. The entire oxidized silicon microchip structure is sealed with a glass lid. Reversed phase electrochromatographic separation of three neutral compounds is demonstrated using UV absorbance detection at 254 nm. Baseline separation of the analytes is achieved in less than two minutes

  7. Email Reminders Increase the Frequency That Pet Owners Update Their Microchip Information

    Directory of Open Access Journals (Sweden)

    Katie Goodwin

    2018-01-01

    Full Text Available Stray animals with incorrect microchip details are less likely to be reclaimed, and unclaimed strays are at increased risk of euthanasia. A retrospective cohort study was performed using 394,747 cats and 904,909 dogs registered with Australia’s largest microchip database to describe animal characteristics, determine whether annual email reminders increased the frequency that owners updated their information, and to compare frequencies of microchip information updates according to pet and owner characteristics. More than twice as many dogs (70% than cats (30% were registered on the database; the most numerous pure-breeds were Ragdoll cats and Staffordshire Bull Terrier dogs, and the number of registered animals per capita varied by Australian state or territory. Owners were more likely (p < 0.001 to update their details soon after they were sent a reminder email, compared to immediately before that email, and there were significant (p < 0.001 differences in the frequency of owner updates by state or territory of residence, animal species, animal age, and socioeconomic index of the owner’s postcode. This research demonstrates that email reminders increase the probability of owners updating their details on the microchip database, and this could reduce the percentages of stray animals that are unclaimed and subsequently euthanized.

  8. Indian microchip for Big Bang research in Geneva

    CERN Multimedia

    Bhabani, Soudhriti

    2007-01-01

    "A premier nuclear physics institute here has come up with India's first indigenously designed microchip that will facilitate research on the Big Bang theory in Geneva's CERN, the world's largest particle physics laboratory." (1 page)

  9. Methods and instrumentation for quantitative microchip capillary electrophoresis

    NARCIS (Netherlands)

    Revermann, T.

    2007-01-01

    The development of novel instrumentation and analytical methodology for quantitative microchip capillary electrophoresis (MCE) is described in this thesis. Demanding only small quantities of reagents and samples, microfluidic instrumentation is highly advantageous. Fast separations at high voltages

  10. Microchip Immunoaffinity Electrophoresis of Antibody-Thymidine Kinase 1 Complex

    Science.gov (United States)

    Pagaduan, Jayson V.; Ramsden, Madison; O’Neill, Kim; Woolley, Adam T.

    2015-01-01

    Thymidine kinase-1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody that binds to human TK1. We fabricated poly(methyl methacrylate) microfluidic devices to test the feasibility of detecting antibody (Ab)-pTK1 immune complexes as a step towards TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound antibodies using 0.5X phosphate buffer saline (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the antibody and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 minute for separation. PMID:25486911

  11. High-efficient Nd:YAG microchip laser for optical surface scanning

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  12. Microchip-based monolithic column for high performance liquid chromatography

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed microchip based monolithic columns that can be used for liquid chromatography of small organic molecules, as well as, macromolecules such as...

  13. DIAGNOSTIC METHODS IN BREAST CANCER DETECTION

    Directory of Open Access Journals (Sweden)

    Kristijana Hertl

    2018-02-01

    Full Text Available Background. In the world as well as in Slovenia, breast cancer is the most frequent female cancer. Due to its high incidence, it appears to be a serious health and economic problem. Content. Among other, tumour size at diagnosis, is an important prognostic factors of the course of the disease. The probability of axillary lymph node involvement as well as distant metastases is greater in larger tumours. This is the reason that encouraged the development of various diagnostic methods for early detection of small, clinically non-palpable breast tumours. Mammography, however, remains the »golden standard« of early breast cancer detection. It is the basic diagnostic method applied in all symptomatic women over 35 years of age and in asymptomatic women over 40 years of age. Ultrasonography (US, additional projections, magnetic resonance imaging (MRI and ductography are regarded as complementary diagnostic breast imaging techniques in addition to mammography. The detected changes in the breast can be further confirmed by US-, MR-guided or stereotactic biopsy. If necessary, surgical biopsy and the excision of a tissue sample, after wire or isotope localisation of the nonpalpable lesion, can be performed. Conclusions. Any of the above mentioned diagnostic methods has advantages as well as drawbacks and only detailed knowledge and understanding of each of them may assure the best option.

  14. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    Science.gov (United States)

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yiwen [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Duarte, Gabriela R.M. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Universidade Federal de Goiás, Goiânia, GO 74690-900 (Brazil); Poe, Brian L.; Riehl, Paul S. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Santos, Fernando M. dos; Martin-Didonet, Claudia C.G. [Universidade Estadual de Goiás, Anápolis, GO 75132-400 (Brazil); Carrilho, Emanuel [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, CP 6154, Campinas, SP 13083-970 (Brazil); Landers, James P., E-mail: landers@virginia.edu [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Department of Mechanical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Department of Pathology, University of Virginia Health Science Center, Charlottesville, VA (United States)

    2015-12-11

    Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s{sup −1} with a cooling rate of roughly −12 ± 0.9 °C s{sup −1} assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human β-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human β-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low

  16. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control

    International Nuclear Information System (INIS)

    Ouyang, Yiwen; Duarte, Gabriela R.M.; Poe, Brian L.; Riehl, Paul S.; Santos, Fernando M. dos; Martin-Didonet, Claudia C.G.; Carrilho, Emanuel; Landers, James P.

    2015-01-01

    Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s −1 with a cooling rate of roughly −12 ± 0.9 °C s −1 assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human β-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human β-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low-volume amplification

  17. Simultaneous immunoassay analysis of plasma IL-6 and TNF-α on a microchip.

    Directory of Open Access Journals (Sweden)

    Kaori Abe

    Full Text Available Sandwich enzyme-linked immunosorbant assay (ELISA using a 96-well plate is frequently employed for clinical diagnosis, but is time-and sample-consuming. To overcome these drawbacks, we performed a sandwich ELISA on a microchip. The microchip was made of cyclic olefin copolymer with 4 straight microchannels. For the construction of the sandwich ELISA for interleukin-6 (IL-6 or tumor necrosis factor-α (TNF-α, we used a piezoelectric inkjet printing system for the deposition and fixation of the 1st anti-IL-6 antibody or 1st anti-TNF-α antibody on the surface of the each microchannel. After the infusion of 2 µl of sample to the microchannel and a 20 min incubation, 2 µl of biotinylated 2nd antibody for either antigen was infused and a 10 min incubation. Then 2 µl of avidin-horseradish peroxidase was infused; and after a 5 min incubation, the substrate for peroxidase was infused, and the luminescence intensity was measured. Calibration curves were obtained between the concentration and luminescence intensity over the range of 0 to 32 pg/ml (IL-6: R(2 = 0.9994, TNF-α: R(2 = 0.9977, and the detection limit for each protein was 0.28 pg/ml and 0.46 pg/ml, respectively. Blood IL-6 and TNF-α concentrations of 5 subjects estimated from the microchip data were compared with results obtained by the conventional method, good correlations were observed between the methods according to linear regression analysis (IL-6: R(2 = 0.9954, TNF-α: R(2 = 0.9928. The reproducibility of the presented assay for the determination of the blood IL-6 and TNF-α concentration was comparable to that obtained with the 96-well plate. Simultaneous detection of blood IL-6 and TNF-α was possible by the deposition and fixation of each 1st antibody on the surface of a separate microchannel. This assay enabled us to determine simultaneously blood IL-6 and TNF-α with accuracy, satisfactory sensitivity, time saving ability, and low consumption of sample and

  18. Fast FIB-milled Electron-transparent Microchips for in situ TEM Investigations

    DEFF Research Database (Denmark)

    Lei, Anders; Petersen, Dirch Hjorth; Kallesøe, Christian

    In this work we present a fast approach to 50 nm resolution structures defined in a generic TEM-chip template in few minutes. While creating complex electrical and NEMS circuits for a specific insitu TEM experiment can be a cumbersome process, microchips with 100 nm thin flakes of single crystall......In this work we present a fast approach to 50 nm resolution structures defined in a generic TEM-chip template in few minutes. While creating complex electrical and NEMS circuits for a specific insitu TEM experiment can be a cumbersome process, microchips with 100 nm thin flakes of single...

  19. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...... binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...

  20. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang; Moosa, Basem; Deng, Lin; Zhao, Lan; Khashab, Niveen M.

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and

  1. Spectroscopy and microchip laser operation of Tm, Ho:KYW crystals with different Ho concentrations

    Science.gov (United States)

    Gusakova, N. V.; Kurilchik, S. V.; Yasukevich, A. S.; Kisel, V. E.; Dashkevich, V. I.; Orlovich, V. A.; Pavlyuk, A. A.; Vatnik, S. M.; Bagaev, S. N.; Kuleshov, N. V.

    2018-02-01

    The spectroscopic properties of Tm, Ho:KYW crystals with different Ho concentrations were investigated. The diode-pumped microchip laser operation of Tm (5 at.%), Ho (0.5 at.%):KYW and Tm (5 at.%), Ho (1 at.%):KYW was demonstrated. The highest, to our knowledge, output power of 480 mW with slope efficiency of 31% for CW Tm (5 at.%), Ho (0.5 at.%):KYW microchip laser was obtained.

  2. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization.

    Science.gov (United States)

    Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can

    2009-06-08

    A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.

  3. Development of a microchip-pulsed electrochemical method for rapid determination of L-DOPA and tyrosine in Mucuna pruriens.

    Science.gov (United States)

    Li, Xinchun; Chen, Zuanguang; Yang, Fan; Pan, Jianbin; Li, Yinbao

    2013-05-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is a well-recognized therapeutic compound to Parkinson's disease. Tyrosine is a precursor for the biosynthesis of L-DOPA, both of which are widely found in traditional medicinal material, Mucuna pruriens. In this paper, we described a validated novel analytical method based on microchip capillary electrophoresis with pulsed electrochemical detection for the simultaneous measurement of L-DOPA and tyrosine in M. pruriens. This protocol adopted end-channel amperometric detection using platinum disk electrode on a homemade glass/polydimethylsiloxane electrophoresis microchip. The background buffer consisted of 10 mM borate (pH 9.5) and 0.02 mM cetyltrimethylammonium bromide, which can produce an effective resolution for the two analytes. In the optimal condition, sufficient electrophoretic separation and sensitive detection for the target analytes can be realized within 60 s. Both tyrosine and L-DOPA yielded linear response in the concentration range of 5.0-400 μM (R(2) > 0.99), and the LOD were 0.79 and 1.1 μM, respectively. The accuracy and precision of the established method were favorable. The present method shows several merits such as facile apparatus, high speed, low cost and minimal pollution, and provides a means for the pharmacologically active ingredients assay in M. pruriens. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carbon Nanotube-Based Separation Columns for Microchip Electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Delacourt, B.; Kutter, Jörg Peter

    2015-01-01

    Fabrication of the stationary phase for microchip chromatography is most often done by packing of the individual separation channel after fabrication of the microfluidic chip, which is a very time-consuming and costly process (Kutter. J Chromatogr A 1221:72–82, 2012). Here, we describe in detail...

  5. Carbon nanotube-based separation columns for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, K. B.; Delacourt, B.; Kutter, Jörg P.

    2015-01-01

    Fabrication of the stationary phase for microchip chromatography is most often done by packing of the individual separation channel after fabrication of the microfluidic chip, which is a very time-consuming and costly process (Kutter. J Chromatogr A 1221:72–82, 2012). Here, we describe in detail...

  6. Emission of a propagation invariant flat-top beam from a microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, Darryl [Council for Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Pretoria 0001 (South Africa); Harfouche, A. [Faculté de Physique, Université des Sciences et de la Technologie Houari Boumédiène, B.P. no 32, El Alia, 16111 Algiers (Algeria); Fromager, Michael; Ait-Ameur, Kamel [Centre de Recherche sur les Ions, les Matériaux et la Photonique, Unité Mixte de Recherche de Recherche 6252, Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Caen Basse Normandie, Ecole Nationale Supérieure des Ingénieurs de Caen, Boulevard Maréchal Juin, F14050 Caen (France); Forbes, Andrew, E-mail: andrew.forbes@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa)

    2016-02-15

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  7. Emission of a propagation invariant flat-top beam from a microchip laser

    International Nuclear Information System (INIS)

    Naidoo, Darryl; Harfouche, A.; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2016-01-01

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  8. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Yassine, Omar; Giouroudi, Ioanna; Kosel, Jü rgen

    2013-01-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20

  9. Etching of glass microchips with supercritical water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-01

    Roč. 15, č. 1 (2015), s. 311-318 ISSN 1473-0197 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GBP206/12/G014; GA MŠk(CZ) EE2.3.20.0182 Institutional support: RVO:68081715 Keywords : glass microchips * channel etching * supercritical water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.586, year: 2015

  10. Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light

    DEFF Research Database (Denmark)

    Wang, Zhenyu; El-Ali, Jamil; Perch-Nielsen, Ivan Ryberg

    2004-01-01

    channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only one single mask procedure, all the fabrication and packaging...... processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. The average intensities of the forward Scattered light and the incident light...

  11. Analysis of anabolic steroids in urine by gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry with chlorobenzene as dopant.

    Science.gov (United States)

    Hintikka, Laura; Haapala, Markus; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto

    2013-10-18

    A gas chromatography-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) method was developed for the analysis of anabolic androgenic steroids in urine as their trimethylsilyl derivatives. The method utilizes a heated nebulizer microchip in atmospheric pressure photoionization mode (μAPPI) with chlorobenzene as dopant, which provides high ionization efficiency by producing abundant radical cations with minimal fragmentation. The performance of GC-μAPPI-MS/MS was evaluated with respect to repeatability, linearity, linear range, and limit of detection (LOD). The results confirmed the potential of the method for doping control analysis of anabolic steroids. Repeatability (RSD<10%), linearity (R(2)≥0.996) and sensitivity (LODs 0.05-0.1ng/mL) were acceptable. Quantitative performance of the method was tested and compared with that of conventional GC-electron ionization-MS, and the results were in good agreement. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology.

    Science.gov (United States)

    Ladner, Yoann; Crétier, Gérard; Faure, Karine

    2012-10-01

    This article shows that there is great interest in using an electrochromatographic microchip made of hexyl acrylate (HA) based porous monolith cast within the channel of a cyclic olefin copolymer (COC) device. The monolith is simultaneously in situ synthesized and anchored to the inner walls of the channel in less than 10 min. By appropriate choice of light intensity used during the synthesis, the separation efficiency obtained for nonpolar solutes such as polycyclic aromatic hydrocarbons (PAH) is increased up to 250 000 plates/m. The performance of this HA-filled COC microchip was investigated for a wide range of analytes of varying nature. The reversed-phase separation of four aflatoxins is obtained in less than 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is possible thanks to the superimposition of the differences in electrophoretic mobility on the chromatographic process. The durability of the system at pH 13 allows the separation of five biogenic amines and the quantitative determination of two of them in numerous wine samples. The feasibility of on-line preconcentration is also demonstrated. Hydrophilic surface modification of COC channel via UV-photografting with poly(ethylene glycol) methacrylate (PEGMA) before in situ synthesis of HA, is necessary to reduce the adsorption of very hydrophobic solutes such as PAH during enrichment. The detection limit of fluoranthene is decreased down to less than 1 ppb with a preconcentration of 4.5 h on the HA-filled PEGMA functionalized COC microchip. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Leak detection by vibrational diagnostic methods

    International Nuclear Information System (INIS)

    Siklossy, P.

    1983-01-01

    The possibilities and methods of leak detection due to mechanical failures in nuclear power plants are reviewed on the basis of the literature. Great importance is attributed to vibrational diagnostic methods for their adventageous characteristics which enable them to become final leak detecting methods. The problems of noise analysis, e.g. leak detection by impact sound measurements, probe characteristics, gain problems, probe selection, off-line analysis and correlation functions, types of leak noises etc. are summarized. Leak detection based on noise analysis can be installed additionally to power plants. Its maintenance and testing is simple. On the other hand, it requires special training and measuring methods. (Sz.J.)

  14. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joosuck [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Lim, H.B. [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)], E-mail: plasma@dankook.ac.kr

    2008-11-15

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube ({approx} 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m{sup -3} was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L{sup -1} were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m{sup -3}, depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 deg. C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L{sup -1}, respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  15. Dynamics of chaotic oscillations in mutually coupled microchip lasers

    CERN Document Server

    Uchida, A; Kinugawa, S; Yoshimori, S

    2003-01-01

    We have numerically and experimentally investigated the dynamics of mutually coupled microchip lasers. Chaotic oscillations are observed in the vicinity of the boundary of the injection-locking range when the coupling strength and the difference of the optical frequencies are varied. Synchronization of chaos is always achieved under the condition to generate chaos.

  16. Capillary Self-Alignment of Microchips on Soft Substrates

    Directory of Open Access Journals (Sweden)

    Bo Chang

    2016-03-01

    Full Text Available Soft micro devices and stretchable electronics have attracted great interest for their potential applications in sensory skins and wearable bio-integrated devices. One of the most important steps in building printed circuits is the alignment of assembled micro objects. Previously, the capillary self-alignment of microchips driven by surface tension effects has been shown to be able to achieve high-throughput and high-precision in the integration of micro parts on rigid hydrophilic/superhydrophobic patterned surfaces. In this paper, the self-alignment of microchips on a patterned soft and stretchable substrate, which consists of hydrophilic pads surrounded by a superhydrophobic polydimethylsiloxane (PDMS background, is demonstrated for the first time. A simple process has been developed for making superhydrophobic soft surface by replicating nanostructures of black silicon onto a PDMS surface. Different kinds of PDMS have been investigated, and the parameters for fabricating superhydrophobic PDMS have been optimized. A self-alignment strategy has been proposed that can result in reliable self-alignment on a soft PDMS substrate. Our results show that capillary self-alignment has great potential for building soft printed circuits.

  17. Multiplexed Western Blotting Using Microchip Electrophoresis.

    Science.gov (United States)

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  18. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.

    Science.gov (United States)

    Ghosh, Abhijit; Johnson, Jacob E; Nuss, Johnathan G; Stark, Brittany A; Hawkins, Aaron R; Tolley, Luke T; Iverson, Brian D; Tolley, H Dennis; Lee, Milton L

    2017-09-29

    Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375°C and routine operation up to 300°C. The compression clamp was constructed of a low expansion alloy, Kovar™, to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9m long microcolumn with rectangular cross section of 158μm×80μm, which approximately matches a 100μm i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed GC (TPGC) and thermal

  19. A micro surface tension pump (MISPU) in a glass microchip.

    Science.gov (United States)

    Peng, Xing Yue Larry

    2011-01-07

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  20. Multi-pulse drug delivery from a resorbable polymeric microchip device

    Science.gov (United States)

    Grayson, Amy C. Richards; Choi, Insung S.; Tyler, Betty M.; Wang, Paul P.; Brem, Henry; Cima, Michael J.; Langer, Robert

    2003-11-01

    Controlled-release drug delivery systems have many applications, including treatments for hormone deficiencies and chronic pain. A biodegradable device that could provide multi-dose drug delivery would be advantageous for long-term treatment of conditions requiring pulsatile drug release. In this work, biodegradable polymeric microchips were fabricated that released four pulses of radiolabelled dextran, human growth hormone or heparin in vitro. Heparin that was released over 142 days retained on average 96 +/- 12% of its bioactivity. The microchips were 1.2 cm in diameter, 480-560 μm thick and had 36 reservoirs that could each be filled with a different chemical. The devices were fabricated from poly(L-lactic acid) and had poly(D,L-lactic-co-glycolic acid) membranes of different molecular masses covering the reservoirs. A drug delivery system can be designed with the potential to release pulses of different drugs at intervals after implantation in a patient by using different molecular masses or materials for the membrane.

  1. Design and Fabrication of 3D-Structured Contactless Capacitive-Type Detector for Capillary Electrophoresis Microchip

    International Nuclear Information System (INIS)

    Lee, C-Y; Lin, C-H; Fu, L-M

    2006-01-01

    Using simple and reliable microfabrication techniques, this study develops a capillary electrophoresis (CE) microchip with 3-dimensional-structured (3D-structured) contactless capacitive detector electrodes mounted parallel to the separation channel. The offchannel electrodes are deposited by Au sputtering and patterned using a standard 'lift-off' process. A vacuum fusion bonding process is employed to seal the lower substrate containing the microchannels and electrodes to an upper glass cover plate. The variation in the capacitance between the electrodes in the side channels is measured as different samples and ions pass through the detection region of the CE separation channel. Samples of Rhodamine B and a commercial sports drink are mixed in different buffer solutions and successfully separated and detected using the developed device. The 3D-structured contactless capacitive-type detection device has microscale dimensions and provides a valuable contribution to the realization of the lab-on-a-chip concept

  2. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; Prijs, Miranda; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2014-01-01

    Abstract Background: Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot

  3. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; Prijs, Miranda; van Baal, Jeff G.; Liu, C.; van der Heijden, Ferdinand; Bus, Sicco A.

    2014-01-01

    Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot complications such as

  4. POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2017-01-01

    Full Text Available Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone. 

  5. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels.

    Science.gov (United States)

    Price, Alexander K; Fischer, David J; Martin, R Scott; Spence, Dana M

    2004-08-15

    The ability of nitric oxide to relax smooth muscle cells surrounding resistance vessels in vivo is well documented. Here, we describe a series of studies designed to quantify amounts of adenosine triphosphate (ATP), a known stimulus of NO production in endothelial cells, released from erythrocytes that are mechanically deformed as these cells traverse microbore channels in lithographically patterned microchips. Results indicate that micromolar amounts of ATP are released from erythrocytes flowing through channels having cross sectional dimensions of 60 x 38 micron (2.22 +/- 0.50 microM ATP). Microscopic images indicate that erythrocytes, when being pumped through the microchip channels, migrate toward the center of the channels, leaving a cell-free or skimming layer at the walls of the channel, a profile known to exist in circulatory vessels in vivo. A comparison of the amounts of ATP released from RBCs mechanically deformed in microbore tubing (2.54 +/- 0.15 microM) vs a microchip (2.59 +/- 0.32 microM) suggests that channels in microchips may serve as functional biomimics of the microvasculature. Control studies involving diamide, a membrane-stiffening agent, suggest that the RBC-derived ATP is not due to cell lysis but rather physical deformation.

  6. Microchip post-processing: There is plenty of room at the top

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Luryi, Serge; Xu, Jimmy; Zaslavsky, Alex

    2013-01-01

    Microchip manufacturers have developed a tremendous skill in depositing materials at the nanometer scale. One can wonder why this skill is predominantly used to develop new generations of memory and signal processing chips. The answer lies in the economic rationale behind Moore's Law,1 implying that

  7. Application of a microchip to supercritical carbon dioxide extraction of lanthanoids

    International Nuclear Information System (INIS)

    Ohashi, Akira; Kim, Haeng-Boo

    2009-01-01

    Fundamental investigation on the supercritical carbon dioxide (SC-CO 2 ) extraction on the microchip was carried out. Firstly, the distribution constants of 8-quinolinol derivatives between SC-CO 2 and water were determined from the absorbance of 8-quinolinol derivatives both in the SC-CO 2 and aqueous phases. The distribution constants increased with the increase in the SC-CO 2 pressure. A linear relationship was observed between log K D,org and log K D,CO2 . The linear relationship between log K D,org and log K D,CO2 suggests the possibility that one can estimate the K D,CO2 value of a HA from its K D,org value. The optimum condition that the separation-flow of SC-CO 2 and water was formed at the cross section in the microchip was investigated. The separation-flow was observed at 6 MPa. However, the two-phase flow was disturbed at 13 MPa. (author)

  8. Analysis of proteins and peptides by electromigration methods in microchips

    Czech Academy of Sciences Publication Activity Database

    Štěpánová, Sille; Kašička, Václav

    2017-01-01

    Roč. 40, č. 1 (2017), s. 228-250 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : microchip electrophoresis * microfluidics * peptides * proteins Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.557, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/jssc.201600962/full

  9. Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics

    Science.gov (United States)

    Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.; hide

    2014-01-01

    The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.

  10. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    Science.gov (United States)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  11. Diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference

    Energy Technology Data Exchange (ETDEWEB)

    Ren Cheng; Zhang Shulian, E-mail: ren-c06@mails.tsinghua.edu.c [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2009-08-07

    The diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference is presented. The gain medium used is a microchip 2 mm in thickness for miniaturized and integrated design. Two quarter-wave plates are placed into the laser cavity and the intra-cavity birefringence produces two orthogonally linearly polarized modes. The rotation of one of the two quarter-wave plates introduces a controlled and variable cavity birefringence which causes a variable frequency difference between the two orthogonally polarized modes. The frequency difference can be tuned through the whole cavity free spectral range. The obtained frequency difference ranges from 14 MHz to 1.5 GHz. The variation of the beat frequency over a period of 10 min is less than 10 kHz. The lock-in between modes is not found. Experimental results are presented, which match well with the theoretical analysis based on Jones matrices.

  12. Transverse mode selection in a monolithic microchip laser

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-11-01

    Full Text Available selection in a monolithic microchip laser Darryl Naidooa,b, Thomas Godinc, Michael Fromagerc, Emmanuel Cagniotc, Nicolas Passillyd, Andrew Forbesa,b and Kamel A?t-Ameurc1 a:CSIR National Laser Centre, P. O. Box 395, Pretoria 0001, South Africa b.... Lett. 77 (2000) 34-36. [14] W. Zhao, J. Tan and L. Qui, ?Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques,? Optik 116 (2005) 111-117. [15] T. Shiina, K. Yoshida, M. Ito and Y. Okamura, ?Long...

  13. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    Science.gov (United States)

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Experimental observation of chaotic phase synchronization of a periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Hui; Kuo, Chie-Tong [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Hsu, Tzu-Fang, E-mail: tfhsu@mail.npue.edu.tw [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan, ROC (China); Jan, Hengtai; Han, Shiang-Yi [Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd., Yanchao District, Kaohsiung City 824, Taiwan, ROC (China); Ho, Ming-Chung, E-mail: t1603@nknucc.nknu.edu.tw [Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd., Yanchao District, Kaohsiung City 824, Taiwan, ROC (China); Jiang, I-Min [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China)

    2012-03-12

    In this Letter we demonstrate the experimental observation of chaotic phase synchronization (CPS) in a periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser. PS transition is displayed via the stroboscopic technique. We apply the recurrence probability and correlation probability of recurrence to estimate the degree of PS. The degree of PS is studied taking into account the modulation amplitude and modulation frequency. We also propose an experimental compatible numerical simulation to reflect the fact that the Arnold tongues are experimentally and numerically exhibited in the periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser. -- Highlights: ► We show chaotic phase synchronization in a pump-modulated microchip Nd:YVO{sub 4} laser. ► Phase synchronization (PS) transition is displayed via the stroboscopic technique. ► The degree of PS is studied taking into account the modulation parameters. ► The Arnold tongues are experimentally and numerically exhibited in the laser.

  15. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    Directory of Open Access Journals (Sweden)

    Han Yih Lau

    2017-12-01

    Full Text Available Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.

  16. Recent developments in capillary and microchip electroseparations of peptides (2011-2013)

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav

    2014-01-01

    Roč. 35, č. 1 (2014), s. 69-95 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : capillary electrochromatography * capillary electrophoresis * microchip * peptides * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.028, year: 2014

  17. Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode.

    Science.gov (United States)

    Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko

    2015-01-01

    A compact photometric detector was constructed from an organic light emitting diode (OLED) based on a europium complex, europium(diben-zoylmethanato)3(bathophenanthroline) (Eu(DBM)3bath), as the light source and an organic photodiode (OPD) fabricated from a hetero-junction of two layers of copper phthalocyanine (CuPc)/fullerene (C60) as the photo-detector on a microchip prepared from poly(dimethylsiloxan) (PDMS) and was applied to the determination of phosphate. The OLED and the OPD were fabricated by a vapor deposition method on an indium tin oxide (ITO) coated glass substrate with the following layered structure; Glass (0.7 mm)/ITO (110 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl amino]-biphenyl (α-NPD) (30 nm)/4,4'-di(N-carbazolyl)biphenyl (CBP): Eu(3+) (8 wt%, 30 nm)/bathocuproine (BCP) (30 nm)/aluminum tris(8-hydroxyquinoline) (Alq3) (25 nm)/magnesium and silver (MgAg) (100 nm)/Ag (10nm) and Glass (0.7 mm)/ITO (110 nm)/CuPc (35 nm)/C60 (50 nm)/BCP (10 nm)/Ag (50 nm), respectively. The OLED based on the europium complex emitted a sharp light at the wavelength of 612 nm with a full width at half maximum (FWHM) of 8 nm. The performance of the photometric detector assembled was evaluated based on measurements of the absorbance of different concentrations of malachite green (MG) solutions for a batch system with 1cm long path length. The molar absorptive coefficient of the MG solution, calculated from the photocurrent of the OPD, was in good agreement with the value reported in the literature. A microchip with two inlets and one outlet U-shaped channel was prepared by a conventional photolithograph method. The OLED and the OPD were configured so as to face each other through the PDMS microchip in parallel in order to align the light axis of the OLED and the OPD with the flow cell (optical path length of 5mm), which was located at the end of outlet. For the determination of phosphate, an ion-association reaction between MG and a molybdenum-phosphate complex was utilized

  18. Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) coupled to capillary/microchip electrophoresis: A review

    International Nuclear Information System (INIS)

    Su Ming; Wei Wei; Liu Songqin

    2011-01-01

    Graphical abstract: The mechanism of Ru(bpy) 3 2+ electrochemiluminescence, addition mode of Ru(bpy) 3 2+ , recent applications of capillary electrophoresis coupled with electrochemiluminescent detection in drug and other substrates analysis are reviewed. - Abstract: A comprehensive review on the development of analytical methods, by coupling electrochemiluminescence (ECL) detection with capillary electrophoresis (CE) and microchip electrophoresis (ME), is presented. After the description of the basic mechanism of ECL, the addition mode of luminescence reagent in CE-ECL system has been discussed. The analytical applications of the CE-ECL technique in terms of different analytes are also given. Due to the importance of ME as a separation method for the present and future, the ME detection methods based on ECL are considered in a relatively detailed way. Finally, possible trends for CE/ME-ECL in the near future are discussed.

  19. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2013-07-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20, and SPB motion is controlled by current-carrying, tapered, conducting lines made of Au. The MMC was realized using standard microfabrication techniques and provides a cheap and versatile platform for microfluidic systems for cell manipulation. © 2013 IEEE.

  20. New diagnostics for melanoma detection: from artificial intelligence to RNA microarrays.

    Science.gov (United States)

    Ahlgrimm-Siess, Verena; Laimer, Martin; Arzberger, Edith; Hofmann-Wellenhof, Rainer

    2012-07-01

    Early detection of melanoma remains crucial to ensuring a favorable prognosis. Dermoscopy and total body photography are well-established noninvasive aids that increase the diagnostic accuracy of dermatologists in their daily routine, beyond that of a naked-eye examination. New noninvasive diagnostic techniques, such as reflectance confocal microscopy, multispectral digital imaging and RNA microarrays, are currently being investigated to determine their utility for melanoma detection. This review presents emerging technologies for noninvasive melanoma diagnosis, and discusses their advantages and limitations.

  1. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.

    Science.gov (United States)

    Iiguni, Yoshinori; Tanaka, Ayaka; Kitagawa, Shinya; Ohtani, Hajime

    2016-01-01

    A novel microchip separation system for microparticles based on electromagnetophoresis (EMP) was developed. In this system, focusing and separation of flowing microparticles in a microchannel could be performed by staggered-EMP by controlling the electric current applied to the channel locally combined with the split-flow system for fractionation of eluates. To apply the electric current through the flushing medium in the microchannel, a hollow fiber-embedded microchip with multiple electrodes was fabricated. The hollow fiber was made by a semi-permeable membrane and could separate small molecules. This microchip allowed us to apply the electric current to a part of the microchannel without any pressure control device because a main channel contacted with the subchannels that had electrodes through the semi-permeable membrane. Moreover, the separation using this microchip was combined with the split-flow system at two outlets to improve separation efficiency. Using this system, with the split-flow ratio of 10:1, 87% of 3 μm polystyrene (PS) latex particles were isolated from a mixture of 3 and 10 μm particles. Even the separation of 6 and 10 μm PS particles was achieved with about 77% recovery and 100% purity. In addition, by controlling the applied current, size fractionation of polypropylene (PP) particles was demonstrated. Moreover, biological particles such as pollens could be separated with high separation efficiency by this technique.

  2. Diagnostic Procedures to Detect Chlamydia trachomatis Infections

    Directory of Open Access Journals (Sweden)

    Thomas Meyer

    2016-08-01

    Full Text Available The intracellular life style of chlamydia and the ability to cause persistent infections with low-grade replication requires tests with high analytical sensitivity to directly detect C. trachomatis (CT in medical samples. Nucleic acid amplification tests (NAATs are the most sensitive assays with a specificity similar to cell culture and are considered the method of choice for CT detection. In addition, NAATs can be performed on various clinical specimens that do not depend on specific transport and storage conditions, since NAATs do not require infectious bacteria. In the case of lower genital tract infections, first void urine and vaginal swabs are the recommended specimens for testing males and females, respectively. Infections of anorectal, oropharyngeal and ocular epithelia should also be tested by NAAT analysis of corresponding mucosal swabs. In particular, anorectal infections of men who have sex with men (MSM should include evaluation of lymphogranuloma venereum (LGV by identification of genotypes L1, L2 or L3. Detection of CT antigens by enzyme immunoassay (EIAs or rapid diagnostic tests (RDTs are unsuitable due to insufficient sensitivity and specificity. Recent PCR-based RDTs, however, are non-inferior to standard NAATs, and might be used at the point-of-care. Serology finds application in the diagnostic work-up of suspected chronic CT infection but is inappropriate to diagnose acute infections.

  3. New method of leak detecting in diagnostic of gas pipeline system

    International Nuclear Information System (INIS)

    Kalinowski, K.; Dabrowski, A.; Sobkiewicz, D.; Oracz, H.

    2007-01-01

    This report describes new directions in gas transmission pipelines diagnostics as well as new methods and equipment used to detect leaks. It was also shown that efficient and functional diagnostics system is the necessary condition to keep the exploitation of transmission systems safe. (author)

  4. Diagnostic trends in Clostridium difficile detection in Finnish microbiology laboratories.

    Science.gov (United States)

    Könönen, Eija; Rasinperä, Marja; Virolainen, Anni; Mentula, Silja; Lyytikäinen, Outi

    2009-12-01

    Due to increased interest directed to Clostridium difficile-associated infections, a questionnaire survey of laboratory diagnostics of toxin-producing C. difficile was conducted in Finland in June 2006. Different aspects pertaining to C. difficile diagnosis, such as requests and criteria used for testing, methods used for its detection, yearly changes in diagnostics since 1996, and the total number of investigations positive for C. difficile in 2005, were asked in the questionnaire, which was sent to 32 clinical microbiology laboratories, including all hospital-affiliated and the relevant private clinical microbiology laboratories in Finland. The situation was updated by phone and email correspondence in September 2008. In June 2006, 28 (88%) laboratories responded to the questionnaire survey; 24 of them reported routinely testing requested stool specimens for C. difficile. Main laboratory methods included toxin detection (21/24; 88%) and/or anaerobic culture (19/24; 79%). In June 2006, 18 (86%) of the 21 laboratories detecting toxins directly from feces, from the isolate, or both used methods for both toxin A (TcdA) and B (TcdB), whereas only one laboratory did so in 1996. By September 2008, all of the 23 laboratories performing diagnostics for C. difficile used methods for both TcdA and TcdB. In 2006, the number of specimens processed per 100,000 population varied remarkably between different hospital districts. In conclusion, culturing C. difficile is common and there has been a favorable shift in toxin detection practice in Finnish clinical microbiology laboratories. However, the variability in diagnostic activity reported in 2006 creates a challenge for national monitoring of the epidemiology of C. difficile and related diseases.

  5. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    OpenAIRE

    Lau, Han Yih; Botella, Jose R.

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care di...

  6. Stacking-cyclodextrin-microchip electrokinetic chromatographic determination of gabapentinoid drugs in pharmaceutical and biological matrices.

    Science.gov (United States)

    Zeid, Abdallah M; Kaji, Noritada; Nasr, Jenny Jeehan M; Belal, Fathalla F; Baba, Yoshinobu; Walash, Mohamed I

    2017-06-23

    A facile, rapid, and highly sensitive microchip-based electrokinetic chromatographic method was developed for the simultaneous analysis of two gabapentinoid drugs, gabapentin (GPN) and pregabalin (PGN). Both drugs were first reacted with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) via nucleophilic substitution reactions to yield highly fluorescent products with λ ex/em 470/540nm. Analyses of both fluorescently labeled compounds were achieved within 200s in a poly(methyl methacrylate) (PMMA) microchip with a 30mm separation channel. Optimum separation was achieved using a borate buffer (pH 9.0) solution containing methylcellulose and β-cyclodextrin (β-CD) as buffer additives. Methylcellulose acted as a dynamic coating to prevent adsorption of the studied compounds on the inner surfaces of the microchannels, while β-CD acted as a pseudo-stationary phase to improve the separation efficiency between the labeled drugs with high resolution (Rs>7). The fluorescence intensities of the labeled drugs were measured using a light emitting diode-induced fluorescence detector at 540nm after excitation at 470nm. The sensitivity of the method was enhanced 14- and 17-fold for PGN and GPN, respectively by field-amplified stacking relative to traditional pinched injection so that it could quantify 10ngmL -1 for both analytes, with a detection limit lower than 3ngmL -1 . The developed method was efficiently applied to analyze PGN and GPN in their pharmaceutical dosage forms and in biological fluids. The extraction recoveries of the studied drugs from plasma and urine samples were more than 89% with%RSD values lower than 6.2. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) coupled to capillary/microchip electrophoresis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Su Ming; Wei Wei [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Liu Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2011-10-17

    Graphical abstract: The mechanism of Ru(bpy){sub 3}{sup 2+} electrochemiluminescence, addition mode of Ru(bpy){sub 3}{sup 2+}, recent applications of capillary electrophoresis coupled with electrochemiluminescent detection in drug and other substrates analysis are reviewed. - Abstract: A comprehensive review on the development of analytical methods, by coupling electrochemiluminescence (ECL) detection with capillary electrophoresis (CE) and microchip electrophoresis (ME), is presented. After the description of the basic mechanism of ECL, the addition mode of luminescence reagent in CE-ECL system has been discussed. The analytical applications of the CE-ECL technique in terms of different analytes are also given. Due to the importance of ME as a separation method for the present and future, the ME detection methods based on ECL are considered in a relatively detailed way. Finally, possible trends for CE/ME-ECL in the near future are discussed.

  8. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    OpenAIRE

    Marchevsky, M.; Wang, X.; Sabbi, G.; Prestemon, S.

    2014-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [...

  9. Observation of transverse patterns in an isotropic microchip laser

    International Nuclear Information System (INIS)

    Chen, Y.F.; Lan, Y.P.

    2003-01-01

    An isotropic microchip laser is used to study the characteristics of high-order wave functions in a two-dimensional (2D) quantum harmonic oscillator based on the identical functional forms. With a doughnut pump profile, the spontaneous transverse modes are found to, generally, be elliptic and hyperbolic transverse modes. Theoretical analyses reveal that the elliptic transverse modes are analogous to the coherent states of a 2D harmonic oscillator; the formation of hyperbolic transverse modes is a spontaneous mode locking between two identical Hermite-Gaussian modes

  10. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    Science.gov (United States)

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  11. Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis.

    Science.gov (United States)

    Gertsch, Jana C; Noblitt, Scott D; Cropek, Donald M; Henry, Charles S

    2010-05-01

    A microchip capillary electrophoresis (MCE) system has been developed for the determination of perchlorate in drinking water. The United States Environmental Protection Agency (USEPA) recently proposed a health advisory limit for perchlorate in drinking water of 15 parts per billion (ppb), a level requiring large, sophisticated instrumentation, such as ion chromatography coupled with mass spectrometry (IC-MS), for detection. An inexpensive, portable system is desired for routine online monitoring applications of perchlorate in drinking water. Here, we present an MCE method using contact conductivity detection for perchlorate determination. The method has several advantages, including reduced analysis times relative to IC, inherent portability, high selectivity, and minimal sample pretreatment. Resolution of perchlorate from more abundant ions was achieved using zwitterionic, sulfobetaine surfactants, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (HDAPS) and N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (TDAPS). The system performance and the optimization of the separation chemistry, including the use of these surfactants to resolve perchlorate from other anions, are discussed in this work. The system is capable of detection limits of 3.4 +/- 1.8 ppb (n = 6) in standards and 5.6 +/- 1.7 ppb (n = 6) in drinking water.

  12. Defense program pushes microchip frontiers

    Science.gov (United States)

    Julian, K.

    1985-05-01

    The very-high-speed integrated circuit (VHSIC) program of the Department of Defense will have a significant effect on the expansion of integrated circuit technology. This program, which is to cost several hundred million dollars, is accelerating the trend toward higher-speed, denser circuitry for microchips through innovative design and fabrication techniques. Teams in six different American companies are to design and fabricate a military useful 'brassboard' system which would employ chips developed in the first phase of the VHSIC program. Military objectives envisaged include automatic monitoring of displays in tactical aircraft by means of an artificial intelligence system, a brassboard used in airborne electronic warfare system, and antisubmarine warfare applications. After a fivefold improvement in performance achieved in the first phase, the second phase is concerned with a further 20-fold increase. The entire VHSIC program is, therefore, to produce a 100-fold gain over the state of the art found when the program started.

  13. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG

    International Nuclear Information System (INIS)

    Wang, Y; Gong, M; Yan, P; Huang, L; Li, D

    2009-01-01

    A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power

  14. Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations

    Directory of Open Access Journals (Sweden)

    Elin eForslund

    2012-10-01

    Full Text Available Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are also transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended times. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g. conjugation, immune synapse formation and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at

  15. Diagnostic instrumentation for detection of the onset of steam tube leaks in PWRs

    International Nuclear Information System (INIS)

    Roach, W.H.

    1984-01-01

    Four tasks are addressed in this study of the detection of steam tube leaks: determination of which physical parameters indicate the onset of steam generator tube leaks; establishing performance goals for diagnostic instruments which could be used for early detection of steam generator tube leaks; defining the diagnostic instrumentation and their location which satisfy Items 1 and 2; and assessing the need for diagnostic data processing and display. Parameters are identified, performance goals established and sensor types and locations are specified in the report, with emphasis on the use of existing instrumentation with a minimum of retrofitting. A simple algorithm is developed which yields the leak rate as a function of known or measurable quantities. The conclusion is that leak rates of less than one-tenth gram per second should be detectable with existing instrumentation

  16. Simultaneous determination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Li, Hongmin; Li, Qingling; Wang, Xu; Xu, Kehua; Chen, Zhenzhen; Gong, Xiaocong; Liu, Xin; Tong, Lili; Tang, Bo

    2009-03-15

    A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.

  17. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    Science.gov (United States)

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  18. Current Status on Stress Diagnostic Kit and Detection Technology

    International Nuclear Information System (INIS)

    Park, Sang Hyun; Choi, Mi Hee; Ko, Kyong Cheol

    2008-06-01

    The accurate measurement of a stress level is one of the most important issues in a stress diagnosis and its measurement could be of great value in clinical medicine. Stress has a potent effect on the spirit and physical condition of an individual. There are various methods available for its measurement. Some of the commonly used techniques for the diagnosis of a stress level include analysis of the body fluids, questionnaire assessments, psychophysiological evaluations and by determining heart rate variability (HRV) of subjects. However, the existing diagnostic methods have several defects like, a low sensitivity, inaccuracy and long of operation time. In this report, we present a diagnostic technology to detect a stress level which is the origin of various diseases. This method can be of great help in providing an early diagnosis through a biosensor and might play a vital role in preventing diseases like hypochondria and hypertension. Majority of the human population is exposed to stress in one way or another and hence developing a convenient stress diagnosis kit will be of great use to all. This stress diagnostic kit and detection technology dose not involve simple a mechanical measurement or questionnaires, but is based on developing a detection kit with a high sensitivity, which will mean an easy use for common man. Individuals can undergo regular check ups and can personally diagnose their present situation of health by determining their stress levels, thus enabling them to diagnose the early onset of several stress disorders. This might help them take precautionary measures and thereby lead to a healthy life

  19. Current Status on Stress Diagnostic Kit and Detection Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun; Choi, Mi Hee; Ko, Kyong Cheol

    2008-06-15

    The accurate measurement of a stress level is one of the most important issues in a stress diagnosis and its measurement could be of great value in clinical medicine. Stress has a potent effect on the spirit and physical condition of an individual. There are various methods available for its measurement. Some of the commonly used techniques for the diagnosis of a stress level include analysis of the body fluids, questionnaire assessments, psychophysiological evaluations and by determining heart rate variability (HRV) of subjects. However, the existing diagnostic methods have several defects like, a low sensitivity, inaccuracy and long of operation time. In this report, we present a diagnostic technology to detect a stress level which is the origin of various diseases. This method can be of great help in providing an early diagnosis through a biosensor and might play a vital role in preventing diseases like hypochondria and hypertension. Majority of the human population is exposed to stress in one way or another and hence developing a convenient stress diagnosis kit will be of great use to all. This stress diagnostic kit and detection technology dose not involve simple a mechanical measurement or questionnaires, but is based on developing a detection kit with a high sensitivity, which will mean an easy use for common man. Individuals can undergo regular check ups and can personally diagnose their present situation of health by determining their stress levels, thus enabling them to diagnose the early onset of several stress disorders. This might help them take precautionary measures and thereby lead to a healthy life.

  20. Detection of Plasmodium Aldolase Using a Smartphone and Microfluidic Enzyme Linked Immunosorbent Assay

    Directory of Open Access Journals (Sweden)

    Nikhil S. Gopal

    2017-01-01

    Full Text Available Background. Malaria control efforts are limited in rural areas. A low-cost system to monitor response without the use of electricity is needed. Plasmodium aldolase is a malaria biomarker measured using enzyme linked immunosorbent assay (ELISA techniques. A three-part system using ELISA was developed consisting of a microfluidic chip, hand crank centrifuge, and a smartphone. Methods. A circular microfluidic chip was fabricated using clear acrylic and a CO2 laser. A series of passive valves released reagents at precise times based upon centrifugal force. Color change was measured via smartphone camera using an application programmed in Java. The microchip was compared to a standard 96-well sandwich ELISA. Results. Results from standard ELISA were compared to microchip at varying concentrations (1–10 ng/mL. Over 15 different microfluidic patterns were tested, and a final prototype of the chip was created. The prototype microchip was compared to standard sandwich ELISA (n=20 using samples of recombinant aldolase. Color readings of standard ELISA and microfluidic microchip showed similar results. Conclusion. A low-cost microfluidic system could detect and follow therapeutic outcomes in rural areas and identify resistant strains.

  1. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    Science.gov (United States)

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  2. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  3. Detection of angiospastic disorders in the microcirculatory bed using laser diagnostics technologies

    Directory of Open Access Journals (Sweden)

    Irina N. Makovik

    2018-01-01

    Thus, the evaluation of combined noninvasive optical diagnostic method use, the cold pressor test and proposed diagnostic criteria showed a positive result. This approach can be used to detect the presence of possible angiospastic disorders and related complications, as well as microcirculatory bed disorders against the background of other diseases.

  4. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    Science.gov (United States)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  5. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  6. Diagnostic accuracy of whole-brain CT perfusion in the detection of acute infratentorial infarctions

    Energy Technology Data Exchange (ETDEWEB)

    Bollwein, Christine; Sommer, Wieland H.; Thierfelder, Kolja M.; Reiser, Maximilian F. [Ludwig-Maximilians-University Hospital of Munich, Institute for Clinical Radiology, Munich (Germany); Plate, Annika; Straube, Andreas; Baumgarten, Louisa von [Ludwig-Maximilians-University Hospital of Munich, Department of Neurology, Munich (Germany); Janssen, Hendrik [South Nuremberg Hospital, Department of Neuroradiology, Nuremberg (Germany)

    2016-11-15

    Although the diagnostic performance of whole-brain computed tomographic perfusion (WB-CTP) in the detection of supratentorial infarctions is well established, its value in the detection of infratentorial strokes remains less well defined. We examined its diagnostic accuracy in the detection of infratentorial infarctions and compared it to nonenhanced computed tomography (NECT), aiming to identify factors influencing its detection rate. Out of a cohort of 1380 patients who underwent WB-CTP due to suspected stroke, we retrospectively included all patients with MRI-confirmed infratentorial strokes and compared it to control patients without infratentorial strokes. Two blinded readers evaluated NECT and four different CTP maps independently for the presence and location of infratentorial ischemic perfusion deficits. The study was designed as a retrospective case-control study and included 280 patients (cases/controls = 1/3). WB-CTP revealed a greater diagnostic sensitivity than NECT (41.4 vs. 17.1 %, P = 0.003). The specificity, however, was comparable (93.3 vs. 95.0 %). Mean transit time (MTT) and time to drain (TTD) were the most sensitive (41.4 and 40.0 %) and cerebral blood volume (CBV) the most specific (99.5 %) perfusion maps. Infarctions detected using WB-CTP were significantly larger than those not detected (15.0 vs. 2.2 ml; P = 0.0007); infarct location, however, did not influence the detection rate. The detection of infratentorial infarctions can be improved by assessing WB-CTP as part of the multimodal stroke workup. However, it remains a diagnostic challenge, especially small volume infarctions in the brainstem are likely to be missed. (orig.)

  7. Diagnostic accuracy of whole-brain CT perfusion in the detection of acute infratentorial infarctions

    International Nuclear Information System (INIS)

    Bollwein, Christine; Sommer, Wieland H.; Thierfelder, Kolja M.; Reiser, Maximilian F.; Plate, Annika; Straube, Andreas; Baumgarten, Louisa von; Janssen, Hendrik

    2016-01-01

    Although the diagnostic performance of whole-brain computed tomographic perfusion (WB-CTP) in the detection of supratentorial infarctions is well established, its value in the detection of infratentorial strokes remains less well defined. We examined its diagnostic accuracy in the detection of infratentorial infarctions and compared it to nonenhanced computed tomography (NECT), aiming to identify factors influencing its detection rate. Out of a cohort of 1380 patients who underwent WB-CTP due to suspected stroke, we retrospectively included all patients with MRI-confirmed infratentorial strokes and compared it to control patients without infratentorial strokes. Two blinded readers evaluated NECT and four different CTP maps independently for the presence and location of infratentorial ischemic perfusion deficits. The study was designed as a retrospective case-control study and included 280 patients (cases/controls = 1/3). WB-CTP revealed a greater diagnostic sensitivity than NECT (41.4 vs. 17.1 %, P = 0.003). The specificity, however, was comparable (93.3 vs. 95.0 %). Mean transit time (MTT) and time to drain (TTD) were the most sensitive (41.4 and 40.0 %) and cerebral blood volume (CBV) the most specific (99.5 %) perfusion maps. Infarctions detected using WB-CTP were significantly larger than those not detected (15.0 vs. 2.2 ml; P = 0.0007); infarct location, however, did not influence the detection rate. The detection of infratentorial infarctions can be improved by assessing WB-CTP as part of the multimodal stroke workup. However, it remains a diagnostic challenge, especially small volume infarctions in the brainstem are likely to be missed. (orig.)

  8. Direct detection of cancer biomarkers in blood using a "place n play" modular polydimethylsiloxane pump.

    Science.gov (United States)

    Zhang, Honglian; Li, Gang; Liao, Lingying; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong

    2013-01-01

    Cancer biomarkers have significant potential as reliable tools for the early detection of the disease and for monitoring its recurrence. However, most current methods for biomarker detection have technical difficulties (such as sample preparation and specific detector requirements) which limit their application in point of care diagnostics. We developed an extremely simple, power-free microfluidic system for direct detection of cancer biomarkers in microliter volumes of whole blood. CEA and CYFRA21-1 were chosen as model cancer biomarkers. The system automatically extracted blood plasma from less than 3 μl of whole blood and performed a multiplex sample-to-answer assay (nano-ELISA (enzyme-linked immunosorbent assay) technique) without the use of external power or extra components. By taking advantage of the nano-ELISA technique, this microfluidic system detected CEA at a concentration of 50 pg/ml and CYFRA21-1 at a concentration of 60 pg/ml within 60 min. The combination of PnP polydimethylsiloxane (PDMS) pump and nano-ELISA technique in a single microchip system shows great promise for the detection of cancer biomarkers in a drop of blood.

  9. [Comparison of susceptibility artifacts generated by microchips with different geometry at 1.5 Tesla magnet resonance imaging. A phantom pilot study referring to the ASTM standard test method F2119-07].

    Science.gov (United States)

    Dengg, S; Kneissl, S

    2013-01-01

    Ferromagnetic material in microchips, used for animal identification, causes local signal increase, signal void or distortion (susceptibility artifact) on MR images. To measure the impact of microchip geometry on the artifact's size, an MRI phantom study was performed. Microchips of the labels Datamars®, Euro-I.D.® and Planet-ID® (n  =  15) were placed consecutively in a phantom and examined with respect to the ASTM Standard Test Method F2119-07 using spin echo (TR 500 ms, TE 20 ms), gradient echo (TR 300 ms, TE 15 ms, flip angel 30°) and otherwise constant imaging parameters (slice thickness 3 mm, field of view 250 x 250 mm, acquisition matrix 256 x 256 pixel, bandwidth 32 kHz) at 1.5 Tesla. Image acquisition was undertaken with a microchip positioned in the x- and z-direction and in each case with a phase-encoding direction in the y- and z-direction. The artifact size was determined with a) a measurement according to the test method F2119-07 using a homogeneous point operation, b) signal intensity measurement according to Matsuura et al. and c) pixel counts in the artifact according to Port and Pomper. There was a significant difference in artifact size between the three microchips tested (Wilcoxon p = 0.032). A two- to three-fold increase in microchip volume generated an up to 76% larger artifact, depending on the sequence type, phase-encoding direction and chip position to B0. The smaller the microchip geometry, the less is the susceptibility artifact. Spin echoes (SE) generated smaller artifacts than gradient echoes (GE). In relation to the spatial measurement of the artifact, the switch in phase-encoding direction had less influence on the artifact size in GE- than in SE-sequences. However, the artifact shape and direction of SE-sequences can be changed by altering the phase. The artifact size, caused by the microchip, plays a major clinical role in the evaluation of MRI from the head, shoulder and neck regions.

  10. Diagnostic Performance of CT Colonography for the Detection of Colorectal Polyps

    International Nuclear Information System (INIS)

    Yun, Ji Young; Ro, Hee Jeong; Choi, Jung Bin; Chung, Ji Eun; Kim, Yong Jin; Suh, Won Hyuck; Lee, Jong Kyun; Park, Jong Beom

    2007-01-01

    To investigate the diagnostic value of CT colonography for the detection of colorectal polyps. From December 2004 to December 2005, 399 patients underwent CT colonography and follow-up conventional colonoscopy. We excluded cases of advanced colorectal cancer. We retrospectively analyzed the CT colonography findings and follow-up conventional colonoscopy findings of 113 patients who had polyps more than 6 mm in diameter. Radiologists using 3D and 2D computer generated displays interpreted the CT colonography images. The colonoscopists were aware of the CT colonography findings before the procedure. CT colonography detected 132 polyps in 107 of the 113 patients and conventional colonoscopy detected 114 colorectal polyps more than 6 mm in diameter in 87 of the 113 patients. The sensitivity of CT colonography analyzed per polyp was 91% (41/45) for polyps more than 10 mm in diameter and 89% (101/114) for polyps more than 6 mm in diameter. Thirteen polyps were missed by CT colonography and were detected on follow-up conventional colonoscopy. CT colonography is a sensitive diagnostic tool for the detection of colorectal polyps and adequate bowel preparation, optimal bowel distention and clinical experience are needed to reduce the rate of missing appropriate lesions

  11. Interferometric Reflectance Imaging Sensor (IRIS—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    Directory of Open Access Journals (Sweden)

    Oguzhan Avci

    2015-07-01

    Full Text Available Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS, and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i low-magnification (ensemble biomolecular mass measurements and (ii high-magnification (digital detection of individual nanoparticles along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.

  12. Encapsulation of Fluidic Tubing and Microelectrodes in Microfluidic Devices: Integrating Off-Chip Process and Coupling Conventional Capillary Electrophoresis with Electrochemical Detection.

    Science.gov (United States)

    Becirovic, Vedada; Doonan, Steven R; Martin, R Scott

    2013-08-21

    In this paper, an approach to fabricate epoxy or polystyrene microdevices with encapsulated tubing and electrodes is described. Key features of this approach include a fixed alignment between the fluidic tubing and electrodes, the ability to polish the device when desired, and the low dead volume nature of the fluidic interconnects. It is shown that a variety of tubing can be encapsulated with this approach, including fused silica capillary, polyetheretherketone (PEEK), and perfluoroalkoxy (PFA), with the resulting tubing/microchip interface not leading to significant band broadening or plug dilution. The applicability of the devices with embedded tubing is demonstrated by integrating several off-chip analytical methods to the microchip. This includes droplet transfer, droplet desegmentation, and microchip-based flow injection analysis. Off-chip generated droplets can be transferred to the microchip with minimal coalescence, while flow injection studies showed improved peak shape and sensitivity when compared to the use of fluidic interconnects with an appreciable dead volume. Importantly, it is shown that this low dead volume approach can be extended to also enable the integration of conventional capillary electrophoresis (CE) with electrochemical detection. This is accomplished by embedding fused silica capillary along with palladium (for grounding the electrophoresis voltage) and platinum (for detection) electrodes. With this approach, up to 128,000 theoretical plates for dopamine was possible. In all cases, the tubing and electrodes are housed in a rigid base; this results in extremely robust devices that will be of interest to researchers wanting to develop microchips for use by non-experts.

  13. Smart methanol sensor based on silver oxide-doped zinc oxide nanoparticles deposited on microchips

    International Nuclear Information System (INIS)

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    We have prepared calcined silver oxide-doped zinc oxide nanoparticles (NPs) by a hydrothermal method using reducing agents in alkaline medium. The doped NPs were characterized by UV/vis, FTIR, and X-ray photoelectron spectroscopy, and by X-ray powder diffraction and field-emission scanning electron microscopy. The NPs were deposited on microchips to result in a sensor that has a fast response to methanol in the liquid phase. Features include high sensitivity, low-sample volume, reliability, reproducibility, ease of integration, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r 2  = 0.9981) over the 0.25 mmolL −1 to 0.25 molL −1 methanol concentration range. The sensitivity is ∼7.917 μA cm −2 mmolL −2 , and the detection limit is 71.0 ± 0.5 μmolL −1 at a signal-to-noise-ratio of 3. (author)

  14. Standardization of diagnostic PCR for the detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Malorny, B.; Tassios, P.T.; Radstrom, P.

    2003-01-01

    In vitro amplification of nucleic acids using the polymerase chain reaction (PCR) has become, since its discovery in the 1980s, a powerful diagnostic tool for the analysis of microbial infections as well as for the analysis of microorganisms in food samples. However, despite its potential, PCR has...... neither gained wide acceptance in routine diagnostics nor been widely incorporated in standardized methods. Lack of validation and standard protocols, as well as variable quality of reagents and equipment, influence the efficient dissemination of PCR methodology from expert research laboratories to end......-user laboratories. Moreover, the food industry understandably requires and expects officially approved standards. Recognizing this, in 1999, the European Commission approved the research project, FOOD-PCR (http://www.PCR.dk), which aims to validate and standardize the use of diagnostic PCR for the detection...

  15. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses

    Czech Academy of Sciences Publication Activity Database

    Štěpánová, Sille; Kašička, Václav

    2016-01-01

    Roč. 39, č. 1 (2016), s. 198-211 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : capillary electrophoresis * mass spectrometry * microchip electrophoresis * peptidomics * proteomics Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.557, year: 2016

  16. The capacity of diagnostic laboratories in Kenya for detecting infectious diseases.

    Science.gov (United States)

    Slotved, H-C; Yatich, Kennedy K; Sam, Shem Otoi; Ndhine, Edwardina Otieno

    2017-01-01

    The aim of this study is to present data of the diagnostic capacity of Kenyan laboratories to diagnose a number of human pathogens. The study is based on the data obtained from a biosecurity survey conducted in Kenya in 2014/2015 and data from the Statistical Abstract of Kenya for 2015. The biosecurity survey has previously been published; however, the survey also included information on laboratory capacity to handle a number of pathogens, which have not been published. Data were retrieved from the survey on 86 laboratory facilities. The data include information from relevant categories such as training laboratories, human diagnostic laboratories, veterinary diagnostic laboratories, and research laboratories. The disease incidence in Kenya ranges widely from malaria and diarrhea with an incidence rate of around 10.000 per year to diseases such as cholera and yellow fever with an incidence rate of 1 per year or less for all age groups. The data showed that diseases with the highest number of diagnostic facilities were mainly malaria-, HIV-, tuberculosis-, and diarrhea-related infectious diseases. The study generally shows that the laboratory facilities have the capacity of detecting the infectious diseases with the highest incidence rates. Furthermore, it seems that the number of facilities able to detect a particular disease is related to the incidence rate of the disease.

  17. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    International Nuclear Information System (INIS)

    Marchevsky, M; Wang, X; Sabbi, G; Prestemon, S

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01, we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed. (author)

  18. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    CERN Document Server

    Marchevsky, M.; Sabbi, G.; Prestemon, S.

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb$_{3}$Sn quadrupole HQ01 [1], we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed.

  19. A high-throughput solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for rapid determination of trace heavy metals in natural water.

    Science.gov (United States)

    Shih, Tsung-Ting; Hsieh, Cheng-Chuan; Luo, Yu-Ting; Su, Yi-An; Chen, Ping-Hung; Chuang, Yu-Chen; Sun, Yuh-Chang

    2016-04-15

    Herein, a hyphenated system combining a high-throughput solid-phase extraction (htSPE) microchip with inductively coupled plasma-mass spectrometry (ICP-MS) for rapid determination of trace heavy metals was developed. Rather than performing multiple analyses in parallel for the enhancement of analytical throughput, we improved the processing speed for individual samples by increasing the operation flow rate during SPE procedures. To this end, an innovative device combining a micromixer and a multi-channeled extraction unit was designed. Furthermore, a programmable valve manifold was used to interface the developed microchip and ICP-MS instrumentation in order to fully automate the system, leading to a dramatic reduction in operation time and human error. Under the optimized operation conditions for the established system, detection limits of 1.64-42.54 ng L(-1) for the analyte ions were achieved. Validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Each analysis could be readily accomplished within just 186 s using the established system. This represents, to the best of our knowledge, an unprecedented speed for the analysis of trace heavy metal ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Preparation of metal nanoband microelectrode on poly(dimethylsiloxane) for chip-based amperometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shaopeng; Wu Jian; Yu Xiaodong [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2010-04-30

    We proposed herein a novel approach for fabricating nanoband microelectrodes for electrochemical detection on an electrophoresis microchip. The metal films were first obtained via region-selective electroless deposition of gold or copper films on PDMS substrates by selective region plasma oxidation through shadow masking. Both metal films show uniform surfaces with the thickness at the level of 100 nm. By casting another PDMS layer on the metal films, the cross section of the sandwich structures can be used as nanoband microelectrodes, which can be renewed just by cutting. These nanoband microelectrodes are successfully used as electrochemical detectors in microchip electrophoresis for the detection of amino acids, proteins and neurotransmitter molecules. Moreover, integrating an Au-Cu double-metal detector with a double-channel electrophoresis system, we can easily distinguish electroactive amino acids from that of non-electroactive amino acids.

  1. A novel diagnostic aid for intra-abdominal adhesion detection in cine-MR imaging: Pilot study and initial diagnostic impressions.

    Science.gov (United States)

    Randall, David; Joosten, Frank; ten Broek, Richard; Gillott, Richard; Bardhan, Karna Dev; Strik, Chema; Prins, Wiesje; van Goor, Harry; Fenner, John

    2017-07-14

    A non-invasive diagnostic technique for abdominal adhesions is not currently available. Capture of abdominal motion due to respiration in cine-MRI has shown promise, but is difficult to interpret. This article explores the value of a complimentary diagnostic aid to facilitate the non-invasive detection of abdominal adhesions using cine-MRI. An image processing technique was developed to quantify the amount of sliding that occurs between the organs of the abdomen and the abdominal wall in sagittal cine-MRI slices. The technique produces a 'sheargram' which depicts the amount of sliding which has occurred over 1-3 respiratory cycles. A retrospective cohort of 52 patients, scanned for suspected adhesions, made 281 cine-MRI sagittal slices available for processing. The resulting sheargrams were reported by two operators and compared to expert clinical judgement of the cine-MRI scans. The sheargram matched clinical judgement in 84% of all sagittal slices and 93-96% of positive adhesions were identified on the sheargram. The sheargram displayed a slight skew towards sensitivity over specificity, with a high positive adhesion detection rate but at the expense of false positives. Good correlation between sheargram and absence/presence of inferred adhesions indicates quantification of sliding motion has potential to aid adhesion detection in cine-MRI. Advances in Knowledge: This is the first attempt to clinically evaluate a novel image processing technique quantifying the sliding motion of the abdominal contents against the abdominal wall. The results of this pilot study reveal its potential as a diagnostic aid for detection of abdominal adhesions.

  2. A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform

    International Nuclear Information System (INIS)

    Ahn, Ji Young; Lee, Hyung Woo; Kim, Jong Man; Kim, Soo Hyung; Kim, Sang Beom; Kim, Ji Hoon; Jang, Nam Su; Kim, Dae Hyun

    2016-01-01

    The interfacial contact area between the fuel and oxidizer components plays an important role in determining the combustion reactivity of nanothermite composites. In addition, the development of compact and reliable ignition methods can extend the applicability of nanothermite composites to various thermal engineering fields. In this study we report the development of a micro-chip initiator with controlled combustion reactivity using concepts usually applied to microelectromechanical systems (MEMS) and simple nanofabrication processes. The nanothermite composites fabricated in this study consisted of aluminum nanoparticles (Al NPs) as the fuel and copper oxide nanoparticles (CuO NPs) as the oxidizer accumulated on a silicon oxide substrate with a serpentine-shaped gold (Au) electrode. The micro-chip initiator rapidly ignited and exploded when minimal current was supplied. The effects of stacking structures of Al and CuO-based multilayers on the combustion properties were systematically investigated in terms of the pressurization rate, peak explosion time, and heat flow. Pressurization rates of 0.004–0.025 MPa μs −1 and heat flows of 2.0–3.8 kJ g −1 with a commonly fast response time of less than 20 ms could be achieved by simply changing the interfacial structures of the Al and CuO multilayers. The controllability of combustion reactivity of micro-chip initiator can be made for general nanothermite composites composed of Al and various metal oxides (e.g. Fe 2 O 3 , CuO, KMnO 4 , etc). The micro-chip initiator fabricated in this study was reliable, compact, and proved to be a versatile platform, exhibiting controlled combustion reactivity and fast response time, which could be used for various civilian and military thermal engineering applications, such as in initiators and propulsion, welding, and ordinance systems. (paper)

  3. A fast and reliable way to establish fluidic connections to planar microchips

    DEFF Research Database (Denmark)

    Snakenborg, Detlef; Perozziello, Gerardo; Geschke, Oliver

    2007-01-01

    In this work, we present a non-permanent method to connect microfluidic devices. The approach uses short flexible tubes that are plugged into bottom-flat holes and ensure fast and reliable interconnections. The small available dimensions allow the tube to be directly attached to the side of plana...... microchips. A theoretical model to estimate the maximum applicable pressure was developed, and verified with experimental data. Furthermore, the tube connections were compared to other non-permanent interconnection types....

  4. The Diagnostic Value of Gastrin-17 Detection in Atrophic Gastritis

    Science.gov (United States)

    Wang, Xu; Ling, Li; Li, Shanshan; Qin, Guiping; Cui, Wei; Li, Xiang; Ni, Hong

    2016-01-01

    Abstract A meta-analysis was performed to assess the diagnostic value of gastrin-17 (G-17) for the early detection of chronic atrophic gastritis (CAG). An extensive literature search was performed, with the aim of selecting publications that reported the accuracy of G-17 in predicting CAG, in the following databases: PubMed, Science Direct, Web of Science, Chinese Biological Medicine, Chinese National Knowledge Infrastructure, Wanfang, and VIP. To assess the diagnostic value of G-17, the following statistics were estimated and described: sensitivity, specificity, diagnostic odds ratios (DOR), summary receiver operating characteristic curves, area under the curve (AUC), and 95% confidence intervals (CIs). Thirteen studies that met the inclusion criteria were included in this meta-analysis, comprising 894 patients and 1950 controls. The pooled sensitivity and specificity of these studies were 0.48 (95% CI: 0.45–0.51) and 0.79 (95% CI: 0.77–0.81), respectively. The DOR was 5.93 (95% CI: 2.93–11.99), and the AUC was 0.82. G-17 may have potential diagnostic value because it has good specificity and a moderate DOR and AUC for CAG. However, more studies are needed to improve the sensitivity of this diagnostic tool in the future. PMID:27149493

  5. Nonradioactive telomerase activity assay by microchip electrophoresis: privileges to the classical gel electrophoresis assay.

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ewis, Ashraf; Ohba, Hideki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-08-01

    The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.

  6. Microchip-calorimetry of organic charge transfer complex which shows superconductivity at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yuki [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Yamashita, Satoshi [RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Yamamoto, Takashi [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Nakazawa, Yasuhiro, E-mail: nakazawa@chem.sci.osaka-u.ac.jp [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585 (Japan)

    2012-03-20

    Highlights: Black-Right-Pointing-Pointer Organic charge transfer salt of {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br shows superconductivity. Black-Right-Pointing-Pointer We succeeded to detect thermal anomaly microchip device TCG3880. Black-Right-Pointing-Pointer Development details of the calorimeter and the detection system is presented. Black-Right-Pointing-Pointer The magnetic fields dependence shows typical character of layered superconductor. - Abstract: We carried out thermodynamic measurements of organic charge transfer complex of {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene by TCG3880 chip device in order to examine capability of the chip calorimeter at low temperature region and under magnetic fields. TCG3880 chip is mounted on a {sup 3}He cryostat available in combination with a superconductive magnet up to 7 T. Thermal anomalies related to the glass-like freezing of ethylene groups of BEDT-TTF molecules and the superconductive transition were observed. A frequency dependence of the thermal anomaly of the glass formation and a magnetic fields dependence of the thermal anomaly of the superconductive transition are reported. The results presented in this work demonstrate that the TCG3880 is quite useful for thermodynamic investigations of the organic charge transfer complex with much reduced sample quantity as compared with those of relaxation and adiabatic calorimetry.

  7. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance...

  8. Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: Investigation of the robustness of a simple cross-injector system

    International Nuclear Information System (INIS)

    Crevillen, Agustin G.; Barrigas, Ines; Blasco, Antonio Javier; Gonzalez, Maria Cristina; Escarpa, Alberto

    2006-01-01

    This work examines in deep the analytical performance of an example of 'first-generation' microdevices: capillary electrophoresis microchip (CE) with end-channel electrochemical detection (ED). A hydroquinone and arbutin separation strategically chosen as route involving pharmaceutical-clinical testing, public safety and food control scenes was carried out. The reproducibility of the unpinched electrokinetic protocol was carefully studied and the technical possibility of working indiscriminately and/or sequentially with both simple cross-injectors was also demonstrated using a real sample (R.S.D.'s less than 7%). The robustness of the injection protocol allowed checking the state of the microchip/detector coupling and following the extraction efficiency of the analyte from real sample. Separation variables such as pH, ionic strength and, separation voltage were also carefully assayed and optimized. Analyte screening was performed using borate buffer (pH 9, 60 mM) in less than 180 s in the samples studied improving dramatically the analysis times used for the same analytes on a conventional scale (15 min), with good precision (R.S.D.'s ranging 5-10%), accuracy (recoveries ranging 90-110%) and acceptable resolution (Rs ≥ 1.0). In addition, the excellent analytical performance of the overall analytical method indicated the quality of the whole analytical microsystem and allowed to introduce the definition of robustness for methodologies developed into the 'lab-on-a-chip' scene

  9. Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: Investigation of the robustness of a simple cross-injector system

    Energy Technology Data Exchange (ETDEWEB)

    Crevillen, Agustin G. [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Barrigas, Ines [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Blasco, Antonio Javier [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Gonzalez, Maria Cristina [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Escarpa, Alberto [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)]. E-mail: alberto.escarpa@uah.es

    2006-03-15

    This work examines in deep the analytical performance of an example of 'first-generation' microdevices: capillary electrophoresis microchip (CE) with end-channel electrochemical detection (ED). A hydroquinone and arbutin separation strategically chosen as route involving pharmaceutical-clinical testing, public safety and food control scenes was carried out. The reproducibility of the unpinched electrokinetic protocol was carefully studied and the technical possibility of working indiscriminately and/or sequentially with both simple cross-injectors was also demonstrated using a real sample (R.S.D.'s less than 7%). The robustness of the injection protocol allowed checking the state of the microchip/detector coupling and following the extraction efficiency of the analyte from real sample. Separation variables such as pH, ionic strength and, separation voltage were also carefully assayed and optimized. Analyte screening was performed using borate buffer (pH 9, 60 mM) in less than 180 s in the samples studied improving dramatically the analysis times used for the same analytes on a conventional scale (15 min), with good precision (R.S.D.'s ranging 5-10%), accuracy (recoveries ranging 90-110%) and acceptable resolution (Rs {>=} 1.0). In addition, the excellent analytical performance of the overall analytical method indicated the quality of the whole analytical microsystem and allowed to introduce the definition of robustness for methodologies developed into the 'lab-on-a-chip' scene.

  10. Sensitive determination of neurotransmitters in urine by microchip electrophoresis with multiple-concentration approaches combining field-amplified and reversed-field stacking.

    Science.gov (United States)

    Zhang, Yan; Zhang, Yi; Wang, Guan; Chen, Wujuan; Li, Yi; Zhang, Yating; He, Pingang; Wang, Qingjiang

    2016-07-01

    Microchip electrophoresis (MCE) is particularly attractive as it provides high sensitivity and selectivity, short analysis time and low sample consumption. An on-line preconcentration strategy combining field-amplified stacking (FASS) and reversed-field stacking (RFS) was developed for efficient and sensitive analysis of neurotransmitters in real urine samples by MCE with laser induced fluorescence (LIF) detection. In this study, the multiple-preconcentration strategy greatly improves the sensitivity enhancement and surpass other conventional analytical methods for neurotransmitters detection. Under optimal conditions, the separation of three neurotransmitters (dopamine, norepinephrine and serotonin), was achieved within 3min with limits of detection (S/N=3) of 1.69, 2.35, and 2.73nM, respectively. The detection sensitivities were improved by 201-, 182-, and 292-fold enhancement, for the three neurotransmitters respectively. Other evaluation parameters such as linear correlation coefficients were considered as satisfactory. A real urine sample was analyzed with recoveries of 101.8-106.4%. The proposed FASS-RFS-MCE method was characterized in terms of precision, linearity, accuracy and successfully applied for rapid and sensitive determination of three neurotransmitters in human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A new diagnostic tool for rapid and accurate detection of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Ali Nour-Neamatollahi

    2018-03-01

    Full Text Available Mycobacterium tuberculosis, acid fast bacilli from the family of Mycobacteriaceae, is the causative agent of most cases of tuberculosis. Tuberculosis, as a communicable disease, remains a serious public health threat, killing more than one million people globally every year. Primary diagnosis of tuberculosis bacilli (TB relies mainly on microscopic detection of acid fast bacilli (AFB, but the method suffers from low sensitivity and the results largely depend on the technician’s skill. New diagnostic tools are necessary to be introduced for rapid and accurate detection of the bacilli in sputum samples. We, in collaboration with Anda Biologicals, have developed a new platform, named as “Patho-tb”, for rapid detection of AFB with high sensitivity and with low dependence on human skills. Evaluation of Patho-tb test performance was done in two settings: (1 primary field study conducted using 38 sputa from high TB prevalence area of Iran (Zabol city near to the Afghanistan border, and (2 main study conducted using 476 sputa from Tehran, capital of Iran. Patho-tb was applied for processed sputum samples in parallel with routine diagnostic methods (including AFB microscopy, culture and PCR. All test results were compared to final clinical diagnostic state of an individual and diagnostic sensitivity (DSe, specificity, positive predictive value, negative predictive value and accuracy of each test results were calculated using standard formulations. Analytical sensitivity and specificity of the Patho-tb test were also determined. Calculated values for five above mentioned parameters are as follows: for field study: AFB (DSe: 29.6, DSp: 81.8, PPV: 80, NPV: 23.1, AC: 44.7, Patho-tb (DSe: 63, DSp: 72.7, PPV: 85, NPV: 44.4, AC: 65.8, and for main study: AFB (DSe: 86.1, DSp: 99.4, PPV: 98.5, NPV: 93.9, AC: 95.2, Patho-tb (DSe: 97.4, DSp: 92.9, PPV: 86.5, NPV: 98.7, AC: 94.3. Reproducibility of Patho-tb test results were near to 100% (Cohen’s kappa value

  12. 2012 HIV Diagnostics Conference: the molecular diagnostics perspective.

    Science.gov (United States)

    Branson, Bernard M; Pandori, Mark

    2013-04-01

    2012 HIV Diagnostic Conference Atlanta, GA, USA, 12-14 December 2012. This report highlights the presentations and discussions from the 2012 National HIV Diagnostic Conference held in Atlanta (GA, USA), on 12-14 December 2012. Reflecting changes in the evolving field of HIV diagnostics, the conference provided a forum for evaluating developments in molecular diagnostics and their role in HIV diagnosis. In 2010, the HIV Diagnostics Conference concluded with the proposal of a new diagnostic algorithm which included nucleic acid testing to resolve discordant screening and supplemental antibody test results. The 2012 meeting, picking up where the 2010 meeting left off, focused on scientific presentations that assessed this new algorithm and the role played by RNA testing and new developments in molecular diagnostics, including detection of total and integrated HIV-1 DNA, detection and quantification of HIV-2 RNA, and rapid formats for detection of HIV-1 RNA.

  13. Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard; Scott, Søren Bertelsen; Thilsted, Anil Haraksingh

    2018-01-01

    -time detection of reaction products and intermediates during electrochemistry experiments. Herein, we present a new type of electrochemistry – mass spectrometry (EC-MS) based on a versatile gas inlet to vacuum fabricated onto a silicon microchip, and compare it to established techniques with focus...

  14. Power System Transient Diagnostics Based on Novel Traveling Wave Detection

    Science.gov (United States)

    Hamidi, Reza Jalilzadeh

    Modern electrical power systems demand novel diagnostic approaches to enhancing the system resiliency by improving the state-of-the-art algorithms. The proliferation of high-voltage optical transducers and high time-resolution measurements provide opportunities to develop novel diagnostic methods of very fast transients in power systems. At the same time, emerging complex configuration, such as multi-terminal hybrid transmission systems, limits the applications of the traditional diagnostic methods, especially in fault location and health monitoring. The impedance-based fault-location methods are inefficient for cross-bounded cables, which are widely used for connection of offshore wind farms to the main grid. Thus, this dissertation first presents a novel traveling wave-based fault-location method for hybrid multi-terminal transmission systems. The proposed method utilizes time-synchronized high-sampling voltage measurements. The traveling wave arrival times (ATs) are detected by observation of the squares of wavelet transformation coefficients. Using the ATs, an over-determined set of linear equations are developed for noise reduction, and consequently, the faulty segment is determined based on the characteristics of the provided equation set. Then, the fault location is estimated. The accuracy and capabilities of the proposed fault location method are evaluated and also compared to the existing traveling-wave-based method for a wide range of fault parameters. In order to improve power systems stability, auto-reclosing (AR), single-phase auto-reclosing (SPAR), and adaptive single-phase auto-reclosing (ASPAR) methods have been developed with the final objectives of distinguishing between the transient and permanent faults to clear the transient faults without de-energization of the solid phases. However, the features of the electrical arcs (transient faults) are severely influenced by a number of random parameters, including the convection of the air and plasma

  15. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  16. Self-Sterilizing and Regeneratable Microchip for the Precise Capture and Recovery of Viable Circulating Tumor Cells from Patients with Cancer.

    Science.gov (United States)

    Hui, Lanlan; Su, Yi; Ye, Tingting; Liu, Zhao; Tian, Qingchang; He, Chuanjiang; Zhao, Yueqi; Chen, Pu; Wang, Xiaojia; Han, Weidong; Luo, Yan; Wang, Ben

    2018-01-10

    Cancer cells metastasize and are transported in the bloodstream, easily reaching any site in the body through the blood circulation. A method designed to assess the number of circulating tumor cells (CTCs) should be validated as a clinical tool for predicting the response to therapy and monitoring the disease progression in patients with cancer. Although CTCs are detectable in many cases, they remain unavailable for clinic usage because of their high testing cost, tedious operation, and poor clinical relevance. Herein, we developed a regeneratable microchip for isolating CTCs, which is available for robust cell heterogeneity assays on-site without the need for a sterile environment. The ivy-like hierarchical roughened zinc oxide (ZnO) nanograss interface was synthesized and directly integrated into the microfluidic devices and enables effective CTC capture and flexible, nontoxic CTC release during incubation in a mildly acidic solution, thus enabling cellular and molecular analyses. The microchip can be regenerated and recycled to capture CTCs with the remaining ZnO without affecting the efficiency, even after countless cycles of cell release. Moreover, microbial infection is avoided during its storage, distribution, and even in the open space usage, which ideally appeals to the demands of point-of-care (POC) and home testing and meets to the requirements for blood examinations in undeveloped or resource-limited settings. Furthermore, the findings generated using this platform based on the cocktail of antiepithelial cell adhesion molecule and antivimentin antibodies indicate that CTC capture was more precise and reasonable for patients with advanced cancer.

  17. Diagnostic value of combined tumor markers detection for gastric and colorectal cancers

    International Nuclear Information System (INIS)

    Chen Wenzhang; Dong Lin

    2007-01-01

    Objective: To investigate the value of combined tumor markers detection in the clinical diagnosis for gastric cancer and colorectal cancel. Methods: The serum concentration of CEA, CA199, CA125, CA242 were measured by radioimmunoassay and Immunoradioassy in 46 patients with gastric cancer, 62 patients with colorectal cancer and 30 controls. Results: The diagnostic sensitivity, specificity, and accuracy of CEA were 37.0%, 96.7%, 59.2% respectively in gastric cancer,and 51.6%, 96.7%, 66.3% respectively in colorectal cancer, those of CA199 were 47.8%, 100.0%, 65.8% in gastric cancer, and 43.5%, 100.0%, 62, 0% in colorectal cancer, those of CA125 were 41.3%, 96.7%, 63.2% in gastric cancer, and 38.7%, 100.0%, 58.7% in colorectal cancer, those of CA242 were 54.3%, 100.0%, 71.5% in gastric cancer, and 51.6%, 100.0%, 67.4% in colorectal cancer. The diagnostic sensitivity specificity and accuracy of combined four markers were 73.9%, 93.3%, 82.9% in gastric cancer, and 77.4%, 96.7%, 83.7% in colorectal cancer. Compared with the respective value of any single marker, the diagnostic sensitivity and accuracy were significantly improved (P<0.05). Conclusion: Combined tumor markers detection could improve the diagnostic sensitivity and accuracy in gastric and colorectal cancers and was helpful for screening. (authors)

  18. Bottom-up fabrication of paper-based microchips by blade coating of cellulose microfibers on a patterned surface.

    Science.gov (United States)

    Gao, Bingbing; Liu, Hong; Gu, Zhongze

    2014-12-23

    We report a method for the bottom-up fabrication of paper-based capillary microchips by the blade coating of cellulose microfibers on a patterned surface. The fabrication process is similar to the paper-making process in which an aqueous suspension of cellulose microfibers is used as the starting material and is blade-coated onto a polypropylene substrate patterned using an inkjet printer. After water evaporation, the cellulose microfibers form a porous, hydrophilic, paperlike pattern that wicks aqueous solution by capillary action. This method enables simple, fast, inexpensive fabrication of paper-based capillary channels with both width and height down to about 10 μm. When this method is used, the capillary microfluidic chip for the colorimetric detection of glucose and total protein is fabricated, and the assay requires only 0.30 μL of sample, which is 240 times smaller than for paper devices fabricated using photolithography.

  19. Evaluation of a vibration diagnostic system for the detection of spur gear pitting failures

    Science.gov (United States)

    Townsend, Dennis P.; Zakrajsek, James J.

    1993-01-01

    A vibration diagnostic system was used to detect spur gear surface pitting fatigue in a closed-loop spur gear fatigue test rig. The diagnostic system, comprising a personal computer with an analog-to-digital conversion board, a diagnostic system unit, and software, uses time-synchronous averaging of the vibration signal to produce a vibration image of each tooth on any gear in a transmission. Several parameters were analyzed including gear pair stress wave and raw baseband vibration, kurtosis, peak ratios, and others. The system provides limits for the various parameters and gives a warning when the limits are exceeded. Several spur gear tests were conducted with this system and vibration data analyzed at 5-min. intervals. The results presented herein show that the system is fairly effective at detecting spur gear tooth surface fatigue pitting failures.

  20. Ultrashort laser-pulse diagnostics for detection of ordering within an ion beam

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Mariotti, E.

    1996-01-01

    A novel diagnostic method to detect ordering within one-dimensional ion beams in a storage ring is presented. The ions are simultaneously excited by a ultrashort pulsed laser (≅1 ps) at two different locations along the beam and fluorescence is detected by a group of four photomultipliers. Correlation in fluorescence signals is a firm indication that the ion beam has an ordered structure. (orig.)

  1. 78 FR 42779 - Authorization of Emergency Use of an In Vitro Diagnostic for Detection of Middle East Respiratory...

    Science.gov (United States)

    2013-07-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0754] Authorization of Emergency Use of an In Vitro Diagnostic for Detection of Middle East Respiratory Syndrome... Authorization) for an in vitro diagnostic device for detection of Middle East Respiratory Syndrome Coronavirus...

  2. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    Science.gov (United States)

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  3. Measurement of blood coagulation with considering RBC aggregation through a microchip-based light transmission aggregometer.

    Science.gov (United States)

    Lim, Hyunjung; Nam, Jeonghun; Xue, Shubin; Shin, Sehyun

    2011-01-01

    Even though blood coagulation can be tested by various methods and techniques, the effect of RBC aggregation on blood coagulation is not fully understood. The present study monitored clot formation in a microchip-based light transmission aggregometer. Citrated blood samples with and without the addition of calcium ion solution were initially disaggregated by rotating a stirrer in the microchip. After abrupt stop of the rotating stirrer, the transmitted light intensity over time was recorded. The syllectogram (light intensity vs. time graph) manifested a rapid increase that is associated with RBC aggregation followed by a decrease that is associated with blood coagulation. The time to reach the peak point was used as a new index of coagulation time (CT) and ranged from 200 to 500 seconds in the present measurements. The CT was inversely proportional to the concentration of fibrinogen, which enhances RBC aggregation. In addition, the CT was inversely proportional to the hematocrit, which is similar to the case of the prothrombin time (PT), as measured by a commercial coagulometer. Thus, we carefully concluded that RBC aggregation should be considered in tests of blood coagulation.

  4. Controlled trapping and detection of magnetic particles by a magnetic microactuator and a giant magnetoresistance (GMR) sensor

    KAUST Repository

    Giouroudi, Ioanna; Gooneratne, Chinthaka Pasan; Kokkinis, Georgios

    2014-01-01

    This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs

  5. Magnetic heat capacities of {kappa} -(BETS){sub 2}FeBr{sub 4} measured by a micro-chip calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Shuhei; Yamamoto, Takashi; Nakazawa, Yasuhiro [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Yamashita, Satoshi [RIKEN, Hirosawa, Wako, Saitama 351-0198 (Japan); Kobayashi, Akiko; Kobayashi, Hayao [Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan)

    2012-05-15

    Low temperature thermodynamic properties of {kappa} -(BETS){sub 2}FeBr{sub 4} are studied by using a tiny single crystal sample with 1 {mu}g adhered on a micro-chip calorimeter TCG3880. A large thermal anomaly associated with the antiferromagnetic transition of localized d electrons of Fe{sup 3+} was observed around 2.2 K. With the increase of magnetic fields applied parallel to the ac plane, the transition temperature shifts to lower temperature side accompanied by an anisotropic character. We found that the reduction of the transition temperature is largest, when magnetic field was applied parallel to a-axis. This observation is consistent with the previous result obtained by transport measurements which claimed that the spin easy axis is a-axis. The results demonstrate that the microchip calorimeter is effective for conducting thermodynamic measurements of molecular compounds. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Microchip Yb:CaLnAlO.sub.4./sub. lasers with up to 91% slope efficiency

    Czech Academy of Sciences Publication Activity Database

    Loiko, P.; Serres, J.M.; Mateos, X.; Xu, X.; Xu, J.; Jambunathan, Venkatesan; Navrátil, Petr; Lucianetti, Antonio; Mocek, Tomáš; Zhang, X.; Griebner, U.; Petrov, V.; Aguilo, M.; Diaz, F.; Major, A.

    2017-01-01

    Roč. 42, č. 13 (2017), s. 2431-2434 ISSN 0146-9592 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 EU Projects: European Commission(XE) 657424 - QuantumLaP Institutional support: RVO:68378271 Keywords : microchip Subject RIV: BH - Optics, Masers, Laser s OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.416, year: 2016

  7. Fowl adenovirus serotype 4: Epidemiology, pathogenesis, diagnostic detection, and vaccine strategies.

    Science.gov (United States)

    Li, P H; Zheng, P P; Zhang, T F; Wen, G Y; Shao, H B; Luo, Q P

    2017-08-01

    Fowl adenovirus (FAdV) serotype-4 is highly pathogenic for chickens, especially for broilers aged 3 to 5 wk, and it has emerged as one of the foremost causes of economic losses to the poultry industry in the last 30 years. The liver is a major target organ of FAdV-4 infections, and virus-infected chickens usually show symptoms of hydropericardium syndrome. The virus is very contagious, and it is spread both vertically and horizontally. It can be isolated from infected liver homogenates and detected by several laboratory diagnostic methods (including an agar gel immunodiffusion test, indirect immunofluorescence assays, counterimmunoelectrophoresis, enzyme-linked immunosorbent assays, restriction endonuclease analyses, polymerase chain reaction (PCR), real-time PCR, and high-resolution melting-curve analyses). Although inactivated vaccines have been deployed widely to control the disease, attenuated live vaccines and subunit vaccines also have been developed, and they are more attractive vaccine candidates. This article provides a comprehensive review of FAdV-4, including its epidemiology, pathogenesis, diagnostic detection, and vaccine strategies. © 2017 Poultry Science Association Inc.

  8. Automation of diagnostic genetic testing: mutation detection by cyclic minisequencing.

    Science.gov (United States)

    Alagrund, Katariina; Orpana, Arto K

    2014-01-01

    The rising role of nucleic acid testing in clinical decision making is creating a need for efficient and automated diagnostic nucleic acid test platforms. Clinical use of nucleic acid testing sets demands for shorter turnaround times (TATs), lower production costs and robust, reliable methods that can easily adopt new test panels and is able to run rare tests in random access principle. Here we present a novel home-brew laboratory automation platform for diagnostic mutation testing. This platform is based on the cyclic minisequecing (cMS) and two color near-infrared (NIR) detection. Pipetting is automated using Tecan Freedom EVO pipetting robots and all assays are performed in 384-well micro plate format. The automation platform includes a data processing system, controlling all procedures, and automated patient result reporting to the hospital information system. We have found automated cMS a reliable, inexpensive and robust method for nucleic acid testing for a wide variety of diagnostic tests. The platform is currently in clinical use for over 80 mutations or polymorphisms. Additionally to tests performed from blood samples, the system performs also epigenetic test for the methylation of the MGMT gene promoter, and companion diagnostic tests for analysis of KRAS and BRAF gene mutations from formalin fixed and paraffin embedded tumor samples. Automation of genetic test reporting is found reliable and efficient decreasing the work load of academic personnel.

  9. Review: Diagnostic accuracy of PCR-based detection tests for Helicobacter Pylori in stool samples.

    Science.gov (United States)

    Khadangi, Fatemeh; Yassi, Maryam; Kerachian, Mohammad Amin

    2017-12-01

    Although different methods have been established to detect Helicobacter pylori (H. pylori) infection, identifying infected patients is an ongoing challenge. The aim of this meta-analysis was to provide pooled diagnostic accuracy measures for stool PCR test in the diagnosis of H. pylori infection. In this study, a systematic review and meta-analysis were carried out on various sources, including MEDLINE, Web of Sciences, and the Cochrane Library from April 1, 1999, to May 1, 2016. This meta-analysis adheres to the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses report (PRISMA Statement). The clinical value of DNA stool PCR test was based on the pooled false positive, false negative, true positive, and true negative of different genes. Twenty-six of 328 studies identified met the eligibility criteria. Stool PCR test had a performance of 71% (95% CI: 68-73) sensitivity, 96% (95% CI: 94-97) specificity, and 65.6 (95% CI: 30.2-142.5) diagnostic odds ratio (DOR) in diagnosis of H. pylori. The DOR of genes which showed the highest performance of stool PCR tests was as follows: 23S rRNA 152.5 (95% CI: 55.5-418.9), 16S rRNA 67.9 (95%CI: 6.4-714.3), and glmM 68.1 (95%CI: 20.1-231.7). The sensitivity and specificity of stool PCR test are relatively in the same spectrum of other diagnostic methods for the detection of H. pylori infection. In descending order of significance, the most diagnostic candidate genes using PCR detection were 23S rRNA, 16S rRNA, and glmM. PCR for 23S rRNA gene which has the highest performance could be applicable to detect H. pylori infection. © 2017 John Wiley & Sons Ltd.

  10. Microchip electrospray: improvements in spray and signal stability during gradient elution by an inverted postcolumn makeup flow.

    Science.gov (United States)

    Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich

    2011-12-01

    Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.

  11. Diagnostic sensitivity of radiography, ultrasonography, and magnetic resonance imaging for detecting shoulder osteochondrosis/osteochondritis dissecans in dogs.

    Science.gov (United States)

    Wall, Corey R; Cook, Cristi R; Cook, James L

    2015-01-01

    Radiography, magnetic resonance imaging (MRI), and ultrasonography are commonly used for diagnosis of shoulder osteochondrosis and osteochondritis dissecans (OC/OCD) in dogs, however there is a lack of published information on the relative diagnostic sensitivities of these modalities. The purpose of this prospective study was to compare diagnostic sensitivities of these modalities for detecting shoulder OC/OCD in a group of dogs, using arthroscopy as the reference standard. Inclusion criteria were history and clinical findings consistent with osteochondrosis and/or osteochondritis dissecans involving at least one shoulder. With informed client consent, both shoulders for all included dogs were examined using standardized radiography, ultrasonography, MRI, and arthroscopy protocols. One of three veterinary surgeons recorded clinical and arthroscopic findings without knowledge of diagnostic imaging findings. One of two veterinary radiologists recorded diagnostic imaging findings without knowledge of clinical and arthroscopic findings. Eighteen client-owned dogs (n = 36 shoulders) met inclusion criteria. Diagnostic sensitivity, specificity, and accuracy (correct classification rate) values for detecting presence or absence of shoulder osteochondrosis/osteochondritis dissecans were as follows: radiography (88.5%, 90%, 88.9%), ultrasonography (92%, 60%, 82.6%), and MRI (96%, 88.9%, 94.4%). Odds of a correct diagnosis for MRI were 3.2 times more than ultrasonography and two times more than radiography. For MRI detection of lesions, the sagittal T2 or PD-FAT SAT sequences were considered to be most helpful. For radiographic detection of lesions, the additional supinated-mediolateral and pronated-mediolateral projections were considered to be most helpful. Findings from the current study support more evidence-based diagnostic imaging recommendations for dogs with clinically suspected shoulder osteochondrosis or osteochondritis dissecans. © 2014 American College of

  12. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.

    Science.gov (United States)

    Papadakis, G; Friedt, J M; Eck, M; Rabus, D; Jobst, G; Gizeli, E

    2017-09-01

    The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

  13. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    Science.gov (United States)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  14. Detection technique of targets for missile defense system

    Science.gov (United States)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  15. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    2017-05-01

    Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  16. Microfluidic chips for clinical and forensic analysis

    NARCIS (Netherlands)

    Verpoorte, Elisabeth

    2002-01-01

    This review gives an overview of developments in the field of microchip analysis for clinical diagnostic and forensic applications. The approach chosen to review the literature is different from that in most microchip reviews to date, in that the information is presented in terms of analytes tested

  17. Limited diagnostic capacities of two commercial assays for the detection of Leptospira immunoglobulin M antibodies in Laos

    NARCIS (Netherlands)

    Blacksell, Stuart D.; Smythe, Lee; Phetsouvanh, Rattanaphone; Dohnt, Michael; Hartskeerl, Rudy; SymondS, Meegan; Slack, Andrew; Vongsouvath, Manivanh; Davong, Viengmone; Lattana, Olay; Phongmany, Simmaly; Keolouangkot, Valy; White, Nicholas J.; Day, Nicholas P. J.; Newton, Paul N.

    2006-01-01

    The diagnostic utility of immunochromatographic (Leptotek) and enzyme-linked immunosorbent assay (ELISA; Panbio) tests for the detection of Leptospira immunoglobulin M antibodies was assessed in febrile adults admitted in Vientiane, Laos. Both tests demonstrated poor diagnostic accuracy using

  18. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    Directory of Open Access Journals (Sweden)

    Enøe Claes

    2010-05-01

    Full Text Available Abstract Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV. Subcutaneous tissue temperatures obtained by the implantable transponders were compared with rectal temperatures, recorded by a conventional digital thermometer. Methods In a preliminary study, transponders were inserted subcutaneously at 6 different positions of the body of 5 pigs. The transponders positioned by the ear base provided the best correlation to rectal temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1°C lower than the rectal temperature. However, a simple linear relationship between the measures of the two methods was found. Conclusions Our study showed that the tested body monitoring system may represent a promising tool to obtain an approximate correlate of body temperatures in groups of pigs. In contrast, however, the tested system did not constitute a suitable tool to measure body temperatures of individual animals in the present pig infection experiment.

  19. Diagnostic Value of Senior Dental Students in Yazd About of Detection the Proximal Caries on Panoramic Radiographs Compared to Detection of Experts in 1394

    Directory of Open Access Journals (Sweden)

    E Romoozi

    2016-08-01

    Full Text Available Introduction: Tooth decay is the most common chronic disease of man in the world and dentists should receive the capability to accurately diagnose of tooth decay during the training courses. In addition to clinical examination, the panoramic view and intraoral radiography is usually used for the caries detection. Therefore, the detection of caries on X-ray images can have a role in treatment planning. Methods: In this analytical study, 10 panoramic radiographies that randomly selected, separately given to 30 senior dental students and 2 professors (in order to determine the gold standard. Data were analyzed using SPSS 17 software, diagnostic tables and indexes were prepared and the results were analyzed by Kappa test. Moreover, in order to determine the agreement between the professors and students about the depth of the decay the weighted kappa coefficient was used. Results: The kappa value about detection of presence or absence of proximal caries between professors and students's diagnosis was 0.428 (P value=0.001. Diagnostic sensitivity, specificity, positive predictive value and negative predictive value obtained by students in caries detection were %47, %91.9, %63 and %85.3, respectively. Coefficient of agreement in detection of depth diagnosis obtained by professors and students was 0.361(p value=0.000. Conclusion: The diagnostic capability of senior dental students about caries detection was fair and depth diagnosis was slight.

  20. Performance Evaluation of Commercial Dengue Diagnostic Tests for Early Detection of Dengue in Clinical Samples

    Directory of Open Access Journals (Sweden)

    Tuan Nur Akmalina Mat Jusoh

    2017-01-01

    Full Text Available The shattering rise in dengue virus infections globally has created a need for an accurate and validated rapid diagnostic test for this virus. Rapid diagnostic test (RDT and reverse transcription-polymerase chain reaction (RT-PCR diagnostic detection are useful tools for diagnosis of early dengue infection. We prospectively evaluated the diagnostic performance of nonstructural 1 (NS1 RDT and real-time RT-PCR diagnostic kits in 86 patient serum samples. Thirty-six samples were positive for dengue NS1 antigen while the remaining 50 were negative when tested with enzyme-linked immunosorbent assay (ELISA. Commercially available RDTs for NS1 detection, RTK ProDetect™, and SD Bioline showed high sensitivity of 94% and 89%, respectively, compared with ELISA. GenoAmp® Trioplex Real-Time RT-PCR and RealStar® Dengue RT-PCR tests presented a comparable kappa agreement with 0.722. The result obtained from GenoAmp® Real-Time RT-PCR Dengue test showed that 14 samples harbored dengue virus type 1 (DENV-1, 8 samples harbored DENV-2, 2 samples harbored DENV-3, and 1 sample harbored DENV-4. 1 sample had a double infection with DENV-1 and DENV-2. The NS1 RDTs and real-time RT-PCR tests were found to be a useful diagnostic for early and rapid diagnosis of acute dengue and an excellent surveillance tool in our battle against dengue.

  1. The diagnostic value of immunohistochemically detected methylthioadenosine phosphorylase deficiency in malignant pleural mesotheliomas

    DEFF Research Database (Denmark)

    Zimling, Zarah Glad; Jørgensen, Anne; Santoni-Rugiu, Eric

    2012-01-01

      Malignant pleural mesothelioma (MPM) often causes diagnostic difficulties for pathologists. We assessed whether loss of methylthioadenosine phosphorylase (MTAP), a key enzyme in the intracellular recycling of adenosine triphosphate (ATP) often deleted in MPM, could be detected with immunohistoc...

  2. Fast and simultaneous detection of prominent natural antioxidants using analytical microsystems for capillary electrophoresis with a glassy carbon electrode: a new gateway to food environments.

    Science.gov (United States)

    Blasco, Antonio Javier; Barrigas, Inés; González, María Cristina; Escarpa, Alberto

    2005-12-01

    This paper examines for the first time the analytical possibilities of fast and simultaneous detection of prominent natural antioxidants including examples of flavonoids and vitamins using a CE microchip with electrochemical detection (ED). Unpinched injection conditions, zone electrophoretic separation and amperometric detection were carefully assayed and optimised. Analysis involved the zone electrophoretic separation of arbutin, (+)-catechin and ascorbic acid in less than 4 min using a borate buffer (pH 9.0, 50 mM), employing 2 kV as the separation voltage and +1.0 V as the detection potential. In addition, the separation of different 'couples' of natural antioxidants of food significance including (+)-catechin and ascorbic acid, (+)-catechin and rutin, as well as arbutin and phlorizdin is proposed. To demonstrate the potential and future role of CE microsystems, analytical possibilities and a new route in the raw sample analysis are presented. The preliminary results obtained allow the proposal of CE-ED microchips as a real gateway to microanalysis in foods.

  3. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.

    Science.gov (United States)

    Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas

    2014-05-19

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  4. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power

    OpenAIRE

    Gaponenko, M. S.; Kuleshov, N. V.; Südmeyer, T.

    2014-01-01

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM00 mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  5. New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV).

    Science.gov (United States)

    Morozov, Vladimir A; Morozov, Alexey V; Denner, Joachim

    2016-05-01

    Pigs are frequently infected with porcine cytomegalovirus (PCMV). Infected adult animals may not present with symptoms of disease, and the virus remains latent. However, the virus may be transmitted to human recipients receiving pig transplants. Recently, it was shown that pig-to-non-human-primate xenotransplantations showed 2 to 3 times lower transplant survival when the donor pig was infected with PCMV. Therefore, highly sensitive methods are required to select virus-free pigs and to examine xenotransplants. Seven previously established PCR detection systems targeting the DNA polymerase gene of PCMV were examined by comparison of thermodynamic parameters of oligonucleotides, and new diagnostic nested PCR and real-time PCR systems with improved parameters and high sensitivity were established. The detection limit of conventional PCR was estimated to be 15 copies, and that of the nested PCR was 5 copies. The sensitivity of the real-time PCR with a TaqMan probe was two copies. An equal efficiency of the newly established detection systems was shown by parallel testing of DNA from sera and blood of six pigs, identifying the same animals as PCMV infected. These new diagnostic PCR systems will improve the detection of PCMV and therefore increase the safety of porcine xenotransplants.

  6. Determination of fluoroquinolone antibiotics by microchip capillary electrophoresis along with time-resolved sensitized luminescence of their terbium(III) complexes

    International Nuclear Information System (INIS)

    Sierra-Rodero, Marina; Fernández -Romero, Juan Manuel; Gómez -Hens, Agustina

    2014-01-01

    We report on the time-resolved detection of the three fluoroquinolone (FQs) antibiotics ciprofloxacin (CIP), enrofloxacin (ENR) and flumequine (FLU). On addition of terbium(III) ions, the terbium(III)-FQs chelates are formed in-situ in an on-capillary derivatization reaction of a microfluidic system. The laser-induced terbium(III)-sensitized luminescence of the chelates is measured at excitation/emission wavelengths of 337/545 nm. The analytes can be separated and quantified within less than 4 min. A solid phase extraction step for analyte preconcentration can be included prior to chelation and microchip capillary electrophoresis. The analytical ranges of the calibration graphs for CIP, ENR and FLU are from 10.6 to 60.0, 10.3 to 51.0, and 11.5 to 58.8 ng mL −1 , respectively, and the detection limits are 3.2, 3.1 and 3.6 ng mL −1 , respectively. The precision was established at two concentration levels of each analyte and revealed relative standard deviations in the range from 3.0 to 10.2 %. The method was applied to the analysis of FQ-spiked water samples. (author)

  7. Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Lutsenko, E V; Voinilovich, A G; Rzheutskii, N V; Pavlovskii, V N; Yablonskii, G P; Sorokin, S V; Gronin, S V; Sedova, I V; Kop' ev, Petr S; Ivanov, Sergei V; Alanzi, M; Hamidalddin, A; Alyamani, A

    2013-05-31

    The room temperature laser generation in the yellow-green ({lambda} = 558.5-566.7 nm) spectral range has been demonstrated under optical pumping by a pulsed nitrogen laser of Cd(Zn)Se/ZnSe quantum dot heterostructures. The maximum achieved laser wavelength was as high as {lambda} = 566.7 nm at a laser cavity length of 945 {mu}m. High values of both the output pulsed power (up to 50 W) and the external differential quantum efficiency ({approx}60%) were obtained at a cavity length of 435 {mu}m. Both a high quality of the laser heterostructure and a low lasing threshold ({approx}2 kW cm{sup -2}) make it possible to use a pulsed InGaN laser diode as a pump source. A laser microchip converter based on this heterostructure has demonstrated a maximum output pulse power of {approx}90 mW at {lambda} = 560 nm. The microchip converter was placed in a standard TO-18 (5.6 mm in diameter) laser diode package. (semiconductor lasers. physics and technology)

  8. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques

    Science.gov (United States)

    Schmidt, S.; Heyns, P. S.; de Villiers, J. P.

    2018-02-01

    In this paper, a fault diagnostic methodology is developed which is able to detect, locate and trend gear faults under fluctuating operating conditions when only vibration data from a single transducer, measured on a healthy gearbox are available. A two-phase feature extraction and modelling process is proposed to infer the operating condition and based on the operating condition, to detect changes in the machine condition. Information from optimised machine and operating condition hidden Markov models are statistically combined to generate a discrepancy signal which is post-processed to infer the condition of the gearbox. The discrepancy signal is processed and combined with statistical methods for automatic fault detection and localisation and to perform fault trending over time. The proposed methodology is validated on experimental data and a tacholess order tracking methodology is used to enhance the cost-effectiveness of the diagnostic methodology.

  9. From Bonding Wires to Banding Women. Proceedings of the International Consultation on Micro-Chips Technology (Manila, Philippines, October 1986).

    Science.gov (United States)

    Center for Women's Resources, Quezon City (Philippines).

    In October 1986, 40 women from 12 countries gathered in the Philippines for a 10-day meeting of organizers, educators, and workers affected by and confronting the international electronics industry in microchip plants and in automated offices. Participants were from Malaysia, Indonesia, Thailand, the Philippines, Hong Kong, Japan, the Netherlands,…

  10. HIGH REPETITION RATE MICROCHIP ER3+,YB3+:YAL3(BO34 DIODE-PUMPED LASER

    Directory of Open Access Journals (Sweden)

    K. N. Gorbachenya

    2012-01-01

    Full Text Available Diode-pumped passively Q-switched microchip Er,Yb:YAl3(BO34 laser for range-finding has been demonstrated. By using a Co2+:MgAl2O4 as a saturable absorber TEM00–mode Q-switched average output power of 315 mW was demonstrated at 1522 nm with pulse duration of 5 ns and pulse energy of 5,25 μJ at a repetition rate of 60 kHz.

  11. Genetic Algorithm Design And Testing of a Random Element 3-D 2.4 Ghz Phased Array Transmit Antenna Constructed of Commercial Rf Microchips

    National Research Council Canada - National Science Library

    Esswein, Lance

    2003-01-01

    ..., development and evaluation of a test-bed array. The test-bed array was constructed of commercially available components, including a unique and innovative application of a quadrature modulator microchip used in commercial communications applications...

  12. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    Science.gov (United States)

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions.

  13. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    SangJun Moon

    Full Text Available CD4(+ T-lymphocyte count (CD4 count is a standard method used to monitor HIV-infected patients during anti-retroviral therapy (ART. The World Health Organization (WHO has pointed out or recommended that a handheld, point-of-care, reliable, and affordable CD4 count platform is urgently needed in resource-scarce settings.HIV-infected patient blood samples were tested at the point-of-care using a portable and label-free microchip CD4 count platform that we have developed. A total of 130 HIV-infected patient samples were collected that included 16 de-identified left over blood samples from Brigham and Women's Hospital (BWH, and 114 left over samples from Muhimbili University of Health and Allied Sciences (MUHAS enrolled in the HIV and AIDS care and treatment centers in the City of Dar es Salaam, Tanzania. The two data groups from BWH and MUHAS were analyzed and compared to the commonly accepted CD4 count reference method (FACSCalibur system.The portable, battery operated and microscope-free microchip platform developed in our laboratory (BWH showed significant correlation in CD4 counts compared with FACSCalibur system both at BWH (r = 0.94, p<0.01 and MUHAS (r = 0.49, p<0.01, which was supported by the Bland-Altman methods comparison analysis. The device rapidly produced CD4 count within 10 minutes using an in-house developed automated cell counting program.We obtained CD4 counts of HIV-infected patients using a portable platform which is an inexpensive (<$1 material cost and disposable microchip that uses whole blood sample (<10 µl without any pre-processing. The system operates without the need for antibody-based fluorescent labeling and expensive fluorescent illumination and microscope setup. This portable CD4 count platform displays agreement with the FACSCalibur results and has the potential to expand access to HIV and AIDS monitoring using fingerprick volume of whole blood and helping people who suffer from HIV and AIDS in resource

  14. Diagnostic accuracy of contemporary multidetector computed tomography (MDCT) for the detection of lumbar disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Notohamiprodjo, S.; Stahl, R.; Braunagel, M.; Kazmierczak, P.M.; Thierfelder, K.M.; Treitl, K.M.; Wirth, S. [University Hospital of Munich, LMU Munich, Institute for Clinical Radiology, Munich (Germany); Notohamiprodjo, M. [University Hospital Tuebingen, Eberhard Karls University Tuebingen, Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2017-08-15

    To evaluate the diagnostic accuracy of multidetector CT (MDCT) for detection of lumbar disc herniation with MRI as standard of reference. Patients with low back pain underwent indicated MDCT (128-row MDCT, helical pitch), 60 patients with iterative reconstruction (IR) and 67 patients with filtered back projection (FBP). Lumbar spine MRI (1.5 T) was performed within 1 month. Signal-to-noise ratios (SNR) of cerebrospinal fluid (CSF), annulus fibrosus (AF) and the spinal cord (SC) were determined for all modalities. Two readers independently rated image quality (IQ), diagnostic confidence and accuracy in the diagnosis of lumbar disc herniation using MRI as standard of reference. Inter-reader correlation was assessed with weighted κ. Sensitivity, specificity, precision and accuracy of MDCT for disc protrusion were 98.8%, 96.5%, 97.1%, 97.8% (disc level), 97.7%, 92.9%, 98.6%, 96.9% (patient level). SNR of IR was significantly higher than FBP. IQ was significantly better in IR owing to visually reduced noise and improved delineation of the discs. κ (>0.90) was excellent for both algorithms. MDCT of the lumbar spine yields high diagnostic accuracy for detection of lumbar disc herniation. IR improves image quality so that the provided diagnostic accuracy is principally equivalent to MRI. (orig.)

  15. Toxicoproteomics: serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection.

    Science.gov (United States)

    Petricoin, Emanuel F; Rajapaske, Vinodh; Herman, Eugene H; Arekani, Ali M; Ross, Sally; Johann, Donald; Knapton, Alan; Zhang, J; Hitt, Ben A; Conrads, Thomas P; Veenstra, Timothy D; Liotta, Lance A; Sistare, Frank D

    2004-01-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry which communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity based processes as cascades of reinforcing information percolate through the system and become reflected in changing proteomic information content of the circulation. Serum Proteomic Pattern Diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. While this approach has shown tremendous promise in early detection of cancers, detection of drug-induced toxicity may also be possible with this same technology. Analysis of serum from rat models of anthracycline and anthracenedione induced cardiotoxicity indicate the potential clinical utility of diagnostic proteomic patterns where low molecular weight peptides and protein fragments may have higher accuracy than traditional biomarkers of cardiotoxicity such as troponins. These fragments may one day be harvested by circulating nanoparticles designed to absorb, enrich and amplify the diagnostic biomarker repertoire generated even at the critical initial stages of toxicity.

  16. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  17. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    Science.gov (United States)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  18. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics.

    Science.gov (United States)

    Povysil, Gundula; Tzika, Antigoni; Vogt, Julia; Haunschmid, Verena; Messiaen, Ludwine; Zschocke, Johannes; Klambauer, Günter; Hochreiter, Sepp; Wimmer, Katharina

    2017-07-01

    Targeted next-generation-sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy-number variations (CNVs) in addition to single-nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user-friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state-of-the-art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user-selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user-friendliness rendering it highly suitable for routine clinical diagnostics. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  19. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    Science.gov (United States)

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  20. An affordable and easy-to-use diagnostic method for keratoconus detection using a smartphone

    Science.gov (United States)

    Askarian, Behnam; Tabei, Fatemehsadat; Askarian, Amin; Chong, Jo Woon

    2018-02-01

    Recently, smartphones are used for disease diagnosis and healthcare. In this paper, we propose a novel affordable diagnostic method of detecting keratoconus using a smartphone. Keratoconus is usually detected in clinics with ophthalmic devices, which are large, expensive and not portable, and need to be operated by trained technicians. However, our proposed smartphone-based eye disease detection method is small, affordable, portable, and it can be operated by patients in a convenient way. The results show that the proposed keratoconus detection method detects severe, advanced, and moderate keratoconus with accuracies of 93%, 86%, 67%, respectively. Due to its convenience with these accuracies, the proposed keratoconus detection method is expected to be applied in detecting keratoconus at an earlier stage in an affordable way.

  1. Effect of pump-beam conditions on dual polarization oscillations in a microchip Nd:GdVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C-C; Jiang, I-M [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Ko, J-Y; Tsai, K-T; Cheng, Y-T; Ho, M-C, E-mail: jyko@nknucc.nknu.edu.t [Department of Physics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan (China)

    2009-08-28

    This study investigated the input-output characteristics of a laser-diode-end-pumped microchip Nd:GdVO{sub 4} laser under different pump-beam focusing conditions by varying the magnifications of the microscope objective lenses and pump-beam positions on a chip. Dual-polarization oscillations were generated in the entire pump region using pumping conditions associated with different temperature gradients.

  2. Accurate Point-of-Care Detection of Ruptured Fetal Membranes: Improved Diagnostic Performance Characteristics with a Monoclonal/Polyclonal Immunoassay

    Directory of Open Access Journals (Sweden)

    Linda C. Rogers

    2016-01-01

    Full Text Available Objective Accurate and timely diagnosis of rupture of membranes (ROM is imperative to allow for gestational age-specific interventions. This study compared the diagnostic performance characteristics between two methods used for the detection of ROM as measured in the same patient. Methods Vaginal secretions were evaluated using the conventional fern test as well as a point-of-care monoclonal/polyclonal immunoassay test (ROM Plus® in 75 pregnant patients who presented to labor and delivery with complaints of leaking amniotic fluid. Both tests were compared to analytical confirmation of ROM using three external laboratory tests. Diagnostic performance characteristics were calculated including sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV, and accuracy. Results Diagnostic performance characteristics uniformly favored ROM detection using the immunoassay test compared to the fern test: sensitivity (100% vs. 77.8%, specificity (94.8% vs. 79.3%, PPV (75% vs. 36.8%, NPV (100% vs. 95.8%, and accuracy (95.5% vs. 79.1%. Conclusions The point-of-care immunoassay test provides improved diagnostic accuracy for the detection of ROM compared to fern testing. It has the potential of improving patient management decisions, thereby minimizing serious complications and perinatal morbidity.

  3. Diagnostic Value of Conventional and Digital Radiography for Detection of Cavitated and Non-Cavitated Proximal Caries

    Directory of Open Access Journals (Sweden)

    Mahdieh Dehghani

    2017-02-01

    Full Text Available Objectives: This study aimed to assess the diagnostic value of conventional and digital radiography for detection of cavitated and non-cavitated proximal caries.Materials and Methods: Fifty extracted human premolars and molars were mounted in a silicone block. Charge-coupled device (CCD and photostimulable phosphor plate (PSP receptors and intra-oral films were exposed with 60 and 70 kVp with parallel technique. Two observers interpreted the radiographs twice with a two-week interval using a 5-point scale. Teeth were then serially sectioned in mesiodistal direction and evaluated under a stereomicroscope (gold standard. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated.Results: Sensitivity of all three receptors for detection of enamel lesions was low (5.5-44.4% but it was higher for dentin lesions (42.8-62.8%; PSP with 70 kVp and 0.03s exposure time had the highest sensitivity for enamel lesions, but the difference among receptors was not statistically significant (P>0.05. Sensitivity of all three receptors for detection of non-cavitated lesions was lower than that for cavitated lesions; PSP with 60 kVp and 0.07s exposure time had higher sensitivity and lower patient radiation dose for detection of cavitated and non-cavitated lesions, but the difference was not significant (P>0.05.Conclusions: Digital radiography using PSP receptor with 70 kVp is recommended to detect initial enamel caries. For detection of non-cavitated and cavitated dentin caries, PSP with 60 kVp is more appropriate. Change in kVp did not affect the diagnostic accuracy for detection of caries, and type of receptor was a more important factor.Keywords: Dental Caries; Diagnostic Imaging; Radiography, Dental, Digital

  4. Assessment of Urinary-5-Hydroxyindolacetic Acid as A Diagnostic Parameter in Early Detection of Acute Appendicitis

    Directory of Open Access Journals (Sweden)

    Zuhair B Kamal

    2017-04-01

    Full Text Available Background: Acute appendicitis is the most common abdominal surgical emergency especially in children and young adults. The diagnosis of appendicitis is difficult because half the cases are incorrectly identified. Serotonin was defined as a good diagnostic marker for many inflammations including appendicitis and it is metabolite into 5-hydroxyindolacetic acid (5-HIAA to be excreted in urine. 5-HIAA is suggested to be of diagnostic importance in the detection of this disease. The aim of this study was to evaluate the diagnostic importance of urinary-5-HIAA as an added parameter to Alvarado score. Methods: Seventy patients (35 females and 35 males with acute appendicitis (35 were mild and 35 severe-perforated and gangrenous were included in this study and 70 healthy individuals were taken as a control group. Urinary-5-HIAA was estimated in all patients and control group using ELISA method. Results: Sensitivity for the mild group is 94.2%, specificity 100% and diagnostic accuracy is 97.4%, while the sensitivity for the severe group is 37%. It was found that there is a highly significant difference between mild and control groups (P<0.05. The diagnostic accuracy for the mild group is 97.4% and for the severe is 68.5%. Conclusion: We conclude that urinary-5-HIAA is a high sensitive test for early detection of acute appendicitis.

  5. A new molecular diagnostic tool for quantitatively detecting and genotyping “Candidatus Liberibacter species”

    Science.gov (United States)

    A new molecular diagnostic method was developed for quantitative detection of “Candidatus Liberibacter” species associated with citrus Huanglongbing (“Ca. Liberibacter asiaticus”, “Ca. Liberibacter africanus” and “Ca. Liberibacter americanus”) and potato zebra chip disorder (“Ca. Liberibacter solana...

  6. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction.

    Science.gov (United States)

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-11-27

    Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    Science.gov (United States)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  8. Diagnostic accuracy of commercial system for computer-assisted detection (CADx) as an adjunct to interpretation of mammograms

    International Nuclear Information System (INIS)

    Menna, Sabatino; Di Virgilio, Maria Rosaria; Burke, Paolo; Frigerio, Alfonso; Boglione, Elisa; Ciccarelli, Grazia; Di Filippo, Sabato; Garretti, Licia

    2005-01-01

    Purpose. To evaluate the diagnostic accuracy of the commercial computer-aided detection CADx system for the reading of mammograms. Materials and methods. The study assessed the Second Look system developed and marketed by CADx Medical Systems, Montreal, Canada. The diagnostic sensitivity was evaluated by means of a retrospective study on 98 consecutive cancers detected at screening by double independent reading. The specificity and the positive predictive value (PPV) for cancer of the CADx system were prospectively evaluated on a second group of 560 consecutive mammograms of asymptomatic women not included in screening program. The radiologist who was present during the test assessed the abnormal mammographic findings by one or more of the following diagnostic procedures: physical examination, additional mammographic detail views with or without magnification,ultrasonography, ultrasound- or mammography guided fine needle aspiration cytology, and core-biopsy. The exams first underwent conventional reading and then a second reading carried out with the aid of the CADx system. Results.The overall diagnostic sensitivity of the CADx system on the 98 screening cancers was 81.6%; in particular it was 89.3% for calcifications, 83.9% for masses and only 37.5% for architectural distortion. The CADx markings for each mammography were 4.7 on average. Identification of invasive carcinoma was independent from tumour size. In the second group of 560 mammograms, the CADx system marked all cases identified as positive by conventional reading and confirmed by biopsy (7/7), but did not permit the detection of any additional cancer. The CADx markings per exam were 4.2 on average, the specificity was 13.7% and the PPV was 0.55% versus 13.7% recall rate of conventional reading. CADx reading led to a 1.96% (11/560) increase of the women necessitating further diagnostic investigation. Conclusions. The results of our study show that the diagnostic sensitivity of the CADx system is lower

  9. MACRO: a combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms.

    Science.gov (United States)

    Shao, Ning; Jiang, Shi-Meng; Zhang, Miao; Wang, Jing; Guo, Shu-Juan; Li, Yang; Jiang, He-Wei; Liu, Cheng-Xi; Zhang, Da-Bing; Yang, Li-Tao; Tao, Sheng-Ce

    2014-01-21

    The monitoring of genetically modified organisms (GMOs) is a primary step of GMO regulation. However, there is presently a lack of effective and high-throughput methodologies for specifically and sensitively monitoring most of the commercialized GMOs. Herein, we developed a multiplex amplification on a chip with readout on an oligo microarray (MACRO) system specifically for convenient GMO monitoring. This system is composed of a microchip for multiplex amplification and an oligo microarray for the readout of multiple amplicons, containing a total of 91 targets (18 universal elements, 20 exogenous genes, 45 events, and 8 endogenous reference genes) that covers 97.1% of all GM events that have been commercialized up to 2012. We demonstrate that the specificity of MACRO is ~100%, with a limit of detection (LOD) that is suitable for real-world applications. Moreover, the results obtained of simulated complex samples and blind samples with MACRO were 100% consistent with expectations and the results of independently performed real-time PCRs, respectively. Thus, we believe MACRO is the first system that can be applied for effectively monitoring the majority of the commercialized GMOs in a single test.

  10. Preliminary study of diagnostic workstation with different matrix size for detection of small pulmonary nodules

    International Nuclear Information System (INIS)

    Wu Jie; Wang Xuejian; Wang Bo; Tong Juan; Wei Yuqing; Shen Guiquan; Wang Limei; Cao Jun; Sui He

    2004-01-01

    Objective: To assess the influence in detecting small pulmonary nodules (SPNs) on soft-copy images displayed with different matrix sizes. Methods: Seventy-six chest compute radiographs were selected for the study. Of the 76 test images, 36 pulmonary nodules smaller than 20 mm in diameter were proven by CT, which were further divided into two groups: 1.0-2.0 cm and Z values and standard error of three kinds of view system for individual observers. Results: For 1.0-2.0 cm group, the mean A Z values were 0.7936 for DRCS with 2-fold magnification and window technique, 0.8225 for 1 K monitor with 2-fold magnification and window technique, and 0.8367 for 2 K monitor without magnification; for Z values increased slightly as the display matrix size improved, but there were no significant differences among the three sets in the detection of SPNs in the ROC analyses. Conclusion: It is acceptable to detect small pulmonary nodules of 1.0-2.0 cm in diameter on 1 K monitor and DRCS with magnification. High resolution diagnostic workstation is recommended for detecting small pulmonary nodules <1.0 cm in diameter. Reasonable equipment for the detection of subtle abnormality may result in better cost-efficacy and diagnostic accuracy

  11. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    Science.gov (United States)

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  12. Diagnostic performance of fecal quantitative real-time polymerase chain reaction for detection of Lawsonia intracellularis–associated proliferative enteropathy in nursery pigs

    DEFF Research Database (Denmark)

    Pedersen, Ken Steen; Stege, Helle; Jensen, Tim Kåre

    2013-01-01

    Quantitative polymerase chain reaction (qPCR) tests for detection and quantification of Lawsonia intracellularis in feces from pigs have been developed. The objective of the current study was to evaluate the diagnostic performance of a fecal qPCR test for detection of nursery pigs with L. intrace......Quantitative polymerase chain reaction (qPCR) tests for detection and quantification of Lawsonia intracellularis in feces from pigs have been developed. The objective of the current study was to evaluate the diagnostic performance of a fecal qPCR test for detection of nursery pigs with L...

  13. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid.

    Science.gov (United States)

    Foutz, Aaron; Appleby, Brian S; Hamlin, Clive; Liu, Xiaoqin; Yang, Sheng; Cohen, Yvonne; Chen, Wei; Blevins, Janis; Fausett, Cameron; Wang, Han; Gambetti, Pierluigi; Zhang, Shulin; Hughson, Andrew; Tatsuoka, Curtis; Schonberger, Lawrence B; Cohen, Mark L; Caughey, Byron; Safar, Jiri G

    2017-01-01

    Several prion amplification systems have been proposed for detection of prions in cerebrospinal fluid (CSF), most recently, the measurements of prion seeding activity with second-generation real-time quaking-induced conversion (RT-QuIC). The objective of this study was to investigate the diagnostic performance of the RT-QuIC prion test in the broad phenotypic spectrum of prion diseases. We performed CSF RT-QuIC testing in 2,141 patients who had rapidly progressive neurological disorders, determined diagnostic sensitivity and specificity in 272 cases that were autopsied, and evaluated the impact of mutations and polymorphisms in the PRNP gene, and type 1 or type 2 human prions on diagnostic performance. The 98.5% diagnostic specificity and 92% sensitivity of CSF RT-QuIC in a blinded retrospective analysis matched the 100% specificity and 95% sensitivity of a blind prospective study. The CSF RT-QuIC differentiated 94% of cases of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 from the sCJD MM2 phenotype, and 80% of sCJD VV2 from sCJD VV1. The mixed prion type 1-2 and cases heterozygous for codon 129 generated intermediate CSF RT-QuIC patterns, whereas genetic prion diseases revealed distinct profiles for each PRNP gene mutation. The diagnostic performance of the improved CSF RT-QuIC is superior to surrogate marker tests for prion diseases such as 14-3-3 and tau proteins, and together with PRNP gene sequencing the test allows the major prion subtypes to be differentiated in vivo. This differentiation facilitates prediction of the clinicopathological phenotype and duration of the disease-two important considerations for envisioned therapeutic interventions. ANN NEUROL 2017;81:79-92. © 2016 American Neurological Association.

  14. On-line coupling of a microelectrode array equipped poly(dimethylsiloxane) microchip with an integrated graphite electrospray emitter for electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Liljegren, Gustav; Dahlin, Andreas; Zettersten, Camilla; Bergquist, Jonas; Nyholm, Leif

    2005-10-01

    A novel method for the manufacturing of microchips for on-chip combinations of electrochemistry (EC) and sheathless electrospray ionisation mass spectrometry (ESI-MS) is described. The technique, which does not require access to clean-room facilities, is based on the incorporation of an array of gold microcoil electrodes into a poly(dimethylsiloxane)(PDMS) microflow channel equipped with an integrated graphite based sheathless ESI emitter. Electrochemical measurements, which were employed to determine the electroactive area of the electrodes and to test the microchips, show that the manufacturing process was reproducible and that the important interelectrode distance in the electrochemical cell could to be adequately controlled. The EC-ESI-MS device was evaluated based on the ESI-MS detection of the oxidation products of dopamine. The results demonstrate that the present on-chip approach enables full potentiostatic control of the electrochemical cell and the attainment of very short transfer times between the electrochemical cell and the electrospray emitter. The transfer times were 0.6 and 1.2 s for flow rates of 1.0 and 0.5 microL min(-1), respectively, while the electrochemical conversion efficiency of the electrochemical cell was found to be 30% at a flow rate of 0.5 microL min(-1). To decouple the electrochemical cell from the ESI-MS high voltage and to increase the user-friendliness, the on-line electrochemistry-ESI-MS experiments were performed using a wireless Bluetooth battery-powered instrument with the chip floating at the potential induced by the ESI high voltage. The described on-chip EC-ESI-MS device can be used for fundamental electrochemical investigations as well as for applications based on the use of electrochemically controlled sample pretreatment, preconcentration and ionisation steps prior to ESI-MS.

  15. Development and evaluation of a saliva-based chair-side diagnostic for the detection of Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Neil M. O'Brien-Simpson

    2015-09-01

    Full Text Available Porphyromonas gingivalis is a key pathogen in the polymicrobial biofilm that is associated with the oral disease chronic periodontitis. A number of studies have shown that in humans the level of P. gingivalis in the polymicrobial biofilm is positively correlated with disease progression. The aim of this study was to develop a P. gingivalis diagnostic that has high specificity and sensitivity for P. gingivalis using a range of laboratory and clinical isolates and then compare the efficacy of the diagnostic with RTPCR using samples from chronic periodontitis patients and age- and sex-matched healthy controls. Key parameters for the kit were to use saliva as the biological fluid as this is a most convenient medium for chair-side sampling and to give a positive reading for the reported threshold for detection of 5×105 P. gingivalis cells/mL that indicates disease progression. We initially screened a range of monoclonal antibodies for recognition of the P. gingivalis conserved virulence factor RgpA-Kgp complex and identified two mAbs that could be used in a capture and detection ELISA system. These mAbs were used to formulate and manufacture the GC P. gingivalis saliva diagnostic kit used in the study. To validate the saliva kit, saliva (P. gingivalis free was spiked with known concentrations of viable P. gingivalis whole cells of W50, 381, A7A1-28, and ATCC 33277; P. gingivalis clinical isolates; P. gingivalis vesicles; and the secreted form of the RgpA-Kgp complex. Laboratory findings indicated that the kit was able to detect all laboratory and clinical isolate strains of P. gingivalis at 5×104/mL to 5×105/mL. It was also able to detect the RgpA-Kgp complex and vesicles at 5×104 and 5×105 cell equivalent doses, respectively. Saliva and plaque were then collected from 50 subjects with moderate–severe chronic periodontitis and 50 age- and sex-matched subjects with healthy periodontium. Real-time PCR was utilised to analyse levels of P

  16. The development, evaluation and performance of molecular diagnostics for detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bates, Matthew; Zumla, Alimuddin

    2016-01-01

    The unique pathogenesis of tuberculosis (TB) poses several barriers to the development of accurate diagnostics: a) the establishment of life-long latency by Mycobacterium tuberculosis (M.tb) after primary infection confounds the development of classical antibody or antigen based assays; b) our poor understanding of the molecular pathways that influence progression from latent to active disease; c) the intracellular nature of M.tb infection in tissues means that M.tb and/or its components, are not readily detectable in peripheral specimens; and d) the variable presence of M.tb bacilli in specimens from patients with extrapulmonary TB or children. The literature on the current portfolio of molecular diagnostics tests for TB is reviewed here and the developmental pipeline is summarized. Also reviewed are data from recently published operational research on the GeneXpert MTB/RIF assay and discussed are the lessons that can be taken forward for the design of studies to evaluate the impact of TB diagnostics.

  17. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  18. Evaluation of Diagnostic Tests Using Information Theory for Multi-Class Diagnostic Problems and its Application for the Detection of Occlusal Caries Lesions

    Directory of Open Access Journals (Sweden)

    Umut Arslan

    2014-09-01

    Full Text Available Background: Several methods are available to evaluate the performance of the tests when the purpose of the diagnostic test is to discriminate between two possible disease states. However multi-class diagnostic problems frequently appear in many areas of medical science. Hence, there is a need for methods which will enable us to characterize the accuracy of diagnostic tests when there are more than two possible disease states. Aims: To show that two information theory measures, information content (IC and proportional reduction in diagnostic uncertainty (PRDU, can be used for the evaluation of the performance of diagnostic tests for multi-class diagnostic problems that may appear in different areas of medical science. Study Design: Diagnostic accuracy study. Methods: Sixty freshly extracted permanent human molar and premolar teeth suspected to have occlusal caries lesions were selected for the study and were assessed by two experienced examiners. Each examiner performed two evaluations. Histological examination was used as the gold standard. The scores of the histological examination were defined as sound (n=11, enamel caries (n=22 and dentin caries (n=27. Diagnostic performance of i visual inspection, ii radiography, iii laser fluorescence (LF and iv micro-computed tomography (M-CT caries detection methods was evaluated by calculating IC and PRDU. Results: Micro-computed tomography examination was the best method among the diagnostic techniques for the diagnosis of occlusal caries in terms of both IC and PRDU. M-CT examination supplied the maximum diagnostic information about the diagnosis of occlusal caries in the first (IC: 1.056; p<0.05, (PRDU: 70.5% and second evaluation (IC: 1.105; p<0.05, (PRDU: 73.8% for the first examiner. M-CT examination was the best method among the diagnostic techniques for the second examiner in both the first (IC:1.105; p<0.05, (PRDU:73.8% and second evaluation (IC:1.061; p<0.05, (PRDU:70.8%. IC and PRDU were

  19. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer.

    Science.gov (United States)

    Petricoin, Emanuel F; Liotta, Lance A

    2004-02-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity-based processes. Serum proteomic pattern diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. This approach has recently shown tremendous promise in the detection of early-stage cancers. The biomarkers found by SELDI-TOF-based pattern recognition analysis are mostly low molecular weight fragments produced at the specific tumor microenvironment.

  20. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    Science.gov (United States)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  1. Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease.

    Science.gov (United States)

    Husser, Oliver; Bodí, Vicente; Sanchís, Juan; Mainar, Luis; Núñez, Julio; López-Lereu, María P; Monmeneu, José V; Ruiz, Vicente; Rumiz, Eva; Moratal, David; Chorro, Francisco J; Llácer, Angel

    2009-04-01

    Dipyridamole stress perfusion cardiovascular magnetic resonance (CMR) is used to detect coronary artery disease (CAD). However, few data are available on the diagnostic value of the systolic dysfunction induced by dipyridamole. This study investigated whether the induction of systolic dysfunction supplements the diagnostic information provided by perfusion imaging in the detection of CAD. Overall, 166 patients underwent dipyridamole CMR and quantitative coronary angiography, with CAD being defined as a stenosis > or =70%. Systolic dysfunction at rest, systolic dysfunction with dipyridamole, induced systolic dysfunction, and stress first-pass perfussion deficit (PD) and delayed enhancement were quantified. In the multivariate analysis, PD (hazard ratio [HR]=1.6; 95% confidence interval [CI], 1.33-1.91;Pstatistic for predicting CAD (0.81 vs. 0.87; P=.02). Combining induced systolic dysfunction with perfusion imaging increases the diagnostic accuracy of detecting CAD and enables patients with severe ischemia and a high probability of CAD to be identified.

  2. Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses

    Directory of Open Access Journals (Sweden)

    Adeel Afzal

    2017-02-01

    Full Text Available Viruses are pathogenic microorganisms that can inhabit and replicate in human bodies causing a number of widespread infectious diseases such as influenza, gastroenteritis, hepatitis, meningitis, pneumonia, acquired immune deficiency syndrome (AIDS etc. A majority of these viral diseases are contagious and can spread from infected to healthy human beings. The most important step in the treatment of these contagious diseases and to prevent their unwanted spread is to timely detect the disease-causing viruses. Gravimetric viral diagnostics based on quartz crystal microbalance (QCM transducers and natural or synthetic receptors are miniaturized sensing platforms that can selectively recognize and quantify harmful virus species. Herein, a review of the label-free QCM virus sensors for clinical diagnostics and point of care (POC applications is presented with major emphasis on the nature and performance of different receptors ranging from the natural or synthetic antibodies to selective macromolecular materials such as DNA and aptamers. A performance comparison of different receptors is provided and their limitations are discussed.

  3. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  4. A Novel Diagnostic Method to Detect Duck Tembusu Virus: A Colloidal Gold-Based Immunochromatographic Assay

    Directory of Open Access Journals (Sweden)

    Guanliu Yu

    2018-05-01

    Full Text Available Duck Tembusu virus (DTMUV is an emerging pathogenic flavivirus that has resulted in large economic losses to the duck-rearing industry in China since 2010. Therefore, an effective diagnostic approach to monitor the spread of DTMUV is necessary. Here, a novel diagnostic immunochromatographic strip (ICS assay was developed to detect DTMUV. The assay was carried out using colloidal gold coated with purified monoclonal antibody A12D3 against envelope E protein. Purified polyclonal C12D1 antibodies from BALB/c mice against the envelope E protein were used as the capture antibody. Goat anti-mouse IgG was used to detect DTMUV, which was also assembled on the ICS. Results showed that the ICS could specifically detect DTMUV within 10 min. It also could be stored 25 and 4°C for 4 and 6 months, respectively. The sensitivity of the ICS indicated that the dilution multiples of positive allantoic fluid of DTMUV (LD50: 104.33/0.2 ml was up to 200. Its specificity and sensibility showed no significant change under the above storage situations. Fifty clinical samples were simultaneously detected by ICS and reverse-transcription polymerase chain reaction with a 93.9% coincidence rate between them. It proved that the ICS in the present study was highly specific, sensitive, repeatable, and more convenient to rapidly detect DTMUV in clinical samples.

  5. Diagnostic Accuracy of Ascites Fluid Gross Appearance in Detection of Spontaneous Bacterial Peritonitis.

    Science.gov (United States)

    Aminiahidashti, Hamed; Hosseininejad, Seyed Mohammad; Montazer, Hosein; Bozorgi, Farzad; Goli Khatir, Iraj; Jahanian, Fateme; Raee, Behnaz

    2014-01-01

    Spontaneous bacterial peritonitis (SBP) as a monomicrobial infection of ascites fluid is one of the most important causes of morbidity and mortality in cirrhotic patients. This study was aimed to determine the diagnostic accuracy of ascites fluid color in detection of SBP in cirrhotic cases referred to the emergency department. Cirrhotic patients referred to the ED for the paracentesis of ascites fluid were enrolled. For all studied patients, the results of laboratory analysis and gross appearance of ascites fluid registered and reviewed by two emergency medicine specialists. The sensitivity, specificity, positive and negative predictive value, and positive and negative likelihood ration of the ascites fluid gross appearance in detection of SBP were measured with 95% confidence interval. The present project was performed in 80 cirrhotic patients with ascites (52.5 female). The mean of the subjects' age was 56.25±12.21 years (35-81). Laboratory findings revealed SBP in 23 (29%) cases. Fifty nine (73%) cases had transparent ascites fluid appearance of whom 17 (29%) ones suffered from SBP. From 21 (26%) cases with opaque ascites appearance, 15 (71%) had SBP. The sensitivity and specificity of the ascites fluid appearance in detection of SBP were 46.88% (Cl: 30.87-63.55) and 87.50% (95% Cl: 75.3-94.14), respectively. It seems that the gross appearance of ascites fluid had poor diagnostic accuracy in detection of SBP and considering its low sensitivity, it could not be used as a good screening tool for this propose.

  6. Diagnostic Accuracy of Ascites Fluid Gross Appearance in Detection of Spontaneous Bacterial Peritonitis

    Directory of Open Access Journals (Sweden)

    Hamed Aminiahidashti

    2014-08-01

    Full Text Available Introduction: Spontaneous bacterial peritonitis (SBP as a monomicrobial infection of ascites fluid is one of the most important causes of morbidity and mortality in cirrhotic patients. This study was aimed to determine the diagnostic accuracy of ascites fluid color in detection of SBP in cirrhotic cases referred to the emergency department. Methods: Cirrhotic patients referred to the ED for the paracentesis of ascites fluid were enrolled. For all studied patients, the results of laboratory analysis and gross appearance of ascites fluid registered and reviewed by two emergency medicine specialists. The sensitivity, specificity, positive and negative predictive value, and positive and negative likelihood ration of the ascites fluid gross appearance in detection of SBP were measured with 95% confidence interval. Results: The present project was performed in 80 cirrhotic patients with ascites (52.5 female. The mean of the subjects’ age was 56.25±12.21 years (35-81. Laboratory findings revealed SBP in 23 (29% cases. Fifty nine (73% cases had transparent ascites fluid appearance of whom 17 (29% ones suffered from SBP. From 21 (26% cases with opaque ascites appearance, 15 (71% had SBP. The sensitivity and specificity of the ascites fluid appearance in detection of SBP were 46.88% (Cl: 30.87-63.55 and 87.50% (95% Cl: 75.3-94.14, respectively. Conclusion: It seems that the gross appearance of ascites fluid had poor diagnostic accuracy in detection of SBP and considering its low sensitivity, it could not be used as a good screening tool for this propose.

  7. Diagnostic accuracy of computer tomography angiography and magnetic resonance angiography in the stenosis detection of autologuous hemodialysis access: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Bin Li

    Full Text Available PURPOSE: To compare the diagnostic performances of computer tomography angiography (CTA and magnetic resonance angiography (MRA for detection and assessment of stenosis in patients with autologuous hemodialysis access. MATERIALS AND METHODS: Search of PubMed, MEDLINE, EMBASE and Cochrane Library database from January 1984 to May 2013 for studies comparing CTA or MRA with DSA or surgery for autologuous hemodialysis access. Eligible studies were in English language, aimed to detect more than 50% stenosis or occlusion of autologuous vascular access in hemodialysis patients with CTA and MRA technology and provided sufficient data about diagnosis performance. Methodological quality was assessed by the Quality Assessment of Diagnostic Studies (QUADAS instrument. Sensitivities (SEN, specificities (SPE, positive likelihood ratio (PLR, negative likelihood values (NLR, diagnostic odds ratio (DOR and areas under the receiver operator characteristic curve (AUC were pooled statistically. Potential threshold effect, heterogeneity and publication bias was evaluated. The clinical utility of CTA and MRA in detection of stenosis was also investigated. RESULT: Sixteen eligible studies were included, with a total of 500 patients. Both CTA and MRA were accurate modality (sensitivity, 96.2% and 95.4%, respectively; specificity, 97.1 and 96.1%, respectively; DOR [diagnostic odds ratio], 393.69 and 211.47, respectively for hemodialysis vascular access. No significant difference was detected between the diagnostic performance of CTA (AUC, 0.988 and MRA (AUC, 0.982. Meta-regression analyses and subgroup analyses revealed no statistical difference. The Deek's funnel plots suggested a publication bias. CONCLUSION: Diagnostic performance of CTA and MRA for detecting stenosis of hemodialysis vascular access had no statistical difference. Both techniques may function as an alternative or an important complement to conventional digital subtraction angiography (DSA and may be

  8. Diagnostic value of curved multiplanar reformatted images in multislice CT for the detection of resectable pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Fukushima, Hiromichi; Takada, Akira; Mori, Yoshimi; Suzuki, Kojiro; Sawaki, Akiko; Iwano, Shingo; Satake, Hiroko; Ota, Toyohiro; Ishigaki, Takeo; Itoh, Shigeki; Ikeda, Mitsuru

    2006-01-01

    The purpose of this study was to assess the usefulness of curved multiplanar reformatted (MPR) images obtained by multislice CT for the depiction of the main pancreatic duct (MPD) and detection of resectable pancreatic ductal adenocarcinoma. This study included 28 patients with pancreatic carcinoma (size range 12-40 mm) and 22 without. Curved MPR images with 0.5-mm continuous slices were generated along the long axis of the pancreas from pancreatic-phase images with a 0.5- or 1-mm slice thickness. Seven blinded readers independently interpreted three sets of images (axial images, curved MPR images, and both axial and curved MPR images) in scrolling mode. The depiction of the MPD and the diagnostic performance for the detection of carcinoma were statistically compared among these images. MPR images were significantly superior to axial images in depicting the MPD, and the use of both axial and MPR images resulted in further significant improvements. For the detection of carcinoma, MPR images were equivalent to axial images, and the diagnostic performance was significantly improved by the use of both axial and MPR images. High-resolution curved MPR images can improve the depiction of the MPD and the diagnostic performance for the detection of carcinoma compared with axial images alone. (orig.)

  9. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  10. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    Science.gov (United States)

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence – A systematic review

    DEFF Research Database (Denmark)

    Sørensen, Caspar G; Karlsson, William K; Pommergaard, Hans-Christian

    2016-01-01

    INTRODUCTION: Carcinoembryonic Antigen (CEA) has been used as a tumor marker in the follow-up of colorectal cancer for more than 40 years. Controversy exists regarding its diagnostic applicability due to a relatively low sensitivity and a questionable effect on mortality. The aim of this review...... was to assess the diagnostic accuracy of CEA in detecting recurrence after intended curative surgery for primary colorectal cancer. METHODS: Systematic literature searches were performed in PubMed, EMBASE and Cochrane databases, and articles were chosen based on predefined inclusion criteria. Reference lists...

  12. Nanostructure Embedded Microchips for Detection, Isolation, and Characterization of Circulating Tumor Cells

    Science.gov (United States)

    2015-01-01

    Conspectus Circulating tumor cells (CTCs) are cancer cells that break away from either a primary tumor or a metastatic site and circulate in the peripheral blood as the cellular origin of metastasis. With their role as a “tumor liquid biopsy”, CTCs provide convenient access to all disease sites, including that of the primary tumor and the site of fatal metastases. It is conceivable that detecting and analyzing CTCs will provide insightful information in assessing the disease status without the flaws and limitations encountered in performing conventional tumor biopsies. However, identifying CTCs in patient blood samples is technically challenging due to the extremely low abundance of CTCs among a large number of hematologic cells. To address this unmet need, there have been significant research endeavors, especially in the fields of chemistry, materials science, and bioengineering, devoted to developing CTC detection, isolation, and characterization technologies. Inspired by the nanoscale interactions observed in the tissue microenvironment, our research team at UCLA pioneered a unique concept of “NanoVelcro” cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with high efficiency. The working mechanism of NanoVelcro cell-affinity substrates mimics that of Velcro: when the two fabric strips of a Velcro fastener are pressed together, tangling between the hairy surfaces on two strips leads to strong binding. Through continuous evolution, three generations (gens) of NanoVelcro CTC chips have been established to achieve different clinical utilities. The first-gen NanoVelcro chip, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, was created for CTC enumeration. Side-by-side analytical validation studies using clinical blood samples suggested that the sensitivity of first-gen NanoVelcro chip outperforms that of FDA-approved CellSearch. In conjunction with

  13. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors.

    Science.gov (United States)

    Gomez, Federico José Vicente; Martín, Aída; Silva, María Fernanda; Escarpa, Alberto

    2015-08-01

    In the current work, single-wall carbon nanotube press-transferred electrodes (SW-PTEs) were used for detection of melatonin (MT) and its precursors tryptophan (Trp) and serotonin (5-HT) on microchip electrophoresis (ME). SW-PTEs were simply fabricated by press transferring a filtered dispersion of single-wall carbon nanotubes on a nonconductive PMMA substrate, where single-wall carbon nanotubes act as exclusive transducers. The coupling of ME-SW-PTEs allowed the fast detection of MT, Trp, and 5-HT in less than 150 s with excellent analytical features. It exhibited an impressive antifouling performance with RSD values of ≤2 and ≤4% for migration times and peak heights, respectively (n = 12). In addition, sample analysis was also investigated by analysis of 5-HT, MT, and Trp in commercial samples obtaining excellent quantitative and reproducible recoveries with values of 96.2 ± 1.8%, 101.3 ± 0.2%, and 95.6 ± 1.2% for 5-HT, MT, and Trp, respectively. The current novel application reveals the analytical power of the press-transfer technology where the fast and reliable determination of MT and its precursors were performed directly on the nanoscale carbon nanotube detectors without the help of any other electrochemical transducer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recall Tests Are Effective to Detect Mild Cognitive Impairment: A Systematic Review and Meta-analysis of 108 Diagnostic Studies.

    Science.gov (United States)

    Tsoi, Kelvin K F; Chan, Joyce Y C; Hirai, Hoyee W; Wong, Adrian; Mok, Vincent C T; Lam, Linda C W; Kwok, Timothy C Y; Wong, Samuel Y S

    2017-09-01

    Mild cognitive impairment (MCI) is a prevalent symptom associated with the increased risk of dementia. There are many cognitive tests available for detection of MCI, and investigation of the diagnostic performance of the tests is deemed necessary. This study aims to evaluate the diagnostic performance of different cognitive tests used for MCI detection. A list of cognitive tests was identified in previous reviews and from online search engines. Literature searches were performed on each of the cognitive tests in MEDLINE, Embase, and PsycINFO from the earliest available dates of individual databases to December 31, 2016. Google Scholar was used as a supplementary search tool. Studies that were used to assess the diagnostic performance of the cognitive tests were extracted with inclusion and exclusion criteria. Each test's performance was compared with the standard diagnostic criteria. Bivariate random effects models were used to summarize the test performance as a point estimate for sensitivity and specificity, and presented in a summary receiver operating characteristic curve. Reporting quality and risk of bias were evaluated. A total of 108 studies with 23,546 participants were selected to evaluate 9 cognitive tests for MCI detection. Most of the studies used the Mini-Mental State Examination (MMSE) (n = 58) and the Montreal Cognitive Assessment (MoCA) (n = 35). The combined diagnostic performance of the MMSE in MCI detection was 0.71 sensitivity [95% confidence interval (CI): 0.66-0.75] and 0.74 specificity (95% CI: 0.70-0.78), and of the MoCA in MCI detection was 0.83 sensitivity (95% CI: 0.80-0.86) and 0.75 specificity (95% CI: 0.69-0.80). Among the 9 cognitive tests, recall tests showed the best diagnostic performance with 0.89 sensitivity (95% CI: 0.86-0.92) and 0.84 specificity (95% CI, 0.79-0.89). In subgroup analyses, long- or short-delay recall tests have shown better performance than immediate recall tests. Recall tests were shown to be the most

  15. MEMS-LSI Integrated Microchip using Pseudo-SoC Technology

    Science.gov (United States)

    Funaki, Hideyuki; Itaya, Kazuhiko; Yamada, Hiroshi; Onozuka, Yutaka; Iida, Atsuko

    The authors have developed pseudo-SoC technology to realize MEMS-LSI integrated micro-chip. The pseudo-SoC technology consists of three technologies which are wafer reconfiguration technology, inter-chip redistribution layer technology, and pseudo-SoC thinning technology. In the wafer reconfiguration technology, the filling of resin and surface step between heterogeneous chips were improved through the optimization of vacuum printing process and resin material. These improvements reduced the warpage of reconfiguration wafer, leading to achievement of the reconfiguration wafer with 5 inch in diameter. In the inter-chip redistribution layer technology, the interface adherence between planar layer and inter-chip redistribution layer was improved, leading to the inter-chip redistribution layer with 1μm/1μm in line/space on reconfiguration wafer. In the pseudo-SoC thinning technology, thin pseudo-SoC device with 100μm in thickness was achieved through developing mechanical backside grinding process technology. Furthermore, ultra-thin pseudo-SoC which integrated electrostatic MEMS light valve and PWM driver IC was prototyped through developing the ultra-thin MEMS encapsulation technology.

  16. Microchip power compensated calorimetry applied to metal hydride characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, A.; Lopeandia, A.F.; Domenech-Ferrer, R.; Garcia, G.; Pi, F.; Rodriguez-Viejo, J. [Nanomaterials and Microsystems Group, Physics Department, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Munoz, F.J. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica, Campus UAB, 08193 Bellaterra (Spain)

    2008-06-15

    In this work, we show the suitability of the thin film membrane-based calorimetric technique to measure kinetically limited phase transitions such as the dehydrogenation of metallic hydrides. Different compounds such as Mg, Mg/Al and Mg{sub 80}Ti{sub 20} have been deposited over the active area of the microchip by electron beam evaporation. After several hydrogenation treatments at different temperatures to induce the hydride formation, calorimetric measurements on the dehydrogenation process of those thin films, either in vacuum or in air, are performed at a heating rate of 10 C/min. We observe a significant reduction in the onset of dehydrogenation for Mg{sub 80}Ti{sub 20} compared with pure Mg or Mg/Al layers, which confirms the beneficial effect of Ti on dehydrogenation. We also show the suitability of the membrane-based nanocalorimeters to be used in parallel with optical methods. Quantification of the energy released during hydrogen desorption remains elusive due to the semi-insulating to metallic transition of the film which affects the calorimetric trace. (author)

  17. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool.

    Science.gov (United States)

    Mesquita, Flávio da Silva; Oliveira, Danielle Bruna Leal de; Crema, Daniela; Pinez, Célia Miranda Nunes; Colmanetti, Thaís Cristina; Thomazelli, Luciano Matsumia; Gilio, Alfredo Elias; Vieira, Sandra Elisabeth; Martinez, Marina Baquerizo; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    The aim of this study was to evaluate the QuickVue ® RSV Test Kit (QUIDEL Corp, CA, USA) as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue ® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. From 313 positive samples by immunofluorescence assays, 282 (90%) were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue ® RSV Test and viral load or specific strain. The QuickVue ® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. This study demonstrated that the QuickVue ® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool,

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    Full Text Available Abstract Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  19. An audit of Cryptosporidium and Giardia detection in Scottish National Health Service Diagnostic Microbiology Laboratories.

    Science.gov (United States)

    Alexander, C L; Currie, S; Pollock, K; Smith-Palmer, A; Jones, B L

    2017-06-01

    Giardia duodenalis and Cryptosporidium species are protozoan parasites capable of causing gastrointestinal disease in humans and animals through the ingestion of infective faeces. Whereas Cryptosporidium species can be acquired locally or through foreign travel, there is the mis-conception that giardiasis is considered to be largely travel-associated, which results in differences in laboratory testing algorithms. In order to determine the level of variation in testing criteria and detection methods between diagnostic laboratories for both pathogens across Scotland, an audit was performed. Twenty Scottish diagnostic microbiology laboratories were invited to participate with questions on sample acceptance criteria, testing methods, testing rates and future plans for pathogen detection. Reponses were received from 19 of the 20 laboratories representing each of the 14 territorial Health Boards. Detection methods varied between laboratories with the majority performing microscopy, one using a lateral flow immunochromatographic antigen assay, another using a manually washed plate-based enzyme immunoassay (EIA) and one laboratory trialling a plate-based EIA automated with an EIA plate washer. Whereas all laboratories except one screened every stool for Cryptosporidium species, an important finding was that significant variation in the testing algorithm for detecting Giardia was noted with only four laboratories testing all diagnostic stools. The most common criteria were 'travel history' (11 laboratories) and/or 'when requested' (14 laboratories). Despite only a small proportion of stools being examined in 15 laboratories for Giardia (2%-18% of the total number of stools submitted), of interest is the finding that a higher positivity rate was observed for Giardia than Cryptosporidium in 10 of these 15 laboratories. These findings highlight that the underreporting of Giardia in Scotland is likely based on current selection and testing algorithms.

  20. Diagnostic value of meat juice in early detection of classical swine fever infection

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Rasmussen, Thomas Bruun

    2011-01-01

    samples originated from pigs infected with low virulence CSFV strains and/or when samples were collected within the first days after infection. In conclusion, while not the first choice for sample material for CSFV diagnosis, meat juice may constitute a useful alternative for herd-based studies or when......To evaluate the diagnostic potential of meat juice for early detection of Classical swine fever virus (CSFV), meat juice and serum samples from pigs experimentally infected with different strains of CSFV were compared for virus load. From all samples, viral RNA was extracted by automated procedure...... blood and/or target organ material is not available. Strain virulence and time points for sample collection after infection are factors of importance for diagnostic success....

  1. Comparison of Microchip Transponder and Noncontact Infrared Thermometry with Rectal Thermometry in Domestic Swine (Sus scrofa domestica)

    Science.gov (United States)

    Jara, Amanda L; Hanson, Jarod M; Gabbard, Jon D; Johnson, Scott K; Register, Emery T; He, Biao

    2016-01-01

    During disease outbreaks, core temperature is a useful health metric in swine, due to the presence of pyrexia especially during the acute phase of infection. Despite technologic advances in other facets of swine production and health management, rectal thermometry continues to be the ‘gold standard’ for measuring core body temperature. However, for various reasons, collecting rectal temperatures can be difficult and unsafe depending on the housing modality. In addition, the delay between insertion of the rectal thermometer and obtaining a reading can affect measurement accuracy, especially when the pig requires physical restraint. Clearly safer, faster, and more accurate and precise temperature acquisition methods that necessitate minimal or no handling of swine are needed. We therefore compared rectal thermometers, subcutaneous microchips, and an inexpensive handheld infrared thermometer by measuring the core body temperature of 24 male castrated piglets at random intervals over a 5-wk period. The core body temperature (mean ± 1 SD) was 39.3 ± 0.5 °C by rectal thermometry, 39.0 ± 0.7 °C by microchip transponder, and 34.3 ± 1.0 °C by infrared thermometry; these 3 values differed significantly. Although the readings obtain by using infrared thermometry were numerically lower than those from the other methods, it is arguably the safest method for assessing the core temperature of swine and showed strong relative correlation with rectal temperature. PMID:27657715

  2. A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood.

    Science.gov (United States)

    Cartwright, Mark; Rottman, Martin; Shapiro, Nathan I; Seiler, Benjamin; Lombardo, Patrick; Gamini, Nazita; Tomolonis, Julie; Watters, Alexander L; Waterhouse, Anna; Leslie, Dan; Bolgen, Dana; Graveline, Amanda; Kang, Joo H; Didar, Tohid; Dimitrakakis, Nikolaos; Cartwright, David; Super, Michael; Ingber, Donald E

    2016-07-01

    Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, containing the Fc immunoglobulin domain linked to its carbohydrate recognition domain (FcMBL) was developed to quantify pathogen-associated molecular patterns (PAMPs) in whole blood. This assay was tested in rats and pigs to explore whether it can detect infections and monitor disease progression, and in prospectively enrolled, emergency room patients with suspected sepsis. These results were also compared with data obtained from non-infected patients with or without traumatic injuries. The FcMBL ELLecSA was able to detect PAMPS present on, or released by, 85% of clinical isolates representing 47 of 55 different pathogen species, including the most common causes of sepsis. The PAMP assay rapidly (animals, even when blood cultures were negative and bacteriocidal antibiotics were administered. In patients with suspected sepsis, the FcMBL ELLecSA detected infection in 55 of 67 patients with high sensitivity (>81%), specificity (>89%), and diagnostic accuracy of 0·87. It also distinguished infection from trauma-related inflammation in the same patient cohorts with a higher specificity than the clinical sepsis biomarker, C-reactive Protein. The FcMBL ELLecSA-based PAMP assay offers a rapid, simple, sensitive and specific method for diagnosing infections, even when blood cultures are negative and antibiotic therapy has been initiated. It may help to triage patients with suspected systemic infections, and serve as a companion diagnostic to guide administration of emerging dialysis-like sepsis therapies

  3. Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser.

    Science.gov (United States)

    Kisel, V E; Gorbachenya, K N; Yasukevich, A S; Ivashko, A M; Kuleshov, N V; Maltsev, V V; Leonyuk, N I

    2012-07-01

    We report, for the first time to our knowledge, a diode-pumped cw and passively Q-switched microchip Er, Yb:YAl(3)(BO(3))(4) laser. A maximal output power of 800 mW at 1602 nm in the cw regime was obtained at an absorbed pump power of 7.7 W. By using Co(2+):MgAl(2)O(4) as a saturable absorber, a TEM(00)-mode Q-switched average output power of 315 mW was demonstrated at 1522 nm, with pulse duration of 5 ns and pulse energy of 5.25 μJ at a repetition rate of 60 kHz.

  4. Controlled trapping and detection of magnetic particles by a magnetic microactuator and a giant magnetoresistance (GMR) sensor

    KAUST Repository

    Giouroudi, Ioanna

    2014-04-01

    This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs towards a giant magnetoresistance (GMR) sensing element which rapidly detects the majority of MPs trapped around the square-shaped conductors. The ability to precisely transport a small number of MPs in a controlled manner over long distances by magnetic forces enables the rapid concentration of a majority of MPs to the sensing zone for detection. This is especially important in low concentration samples. The conductors are designed in such a manner so as to increase the capture efficiency as well as the precision and speed of transportation. By switching current to different conductors, MPs can be manipulated and immobilized on the innermost conductor where the GMR sensor is located. This technique rapidly guides the MPs towards the sensing zone. Secondly, for optimum measurement capability with high spatial resolution the GMR sensor is fabricated directly underneath and all along the innermost conductor to detect the stray fields originating from the MPs. Finally, a microfluidic channel is fabricated on top of this micro-chip. Experiments inside the microchannel were carried out and the MPs were successfully trapped at the sensing area. © (2014) Trans Tech Publications.

  5. Sample preparation and detection device for infectious agents

    Science.gov (United States)

    Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June

    2003-06-10

    A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.

  6. A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood

    OpenAIRE

    Cartwright, Mark; Rottman, Martin; Shapiro, Nathan I.; Seiler, Benjamin; Lombardo, Patrick; Gamini, Nazita; Tomolonis, Julie; Watters, Alexander L.; Waterhouse, Anna; Leslie, Dan; Bolgen, Dana; Graveline, Amanda; Kang, Joo H.; Didar, Tohid; Dimitrakakis, Nikolaos

    2016-01-01

    Background: Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. Methods: An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, contai...

  7. [Diagnostic advantages of the test system "DS-EIA-HBsAg-0.01" for detection of HBV surface antigen].

    Science.gov (United States)

    Egorova, N I; Pyrenkova, I Iu; Igolkina, S N; Sharipova, I N; Puzyrev, V F; Obriadina, A P; Burkov, A N; Kornienko, N V; Fields, H A; Korovkin, A S; Shalunova, N V; Bektemirov, T A; Kuznetsov, K V; Koshcheeva, N A; Ulanova, T I

    2009-01-01

    The new highly sensitive test system "DS-EIA-HBsAg-0.01" (Priority Certificate No. 2006129019 of August 10, 2006) in detecting hepatitis B surface antigen (HBsAg) was assessed. The sensitivity of the test was estimated using the federal standards sample HBsAg 42-28-311-06, panels' samples Boston Biomedica Inc. (West Bridgewater, Mass, USA) and ZeptoMetrix Corp. (Buffalo, NY, USA). The findings have indicated that "DS-EIA-HBsAg-0.01" is equally effective in detecting different subtypes of HBsAg during a seroconversion period earlier than alternative assays. Along with its high analytical and diagnostic sensitivity, the system shows a high diagnostic specificity.

  8. Dual-focus Magnification, High-Definition Endoscopy Improves Pathology Detection in Direct-to-Test Diagnostic Upper Gastrointestinal Endoscopy.

    Science.gov (United States)

    Bond, Ashley; Burkitt, Michael D; Cox, Trevor; Smart, Howard L; Probert, Chris; Haslam, Neil; Sarkar, Sanchoy

    2017-03-01

    In the UK, the majority of diagnostic upper gastrointestinal (UGI) endoscopies are a result of direct-to-test referral from the primary care physician. The diagnostic yield of these tests is relatively low, and the burden high on endoscopy services. Dual-focus magnification, high-definition endoscopy is expected to improve detection and classification of UGI mucosal lesions and also help minimize biopsies by allowing better targeting. This is a retrospective study of patients attending for direct-to-test UGI endoscopy from January 2015 to June 2015. The primary outcome of interest was the identification of significant pathology. Detection of significant pathology was modelled using logistic regression. 500 procedures were included. The mean age of patients was 61.5 (±15.6) years; 60.8% of patients were female. Ninety-four gastroscopies were performed using dual-focus magnification high-definition endoscopy. Increasing age, male gender, type of endoscope, and type of operator were all identified as significant factors influencing the odds of detecting significant mucosal pathology. Use of dual-focus magnification, high-definition endoscopy was associated with an odds ratio of 1.87 (95%CI 1.11-3.12) favouring the detection of significant pathology. Subsequent analysis suggested that the increased detection of pathology during dual-focus magnification, high-definition endoscopy also influenced patient follow-up and led to a 3.0 fold (p=0.04) increase in the proportion of patients entered into an UGI endoscopic surveillance program. Dual-focus magnification, high-definition endoscopy improved the diagnostic yield for significant mucosal pathology in patients referred for direct-to-test endoscopy. If this finding is recapitulated elsewhere it will have substantial impact on the provision of UGI endoscopic services.

  9. Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet.

    Science.gov (United States)

    Musyimi, Harrison K; Guy, Jason; Narcisse, Damien A; Soper, Steven A; Murray, Kermit K

    2005-12-01

    We report on the coupling of a polymer-based microfluidic chip to a MALDI-TOF MS using a rotating ball interface. The microfluidic chips were fabricated by micromilling a mold insert into a brass plate, which was then used for replicating polymer microparts via hot embossing. Assembly of the chip was accomplished by thermally annealing a cover slip to the embossed substrate to enclose the channels. The linear separation channel was 50 microm wide, 100 microm deep, and possessed an 8 cm effective length separation channel with a double-T injector (V(inj) = 10 nL). The exit of the separation channel was machined to allow direct contact deposition of effluent onto a specially constructed rotating ball inlet to the mass spectrometer. Matrix addition was accomplished in-line on the surface of the ball. The coupling utilized the ball as the cathode transfer electrode to transport sample into the vacuum for desorption with a 355 nm Nd:YAG laser and analyzed on a TOF mass spectrometer. The ball was cleaned online after every rotation. The ability to couple poly(methylmethacrylate) microchip electrophoresis devices for the separation of peptides and peptide fragments produced from a protein digest with subsequent online MALDI MS detection was demonstrated.

  10. Detection of foot-and-mouth disease virus in the breath of infected cattle using a hand-held device to collect aerosols

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Brehm, Katharina E.; Skov, Julia

    2011-01-01

    electrostatic particle capture in a microchip chamber of 10–15μL and was shown to effectively capture a high percentage of airborne microorganisms. The particles were eluted subsequently from the chip chamber and subjected to real-time RT-PCR. Sampling exhaled air for as little as 1min allowed the detection...

  11. Comparison of rapid diagnostic tests to detect Mycobacterium avium subsp. paratuberculosis disseminated infection in bovine liver.

    Science.gov (United States)

    Zarei, Mehdi; Ghorbanpour, Masoud; Tajbakhsh, Samaneh; Mosavari, Nader

    2017-08-01

    Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a chronic enteritis in cattle and other domestic and wild ruminants. The presence of MAP in tissues other than intestines and associated lymph nodes, such as meat and liver, is a potential public health concern. In the present study, the relationship between the results of rapid diagnostic tests of the Johne's disease, such as serum ELISA, rectal scraping PCR, and acid-fast staining, and the presence of MAP in liver was evaluated. Blood, liver, and rectal scraping samples were collected from 200 slaughtered cattle with unknown Johne's disease status. ELISA was performed to determine the MAP antibody activity in the serum. Acid-fast staining was performed on rectal scraping samples, and PCR was performed on rectal scraping and liver samples. PCR-positive liver samples were used for mycobacterial culture. Overall, the results of this study demonstrated that MAP can be detected and cultured from liver of slaughtered cattle and rapid diagnostic tests of Johne's disease have limited value in detecting cattle with MAP infection in liver. These findings show that the presence of MAP in liver tissue may occur in cows with negative results for rapid diagnostic tests and vice versa. Hence, liver might represent another possible risk of human exposure to MAP. Given concerns about a potential zoonotic role for MAP, these results show the necessity to find new methods for detecting cattle with MAP disseminated infection.

  12. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    Science.gov (United States)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  13. Electronic DNA detection and diagnostics

    NARCIS (Netherlands)

    De, Arpita

    2013-01-01

    The Nanopill project is an ambitious undertaking with the objective to develop an early-warning cancer diagnostic pill that is ingested by the patient. The Nanopill collects intestinal fluid as the pill travels down the intestinal tract, and tests for the presence of a free floating hyper-methylated

  14. Diagnostic value of multi-tumor markers protein biochip detection for primary pulmonary cancer

    International Nuclear Information System (INIS)

    Xu Fengpo; Wu Yiwei; Li Qingru; Fa Yihua

    2005-01-01

    To evaluate the diagnostic value of multi-tumor markers protein biochip detection for primary pulmonary cancer, 12 tumor markers including AFP, CEA, NSE, CA125, CA15-3, CA242, CA19-9, PSA, f-PSA, FER, β-HCG and HGH were measured by the protein biochip in the serum of 45 primary pulmonary cancer patients. Positive rate of tumor markers was FER (42.2%), CEA (35.6%), CA125 (24.4%), CA15-3 (17.8%), CA242 (13.3%), CA19-9 (11.1%), β-HCG(8.9%), HGH(6.7%), NSE(4.4%), AFP (0), f-PSA (0) and PSA (0), respectively. The rate of patients with one abnorma indicator was 57.8% except FER. The positive rate using multi-tumor markers protein biochip detection was significantly higher than that of single tumor marker detective method, and this detection can be used for the diagnosis of patients with primary pulmonary cancer. (authors)

  15. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    Science.gov (United States)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  16. Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries

    International Nuclear Information System (INIS)

    Lee, Wan; Lee, Byung Do

    2003-01-01

    The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOVA test. The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p>0.05). These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  17. Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: lllb146@163.com [Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China); Li, Qiong [Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China); Nie, Wei [Department of Respiratory Disease, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China); Liu, Shiyuan, E-mail: lsy20112077@163.com [Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China)

    2014-02-15

    Purpose: To perform a meta-analysis to evaluate the diagnostic performance of whole-body diffusion-weighted magnetic resonance imaging (WB-DWI) technique in detection of primary and metastatic malignancies compared with that of whole-body positron emission tomography/computed tomography (WB-PET/CT). Materials and methods: Search Pubmed, MEDLINE, EMBASE and Cochrane Library database from January 1984 to July 2013 for studies comparing WB-DWI with WB-PET/CT for detection of primary and metastatic malignancies. Methodological quality was assessed by the quality assessment of diagnostic studies (QUADAS) instrument. Sensitivities, specificities, predictive values, diagnostic odds ratio (DOR) and areas under the summary receiver operator characteristic curve (AUC) were calculated. Potential threshold effect, heterogeneity and publication bias were investigated. Result: Thirteen eligible studies were included, with a total of 1067 patients. There was no significant threshold effect. WB-DWI had a similar AUC (0.966 (95% CI, 0.940–0.992) versus 0.984 (95% CI, 0.965–0.999)) with WB-PET/CT. No significant difference was detected between AUC of WB-DWI and WB-PET/CT. WB-DWI had a pooled sensitivity of 0.897 (95% CI, 0.876–0.916) and a pooled specificity of 0.954 (95% CI, 0.944–0.962). WB-PET/CT had a pooled sensitivity of 0.895 (95% CI, 0.865–0.920) and a pooled specificity of 0.975 (95% CI, 0.966–0.981). Heterogeneity was found to stem primarily from data type (per lesion versus per patient), MR sequence (DWIBS only and DWIBS with other sequence), and primary lesion type (single type and multiple type). The Deeks's funnel plots suggested the absence of publication bias. Conclusion: WB-DWI has similar, good diagnostic performance for the detection of primary and metastatic malignancies compared with WB-PET/CT. DWIBS with other MR sequences could further improve the diagnostic performance. More high-quality studies regarding comparison of WB-DWI and WB

  18. Optimization of Diagnostic Elisa - Based Tests for the Detection of Auto-Antibodies Against Tumor Antigens in Human Serum

    Directory of Open Access Journals (Sweden)

    Daria Štefatić

    2008-08-01

    Full Text Available Colorectal cancer is one of the most common cancer types worldwide and it continues to be a serious public health problem. Early detection and diagnosis are of great importance in cancer management. At present, diagnostic blood tests are based on the detection of tumor-associated markers such as carcinoembryonic antigen (CEA, the cancer antigen CA19-9 for gastrointestinal cancer, CA15-3 for breast cancer or CA125 for ovarian cancer. The lack of sensitivity and specificity of these markers prevents their general use in cancer screening of an average risk population. Therefore, new cancer biomarkers or better screening methods are necessary to improve the diagnostics of the disease. This study was directed to the optimization of a diagnostic, enzyme linked immunosorbent assay (ELISA based test to identify and validate new serum markers, such as extracellular Protein Kinase A (ecPKA and Nicotinamide A-Meth- yltransferase (NNMT. In this type of assay, the cancer antigens are quantified indirectly - by detecting the presence of auto-antibodies against tumor proteins in human serum. The result of the optimization and validation process was in the case of ecPKA a reproducible and stable assay. In case of NNMT the assay was probably not sensitive enough.

  19. Diagnostic performance of CT and MRI on the detection of symptomatic intracranial dural arteriovenous fistula: a meta-analysis with indirect comparison

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yen-Heng [National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei (China); National Taiwan University Hospital in Taipei and Yuan-Lin Branch, Department of Medical Imaging and Radiology, Hospital and Medical College, Taipei (China); Lin, Hsien-Ho [National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei (China); Liu, Hon-Man; Lee, Chung-Wei; Chen, Ya-Fang [National Taiwan University Hospital in Taipei and Yuan-Lin Branch, Department of Medical Imaging and Radiology, Hospital and Medical College, Taipei (China)

    2016-08-15

    This study aims to review the diagnostic performance of computed tomography (CT) and magnetic resonance imaging (MRI) in symptomatic dural arteriovenous fistula (DAVF). EMBASE, PubMed, and Cochrane Library were searched until April 2015 for studies which compared CT, MRI, or both with angiography for the detection of DAVF. The diagnostic performances of MRI and CT were indirectly compared using modality as a covariate in the analysis. Thirteen studies met our inclusion criteria. MRI had a sensitivity of 0.90 (95 % confidence interval (CI) = 0.83-0.94) and specificity of 0.94 (95 % CI = 0.90-0.96). CT had a sensitivity of 0.80 (95 % CI = 0.62-0.90) and specificity of 0.87 (95 % CI = 0.74-0.94). MRI showed better diagnostic performance than CT (p = 0.02). Contrast medium use and time-resolved MR angiography did not improve MRI diagnostic performance (p = 0.31 and 0.44, respectively). Both CT and MRI had good diagnostic performance. MRI was better than CT on the detection of symptomatic intracranial dural arteriovenous fistula in the indirect comparison. (orig.)

  20. Diagnostic value and timing of serum antichlamidial antibody level evaluation during infertility workup among infertile women in whom tubal factor was detected with diagnostic laparoscopy

    Directory of Open Access Journals (Sweden)

    Serkan Kahyaoğlu

    2012-03-01

    Full Text Available OBJECTIVES: With normal hysterosalpingography (HSG results, selecting suitable candidates for the laparoscopic treatment of probable pelvic adhesions following previous pelvic inflammatory disease, it would be wise to investigate serum antibody screening against chlamidia trachomatis. It is worth to evaluate whether it is useful to detect a negative antichlamidial antibody disease for cancelling laparoscopy for a while with abnormal HSG findings. These two subjects have been investigated in study. MATERIAL AND METHODS: For detecting diagnostic value of serum antichlamidial antibody, in our infertility clinic, postoperative blood samples of 80 patients who were hospitalized for diagnostic laparoscopy to investigate infertility ethiology between May 2004 and November 2005 have been tested with microelisa method for antichlamidial IgM and IgG antibodies. HSG films of the patients performed at least one year were evaluated. Venous blood was drawn from these patients during postoperative early period for studying serum IgM and IgG antibodies of chlamidia trachomatis and the results were compared with operative findings. RESULTS: According to the antichlamidial antibody levels 60 (75% patients have not been infected with chlamidia and 20 (25% patients have been infected previously. When the patients were divided to two groups; normal and abnormal; based on preoperative HSG films; 18 (30% of the 60 patients with abnormal HSG films and 2 (10% of the 20 patients with normal HSG films had positive antichlamidial antibody levels respectively. CONCLUSION: The relationship between chlamidia trachomatis infection and tubal infertility has been demonstrated among 85% of patients with positive antichlamidial antibody levels and 46.7% of patients with negative levels who had tubal passage defects detected during diagnostic laparoscopy.

  1. The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[F]fluoroethyl)-l-tyrosine positron emission tomography

    DEFF Research Database (Denmark)

    Bashir, Asma; Brennum, Jannick; Broholm, Helle

    2018-01-01

    OBJECTIVE The diagnostic accuracy of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET scanning in detecting the malignant transformation of low-grade gliomas (LGGs) is controversial. In this study, the authors retrospectively assessed the diagnostic potential of FET PET in patients with MRI-suspected ...

  2. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples.

    LENUS (Irish Health Repository)

    Meyler, Kenneth L

    2012-12-01

    Since the introduction of the Haemophilus influenzae serotype b vaccine, invasive H. influenzae disease has become dominated by nontypeable (NT) strains. Several widely used molecular diagnostic methods have been shown to lack sensitivity or specificity in the detection of some of these strains. Novel real-time assays targeting the fucK, licA, and ompP2 genes were developed and evaluated. The fucK assay detected all strains of H. influenzae tested (n = 116) and had an analytical sensitivity of 10 genome copies\\/polymerase chain reaction (PCR). This assay detected both serotype b and NT H. influenzae in 12 previously positive specimens (culture and\\/or bexA PCR) and also detected H. influenzae in a further 5 of 883 culture-negative blood and cerebrospinal fluid (CSF) samples. The fucK assay has excellent potential as a diagnostic test for detection of typeable and nontypeable strains of invasive H. influenzae in clinical samples of blood and CSF.

  3. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples.

    Science.gov (United States)

    Meyler, Kenneth L; Meehan, Mary; Bennett, Desiree; Cunney, Robert; Cafferkey, Mary

    2012-12-01

    Since the introduction of the Haemophilus influenzae serotype b vaccine, invasive H. influenzae disease has become dominated by nontypeable (NT) strains. Several widely used molecular diagnostic methods have been shown to lack sensitivity or specificity in the detection of some of these strains. Novel real-time assays targeting the fucK, licA, and ompP2 genes were developed and evaluated. The fucK assay detected all strains of H. influenzae tested (n = 116) and had an analytical sensitivity of 10 genome copies/polymerase chain reaction (PCR). This assay detected both serotype b and NT H. influenzae in 12 previously positive specimens (culture and/or bexA PCR) and also detected H. influenzae in a further 5 of 883 culture-negative blood and cerebrospinal fluid (CSF) samples. The fucK assay has excellent potential as a diagnostic test for detection of typeable and nontypeable strains of invasive H. influenzae in clinical samples of blood and CSF. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Hansen, Ole; Petersen, Peter Kalsen

    2006-01-01

    Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring...... of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DER The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell...

  5. Diagnostic dilemma

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Dobrovolny, Robert; Nazarenko, Irina

    2011-01-01

    Fabry disease, an X-linked lysosomal storage disorder, results from the deficient activity of a-galactosidase A (a-Gal A). In affected males, the clinical diagnosis is confirmed by the markedly decreased a-Gal A activity. However, in female heterozygotes, the a-Gal A activity can range from low t...... on enzyme replacement therapy. Thus, gene dosage analyses can detect large deletions (>50bp) in suspect heterozygotes for X-linked and autosomal dominant diseases that are "sequencing cryptic," resolving molecular diagnostic dilemmas....... to normal due to random X-chromosomal inactivation, and diagnostic confirmation requires identification of the family's a-Gal A gene mutation. In a young female who had occasional acroparesthesias, corneal opacities, and 15 to 50% of the lower limit of normal leukocyte a-Gal A activity, a-Gal A sequencing...... in two expert laboratories did not identify a confirmatory mutation, presenting a diagnostic dilemma. A renal biopsy proved diagnostic and renewed efforts to detect an a-Gal A mutation. Subsequent gene dosage analyses identified a large a-Gal A deletion confirming her heterozygosity, and she was started...

  6. Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma hyopneumoniae during early stages of infection.

    Science.gov (United States)

    Pieters, Maria; Daniels, Jason; Rovira, Albert

    2017-05-01

    Detection of Mycoplasma hyopneumoniae in live pigs during the early stages of infection is critical for timely implementation of control measures, but is technically challenging. This study compared the sensitivity of various sample types and diagnostic methods for detection of M. hyopneumoniae during the first 28days after experimental exposure. Twenty-one 8-week old pigs were intra-tracheally inoculated on day 0 with M. hyopneumoniae strain 232. Two age matched pigs were mock inoculated and maintained as negative controls. On post-inoculation days 0, 2, 5, 9, 14, 21 and 28, nasal swabs, laryngeal swabs, tracheobronchial lavage fluid, and blood samples were obtained from each pig and oral fluid samples were obtained from each room in which pigs were housed. Serum samples were assayed by ELISA for IgM and IgG M. hyopneumoniae antibodies and C-reactive protein. All other samples were tested for M. hyopneumoniae DNA by species-specific real-time PCR. Serum antibodies (IgG) to M. hyopneumoniae were detected in challenge-inoculated pigs on days 21 and 28. M. hyopneumoniae DNA was detected in samples from experimentally inoculated pigs beginning at 5days post-inoculation. Laryngeal swabs at all samplings beginning on day 5 showed the highest sensitivity for M. hyopneumoniae DNA Detection, while oral fluids showed the lowest sensitivity. Although laryngeal swabs are not considered the typical M. hyopneumoniae diagnostic sample, under the conditions of this study laryngeal swabs tested by PCR proved to be a practical and reliable diagnostic sample for M. hyopneumoniae detection in vivo during early-stage infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer

    NARCIS (Netherlands)

    Bejnordi, Babak Ehteshami; Veta, Mitko; van Diest, Paul Johannes; Van Ginneken, Bram; Karssemeijer, Nico; Litjens, Geert; van der Laak, Jeroen A.W.M.; Hermsen, Meyke; Manson, Quirine F.; Balkenhol, Maschenka; Geessink, Oscar; Stathonikos, Nikolaos; Van Dijk, Marcory C.R.F.; Bult, Peter; Beca, Francisco; Beck, Andrew H.; Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Zhong, Aoxiao; Dou, Qi; Li, Quanzheng; Chen, Hao; Lin, Huang Jing; Heng, Pheng Ann; Haß, Christian; Bruni, Elia; Wong, Quincy; Halici, Ugur; Öner, Mustafa Ümit; Cetin-Atalay, Rengul; Berseth, Matt; Khvatkov, Vitali; Vylegzhanin, Alexei; Kraus, Oren; Shaban, Muhammad; Rajpoot, Nasir; Awan, Ruqayya; Sirinukunwattana, Korsuk; Qaiser, Talha; Tsang, Yee Wah; Tellez, David; Annuscheit, Jonas; Hufnagl, Peter; Valkonen, Mira; Kartasalo, Kimmo; Latonen, Leena; Ruusuvuori, Pekka; Liimatainen, Kaisa

    2017-01-01

    IMPORTANCE: Application of deep learning algorithms to whole-slide pathology imagescan potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph

  8. Screening diagnostic program breast cancer

    International Nuclear Information System (INIS)

    Portnoj, L.M.; Zhakova, I.I.; Budnikova, N.V.; Rukhlyadko, E.D.

    1995-01-01

    The authors propose their screening program for detection of breast cancer. It includes the entire complex of present-day screening diagnostic methods, starting from an original system for the formation of groups at risk of breast cancer and completed by the direct diagnostic model of detection of the condition, oriented at a differentiated approach to the use of mammographic techniques. The proposed organizational and methodologic screening measures are both economic and diagnostically effective, thus meeting the principal requirements to screening programs. Screening of 8541 risk-groups patients helped detect 867 nodular formations, 244 of which were cancer and 623 benign formations. 8 refs., 3 figs.,

  9. Polymer microchip impedance spectroscopy through two parallel planar embedded microelectrodes: Understanding the impedance contribution of the surrounding polymer on the measurement accuracy

    International Nuclear Information System (INIS)

    Kechadi, Mohammed; Gamby, Jean; Chaal, Lila; Girault, Hubert; Saidani, Boualem; Tribollet, Bernard

    2013-01-01

    The present work describes a new methodology for contact free impedance of a solution in a polymer microchip taking into account the role played by the surrounding polymer on the impedance accuracy. Measurements were carried out using a photoablated polyethylene terephthalate (PET) microchannel above two embedded microband electrodes. The impedance diagrams exhibit a loop from high frequencies to medium frequencies (1 MHz–100 Hz) and a capacitive behavior at low frequencies (100–1 Hz). The impedance diagrams were corrected by eliminating from the global microchip response the contribution of the impedance of the PET layer between the two microband electrodes. This operation enables a clear observation of the impedance in the microchannel solution, including the bulk solution contribution and the interfacial capacitance related to the surface roughness of the photoablated microchannel. Models for the impedance of solutions of varying conductivity showed that the capacitance of the polymer–solution interface can be modeled by a constant phase element (CPE) with an exponent of 0.5. The loop diameter was found to be proportional to the microchannel resistivity, allowing a cell constant around 4.93 × 10 5 m −1 in contactless microelectrodes configuration

  10. 78 FR 18988 - Establishing the Performance Characteristics of In Vitro Diagnostic Devices for the Detection of...

    Science.gov (United States)

    2013-03-28

    ... either electronic or written comments on this guidance at any time. General comments on Agency guidance... INFORMATION section for information on electronic access to the guidance. Submit electronic comments on the... diagnostic devices for the detection of antibodies to B. burgdorferi in human serum, plasma, and blood. These...

  11. Applications of nanoparticles in cancer detection and diagnostic tool for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Venkatasalam, C.; Nagappan, A.

    2012-01-01

    Cancer nanotechnology is multidisciplinary area of science and technology. In recent days nano particles are used in medical field as diagnostic tools. It is highly precious and accurate measurement tools for detecting many disease. One of the broad application of cancer biology, for detecting molecular imaging, molecular diagnosis of cancer cells. In the present study deals with the nanoparticles are widely used for finding tumor as biomarker imaging for cancer detection and the nanoparticles are have important notice. An ample choice of materials may be used for construct nanoparticles that can cover for increase the capability of delivery or to provide unique structural and electrical properties for imaging. This exclusive properties are worn to several functional nanoparticles have already been demonstrated, including some clinically approved liposome drugs and metallic imaging agents. In early detection of heptocellular carcinoma, the metallic nanoparticles are vital role in the imaging technology. Several functions of nanoparticles that may eventually additional the understanding of producing imaging especially the darkening and enlarging of the images. These nanoparticles may be able to identify malignant cells by means of molecular detection, visualization of their location in the body by providing enhanced contrast in medical imaging technology, Through selective particle targeting and monitoring of identification of multiplied cells in different organs of the body. In the future prospective of medical field, the nanoparticles are having vital role for detecting cancer cells. (author)

  12. [Western Blot diagnostic yield for simultaneous antibody-detection in patients with human cysticercosis, hydatidosis, and human fascioliasis].

    Science.gov (United States)

    Davelois, Kelly; Escalante, Hermes; Jara, César

    2016-01-01

    . To determine the diagnostic yield using western blotting to simultaneously detect antibodies in patients with human cysticercosis, hydatidosis, and human fascioliasis. Materials and methods . Cross-sectional study of diagnostic yield assessment. Excretory/secretory antigens were obtained from Taenia solium larvae, Echinococcus granulosus cysts, and the adult flukes of Fasciola hepática, which were then separated using the polyacrylamide gel electrophoresis technique, transferred, and attached to a nitrocellulose membrane to be probed with sera from the patient infected with the three parasites. The sensitivity of the technique was assessed using 300 individual serum samples, 60 pools of two parasites, and 20 pools of three parasites with 75 sera from patients with other parasites, 10 from patients with other diseases, and 15 from patients without parasites. Results . The technique revealed 13 glycoproteins (GP): GP 35, 31, 24, 23, 18, 17, 14, and 13 kDa for cysticercosis; GP 8, 16, and 21 kDa for hydatidosis; and GP 17 and 23 kDa for fascioliasis. The test detected the presence of antibodies with a sensitivity of 96% (95% confidence interval [CI] = 94.62-98.54%) in the detection of one or the thirteen bands, a specificity of 100% (95% CI = 99.50-100.00%); individually, there was a sensitivity for cysticercosis of 97% (95% CI = 93.16-100.00%), for hydatidosis of 94% (95% CI = 88.85-99.15%) and for fascioliasis of 96% (95% CI = 91.66-100.00%). Conclusions . Western blotting is effective in the simultaneous detection of antibodies in patients with human cysticercosis, hydatidosis, and fascioliasis, and it can be used as a diagnostic test to either rule out or confirm the presence of antibodies in endemic areas.

  13. Diagnostic Accuracy of Digital and Conventional Radiography in the Detection of Non-Cavitated Approximal Dental Caries

    International Nuclear Information System (INIS)

    Abesi, F.; Mirshekar, A.; Moudi, E.; Seyedmajidi, M.; Haghanifar, S.; Haghighat, N.; Bijani, A.

    2012-01-01

    Radiography plays an important role in the detection of interproximal caries. The aim of the present study was to determine diagnostic accuracy of charge coupled devices, Photo Stimulable Phosphor and film radiography in detecting non-cavitated caries. Seventy-two non-cavitated approximal surfaces of extracted human posterior teeth were radiographed under standardized conditions using three intraoral modalities: charge coupled devices Dixi3 (Planmeca, Finland), PSP Digora PCT (Soredex, Finland), and E-speed film (Kodak, USA). Radiographs were interpreted by four observers and caries lesions were classified as sound (R0), restricted to enamel (R1), reaching the dentinoenamel junction and the outer half of the dentin (R2) and the inner half of the dentin (R3). The teeth were subsequently sectioned for histological analysis which served as the gold standard for radiographic examination. Microscopic examinations showed that the distribution of caries were 63.9% sound, 18.1% enamel, 9.7% dentinoenamel junction and outer half of the dentin and 8.3% into the inner half of the dentin. The sensitivity and specificity of film, charge coupled devices and Photo Stimulable Phosphor for the detection of enamel caries were 38% and 98%; 15% and 96%; and 23% and 98%, respectively. The sensitivity and specificity of film, charge coupled devices and Photo Stimulable Phosphor for the detection of both dentin and enamel caries were 55% and 100%; 45% and 100% ; and 55% and 100%, respectively. The results demonstrated that the diagnostic accuracy of digital images is similar to that of conventional film radiography in the detection of non-cavitated approximal caries.

  14. Diagnostic system and diagnostic experiences at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Katona, Tamas

    1986-01-01

    The major functions of the diagnostic system of the first two units of the Paks Nuclear Power Plant are as follows: monitoring the mechanical integrity of the reactor and the primary coolant circuit by means of vibration diagnostics; leakage detection of the primary coolant circuit by means of high frequency sonic analysis; loose parts monitoring based on the analysis of high frequency signals of acceleration detectors; and monitoring the vibration state of the turbines and rotary machines by the latter method or by a procedure based on the detection of mechanical vibrations. Up-to-date vibration diagnostics is based on the information supplied by either acceleration detectors or pressure fluctuation detectors, or in-core and ex-core neutron detectors. (V.N.)

  15. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms.

    Science.gov (United States)

    Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl

    2018-02-01

    The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.

  16. Diagnostic system for primary circuits of pressurized-water reactors

    International Nuclear Information System (INIS)

    Liska, J.; Majer, J.

    1983-01-01

    The diagnostic system monitors the reactor, the main circulating pipe, the main circulating pump, the main shut-off valve, the steam generator and the pressurizer. Diagnostic signals are obtained from the sensors designed for operation measurements and from sensors for special diagnostic purposes. The following operations are carried out: detection of dangerous dynamic stress of components, detection of damage to functional surfaces of components, detection of occurrence and propagation of defects in component materials, detection of loose particles and foreign bodies, detection of coolant leakage, detection of coolant boiling in the core and detection of impermissible non-homogeneities of fields of physical quantities in the core. The diagnostic system comprises: monitoring, classification of properly investigated effects, periodical tracing and long-term tracing. The operational diagnostics system developed by the SKODA Concern consists of a vibration monitoring system, a spectral analysis system and a central evaluation system. (M.D.)

  17. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation (least squares and filtering) methods

    International Nuclear Information System (INIS)

    Gillet, M.

    1986-07-01

    This thesis presents a study for the surveillance of the Primary circuit water inventory of a pressurized water reactor. A reference model is developed for the development of an automatic system ensuring detection and real-time diagnostic. The methods to our application are statistical tests and adapted a pattern recognition method. The estimation of the detected anomalies is treated by the least square fit method, and by filtering. A new projected optimization method with superlinear convergence is developed in this framework, and a segmented linearization of the model is introduced, in view of a multiple filtering. 46 refs [fr

  18. Single electrode electrochemical detection in hybrid poly(dimethylsiloxane)/glass multichannel micro devices

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Ney Henrique; Almeida, Andre Luis de Jesus de; Piazzeta, Maria Helena de Oliveira; Gobbia, Angelo Luiz [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil). Lab. de Microfabricacao; Jesus, Dosil Pereira de [Instituto Nacional de Ciencia e Tecnologia em Bioanalitica (INCTBio), Campinas, SP (Brazil); Deblire, Ariane; Silva, Jose Alberto Fracassi da [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    The fabrication process of a novel multichannel {mu}TAS based on PDMS and glass materials and with fully-integrated electrodes for amperometric detection has been described. Using the facilities of the Microfabrication Lab. (LMF) at Brazilian Synchrotron Light Laboratory (LNLS), soft-lithography, lift-off and O{sub 2} plasma surface activation sealing techniques were employed for rapid proto typing of cost effective PDMS/glass microchips. Fast calibration procedures were possible for the electro oxidation of hydroquinone, thiocyanate, and acetaminophen using Au and Cu electrodes. (author)

  19. Detection of ingested cocaine-filled packets-Diagnostic value of unenhanced CT

    International Nuclear Information System (INIS)

    Schmidt, Sabine; Hugli, Olivier; Rizzo, Elena; Lepori, Domenico; Gudinchet, F.; Yersin, Bertrand; Schnyder, Pierre; Meuwly, Jean-Yves

    2008-01-01

    Purpose: Emergency departments are facing nowadays an increasing number of illegal drug-related health problems, associated with medicolegal and/or social consequences. Body stuffers are street cocaine dealers, who either store wrapped packets of drugs in their rectum or hastily swallow them, prompted by fear of police's arrest. These packets can be life threatening in case of leakage. We evaluate the diagnostic value of unenhanced multidetector CT (MDCT) for detection of cocaine-filled packets (CFP) ingested by body stuffers in a phantom model. Materials and methods: Our phantom simulated normal bowel contents in which a varying number of true and false CFP were randomly mixed. Both only differ in radiological density. During 18 different reading sessions, four radiologists independently evaluated the presence and number of true and false CFP. Interobserver agreement, sensitivity, specificity, positive and negative predictive value were calculated. Results: Interobserver agreement for detection of any packets, for visualization of true, and false CFP was good (κ = 0.63, 0.74 and 0.58, respectively). Sensitivity, specificity, positive and negative predictive value for detection of any packets was 95.6%, 100%, 100% and 62.5%, respectively; for visualization of the true CFP 86.5%, 100%, 100% and 77.6%, respectively; and for the false packets 98.1%, 65%, 88.6% and 87.5%, respectively. Conclusion: Unenhanced MDCT without bowel preparation is a fast, reliable and easily reproducible imaging modality for the immediate detection of ingested CFP, thus facilitating medicolegal management of body stuffers

  20. A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications

    NARCIS (Netherlands)

    Cauberg, Evelyne C. C.; de Bruin, Daniël M.; Faber, Dirk J.; van Leeuwen, Ton G.; de La Rosette, Jean J. M. C. H.; de Reijke, Theo M.

    2009-01-01

    CONTEXT: New developments in optical diagnostics have a potential for less invasive and improved detection of bladder cancer. OBJECTIVE: To provide an overview of the technology and diagnostic yield of recently developed optical diagnostics for bladder cancer and to outline their potential future

  1. Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features.

    Science.gov (United States)

    Segal, Neil A; Nevitt, Michael C; Lynch, John A; Niu, Jingbo; Torner, James C; Guermazi, Ali

    2015-07-01

    To determine the diagnostic performance of standing computerized tomography (SCT) of the knee for osteophytes and subchondral cysts compared with fixed-flexion radiography, using MRI as the reference standard. Twenty participants were recruited from the Multicenter Osteoarthritis Study. Participants' knees were imaged with SCT while standing in a knee-positioning frame, and with postero-anterior fixed-flexion radiography and 1T MRI. Medial and lateral marginal osteophytes and subchondral cysts were scored on bilateral radiographs and coronal SCT images using the OARSI grading system and on coronal MRI using Whole Organ MRI Scoring. Imaging modalities were read separately with images in random order. Sensitivity, specificity and accuracy for the detection of lesions were calculated and differences between modalities were tested using McNemar's test. Participants' mean age was 66.8 years, body mass index was 29.6 kg/m(2) and 50% were women. Of the 160 surfaces (medial and lateral femur and tibia for 40 knees), MRI revealed 84 osteophytes and 10 subchondral cysts. In comparison with osteophytes and subchondral cysts detected by MRI, SCT was significantly more sensitive (93 and 100%; p osteophytes) than plain radiographs (sensitivity 60 and 10% and accuracy 79 and 94%, respectively). For osteophytes, differences in sensitivity and accuracy were greatest at the medial femur (p = 0.002). In comparison with MRI, SCT imaging was more sensitive and accurate for detection of osteophytes and subchondral cysts than conventional fixed-flexion radiography. Additional study is warranted to assess diagnostic performance of SCT measures of joint space width, progression of OA features and the patellofemoral joint.

  2. Diagnostic performance of cone-beam computed tomography on detection of mechanically-created artificial secondary caries

    Energy Technology Data Exchange (ETDEWEB)

    Charuakkra, Arnon; Prapayasatok, Sangsom; Janhom, Apirum; Pongsirwet, Surawut; Verochana, Karune; Mahasantipiya, Phattaranant [Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand)

    2011-12-15

    The aim of this study was to compare the diagnostic accuracy of cone-beam computed tomography (CBCT) images and bitewing images in detection of secondary caries. One hundred and twenty proximal slots of Class II cavities were randomly prepared on human premolar and molar teeth, and restored with amalgam (n=60) and composite resin (n=60). Then, artificial secondary caries lesions were randomly created using round steel No. 4 bur. The teeth were radiographed with a conventional bitewing technique and two CBCT systems; Pax-500ECT and Promax 3D. All images were evaluated by five observers. The area under the receiver operating characteristic (ROC) curve (Az) was used to evaluate the diagnostic accuracy. Significant difference was tested using the Friedman test (p value<0.05). The mean Az values for bitewing, Pax-500ECT, and Promax 3D imaging systems were 0.882, 0.995, and 0.978, respectively. Significant differences were found between the two CBCT systems and film (p=0.007). For CBCT systems, the axial plane showed the greatest Az value. Based on the design of this study, CBCT images were better than bitewing radiographs in detection of secondary caries.

  3. Diagnostic performance of cone-beam computed tomography on detection of mechanically-created artificial secondary caries

    International Nuclear Information System (INIS)

    Charuakkra, Arnon; Prapayasatok, Sangsom; Janhom, Apirum; Pongsirwet, Surawut; Verochana, Karune; Mahasantipiya, Phattaranant

    2011-01-01

    The aim of this study was to compare the diagnostic accuracy of cone-beam computed tomography (CBCT) images and bitewing images in detection of secondary caries. One hundred and twenty proximal slots of Class II cavities were randomly prepared on human premolar and molar teeth, and restored with amalgam (n=60) and composite resin (n=60). Then, artificial secondary caries lesions were randomly created using round steel No. 4 bur. The teeth were radiographed with a conventional bitewing technique and two CBCT systems; Pax-500ECT and Promax 3D. All images were evaluated by five observers. The area under the receiver operating characteristic (ROC) curve (Az) was used to evaluate the diagnostic accuracy. Significant difference was tested using the Friedman test (p value<0.05). The mean Az values for bitewing, Pax-500ECT, and Promax 3D imaging systems were 0.882, 0.995, and 0.978, respectively. Significant differences were found between the two CBCT systems and film (p=0.007). For CBCT systems, the axial plane showed the greatest Az value. Based on the design of this study, CBCT images were better than bitewing radiographs in detection of secondary caries.

  4. On-Chip Spyhole Nanoelectrospray Ionization Mass Spectrometry for Sensitive Biomarker Detection in Small Volumes

    Science.gov (United States)

    Zhong, Xiaoqin; Qiao, Liang; Stauffer, Géraldine; Liu, Baohong; Girault, Hubert H.

    2018-03-01

    A polyimide microfluidic chip with a microhole emitter (Ø 10-12 μm) created on top of a microchannel by scanning laser ablation has been designed for nanoelectrospray ionization (spyhole-nanoESI) to couple microfluidics with mass spectrometry. The spyhole-nanoESI showed higher sensitivity compared to standard ESI and microESI from the end of the microchannel. The limits of detection (LOD) for peptide with the spyhole-nanoESI MS reached 50 pM, which was 600 times lower than that with standard ESI. The present microchip emitter allows the analysis of small volumes of samples. As an example, a small cell lung cancer biomarker, neuron-specific enolase (NSE), was detected by monitoring the transition of its unique peptide with the spyhole-nanoESI MS/MS. NSE at 0.2 nM could be well identified with a signal to noise ratio (S/N) of 50, and thereby its LOD was estimated to be 12 pM. The potential application of the spyhole-nanoESI MS/MS in cancer diagnosis was further demonstrated with the successful detection of 2 nM NSE from 1 μL of human serum. Before the detection, the serum sample spiked with NSE was first depleted with immune spin column, then desalted by centrifugal filter device, and finally digested by trypsin, without any other complicated preparation steps. The concentration matched the real condition of clinical samples. In addition, the microchips can be disposable to avoid any cross contamination. The present technique provides a highly efficient way to couple microfluidics with MS, which brings additional values to various microfluidics and MS-based analysis.

  5. Problems in detecting misfit of latent class models in diagnostic research without a gold standard were shown

    NARCIS (Netherlands)

    van Smeden, M.; Oberski, D.L.; Reitsma, J.B.; Vermunt, J.K.; Moons, K.G.M.; de Groot, J.A.H.

    2016-01-01

    Objectives The objective of this study was to evaluate the performance of goodness-of-fit testing to detect relevant violations of the assumptions underlying the criticized “standard” two-class latent class model. Often used to obtain sensitivity and specificity estimates for diagnostic tests in the

  6. Improved detection of Burkholderia pseudomallei from non-blood clinical specimens using enrichment culture and PCR: narrowing diagnostic gap in resource-constrained settings.

    Science.gov (United States)

    Tellapragada, Chaitanya; Shaw, Tushar; D'Souza, Annet; Eshwara, Vandana Kalwaje; Mukhopadhyay, Chiranjay

    2017-07-01

    To evaluate the diagnostic utility of enrichment culture and PCR for improved case detection rates of non-bacteraemic form of melioidosis in limited resource settings. Clinical specimens (n = 525) obtained from patients presenting at a tertiary care hospital of South India with clinical symptoms suggestive of community-acquired pneumonia, lower respiratory tract infections, superficial or internal abscesses, chronic skin ulcers and bone or joint infections were tested for the presence of Burkholderia pseudomallei using conventional culture (CC), enrichment culture (EC) and PCR. Sensitivity, specificity, positive and negative predictive values of CC and PCR were initially deduced using EC as the gold standard method. Further, diagnostic accuracies of all the three methods were analysed using Bayesian latent class modelling (BLCM). Detection rates of B. pseudomallei using CC, EC and PCR were 3.8%, 5.3% and 6%, respectively. Diagnostic sensitivities and specificities of CC and PCR were 71.4, 98.4% and 100 and 99.4%, respectively in comparison with EC as the gold standard test. With Bayesian latent class modelling, EC and PCR demonstrated sensitivities of 98.7 and 99.3%, respectively, while CC showed a sensitivity of 70.3% for detection of B. pseudomallei. An increase of 1.6% (95% CI: 1.08-4.32%) in the case detection rate of melioidosis was observed in the study population when EC and/or PCR were used in adjunct to the conventional culture technique. Our study findings underscore the diagnostic superiority of enrichment culture and/or PCR over conventional microbiological culture for improved case detection of melioidosis from non-blood clinical specimens. © 2017 John Wiley & Sons Ltd.

  7. A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Di Leo, Giovanni; Papini, Giacomo Davide Edoardo [IRCCS Policlinico San Donato, Radiology Unit, San Donato Milanese (Italy); Sconfienza, Luca Maria; Sardanelli, Francesco [IRCCS Policlinico San Donato, Radiology Unit, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy); Ulivieri, Fabio Massimo [IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Servizio di Medicina Nucleare, Milano (Italy)

    2015-10-15

    Signal intensity of lumbar-spine at magnetic resonance imaging (MRI) correlates to bone mineral density (BMD). Our aim was to define a quantitative MRI-based score to detect osteoporosis on lumbar-spine MRI. After Ethics Committee approval, we selected female patients who underwent both lumbar-spine MRI and dual-energy X-ray absorptiometry (DXA) and a reference group of 131 healthy females (20-29 years) who underwent lumbar-spine MRI. We measured the intra-vertebral signal-to-noise ratio in L1-L4. We introduced an MRI-based score (M-score), on the model of T-score. M-score diagnostic performance in diagnosing osteoporosis was estimated against DXA using receiver operator characteristic (ROC) analysis. We included 226 patients (median age 65 years), 70 (31 %) being osteoporotic at DXA. MRI signal-to-noise ratio correlated to BMD (r = -0.677, P < 0.001). M-score negatively correlated to T-score (r = -0.682, P < 0.001). Setting a 90 %-specificity, an M-score threshold of 5.5 was found, distinguishing osteoporosis from non-osteoporosis (sensitivity 54 %; ROC AUC 0.844). Thirty-one (14 %) patients had a fragility fracture, with osteoporosis detected in 15 (48 %) according to M-score and eight (26 %) according to T-score (P = 0.016). M-score obtained on lumbar spine MRI is a quantitative method correlating with osteoporosis. Its diagnostic value remains to be demonstrated on a large prospective cohort of patients. (orig.)

  8. Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yun; Wang Huixiang; Huang Jingyu; Yang Jie; Liu Baohong [Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Yang Pengyuan, E-mail: pyyang@fudan.edu.cn [Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai 200433 (China)

    2009-09-14

    A simple and sensitive method has been proposed to determine a trace level of {alpha}-fetoprotein (AFP), hepatocellular carcinoma biomarker, using poly(methyl methacrylate) (PMMA) microfluidic chips coupled with electrochemical detection system. The PMMA microchannels have been modified with poly(ethyleneimine) (PEI) containing abundant NH{sub 2} groups to covalently immobilize AFP monoclonal antibody. Afterward, the antigen AFP and horseradish peroxidase (HRP)-conjugated AFP antibody can sequentially bind through antigen-antibody specific interaction. Atomic force microscopy (AFM) and confocal fluorescence microscope (CFFM) were utilized to characterize the surface topography and protein immobilization after modification. Coupled with three-electrode electrochemical detection system, the immunochip can perform the detection limit of AFP down to 1 pg mL{sup -1}, and achieve a detectable linear concentration range of 1-500 pg mL{sup -1} by differential pulse voltammetry (DPV). The on-chip immunoassay platform can not only provide rapid and sensitive detection for target proteins but also be resistant to non-specific adsorption of proteins, which contributes to the detection of low-level protein in real sample. Finally, AFP existing in healthy human serum was detected to demonstrate the utility of the immunochip. The result shows that the proposed approach is feasible and has the potential application in clinical analysis and diagnosis.

  9. Diagnostic ability of the periapical radiographs and digital image in the detection of the artificial proximal caries

    International Nuclear Information System (INIS)

    Heo, Min Suk; You, Dong Soo

    1994-01-01

    Recently, the digital image was introduced into radiological image. The digital image has the power of contrast enhancement, histogram control, and other digitally enhancement. At the point of the resolution, periapical radiograph is superior to the digital image, but enhanced digital procedure improves the diagnostic ability of the digital image. The purpose of this study was to evaluate the diagnostic ability of artificial proximal caries in conventional radiographs, digital radiographs and enhanced digital radiographs (histogram specification). ROC (Receiver Operating Characteristic) analysis and paired t-test were used for the evaluation of detectability, and following results were acquired: 1. The mean ROC area of conventional radiographs was 0.9274. 2. The mean ROC area of unenhanced digital image was 0.9168. 3. The mean ROC area of enhanced digital image was 0.9339. 4. The diagnostic ability of three imaging methods was not significant difference (p>0.05). So, the digital images had similar diagnostic ability of artificial proximal caries to conventional radiographs. If properly enhanced digital image, it may be superior to conventional radiographs.

  10. A preface on advances in diagnostics for infectious and parasitic diseases: detecting parasites of medical and veterinary importance.

    Science.gov (United States)

    Stothard, J Russell; Adams, Emily

    2014-12-01

    There are many reasons why detection of parasites of medical and veterinary importance is vital and where novel diagnostic and surveillance tools are required. From a medical perspective alone, these originate from a desire for better clinical management and rational use of medications. Diagnosis can be at the individual-level, at close to patient settings in testing a clinical suspicion or at the community-level, perhaps in front of a computer screen, in classification of endemic areas and devising appropriate control interventions. Thus diagnostics for parasitic diseases has a broad remit as parasites are not only tied with their definitive hosts but also in some cases with their vectors/intermediate hosts. Application of current diagnostic tools and decision algorithms in sustaining control programmes, or in elimination settings, can be problematic and even ill-fitting. For example in resource-limited settings, are current diagnostic tools sufficiently robust for operational use at scale or are they confounded by on-the-ground realities; are the diagnostic algorithms underlying public health interventions always understood and well-received within communities which are targeted for control? Within this Special Issue (SI) covering a variety of diseases and diagnostic settings some answers are forthcoming. An important theme, however, throughout the SI is to acknowledge that cross-talk and continuous feedback between development and application of diagnostic tests is crucial if they are to be used effectively and appropriately.

  11. A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease

    International Nuclear Information System (INIS)

    Janne d'Othee, Bertrand; Siebert, Uwe; Cury, Ricardo; Jadvar, Hossein; Dunn, Edward J.; Hoffmann, Udo

    2008-01-01

    Objectives: Systematic review of diagnostic accuracy of contrast enhanced coronary computed tomography (CE-CCT). Background: Noninvasive detection of coronary artery stenosis (CAS) by CE-CCT as an alternative to catheter-based coronary angiography (CCA) may improve patient management. Methods: Forty-one articles published between 1997 and 2006 were included that evaluated native coronary arteries for significant stenosis and used CE-CCT as diagnostic test and CCA as reference standard. Study group characteristics, study methodology and diagnostic outcomes were extracted. Pooled summary sensitivity and specificity of CE-CCT were calculated using a random effects model (1) for all coronary segments, (2) assessable segments, and (3) per patient. Results: The 41 studies totaled 2515 patients (75% males; mean age: 59 years, CAS prevalence: 59%). Analysis of all coronary segments yielded a sensitivity of 95% (80%, 89%, 86%, 98% for electron beam CT, 4/8-slice, 16-slice and 64-slice MDCT, respectively) for a specificity of 85% (77%, 84%, 95%, 91%). Analysis limited to segments deemed assessable by CT showed sensitivity of 96% (86%, 85%, 98%, 97%) for a specificity of 95% (90%, 96%, 96%, 96%). Per patient, sensitivity was 99% (90%, 97%, 99%, 98%) and specificity was 76% (59%, 81%, 83%, 92%). Heterogeneity was quantitatively important but not explainable by patient group characteristics or study methodology. Conclusions: Current diagnostic accuracy of CE-CCT is high. Advances in CT technology have resulted in increases in diagnostic accuracy and proportion of assessable coronary segments. However, per patient, accuracy may be lower and CT may have more limited clinical utility in populations at high risk for CAD

  12. Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials

    Science.gov (United States)

    Siontis, George CM; Mavridis, Dimitris; Greenwood, John P; Coles, Bernadette; Nikolakopoulou, Adriani; Jüni, Peter; Salanti, Georgia

    2018-01-01

    Abstract Objective To evaluate differences in downstream testing, coronary revascularisation, and clinical outcomes following non-invasive diagnostic modalities used to detect coronary artery disease. Design Systematic review and network meta-analysis. Data sources Medline, Medline in process, Embase, Cochrane Library for clinical trials, PubMed, Web of Science, SCOPUS, WHO International Clinical Trials Registry Platform, and Clinicaltrials.gov. Eligibility criteria for selecting studies Diagnostic randomised controlled trials comparing non-invasive diagnostic modalities in patients presenting with symptoms suggestive of low risk acute coronary syndrome or stable coronary artery disease. Data synthesis A random effects network meta-analysis synthesised available evidence from trials evaluating the effect of non-invasive diagnostic modalities on downstream testing and patient oriented outcomes in patients with suspected coronary artery disease. Modalities included exercise electrocardiograms, stress echocardiography, single photon emission computed tomography-myocardial perfusion imaging, real time myocardial contrast echocardiography, coronary computed tomographic angiography, and cardiovascular magnetic resonance. Unpublished outcome data were obtained from 11 trials. Results 18 trials of patients with low risk acute coronary syndrome (n=11 329) and 12 trials of those with suspected stable coronary artery disease (n=22 062) were included. Among patients with low risk acute coronary syndrome, stress echocardiography, cardiovascular magnetic resonance, and exercise electrocardiograms resulted in fewer invasive referrals for coronary angiography than coronary computed tomographic angiography (odds ratio 0.28 (95% confidence interval 0.14 to 0.57), 0.32 (0.15 to 0.71), and 0.53 (0.28 to 1.00), respectively). There was no effect on the subsequent risk of myocardial infarction, but estimates were imprecise. Heterogeneity and inconsistency were low. In patients with

  13. Thioaptamer Diagnostic System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) will develop a diagnostic system in response to SBIR Topic X10.01 Reusable Diagnostic Lab Technology that will simultaneously detect and...

  14. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Directory of Open Access Journals (Sweden)

    Nichola Eliza Davies Calvani

    2017-09-01

    Full Text Available Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples.A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76 was observed between the real-time PCR values and the faecal egg count (FEC using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic

  15. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling

  16. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non

  17. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, HaiFeng; Xu, YongSheng [First Hospital of LanZhou University, Department of Radiology, Lanzhou, Gansu (China); First Clinical Medical College of LanZhou University, Lanzhou, Gansu (China); Xun, YangQin [Lanzhou University, Evidence-based Medicine Center, Lanzhou (China); Dou, Yu; Wang, ShuaiWen; Lu, XingRu; Lei, JunQiang [First Hospital of LanZhou University, Department of Radiology, Lanzhou, Gansu (China)

    2017-11-15

    This meta-analysis is to comprehensively evaluate the diagnostic performance of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) for detecting intracranial aneurysm (IA). PubMed, Embase, Web of Science, and the Cochrane library were systematically searched for retrieving eligible studies. Study inclusion, data extraction, and risk of bias assessment were performed by two researchers independently. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess the diagnostic value. In addition, heterogeneity and subgroup analysis were carried out. In total, 18 studies comprising 3463 patients were selected. The results of 3D-TOF-MRA for diagnosing IA were SEN 0.89 (95% CI 0.82-0.94), SPE 0.94 (0.86-0.97), PLR 13.79 (5.92-32.12), NLR 0.11 (0.07-0.19), DOR 121.90 (38.81-382.94), and AUC 0.96 (0.94-0.98), respectively. In the subgroup analysis, studies without subarachnoid hemorrhage (SAH) tend to perform statistical significantly better (P < 0.05) in detecting IAs than studies with SAH 0.99 (0.98-1.00) vs. 0.89 (0.86-0.91). The diagnostic value of studies with a two-image reconstruction method was higher than studies with only one image reconstruction method: 0.99 (0.98-1.00) vs. 0.91 (0.89-0.94) with P < 0.05. The 3D-TOF-MRA had better SEN in aneurysms > 3 mm than the aneurysms ≤ 3 mm in diameter: 0.89 (0.87-0.92) vs. 0.78 (0.71-0.84) with P < 0.05. This study demonstrated that 3D-TOF-MRA has an excellent diagnostic performance for the overall assessment of IA and may serve as an alternative for further patient management with IA. (orig.)

  18. Nonphysician Care Providers Can Help to Increase Detection of Cognitive Impairment and Encourage Diagnostic Evaluation for Dementia in Community and Residential Care Settings.

    Science.gov (United States)

    Maslow, Katie; Fortinsky, Richard H

    2018-01-18

    In the United States, at least half of older adults living with dementia do not have a diagnosis. Their cognitive impairment may not have been detected, and some older adults whose physician recommends that they obtain a diagnostic evaluation do not follow through on the recommendation. Initiatives to increase detection of cognitive impairment and diagnosis of dementia have focused primarily on physician practices and public information programs to raise awareness about the importance of detection and diagnosis. Nonphysician care providers who work with older adults in community and residential care settings, such as aging network agencies, public health agencies, senior housing, assisted living, and nursing homes, interact frequently with older adults who have cognitive impairment but have not had a diagnostic evaluation. These care providers may be aware of signs of cognitive impairment and older adults' concerns about their cognition that have not been expressed to their physician. Within their scope of practice and training, nonphysician care providers can help to increase detection of cognitive impairment and encourage older adults with cognitive impairment to obtain a diagnostic evaluation to determine the cause of the condition. This article provides seven practice recommendations intended to increase involvement of nonphysician care providers in detecting cognitive impairment and encouraging older adults to obtain a diagnostic evaluation. The Kickstart-Assess-Evaluate-Refer (KAER) framework for physician practice in detection and diagnosis of dementia is used to identify ways to coordinate physician and nonphysician efforts and thereby increase the proportion of older adults living with dementia who have a diagnosis. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Single-atom detection on a chip: from realization to application

    Energy Technology Data Exchange (ETDEWEB)

    Stibor, A; Bender, H; Kuehnhold, S; Fortagh, J; Zimmermann, C; Guenther, A, E-mail: aguenth@pit.physik.uni-tuebingen.d [CQ Center for Collective Quantum Phenomena and their Applications, Eberhard-Karls-Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-06-15

    In this paper, we describe the preparation and detection of ultracold atoms on a microchip with single-atom sensitivity. The detection scheme is based on multi-photon ionization of atoms and the subsequent guiding of the generated ions by ion optics to a channel electron multiplier. We resolve single atoms with a detection efficiency above 60%. The detector is suitable for real-time observations of static and dynamic processes in ultracold quantum gases. Although the ionization is destructive, sampling a small subset of the atomic distribution is sufficient for the determination of the desired information. We take full high-resolution spectra of ultracold atoms by ionizing only 5% of the atoms. Using an additional microwave near 6.8 GHz, the detection scheme becomes energy, position and state selective. This can be used for in situ determination of the energy distribution and temperature of atom clouds inside the trap and applied for future correlation measurements.

  20. Heterodyne ECE diagnostic in the mode detection and disruption avoidance at TEXTOR

    International Nuclear Information System (INIS)

    Kraemer-Flecken, A.; Finken, K.H.; Larue, H.; Udintsev, V.S.; TEXTOR - team

    2003-01-01

    Disruptions cause major concerns for the operation of tokamaks. During disruption large forces act on the tokamak vessel and its interior parts. The huge amount of plasma energy deposited on the first wall components within one millisecond causes serious damage. Therefore disruptions should be avoided. One way to avoid disruptions is the operation of a tokamak in a regime which is easy to handle from the control point of view. However, the operation in the advanced scenarios or improved confinement modes is very complicated and even small deviation in one of the control parameters can cause a disruption. In this cases a method should be available to detect the disruption in advance and mitigate or even better avoid the energy quench by appropriate means. At TEXTOR we developed a method to detect the disruption precursor. The module is integrated in the plasma control system. The detection method was tested at TEXTOR for (i) combination with tangential neutral beam injection to increase the toroidal rotation profile and to tear apart the m = 2 disruption precursor by a steep rotation gradient across the island (ii) gas puff experiments with He used to mitigate the disruption effects specially to suppress the generation of the runaway electrons. The paper demonstrates the possibility to detect disruptions precursors and to avoid disruptions using two ECE-channels out of the standard electron temperature diagnostic. The system demonstrated its reliability during the last month of TEXTOR operation. The injection of co- as well as counter neutral beam to avoid the disruption was successful tested and a detailed analysis of the mode development is presented. The measured rotation profiles show the development of a step in the toroidal velocity in the vicinity of the q = 2 surface which prevents the plasma from a disruption. Furthermore detailed analysis of the frequency development of the m = 2 mode could explain the observed sudden increase in the mode frequency

  1. A Turbidity Test Based Centrifugal Microfluidics Diagnostic System for Simultaneous Detection of HBV, HCV, and CMV

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Chang

    2015-01-01

    Full Text Available This paper presents a LAMP- (loop-mediated isothermal amplification- based lab-on-disk optical system that allows the simultaneous detection of hepatitis B virus, hepatitis C virus, and cytomegalovirus. The various flow stages are controlled in the proposed system using different balance among centrifugal pumping, Coriolis pumping, and the capillary force. We have implemented a servo system for positioning and speed control for the heating and centrifugal pumping. We have also successfully employed a polymer light-emitting diode section for turbidity detection. The easy-to-use one-click system can perform diagnostics in less than 1 hour.

  2. Molecular diagnostics for the detection and characterization of microbial pathogens.

    Science.gov (United States)

    Procop, Gary W

    2007-09-01

    New and advanced methods of molecular diagnostics are changing the way we practice clinical microbiology, which affects the practice of medicine. Signal amplification and real-time nucleic acid amplification technologies offer a sensitive and specific result with a more rapid turnaround time than has ever before been possible. Numerous methods of postamplification analysis afford the simultaneous detection and differentiation of numerous microbial pathogens, their mechanisms of resistance, and the construction of disease-specific assays. The technical feasibility of these assays has already been demonstrated. How these new, often more expensive tests will be incorporated into routine practice and the impact they will have on patient care remain to be determined. One of the most attractive uses for such techniques is to achieve a more rapid characterization of the infectious agent so that a narrower-spectrum antimicrobial agent may be used, which should have an impact on resistance patterns.

  3. Diagnostic reliability of 3.0-T MRI for detecting osseous abnormalities of the temporomandibular joint.

    Science.gov (United States)

    Sawada, Kunihiko; Amemiya, Toshihiko; Hirai, Shigenori; Hayashi, Yusuke; Suzuki, Toshihiro; Honda, Masahiko; Sisounthone, Johnny; Matsumoto, Kunihito; Honda, Kazuya

    2018-01-01

    We compared the diagnostic reliability of 3.0-T magnetic resonance imaging (MRI) for detection of osseous abnormalities of the temporomandibular joint (TMJ) with that of the gold standard, cone-beam computed tomography (CBCT). Fifty-six TMJs were imaged with CBCT and MRI, and images of condyles and fossae were independently assessed for the presence of osseous abnormalities. The accuracy, sensitivity, and specificity of 3.0-T MRI were 0.88, 1.0, and 0.73, respectively, in condyle evaluation and 0.91, 0.75, and 0.95 in fossa evaluation. The McNemar test showed no significant difference (P > 0.05) between MRI and CBCT in the evaluation of osseous abnormalities in condyles and fossae. The present results indicate that 3.0-T MRI is equal to CBCT in the diagnostic evaluation of osseous abnormalities of the mandibular condyle.

  4. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  5. Clinical application of S-Detect to breast masses on ultrasonography: A study evaluating the diagnostic performance and agreement with a dedicated breast radiologist

    International Nuclear Information System (INIS)

    Kim, Ki Wook; Kim, Eun Kyung; Yoon, Jung Hyun; Song, Mi Kyung

    2017-01-01

    The purpose of this study was to evaluate the diagnostic performance of S-Detect when applied to breast ultrasonography (US), and the agreement with an experienced radiologist specializing in breast imaging. From June to August 2015, 192 breast masses in 175 women were included. US features of the breast masses were retrospectively analyzed by a radiologist who specializes in breast imaging and S-Detect, according to the fourth edition of the American College of Radiology Breast Imaging Reporting and Data System lexicon and final assessment categories. Final assessments from S-Detect were in dichotomized form: possibly benign and possibly malignant. Kappa statistics were used to analyze the agreement between the radiologist and S-Detect. Diagnostic performance of the radiologist and S-Detect was calculated, including sensitivity, specificity, positive predictive value (PPV), negative predictive value, accuracy, and area under the receiving operator characteristics curve. Of the 192 breast masses, 72 (37.5%) were malignant, and 120 (62.5%) were benign. Benign masses among category 4a had higher rates of possibly benign assessment on S-Detect for the radiologist, 63.5% to 36.5%, respectively (P=0.797). When the cutoff was set at category 4a, the specificity, PPV, and accuracy was significantly higher in S-Detect compared to the radiologist (all P<0.05), with a higher area under the receiver operator characteristics curve of 0.725 compared to 0.653 (P=0.038). Moderate agreement (k=0.58) was seen in the final assessment between the radiologist and S-Detect. S-Detect may be used as an additional diagnostic tool to improve the specificity of breast US in clinical practice, and guide in decision making for breast masses detected on US

  6. TECHNICAL DIAGNOSTICS AT RUP “BMZ”

    Directory of Open Access Journals (Sweden)

    A. A. Kuzembajev

    2004-01-01

    Full Text Available The review of technical diagnostics and crack detection at RUP “BMZ” is given in the article and there are reflected the functions and tasks of the Laboratory of Technical Diagnostics and Crack detection (LTDandC. The examples of determination of the equipment failure by methods of vibration diagnostics, applied in LTDandC, are given and the efficiency of using of the system of technical servicing of the equipment according to “state” is shown. The idea of transfer from the repairs system “according to schedule” to repairs “according to state” using new information technologies such as vibrating monitoring and vibrating diagnostics is briefly reflected in the article.

  7. Ultrasensitive microchip based on smart microgel for real-time online detection of trace threat analytes.

    Science.gov (United States)

    Lin, Shuo; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Liu, Zhuang; Yu, Hai-Rong; Zhang, Chuan; Chu, Liang-Yin

    2016-02-23

    Real-time online detection of trace threat analytes is critical for global sustainability, whereas the key challenge is how to efficiently convert and amplify analyte signals into simple readouts. Here we report an ultrasensitive microfluidic platform incorporated with smart microgel for real-time online detection of trace threat analytes. The microgel can swell responding to specific stimulus in flowing solution, resulting in efficient conversion of the stimulus signal into significantly amplified signal of flow-rate change; thus highly sensitive, fast, and selective detection can be achieved. We demonstrate this by incorporating ion-recognizable microgel for detecting trace Pb(2+), and connecting our platform with pipelines of tap water and wastewater for real-time online Pb(2+) detection to achieve timely pollution warning and terminating. This work provides a generalizable platform for incorporating myriad stimuli-responsive microgels to achieve ever-better performance for real-time online detection of various trace threat molecules, and may expand the scope of applications of detection techniques.

  8. Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials.

    Science.gov (United States)

    Siontis, George Cm; Mavridis, Dimitris; Greenwood, John P; Coles, Bernadette; Nikolakopoulou, Adriani; Jüni, Peter; Salanti, Georgia; Windecker, Stephan

    2018-02-21

    To evaluate differences in downstream testing, coronary revascularisation, and clinical outcomes following non-invasive diagnostic modalities used to detect coronary artery disease. Systematic review and network meta-analysis. Medline, Medline in process, Embase, Cochrane Library for clinical trials, PubMed, Web of Science, SCOPUS, WHO International Clinical Trials Registry Platform, and Clinicaltrials.gov. Diagnostic randomised controlled trials comparing non-invasive diagnostic modalities in patients presenting with symptoms suggestive of low risk acute coronary syndrome or stable coronary artery disease. A random effects network meta-analysis synthesised available evidence from trials evaluating the effect of non-invasive diagnostic modalities on downstream testing and patient oriented outcomes in patients with suspected coronary artery disease. Modalities included exercise electrocardiograms, stress echocardiography, single photon emission computed tomography-myocardial perfusion imaging, real time myocardial contrast echocardiography, coronary computed tomographic angiography, and cardiovascular magnetic resonance. Unpublished outcome data were obtained from 11 trials. 18 trials of patients with low risk acute coronary syndrome (n=11 329) and 12 trials of those with suspected stable coronary artery disease (n=22 062) were included. Among patients with low risk acute coronary syndrome, stress echocardiography, cardiovascular magnetic resonance, and exercise electrocardiograms resulted in fewer invasive referrals for coronary angiography than coronary computed tomographic angiography (odds ratio 0.28 (95% confidence interval 0.14 to 0.57), 0.32 (0.15 to 0.71), and 0.53 (0.28 to 1.00), respectively). There was no effect on the subsequent risk of myocardial infarction, but estimates were imprecise. Heterogeneity and inconsistency were low. In patients with suspected stable coronary artery disease, an initial diagnostic strategy of stress echocardiography or

  9. Maximum likelihood estimation of signal detection model parameters for the assessment of two-stage diagnostic strategies.

    Science.gov (United States)

    Lirio, R B; Dondériz, I C; Pérez Abalo, M C

    1992-08-01

    The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.

  10. Intra-operative X-ray diagnostics in the detection and localization of residual concretions in the kidney

    International Nuclear Information System (INIS)

    Soekeland, J.; Degenhardt, W.

    1979-01-01

    Problems of intra-operative X-ray diagnostics in the detection and localization of residual concretions in the kidney are discussed, together with the limitations of image-intensifier techniques, automatic exposure control, and the use of modified dental X-ray equipment. A technique using a film-screen combination and X-ray tube designed for mammography is discussed, together with its applications and possible future development. (Auth.)

  11. Micromotor-based lab-on-chip immunoassays

    Science.gov (United States)

    García, Miguel; Orozco, Jahir; Guix, Maria; Gao, Wei; Sattayasamitsathit, Sirilak; Escarpa, Alberto; Merkoçi, Arben; Wang, Joseph

    2013-01-01

    Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic polymer/Ni/Pt microtube engine, containing carboxy moieties on its mixed poly(3,4-ethylenedioxythiophene) (PEDOT)/COOH-PEDOT polymeric outermost layer, is further functionalized with the antibody receptor to selectively recognize and capture the target protein. The new motor-based microchip immunoassay operations are carried out without any bulk fluid flow, replacing the common washing steps in antibody-based protein bioassays with the active transport of the captured protein throughout the different reservoirs, where each step of the immunoassay takes place. A first microchip format involving an `on-the-fly' double-antibody sandwich assay (DASA) is used for demonstrating the selective capture of the target protein, in the presence of excess of non-target proteins. A secondary antibody tagged with a polymeric-sphere tracer allows the direct visualization of the binding events. In a second approach the immuno-nanomotor captures and transports the microsphere-tagged antigen through a microchannel network. An anti-protein-A modified microengine is finally used to demonstrate the selective capture, transport and convenient label-free optical detection of a Staphylococcus aureus target bacteria (containing proteinA in its cell wall) in the presence of a large excess of non-target (Saccharomyces cerevisiae) cells. The resulting nanomotor-based microchip immunoassay offers considerable potential for diverse applications in clinical diagnostics, environmental and security monitoring fields.Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic

  12. On-line diagnostics for a real time system

    International Nuclear Information System (INIS)

    Sreenivasan, P.

    1976-01-01

    The purpose of an on-line diagnostics is to infuse the ability of self diagnosing in an online computer to enhance its dependability in a real time system. Such a diagnostics evolved for the CDPS of the Fast Breeder Test Reactor at Kalpakkam is reported. The two phases of the diagnostics, i.e., the malfunction detection and post detection action are described in some detail. (A.K.)

  13. The diagnostic utility of stabilized blood for detection of foot-and-mouth disease virus RNA by RT-qPCR

    DEFF Research Database (Denmark)

    S. Fontél, Kristina; Bøtner, Anette; Belsham, Graham

    In Europe, clinical signs indicative of foot-and-mouth disease (FMD), would immediately lead to collection of blood and relevant organ material for further laboratory examination for this vesicular disease virus. Today, the first line system for detection of virus in the sample material is real t...... time RT-PCR (RT-qPCR). The aim of this study was to investigate the diagnostic utility of stabilized blood for detection of FMDV RNA in this system....

  14. Diagnostic performance of direct wet mount microscopy in detecting intestinal helminths among pregnant women attending ante-natal care (ANC) in East Wollega, Oromia, Ethiopia.

    Science.gov (United States)

    Mengist, Hylemariam Mihiretie; Demeke, Gebreselassie; Zewdie, Olifan; Belew, Adugna

    2018-05-04

    The aim of this study was to evaluate the diagnostic performance of direct wet mount microscopy compared to formalin ether concentration (FEC) technique in detecting intestinal helminths in pregnant women. The total prevalence of intestinal helminths was 18.8% (70/372) by direct wet mount microscopy and 24.7% (92/372) by FEC technique (P  0.81) but they fairly agreed in detecting ova of Hymenolepis nana (Kappa = 0.39). Intestinal helminths were underdiagnosed and the total diagnostic performance of direct wet mount microscopy was significantly poor in detecting intestinal helminths as compared to FEC technique. Routine use of FEC method is recommended for the diagnosis of intestinal helminths in pregnant women.

  15. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures.

    Science.gov (United States)

    Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C

    2017-10-18

    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.

  16. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease.

    Science.gov (United States)

    Ellingford, Jamie M; Barton, Stephanie; Bhaskar, Sanjeev; Williams, Simon G; Sergouniotis, Panagiotis I; O'Sullivan, James; Lamb, Janine A; Perveen, Rahat; Hall, Georgina; Newman, William G; Bishop, Paul N; Roberts, Stephen A; Leach, Rick; Tearle, Rick; Bayliss, Stuart; Ramsden, Simon C; Nemeth, Andrea H; Black, Graeme C M

    2016-05-01

    To compare the efficacy of whole genome sequencing (WGS) with targeted next-generation sequencing (NGS) in the diagnosis of inherited retinal disease (IRD). Case series. A total of 562 patients diagnosed with IRD. We performed a direct comparative analysis of current molecular diagnostics with WGS. We retrospectively reviewed the findings from a diagnostic NGS DNA test for 562 patients with IRD. A subset of 46 of 562 patients (encompassing potential clinical outcomes of diagnostic analysis) also underwent WGS, and we compared mutation detection rates and molecular diagnostic yields. In addition, we compared the sensitivity and specificity of the 2 techniques to identify known single nucleotide variants (SNVs) using 6 control samples with publically available genotype data. Diagnostic yield of genomic testing. Across known disease-causing genes, targeted NGS and WGS achieved similar levels of sensitivity and specificity for SNV detection. However, WGS also identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD. These variants included large deletions and variants in noncoding regions of the genome. Identification of these variants confirmed a molecular diagnosis of IRD for 11 of the 33 individuals referred for WGS who had not obtained a molecular diagnosis through targeted NGS testing. Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% (95% confidence interval, 15-45) uplift in diagnostic yield. We show that WGS methods can detect disease-causing genetic variants missed by current NGS diagnostic methodologies for IRD and thereby demonstrate the clinical utility and additional value of WGS. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. Diagnostic Accuracy of Clinical Methods for Detection of Diabetic Sensory Neuropathy

    International Nuclear Information System (INIS)

    Arshad, A. R.; Alvi, K. Y.

    2016-01-01

    Objective: To determine the accuracy of clinical methods for detection of sensory neuropathy as compared to biothesiometry. Study Design: Cross-sectional analytical study. Place and Duration of Study: 1 Mountain Medical Battalion, Azad Kashmir, from October 2013 to September 2014. Methodology: Patients with type 2 diabetes were enrolled by convenience sampling. Exclusion criteria included other identifiable causes of neuropathy, extensive ulceration of feet, amputated feet, those on treatment for neuropathy and unwilling patients. Average of 3 vibration perception threshold values measured with a biothesiometer on distal hallux was calculated. Ten gm monofilament was used to examine touch sensation over dorsal surfaces of great toes. Vibration sensation was checked over the tips of great toes using 128Hz tuning fork. Ankle jerks were checked bilaterally. Result: Neuropathy (vibration perception threshold > 25 volts) was present in 34 (21.12 percentage) out of 161 patients and 93 (57.76 percentage) were symptomatic. Measures of diagnostic accuracy for monofilament, tuning fork and ankle jerks were: sensitivity 41.18 percentage, 55.88 percentage and 64.71 percentage; specificity 92.91 percentage, 93.70 percentage and 80.31 percentage; positive predictive value (PPV) 60.87 percentage, 70.37 percentage and 46.81 percentage; negative predictive value (NPV) 85.51 percentage, 88.81 percentage and 89.47 percentage; and, diagnostic accuracy 81.99 percentage, 85.71 percentage and 77.02 percentage, respectively. Values for any 1 positive sign, any 2 positive signs or all 3 positive signs were: sensitivity 35.29 percentage, 14.71 percentage and 32.35 percentage; specificity 81.89 percentage, 93.70 percentage and 99.21 percentage; PPV 34.29 percentage, 38.46 percentage and 91.67 percentage; NPV 82.54 percentage, 80.41 percentage and 84.56 percentage; and, diagnostic accuracy 72.05 percentage, 77.02 percentage and 85.09 percentage, respectively. Conclusion: Clinical methods are

  18. Diagnostic Value of ELISA Tests for the Detection of Specific Antibodies in Cats and Rabbits with Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Marinka Drobnič-Košorok

    2002-01-01

    Full Text Available Two indirect ELISA tests developed for the detection of specific IgG in cats and rabbits, infected with M. canis and T. mentagrophytes, respectively, were evaluated and compared. The levels of specific antibodies were determined in sera of 20 cats and 25 rabbits naturally infected with M. canis and T. mentagrophytes, respectively. Infection was confirmed by the results of fungal culture. Blood samples from 12 cats and 17 rabbits, previously unexposed to dermatophytes, served as negative controls. A significant increase in the level of specific antibodies in groups of infected animals was demonstrated. Sensitivity, specificity and predictive values of a positive and a negative test were determined to evaluate the diagnostic potential. ELISA for the detection of specific antibodies in cats infected with M. canis (ELISA-cats test exhibited 75.0 % of sensitivity at 91.7 % of specificity, whereas the test for the detection of specific antibodies in rabbits, infected with T. mentagrophytes (ELISA-rabbits test is highly sensitive (96.0 % and highly specific (94.1 %, confirming its encouraging diagnostic potential. The cross-reactivity of fungal antigens was tested by performing the assays with antigens M. canis, T. mentagrophytes, M. pachydermatis and A. fumigatus. There were no significant indications of cross-reactions in the test T. mentagrophytes-rabbits, whereas strong cross-reaction between dermatophyte antigens was observed in the test M. canis-cats.

  19. Current diagnostic modalities for vulnerable plaque detection

    NARCIS (Netherlands)

    J.A. Schaar (Johannes); F. Mastik (Frits); E.S. Regar (Eveline); C.A. den Uil (Corstiaan); F.J.H. Gijsen (Frank); J.J. Wentzel (Jolanda); P.W.J.C. Serruys (Patrick); A.F.W. van der Steen (Ton)

    2007-01-01

    textabstractRupture of vulnerable plaques is the main cause of acute coronary syndrome and myocardial infarction. Identification of vulnerable plaques is therefore essential to enable the development of treatment modalities to stabilize such plaques. Several diagnostic methods are currently tested

  20. Diagnostic sensitivity and interobserver agreement of radiography and ultrasonography for detecting trochlear ridge osteochondrosis lesions in the equine stifle.

    Science.gov (United States)

    Beccati, Francesca; Chalmers, Heather J; Dante, Sara; Lotto, Eleonora; Pepe, Marco

    2013-01-01

    Osteochondrosis lesions commonly occur on the femoral trochlear ridges in horses and radiography and ultrasonography are routinely used to diagnose these lesions. However, poor correlation has been found between radiographic and arthroscopic findings of affected trochlear ridges. Interobserver agreement for ultrasonographic diagnoses and correlation between ultrasonographic and arthroscopic findings have not been previously described. Objectives of this study were to describe diagnostic sensitivity and interobserver agreement of radiography and ultrasonography for detecting and grading osteochondrosis lesions of the equine trochlear ridges, using arthroscopy as the reference standard. Twenty-two horses were sampled. Two observers independently recorded radiographic and ultrasonographic findings without knowledge of arthroscopic findings. Imaging findings were compared between observers and with arthroscopic findings. Agreement between observers was moderate to excellent (κ 0.48-0.86) for detecting lesions using radiography and good to excellent (κ 0.74-0.87) for grading lesions using radiography. Agreement between observers was good to excellent (κ 0.78-0.94) for detecting lesions using ultrasonography and very good to excellent (κ 0.86-0.93) for grading lesions using ultrasonography. Diagnostic sensitivity was 84-88% for radiography and 100% for ultrasonography. Diagnostic specificity was 89-100% for radiography and 60-82% for ultrasonography. Agreement between radiography and arthroscopy was good (κ 0.64-0.78). Agreement between ultrasonography and arthroscopy was very good to excellent (κ 0.81-0.87). Findings from this study support ultrasound as a preferred method for predicting presence and severity of osteochondrosis lesions involving the femoral trochlear ridges in horses. © 2012 Veterinary Radiology & Ultrasound.

  1. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.

    Science.gov (United States)

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High quality junctions by interpenetration of vapor liquid solid grown nanostructures for microchip integration

    Energy Technology Data Exchange (ETDEWEB)

    Jebril, Seid; Kuhlmann, Hanna; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany); Mueller, Sven [Nanowires and Thin Films, II. Physikalisches Institut, Goettingen (Germany); Ronning, Carsten [Institute for Solid State Physics, Universitaet Jena (Germany); Kienle, Lorenz [Synthese und Realstruktur, CAU Kiel (Germany); Duppel, Viola [MPI fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The usability of nanostructures in electrical devices like gas sensors depends critically on the ability to form high quality contacts and junctions. For the fabrication of various nanostructures, vapor-liquid-solid (VLS) growth is a wide spread and very efficient technique. However, forming contacts with the VLS grown structures to utilize them in a device is still tedious, because either the substrate has to be epitaxial to the VLS material or a manual alignment is necessary. Here we demonstrate the contact formation by simply using the ability of individual crystals to interpenetrate each other during the straight forward VLS growth. This allows growing VLS structures directly on two neighboring gold circuit paths of a microchip; bridges over predefined gaps will be formed. Moreover, TEM investigations confirm the high quality of the crystalline junctions that allow demonstrations as UV and hydrogen-sensor. The VLS devices are compared with conventional produced.

  3. Detection of an anomalous pressure on a magneto-inertial-fusion load current diagnostic

    International Nuclear Information System (INIS)

    Hess, Mark Harry; Hutsel, Brian Thomas; Jennings, Christopher Ashley; VanDevender, J. Pace; Sefkow, Adam B.

    2017-01-01

    Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infer that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.

  4. Diagnostic imaging strategy for MDCT- or MRI-detected breast lesions: use of targeted sonography

    International Nuclear Information System (INIS)

    Nakano, Satoko; Ohtsuka, Masahiko; Mibu, Akemi; Karikomi, Masato; Sakata, Hitomi; Yamamoto, Masahiro

    2012-01-01

    Leading-edge technology such as magnetic resonance imaging (MRI) or computed tomography (CT) often reveals mammographically and ultrasonographically occult lesions. MRI is a well-documented, effective tool to evaluate these lesions; however, the detection rate of targeted sonography varies for MRI detected lesions, and its significance is not well established in diagnostic strategy of MRI detected lesions. We assessed the utility of targeted sonography for multidetector-row CT (MDCT)- or MRI-detected lesions in practice. We retrospectively reviewed 695 patients with newly diagnosed breast cancer who were candidates for breast conserving surgery and underwent MDCT or MRI in our hospital between January 2004 and March 2011. Targeted sonography was performed in all MDCT- or MRI-detected lesions followed by imaging-guided biopsy. Patient background, histopathology features and the sizes of the lesions were compared among benign, malignant and follow-up groups. Of the 695 patients, 61 lesions in 56 patients were detected by MDCT or MRI. The MDCT- or MRI-detected lesions were identified by targeted sonography in 58 out of 61 lesions (95.1%). Patients with pathological diagnoses were significantly older and more likely to be postmenopausal than the follow-up patients. Pathological diagnosis proved to be benign in 20 cases and malignant in 25. The remaining 16 lesions have been followed up. Lesion size and shape were not significantly different among the benign, malignant and follow-up groups. Approximately 95% of MDCT- or MRI-detected lesions were identified by targeted sonography, and nearly half of these lesions were pathologically proven malignancies in this study. Targeted sonography is a useful modality for MDCT- or MRI-detected breast lesions

  5. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, Rick [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hampton, Nigel [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Perkel, Josh [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hernandez, JC [Univ. de Los Andes, Merida (Venezuela); Elledge, Stacy [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); del Valle, Yamille [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Grimaldo, Jose [Georgia Inst. of Technology, Atlanta, GA (United States). School of Electrical and Computer Engineering; Deku, Kodzo [Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  6. A mid-infrared absorption diagnostic for acetylene detection

    KAUST Repository

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  7. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  8. Simultaneous detection of five different DNA targets by real-time Taqman PCR using the Roche LightCycler480: Application in viral molecular diagnostics

    NARCIS (Netherlands)

    Molenkamp, Richard; van der Ham, Alwin; Schinkel, Janke; Beld, Marcel

    2007-01-01

    One of the most interesting aspects of real-time PCR based on the detection of fluorophoric labeled oligonucleotides is the possibility of being able to detect conveniently multiple targets in the same PCR reaction. Recently, Roche Diagnostics launched a real-time PCR platform, the LightCycler480

  9. Molecular diagnostics of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Megha eAgrawal

    2015-09-01

    Full Text Available Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer’s and Parkinson’s disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  10. Molecular diagnostics of neurodegenerative disorders.

    Science.gov (United States)

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  11. Diagnostic accuracy of fracture detection in suspected non-accidental injury: the effect of edge enhancement and digital display on observer performance

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, A.C. [Department of Radiology, Great Ormond Street Hospital for Children, London (United Kingdom) and Institute of Child Health, London (United Kingdom)]. E-mail: amaka.offiah@gosh.nhs.uk; Moon, L. [Department of Radiology, Great Ormond Street Hospital for Children, London (United Kingdom); Hall, C.M. [Department of Radiology, Great Ormond Street Hospital for Children, London (United Kingdom); Todd-Pokropek, A. [Department of Medical Physics and Bioengineering, University College London, London (United Kingdom)

    2006-02-15

    AIM: To compare the effect of varying degrees of edge enhancement and method of digital image display on fracture detection in suspected non-accidental injury (NAI). MATERIALS AND METHODS: Fifty radiographs from post-mortem skeletal surveys in 13 children with suspected NAI were selected. Images were obtained using a Fuji 5000R computed radiography system. Hard copies were printed with edge enhancement factors 0, 0.5 and 1.2. Images (edge enhancement 0.5) were also displayed on a 1K{sup 2} monitor. Six observers independently evaluated all 200 images for the presence of abnormality. Observers also scored each image for visualization of soft tissues, visualization of trabecular markings and overall image quality. The paired Student's t-test and location receiver operating curve (ROC) analysis were used to compare quality scores and diagnostic accuracy of each display method. Individual and pooled true-positive rates (sensitivity) were determined. For the purposes of ROC analysis, histology was taken as the gold standard. RESULTS: There was no difference in duration of hard and soft-copy reading sessions (p=0.76). After image manipulation soft-copy radiographs scored significantly better for image quality than hard copy (p<0.0001). Pooled observer sensitivity (at a specificity of 90%) was below 50% for all display methods. Diagnostic accuracy varied significantly between observers. Diagnostic accuracy of individual observers was not affected by display method. CONCLUSION: In suspected NAI, diagnostic accuracy of fracture detection is generally low. Diagnostic accuracy appears to be affected more by observer-related factors than by the method of digital image display.

  12. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  13. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation methods (least error squares and filtering)

    International Nuclear Information System (INIS)

    Gillet, M.

    1986-07-01

    This thesis presents a study for the surveillance of the ''primary coolant circuit inventory monitoring'' of a pressurized water reactor. A reference model is developed in view of an automatic system ensuring detection and diagnostic in real time. The methods used for the present application are statistical tests and a method related to pattern recognition. The estimation of failures detected, difficult owing to the non-linearity of the problem, is treated by the least error squares method of the predictor or corrector type, and by filtering. It is in this frame that a new optimized method with superlinear convergence is developed, and that a segmented linearization of the model is introduced, in view of a multiple filtering [fr

  14. Application of noise analysis methods in nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Dach, K.

    1985-01-01

    By statistical evaluation of the fluctuation component of signals from selected detectors, noise diagnostics detects conditions of equipment which might later result in failure. The objective of early diagnostics is to detect the failed integrity of primary circuit components, failed detectors or anomalies of the thermohydraulic process. The commonest method of experimental data analysis is spectral analysis in the frequency range 0 to 50 Hz. Recently, expert diagnostic systems have been built based on artificial intelligence systems. Czechoslovakia participates in the experimental research of noise diagnostics in the context of the development of diagnostic assemblies for WWER-440 reactors. (M.D.)

  15. Plant diagnostics in power stations

    International Nuclear Information System (INIS)

    Sturm, A.; Doering, D.

    1985-01-01

    The method of noise diagnostics is dealt with as a part of plant diagnostics in nuclear power stations. The following special applications are presented: (1) The modular noise diagnostics system is used for monitoring primary coolant circuits and detecting abnormal processes due to mechanical vibrations, loose parts or leaks. (2) The diagnostics of machines and plants with antifriction bearings is based on bearing vibration measurements. (3) The measurement of the friction moment by means of acoustic emission analysis is used for evaluating the operational state of slide bearings

  16. Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors.

    Science.gov (United States)

    Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee

    2010-11-01

    The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation.

  17. Recent advances in chemiluminescence detection coupled with capillary electrophoresis and microchip capillary electrophoresis.

    Science.gov (United States)

    Liu, Yuxuan; Huang, Xiangyi; Ren, Jicun

    2016-01-01

    CE is an ideal analytical method for extremely volume-limited biological microenvironments. However, the small injection volume makes it a challenge to achieve highly sensitive detection. Chemiluminescence (CL) detection is characterized by providing low background with excellent sensitivity because of requiring no light source. The coupling of CL with CE and MCE has become a powerful analytical method. So far, this method has been widely applied to chemical analysis, bioassay, drug analysis, and environment analysis. In this review, we first introduce some developments for CE-CL and MCE-CL systems, and then put the emphasis on the applications in the last 10 years. Finally, we discuss the future prospects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A microcosting study of diagnostic tests for the detection of coronary artery disease in the Netherlands

    International Nuclear Information System (INIS)

    Tan, S.S.; Oppe, M.; Zoet-Nugteren, S.K.; Niezen, R.A.; Kofflard, M.J.M.; Ten Cate, F.J.; Roijen, L. Hakkaart-van

    2009-01-01

    Objective: The primary aim of the present study was to calculate the actual costs of four diagnostic tests for the detection of coronary artery disease in the Netherlands using a microcosting methodology. As a secondary objective, the cost effectiveness of eight diagnostic strategies was examined, using microcosting and reimbursement fees subsequently as the cost estimate. Design: A multicenter, retrospective cost analysis from a hospital perspective. Setting: The study was conducted in three general hospitals in the Netherlands for 2006. Interventions: Exercise electrocardiography (exECG), stress echocardiography (sECHO), single-photon emission computed tomography (SPECT) and coronary angiography (CA). Results: The actual costs of exECG, sECHO, SPECT and CA were Euro 33, 216, 614 and 1300 respectively. For all diagnostic tests, labour and indirect cost components (overheads and capital) together accounted for over 75% of the total costs. Consumables played a relatively important role in SPECT (14%). Hotel and nutrition were only applicable to SPECT and CA. Diagnostic services were solely performed for CA, but their costs were negligible (2%). Using microcosting estimates, exECG-sECHO-SPECT-CA was the most and CA the least cost effective strategy ( Euro 397 and 1302 per accurately diagnosed patient). Using reimbursement fees, exECG-sECHO-CA was most and SPECT-CA least cost effective ( Euro 147 and 567 per accurately diagnosed patient). Conclusions: The use of microcosting estimates instead of reimbursement fees led to different conclusions regarding the relative cost effectiveness of alternative strategies.

  19. Evaluation of diagnostic methods for the detection of Helicobacter pylori in gastric biopsy specimens of dyspeptic patients

    Directory of Open Access Journals (Sweden)

    Ivy Bastos Ramis

    2012-09-01

    Full Text Available Helicobacter pylori infects nearly 50% of the world's population. This microorganism is accepted as the most important agent of gastritis and as a risk factor for peptic ulcer disease and gastric adenocarcinoma. Currently many diagnostic methods exist for detecting H. pylori, however they all have limitations, thus it is recommend a combination of at least two methods. The aim of this study was to evaluate diagnostic methods, such as in-house urease test, culture and Polymerase Chain Reaction (PCR, for the detection of the H. pylori in gastric biopsy specimens of 144 dyspeptic patients, using as gold standard the association between histology and rapid urease test. According to the gold standard used in this study, 48 (33.3% patients were infected with H. pylori, while 96 (66.7% were classified as not infected. The in-house urease test and the PCR were the most sensitive methods (100%, followed by culture (85.4%. However, the in-house urease test and the culture were the most specific (100%, followed by PCR (75%. In conclusion, this study showed that, in comparison with the combination of histology and rapid urease test, the in-house urease test and the PCR presented 100% of sensitivity in the diagnosis of gastric infection by H. pylori, while the in-house urease test and the culture reached 100% of specificity. These finding suggest that the combination of two or more methods may improve the accuracy of the H. pylori detection.

  20. New technology for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics

    Science.gov (United States)

    Leary, James F.; McLaughlin, Scott R.

    1995-04-01

    A high-speed, 11-parameter, 6-color fluorescence, laser flow cytometer/cell sorter with a number of special and unique features has been built for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics. The software for real-time data acquisition and sort control, written as C++ programming language modules with a WindowsTM graphical user interface, runs on a 66-MHz 80486 computer joined by an extended bus to 23 sophisticated multi-layered boards of special data acquisition and sorting electronics. Special features include: high-speed (> 100,000 cells/sec) real-time data classification module (U.S. Patent 5,204,884 (1993)); real-time principal component cell sorting; multi-queue signal-processing system with multiple hardware and software event buffers to reduce instrument dead time, LUT charge-pulse definition, high-resolution `flexible' sorting for optimal yield/purity sort strategies (U.S. Patent 5,199,576); pre-focusing optical wavelength correction for a second laser beam; and two trains of three fluorescence detectors-- each adjustable for spatial separation to interrogate only one of two laser beams, syringe- driven or pressure-driven fluidics, and time-windowed parameters. The system has been built to be both expandable and versatile through the use of LUT's and a modular hardware and software design. The instrument is especially useful at detection and isolation of rare cell subpopulations for which our laboratory is well-known. Cell subpopulations at frequencies as small as 10-7 have been successfully studied with this system. Current applications in clinical diagnostics and therapeutics include detection and isolation of (1) fetal cells from material blood for prenatal diagnosis of birth defects, (2) hematopoietic stem and precursor cells for autologous bone marrow transplantation, (3) metastatic breast cancer cells for molecular characterization, and (4) HIV-infected maternal cells in newborn blood to study mother

  1. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    Science.gov (United States)

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  2. Diagnostic performance of digital breast tomosynthesis with a wide scan angle compared to full-field digital mammography for the detection and characterization of microcalcifications

    International Nuclear Information System (INIS)

    Clauser, Paola; Nagl, Georg; Helbich, Thomas H.; Pinker-Domenig, Katja; Weber, Michael; Kapetas, Panagiotis; Bernathova, Maria; Baltzer, Pascal A.T.

    2016-01-01

    Highlights: • Wide scan-angle DBT alone shows a high detection rate for microcalcifications. • DBT and FFDM can characterize microcalcifications at a comparable level. • Characterization is influenced by reader and by lesion type (benign vs malignant). • DBT might be used as a stand-alone technique for the assessment of microcalcifications. - Abstract: Objectives: To assess the diagnostic performance of digital breast tomosynthesis (DBT), with a wide scan-angle, compared to full-field digital mammography (FFDM), for the detection and characterization of microcalcifications. Methods: IRB approval was obtained for this retrospective study. We selected 150 FFDM and DBT (50 benign and 50 malignant histologically verified microcalcifications, 50 cases classified as BI-RADS 1). Four radiologists evaluated, in separate sessions and blinded to patients’ history and histology, the presence of microcalcifications. Cases with microcalcifications were assessed for visibility, characteristics, and grade of suspicion using BI-RADS categories. Detection rate and diagnostic performance were calculated. Visibility, lesions’ characteristics and reading time were analysed. Results: Detection rate and visibility were good for both FFDM and DBT, without intra-reader differences (P = 0.510). Inter-reader differences were detected (P < 0.018). Only two lesions were not detected by any reader on either FFDM or DBT. Diagnostic performance with DBT was as good as that of FFDM, but a significant inter-reader difference was found (P = 0.041). High inter-reader variability in the use of the descriptors was found. Reading time for DBT was almost twice that for FFDM (44 and 25 s, respectively). Conclusion: Wide scan-angle DBT enabled the detection and characterization of microcalcifications with no significant differences from FFDM. Inter-reader variability was seen.

  3. Diagnostic performance of digital breast tomosynthesis with a wide scan angle compared to full-field digital mammography for the detection and characterization of microcalcifications

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, Paola, E-mail: paola.clauser@meduniwien.ac.at [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Nagl, Georg [Department for Radiology and Interventional Radiology, Landesklinikum Horn, Spitalgasse 10, 3580 Horn (Austria); Helbich, Thomas H., E-mail: thomas.helbich@meduniwien.ac.at [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Pinker-Domenig, Katja [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Weber, Michael [Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Kapetas, Panagiotis; Bernathova, Maria; Baltzer, Pascal A.T. [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2016-12-15

    Highlights: • Wide scan-angle DBT alone shows a high detection rate for microcalcifications. • DBT and FFDM can characterize microcalcifications at a comparable level. • Characterization is influenced by reader and by lesion type (benign vs malignant). • DBT might be used as a stand-alone technique for the assessment of microcalcifications. - Abstract: Objectives: To assess the diagnostic performance of digital breast tomosynthesis (DBT), with a wide scan-angle, compared to full-field digital mammography (FFDM), for the detection and characterization of microcalcifications. Methods: IRB approval was obtained for this retrospective study. We selected 150 FFDM and DBT (50 benign and 50 malignant histologically verified microcalcifications, 50 cases classified as BI-RADS 1). Four radiologists evaluated, in separate sessions and blinded to patients’ history and histology, the presence of microcalcifications. Cases with microcalcifications were assessed for visibility, characteristics, and grade of suspicion using BI-RADS categories. Detection rate and diagnostic performance were calculated. Visibility, lesions’ characteristics and reading time were analysed. Results: Detection rate and visibility were good for both FFDM and DBT, without intra-reader differences (P = 0.510). Inter-reader differences were detected (P < 0.018). Only two lesions were not detected by any reader on either FFDM or DBT. Diagnostic performance with DBT was as good as that of FFDM, but a significant inter-reader difference was found (P = 0.041). High inter-reader variability in the use of the descriptors was found. Reading time for DBT was almost twice that for FFDM (44 and 25 s, respectively). Conclusion: Wide scan-angle DBT enabled the detection and characterization of microcalcifications with no significant differences from FFDM. Inter-reader variability was seen.

  4. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Kuribayashi, Sachio; Abe, Takayuki; Ogawa, Kenji

    2013-01-01

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA -950 ) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P -950 . The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA -950 . (orig.)

  5. Comparison between Amnisure Placental Alpha Microglobulin-1 Rapid Immunoassay and Standard Diagnostic Methods for Detection of Rupture of Membranes

    Directory of Open Access Journals (Sweden)

    Beng Kwang Ng

    2013-01-01

    Full Text Available Objective. To determine the diagnostic accuracy of placental alpha microglobulin-1 assay and standard diagnostic methods for detecting rupture of membrane. Study Design. Prospective diagnostic study, between June 2011 to November 2011 at a tertiary centre. Initial evaluation included both the standard diagnostic methods for rupture of membranes and placental alpha microglobulin-1 immunoassay. The actual rupture of membranes was diagnosed on review of the medical records after delivery (absence of membrane or a positive pad chart. Main Outcome Measures. Placental alpha microglobulin-1 immunoassay and standard diagnostic methods for diagnosis of rupture of membrane. Results. A total of 211 patients were recruited. At initial presentation, 187 patients (88.6% had ruptured membranes, while 24 patients (11.4% had intact membranes. Placental alpha microglobulin-1 immunoassay confirmed rupture of membranes at initial presentation with a sensitivity of 95.7% (179 of 187, specificity of 100% (24 of 24, positive predictive value of 100% (179 of 179, and negative predictive value of 75.0% (24 of 32. By comparison, the conventional standard diagnostic methods had a sensitivity of 78.1% (146 of 187, specificity of 100% (24 of 24, positive predictive value of 100% (146 of 146, and negative predictive value of 36.9% (24 of 65 in diagnosing rupture of membrane. Conclusion. Placental alpha-microglobulin-1 immunoassay is a rapid and accurate method for confirming the diagnosis of rupture of membrane. It was superior to conventional standard diagnostic methods (pooling, nitrazine, and ferning, the nitrazine test alone or fern test alone.

  6. Diagnostic accuracy of tests to detect Hepatitis C antibody: a meta-analysis and review of the literature.

    Science.gov (United States)

    Tang, Weiming; Chen, Wen; Amini, Ali; Boeras, Debi; Falconer, Jane; Kelly, Helen; Peeling, Rosanna; Varsaneux, Olivia; Tucker, Joseph D; Easterbrook, Philippa

    2017-11-01

    Although direct-acting antivirals can achieve sustained virological response rates greater than 90% in Hepatitis C Virus (HCV) infected persons, at present the majority of HCV-infected individuals remain undiagnosed and therefore untreated. While there are a wide range of HCV serological tests available, there is a lack of formal assessment of their diagnostic performance. We undertook a systematic review and meta-analysis to evaluate he diagnostic accuracy of available rapid diagnostic tests (RDT) and laboratory based EIA assays in detecting antibodies to HCV. We used the PRISMA checklist and Cochrane guidance to develop our search protocol. The search strategy was registered in PROSPERO (CRD42015023567). The search focused on hepatitis C, diagnostic tests, and diagnostic accuracy within eight databases (MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, SCOPUS, Literatura Latino-Americana e do Caribe em Ciências da Saúde and WHO Global Index Medicus. Studies were included if they evaluated an assay to determine the sensitivity and specificity of HCV antibody (HCV Ab) in humans. Two reviewers independently extracted data and performed a quality assessment of the studies using the QUADAS tool. We pooled test estimates using the DerSimonian-Laird method, by using the software R and RevMan. 5.3. A total of 52 studies were identified that included 52,673 unique test measurements. Based on five studies, the pooled sensitivity and specificity of HCV Ab rapid diagnostic tests (RDTs) were 98% (95% CI 98-100%) and 100% (95% CI 100-100%) compared to an enzyme immunoassay (EIA) reference standard. High HCV Ab RDTs sensitivity and specificity were observed across screening populations (general population, high risk populations, and hospital patients) using different reference standards (EIA, nucleic acid testing, immunoblot). There were insufficient studies to undertake

  7. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study.

    Science.gov (United States)

    Dorman, Susan E; Schumacher, Samuel G; Alland, David; Nabeta, Pamela; Armstrong, Derek T; King, Bonnie; Hall, Sandra L; Chakravorty, Soumitesh; Cirillo, Daniela M; Tukvadze, Nestani; Bablishvili, Nino; Stevens, Wendy; Scott, Lesley; Rodrigues, Camilla; Kazi, Mubin I; Joloba, Moses; Nakiyingi, Lydia; Nicol, Mark P; Ghebrekristos, Yonas; Anyango, Irene; Murithi, Wilfred; Dietze, Reynaldo; Lyrio Peres, Renata; Skrahina, Alena; Auchynka, Vera; Chopra, Kamal Kishore; Hanif, Mahmud; Liu, Xin; Yuan, Xing; Boehme, Catharina C; Ellner, Jerrold J; Denkinger, Claudia M

    2018-01-01

    The Xpert MTB/RIF assay is an automated molecular test that has improved the detection of tuberculosis and rifampicin resistance, but its sensitivity is inadequate in patients with paucibacillary disease or HIV. Xpert MTB/RIF Ultra (Xpert Ultra) was developed to overcome this limitation. We compared the diagnostic performance of Xpert Ultra with that of Xpert for detection of tuberculosis and rifampicin resistance. In this prospective, multicentre, diagnostic accuracy study, we recruited adults with pulmonary tuberculosis symptoms presenting at primary health-care centres and hospitals in eight countries (South Africa, Uganda, Kenya, India, China, Georgia, Belarus, and Brazil). Participants were allocated to the case detection group if no drugs had been taken for tuberculosis in the past 6 months or to the multidrug-resistance risk group if drugs for tuberculosis had been taken in the past 6 months, but drug resistance was suspected. Demographic information, medical history, chest imaging results, and HIV test results were recorded at enrolment, and each participant gave at least three sputum specimen on 2 separate days. Xpert and Xpert Ultra diagnostic performance in the same sputum specimen was compared with culture tests and drug susceptibility testing as reference standards. The primary objectives were to estimate and compare the sensitivity of Xpert Ultra test with that of Xpert for detection of smear-negative tuberculosis and rifampicin resistance and to estimate and compare Xpert Ultra and Xpert specificities for detection of rifampicin resistance. Study participants in the case detection group were included in all analyses, whereas participants in the multidrug-resistance risk group were only included in analyses of rifampicin-resistance detection. Between Feb 18, and Dec 24, 2016, we enrolled 2368 participants for sputum sampling. 248 participants were excluded from the analysis, and 1753 participants were distributed to the case detection group (n=1439

  8. Laser diagnostic technology for early detection of pathogen infestation in orange fruits

    International Nuclear Information System (INIS)

    Giubileo, Gianfranco; Lai, Antonella; Piccinelli, Delinda; Puiu, Adriana

    2010-01-01

    Due to an increased expectation of food products that respect high quality and safety standards, there is a need for the growth of accurate, fast, objective and non-destructive technologies for quality determination of food and agricultural products. For this purpose, a diagnostic system based on laser photoacoustic spectroscopy (LPAS) was developed at ENEA Frascati Molecular Spectroscopy Laboratory (Italy). In the design of the photoacoustic detector, particular emphasis was placed in attaining a high sensitivity in detecting ethylene (ET) down to sub-parts per billion level (minimum detectable concentration 0.2 ppb). This was required due to the necessity to monitor and follow up ET production at a single fruit scale. ET is normally synthesised in very low amounts by healthy citrus fruits; however stress conditions such as pathogen attack may induce a substantial increase in the synthesised ET. In the present paper, the comparison between the ET emitted by healthy oranges (Citrus sinensis L. Osbeck) cv Navel and by Phytophthora citrophthora infested Navel orange fruits are reported. The obtained results show a well evident increase in ET emission from the infested fruit with respect to the healthy one, even 24 h after the inoculation with the pathogen; at that time the tissue necrosis was not yet visible, and the fruit was also not yet damaged. The possibility to perform a real time non-destructive detection of ET traces makes the LPAS a powerful tool for monitoring the healthy state of the citrus fruits.

  9. Laser diagnostic technology for early detection of pathogen infestation in orange fruits

    Science.gov (United States)

    Giubileo, Gianfranco; Lai, Antonella; Piccinelli, Delinda; Puiu, Adriana

    2010-11-01

    Due to an increased expectation of food products that respect high quality and safety standards, there is a need for the growth of accurate, fast, objective and non-destructive technologies for quality determination of food and agricultural products. For this purpose, a diagnostic system based on laser photoacoustic spectroscopy (LPAS) was developed at ENEA Frascati Molecular Spectroscopy Laboratory (Italy). In the design of the photoacoustic detector, particular emphasis was placed in attaining a high sensitivity in detecting ethylene (ET) down to sub-parts per billion level (minimum detectable concentration 0.2 ppb). This was required due to the necessity to monitor and follow up ET production at a single fruit scale. ET is normally synthesised in very low amounts by healthy citrus fruits; however stress conditions such as pathogen attack may induce a substantial increase in the synthesised ET. In the present paper, the comparison between the ET emitted by healthy oranges ( Citrus sinensis L. Osbeck) cv Navel and by Phytophthora citrophthora infested Navel orange fruits are reported. The obtained results show a well evident increase in ET emission from the infested fruit with respect to the healthy one, even 24 h after the inoculation with the pathogen; at that time the tissue necrosis was not yet visible, and the fruit was also not yet damaged. The possibility to perform a real time non-destructive detection of ET traces makes the LPAS a powerful tool for monitoring the healthy state of the citrus fruits.

  10. Laser diagnostic technology for early detection of pathogen infestation in orange fruits

    Energy Technology Data Exchange (ETDEWEB)

    Giubileo, Gianfranco, E-mail: gianfranco.giubileo@frascati.enea.i [ENEA Frascati, Via E. Fermi 45, 00044 (Italy); Lai, Antonella; Piccinelli, Delinda [ENEA Frascati, Via E. Fermi 45, 00044 (Italy); Puiu, Adriana [Tor Vergata University of Rome, Faculty of Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2010-11-11

    Due to an increased expectation of food products that respect high quality and safety standards, there is a need for the growth of accurate, fast, objective and non-destructive technologies for quality determination of food and agricultural products. For this purpose, a diagnostic system based on laser photoacoustic spectroscopy (LPAS) was developed at ENEA Frascati Molecular Spectroscopy Laboratory (Italy). In the design of the photoacoustic detector, particular emphasis was placed in attaining a high sensitivity in detecting ethylene (ET) down to sub-parts per billion level (minimum detectable concentration 0.2 ppb). This was required due to the necessity to monitor and follow up ET production at a single fruit scale. ET is normally synthesised in very low amounts by healthy citrus fruits; however stress conditions such as pathogen attack may induce a substantial increase in the synthesised ET. In the present paper, the comparison between the ET emitted by healthy oranges (Citrus sinensis L. Osbeck) cv Navel and by Phytophthora citrophthora infested Navel orange fruits are reported. The obtained results show a well evident increase in ET emission from the infested fruit with respect to the healthy one, even 24 h after the inoculation with the pathogen; at that time the tissue necrosis was not yet visible, and the fruit was also not yet damaged. The possibility to perform a real time non-destructive detection of ET traces makes the LPAS a powerful tool for monitoring the healthy state of the citrus fruits.

  11. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  12. Amplitude Integrated Electroencephalography Compared With Conventional Video EEG for Neonatal Seizure Detection: A Diagnostic Accuracy Study.

    Science.gov (United States)

    Rakshasbhuvankar, Abhijeet; Rao, Shripada; Palumbo, Linda; Ghosh, Soumya; Nagarajan, Lakshmi

    2017-08-01

    This diagnostic accuracy study compared the accuracy of seizure detection by amplitude-integrated electroencephalography with the criterion standard conventional video EEG in term and near-term infants at risk of seizures. Simultaneous recording of amplitude-integrated EEG (2-channel amplitude-integrated EEG with raw trace) and video EEG was done for 24 hours for each infant. Amplitude-integrated EEG was interpreted by a neonatologist; video EEG was interpreted by a neurologist independently. Thirty-five infants were included in the analysis. In the 7 infants with seizures on video EEG, there were 169 seizure episodes on video EEG, of which only 57 were identified by amplitude-integrated EEG. Amplitude-integrated EEG had a sensitivity of 33.7% for individual seizure detection. Amplitude-integrated EEG had an 86% sensitivity for detection of babies with seizures; however, it was nonspecific, in that 50% of infants with seizures detected by amplitude-integrated EEG did not have true seizures by video EEG. In conclusion, our study suggests that amplitude-integrated EEG is a poor screening tool for neonatal seizures.

  13. On-chip microfluidic systems for determination of L-glutamate based on enzymatic recycling of substrate

    DEFF Research Database (Denmark)

    Laiwattanapaisal, W.; Yakovleva, J.; Bengtsson, Martin

    2009-01-01

    Two microfluidic systems have been developed for specific analysis of L-glutamate in food based on substrate recycling fluorescence detection. L-glutamate dehydrogenase and a novel enzyme, D-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips....... The reaction was accompanied by reduction of nicotinamide adenine dinucleotide (NAD(+)) to NADH, which was monitored by fluorescence detection (epsilon(ex)=340 nm, epsilon(em)=460 nm). First, the microchip-based system, L-glutamate was detected within a range of 3.1-50.0 mM. Second, to be automatically......). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a pH of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining...

  14. Microbial Diagnostic Array Workstation (MDAW: a web server for diagnostic array data storage, sharing and analysis

    Directory of Open Access Journals (Sweden)

    Chang Yung-Fu

    2008-09-01

    Full Text Available Abstract Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.

  15. Nanobiosensors in diagnostics

    Directory of Open Access Journals (Sweden)

    Alejandro Chamorro-Garcia

    2016-11-01

    Full Text Available Medical diagnosis has been greatly improved thanks to the development of new techniques capable of performing very sensitive detection and quantifying certain parameters. These parameters can be correlated with the presence of specific molecules and their quantity. Unfortunately, these techniques are demanding, expensive, and often complicated. On the other side, progress in other fields of science and technology has contributed to the rapid growth of nanotechnology. Although being an emerging discipline, nanotechnology has raised huge interest and expectations. Most of the enthusiasm comes from new possibilities and properties of nanomaterials. Biosensors (simple, robust, sensitive, cost-effective combined with nanomaterials, also called nanobiosensors, are serving as bridge between advanced detection/diagnostics and daily/routine tests. Here we review some of the latest applications of nanobiosensors in diagnostics field.

  16. Ares I-X Ground Diagnostic Prototype

    Science.gov (United States)

    Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan

    2010-01-01

    The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.

  17. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    Science.gov (United States)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  18. A Study on the Diagnostic Detection Ability of the Artificial Proximal Caries by Digora

    International Nuclear Information System (INIS)

    Oh, Kyung Ran; Choi, Eui Hwan; Kim, Jae Duck

    1998-01-01

    Digora system is an intraoral indirect digital radiography system utilizing storage phosphor image plate. It has wide dynamic range which allows it to decrease the patient's exposure time and may increase diagnostic ability through image processing (such as edge enhancement, grey scale conversion, brightness change, and contrast enhancement). And also, it can transmit and storage image information. The purpose of this study was to evaluate the diagnostic ability of artificial proximal caries between Conventional radiograph and Digora images (unenhanced image, brightness and contrast controlled image, and edge enhanced image). ROC (Receiver Operating Characteristic) analysis, paired t-tests, and F-tests were done for the statistical evaluation of detectability. The following results were acquired: 1. In Grade I lesions, the mean ROC areas of Conventional radiograph, Digora unenhanced image, Digora controlled image, and Digora edge enhanced image were 0.953, 0.933, 0.965, 0.978 (p>0.05). 2. In Grade II lesions, the mean ROC areas of Conventional radiograph, Digora unenhanced image, Digora controlled image, and Digora edge enhanced image were 0.969, 0.964, 0.988, 0.994. Among theses areas, there was just statistical significance between Diagnostic abilities of Digora edge enhanced image and Conventional radiograph (p<0.05). 3. In the Interobserver variability, the ROC curve areas of Digora edge enhanced image was lowerest in these areas, regardless of the Carious lesion depths. In conclusion, intraoral indirect digital system, Digora system, has the potential possibility as an alternative of Conventional radiograph in the diagnosis of proximal caries.

  19. The Optimization of Electrophoresis on a Glass Microfluidic Chip and its Application in Forensic Science.

    Science.gov (United States)

    Han, Jun P; Sun, Jing; Wang, Le; Liu, Peng; Zhuang, Bin; Zhao, Lei; Liu, Yao; Li, Cai X

    2017-11-01

    Microfluidic chips offer significant speed, cost, and sensitivity advantages, but numerous parameters must be optimized to provide microchip electrophoresis detection. Experiments were conducted to study the factors, including sieving matrices (the concentration and type), surface modification, analysis temperature, and electric field strengths, which all impact the effectiveness of microchip electrophoresis detection of DNA samples. Our results showed that the best resolution for ssDNA was observed using 4.5% w/v (7 M urea) lab-fabricated LPA gel, dynamic wall coating of the microchannel, electrophoresis temperatures between 55 and 60°C, and electrical fields between 350 and 450 V/cm on the microchip-based capillary electrophoresis (μCE) system. One base-pair resolution could be achieved in the 19-cm-length microchannel. Furthermore, both 9947A standard genomic DNA and DNA extracted from blood spots were demonstrated to be successfully separated with well-resolved DNA peaks in 8 min. Therefore, the microchip electrophoresis system demonstrated good potential for rapid forensic DNA analysis. © 2017 American Academy of Forensic Sciences.

  20. Diagnostic accuracy of tablet-based software for the detection of concussion.

    Science.gov (United States)

    Yang, Suosuo; Flores, Benjamin; Magal, Rotem; Harris, Kyrsti; Gross, Jonathan; Ewbank, Amy; Davenport, Sasha; Ormachea, Pablo; Nasser, Waleed; Le, Weidong; Peacock, W Frank; Katz, Yael; Eagleman, David M

    2017-01-01

    Despite the high prevalence of traumatic brain injuries (TBI), there are few rapid and straightforward tests to improve its assessment. To this end, we developed a tablet-based software battery ("BrainCheck") for concussion detection that is well suited to sports, emergency department, and clinical settings. This article is a study of the diagnostic accuracy of BrainCheck. We administered BrainCheck to 30 TBI patients and 30 pain-matched controls at a hospital Emergency Department (ED), and 538 healthy individuals at 10 control test sites. We compared the results of the tablet-based assessment against physician diagnoses derived from brain scans, clinical examination, and the SCAT3 test, a traditional measure of TBI. We found consistent distributions of normative data and high test-retest reliability. Based on these assessments, we defined a composite score that distinguishes TBI from non-TBI individuals with high sensitivity (83%) and specificity (87%). We conclude that our testing application provides a rapid, portable testing method for TBI.

  1. Diagnostic accuracy of tablet-based software for the detection of concussion.

    Directory of Open Access Journals (Sweden)

    Suosuo Yang

    Full Text Available Despite the high prevalence of traumatic brain injuries (TBI, there are few rapid and straightforward tests to improve its assessment. To this end, we developed a tablet-based software battery ("BrainCheck" for concussion detection that is well suited to sports, emergency department, and clinical settings. This article is a study of the diagnostic accuracy of BrainCheck. We administered BrainCheck to 30 TBI patients and 30 pain-matched controls at a hospital Emergency Department (ED, and 538 healthy individuals at 10 control test sites. We compared the results of the tablet-based assessment against physician diagnoses derived from brain scans, clinical examination, and the SCAT3 test, a traditional measure of TBI. We found consistent distributions of normative data and high test-retest reliability. Based on these assessments, we defined a composite score that distinguishes TBI from non-TBI individuals with high sensitivity (83% and specificity (87%. We conclude that our testing application provides a rapid, portable testing method for TBI.

  2. Fast infectious diseases diagnostics based on microfluidic biochip system

    Directory of Open Access Journals (Sweden)

    Qin Huang

    2017-03-01

    Full Text Available Molecular diagnostics is one of the most important tools currently in use for clinical pathogen detection due to its high sensitivity, specificity, and low consume of sample and reagent is keyword to low cost molecular diagnostics. In this paper, a sensitive DNA isothermal amplification method for fast clinical infectious diseases diagnostics at aM concentrations of DNA was developed using a polycarbonate (PC microfluidic chip. A portable confocal optical fluorescence detector was specifically developed for the microfluidic chip that was capable of highly sensitive real-time detection of amplified products for sequence-specific molecular identification near the optical diffraction limit with low background. The molecular diagnostics of Listeria monocytogenes with nucleic acid extracted from stool samples was performed at a minimum DNA template concentration of 3.65aM, and a detection limit of less than five copies of genomic DNA. Contrast to the general polymerase chain reaction (PCR at eppendorf (EP tube, the detection time in our developed method was reduced from 1.5h to 45min for multi-target parallel detection, the consume of sample and reagent was dropped from 25μL to 1.45μL. This novel microfluidic chip system and method can be used to develop a micro total analysis system as a clinically relevant pathogen molecular diagnostics method via the amplification of targets, with potential applications in biotechnology, medicine, and clinical molecular diagnostics.

  3. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    Science.gov (United States)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  4. Diagnostic value of Gd-EOB-DTPA-enhanced MR cholangiography in non-invasive detection of postoperative bile leakage.

    Science.gov (United States)

    Kul, Melahat; Erden, Ayşe; Düşünceli Atman, Ebru

    2017-04-01

    To assess the diagnostic value of dynamic T 1 weighted (T1w) gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA)-enhanced MR cholangiography (MRC) for the detection of active bile leaks. A total of 28 patients with suspected biliary leakage who underwent routine T 2 weighted (T2w) MRC and T1w GD-EOB-DTPA-enhanced MRC at our institution from February 2013 to June 2016 were included in this study. The image sets were retrospectively analyzed in consensus by three radiologists. T1w Gd-EOB-DTPA-enhanced MRC findings were correlated with clinical data, follow-up examinations and findings of invasive/surgical procedures. Patients with positive bile leak findings in Gd-EOB-DTPA-enhanced MRC were divided into hepatobiliary phase (HBP) (20-30 min) and delayed phase (DP) (60-390 min) group according to elapsed time between Gd-EOB-DTPA injection and initial bile leak findings in MRC images. These groups were compared in terms of laboratory test results (total bilirubin, liver enzymes) and the presence of bile duct dilatation in T2w MRC images. In each patient, visualization of bile ducts was sufficient in the HBP. The accuracy, sensitivity and specificity of dynamic Gd-EOB-DTPA-enhanced T1w MRC in the detection of biliary leaks were 92.9%, 90.5% and 100%, respectively (p  0.05). Three patients, each of them in DP group, showed normal laboratory test results and bile duct diameters. Dynamic T1w Gd-EOB-DTPA-enhanced MRC is a useful non-invasive diagnostic tool to detect bile leak. Advances in knowledge: Prolonged DP imaging may be required for bile leak detection even if visualization of biliary tree is sufficient in HBP and liver function tests, total bilirubin levels and bile duct diameters are normal.

  5. Diagnostic imaging of shoulder impingement

    International Nuclear Information System (INIS)

    Merl, T.; Weinhardt, H.; Oettl, G.; Lenz, M.; Riel, K.A.

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage [de

  6. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes: Flaw detection and characterization [Phase 1

    International Nuclear Information System (INIS)

    2006-05-01

    Nuclear power plants with heavy water reactors (HWRs) comprise nine percent of today's operating nuclear units, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems are an important factor in assuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Programme (CRP) on Inter-comparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the frame of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of the IAEA's project on advanced technologies for HWRs. The objective of the CRP was to inter-compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP, participants have investigated the capability of different techniques to detect and characterize flaws. During the second phase of this CRP, participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in Zirconium alloys. The intent was to identify the most effective pressure tube inspection and diagnostic methods, and to identify further development needs. The organizations that have participated in this CRP are: - The Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL); Chalk River Laboratories (CRL), Canada; - The Research Institute of Nuclear Power Operations (RINPO), China National Nuclear Corporation (CNNC), China; - Bhabha Atomic Research Centre (BARC), India; - The Korea Electric Power Research Institute (KEPRI), Republic of Korea; - The Korea Atomic Energy

  7. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples - a systematic review and meta-analysis.

    Science.gov (United States)

    Lange, Berit; Roberts, Teri; Cohn, Jennifer; Greenman, Jamie; Camp, Johannes; Ishizaki, Azumi; Messac, Luke; Tuaillon, Edouard; van de Perre, Philippe; Pichler, Christine; Denkinger, Claudia M; Easterbrook, Philippa

    2017-11-01

    The detection and quantification of hepatitis B (HBV) DNA and hepatitis C (HCV) RNA in whole blood collected on dried blood spots (DBS) may facilitate access to diagnosis and treatment of HBV and HCV infection in resource-poor settings. We evaluated the diagnostic performance of DBS compared to venous blood samples for detection and quantification of HBV-DNA and HCV-RNA in two systematic reviews and meta-analyses on the diagnostic accuracy of HBV DNA and HCV RNA from DBS compared to venous blood samples. We searched MEDLINE, Embase, Global Health, Web of Science, LILAC and Cochrane library for studies that assessed diagnostic accuracy with DBS. Heterogeneity was assessed and where appropriate pooled estimates of sensitivity and specificity were generated using bivariate analyses with maximum likelihood estimates and 95% confidence intervals. We also conducted a narrative review on the impact of varying storage conditions or different cut-offs for detection from studies that undertook this in a subset of samples. The QUADAS-2 tool was used to assess risk of bias. In the quantitative synthesis for diagnostic accuracy of HBV-DNA using DBS, 521 citations were identified, and 12 studies met the inclusion criteria. Overall quality of studies was rated as low. The pooled estimate of sensitivity and specificity for HBV-DNA was 95% (95% CI: 83-99) and 99% (95% CI: 53-100), respectively. In the two studies that reported on cut-offs and limit of detection (LoD) - one reported a sensitivity of 98% for a cut-off of ≥2000 IU/ml and another reported a LoD of 914 IU/ml using a commercial assay. Varying storage conditions for individual samples did not result in a significant variation of results. In the synthesis for diagnostic accuracy of HCV-RNA using DBS, 15 studies met the inclusion criteria, and this included six additional studies to a previously published review. The pooled sensitivity and specificity was 98% (95% CI:95-99) and 98% (95% CI:95-99.0), respectively

  8. Effect of thermal lens on beam quality and mode matching in LD pumped Er-Yb-codoped phosphate glass microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shujing; Song Feng; Cai Hong; Li Teng; Tian Bin; Wu Zhaohui; Tian Jianguo [Photonics Center, Nankai University, Tianjin 300071 (China); Key Laboratory of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials (Ministry of Education), Nankai University, Tianjin 300457 (China)

    2008-02-07

    The theoretical values of the thermal focal length and laser beam waist are derived from the theoretical model and transformation theory, respectively. The values of thermal focal length, laser beam waist and the far field divergence angle were experimentally measured in a laser diode (LD) pumped erbium-ytterbium(Er-Yb)-codoped phosphate microchip glass laser. As an extension of thermal effect studies, we investigate the role of thermal lens on beam quality and the mode matching between the pump and the laser, which affects laser efficiency in TEM{sub 00} operation. The study shows that the experimental data are in good agreement with the theoretical predictions.

  9. ROC analysis for evaluating the detectability of image unsharpness due to the patient's movement. Phantom study comparing preview and diagnostic LCDs

    International Nuclear Information System (INIS)

    Tanaka, Rie; Shiraishi, Junji; Takamori, Miho; Watari, Chihiro

    2011-01-01

    The purpose of this study was to evaluate the detectability of image unsharpness due to a patient's movement, a receiver operating characteristic (ROC) analysis was conducted to compare the diagnostic and preview liquid-crystal displays (LCDs). Phantom images that simulated a patient's movement were obtained by using a moving metronome and acrylic plates with a computed radiography (CR) system. A total of 104 images were classified into five groups according to the degrees of image unsharpness determined based on the metronome velocity and exposure time. In an ROC observer study (n=6), a 2-megapixel diagnostic monochrome LCD (2M-LCD) and a 1.3-megapixel general color LCD for preview (1.3M-LCD) were compared in terms of the detection of image unsharpness due to the movement. A statistical test was performed using the multi-reader multi-case (MRMC) method. In the results, the average areas under the ROC curve values for the detection of image unsharpness using the 2M-LCD and 1.3M-LCD were 0.952 and 0.850, respectively. The detection of image unsharpness using the 2M-LCD was significantly better than that using the 1.3M-LCD (p<0.05). In addition, some images with slight unsharpness were identified correctly only using the 2M-LCD. The results suggest that the low-resolution LCD (id est (i.e.), the 1.3M-LCD for preview) had a limitation in identifying image unsharpness due to the patient's movement. Slight unsharpness could be missed in primary image checks performed on a preview monitor equipped with an imaging system. Therefore, the high-resolution LCD (i.e., a 2M-LCD) is necessary when using radiography for diagnostics. (author)

  10. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    Science.gov (United States)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  11. The diagnostic performance of radiography for detection of osteoarthritis-associated features compared with MRI in hip joints with chronic pain

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Beijing Jishuitan Hospital, Department of Radiology, Beijing (China); Hayashi, Daichi; Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Hunter, David J. [University of Sydney, Department of Medicine, Sydney (Australia); Li, Ling [New England Baptist Hospital, Division of Research, Boston, MA (United States); Winterstein, Anton; Bohndorf, Klaus [Klinikum Augsburg, Department of Radiology, Augsburg (Germany); Roemer, Frank W. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Klinikum Augsburg, Department of Radiology, Augsburg (Germany); University of Erlangen, Department of Radiology, Erlangen (Germany)

    2013-10-15

    To evaluate the diagnostic performance of radiography for the detection of MRI-detected osteoarthritis-associated features in various articular subregions of the hip joint. Forty-four patients with chronic hip pain (mean age, 63.3 {+-} 9.5 years), who were part of the Hip Osteoarthritis MRI Scoring (HOAMS) cohort, underwent both weight-bearing anteroposterior pelvic radiography and 1.5 T MRI. The HOAMS study was a prospective observational study involving 52 subjects, conducted to develop a semiquantitative MRI scoring system for hip osteoarthritis features. In the present study, eight subjects were excluded because of a lack of radiographic assessment. On radiography, the presence of superior and medial joint space narrowing, superior and inferior acetabular/femoral osteophytes, acetabular subchondral cysts, and bone attrition of femoral head was noted. On MRI, cartilage, osteophytes, subchondral cysts, and bone attrition were evaluated in the corresponding locations. Diagnostic performance of radiography was compared with that of MRI, and the area under curve (AUC) was calculated for each pathological feature. Compared with MRI, radiography provided high specificity (0.76-0.90) but variable sensitivity (0.44-0.78) for diffuse cartilage damage (using JSN as an indirect marker), femoral osteophytes, acetabular subchondral cysts and bone attrition of the femoral head, and a low specificity (0.42 and 0.58) for acetabular osteophytes. The AUC of radiography for detecting overall diffuse cartilage damage, marginal osteophytes, subchondral cysts and bone attrition was 0.76, 0.78, 0.67, and 0.82, respectively. Diagnostic performance of radiography is good for bone attrition, fair for marginal osteophytes and cartilage damage, but poor for subchondral cysts. (orig.)

  12. The diagnostic performance of radiography for detection of osteoarthritis-associated features compared with MRI in hip joints with chronic pain

    International Nuclear Information System (INIS)

    Xu, Li; Hayashi, Daichi; Guermazi, Ali; Hunter, David J.; Li, Ling; Winterstein, Anton; Bohndorf, Klaus; Roemer, Frank W.

    2013-01-01

    To evaluate the diagnostic performance of radiography for the detection of MRI-detected osteoarthritis-associated features in various articular subregions of the hip joint. Forty-four patients with chronic hip pain (mean age, 63.3 ± 9.5 years), who were part of the Hip Osteoarthritis MRI Scoring (HOAMS) cohort, underwent both weight-bearing anteroposterior pelvic radiography and 1.5 T MRI. The HOAMS study was a prospective observational study involving 52 subjects, conducted to develop a semiquantitative MRI scoring system for hip osteoarthritis features. In the present study, eight subjects were excluded because of a lack of radiographic assessment. On radiography, the presence of superior and medial joint space narrowing, superior and inferior acetabular/femoral osteophytes, acetabular subchondral cysts, and bone attrition of femoral head was noted. On MRI, cartilage, osteophytes, subchondral cysts, and bone attrition were evaluated in the corresponding locations. Diagnostic performance of radiography was compared with that of MRI, and the area under curve (AUC) was calculated for each pathological feature. Compared with MRI, radiography provided high specificity (0.76-0.90) but variable sensitivity (0.44-0.78) for diffuse cartilage damage (using JSN as an indirect marker), femoral osteophytes, acetabular subchondral cysts and bone attrition of the femoral head, and a low specificity (0.42 and 0.58) for acetabular osteophytes. The AUC of radiography for detecting overall diffuse cartilage damage, marginal osteophytes, subchondral cysts and bone attrition was 0.76, 0.78, 0.67, and 0.82, respectively. Diagnostic performance of radiography is good for bone attrition, fair for marginal osteophytes and cartilage damage, but poor for subchondral cysts. (orig.)

  13. [Qualitative and quantitative diagnostic performance of 320-slice computed tomography for detecting coronary artery disease with respect to atherosclerotic plaque characteristics].

    Science.gov (United States)

    Li, Suhua; Liu, Jinlai; Peng, Long; Dong, Ruimin; Wu, Huilan; Wang, Chenlin; Ni, Qiongqiong; Luo, Yanting; Zhu, Jieming; Chen, Lin

    2014-10-28

    To investigate qualitatively and quantitatively the diagnostic performance of 320-slice CT for detection of coronary artery disease with respect to different atherosclerotic plaque characteristics. A retrospective search was performed for inpatients underwent both coronary CT and further coronary angiography (CAG) from December 1, 2008 to December 31, 2012. The diagnostic performance of 320-slice CTA for detecting significant stenosis ( ≥ 50% diameter) with respect to atherosclerotic plaque characteristics were analyzed by calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, kappa index (κ), and area under the receiver operating characteristic curve (AUC). Chi-square test was used to evaluate whether there were significant differences of the true-case frequency (true positive + true negative) and false-case frequency (false positive + false negative) among groups. Bland-Altman analysis was used to determine limits of agreement between CTA and CAG. A total of 454 patients and 6 779 segments were analyzed. Diagnostic accuracy was higher in non-calcified segments; whereas they decreased in the presence of both mild-moderately and heavily calcified plaques. Excellent agreement (κ = 0.810) between CT and CAG was observed for non-calcified segments, while good agreement was observed for both mild-moderately (κ = 0.701) and heavily calcified segments (κ = 0.750). Both mild-moderate (P = 0.000) and heavy (P = 0.000) calcification decreased the true-case frequency and increased the false-case frequency when compared to non-calcification. There were no significant underestimation or overestimation for non-calcified (P = 0.087) and mild-moderately calcified (P = 0.704) segments, while there was significant overestimation for heavily calcified segments (P = 0.001). Great qualitative and quantitative diagnostic performances of 320-slice CT were observed in non-calcified coronary segments. However, qualitative

  14. A diagnostic PCR assay for the detection of an Australian epidemic strain of Pseudomonas aeruginosa

    Science.gov (United States)

    2010-01-01

    Background Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF) and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I) has been found to be widespread in CF patients in eastern Australia. Methods Suppression subtractive hybridization (SSH) was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE), 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources. Results We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples. Conclusions We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum. PMID:20637114

  15. A diagnostic PCR assay for the detection of an Australian epidemic strain of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Murphy Anna

    2010-07-01

    Full Text Available Abstract Background Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I has been found to be widespread in CF patients in eastern Australia. Methods Suppression subtractive hybridization (SSH was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE, 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources. Results We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples. Conclusions We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum.

  16. Diagnostic value of combined detection of serum tumor markers for lung cancer

    International Nuclear Information System (INIS)

    Li Yanping; Wang Qun; Zhao Zihong; Zhou Shan

    2013-01-01

    Objective: To investigate the diagnostic value of combined detection of serum tumor markers, including CEA, CA125, neuron-specific enolase (NSE) and cytokeratin fragment antigen 21-1 (CYFRA21-1) for lung cancer patients. Methods: The subjects involved 138 diagnosed lung cancer patients (82 males, 56 females, average age 58.6 years, from October 2010 to March 2012), 96 patients with benign lung diseases (56 males, 40 females, average age 51.3 years) and 45 healthy adults (30 males, 15 females, average age 43.9 years). The pathological types of lung cancer consisted of 66 squamous cell carcinoma (SCC), 52 adenocarcinoma and 20 small cell lung cancer (SCLC). The serum levels of CEA, CA125, NSE and CYFRA21-1 were measured with electrochemiluminescence immunoassay. The diagnostic efficacy for different pathological types was compared among each single tumor marker and combination of tumor markers. One-way analysis of variance q test were used for statistical analysis. Results: The serum levels of CEA, CA125, NSE and CYFRA21-1 in patients with lung cancer were higher than those in patients with benign lung diseases and in healthy subjects (CEA: (19.99±30.99), (10.78±19.77), (3.25±3.42) μg/L; CA125: (79.70±95.98), (44.96±44.97), (20.66±7.13) μg/L; NSE: (35.23±40.22), (15.31±8.42), (13.30±5.65) μg/L; CYFRA21-1: (18.07±43.71), (8.30±8.83), (3.13±1.60) μg/L; F=4.481, 5.436, 4.776, 6.002, all P<0.05). The highest level of CEA, NSE or CYFRA21-1 were found in adenocarcinoma (F=4.932, P<0.05), SCLC (F=5.119, P<0.05) or SCC (F=5.378, P<0.05), respectively. The highest sensitivity tumor markers for SCC, SCLC and adenocarcinoma were CYFRA21-1 (78.8%, 52/66), NSE (75.0%, 15/20) and CEA (57.7%, 30/52), respectively. In combined detection, the highest sensitivity combinations for SCC, SCLC and adenocarcinoma were CEA + CYFRA21-1 + NSE (89.4%, 59/66), CEA + CYFRA21-1 + NSE (80.0%, 16/20) and CEA + CA125 + NSE (78.8%, 41/52), respectively. Conclusions: Combined detection

  17. Advantages and disadvantages of current diagnostic tests for the detection of Helicobacter pylori.

    Science.gov (United States)

    Mégraud, F

    1996-01-01

    Current tests used to detect Helicobacter pylori are either invasive (histological detection, culture, the polymerase chain reaction (PCR), smear examination) or non-invasive (serology, 13C-urea breath test). These tests vary in their sensitivity and specificity, and the choice of test will depend on the situation, for example, whether the test is to detect infection or the success of eradication treatment. The accuracy of histological tests depends, to a large degree, on the expertise of the pathologist, while the accuracy of culture can depend on the conditions in which the specimen is transported and processed. When performed under optimal conditions, both techniques give very good results. The PCR test has similar sensitivity and specificity to histological and culture tests but a strict protocol must be followed to avoid contamination with H. pylori DNA. The rapid urease test (with a reading taken 1 hour later) is suitable for diagnosis before treatment but its sensitivity decreases after treatment. Smear examination has limited sensitivity. The urea breath test and serology (specific IgG detected by enzyme-linked immunosorbent assay with purified antigens) have sensitivities close to those using the best of the biopsy methods. Other points to consider when selecting a test are its availability, the rapidity of the results (which can range from a few minutes to 2 weeks), possibilities for retrospective analysis, quantification and the detection of pathogenic properties, the globality of certain tests that present an overall picture of the stomach, thus avoiding errors in sampling, and the cost of the test. Important added value can be gained from certain tests: histology allows evaluation of the status of the mucosa, culture allows strain typing and tests for antibiotic susceptibility, and the breath test can confirm successful eradication without endoscopy. When the diagnostic tests are performed correctly, most of them are highly accurate.

  18. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  19. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    to enable real-time detection of cell responses, adjustment of cellular stimulation etc. leading to establishment of conditional experiments. In this project, microfluidic systems engineering was leveraged to develop an eight chamber multi-layer microchip for intestinal barrier studies. Sandwiched between...... the layers was a modified Teflon porous membrane for cell culture. The novelty lies in modifying the surface of the porous Teflon support membrane using thiol-ene ‘click’ chemistry, thus allowing the modified Teflon membrane to be bonded between the chip layers to form an enclosed microchip. Successful...... application of the multi-layer microchip was demonstrated by integrating the microchip to an existing cell culture fluidic system to culture the human intestinal epithelial cells, Caco-2, for long term studies. Under the continuous low flow conditions, the cells differentiated into columnar cells displaying...

  20. CRISP. Simulation tool for fault detection and diagnostics in high-DG power networks

    International Nuclear Information System (INIS)

    Fontela, M.; Andrieu, C.; Raison, B.

    2004-08-01

    This document gives a description of a tool proposed for fault detection and diagnostics. The main principles of the functions of fault localization are described and detailed for a given MV network that will be used for the ICT experiment in Grenoble (experiment 3B). The aim of the tool is to create a technical, simple and realistic context for testing ICT dedicated to an electrical application. The tool gives the expected inputs and outputs contents of the various distributed ICT components when a fault occurs in a given MV network. So the requirements for the ICT components are given in term of expected data collected, analysed and transmitted. Several examples are given in order to illustrate the inputs/outputs in case of different faults. The tool includes a topology description which is a main aspect to develop in the future for managing the distribution network. Updating topology in real time will become necessary for fault diagnostic and protection, but also necessary for the various possible added applications (local market balance and local electrical power quality for instance). The tool gives a context and a simple view for the ICT components behaviours assuming an ideal response and transmission from them. The real characteristics and possible limitations for the ICT (information latency, congestion, security) will be established during the experiments from the same context described in the HTFD tool

  1. Blood culture-negative endocarditis: Improving the diagnostic yield using new diagnostic tools.

    Science.gov (United States)

    Fournier, Pierre-Edouard; Gouriet, Frédérique; Casalta, Jean-Paul; Lepidi, Hubert; Chaudet, Hervé; Thuny, Franck; Collart, Frédéric; Habib, Gilbert; Raoult, Didier

    2017-11-01

    Blood culture-negative endocarditis (BCNE) may represent up to 70% of all endocarditis cases, depending on series. From 2001 to 2009, we implemented in our laboratory a multimodal diagnostic strategy for BCNE that included systematized testing of blood, and when available, valvular biopsy specimens using serological, broad range molecular, and histopathological assays. A causative microorganism was identified in 62.7% of patients.In this study from January 2010 to December 2015, in an effort to increase the number of identified causative microorganisms, we prospectively added to our diagnostic protocol specific real-time (RT) polymerase chain reaction (PCR) assays targeting various endocarditis agents, and applied them to all patients with BCNE admitted to the 4 public hospitals in Marseille, France.A total of 283 patients with BCNE were included in the study. Of these, 177 were classified as having definite endocarditis. Using our new multimodal diagnostic strategy, we identified an etiology in 138 patients (78.0% of cases). Of these, 3 were not infective (2.2%) and 1 was diagnosed as having Mycobacterium bovis BCG endocarditis. By adding specific PCR assays from blood and valvular biopsies, which exhibited a significantly greater sensitivity (P < 10) than other methods, causative agents, mostly enterococci, streptococci, and zoonotic microorganisms, were identified in an additional 27 patients (14 from valves only, 11 from blood only, and 2 from both). Finally, in another 107 patients, a pathogen was detected using serology in 37, valve culture in 8, broad spectrum PCR from valvular biopsies and blood in 19 and 2, respectively, immunohistochemistry from valves in 3, and a combination of several assays in 38.By adding specific RT-PCR assays to our systematic PCR testing of patients with BCNE, we increased the diagnostic efficiency by 24.3%, mostly by detecting enterococci and streptococci that had not been detected by other diagnostic methods, but also agents

  2. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake [Keio University School of Medicine, Department of Diagnostic Radiology, Tokyo (Japan); Nippon Koukan Hospital, Department of Radiology, Kawasaki-shi, Kanagawa (Japan); Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Kuribayashi, Sachio [Keio University School of Medicine, Department of Diagnostic Radiology, Tokyo (Japan); Abe, Takayuki [Keio University School of Medicine, Center for Clinical Research, Tokyo (Japan); Ogawa, Kenji [Nippon Koukan Hospital, Department of Radiology, Kawasaki-shi, Kanagawa (Japan)

    2013-08-15

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA{sub -950}) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P < 0.0001) of tomosynthesis than radiography for the detection of pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA{sub -950}. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA{sub -950}. (orig.)

  3. Molecular diagnostics of periodontitis.

    Science.gov (United States)

    Korona-Głowniak, Izabela; Siwiec, Radosław; Berger, Marcin; Malm, Anna; Szymańska, Jolanta

    2017-01-28

    The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host's health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization) come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR), real-time polymerase chain reaction (real-time PCR), 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), as well as terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.

  4. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  5. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  6. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  7. Standardization of positive controls in diagnostic immunohistochemistry

    DEFF Research Database (Denmark)

    Torlakovic, Emina E; Nielsen, Søren; Francis, Glenn

    2015-01-01

    Diagnostic immunohistochemistry (dIHC) has been practiced for several decades, with an ongoing expansion of applications for diagnostic use, and more recently for detection of prognostic and predictive biomarkers. However, standardization of practice has yet to be achieved, despite significant...

  8. Diagnostic technology of PWR plant equipment failures

    International Nuclear Information System (INIS)

    Nakamura, Tetsuo; Tanaka, Mamoru; Okamachi, Masao; Taguchi, Shozo; Nagashima, Kazuhiro; Ishikawa, Satoshi

    1985-01-01

    To confirm the soundness of the important facilities in a nuclear power plant contributes to the reliability of the plant operations and improvement of its operation rate. For this purpose, the following diagnostic techniques have been developed. (1). Vibration and loose parts monitoring: Detection of abnormal structural vibrations in the reactor, estimation of its mode, detection of loose parts in the primary system, and estimation of the position and energy of their collisions against the reactor vessel or the like. (2). Valve leak monitoring: Detection of leaks from primary valves in the primary cooling boundary, such as the pressurizer relief valve and safety valve, and estimation of the form of the leaks. (3). Detector noise response diagnosis: Diagnosis of degradation of principal process detectors during plant operation. Furthermore, a diagnostic system incorporating the above diagnostic technology applicable to actual plants has been experimentally manufactured and successfully verified. (author)

  9. Computerized Diagnostic Assistant for the Automatic Detection of Pneumothorax on Ultrasound: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Shane M. Summers, MD, RDMS

    2016-03-01

    Full Text Available Introduction: Bedside thoracic ultrasound (US can rapidly diagnose pneumothorax (PTX with improved accuracy over the physical examination and without the need for chest radiography (CXR; however, US is highly operator dependent. A computerized diagnostic assistant was developed by the United States Army Institute of Surgical Research to detect PTX on standard thoracic US images. This computer algorithm is designed to automatically detect sonographic signs of PTX by systematically analyzing B-mode US video clips for pleural sliding and M-mode still images for the seashore sign. This was a pilot study to estimate the diagnostic accuracy of the PTX detection computer algorithm when compared to an expert panel of US trained physicians. Methods: This was a retrospective study using archived thoracic US obtained on adult patients presenting to the emergency department (ED between 5/23/2011 and 8/6/2014. Emergency medicine residents, fellows, attending physicians, physician assistants, and medical students performed the US examinations and stored the images in the picture archive and communications system (PACS. The PACS was queried for all ED bedside US examinations with reported positive PTX during the study period along with a random sample of negatives. The computer algorithm then interpreted the images, and we compared the results to an independent, blinded expert panel of three physicians, each with experience reviewing over 10,000 US examinations. Results: Query of the PACS system revealed 146 bedside thoracic US examinations for analysis. Thirteen examinations were indeterminate and were excluded. There were 79 true negatives, 33 true positives, 9 false negatives, and 12 false positives. The test characteristics of the algorithm when compared to the expert panel were sensitivity 79% (95 % CI [63-89] and specificity 87% (95% CI [77-93]. For the 20 images scored as highest quality by the expert panel, the algorithm demonstrated 100% sensitivity

  10. Diagnostic accuracy of tests to detect hepatitis B surface antigen: a systematic review of the literature and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ali Amini

    2017-11-01

    Full Text Available Abstract Background Chronic Hepatitis B Virus (HBV infection is characterised by the persistence of hepatitis B surface antigen (HBsAg. Expanding HBV diagnosis and treatment programmes into low resource settings will require high quality but inexpensive rapid diagnostic tests (RDTs in addition to laboratory-based enzyme immunoassays (EIAs to detect HBsAg. The purpose of this review is to assess the clinical accuracy of available diagnostic tests to detect HBsAg to inform recommendations on testing strategies in 2017 WHO hepatitis testing guidelines. Methods The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA guidelines using 9 databases. Two reviewers independently extracted data according to a pre-specified plan and evaluated study quality. Meta-analysis was performed. HBsAg diagnostic accuracy of rapid diagnostic tests (RDTs was compared to enzyme immunoassay (EIA and nucleic-acid test (NAT reference standards. Subanalyses were performed to determine accuracy among brands, HIV-status and specimen type. Results Of the 40 studies that met the inclusion criteria, 33 compared RDTs and/or EIAs against EIAs and 7 against NATs as reference standards. Thirty studies assessed diagnostic accuracy of 33 brands of RDTs in 23,716 individuals from 23 countries using EIA as the reference standard. The pooled sensitivity and specificity were 90.0% (95% CI: 89.1, 90.8 and 99.5% (95% CI: 99.4, 99.5 respectively, but accuracy varied widely among brands. Accuracy did not differ significantly whether serum, plasma, venous or capillary whole blood was used. Pooled sensitivity of RDTs in 5 studies of HIV-positive persons was lower at 72.3% (95% CI: 67.9, 76.4 compared to that in HIV-negative persons, but specificity remained high. Five studies evaluated 8 EIAs against a chemiluminescence immunoassay reference standard with a pooled sensitivity and specificity of 88.9% (95% CI: 87.0, 90.6 and

  11. Not All Next Generation Sequencing Diagnostics are Created Equal: Understanding the Nuances of Solid Tumor Assay Design for Somatic Mutation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Phillip N., E-mail: pgray@ambrygen.com; Dunlop, Charles L.M.; Elliott, Aaron M. [Ambry Genetics, 15 Argonaut, Aliso Viejo, CA 92656 (United States)

    2015-07-17

    The molecular characterization of tumors using next generation sequencing (NGS) is an emerging diagnostic tool that is quickly becoming an integral part of clinical decision making. Cancer genomic profiling involves significant challenges including DNA quality and quantity, tumor heterogeneity, and the need to detect a wide variety of complex genetic mutations. Most available comprehensive diagnostic tests rely on primer based amplification or probe based capture methods coupled with NGS to detect hotspot mutation sites or whole regions implicated in disease. These tumor panels utilize highly customized bioinformatics pipelines to perform the difficult task of accurately calling cancer relevant alterations such as single nucleotide variations, small indels or large genomic alterations from the NGS data. In this review, we will discuss the challenges of solid tumor assay design/analysis and report a case study that highlights the need to include complementary technologies (i.e., arrays) and germline analysis in tumor testing to reliably identify copy number alterations and actionable variants.

  12. Image quality - physical and diagnostic parameters. The radiologist's viewpoint

    International Nuclear Information System (INIS)

    Stender, H.St.

    1985-01-01

    The quality of a radiograph is determined by the diagnostic information it provides. This depends upon the visual detection of diagnostically relevant structures. The technical radiographic requirements are dependent upon the physical measurements and the physiological and optical conditions. Such physical factors as spatial resolution, contrast and noise are quantitative measurements, which must be oriented to the qualitative visual characteristics of the radiograph. The influence of subjective perception and complexity of structural noise on the detectability of details and structures particularly demands attention. Since radiographic quality depends upon the detection of diagnostically relevant structure and features, it is important to define these parameters on the basis of extensive radiographic analysis and the corresponding clinical findings. The diagnostically relevant radiographic parameters and image details and critical structures have been worked out for the examination of the lungs, colon, stomach, urinary tract and skeleton. Good image quality requires coordination of the physical-technical parameters with the visual ability of the observer, since only in this way can the diagnostic information be represented with sufficient clarity. (author)

  13. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  14. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    Science.gov (United States)

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  15. Early diagnostic role of PSA combined miR-155 detection in prostate cancer.

    Science.gov (United States)

    Guo, T; Wang, X-X; Fu, H; Tang, Y-C; Meng, B-Q; Chen, C-H

    2018-03-01

    As a kind of malignant tumor in the male genitourinary system, prostate cancer exhibits significantly increased occurrence. Prostate-specific antigen (PSA) expression can be seen in the prostate cancer, prostatitis, and other diseases, therefore, lack of diagnostic specificity. The miR-155 expression is abnormally increased in the tumors. Therefore, this study aims to explore the clinical significance of PSA combined miR-155 detection in the early diagnosis of prostate cancer. A total of 86 patients diagnosed with prostate cancer were enrolled in this study. PSA and miR-155 gene expression in tumor tissue were detected by using Real-time PCR. The serum levels of PSA were measured by using enzyme-linked immunosorbent assay (ELISA). The correlation of PSA and miR-155 expression with age, body mass index (BMI), tumor volume, tumor-node-metastasis (TNM) stage, lymph node metastasis (LNM), and other clinicopathological features were analyzed, respectively. Serum PSA expression and PSA gene in tumor tissue were significantly higher compared to that in adjacent tissues (pPSA gene and protein increased significantly with the clinical stage of TNM and decreased following the increase of grade (pPSA and miR-155 expressions were positively correlated with TNM stage, tumor volume, and LNM, and negatively correlated with grade (pPSA and miR-155 were closely related to the clinicopathological features of prostate cancer. Combined detection is helpful for the early diagnosis of prostate cancer.

  16. Electroacoustic polymer microchip as an alternative to quartz crystal microbalance for biosensor development.

    Science.gov (United States)

    Gamby, Jean; Lazerges, Mathieu; Girault, Hubert H; Deslouis, Claude; Gabrielli, Claude; Perrot, Hubert; Tribollet, Bernard

    2008-12-01

    Laser photoablation of poly(ethylene terephthalate) (PET), a flexible dielectric organic polymer, was used to design an acoustic miniaturized DNA biosensor. The microchip device includes a 100-microm-thick PET layer, with two microband electrodes patterned in photoablated microchannels on one side and a depressed photoablated disk decorated by gold sputtered layer on the other side. Upon application of an electric signal between the two electrodes, an electroacoustic resonance phenomenon at approximately 30 MHz was established through the microelectrodes/PET/ gold layer interface. The electroacoustic resonance response was fitted with a series RLC motional arm in parallel with a static Co arm of a Buttlerworth-Van Dyke equivalent circuit: admittance spectra recorded after successive cycles of DNA hybridization on the gold surface showed reproducible changes on R, L, and C parameters. The same hybridizations runs were performed concomitantly on a 27-MHz (9 MHz, third overtone) quartz crystal microbalance in order to validate the PET device developed for bioanalysis applications. The electroacoustic PET device, approximately 100 times smaller than a microbalance quartz crystal, is interesting for the large-scale integration of acoustic sensors in biochips.

  17. The diagnostic accuracy of magnetic resonance venography in the detection of deep venous thrombosis: a systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Abdalla, G.; Fawzi Matuk, R.; Venugopal, V.; Verde, F.; Magnuson, T.H.; Schweitzer, M.A.; Steele, K.E.

    2015-01-01

    Aim: To search the literature for further evidence for the use of magnetic resonance venography (MRV) in the detection of suspected DVT and to re-evaluate the accuracy of MRV in the detection of suspected deep vein thrombosis (DVT). Materials and methods: PubMed, EMBASE, Scopus, Cochrane, and Web of Science were searched. Study quality and the risk of bias were evaluated using the QUADAS 2. A random effects meta-analysis including subgroup and sensitivity analyses were performed. Results: The search resulted in 23 observational studies all from academic centres. Sixteen articles were included in the meta-analysis. The summary estimates for MRV as a diagnostic non-invasive tool revealed a sensitivity of 93% (95% confidence interval [CI]: 89% to 95%) and specificity of 96% (95% CI: 94% to 97%). The heterogeneity of the studies was high. Inconsistency (I2) for sensitivity and specificity was 80.7% and 77.9%, respectively. Conclusion: Further studies investigating the use of MRV in the detection of suspected DVT did not offer further evidence to support the replacement of ultrasound with MRV as the first-line investigation. However, MRV may offer an alternative tool in the detection/diagnosis of DVT for whom ultrasound is inadequate or not feasible (such as in the obese patient). -- Highlights: •We aimed to search the literature for evidence for the use of MRV in the detection of suspected DVT. •We questioned the use of MRV in special populations like the obese where contrast venography may not be feasible or safe. •MRV may not replace ultrasound as the first-line modality for DVT detection. •Consider MRV use in special populations like the obese where other diagnostic tools are not feasible. •Studies to compare MRV vs. ultrasound as a screening tool for DVT in the obese should be considered

  18. Diagnostic properties of C-reactive protein for detecting pneumonia in children

    NARCIS (Netherlands)

    Koster, M.J.; Broekhuizen, B.D.L.; Minnaard, M.C.; Balemans, W.A.; Hopstaken, R.M.; de Jong, P.A.; Verheij, Th.J.M.

    BACKGROUND: The diagnostic value of C-reactive protein (CRP) level for pneumonia in children is unknown. As a first step in the assessment of the value of CRP, a diagnostic study was performed in children at an emergency department (ED). METHODS: In this cross-sectional study, data were

  19. Experience with diagnostic instrumentation in nuclear power plants

    International Nuclear Information System (INIS)

    Gopal, R.; Ciaramitaro, W.

    1977-01-01

    Over the past several years, Westinghouse has developed a coordinated system of on-line diagnostic instrumentation for the acquisition and analysis of data for diagnostics and incipient failure detection of critical plant equipment and systems. Primary motivation for this work is to improve NSSS availability and Maintainability through the detection of malfunctions at their inception. These systems encompass the following areas: (1) Vibration Monitoring System for detection of changes in vibrational characteristics of the major components of Nuclear Steam Supply System (NSSS) and Balance of Plant (BOP); (2) Acoustic Monitoring System for detection and location of leaks in the primary system pressure boundary and other piping systems in PWRs; (3) Metal Impact Monitoring for detection of loose debris in the reactor vessel and steam generators; (4) Nuclear Noise Monitoring System for monitoring core barrel vibration; (5) Sensor Response Time Measurement System for detecting any degradation of process sensors; and (6) Transit Time Flow Meter for determining primary coolant flow rate. Summarized in this paper are some of the features of the systems and in-plant experience. These experiences demonstrate that diagnostic systems in combination with analytical and laboratory work for data interpretation do improve plant availability. (author)

  20. A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application

    Directory of Open Access Journals (Sweden)

    Shashwat Pathak

    2016-09-01

    Full Text Available This paper proposes and evaluates an algorithm to automatically detect the cataracts from color images in adult human subjects. Currently, methods available for cataract detection are based on the use of either fundus camera or Digital Single-Lens Reflex (DSLR camera; both are very expensive. The main motive behind this work is to develop an inexpensive, robust and convenient algorithm which in conjugation with suitable devices will be able to diagnose the presence of cataract from the true color images of an eye. An algorithm is proposed for cataract screening based on texture features: uniformity, intensity and standard deviation. These features are first computed and mapped with diagnostic opinion by the eye expert to define the basic threshold of screening system and later tested on real subjects in an eye clinic. Finally, a tele-ophthamology model using our proposed system has been suggested, which confirms the telemedicine application of the proposed system.

  1. Ultraviolet-visible and fluorescence spectroscopy can be used as a diagnostic tool for gamma irradiation detection in vivo.

    Science.gov (United States)

    K-Abdelhalim, Mohamed Anwar; Moussa, Sherif A-Abdelmottaleb

    2016-09-01

    The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo. Adult male rats were exposed to 25, 50, 75 and 100 Gray as single dose, using Cobalt-60 (Co-60) source with a dose rate of 0.883 centi Gray/sec (cGy/s). Ultraviolet and fluorescence spectroscopy of rat's blood serum were measured. After gamma irradiation of rats in vivo, the blood serum absorbance peaks for 25, 50, 75 and 100 Gray (Gy) decreased and shifted towards the ultra violet wavelength. A maximal change in fluorescence intensity of blood serum at 350 nm was obtained when exciting light at 194 nm after irradiation. The fluorescence intensity also decreased with the dose. The highest radiation gamma dose might be accompanied with the highest oxidative stress. This study suggests that at the above mentioned gamma radiation doses, the blood is highly fragmented; with low aggregation at 25 Gy and with high aggregation at 50-100 Gy.

  2. The diagnostic test accuracy of ultrasound for the detection of lateral epicondylitis: a systematic review and meta-analysis.

    Science.gov (United States)

    Latham, S K; Smith, T O

    2014-05-01

    The purpose of this study was to determine the diagnostic test accuracy of ultrasound for the detection of lateral epicondylitis. An electronic search of databases registering published (MEDLINE, EMBASE, CINAHL, AMED, Cochrane Library, ScienceDirect) and unpublished literature was conducted to January 2013. All diagnostic accuracy studies that compared the accuracy of ultrasound (index test) with a reference standard for lateral epicondylitis were included. The methodological quality of each of the studies was appraised using the QUADAS tool. When appropriate, the pooled sensitivity and specificity analysis was conducted. Ten studies investigating 711 participants and 1077 elbows were included in this review. Ultrasound had variable sensitivity and specificity (sensitivity: 64%-100%; specificity: 36%-100%). The available literature had modest methodological quality, and was limited in terms of sample sizes and blinding between index and reference test results. There is evidence to support the use of ultrasound in the detection of lateral epicondylitis. However, its accuracy appears to be highly dependent on numerous variables, such as operator experience, equipment and stage of pathology. Judgement should be used when considering the benefit of ultrasound for use in clinical practice. Further research assessing variables such a transducer frequency independently is specifically warranted. Level II. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Is diagnostic accuracy for detecting pulmonary nodules in chest CT reduced after a long day of reading?

    Science.gov (United States)

    Krupinski, Elizabeth A.; Berbaum, Kevin S.; Caldwell, Robert; Schartz, Kevin M.

    2012-02-01

    Radiologists are reading more cases with more images, especially in CT and MRI and thus working longer hours than ever before. There have been concerns raised regarding fatigue and whether it impacts diagnostic accuracy. This study measured the impact of reader visual fatigue by assessing symptoms, visual strain via dark focus of accommodation, and diagnostic accuracy. Twenty radiologists and 20 radiology residents were given two diagnostic performance tests searching CT chest sequences for a solitary pulmonary nodule before (rested) and after (tired) a day of clinical reading. 10 cases used free search and navigation, and the other 100 cases used preset scrolling speed and duration. Subjects filled out the Swedish Occupational Fatigue Inventory (SOFI) and the oculomotor strain subscale of the Simulator Sickness Questionnaire (SSQ) before each session. Accuracy was measured using ROC techniques. Using Swensson's technique yields an ROC area = 0.86 rested vs. 0.83 tired, p (one-tailed) = 0.09. Using Swensson's LROC technique yields an area = 0.73 rested vs. 0.66 tired, p (one-tailed) = 0.09. Using Swensson's Loc Accuracy technique yields an area = 0.77 rested vs. 0.72 tired, p (one-tailed) = 0.13). Subjective measures of fatigue increased significantly from early to late reading. To date, the results support our findings with static images and detection of bone fractures. Radiologists at the end of a long work day experience greater levels of measurable visual fatigue or strain, contributing to a decrease in diagnostic accuracy. The decrease in accuracy was not as great however as with static images.

  4. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    Science.gov (United States)

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  5. Diagnosis of Periodontal Diseases by Biomarkers

    Science.gov (United States)

    Kido, Jun-Ichi; Hino, Mami; Bando, Mika; Hiroshima, Yuka

    Many middle aged and old persons take periodontal diseases that mainly cause teeth loss and result in some systemic diseases. The prevention of periodontal diseases is very important for oral and systemic health, but the present diagnostic examination is not fully objective and suitable. To diagnose periodontal diseases exactly, some biomarkers shown inflammation, tissue degradation and bone resorption, in gingival crevicular fluid (GCF) and saliva are known. We demonstrated that GCF levels of calprotectin, inflammation-related protein, and carboxy-terminal propeptide of type I procollagen, bone metabolism-related protein, were associated with clinical condition of periodontal diseases, and suggested that these proteins may be useful biomarkers for periodontal diseases. Recently, determinations of genes and proteins by using microdevices are studied for diagnosis of some diseases. We detected calprotectin protein by chemiluminescent immunoassay on a microchip and showed the possibility of specific and quantitative detection of calprotectin in a very small amount of GCF. To determine plural markers in GCF by using microdevices contributes to develop accurate, objective diagnostic system of periodontal diseases.

  6. Diagnostic validation of three test methods for detection of cyprinid herpesvirus 3 (CyHV-3).

    Science.gov (United States)

    Clouthier, Sharon C; McClure, Carol; Schroeder, Tamara; Desai, Megan; Hawley, Laura; Khatkar, Sunita; Lindsay, Melissa; Lowe, Geoff; Richard, Jon; Anderson, Eric D

    2017-03-06

    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of koi herpesvirus disease in koi and common carp. The disease is notifiable to the World Organisation for Animal Health. Three tests-quantitative polymerase chain reaction (qPCR), conventional PCR (cPCR) and virus isolation by cell culture (VI)-were validated to assess their fitness as diagnostic tools for detection of CyHV-3. Test performance metrics of diagnostic accuracy were sensitivity (DSe) and specificity (DSp). Repeatability and reproducibility were measured to assess diagnostic precision. Estimates of test accuracy, in the absence of a gold standard reference test, were generated using latent class models. Test samples originated from wild common carp naturally exposed to CyHV-3 or domesticated koi either virus free or experimentally infected with the virus. Three laboratories in Canada participated in the precision study. Moderate to high repeatability (81 to 99%) and reproducibility (72 to 97%) were observed for the qPCR and cPCR tests. The lack of agreement observed between some of the PCR test pair results was attributed to cross-contamination of samples with CyHV-3 nucleic acid. Accuracy estimates for the PCR tests were 99% for DSe and 93% for DSp. Poor precision was observed for the VI test (4 to 95%). Accuracy estimates for VI/qPCR were 90% for DSe and 88% for DSp. Collectively, the results show that the CyHV-3 qPCR test is a suitable tool for surveillance, presumptive diagnosis and certification of individuals or populations as CyHV-3 free.

  7. Diagnostic properties of C-reactive protein for detecting pneumonia in children.

    Science.gov (United States)

    Koster, Madieke J; Broekhuizen, Berna D L; Minnaard, Margaretha C; Balemans, Walter A F; Hopstaken, Rogier M; de Jong, Pim A; Verheij, Theo J M

    2013-07-01

    The diagnostic value of C-reactive protein (CRP) level for pneumonia in children is unknown. As a first step in the assessment of the value of CRP, a diagnostic study was performed in children at an emergency department (ED). In this cross-sectional study, data were retrospectively collected from children presenting with suspected pneumonia at the ED of Antonius Hospital Nieuwegein in The Netherlands between January 2007 and January 2012. Diagnostic outcome was pneumonia yes/no according to independent radiologist. (Un)adjusted association between CRP level and pneumonia and diagnostic value of CRP were calculated. Of 687 presenting children, 286 underwent both CRP measurement and chest radiography. 148 had pneumonia (52%). The proportion of pneumonia increased with CRP level. Negative predictive values declined, but positive predictive values increased with higher CRP thresholds. Univariable odds ratio for the association between CRP level and pneumonia was 1.2 (95% CI 1.11-1.21) per 10 mg/L increase. After adjustment for baseline characteristics CRP level remained associated with pneumonia. CRP level has independent diagnostic value for pneumonia in children presenting at the ED with suspected pneumonia, but low levels do not exclude pneumonia in this setting. These results prompt evaluation of CRP in primary care children with LRTI. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Diagnostic Accuracy of CBCT with Different Voxel Sizes and Intraoral Digital Radiography for Detection of Periapical Bone Lesions: An Ex-Vivo Study

    Directory of Open Access Journals (Sweden)

    Shirin Sakhdari

    2016-10-01

    Full Text Available Objectives: This study sought to assess the diagnostic accuracy of cone beam computed tomography (CBCT with different voxel sizes and intraoral digital radiography with photostimulable phosphor (PSP plate for detection of periapical (PA bone lesions.Materials and Methods: In this ex vivo diagnostic study, one-millimeter defects were created in the alveolar sockets of 15 bone blocks, each with two posterior teeth. A no-defect control group was also included. Digital PA radiographs with PSP plates and CBCT scans with 200, 250 and 300μ voxel sizes were obtained. Four observers evaluated the possibility of lesion detection using a 5-point scale. Sensitivity, specificity, positive predictive value (PPV and negative predicative value (NPV were analyzed using one-way ANOVA and Tamhane’s post hoc test. Kappa and weighted kappa statistics were applied to assess intraobserver and interobserver agreements.Results: Cochrane Q test showed no significant difference between PSP and CBCT imaging modalities in terms of kappa and weighted kappa statistics (P=0.675. The complete sensitivity and complete NPV for 200 and 250 μ voxel sizes were higher than those of 300 μ voxel size and digital radiography (P<0.001. No significant difference was noted in other parameters among other imaging modalities (P=0.403.Conclusions: The results showed that high-resolution CBCT scans had higher diagnostic accuracy than PSP digital radiography for detection of artificially created PA bone lesions. Voxel size (field of view must be taken into account to minimize patient radiation dose.Keywords: Diagnosis; Cone-Beam Computed Tomography; Radiography, Dental, Digital; Periapical Periodontitis

  9. Diagnostic accuracy of 64-slice multidetector CT for detection of in-stent restenosis in an unselected, consecutive patient population

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsdottir, Sigurdis, E-mail: sigurdisha@gmail.com [Boston Medical Center, 72 East Concord Street (Evans 124), Boston, MA, 02118 (United States); Gudnason, Thorarinn, E-mail: thorgudn@landspitali.is [Landspitali University Hospital, Hringbraut, 101 Reykjavik (Iceland); Sigurdsson, Axel F., E-mail: axelfsig@landspitali.is [Landspitali University Hospital, Hringbraut, 101 Reykjavik (Iceland); Gudjonsdottir, Jonina, E-mail: jonina@rd.is [Rontgen Domus Medica, Egilsgata 3, 101 Reykjavik (Iceland); Lehman, Sam J., E-mail: slehman@partners.org [Massachusetts General Hospital, 165 Cambridge Street, Suite 400, Boston, MA 02114 (United States); Eyjolfsson, Kristjan, E-mail: kristey@landspitali.is [Landspitali University Hospital, Hringbraut, 101 Reykjavik (Iceland); Scheving, Sigurpall S., E-mail: sigurpal@landspitali.is [Landspitali University Hospital, Hringbraut, 101 Reykjavik (Iceland); Gibson, C. Michael, E-mail: mgibson@perfuse.org [Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115 (United States); Hoffmann, Udo, E-mail: uhoffmann@partners.org [Massachusetts General Hospital, 165 Cambridge Street, Suite 400, Boston, MA 02114 (United States); Jonsdottir, Birna, E-mail: birna@rd.is [Rontgen Domus Medica, Egilsgata 3, 101 Reykjavik (Iceland); Andersen, Karl, E-mail: andersen@landspitali.is [Landspitali University Hospital, Hringbraut, 101 Reykjavik (Iceland)

    2010-11-15

    Objectives: To investigate the diagnostic accuracy of 64-slice multidetector computed tomography (64-CT) for detection of in-stent restenosis (ISR) in an unselected, consecutive patient population. Background: Detection of in-stent restenosis by cardiac CT would be a major advance for the evaluation of patients suspected of having ISR. However, the diagnostic accuracy of current generation 64-CT in this context is not fully established. Methods: We conducted a prospective study on patients with stable angina or acute coronary syndrome with no prior history of coronary artery disease. Six months after percutaneous coronary intervention (PCI) with stent placement they underwent a 64-CT scan (Toshiba Multi-Slice Aquilion 64) and consequently a repeat coronary angiography for comparison. Cardiac CT data sets were analyzed for the presence of in-stent restenosis by two independent expert readers blinded to the coronary angiographic data. Results: Ninety-three patients with a total of 140 stents were evaluated. Males comprised 82% of the study group and the mean age was 63 {+-} 10 years. The mean time from PCI to the repeat coronary angiography was 208 {+-} 37 days and the mean time from 64-CT to repeat coronary angiography was 3.7 {+-} 4.9 days. The restenosis rate according to coronary angiography was 26%. Stent diameter, strut thickness, heart rate and body mass index (BMI) significantly affected image quality. The sensitivity, specificity, positive and negative predictive values of 64-CT for detection of in-stent restenosis were 27%, 95%, 67% and 78%, respectively. Conclusions: Current generation, 64-slice CT, remains limited in its ability to accurately detect in-stent restenosis.

  10. Advances in medical diagnostic technology

    CERN Document Server

    Lai, Khin Wee; Mohamad Salim, Maheza Irna; Ong, Sang-Bing; Utama, Nugraha Priya; Myint, Yin Mon; Mohd Noor, Norliza; Supriyanto, Eko

    2014-01-01

    This book provides the most recent findings and knowledge in advanced diagnostics technology, covering a wide spectrum including brain activity analysis, breast and lung cancer detection, echocardiography, computer aided skeletal assessment to mitochondrial biology imaging at the cellular level. The authors explored magneto acoustic approaches and tissue elasticity imaging for the purpose of breast cancer detection. Perspectives in fetal echocardiography from an image processing angle are included. Diagnostic imaging in the field of mitochondrial diseases as well as the use of Computer-Aided System (CAD) are also discussed in the book. This book will be useful for students, lecturers or professional researchers in the field of biomedical sciences and image processing.

  11. NPP Mochovce units 1 and 2 diagnostic systems

    International Nuclear Information System (INIS)

    Heidenreich, S.

    1997-01-01

    In this paper the diagnostic systems (leak detection monitoring, vibration monitoring, lose parts monitoring, fatigue monitoring) of NPP Mochovce units 1 and 2 are presented. All of the designed diagnostic systems are personal computer based systems

  12. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis.

    Science.gov (United States)

    HaiFeng, Liu; YongSheng, Xu; YangQin, Xun; Yu, Dou; ShuaiWen, Wang; XingRu, Lu; JunQiang, Lei

    2017-11-01

    This meta-analysis is to comprehensively evaluate the diagnostic performance of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) for detecting intracranial aneurysm (IA). PubMed, Embase, Web of Science, and the Cochrane library were systematically searched for retrieving eligible studies. Study inclusion, data extraction, and risk of bias assessment were performed by two researchers independently. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess the diagnostic value. In addition, heterogeneity and subgroup analysis were carried out. In total, 18 studies comprising 3463 patients were selected. The results of 3D-TOF-MRA for diagnosing IA were SEN 0.89 (95% CI 0.82-0.94), SPE 0.94 (0.86-0.97), PLR 13.79 (5.92-32.12), NLR 0.11 (0.07-0.19), DOR 121.90 (38.81-382.94), and AUC 0.96 (0.94-0.98), respectively. In the subgroup analysis, studies without subarachnoid hemorrhage (SAH) tend to perform statistical significantly better (P 3D-TOF-MRA had better SEN in aneurysms > 3 mm than the aneurysms ≤ 3 mm in diameter: 0.89 (0.87-0.92) vs. 0.78 (0.71-0.84) with P 3D-TOF-MRA has an excellent diagnostic performance for the overall assessment of IA and may serve as an alternative for further patient management with IA.

  13. The diagnostic value of pepsin detection in saliva for gastro-esophageal reflux disease: a preliminary study from China.

    Science.gov (United States)

    Du, Xing; Wang, Feng; Hu, Zhiwei; Wu, Jimin; Wang, Zhonggao; Yan, Chao; Zhang, Chao; Tang, Juan

    2017-10-17

    None of current diagnostic methods has been proven to be a reliable tool for gastro-esophageal reflux disease (GERD). Pepsin in saliva has been proposed as a promising diagnostic biomarker for gastro-esophageal reflux. We aimed to determine the diagnostic value of salivary pepsin detection for GERD. Two hundred and fifty patients with symptoms suggestive of GERD and 35 asymptomatic healthy volunteers provided saliva on morning waking, after lunch and dinner for pepsin determination using the Peptest lateral flow device. All patients underwent 24-h multichannel intraluminal impedance pH (24-h MII-pH) monitoring and upper gastrointestinal endoscopy. Based on 24-h MII-pH and endoscopy study, patients were defined as GERD (abnormal MII-pH results and/or reflux esophagitis) and non-GERD otherwise. Patients with GERD had a higher prevalence of pepsin in saliva and higher pepsin concentration than patients with non-GERD and healthy controls (P < 0.001 for all). The pepsin test had a sensitivity of 73% and a specificity of 88.3% for diagnosing GERD using the optimal cut-off value of 76 ng/mL. Postprandial saliva samples collected when the symptoms occurred had a more powerful ability to identify GERD. Salivary pepsin test had moderate diagnostic value for GERD. It may be a promising tool to replace the use of currently invasive tools with advantages of non-invasive, easy to perform and cost effective. ChiCTR-DDD-16009506 (date of registration: October 20, 2016).

  14. Limited diagnostic accuracy of magnetic resonance imaging and clinical tests for detecting partial-thickness tears of the rotator cuff.

    Science.gov (United States)

    Brockmeyer, Matthias; Schmitt, Cornelia; Haupert, Alexander; Kohn, Dieter; Lorbach, Olaf

    2017-12-01

    The reliable diagnosis of partial-thickness tears of the rotator cuff is still elusive in clinical practise. Therefore, the purpose of the study was to determine the diagnostic accuracy of MR imaging and clinical tests for detecting partial-thickness tears of the rotator cuff as well as the combination of these parameters. 334 consecutive shoulder arthroscopies for rotator cuff pathologies performed during the time period between 2010 and 2012 were analyzed retrospectively for the findings of common clinical signs for rotator cuff lesions and preoperative MR imaging. These were compared with the intraoperative arthroscopic findings as "gold standard". The reports of the MR imaging were evaluated with regard to the integrity of the rotator cuff. The Ellman Classification was used to define partial-thickness tears of the rotator cuff in accordance with the arthroscopic findings. Descriptive statistics, sensitivity, specificity, positive and negative predictive value were calculated. MR imaging showed 80 partial-thickness and 70 full-thickness tears of the rotator cuff. The arthroscopic examination confirmed 64 partial-thickness tears of which 52 needed debridement or refixation of the rotator cuff. Sensitivity for MR imaging to identify partial-thickness tears was 51.6%, specificity 77.2%, positive predictive value 41.3% and negative predictive value 83.7%. For the Jobe-test, sensitivity was 64.1%, specificity 43.2%, positive predictive value 25.9% and negative predictive value 79.5%. Sensitivity for the Impingement-sign was 76.7%, specificity 46.6%, positive predictive value 30.8% and negative predictive value 86.5%. For the combination of MR imaging, Jobe-test and Impingement-sign sensitivity was 46.9%, specificity 85.4%, positive predictive value 50% and negative predictive value 83.8%. The diagnostic accuracy of MR imaging and clinical tests (Jobe-test and Impingement-sign) alone is limited for detecting partial-thickness tears of the rotator cuff. Additionally

  15. Comparison of novel and standard diagnostic tools for the detection of Schistosoma mekongi infection in Lao People's Democratic Republic and Cambodia.

    Science.gov (United States)

    Vonghachack, Youthanavanh; Sayasone, Somphou; Khieu, Virak; Bergquist, Robert; van Dam, Govert J; Hoekstra, Pytsje T; Corstjens, Paul L A M; Nickel, Beatrice; Marti, Hanspeter; Utzinger, Jürg; Muth, Sinuon; Odermatt, Peter

    2017-08-10

    Given the restricted distribution of Schistosoma mekongi in one province in Lao People's Democratic Republic (Lao PDR) and two provinces in Cambodia, together with progress of the national control programmes aimed at reducing morbidity and infection prevalence, the elimination of schistosomiasis mekongi seems feasible. However, sensitive diagnostic tools will be required to determine whether elimination has been achieved. We compared several standard and novel diagnostic tools in S. mekongi-endemic areas. The prevalence and infection intensity of S. mekongi were evaluated in 377 study participants from four villages in the endemic areas in Lao PDR and Cambodia using Kato-Katz stool examination, antibody detection based on an enzyme-linked immunosorbent assay (ELISA) and schistosome circulating antigen detection by lateral-flow tests. Two highly sensitive test systems for the detection of cathodic and anodic circulating antigens (CCA, CAA) in urine and serum were utilized. Stool microscopy revealed an overall prevalence of S. mekongi of 6.4% (one case in Cambodia and 23 cases in Lao PDR), while that of Opisthorchis viverrini, hookworm, Trichuris trichiura, Ascaris lumbricoides and Taenia spp. were 50.4%, 28.1%, 3.5%, 0.3% and 1.9%, respectively. In the urine samples, the tests for CCA and CAA detected S. mekongi infections in 21.0% and 38.7% of the study participants, respectively. In the serum samples, the CAA assay revealed a prevalence of 32.4%, while a combination of the CAA assay in serum and in urine revealed a prevalence of 43.2%. There was a difference between the two study locations with a higher prevalence reached in the samples from Lao PDR. The CCA, CAA and ELISA results showed substantially higher prevalence estimates for S. mekongi compared to Kato-Katz thick smears. Active schistosomiasis mekongi in Lao PDR and Cambodia might thus have been considerably underestimated previously. Hence, sustained control efforts are still needed to break transmission

  16. The agony of choice in dermatophyte diagnostics-performance of different molecular tests and culture in the detection of Trichophyton rubrum and Trichophyton interdigitale.

    Science.gov (United States)

    Kupsch, C; Ohst, T; Pankewitz, F; Nenoff, P; Uhrlaß, S; Winter, I; Gräser, Y

    2016-08-01

    Dermatophytosis caused by dermatophytes of the genera Trichophyton and Microsporum belong to the most frequent mycoses worldwide. Molecular detection methods proved to be highly sensitive and enable rapid and accurate detection of dermatophyte species from clinical specimens. For the first time, we compare the performance of different molecular methods with each other and with conventional diagnostics in the detection of dermatophytoses caused by Trichophyton rubrum and Trichophyton interdigitale in clinical specimens (nail, skin and hair). The compared molecular methods comprise two already published PCR-ELISAs, a published quantitative RT-PCR as well as a newly developed PCR-ELISA targeting the internal transcribed spacer region. We investigated the sensitivity of the assays by analysing 375 clinical samples. In 148 specimens (39.5%) a positive result was gained in at least one of the four molecular tests or by culture, but the number of detected agents differed significantly between some of the assays. The most sensitive assay, a PCR-ELISA targeting a microsatellite region, detected 81 T. rubrum infections followed by an internal transcribed spacer PCR-ELISA (60), quantitative RT-PCR (52) and a topoisomerase II PCR-ELISA (51), whereas cultivation resulted in T. rubrum identification in 37 samples. The pros and cons of all four tests in routine diagnostics are discussed. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic

    International Nuclear Information System (INIS)

    Henriques, R. B.; Nedzelskiy, I. S.; Malaquias, A.; Fernandes, H.

    2012-01-01

    The tokamak ISTTOK heavy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10 7 V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  18. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic.

    Science.gov (United States)

    Henriques, R B; Nedzelskiy, I S; Malaquias, A; Fernandes, H

    2012-10-01

    The tokamak ISTTOK havy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10(7) V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  19. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, R. B.; Nedzelskiy, I. S.; Malaquias, A.; Fernandes, H. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 1049-001 Lisboa (Portugal)

    2012-10-15

    The tokamak ISTTOK heavy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10{sup 7} V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  20. Diagnostic performance of serological tests to detect antibodies against acute scrub typhus infection in central India

    Directory of Open Access Journals (Sweden)

    Kiran Pote

    2018-01-01

    Full Text Available Background: Differentiating scrub typhus from other acute febrile illness is difficult due to non specificity of clinical symptoms and relative absence of eschar in Indian population. The diagnosis thus relies mainly on laboratory tests. Antibody based serological tests are mainstay of scrub typhus diagnosis. Here, we evaluated the diagnostic performance of IgM ELISA, IgM IFA and ICT to detect antibodies against O. tsutsugamushi in acute serum of febrile patients. Methodology: The serum samples from 600 randomly selected patients suffering from acute undifferentiated fever were tested by all the three tests mentioned above. We used latent class analysis to generate unbiased results as all the tests for scrub typhus diagnosis are imperfect and none of them can be considered as reference standard. Results: We found that IgM ELISA with cutoff titer 0.5 OD has high diagnostic accuracy (sensitivity 99.9% and specificity 99.15 than IgM IFA (sensitivity 96.8% and specificity 99.7% for scrub typhus diagnosis. ICT used in our study had very high specificity 100% but low sensitivity (38% which would limit its use for acute serum samples. ICT being a screening or point of care test, has to be more sensitive while some compromise with specificity is affordable. Hence, optimal cutoff for ICT should be evaluated under different settings. Conclusion: IgM ELISA being simple and affordable could be an alternative diagnostic test to IgM IFA which is subjective and costly.

  1. Diagnostic performance of serological tests to detect antibodies against acute scrub typhus infection in central India.

    Science.gov (United States)

    Pote, Kiran; Narang, Rahul; Deshmukh, Pradeep

    2018-01-01

    Differentiating scrub typhus from other acute febrile illness is difficult due to non specificity of clinical symptoms and relative absence of eschar in Indian population. The diagnosis thus relies mainly on laboratory tests. Antibody based serological tests are mainstay of scrub typhus diagnosis. Here, we evaluated the diagnostic performance of IgM ELISA, IgM IFA and ICT to detect antibodies against O. tsutsugamushi in acute serum of febrile patients. The serum samples from 600 randomly selected patients suffering from acute undifferentiated fever were tested by all the three tests mentioned above. We used latent class analysis to generate unbiased results as all the tests for scrub typhus diagnosis are imperfect and none of them can be considered as reference standard. We found that IgM ELISA with cutoff titer 0.5 OD has high diagnostic accuracy (sensitivity 99.9% and specificity 99.15) than IgM IFA (sensitivity 96.8% and specificity 99.7%) for scrub typhus diagnosis. ICT used in our study had very high specificity 100% but low sensitivity (38%) which would limit its use for acute serum samples. ICT being a screening or point of care test, has to be more sensitive while some compromise with specificity is affordable. Hence, optimal cutoff for ICT should be evaluated under different settings. IgM ELISA being simple and affordable could be an alternative diagnostic test to IgM IFA which is subjective and costly.

  2. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  3. Molecular diagnostics of periodontitis

    Directory of Open Access Journals (Sweden)

    Izabela Korona-Głowniak

    2017-01-01

    Full Text Available The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host’s health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR, real-time polymerase chain reaction (real-time PCR, 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE, temperature gradient gel electrophoresis (TGGE, as well as terminal restriction fragment length polymorphism (TRFLP and next generation sequencing (NGS. The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.

  4. Diagnostic Evasion of Highly-Resistant Microorganisms: A Critical Factor in Nosocomial Outbreaks.

    Science.gov (United States)

    Zhou, Xuewei; Friedrich, Alexander W; Bathoorn, Erik

    2017-01-01

    Highly resistant microorganisms (HRMOs) may evade screening strategies used in routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a selective advantage in the nosocomial environment. Evasion of resistance detection can result from the following mechanisms: low-level expression of resistance genes not resulting in detectable resistance, slow growing variants, mimicry of wild-type-resistance, and resistance mechanisms that are only detected if induced by antibiotic pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past 5 years. Remarkably, many outbreaks including major nation-wide outbreaks were caused by microorganisms able to evade resistance detection by diagnostic screening tests. We describe various examples of diagnostic evasion by several HRMOs and discuss this in a broad and international perspective. The epidemiology of hospital-associated bacteria may strongly be affected by diagnostic screening strategies. This may result in an increasing reservoir of resistance genes in hospital populations that is unnoticed. The resistance elements may horizontally transfer to hosts with systems for high-level expression, resulting in a clinically significant resistance problem. We advise to communicate the identification of HRMOs that evade diagnostics within national and regional networks. Such signaling networks may prevent inter-hospital outbreaks, and allow collaborative development of adapted diagnostic tests.

  5. Comparison of diagnostic value of multidetector computed tomography and X-ray in the detection of body packing

    Energy Technology Data Exchange (ETDEWEB)

    Bulakci, Mesut, E-mail: mesutbulakci@yahoo.com [Department of Radiology, Haseki Training and Research Hospital, 34096 Aksaray, Istanbul (Turkey); Kalelioglu, Tuba, E-mail: tubakarsakarya@hotmail.com [Department of Radiology, Haseki Training and Research Hospital, 34096 Aksaray, Istanbul (Turkey); Bulakci, Betul Bozkurt, E-mail: dr.betulbozkurt@gmail.com [Department of Family Medicine, Istanbul University, Istanbul Faculty of Medicine, 34390 Capa, Istanbul (Turkey); Kiris, Adem, E-mail: ademkiris@hotmail.com [Department of Radiology, Haseki Training and Research Hospital, 34096 Aksaray, Istanbul (Turkey)

    2013-08-15

    Objective: Radiologists and other clinicians are facing an increasing number of illegal drug-related medical conditions. We aimed to draw attention to this growing global problem and to highlight some of the important points related to diagnosis and follow-up of body packing. We compare the diagnostic performance of unenhanced multidetector CT (MDCT) and abdomen X-ray for the detection of drug-filled packets. Materials and methods: Sixty-seven suspects, who underwent both CT and X-ray examinations, have been included in the study. All MDCT and X-ray images were independently and retrospectively reviewed by two observers with different degrees of experience in abdomen imaging. Fifty-two of them were identified as body packers finally. Interobserver agreement, sensitivity, specificity, positive and negative predictive value were calculated. Results: Two types of packets with different characteristics were identified in all body packers. Type 1 packets (solid-state drug) were found in 41 patients and type 2 packets (liquid cocaine) in 11 patients. All statistical analyses concern the detection of any packets. That is, the whole evaluation has been performed per patient. Sensitivity/specificity values of type 1 and type 2 packets for MDCT were 100–98%/100–100% and 100–100%/100–100%, respectively. Besides, sensitivity/specificity values of type 1 and type 2 packets for X-ray were 93–90%/100–91% and 64–45%/73–71%, respectively. In addition, interobserver agreements for detection of any packets were excellent (κ = 0.96) and good (κ = 0.75) for interpretation of MDCT and X-ray, respectively. Conclusion: Unenhanced MDCT is a fast, accurate and easily used diagnostic tool with high sensitivity and specificity for the exact diagnosis of body packing.

  6. Diagnostic methods and techniques in cervical cancer prevention Part II: Molecular diagnostics of HPV infection

    Directory of Open Access Journals (Sweden)

    Adriana Vince,

    2010-02-01

    Full Text Available Clinical diagnostics of HPV infection is based on analytically andclinically validated assays for qualitative detection of HPV DNAfrom high risk genotypes. New generation of HPV DNA assayscombines qualitative detection of 12 high-risk HPV genotypeswith HPV-16 and HPV-18 genotyping. New generation of HPVmolecular assays designed to increase clinical specificity of moleculartesting is based on detection of mRNA for E6 and E7.

  7. System theory in medical diagnostic devices: an overview.

    Science.gov (United States)

    Baura, Gail D

    2006-01-01

    Medical diagnostics refers to testing conducted either in vitro or in vivo to provide critical health care information for risk assessment, early diagnosis, treatment, or disease management. Typical in vivo diagnostic tests include the computed tomography scan, magnetic resonance imaging, and blood pressure screening. Typical in vitro diagnostic tests include cholesterol, Papanicolaou smear, and conventional glucose monitoring tests. Historically, devices associated with both types of diagnostics have used heuristic curve fitting during signal analysis. However, since the early 1990s, a few enterprising engineers and physicians have used system theory to improve their core processing for feature detection and system identification. Current applications include automated Pap smear screening for detection of cervical cancer and diagnosis of Alzheimer's disease. Future applications, such as disease prediction before symptom onset and drug treatment customization, have been catalyzed by the Human Genome Project.

  8. Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform.

    Science.gov (United States)

    Talbert, Joey N; Alcaine, Samuel D; Nugen, Sam R

    2016-04-01

    Bacteriophages represent multifaceted building blocks that can be incorporated as substitutes for, or in unison with other detection methods, to create powerful new diagnostics for the detection of bacteria. The ease of phage manipulation, production, and detection speed clearly highlights that there remains unrealized opportunities to leverage these phage-based components in diagnostics amenable to resource-limited settings. The passage of regulations like the Food Safety Modernization act, and the ever increasing extent of global trade and travel, will create further demand for these types of diagnostics. While phage-based diagnostics have begun to entering the market place, further research is needed to ensure the potential benefits of phage-based technologies for public health are fully realized. We are just beginning to explore the possibilities that phage-based detection can offer us in the future. The combination of engineered phages as well as engineered enzymes could result in ultrasensitive detection systems for low-resource settings. Because the reporter enzyme is synthesized in vivo, we need to consider the options outside of normal enzyme reporters. In this case, common enzyme issues such as purification and long-term stability are less important. Phage-based diagnostics were conceptualized from out-of-the box thinking and the evolution of these systems should be as well.

  9. Molecular diagnostics for human leptospirosis.

    Science.gov (United States)

    Waggoner, Jesse J; Pinsky, Benjamin A

    2016-10-01

    The definitive diagnosis of leptospirosis, which results from infection with spirochetes of the genus Leptospira, currently relies on the use of culture, serological testing (microscopic agglutination testing), and molecular detection. The purpose of this review is to describe new molecular diagnostics for Leptospira and discuss advancements in the use of available methods. Efforts have been focused on improving the clinical sensitivity of Leptospira detection using molecular methods. In this review, we describe a reoptimized pathogenic species-specific real-time PCR (targeting lipL32) that has demonstrated improved sensitivity, findings by two groups that real-time reverse-transcription PCR assays targeting the 16S rrs gene can improve detection, and two new loop-mediated amplification techniques. Quantitation of leptospiremia, detection in different specimen types, and the complementary roles played by molecular detection and microscopic agglutination testing will be discussed. Finally, a protocol for Leptospira strain subtyping using variable number tandem repeat targets and high-resolution melting will be described. Molecular diagnostics have an established role for the diagnosis of leptospirosis and provide an actionable diagnosis in the acute setting. The use of real-time reverse-transcription PCR for testing serum/plasma and cerebrospinal fluid, when available, may improve the detection of Leptospira without decreasing clinical specificity.

  10. New tuberculosis diagnostics and rollout

    Directory of Open Access Journals (Sweden)

    Ruth McNerney

    2015-03-01

    Full Text Available Early detection and effective treatment are crucial for tuberculosis control, but global case detection rates remain low. The diagnosis of paediatric and extrapulmonary disease is problematic and there are, as yet, no rapid screening tests to assist active case finding in the community. Progress has been made in clinic-based detection tools with the introduction of Xpert MTB/RIF, a nucleic acid amplification test that combines sample processing and analysis in a single instrument to provide a diagnostic result and detection of resistance to rifampicin in under 2 h. Enthusiasm for Xpert MTB/RIF has been high and global rollout has been facilitated by donor agencies. However, concerns remain about access and sustainability due to the high cost and infrastructure requirements. Although more sensitive than smear microscopy, early studies suggest the impact of the new test on case detection rates and patient survival has been limited. Alternative technologies are being developed, including non-sputum-based tests to assist the detection of extrapulmonary disease. Evaluation studies are needed to provide evidence of the impact of the new technologies on patient outcomes. This will enable appropriate placement of new diagnostic products in the healthcare system to support the control and eventual eradication of tuberculosis disease.

  11. Cocoa swollen shoot virus in Ghana: A review of diagnostic ...

    African Journals Online (AJOL)

    A quick and more reliable diagnostic method has for a long time been identified as one input that will greatly enhance the control of the cocoa swollen shoot disease in Ghana. Many diagnostic procedures have been developed for detecting the virus that causes the disease; yet, the detection of latent infections is still ...

  12. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.

    Science.gov (United States)

    Schulze, Philipp; Ludwig, Martin; Belder, Detlev

    2008-12-01

    A high intensity 266 nm continuous wave (cw-) laser developed for material processing was utilised as an excitation source for sensitive native fluorescence detection of unlabelled compounds in MCE. This 120 mW laser was attached via an optical fibre into a commercial epifluorescence microscope. With this MCE set-up we evaluated the impact of laser power on the S/N of aromatic compounds as well as of proteins. Compared with a previous work which used a 4 mW pulsed laser for excitation, improved S/N for small aromatics and to a lesser extent for proteins could be attained. The LOD of the system was determined down to 24 ng/mL for serotonin (113 nM), 24 ng/mL for propranolol (81 nM), 80 ng/mL for tryptophan (392 nM) and 80 ng/mL for an aromatic diol (475 nM). Sensitive protein detection was obtained at concentrations of 5 microg/mL for lysocyme, trypsinogen and chymotrypsinogen (340, 208 and 195 nM, respectively). Finally, a comparison of the cw- with a pulsed 266 nm laser, operating at the same average power, showed a higher attainable sensitivity of the cw-laser. This can be attributed to fluorescence saturation and photobleaching effects of the pulsed laser at high pulse energies.

  13. Rapid molecular diagnostics for multi-drug resistant tuberculosis in India.

    Science.gov (United States)

    Ramachandran, Rajeswari; Muniyandi, M

    2018-03-01

    Rapid molecular diagnostic methods help in the detection of TB and Rifampicin resistance. These methods detect TB early, are accurate and play a crucial role in reducing the burden of drug resistant tuberculosis. Areas covered: This review analyses rapid molecular diagnostic tools used in the diagnosis of MDR-TB in India, such as the Line Probe Assay and GeneXpert. We have discussed the burden of MDR-TB and the impact of recent diagnostic tools on case detection and treatment outcomes. This review also discusses the costs involved in establishing these new techniques in India. Expert commentary: Molecular methods have considerable advantages for the programmatic management of drug resistant TB. These include speed, standardization of testing, potentially high throughput and reduced laboratory biosafety requirements. There is a desperate need for India to adopt modern, rapid, molecular tools with point-of-care tests being currently evaluated. New molecular diagnostic tests appear to be cost effective and also help in detecting missing cases. There is enough evidence to support the scaling up of these new tools in India.

  14. Diagnostic Accuracy of Diffusion Weighted Magnetic Resonance Imaging in the Detection of Myometrial Invasion in Endometrial Carcinoma

    International Nuclear Information System (INIS)

    Masroor, I.; Hussain, Z.; Taufiq, M.

    2016-01-01

    Objective: To determine the diagnostic accuracy of Diffusion-Weighted Magnetic Resonance Imaging (DWMRI) in the detection of myometrial invasion in endometrial cancer taking histopathology as gold standard. Study Design: Cross-sectional validation study. Place and Duration of Study: Department of Radiology, The Aga Khan University Hospital, Karachi, from January to December 2012. Methodology: DWMRI (b-value = 50,400 and 800 s/mm2) was performed in 85 patients of biopsy-proven endometrial carcinoma before hysterectomy using body and spine coil at 1.5 Tesla. DWI was evaluated for presence of myometrial invasion by tumor with histopathology as gold standard. Sensitivity, specificity, the negative predictive value and positive predictive value and accuracy of DWI were assessed against the gold standard. Results: On DWI, superficial myometrial invasion was found in 42 patients and deep myometrial invasion in 43. On histopathology, superficial myometrial invasion was found in 53 patients and deep myometrial invasion in 32. Hence sensitivity, specificity, positive predictive value, negative predictive value and accuracy for the assessment of myometrial invasion by endometrial tumor on DW images was 90 percentage, 73 percentage, 67 percentage, 92 percentage and 80 percentage, respectively. Diagnostic accuracy of diffusion-weighted magnetic resonance imaging in detection of myometrial invasion in endometrial cancer was 80 percentage. Conclusion: DWI is highly accurate in assessing myometrial invasion and can be used as an adjunct to routine MRI for pre-operative evaluation of myometrial invasion of endometrial cancer. (author)

  15. Comparison of bacterial culture and qPCR testing of rectal and pen floor samples as diagnostic approaches to detect enterotoxic Escherichia coli in nursery pigs

    DEFF Research Database (Denmark)

    Weber, N. R.; Nielsen, J. P.; Hjulsager, Charlotte Kristiane

    2017-01-01

    Enterotoxigenic E. coli (ETEC) are a major cause of diarrhoea in weaned pigs. The objective of this study was to evaluate the agreement at pen level among three different diagnostic approaches for the detection of ETEC in groups of nursery pigs with diarrhoea. The diagnostic approaches used were...... to determine the quantity of F18 and F4 genes. The study was carried out in three Danish pig herds and included 31 pens with a pen-level diarrhoea prevalence of > 25%, as well as samples from 93 diarrhoeic nursery pigs from these pens. All E. coli isolates were analysed by PCR and classified as ETEC when genes...... was observed between the detection of ETEC by bacterial culture and qPCR in the same pen floor sample in 26 (83.9%, Kappa = 0.679) pens. Conclusion: We observed an acceptable agreement for the detection of ETEC-positive diarrhoeic nursery pigs in pen samples for both bacterial culture of pen floor samples...

  16. Diagnostic performance of an indirect enzyme-linked immunosorbent assay (ELISA) to detect bovine leukemia virus antibodies in bulk-tank milk samples

    Science.gov (United States)

    Nekouei, Omid; Durocher, Jean; Keefe, Greg

    2016-01-01

    This study assessed the diagnostic performance of a commercial ELISA for detecting bovine leukemia virus antibodies in bulk-tank milk samples from eastern Canada. Sensitivity and specificity of the test were estimated at 97.2% and 100%, respectively. The test was recommended as a cost-efficient tool for large-scale screening programs. PMID:27429469

  17. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection.

    Science.gov (United States)

    Kong, Kenny; Kendall, Catherine; Stone, Nicholas; Notingher, Ioan

    2015-07-15

    Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.

    Science.gov (United States)

    Ehteshami Bejnordi, Babak; Veta, Mitko; Johannes van Diest, Paul; van Ginneken, Bram; Karssemeijer, Nico; Litjens, Geert; van der Laak, Jeroen A W M; Hermsen, Meyke; Manson, Quirine F; Balkenhol, Maschenka; Geessink, Oscar; Stathonikos, Nikolaos; van Dijk, Marcory Crf; Bult, Peter; Beca, Francisco; Beck, Andrew H; Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Zhong, Aoxiao; Dou, Qi; Li, Quanzheng; Chen, Hao; Lin, Huang-Jing; Heng, Pheng-Ann; Haß, Christian; Bruni, Elia; Wong, Quincy; Halici, Ugur; Öner, Mustafa Ümit; Cetin-Atalay, Rengul; Berseth, Matt; Khvatkov, Vitali; Vylegzhanin, Alexei; Kraus, Oren; Shaban, Muhammad; Rajpoot, Nasir; Awan, Ruqayya; Sirinukunwattana, Korsuk; Qaiser, Talha; Tsang, Yee-Wah; Tellez, David; Annuscheit, Jonas; Hufnagl, Peter; Valkonen, Mira; Kartasalo, Kimmo; Latonen, Leena; Ruusuvuori, Pekka; Liimatainen, Kaisa; Albarqouni, Shadi; Mungal, Bharti; George, Ami; Demirci, Stefanie; Navab, Nassir; Watanabe, Seiryo; Seno, Shigeto; Takenaka, Yoichi; Matsuda, Hideo; Ahmady Phoulady, Hady; Kovalev, Vassili; Kalinovsky, Alexander; Liauchuk, Vitali; Bueno, Gloria; Fernandez-Carrobles, M Milagro; Serrano, Ismael; Deniz, Oscar; Racoceanu, Daniel; Venâncio, Rui

    2017-12-12

    Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image

  19. The evolution of advanced molecular diagnostics for the detection and characterization of Mycoplasma pneumoniae

    Directory of Open Access Journals (Sweden)

    Maureen H. Diaz

    2016-03-01

    Full Text Available Over the past several years there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis and sequencing typing (MLVA and MLST, respectively, matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS, single nucleotide polymorphism (SNP typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  20. Study for the design method of multi-agent diagnostic system to improve diagnostic performance for similar abnormality

    International Nuclear Information System (INIS)

    Minowa, Hirotsugu; Gofuku, Akio

    2014-01-01

    Accidents on industrial plants cause large loss on human, economic, social credibility. In recent, studies of diagnostic methods using techniques of machine learning such as support vector machine is expected to detect the occurrence of abnormality in a plant early and correctly. There were reported that these diagnostic machines has high accuracy to diagnose the operating state of industrial plant under mono abnormality occurrence. But the each diagnostic machine on the multi-agent diagnostic system may misdiagnose similar abnormalities as a same abnormality if abnormalities to diagnose increases. That causes that a single diagnostic machine may show higher diagnostic performance than one of multi-agent diagnostic system because decision-making considering with misdiagnosis is difficult. Therefore, we study the design method for multi-agent diagnostic system to diagnose similar abnormality correctly. This method aimed to realize automatic generation of diagnostic system where the generation process and location of diagnostic machines are optimized to diagnose correctly the similar abnormalities which are evaluated from the similarity of process signals by statistical method. This paper explains our design method and reports the result evaluated our method applied to the process data of the fast-breeder reactor Monju

  1. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference.

    Science.gov (United States)

    Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Abe, Takayuki; Kuribayashi, Sachio; Ogawa, Kenji

    2013-08-01

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA-950) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA-950. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA-950. • Tomosynthesis showed significantly better diagnostic performance for pulmonary emphysema than radiography. • Interobserver agreement for tomosynthesis was significantly higher than that for radiography. • Sensitivity increased with increasing LAA -950 in both tomosynthesis and radiography. • Tomosynthesis imparts a similar radiation dose to two projection chest radiography. • Radiation dose and cost of tomosynthesis are lower than those of MDCT.

  2. Comparison of different stains in imprint cytology with the conventional diagnostic tools in detection of Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    Shashikant Adlekha

    2015-01-01

    Full Text Available Background: Helicobacter pylori (H. pylori infection is one of the most common causes of gastrointestinal morbidity and mortality worldwide. Early diagnosis of infection is imperative for the cure of distressing symptoms and prevention of complications. Objective: The objective of the study is to evaluate imprint cytology of gastric biopsy specimens as a rapid and cost-effective diagnostic tool and its comparison with conventional diagnostic tests. Materials and Methods: Antral biopsies were collected from 130 patients and evaluated for H. pylori infection by imprint cytology and histopathological examination by different stains and rapid urease test (RUT. Histopathological features of gastric biopsy specimens were also assessed. Results: A total of 118 patients showed H. pylori infection by two or more methods. Giemsa histology showed highest sensitivity, specificity, positive predictive value, negative predictive value and Youden′s Index (YI. Among imprint cytology stain methods, toluidine blue showed highest sensitivity and highest YI was obtained for PAP stain. Conclusion: Helicobacter pylori infection is associated with gastric mucosa changes like chronic active gastritis, atrophy, intestinal metaplasia, ulceration and carcinoma. Imprint cytology has high sensitivity and comparable predictive values to conventional diagnostic tools-histopathological examination and RUT in the detection of H. pylori infection.

  3. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux

  4. Pediatric radiological diagnostics in suspected child abuse

    International Nuclear Information System (INIS)

    Erfurt, C.; Schmidt, U.; Hahn, G.; Roesner, D.

    2009-01-01

    Advanced and specialized radiological diagnostics are essential in the case of clinical suspicion of pediatric injuries to the head, thorax, abdomen, and extremities when there is no case history or when ''battered child syndrome'' is assumed on the basis of inadequate trauma. In particular, the aim of this sophisticated diagnostic procedure is the detection of lesions of the central nervous system (CNS) in order to initiate prompt medical treatment. If diagnostic imaging shows typical findings of child abuse, accurate documented evidence of the diagnostic results is required to prevent further endangerment of the child's welfare. (orig.) [de

  5. Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Stephan A; Poschinger, Ulrich; Ziesel, Frank; Schmidt-Kaler, Ferdinand [Universitaet Ulm, Institut fuer Quanteninformationsverarbeitung, Albert-Einstein-Allee 11, D-89069 Ulm (Germany)], E-mail: stephan.schulz@uni-ulm.de

    2008-04-15

    Miniaturized ion trap arrays with many trap segments present a promising architecture for scalable quantum information processing. The miniaturization of segmented linear Paul traps allows partitioning the microtrap into different storage and processing zones. The individual position control of many ions-each of them carrying qubit information in its long-lived electronic levels-by the external trap control voltages is important for the implementation of next generation large-scale quantum algorithms. We present a novel scalable microchip multi-segmented ion trap with two different adjacent zones, one for the storage and another dedicated to the processing of quantum information using single ions and linear ion crystals. A pair of radio-frequency-driven electrodes and 62 independently controlled dc electrodes allows shuttling of single ions or linear ion crystals with numerically designed axial potentials at axial and radial trap frequencies of a few megahertz. We characterize and optimize the microtrap using sideband spectroscopy on the narrow S{sub 1/2}{r_reversible}D{sub 5/2} qubit transition of the {sup 40}Ca{sup +} ion, and demonstrate coherent single-qubit Rabi rotations and optical cooling methods. We determine the heating rate using sideband cooling measurements to the vibrational ground state, which is necessary for subsequent two-qubit quantum logic operations. The applicability for scalable quantum information processing is proved.

  6. Comparison of Diagnostic Algorithms for Detecting Toxigenic Clostridium difficile in Routine Practice at a Tertiary Referral Hospital in Korea.

    Science.gov (United States)

    Moon, Hee-Won; Kim, Hyeong Nyeon; Hur, Mina; Shim, Hee Sook; Kim, Heejung; Yun, Yeo-Min

    2016-01-01

    Since every single test has some limitations for detecting toxigenic Clostridium difficile, multistep algorithms are recommended. This study aimed to compare the current, representative diagnostic algorithms for detecting toxigenic C. difficile, using VIDAS C. difficile toxin A&B (toxin ELFA), VIDAS C. difficile GDH (GDH ELFA, bioMérieux, Marcy-l'Etoile, France), and Xpert C. difficile (Cepheid, Sunnyvale, California, USA). In 271 consecutive stool samples, toxigenic culture, toxin ELFA, GDH ELFA, and Xpert C. difficile were performed. We simulated two algorithms: screening by GDH ELFA and confirmation by Xpert C. difficile (GDH + Xpert) and combined algorithm of GDH ELFA, toxin ELFA, and Xpert C. difficile (GDH + Toxin + Xpert). The performance of each assay and algorithm was assessed. The agreement of Xpert C. difficile and two algorithms (GDH + Xpert and GDH+ Toxin + Xpert) with toxigenic culture were strong (Kappa, 0.848, 0.857, and 0.868, respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of algorithms (GDH + Xpert and GDH + Toxin + Xpert) were 96.7%, 95.8%, 85.0%, 98.1%, and 94.5%, 95.8%, 82.3%, 98.5%, respectively. There were no significant differences between Xpert C. difficile and two algorithms in sensitivity, specificity, PPV and NPV. The performances of both algorithms for detecting toxigenic C. difficile were comparable to that of Xpert C. difficile. Either algorithm would be useful in clinical laboratories and can be optimized in the diagnostic workflow of C. difficile depending on costs, test volume, and clinical needs.

  7. Detecting microcalcifications in mammograms by using SVM method for the diagnostics of breast cancer

    Science.gov (United States)

    Wan, Baikun; Wang, Ruiping; Qi, Hongzhi; Cao, Xuchen

    2005-01-01

    Support vector machine (SVM) is a new statistical learning method. Compared with the classical machine learning methods, SVM learning discipline is to minimize the structural risk instead of the empirical risk of the classical methods, and it gives better generative performance. Because SVM algorithm is a convex quadratic optimization problem, the local optimal solution is certainly the global optimal one. In this paper a SVM algorithm is applied to detect the micro-calcifications (MCCs) in mammograms for the diagnostics of breast cancer that has not been reported yet. It had been tested with 10 mammograms and the results show that the algorithm can achieve a higher true positive in comparison with artificial neural network (ANN) based on the empirical risk minimization, and is valuable for further study and application in the clinical engineering.

  8. The next organizational challenge: finding and addressing diagnostic error.

    Science.gov (United States)

    Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H

    2014-03-01

    Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.

  9. Diagnostic efficacy of the preoperative lymphoscintigraphy, Ga-67 scintigraphy and computed tomography for detection of lymph node metastasis in cases with ovarian or endometrial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ozalp, S.; Yalcin, O.T.; Polay, S. [Osmangazi Univ. School of Medicine, Dept. of Obstetrics and Gynecology, Eskisehir (Turkey); Aslan, N.; Vardareli, E. [Osmangazi Univ. School of Medicine, Dept. of Nuclear Medicine, Eskisehir (Turkey); Adapinar, B. [Osmangazi Univ. School of Medicine, Dept. of Radiology, Eskisehir (Turkey)

    1999-02-01

    Background: To investigate the diagnostic efficacy of preoperative lymphoscintigraphy (LS), Ga-67 scintigraphy (GS) and computed tomography (CT) for detection of lymph node metastasis in patients with endometrial or ovarian carcinoma. Methods: The results of preoperative LS, GS and CT used to detect lymph node metastasis were compared to the postoperative histopathological results of lymph node dissection materials of a total of 37 patients, including 16 patients with endometrial and 21 patients with ovarian carcinomas. The diagnostic efficacy of these methods for detecting lymph node metastasis were calculated. Results: When the results of all of the patients were taken into account, the preoperative LS, GS and CT were found to have sensitivities of 50%, 20% and 40% and specificities of 51.8%, 96.3%, and 92.6%, respectively, for detection of pelvic lymph node metastasis. The same methods had sensitivities of 27.3%, 27.3% and 72.7% and specificities of 88.5%, 88.5%, 84.6%, respectively, for detecting para-aortic lymph node metastasis in all patients. Conclusion: These data suggested that although LS, GS and CT had relatively high specificity, low sensitivity of these imaging methods precluded their routine preoperative use for diagnosis of lymph node metastasis of ovarian or endometrial carcinoma. (au) 22 refs.

  10. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images from a Polish population.

    Science.gov (United States)

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Molinari, Filippo; Zieleźnik, Witold; Bardales, Ricardo H; Witkowska, Agnieszka; Suri, Jasjit S

    2014-02-01

    Computer-aided diagnostic (CAD) techniques aid physicians in better diagnosis of diseases by extracting objective and accurate diagnostic information from medical data. Hashimoto thyroiditis is the most common type of inflammation of the thyroid gland. The inflammation changes the structure of the thyroid tissue, and these changes are reflected as echogenic changes on ultrasound images. In this work, we propose a novel CAD system (a class of systems called ThyroScan) that extracts textural features from a thyroid sonogram and uses them to aid in the detection of Hashimoto thyroiditis. In this paradigm, we extracted grayscale features based on stationary wavelet transform from 232 normal and 294 Hashimoto thyroiditis-affected thyroid ultrasound images obtained from a Polish population. Significant features were selected using a Student t test. The resulting feature vectors were used to build and evaluate the following 4 classifiers using a 10-fold stratified cross-validation technique: support vector machine, decision tree, fuzzy classifier, and K-nearest neighbor. Using 7 significant features that characterized the textural changes in the images, the fuzzy classifier had the highest classification accuracy of 84.6%, sensitivity of 82.8%, specificity of 87.0%, and a positive predictive value of 88.9%. The proposed ThyroScan CAD system uses novel features to noninvasively detect the presence of Hashimoto thyroiditis on ultrasound images. Compared to manual interpretations of ultrasound images, the CAD system offers a more objective interpretation of the nature of the thyroid. The preliminary results presented in this work indicate the possibility of using such a CAD system in a clinical setting after evaluating it with larger databases in multicenter clinical trials.

  11. Detection of residual disease after neoadjuvant chemoradiotherapy for oesophageal cancer (preSANO): a prospective multicentre, diagnostic cohort study.

    Science.gov (United States)

    Noordman, Bo Jan; Spaander, Manon C W; Valkema, Roelf; Wijnhoven, Bas P L; van Berge Henegouwen, Mark I; Shapiro, Joël; Biermann, Katharina; van der Gaast, Ate; van Hillegersberg, Richard; Hulshof, Maarten C C M; Krishnadath, Kausilia K; Lagarde, Sjoerd M; Nieuwenhuijzen, Grard A P; Oostenbrug, Liekele E; Siersema, Peter D; Schoon, Erik J; Sosef, Meindert N; Steyerberg, Ewout W; van Lanschot, J Jan B

    2018-05-31

    After neoadjuvant chemoradiotherapy for oesophageal cancer, roughly half of the patients with squamous cell carcinoma and a quarter of those with adenocarcinoma have a pathological complete response of the primary tumour before surgery. Thus, the necessity of standard oesophagectomy after neoadjuvant chemoradiotherapy should be reconsidered for patients who respond sufficiently to neoadjuvant treatment. In this study, we aimed to establish the accuracy of detection of residual disease after neoadjuvant chemoradiotherapy with different diagnostic approaches, and the optimal combination of diagnostic techniques for clinical response evaluations. The preSANO trial was a prospective, multicentre, diagnostic cohort study at six centres in the Netherlands. Eligible patients were aged 18 years or older, had histologically proven, resectable, squamous cell carcinoma or adenocarcinoma of the oesophagus or oesophagogastric junction, and were eligible for potential curative therapy with neoadjuvant chemoradiotherapy (five weekly cycles of carboplatin [area under the curve 2 mg/mL per min] plus paclitaxel [50 mg/m 2 of body-surface area] combined with 41·4 Gy radiotherapy in 23 fractions) followed by oesophagectomy. 4-6 weeks after completion of neoadjuvant chemoradiotherapy, patients had oesophagogastroduodenoscopy with biopsies and endoscopic ultrasonography with measurement of maximum tumour thickness. Patients with histologically proven locoregional residual disease or no-pass during endoscopy and without distant metastases underwent immediate surgical resection. In the remaining patients a second clinical response evaluation was done (PET-CT, oesophagogastroduodenoscopy with biopsies, endoscopic ultrasonography with measurement of maximum tumour thickness, and fine-needle aspiration of suspicious lymph nodes), followed by surgery 12-14 weeks after completion of neoadjuvant chemoradiotherapy. The primary endpoint was the correlation between clinical response during

  12. Development of process diagnostic techniques for piping and equipment

    International Nuclear Information System (INIS)

    Yotsutsuji, Mitoshi

    1987-01-01

    The thing required for using the facilities composing a plant for a long period without anxiety is to quantitatively grasp the quantities of the present condition of the facilities and to take the necessary measures beforehand. For this purpose, the diagnostic techniques for quickly and accurately detect the quantities of the condition of facilities are necessary, and the development of process diagnostic techniques has been desired. The process diagnostic techniques mentioned here mean those for diagnosing the contamination, clogging and performance of towers, tanks, heat exchangers and others. Idemitsu Engineering Co. had developed a simplified diagnostic equipment for detecting the state of fouling in piping in 1982, which is the gamma ray transmission diagnosis named Scale Checker. By further improving it, the process diagnostic techniques for piping and equipment were developed. In this report, the course of development and examination, the principle of detection, the constitution and the examination of remodeling of the Scale Checker are reported. As the cases of process diagnosis in plant facilities, the diagnosis of the clogging in process piping and the diagnosis of the performance of a distillation tower were carried out. The contents of the diagnosis and the results of those cases are explained. (Kako, I.)

  13. Review of Mycobacteriumavium subsp. paratuberculosis antigen candidates with diagnostic potential

    DEFF Research Database (Denmark)

    Mikkelsen, Heidi; Aagaard, Claus; Nielsen, Søren Saxmose

    2011-01-01

    antigens, heat shock antigens and hypothetical antigens. Strategies for evaluation of novel antigen candidates are discussed critically. Relatively few of the described antigens were evaluated for their use in CMI based diagnostic assays and so far, no obvious candidate has been identified...... to development of antibodies and shedding of detectable amounts of MAP. At present, available diagnostic assays are limited by the lack of MAP specific antigens included in these assays resulting in poor specificity. The objective of this review is to provide a systematic overview of diagnostic MAP antigen...... faeces; however, these diagnostic tools are often not applicable until years after infection. Detection of MAP specific cell-mediated immune (CMI) responses can serve as an alternative and be implemented in a diagnostic tool. CMI responses can be measured at an early stage of infection, prior...

  14. Diagnostic value of circulating tumor cell detection in bladder and urothelial cancer: systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Msaouel, Pavlos; Koutsilieris, Michael

    2011-01-01

    The diagnostic value and prognostic significance of circulating tumor cell (CTC) detection in patients with bladder cancer is controversial. We performed a meta-analysis to consolidate current evidence regarding the use of CTC detection assays to diagnose bladder and other urothelial cancers and the association of CTC positivity with advanced, remote disease. Studies that investigated the presence of CTCs in the peripheral blood of patients with bladder cancer and/or urothelial cancer were identified and reviewed. Sensitivities, specificities, and positive (LR+) and negative likelihood ratios (LR-) of CTC detection in individual studies were calculated and meta-analyzed by random effects model. Overall odds ratio of CTC positivity in patients with advanced disease versus those with organ-confined cancer was also calculated. Overall sensitivity of CTC detection assays was 35.1% (95%CI, 32.4-38%); specificity, LR+, and LR- was 89.4% (95%CI, 87.2-91.3%), 3.77 (95%CI, 1.95-7.30) and 0.72 (95%CI, 0.64-0.81). CTC-positive patients were significantly more likely to have advanced (stage III-IV) disease compared with CTC-negative patients (OR, 5.05; 95%CI, 2.49-10.26). CTC evaluation can confirm tumor diagnosis and identify patients with advanced bladder cancer. However, due to the low overall sensitivity, CTC detection assays should not be used as initial screening tests

  15. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics.

    Science.gov (United States)

    Mishra, Saswat; Saadat, Darius; Kwon, Ohjin; Lee, Yongkuk; Choi, Woon-Seop; Kim, Jong-Hoon; Yeo, Woon-Hong

    2016-07-15

    There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Small business development for molecular diagnostics.

    Science.gov (United States)

    Anagostou, Anthanasia; Liotta, Lance A

    2012-01-01

    Molecular profiling, which is the application of molecular diagnostics technology to tissue and blood -specimens, is an integral element in the new era of molecular medicine and individualized therapy. Molecular diagnostics is a fertile ground for small business development because it can generate products that meet immediate demands in the health-care sector: (a) Detection of disease risk, or early-stage disease, with a higher specificity and sensitivity compared to previous testing methods, and (b) "Companion diagnostics" for stratifying patients to receive a treatment choice optimized to their individual disease. This chapter reviews the promise and challenges of business development in this field. Guidelines are provided for the creation of a business model and the generation of a marketing plan around a candidate molecular diagnostic product. Steps to commercialization are outlined using existing molecular diagnostics companies as learning examples.

  17. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans

    International Nuclear Information System (INIS)

    Shiraishi, Junji; Li Qiang; Appelbaum, Daniel; Pu Yonglin; Doi, Kunio

    2007-01-01

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 'gold-standard' interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  18. Diagnostic studies in amyloidosis

    NARCIS (Netherlands)

    Hazenberg, Bouke Pier Cornelis

    2007-01-01

    In this thesis two diagnostic techniques are studied in amyloidosis. Systemic amyloidosis is characterized by deposition of amyloid fibrils (tiny fibres) throughout the body resulting in damage of vital organs. Amyloid can be detected in a tissue specimen stained with Congo red: red-stained amyloid

  19. Establishing a diagnostic system for detecting Ralstonia solanacearum and genetic differentiation using RAPD molecular markers

    Directory of Open Access Journals (Sweden)

    Edisson Chavarro Mesa

    2006-01-01

    Full Text Available A polymerase chain reaction-based diagnostic test (PCR has been developed for amplifying a región and obtaining a 292 bp product by using specific 16S rDNA primers for the rapid and precise identification of the causative agent (Ralstonia solanacearum of bacterial withering of potato in asymptomatic tubers. The bacteria was isolated from potato tubers and banana fruit using culturing techniques and immunological and molecular ELISA-NCM and PCR tests, respectively. PCR detected the presence of R. solanacearum on asymptomatic tubers by contrast with ELISA-NCM which did not detect this pathogen. Analysing random amplified polymorphic DNA (RAPD led to differentiating and grouping R. solanacearum by geographical región and bacterial strain, suggesting that differences exist amongst existing collections according to their place of origin, presenting high genetic variability. The results showed that PCR is a sensitive and specific test for detecting R. solanacearum and can therefore be implemented as a method for controlling this pathogen in seed production and certification programmes in áreas free of the disease. The pathogen has been shown to be genetically heterogeneous according to the samples' geographical área thereby hampering control in áreas of Colombia experiencing phytosanitary problems with R. solanacearum in potato crops Key words: bacterial withered, moko, PCR-16S rADN, ELISA-NCM, PCR-RAPD.

  20. Deposition Diagnostics for Next-step Devices

    International Nuclear Information System (INIS)

    Skinner, C.H.; Roquemore, A.L.; Bader, A.; Wampler, W.R.

    2004-01-01

    The scale-up of deposition in next-step devices such as ITER will pose new diagnostic challenges. Codeposition of hydrogen with carbon needs to be characterized and understood in the initial hydrogen phase in order to mitigate tritium retention and qualify carbon plasma facing components for DT operations. Plasma facing diagnostic mirrors will experience deposition that is expected to rapidly degrade their reflectivity, posing a new challenge to diagnostic design. Some eroded particles will collect as dust on interior surfaces and the quantity of dust will be strictly regulated for safety reasons - however diagnostics of in-vessel dust are lacking. We report results from two diagnostics that relate to these issues. Measurements of deposition on NSTX with 4 Hz time resolution have been made using a quartz microbalance in a configuration that mimics that of a typical diagnostic mirror. Often deposition was observed immediately following the discharge suggesting that diagnostic shutters should be closed as soon as possible after the time period of interest. Material loss was observed following a few discharges. A novel diagnostic to detect surface particles on remote surfaces was commissioned on NSTX