WorldWideScience

Sample records for diagnostics fusion

  1. Laser fusion diagnostics

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1978-01-01

    The current status of the capability of laser fusion diagnostics is reviewed. Optical and infrared streak cameras provide one time resolution measurement capability of less than 10 ps, while x-ray streak cameras provide 15 ps time resolution in the range of about 1--30 keV presently. Time integrated spatial resolutions of 1 μm are provided with a variety of optical techniques. Ultraviolet holographic interferometry has measured electron densities above 10 21 cm -3 with 1 μm spatial resolution and 15 ps temporal resolution. X-ray microscopes provide 3 μm time integrated resolution and the x-ray streak pinhole camera has 6 μm spatial resolution. Development of the framing camera has thus far provided 50 μm spatial resolution with 125 ps frame duration and the third order reconstruction of zone plate images has provided 3 μm resolutions for alpha particles. Time integrated measurements of x-rays span the range shown. Finally, the new Shiva neutron spectrometer increases the energy resolution capability of that technique to 25 keV for 14-MeV neutrons. These combined capabilities provide a unique set of diagnostics for the detailed measurement of the interaction of laser light with targets and a subsequent performance of those targets

  2. Inertial confinement fusion diagnostics

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1986-10-01

    The concept and goals of ICF will be briefly reviewed and the new 100 kJ class Nova laser facility will be described. Experimental results obtained to date with Nova will be summarized, and the discussions of diagnostics will use examples on the present capabilities of Nova and new developments that are underway. The classes of diagnostic systems to be discussed fall into three basic categories: optical, x-ray, and particle. Examples of highly space resolved, time resolved, and spectrally resolved techniques as well as schemes involving combinations of these capabilities will be presented. A brief summary of the sophisticated acquisition and analysis system in use for Nova data will be provided

  3. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  4. Fusion reaction product diagnostics in ASDEX

    International Nuclear Information System (INIS)

    Bosch, H.S.

    1987-01-01

    A diagnostic method was developed to look for the charged fusion products from the D(D,p)T-reactions in the divertor tokamak ASDEX. With a semi-conductor detector it was possible to evaluate the ion temperature in thermal plasmas from the proton energy spectra as well as from the triton spectra. In lower-hybrid wave heated plasmas non-thermal (fast) ions were observed. These ions create fusion products with a characteristically different energy spectrum. (orig.)

  5. Towards diagnostics for a fusion reactor

    International Nuclear Information System (INIS)

    Costley, A. E.

    2009-01-01

    The requirements for measurements on modern tokamak fusion plasmas are outlined, and the techniques and systems used to make the measurements, usually referred to as 'diagnostics', are introduced. The basics of three particular diagnostics - magnetics, neutron systems and a laser based optical system - are outlined as examples of modern diagnostic systems, and the implementation of these diagnostics on a current tokamak (JET) are described. The next major step in magnetic confinement fusion is the construction and operation of the International Thermonuclear Experimental Reactor (ITER), which is a joint project of China, Europe, Japan, India, Korea, the Russian Federation, and the United States. Construction has begun in Cadarache, France. It is expected that ITER will operate at the 500 MW level. Because of the harsh environment in the vacuum vessel where many diagnostic components are located, the development of diagnostics for ITER is a major challenge - arguably the most difficult challenge ever undertaken in the field of diagnostics. The main elements in the diagnostic step are outlined using the three chosen techniques as examples. Finally, the step beyond ITER to a demonstration reactor, DEMO, that is expected to produce several GWs of fusion power is considered and the impact on diagnostics outlined. It is shown that the applicability and development steps needed for the individual diagnostics techniques will differ. The challenges for DEMO diagnostics are substantial and a dedicated effort should be made to find and develop new techniques, and especially techniques appropriate to the DEMO environment. It is argued that the limitations and difficulties in diagnostics should be a consideration in the optimization and designs of DEMO. (author)

  6. Far infrared fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  7. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  8. Nuclear diagnostics for inertial confinement fusion implosions

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1997-01-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used

  9. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  10. Molecular Diagnostics of Fusion and Laboratory Plasmas

    Science.gov (United States)

    Fantz, U.

    2005-05-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.

  11. Molecular Diagnostics of Fusion and Laboratory Plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    2005-01-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments

  12. Advanced neutron diagnostics for ITER fusion experiments

    International Nuclear Information System (INIS)

    Kaellne, J.; Giacomelli, L.; Hjalmarsson, A.; Conroy, S.; Ericsson, G.; Johnson, M.G.; Glasser, W.; Henriksson, H.; Ronchi, E.; Sjoestrand, H.; Andersson, E.S.; Thun, J.; Weiszflog, M.; Gorini, G.; Tardocchi, M.; Popovichev, S.; Sousa, J.

    2005-01-01

    Results are presented from the neutron emission spectroscopy (NES) diagnosis of JET plasma performed with the MPR during the DTE1 campaign of 1997 and the recent TTE of 2003. The NES diagnostic capabilities at JET are presently being drastically enhanced by an upgrade of the MPR (MPRu) and a new 2.5-MeV TOF neutron spectrometer (TOFOR). The principles of MPRu and TOFOR are described and illustrated with the diagnostic role they will play in the high performance fusion experiments in the forward program of JET largely aimed at supporting ITER. The importance for the JET NES effort for ITER is discussed. (author)

  13. A neutron calorimeter as a fusion diagnostic

    International Nuclear Information System (INIS)

    Proctor, A.E.; Harker, Y.D.; Neischmidt, E.B.

    1986-01-01

    A calorimeter is described which is applicable as a fusion neutron diagnostic. The advantages of the device are discussed, including: low sensitivity to thermal neutrons, no heat loss to surroundings, large dynamic range, small mass resulting in fair time resolution, and small physical size. The heat generation is provided by neutron induced fissions in a foil of 238 U and a calorimeter is isothermal. The effects, advantages and disadvantages of other target materials are discussed. Also discussed are time resolution and calibration

  14. Correlation measurements for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.

    1995-01-01

    A list of a few methods for plasma diagnostics via fluctuations (noise) analysis of random (both temporally and spatially) system parameters is reviewed. Analogy is drawn with certain noise analysis methods, used in the diagnostics of fission reactors. These methods have been applied also to fusion measurements to some extent. However, the treatment of fusion plasma fluctuations is dominated by an approach that allows for temporal randomness, but assumes periodicity in space. This approach suits well a large class of phenomena such as magnetic fluctuations (MHD effects), but is much less suited to treat localised effects such as turbulence and density fluctuations. This paper discusses the potentials of the former approach, i.e. ordinary noise analysis methods of non-periodic variables in fusion plasma diagnostics. A new recommendation is to use the crossed beam correlation analysis of soft X-ray signals for determining the local short-range correlations in the plasma and to perform a systematic exploration of the plasma spatial correlation structure with that and other methods. 16 refs, 7 figs

  15. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  16. Neutron calorimeter as a fusion diagnostic

    International Nuclear Information System (INIS)

    Proctor, A.E.; Nieschmidt, E.B.

    1986-01-01

    A calorimeter is described which is applicable as a fusion neutron diagnostic. The device has the following distinct advantages: low sensitivity to thermal neutrons, large dynamic range, small mass resulting in fair time resolution, small physical size, independent calibration, little shielding required, no heat loss to surroundings, and low cost. The heat generation is provided by neutron induced fissions in a foil of 235 U or 238 U. The effects, advantages, and disadvantages of these target materials are discussed. The expected time resolution and dynamic range are estimated for both target materials

  17. NSTX Diagnostics for Fusion Plasma Science Studies

    International Nuclear Information System (INIS)

    Kaita, R.; Johnson, D.; Roquemore, L.; Bitter, M.; Levinton, F.; Paoletti, F.; Stutman, D.

    2001-01-01

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community

  18. High Power Microwave Diagnostic for the Fusion Energy Experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Gonçalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments...

  19. Neutron measurements as fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hoek, M.

    1993-01-01

    Neutron measurements play important roles as the diagnostics of many aspects of the plasma in large tokamak devices such as JT-60U and JET. In the d-d discharges of JT-60U, the most important application of the neutron measurement is the investigation of the fusion performance using fission chambers. The ion velocity distribution function, and the triton slowing down are investigated by the neutron spectrometer and the 14 MeV neutron detector, respectively. TANSY is a combined proton-recoil and neutron time-of flight spectrometer for 14 MeV neutrons to be used during the d-t phase at JET. The detection principle is based on the measurements of the flight time of a scattered initial neutron and the energy of a corresponding recoil proton. The scattering medium is a polyethylene foil. The resolution and efficiency, using a thin foil (0.95 mg/cm 2 ), is 155 keV and 1.4x10 -5 cm 2 , respectively. (author)

  20. Diagnostics developments and applications for laser fusion experiments

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1977-01-01

    Some diagnostics techniques applied to current laser fusion target experiments are reviewed. Specifically, holographic interferometry of target plasmas, coded aperture imaging of thermonuclear alpha-particles and neutron energy spectrum measurements are discussed

  1. High power microwave diagnostic for the fusion energy experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Goncalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments....... The ITER CTS diagnostic will inject a 1 MW 60 GHz gyrotron beam into the ITER plasma and observe the scattering off fluctuations in the plasma — to monitor the dynamics of the fast ions generated in the fusion reactions....

  2. Fusion plasma diagnostics with mm-waves an introduction

    CERN Document Server

    Hartfuss, Hans-Jürgen

    2013-01-01

    Filling a gap in the literature, this introduction to the topic covers the physics of the standard microwave diagnostics established on modern fusion experiments, and the necessary technological background from the field of microwave engineering. Written by well-known mm-wave diagnosticians in the field of fusion physics, the textbook includes such major diagnostic techniques as electron cyclotron emission, interferometry, reflectometry, polarimetry, and scattering.

  3. Fusion alpha loss diagnostic for ITER using activation technique

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Hult, M.; González de Orduña, R.; Vermaercke, P.; Murari, A.; Popovichev, S.; Mlynář, Jan

    2011-01-01

    Roč. 86, 6-8 (2011), s. 1298-1301 ISSN 0920-3796. [Symposium on Fusion Technology (SOFT) /26th./. Port o, 27.09.2010-01.10.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * fusion product * burning plasma diagnostics * alpha losses * activation technique Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.490, year: 2011 http://www.sciencedirect.com/science/article/pii/S0920379611002778

  4. Novel diagnostics for dust in space, Laboratory and fusion plasmas

    International Nuclear Information System (INIS)

    Castaldo, C.

    2011-01-01

    In situ diagnostics for mobile dust, based on dust impact ionization phenomena, as well as silica aerogel dust collectors are discussed for applications to space and fusion plasmas. The feasibility of an electro-optical probe to detect hypervelocity (>1 km/s) dust particles in tokamaks is evaluated. For quiescent plasmas, a diagnostic of submicron dust based on measurements of plasma fluctuation spectra can be used (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Multigigahertz beam diagnostics for laser fusion

    International Nuclear Information System (INIS)

    Smith, R.C.; Hodson, E.K.; Carlson, R.L.

    1981-01-01

    A system to make ultra wideband measurements of fast laser pulses and their induced target interactions at a distance of approximately 38 m from the target location is discussed. The system has demonstrated an overall bandwidth of 3 GHz with projected unfolding to 4 GHz. This system allows high resolution temporal history diagnostics in a remote location providing high EMI and radiation immunity

  6. DIAGNOSTICS FOR EROSION AND DEPOSITION PROCESSES IN FUSION PLASMAS

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2010-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  7. Diagnostics for erosion and deposition processes in fusion plasmas

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2012-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  8. Diagnostics for erosion and deposition processes in fusion plasmas

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2008-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  9. Concept of a charged fusion product diagnostic for NSTX.

    Science.gov (United States)

    Boeglin, W U; Valenzuela Perez, R; Darrow, D S

    2010-10-01

    The concept of a new diagnostic for NSTX to determine the time dependent charged fusion product emission profile using an array of semiconductor detectors is presented. The expected time resolution of 1-2 ms should make it possible to study the effect of magnetohydrodynamics and other plasma activities (toroidal Alfvén eigenmodes (TAE), neoclassical tearing modes (NTM), edge localized modes (ELM), etc.) on the radial transport of neutral beam ions. First simulation results of deuterium-deuterium (DD) fusion proton yields for different detector arrangements and methods for inverting the simulated data to obtain the emission profile are discussed.

  10. Far-infrared fusion plasma diagnostics. Task IIIA. Final report

    International Nuclear Information System (INIS)

    Luhmann, N.C. Jr.

    1986-01-01

    The Task IIIA program at UCLA has been concerned with the development of innovative yet practical plasma diagnostic systems capable of providing detailed information essential to the success of the fusion program but not presently available within the fusion community. Historically, this has involved an initial development in the laboratory, followed by a test of feasibility on the Microtor tokamak prior to transfer of the technique/instrument to main line fusion devices. Strong emphasis has been placed upon the far-infrared (FIR) spectral region where novel diagnostic systems and technology have been developed and then distributed throughout the fusion program. The major diagnostics under development have been the measurement of plasma microturbulence and coherent modes via multichannel cw collective Thomson scattering, and the application of phase/polarization imaging techniques to provide accurate and detailed (>20 channel) electron density and current profiles not presently available using conventional methods. The eventual transfer of the above techniques to main line fusion devices is, of course, a major goal of the UCLA development program. The multichannel scattering development at UCLA was efficiently transferred to TEXT a few years ago. The apparatus has been employed to investigate the strong spectral and spatial asymmetries in the microturbulence uncovered through the unique multichannel and spatial scanning capabilities of the system. The scattering apparatus has also produced evidence for the ion pressure gradient driven eta/sub i/ modes thought responsible for anomalous transport in the edge regions of tokamak plasmas, as well as providing insight into the wave-wave coupling processes between various plasma modes

  11. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  12. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  13. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  14. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  15. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  16. Fusion proton diagnostic for the C-2 field reversed configurationa)

    Science.gov (United States)

    Magee, R. M.; Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-01

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50 cm2), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (˜100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  17. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  18. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 μm and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density

  19. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  20. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future

  1. X-ray diodes for laser fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Day, R.H.; Lee, P.; Saloman, E.B.; Nagel, D.J.

    1981-02-01

    Photodiodes with x-ray sensitive photocathodes are commonly used as broadband x-ray detectors in fusion plasma diagnostics. We have measured the risetime of the detector system and have measured the quantum efficiency between 1 to 500 A of numerous photocathode materials of practical interest. The materials studied include aluminum, copper, nickel, gold, three forms of carbon, chromium, and cesium iodide. The results of the measurements are compared with Henke's semiempirical model of photoyield. We have studied the effects of long-term cathode aging and use as a plasma diagnostic on cathode quantum efficiency. In addition, we have measured the x-ray mass-absorption coefficient of several ultrasoft x-ray windows in energy regions where data were unavailable. Windows studied were made of aluminum, Formvar, polypropylene, and Kimfoil. Measurements between 1 to 50 A were performed with the Los Alamos Scientific Laboratory's low-energy x-ray calibration facility, and the measurements between 50 to 550 A were performed at the National Bureau of Standard's synchrotron ultraviolet radiation facility

  2. Diagnostics Development towards Steady State Operation in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Burhenn, R.; Baldzuhn, J.; Dreier, H.; Endler, M.; Hartfuss, H.J.; Hildebrandt, D.; Hirsch, M.; Koenig, R.; Kornejev, P.; Krychowiak, M.; Laqua, H.P.; Laux, M.; Oosterbeek, J.W.; Pasch, E.; Schneider, W.; Thomsen, H.; Weller, A.; Werner, A.; Wolf, R.; Zhang, D. [Max-Planck-Institute fuer Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Biel, W. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2011-07-01

    The stellarator Wendelstein 7-X (W7-X) is being presently under construction and is already equipped with superconducting coil systems and principally is capable of quasi-continuous operation. However, W7-X is faced with new enhanced technical requirements which have to be met by plasma facing components as well as the diagnostic systems in general. Depending on the available heating power, the continuous heat flux to plasma facing components during long pulse operation might lead to unacceptable local thermal overload and necessitates sufficient but often complicate active cooling precautions. Fusion devices with electron cyclotron frequency heating (ECRH) are concerned with significant stray radiation, depending on the chosen heating scheme and the plasma parameters. The required shielding is often not compatible with optimal UHV-consistent design and high intensity throughput. For machine safety, diagnostics are required which are able to identify enhanced plasma wall interaction on a fast time scale in order to prevent damage in time. For W7-X, video camera systems covering most of the inner wall, fast IR-camera systems with coating-resistant pinhole-optics for the observation of the divertor surface temperature and spectrometers with large spectral survey covering relevant spectral lines of all intrinsic impurities with sufficient spectral resolution and sensitivity are necessary. In combination with energy integrating but spatially resolving diagnostics like bolometers and soft-X cameras slow impurity accumulation phenomena on a time scale much larger than flat-top times typically achieved in short-pulse operation can be identified and a radiative plasma collapse possibly be avoided by counteractive measures. Longer port dimensions due to thermal insulation of the cryogenic coil system and high density operation with strong density gradients necessitate the choice of shorter wavelengths for interferometer laser beams. This complicates the avoidance of fringe

  3. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  4. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N. [and others

    1997-09-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade.

  5. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N.

    1997-01-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade

  6. Diagnostics in the hostile environments of a prototype fusion reactor

    International Nuclear Information System (INIS)

    Osher, J.E.

    1982-01-01

    Various facets of a thermonuclear type plasma that will likely require special considerations or hardening of applied diagnostic instrumentation are reviewed. The discussion will include both on-line diagnostic instrumentation requirements for satisfactory operation and considerations to reduce integrated radiation damage sufficiently for a reasonable diagnostic lifetime. Several new diagnostics aimed specifically at measurements of the plasma characteristics most appropriate to a thermonculear reactor type plasma are discussed. This will include instrumentation needed to make quantitative energy flow measurements during long term operation with the expected high input power sources, and locally very high wall power loadings. The second part of this lecture will broaden diagnostics to include materials damage measurements needed for engineering design studies. This will include needed diagnostic instrumentation to assess first wall damage, sputtering erosion at walls (and high power beam dumps), and radiation damage to components such as insulators

  7. Design of neutron streak camera for fusion diagnostics

    International Nuclear Information System (INIS)

    Wang, C.L.; Kalibjian, R.; Singh, M.S.

    1982-06-01

    The D-T burn time for advanced laser-fusion targets is calculated to be very short, 2 . Each fission fragment leaving the cathode generates 400 secondary electrons that are all < 20 eV. These electrons are focussed to a point with an extractor and an anode, and are then purified with an electrostatic deflector. The electron beam is streaked and detected with the standard streak camera techniques. Careful shielding is needed for x-rays from the fusion target and general background. It appears that the neutron streak camera can be a viable and unique tool for studying temporal history of fusion burns in D-T plasmas of a few keV ion temperature

  8. Diagnostic measurements related to laser driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Campbell, D.E.

    1979-01-01

    Scientists at the Lawrence Livermore Laboratory have been conducting laser driven inertial confinement fusion experiments for over five years. The first proof of the thermonuclear burn came at the Janus target irradiation facility in the spring of 1975. Since that time three succeedingly higher energy facilities have been constructed at Livermore, Cyclops, Argus and Shiva, where increased fusion efficiency has been demonstrated. A new facility, called Nova, is now in the construction phase and we are hopeful that scientific break even (energy released compared to incident laser energy on target) will be demonstrated here in early 1980's. Projected progress of the Livermore program is shown

  9. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  10. Real-time image fusion involving diagnostic ultrasound

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Săftoiu, Adrian; Gruionu, Lucian G

    2013-01-01

    The aim of our article is to give an overview of the current and future possibilities of real-time image fusion involving ultrasound. We present a review of the existing English-language peer-reviewed literature assessing this technique, which covers technical solutions (for ultrasound...

  11. ITER perspective on fusion reactor diagnostics - A spectroscopic view

    DEFF Research Database (Denmark)

    De Bock, M. F. M.; Barnsley, R.; Bassan, M.

    2016-01-01

    challenges to the development of spectroscopic (but also other) diagnostics. This contribution presents an overview of recent achievements in 4 topical areas: First mirror protection and cleaning, Nuclear confinement, Radiation mitigation strategy for optical and electronic components and Calibration...

  12. Early history of experimental inertial confinement fusion and diagnostics in China

    International Nuclear Information System (INIS)

    Wang Chuanke; Jiang Shao'en; Ding Yongkun

    2014-01-01

    The early history of China's research on experimental laser inertial confinement fusion (ICF) and diagnostics technology is reviewed. The long and difficult path started from scratch, from learning the basics, looking up the literature and copying experiments, to independent research and development of comprehensive experimental facilities. This article fills a gap in the history of China's ICF experimental and diagnostics research. (authors)

  13. Bayesian tomography and integrated data analysis in fusion diagnostics

    Science.gov (United States)

    Li, Dong; Dong, Y. B.; Deng, Wei; Shi, Z. B.; Fu, B. Z.; Gao, J. M.; Wang, T. B.; Zhou, Yan; Liu, Yi; Yang, Q. W.; Duan, X. R.

    2016-11-01

    In this article, a Bayesian tomography method using non-stationary Gaussian process for a prior has been introduced. The Bayesian formalism allows quantities which bear uncertainty to be expressed in the probabilistic form so that the uncertainty of a final solution can be fully resolved from the confidence interval of a posterior probability. Moreover, a consistency check of that solution can be performed by checking whether the misfits between predicted and measured data are reasonably within an assumed data error. In particular, the accuracy of reconstructions is significantly improved by using the non-stationary Gaussian process that can adapt to the varying smoothness of emission distribution. The implementation of this method to a soft X-ray diagnostics on HL-2A has been used to explore relevant physics in equilibrium and MHD instability modes. This project is carried out within a large size inference framework, aiming at an integrated analysis of heterogeneous diagnostics.

  14. Tertiary proton diagnostics in future inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Cremer, S.; Verdon, C.P.; Petrasso, R.D.

    1998-01-01

    Recently, it was proposed to use energetic (up to 31 MeV) tertiary protons produced during the final stage of inertial confinement fusion implosions to measure the fuel areal density of compressed deuterium endash tritium (DT). The method is based on seeding the fuel with 3 He. The reaction of 3 He ions with the energetic knock-on deuterons, produced via the elastic scattering of 14.1 MeV neutrons, is a source of very energetic protons capable of escaping from very large areal density targets. This work presents results of detailed time-dependent Monte Carlo simulations of the nuclear processes involved in producing and transporting these protons through imploding targets proposed for direct-drive experiments on OMEGA [D. K. Bradley et al., Phys. Plasmas 5, 1870 (1998)] and the National Ignition Facility [S. W. Haan et al., Phys. Plasmas 2, 2480 (1995)]. copyright 1998 American Institute of Physics

  15. A study on the Fusion Reactor - Development of charge exchange recombination spectroscopy for tokamak diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tong Nyong; Kim, Dong Eon; Kim, Dae Sung; Kim, Seong Ho [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    1996-09-01

    This project has been carried to train people and accumulate the knowledge and techniques related to the measurement of the profiles of ion temperature, toroidal rotation velocity, and fully-stripped ion density in a fusion tokamak plasma by the development of plasma diagnostics using charge exchange recombination (CER) spectroscopy. Daring the 1 st year, the basic study and review on the charge exchange process and the conceptual design and review of the diagnostics have been conducted. In addition, the various atomic data centers around the world have been surveyed and atomic data related to CER have been constructed. The results of this project can be used to the construction and tokamak machine installation of a CER plasma diagnostic to a new superconducting supported by National Fusion Program. 42 refs., 3 tabs., 16 figs. (author)

  16. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  17. Studies of neutron measurement methods for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Beimer, K.H.

    1986-03-01

    This thesis comprises several studies mainly devoted to neutron measurement systems for plasma diagnostics at JET (Joint European Torus). An in situ calibration of the U-235 fission chamber detectors located at JET is presented. These detectors are used for measuring the neutron yield from the thermonuclear reactions in the plasma. The energy spectrum of the neutrons from the reactions D(d,n) 3 He has been studied by means of a 3 He spectrometer. Especially, it was found that by measuring the width of the full energy peak in the response spectrum of the 3 He-spectrometer, the deuterium distribution in the deuterium targets used can be estimated. In order to measure different neutron energies it is necessary to obtain a detailed knowledge of the response of the spectrometer. Therefore, the response function to monoenergetic neutrons in the energy range 130-3030 keV was experimentally determined. Some work has been related to a design study of a 14 MeV spectrometer for neutron diagnostics. It is a combined proton-recoil and time-of-flight spectrometer for high resolution measurements. The main parts of it are the collimator, the scattering foil, and the detectors for the recoil protons and the scattered neutrons. The influence of proton straggling in the foil on the resolution and efficiency of the spectrometer has been studied. Furthermore, a three dimensional Monte Carlo code has been written and used for the design of the collimator. (author)

  18. Remote experimental site concept for diagnostic collaborations in fusion

    International Nuclear Information System (INIS)

    Casper, T.A.

    1991-08-01

    The next generation of tokamaks, ITER or BPX, will be characterized by an even greater emphasis on joint operation and experimentation. With anticipation of an increased number and diversity of collaborations, especially in the area of diagnostics, we are preparing for such shared facilities by developing a systematic approach to remote, joint physics operation involving experimental teams at several locations. The local area network of computers used for control and data acquisition on present and future experiments can be extended over a wide area network to provide a mechanism for remote operation of subsystems (e.g. diagnostics) required for physics experiments. The technology required for high bandwidth (≥45Mbps) connections between multiple sites either exists or will be available over the next few years. With the rapid development of high performance workstations, network interfaces, distributed computing, and video conferencing, we can proceed with the development of a system of control and analysis sites to provide for consistent, efficient, and continuing collaborations. Early establishment of such sites could also enhance existing joint design and development efforts

  19. Neutron degradation of UV enhanced optical fibers for fusion installation plasma diagnostics

    International Nuclear Information System (INIS)

    Sporea, D.; Vata, I.; Dudu, D.; Danis, Ana

    2004-01-01

    The remote diagnostics of plasmas in fusion installations requires adequate connection links to transfer the measured signals in media subjected to high electromagnetic disturbances. We evaluated the neutron irradiation induced optical absorption in several commercially available optical fibers, as they were assessed for their possible use in fusion installations. Optical fiber samples were subjected to subsequent irradiation with fluences from 6 x 10 11 to 6 x 10 13 n/cm 2 . Significant radiation induced absorption was observed in the 220-260 nm spectral band, mainly for small core diameter optical fibers (200/220 μm), independent of the cladding material used

  20. Spatially resolved soft x-ray diagnostics in fusion energy research

    International Nuclear Information System (INIS)

    Mlynar, J.; Weinzettl, V.; Imrisek, M.; Loeffelmann, V.

    2013-01-01

    With construction of ITER, the fusion community has progressed into a new stage of research with increased focus on reactor technologies. Corresponding development of diagnostic systems for fusion is required, including research of novel diagnostic methods, validation of radiation hard detectors, and tests of sensors for real-time operation and control, which comprise development of tools for fast data analyses. In parallel, diagnostic systems on running fusion experiments substantially contribute to better understanding of reactor-relevant plasma physics, in particular of energy confinement, plasma stability and transport of impurities. In this respect, spatially resolved Soft X-ray (SXR) diagnostic systems present an interesting case study of development towards reactor-relevant systems. In magnetic confinement fusion research, spatial distribution of SXR radiation with spectral range typically 1 keV - 15 keV is mostly measured by a photosensitive single-row semiconductor elements in a pinhole camera shielded by a beryllium foil. The SXR intensity strongly depends on plasma density, temperature and effective charge, which carry a valuable information on the plasma core physics. Data from SXR diagnostic can be also used for the operation control, among others due to their sensitivity to heavy impurity concentration or to the position of the peak temperature. In order to reconstruct the spatial distribution of SXR plasma emission from the measured line integrated signals, several tomographic methods have been developed and validated. However, the semiconductor elements cannot survive in harsh conditions of future fusion reactors due to radiation damage, which calls for development of radiation hard SXR cameras. In this contribution, role of the SXR diagnostics will be presented in experience and future plans of the Czech tokamak COMPASS (IPP Prague) and the French tokamak TORE SUPRA (CEA Cadarache). In IPP Prague, data from SXR cameras recently contributed to

  1. Development of an Information Fusion System for Engine Diagnostics and Health Management

    Science.gov (United States)

    Volponi, Allan J.; Brotherton, Tom; Luppold, Robert; Simon, Donald L.

    2004-01-01

    Aircraft gas-turbine engine data are available from a variety of sources including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data Fusion is the integration of data or information from multiple sources, to achieve improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This paper describes a basic PHM Data Fusion architecture being developed in alignment with the NASA C17 Propulsion Health Management (PHM) Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center (GRC), NASA Dryden Flight Research Center (DFRC) and Pratt & Whitney (P&W) have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion as applied to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This paper will provide a broad overview of this work, discuss some of the methodologies employed and give some illustrative examples.

  2. Integrated data analysis of fusion diagnostics by means of the Bayesian probability theory

    International Nuclear Information System (INIS)

    Fischer, R.; Dinklage, A.

    2004-01-01

    Integrated data analysis (IDA) of fusion diagnostics is the combination of heterogeneous diagnostics to obtain validated physical results. Benefits from the integrated approach result from a systematic use of interdependencies; in that sense IDA optimizes the extraction of information from sets of different data. For that purpose IDA requires a systematic and formalized error analysis of all (statistical and systematic) uncertainties involved in each diagnostic. Bayesian probability theory allows for a systematic combination of all information entering the diagnostic model by considering all uncertainties of the measured data, the calibration measurements, and the physical model. Prior physics knowledge on model parameters can be included. Handling of systematic errors is provided. A central goal of the integration of redundant or complementary diagnostics is to provide information to resolve inconsistencies by exploiting interdependencies. A comparable analysis of sets of diagnostics (meta-diagnostics) is performed by combining statistical and systematical uncertainties with model parameters and model uncertainties. Diagnostics improvement and experimental optimization and design of meta-diagnostics will be discussed

  3. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    Science.gov (United States)

    Barchfeld, Robert Adam

    plasma diagnostics. Plasma diagnostics collect data from fusion reactors in a number of different ways. Among these are far infrared (FIR) laser based systems. By probing a fusion plasma with FIR lasers, many properties can be measured, such as density and density fluctuations. This dissertation discusses the theory and design of two laser based diagnostic instruments: 1) the Far Infrared Tangential Interferometer and Polarimeter (FIReTIP) systems, and 2) the High-ktheta Scattering System. Both of these systems have been designed and fabricated at UC Davis for use on the National Spherical Torus Experiment - Upgrade (NSTX-U), located at Princeton Plasma Physics Laboratory (PPPL). These systems will aid PPPL scientists in fusion research. The FIReTIP system uses 119 ?m methanol lasers to pass through the plasma core to measure a chord averaged plasma density through interferometry. It can also measure the toroidal magnetic field strength by the way of polarimetery. The High-ktheta Scattering System uses a 693 GHz formic acid laser to measure electron scale turbulence. Through collective Thomson scattering, as the probe beam passes through the plasma, collective electron motion will scatter power to a receiver with the angle determined by the turbulence wavenumber. This diagnostic will measure ktheta from 7 to 40 cm-1 with a 4-channel receiver array. The High-ktheta Scattering system was designed to facilitate research on electron temperature gradient (ETG) modes, which are believed to be a major contributor to anomalous transport on NSTX-U. The design and testing of these plasma diagnostics are described in detail. There are a broad range of components detailed including: optically pumped gas FIR lasers, overmoded low loss waveguide, launching and receiving optical designs, quasi-optical mixers, electronics, and monitoring and control systems. Additionally, details are provided for laser maintenance, alignment techniques, and the fundamentals of nano-CNC-machining.

  4. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    Tafalla, D.; Tabares, F.L.; Ortiz, P.; Herrero, V.J.; Tanarro, I.

    1998-01-01

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  5. THz Backward-wave oscillators for plasma diagnostic in nuclear fusion

    OpenAIRE

    Paoloni, Claudio; Yue, Lingna; Tang, Xiaopin; Zhang, Fuzhi; Popovic, Branko; Himes, Logan; Barchfeld, Robert; Gamzina, Diana; Mineo, Mauro; Letizia, Rosa; Luhmann Jr., Neville C.

    2015-01-01

    Summary form only given. The understanding of plasma turbulence in nuclear fusion is related to the availability of powerful THz sources and the possibility to map wider plasma regions. A novel approach to realize compact THz sources to be implemented in the plasma diagnostic at NSTX experiment (Princeton Plasma Physics Laboratory, USA) is reported.Two novel 0.346 THz Backward-Wave Oscillators (BWOs) have been designed and are presently in the fabrication phase. One BWO is based on the Double...

  6. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-01-01

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  7. Diagnostic mirror concept development for use in the complex environment of a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, Andreas Joachim

    2016-07-01

    Light-based diagnostic systems of fusion reactors require optical mirrors to channel light through the structures surrounding the plasma. With increasing plasma volume, power and plasma burn time, the environmental conditions grow more demanding and new requirements arise. In this dissertation, the design of optical mirrors inside the vacuum chamber of the prototype reactor ITER (Latin ''the way'') and future fusion power plants are investigated. Comparing the state of the art with the boundary conditions close to the fusion plasma, existing mirror designs and choices for the reflective surface are evaluated. For the design, it is not the individual boundary conditions that are critical, but rather, their combination and the resulting interactions. Drawing from the existing designs, possible realizations for central functionality are discussed. Included in the discussion are substrate choice, mounting, adjustment and thermal contacting as well as positioning of the mirror assembly compatible with hot cell maintenance. Building on the general discussion, mirror concepts for the charge exchange recombination spectroscopy (CXRS) diagnostic system for the ITER plasma core are proposed and simulated. In addition, prototypes are manufactured and tested to assess critical aspects of the proposed design. Testing includes positioning by pins, manufacturing of a stainless steel substrate with fluid channels adapted to the mirror shape, and tests with an SiO{sub 2} /TiO{sub 2} dielectric coating under selected ITER conditions. As a result of the work, the fusion reactor mirror design considerations given in the principal design discussion can be used as a basis for other diagnostic systems as well. In the case of the core CXRS mirror concept for ITER, the basic suitability was shown and critical topics were identified where additional work is necessary.

  8. Diagnostic mirror concept development for use in the complex environment of a fusion reactor

    International Nuclear Information System (INIS)

    Krimmer, Andreas Joachim

    2016-01-01

    Light-based diagnostic systems of fusion reactors require optical mirrors to channel light through the structures surrounding the plasma. With increasing plasma volume, power and plasma burn time, the environmental conditions grow more demanding and new requirements arise. In this dissertation, the design of optical mirrors inside the vacuum chamber of the prototype reactor ITER (Latin ''the way'') and future fusion power plants are investigated. Comparing the state of the art with the boundary conditions close to the fusion plasma, existing mirror designs and choices for the reflective surface are evaluated. For the design, it is not the individual boundary conditions that are critical, but rather, their combination and the resulting interactions. Drawing from the existing designs, possible realizations for central functionality are discussed. Included in the discussion are substrate choice, mounting, adjustment and thermal contacting as well as positioning of the mirror assembly compatible with hot cell maintenance. Building on the general discussion, mirror concepts for the charge exchange recombination spectroscopy (CXRS) diagnostic system for the ITER plasma core are proposed and simulated. In addition, prototypes are manufactured and tested to assess critical aspects of the proposed design. Testing includes positioning by pins, manufacturing of a stainless steel substrate with fluid channels adapted to the mirror shape, and tests with an SiO_2 /TiO_2 dielectric coating under selected ITER conditions. As a result of the work, the fusion reactor mirror design considerations given in the principal design discussion can be used as a basis for other diagnostic systems as well. In the case of the core CXRS mirror concept for ITER, the basic suitability was shown and critical topics were identified where additional work is necessary.

  9. The role of risk management in the design of diagnostics for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ingesson, L. C. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Collaboration: F4E Diagnostic Project Team

    2014-08-21

    A project-oriented approach is beneficial for the selection and design of viable diagnostics for fusion reactors because of the associated complex physical and organizational environment. The project-oriented approach includes rigorous risk management. The nature and impact of risks related to technical, organizational and commercial aspects in relation to the development of ITER diagnostics under EU responsibility are analyzed. The majority of risks are related to organizational aspects and technical feasibility issues. The experience with ITER is extrapolated to DEMO and beyond. It should not be taken for granted that technical solutions will be found, while a risk analysis of various diagnostic techniques with quantitative assessments undertaken early in the design of DEMO would be beneficial.

  10. Reduced optical transmission of SiO2 fibers used in controlled fusion diagnostics

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Adler, H.G.; Hill, K.W.

    1993-02-01

    We have subjected a silica core fiber optic cable to 4 years of low-level neutron and gamma radiation from Princeton's TFTR controlled fusion experiment The accumulated dose was 200 Gy. As a result of the radiation, we have measured increased attenuations of 100--300 db/km in the visible part of the spectrum, and a decrease of the numerical aperture. An attempt to decrease this damage by photobleaching failed. We argue that this failure is not unexpected, since the rate of damage is so slow and the time scale so long that the self-annealing process keeps the residual damage at the irreducible level seen in other experiments. The implications of these findings for controlled fusion diagnostics during upcoming experiments with highly reactive deuterium-tritium plasmas are discussed

  11. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    Science.gov (United States)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  12. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  13. X-ray diagnostics in the laser-initiated fusion program

    International Nuclear Information System (INIS)

    Godwin, R.P.

    1975-08-01

    The high-density and high-temperature plasma conditions required for successful laser-initiated fusion make x-ray diagnostics a valuable tool in this exciting field. Measurements of the hard x-ray continuum emitted from laser targets provide insight into the complex laser-plasma coupling physics and the consequent energy transport through the bremsstrahlung signature of energetic electrons. X-ray techniques are important in the selection and assay of microballoon targets for current compression experiments. X-ray imaging experiments and diffraction spectroscopy of highly stripped atoms can provide information upon the symmetry, density and temperature of laser targets. Extremely high temporal and spatial resolution may be required for definitive diagnostic information on compressed targets. While laser-produced plasmas are interesting as possible intense x-ray sources and as a possible means of achieving x-ray lasing, those topics are outside the scope of this review. (auth)

  14. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed

  15. Physics of Fission and Fusion for the Diagnostics and Monitoring of the Deadliest Illness of Mankind

    Science.gov (United States)

    Saxena, Arjun

    2015-03-01

    The physics of fission and fusion has been well known for the past several decades. It has been used primarily for destructive purposes (e. g., nuclear armaments) with both processes. However for peaceful purposes, e. g., generation of energy, only fission has been used, but not yet fusion. It is also well known that the deadliest illness of mankind is the group of illnesses called mental illnesses. A large segment of the world population is afflicted by them causing more loss of human lives, destruction of families, businesses and overall economy than all the other illnesses combined. Despite outstanding advancements in medical research and huge investments, unfortunately no diagnostic techniques have yet been found which can characterize the patient's mental illness. Consequently, no quantitative monitoring techniques are available to evaluate the efficacy of the various medicines used to treat the patients, and to develop them in the pharmaceutical labs. The purpose of this paper is to apply the constructive aspects of fission and fusion to identify the missing links in the diagnosis and treatment of mental illnesses. Each patient is a unique human being, not a disease or a group of symptoms. This makes it even more difficult to treat the patients suffering from mental illnes

  16. The Roles and Developments needed for Diagnostics in the ITER Fusion Device

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Michael [ITER Organization, Route de Vinon-sur-Verdon - CS 90046, 13067 St Paul-lez-Durance Cedex (France)

    2015-07-01

    Harnessing the power from Fusion on earth is an important and challenging task. Excellent work has been carried out in this area over the years with several demonstrations of the ability to produce power. Now, a new large device is being constructed in the south of France. This is called ITER. ITER is a large-scale scientific experiment that aims to demonstrate a possibility to produce commercial energy from fusion. This project is now well underway with the many teams working on the construction and completing various aspects of the design. This device will carry up to 15 MA of plasma current and produce about 500 MW of power, 400 MW approximately in high energy neutrons. The typical temperatures of the electrons inside this device are in the region of a few hundred million Kelvin. It is maintained using a magnetic field. This device is pushing several boundaries from those currently existing. As a result of this, several technologies need to be developed or extended. This is especially true for the systems or diagnostics that measure the performance and provide the control signals for this device. A diagnostic set will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include amongst others, measurements of the plasma shape, temperature, density, impurity concentration, and particle and energy confinement times. The system will comprise about 45 individual measuring systems drawn from the full range of modern plasma diagnostic techniques, including magnetics, lasers, X-rays, neutron cameras, impurity monitors, particle spectrometers, radiation bolometers, pressure and gas analysis, and optical fibres. These devices will have to be made to work in the new and challenging environment inside the vacuum vessel. These systems will have to cope with a range of phenomena that extend the current knowledge in the Fusion field. One

  17. Diagnostics for the laser fusion program: plasma physics on the scale of microns and picoseconds

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1978-01-01

    Laser induced fusion is the forerunner of a class of inertial confinement schemes in which hydrogen isotopes are heated to thermonuclear conditions in a very short period. The process is characterized by such short time scales that fuel confinement is achieved through its' own finite mass and expansion velocity, approaching 1 μm/psec for ignition temperatures of order 10 keV (10 8 0 K). With current laser powers limited to several terrawatts one readily estimates, on the basis of energy conservation, target mass, and expansion velocity, that target size and laser pulse duration are on the order of 100 μm and 100 psec, respectively. Within these constraints, targets have been heated and confined to the point where thermonuclear conditions have been achieved. This paper describes a sampling of diagnostic techniques with requisite resolution (microns and picoseconds) to accurately describe the dynamics of a laser driven compression. As discussed in each case cited, these in turn provide insight to and quantitative measure of, the physical processes dominating the implosion. The success of the inertial confinement fusion program is strongly dependent on the continued development of such diagnostics and the understanding they provide

  18. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E. [Physics Department, West Virginia University, Morgantown, West Virginia 26506 (United States); Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N. [General Atomics, San Diego, California 92121 (United States); Porter, G. D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup -1}) laser is injected into a hydrogen plasma to excite the Lyman {beta} transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer {alpha} emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  19. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.

    Science.gov (United States)

    Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  20. Collision excitation studies useful for plasma diagnostics in astrophysics and fusion research

    International Nuclear Information System (INIS)

    Man Mohan; Aggarwal, Sunny

    2015-01-01

    The urgent research for energy sources has led many countries to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction of International Thermonuclear Experimental Reactor in France. Data on highly charged ions with high Z will be important in this quest. Atomic data such as energy levels, radiative rates and collision excitation plays an important role in fusion research and extensive knowledge of atomic parameters is needed for plasma diagnostics. There is a very limited knowledge so far about the heavy atoms due to involvement of strong relativistic effects. For heavy atoms, electron correlation effects and relativistic effects are strongly coupled making it necessary to use a relativistic theory which also incorporates 'electron correlations effects on the same footing. For treating heavy atoms there have been new developments and many codes in the relativistic domain have been developed by various authors. Among them, multi-configuration Hartree (Dirac) Fock (MCDF) model based codes have been found very useful in ab-initio investigations. We have calculated the energy levels, radiative rates and lifetimes for heavy charged F, Na and Mg like tungsten ions using MCDF and FAC and compared our results with the other available theoretical and experimental results. Also, we have performed collision excitation calculations for F, Na and Mg like tungsten ions which will be useful for astrophysical and fusion, plasma. Also, we have compared our collision excitation results with distorted wave calculations and they are found to be in good agreement. The main goal of this paper is to provide useful atomic physics data for use in fusion research and in astrophysical and industrial plasmas. (author)

  1. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  2. Diagnostic for determining the mix in inertial confinement fusion capsule hotspot

    Energy Technology Data Exchange (ETDEWEB)

    He, Shibei; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Miao, Wenyong; Zhang, Xing; Tu, Shaoyong; Yuan, Yongteng; Pu, Yudong; Yan, Ji; Wei, Minxi; Yin, Chuansheng [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-07-15

    A diagnostic is developed for determining the hotspot mix in inertial confinement fusion experiments. A multi-channel pinhole camera measures Bremsstrahlung emissions from implosion capsules ranging from 6 keV to 30 keV and records an image of the hotspot. Meanwhile, a planar crystal spectrometer measures Ar line emissions used to deduce the electron density of the hotspot. An X-ray streaked camera records the burn duration. With the Bremsstrahlung spectrum, electron density, hotspot volume, and burn duration, the mix quantity is determined by solving a pair of linear equations. This inferred mix amount has an uncertainty due to the uncertainty of the electron density, but with the help of the measured neutron product, the most likely mix quantity value can be determined. This technique is applied to experimental images to infer the quantity of CH ablator mix into the hotspot.

  3. Diagnostic for determining the mix in inertial confinement fusion capsule hotspot

    International Nuclear Information System (INIS)

    He, Shibei; Ding, Yongkun; Miao, Wenyong; Zhang, Xing; Tu, Shaoyong; Yuan, Yongteng; Pu, Yudong; Yan, Ji; Wei, Minxi; Yin, Chuansheng

    2016-01-01

    A diagnostic is developed for determining the hotspot mix in inertial confinement fusion experiments. A multi-channel pinhole camera measures Bremsstrahlung emissions from implosion capsules ranging from 6 keV to 30 keV and records an image of the hotspot. Meanwhile, a planar crystal spectrometer measures Ar line emissions used to deduce the electron density of the hotspot. An X-ray streaked camera records the burn duration. With the Bremsstrahlung spectrum, electron density, hotspot volume, and burn duration, the mix quantity is determined by solving a pair of linear equations. This inferred mix amount has an uncertainty due to the uncertainty of the electron density, but with the help of the measured neutron product, the most likely mix quantity value can be determined. This technique is applied to experimental images to infer the quantity of CH ablator mix into the hotspot.

  4. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Zimbal, Andreas

    2008-01-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements

  5. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-01-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO 2 -laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges

  6. Boundary and PMI Diagnostics for the DIII-D National Fusion Facility

    Science.gov (United States)

    Thomas, D. M.; Bray, B. D.; Chrobak, C.; Leonard, A. W.; Allen, S. L.; Lasnier, C. J.; McLean, A. G.; Briesemeister, A. R.; Boedo, J. A.; Elder, D.; Watkins, J. G.

    2014-10-01

    The Boundary and Plasma Materials Interaction Center is planning an improved set of boundary and divertor diagnostics for DIII-D in order to develop and validate robust heat flux solutions for future fusion devices on a timescale relevant to the design of FNSF. We intend to develop and test advanced divertor configurations on DIII-D using high performance plasma scenarios that are compatible with advanced tokamak operations in FNSF as well as providing a comprehensive testbed for modeling. Simultaneously, candidate PFC material solutions can be easily tested in these scenarios. Additional diagnostic capability is vital to help understand and validate these solutions. We will describe a number of desired measurements and our plans for deployment. These include better accounting of divertor radiation, including species identification and spatial distribution, divertor/SOL main ion temperature and neutral pressure, fuller 2D Te /ne imaging, and toroidally separated 3D heat flux measurements. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-FG02-07EAR54917, and DE-AC04-94AL85000.

  7. Detection of an anomalous pressure on a magneto-inertial-fusion load current diagnostic

    International Nuclear Information System (INIS)

    Hess, Mark Harry; Hutsel, Brian Thomas; Jennings, Christopher Ashley; VanDevender, J. Pace; Sefkow, Adam B.

    2017-01-01

    Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infer that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.

  8. Vacuum system design and tritium inventory for the charge exchange diagnostic on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Medley, S.S.

    1986-01-01

    The application of charge exchange analyzers for the measurement of ion temperature in fusion plasma experiments requires a direct connection between the diagnostic and plasma-discharge vacuum chambers. Differential pumping of the gas load from the diagnostic stripping cell operated at > or approx. = 10 -3 Torr is required to maintain the analyzer chamber at a pressure of -6 Torr. The migration of gases between the diagnostic and plasma vacuum chambers must be minimized. In particular, introduction of the analyzer stripping cell gas into the plasma chamber having a base pressure of -8 Torr must be suppressed. The charge exchange diagnostic for the Tokamak Fusion Test Reactor (TFTR) is comprised of two analyzer systems designed to contain a total of 18 independent mass/energy analyzers and one diagnostic neutral beam rated at 80 keV, 15 A. The associated arrays of multiple, interconnected vacuum systems were analyzed using the Vacuum System Transient Simulator (Vsts) computer program which models the transient transport of multigas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced costs, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and of the diagnostic working gases to the torus

  9. Superresolution of a compact neutron spectrometer at energies relevant for fusion diagnostics

    International Nuclear Information System (INIS)

    Reginatto, M.; Zimbal, A.

    2011-01-01

    The ability to achieve resolution that is better than the instrument resolution (i.e., superresolution) is well known in optics, where it has been extensively studied. Unfortunately, there are only a handful of theoretical studies concerning superresolution of particle spectrometers, even though experimentalists are familiar with the enhancement of resolution that is achievable when appropriate methods of data analysis are used, such as maximum entropy and Bayesian methods. Knowledge of the superresolution factor is in many cases important. For example, in applications of neutron spectrometry to fusion diagnostics, the temperature of a burning plasma is an important physical parameter which may be inferred from the width of the peak of the neutron energy spectrum, and the ability to determine this width depends on the superresolution factor. Kosarev has derived an absolute limit for resolution enhancement using arguments based on a well known theorem of Shannon. Most calculations of superresolution factors in the literature, however, are based on the assumption of Gaussian, translationally invariant response functions and therefore not directly applicable to neutron spectrometers which typically have response functions not satisfying these requirements. In this work, we develop a procedure that allows us to overcome these difficulties and we derive estimates of superresolution for liquid scintillator spectrometers of a type commonly used for neutron measurements. Theoretical superresolution factors are compared to experimental results.

  10. A pin diode x-ray camera for laser fusion diagnostic imaging: Final technical report

    International Nuclear Information System (INIS)

    Jernigan, J.G.

    1987-01-01

    An x-ray camera has been constructed and tested for diagnostic imaging of laser fusion targets at the Laboratory for Laser Energetics (LLE) of the University of Rochester. The imaging detector, developed by the Hughes Aircraft Company, is a germanium PIN diode array of 10 x 64 separate elements which are bump bonded to a silicon readout chip containing a separate low noise amplifier for each pixel element. The camera assembly consists of a pinhole alignment mechanism, liquid nitrogen cryostat with detector mount and a thin beryllium entrance window, and a shielded rack containing the analog and digital electronics for operations. This x-ray camera has been tested on the OMEGA laser target chamber, the primary laser target facility of LLE, and operated via an Ethernet link to a SUN Microsystems workstation. X-ray images of laser targets are presented. The successful operation of this particular x-ray camera is a demonstration of the viability of the hybrid detector technology for future imaging and spectroscopic applications. This work was funded by the Department of Energy (DOE) as a project of the National Laser Users Facility (NLUF)

  11. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  12. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  13. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    Science.gov (United States)

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  14. Application and Continued Development of Thin Faraday Collectors as a Lost Ion Diagnostic for Tokamak Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    F. Ed Cecil

    2011-06-30

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  15. A problem to be solved for tungsten diagnostics through EUV spectroscopy in fusion devices

    International Nuclear Information System (INIS)

    Morita, S.; Murakami, I.; Sakaue, H.A.; Dong, C.F.; Goto, M.; Kato, D.; Oishi, T.; Huang, X.L.; Wang, E.H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) in extreme ultraviolet (EUV) wavelength ranges of 10-650Å. When the electron temperature is less than 2keV, the EUV spectra from plasma core are dominated by unresolved transition array (UTA) composing of a lot of spectral lines, e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W"+"2"4"-"+"3"3 in 15-35Å. In order to understand the UTA spectrum, the EUV spectra measured from LHD plasmas are compared to those measured from Compact electron Beam Ion Trap (CoBIT), in which the electron beam is operated with monoenergetic energy of E_e ≤ 2keV. The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The collisional-radiative (C-R) model has been developed to explain the UTA spectra from LHD in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database to examine the ionization balance determined by ionization and recombination rate coefficients. If the electron temperature is higher than 2keV, Zn-like WXLV (W"4"4"+) and Cu-like WXLVI (W"4"5"+) spectra can be observed in LHD. Such ions of W"4"4"+ and W"4"5"+ can exhibit much simpler atomic configuration compared to other ionization stages of tungsten. Quantitative analysis of the tungsten density is attempted for the first time on the radial profile of Zn-like WXLV (W"4"4"+) 4p-4s transition measured at 60.9Å, based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5x10"1"0 cm"-"3 at the plasma center of LHD is reasonably obtained. Finally, the present problem for tungsten diagnostics in fusion plasmas is summarized. (author)

  16. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  17. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  18. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  19. Report on the diagnostics for control of the fusion DEMO reactors

    International Nuclear Information System (INIS)

    2014-05-01

    The range of diagnostics that can be used in DEMO will be severely restricted compared to that used in the current experiments or to be used in ITER. Therefore, a study is planned on the technical feasibility of sensors and diagnostics on the basis of specific tokamak and helical DEMO designs, with the involvement of a wide range of specialists covering reactor design, diagnostics, neutronics, reactor structure, remote maintenance, plasma physics, plasma and machine control, and computer simulation. Topics included typical characteristic times of target plasma behavior, diagnostics tools with their resolution and lifetime, response time of actuators, and plasmas. Through these studies, possible candidates for DEMO diagnostics were identified. The outcome of two years of activities is summarized in this report with a recommendation to the government of Japan. (J.P.N.)

  20. SPECT/CT image fusion with 99mTc-HYNIC-TOC in the oncological diagnostic

    International Nuclear Information System (INIS)

    Haeusler, F.

    2006-07-01

    Neuroendocrine tumours displaying somatostatin receptors have been successfully visualized with somatostatin receptor imaging. The aim of this retrospective study was to evaluate the value of anatomical-functional image fusion. Image fusion means the combined transmission and emission tomography (computed tomography (CT)) and single-photon emission computed tomography (SPECT) ) and was analyzed in comparison with SPECT and CT alone. Fifty-three patients (30 men and 23 women; mean age 55,9 years; range: 20-82 years) with suspected or known endocrine tumours were studied. The patients were referred to image fusion because of staging of newly diagnosed tumours (14) or biochemically/clinically suspected neuroendocrine tumour (20) or follow-up studies after therapy (19). The patients were studied with SPECT at 2 and 4 hours after injection of 400 MBq of 99mTc-EDDA-HYNIC-Tyr3-octreotide using a dual-detector scintillation camera. The CT was performed on one of the following two days. For both investigations the patients were fixed in an individualized vacuum mattress to guarantee exactly the same position. SPECT and SPECT/CT showed an equivalent scan result in 35 patients (66 %), discrepancies were found in 18 cases (34 %). After image fusion the scan result was true-positive in 27 patients ( 50.9 %) and true-negative in 25 patients (47.2 %). One patient with multiple small liver metastases escaped SPECT as well as image fusion and was so false-negative. The frequency of equivocal and probable lesion characterization was reduced by 11.6% (12 to 0) with PET/CT in comparison with PET or CT alone. The frequency of definite lesion characterization was increased by 11.6% (91 to 103). SPECT/CT affected the clinical management in 21 patients (40 %). The results of this study indicate that SPECT/CT is a valuable tool for the assessment of neuroendocrine tumours. SPECT/CT is better than SPECT or CT alone and it allows a more precise staging and determination of prognosis and

  1. Incremental diagnostic value of targeted biopsy using mpMRI-TRUS fusion versus 14-fragments prostatic biopsy. A prospective controlled study

    International Nuclear Information System (INIS)

    Mariotti, Guilherme C.; Falsarella, Priscila M.; Garcia, Rodrigo G.; Queiroz, Marcos R.G.; Lemos, Gustavo C.; Baroni, Ronaldo H.

    2018-01-01

    To compare the incremental diagnostic value of targeted biopsy using real-time multiparametric magnetic resonance imaging and transrectal ultrasound (mpMRI-TRUS) fusion to conventional 14-cores biopsy. Uni-institutional, institutional review board (IRB) approved prospective blinded study comparing TRUS-guided random and targeted biopsy using mpMRI-TRUS fusion, in 100 consecutive men. We included men with clinical-laboratorial suspicious for prostate cancer and Likert score ≥ 3 mp-MRI. Patients previously diagnosed with prostate cancer were excluded. All patients were submitted to 14-cores TRUS-guided biopsy (mpMRI data operator-blinded), followed by targeted biopsy using mpMRI-TRUS fusion. There was an overall increase in cancer detection rate, from 56% with random technique to 62% combining targeted biopsy using mpMRI-TRUS fusion; incremental diagnosis was even more relevant for clinically significant lesions (Gleason ≥ 7), diagnosing 10% more clinically significant lesions with fusion biopsy technique. Diagnosis upgrade occurred in 5 patients that would have negative results in random biopsies and had clinically significant tumours with the combined technique, and in 5 patients who had the diagnosis of significant tumours after fusion biopsy and clinically insignificant tumours in random biopsies(p=0.0010). Targeted biopsy using mpMRI-TRUS fusion has incremental diagnostic value in comparison to conventional random biopsy, better detecting clinically significant prostate cancers. (orig.)

  2. Incremental diagnostic value of targeted biopsy using mpMRI-TRUS fusion versus 14-fragments prostatic biopsy. A prospective controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, Guilherme C.; Falsarella, Priscila M.; Garcia, Rodrigo G.; Queiroz, Marcos R.G. [Hospital Israelita Albert Einstein, Department of Interventional Radiology, Sao Paulo (Brazil); Lemos, Gustavo C. [Hospital Israelita Albert Einstein, Department of Urology, Sao Paulo (Brazil); Baroni, Ronaldo H. [Hospital Israelita Albert Einstein, Department of Radiology, Sao Paulo (Brazil)

    2018-01-15

    To compare the incremental diagnostic value of targeted biopsy using real-time multiparametric magnetic resonance imaging and transrectal ultrasound (mpMRI-TRUS) fusion to conventional 14-cores biopsy. Uni-institutional, institutional review board (IRB) approved prospective blinded study comparing TRUS-guided random and targeted biopsy using mpMRI-TRUS fusion, in 100 consecutive men. We included men with clinical-laboratorial suspicious for prostate cancer and Likert score ≥ 3 mp-MRI. Patients previously diagnosed with prostate cancer were excluded. All patients were submitted to 14-cores TRUS-guided biopsy (mpMRI data operator-blinded), followed by targeted biopsy using mpMRI-TRUS fusion. There was an overall increase in cancer detection rate, from 56% with random technique to 62% combining targeted biopsy using mpMRI-TRUS fusion; incremental diagnosis was even more relevant for clinically significant lesions (Gleason ≥ 7), diagnosing 10% more clinically significant lesions with fusion biopsy technique. Diagnosis upgrade occurred in 5 patients that would have negative results in random biopsies and had clinically significant tumours with the combined technique, and in 5 patients who had the diagnosis of significant tumours after fusion biopsy and clinically insignificant tumours in random biopsies(p=0.0010). Targeted biopsy using mpMRI-TRUS fusion has incremental diagnostic value in comparison to conventional random biopsy, better detecting clinically significant prostate cancers. (orig.)

  3. X-ray imaging diagnostics for the inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Pawley, C.; Sethian, J.; Koch, J.A.; Holland, G.

    2000-01-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  4. X-ray imaging diagnostics for the inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aglitskiy, Y.; Lehecka, T. [Science Applications International Corp., McLean, VA (United States); Obenschain, S.; Pawley, C.; Sethian, J. [Naval Research Lab., Washington, DC (United States). Plasma Physics Div; Brown, C.M.; Seely, J. [Naval Research Lab., Space Sciences Div, Washington, DC (United States); Koch, J.A. [Lawrence Livermore National Lab., CA (United States); Holland, G. [SFA, Landover MD (United States)

    2000-07-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  5. Diagnostics considerations for the inertial confinement approach to controlled thermonuclear fusion power production

    International Nuclear Information System (INIS)

    Wood, L.

    1978-01-01

    It is concluded that although the challenges facing diagnosticians working on the inertial confinement approach to controlled fusion are large and varied, the means potentially available to meet them are more than adequate. No new instrumentation fields need be opened; rather, substantial extensions of those already being explored by workers in ICF will suffice. Also, large contributions may be expected from other technological applications thrusts, as well as from the general, currently rapid advance of the entire physical technology base

  6. Far infrared fusion plasma diagnostics. Task 3A, Progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-12-31

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer`s importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA`s CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  7. 2. IAEA research co-ordination meeting on 'Atomic and molecular data for fusion plasma diagnostics'. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2004-05-01

    This report briefly describes the proceedings, conclusions and recommendations of the 2nd Research Co-ordination Meeting (RCM) of the Co-ordinated Research Project (CRP) on 'Atomic and Molecular Data for Fusion Plasma Diagnostics' held on 16-18 June 2003 at IAEA Headquarters, Vienna. During the course of the meeting the progress achieved to data was thoroughly reviewed. It was noted that during the course of the research several new areas of data needs were revealed. During detailed discussions proposals from all participants on ongoing data needs indicated that a one year extension of the CRP would be extremely valuable with an additional RCM to be held in 2004. A specific proposal for such an extension was formulated along with the summary of the results achieved to date. (author)

  8. Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes.

    Science.gov (United States)

    Xxxx, Patmawati; Minamihata, Kosuke; Tatsuke, Tsuneyuki; Lee, Jae Man; Kusakabe, Takahiro; Kamiya, Noriho

    2018-06-01

    Recombinant protein production can create artificial proteins with desired functions by introducing genetic modifications to the target proteins. Horseradish peroxidase (HRP) has been used extensively as a reporter enzyme in biotechnological applications; however, recombinant production of HRP has not been very successful, hampering the utilization of HRP with genetic modifications. A fusion protein comprising an antibody binding protein and HRP will be an ideal bio-probe for high-quality HRP-based diagnostic systems. A HRP-protein A/G fusion protein (HRP-pAG) is designed and its production in silkworm (Bombyx mori) is evaluated for the first time. HRP-pAG is expressed in a soluble apo form, and is activated successfully by incubating with hemin. The activated HRP-pAG is used directly for ELISA experiments and retains its activity over 20 days at 4 °C. Moreover, HRP-pAG is modified with biotin by the microbial transglutaminase (MTG) reaction. The biotinylated HRP-pAG is conjugated with streptavidin to form a HRP-pAG multimer and the multimeric HRP-pAG produced higher signals in the ELISA system than monomeric HRP-pAG. The successful production of recombinant HRP in silkworm will contribute to creating novel HRP-based bioconjugates as well as further functionalization of HRP by applying enzymatic post-translational modifications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. X-ray optical diagnostic of laser produced plasmas for nuclear fusion and X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Butzbach, R.

    2001-07-01

    In the present work, the conception, design and appliance of toroidally bent crystals for the X-ray optical diagnostics of laser produced plasmas is discussed. The first part of this work deals with the development, design and characterization of an X-Ray microscope for the observation of Rayleigh-Taylor instabilities, which act against the confinement and ignition of the fuel in the inertial confinement fusion process. The aim of the second part of the present work was the diagnostic of the lasing medium for amplified spontaneous emission close to the water window. For this purpose, an one-dimensionally (1-D) imaging X-ray spectrometer based on toroidally bent quartz crystals was developed for the observation of the Ni-like 4f-3d transition of Yb, Hf, Ta, and W ions, which should be related to the amplified 4d-4p emission, since the 4f niveau is very close to the 4d niveau. Thus, the 4f-3d transition can serve as an indicator for the population of the 4d niveau. (orig.)

  10. Diagnostic systems for the nuclear fusion and plasma research in the PF-24 plasma focus laboratory at the IFJ PAN

    Directory of Open Access Journals (Sweden)

    Marciniak Łukasz

    2016-12-01

    Full Text Available This paper presents a set of diagnostics dedicated to PF-24 - new medium size - plasma focus (PF device built and operated at the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN. The PF-24 can operate at energy level up to 93 kJ and charging voltage up to 40 kV. Each condenser is connected with a specially designed spark gap with a very small jitter, which ensures a high effi ciency and a low current rise time. The working parameters of PF-24 generator make it a suitable tool for testing new detection systems to be used in fusion research. Four types of such detection systems are presented in this article: three diagnostic systems used to measure electric quantities (Rogowski coil, magnetic probe, capacitance probe, neutron counter based on beryllium activation, fast neutron pinhole camera based on small-area BCF-12 plastic scintillation detectors and high-speed four-frame soft X-ray camera with microchannel plate.

  11. Operation Request Gatekeeper: A software system for remote access control of diagnostic instruments in fusion experiments

    International Nuclear Information System (INIS)

    Abla, G.; Schissel, D. P.; Fredian, T. W.; Stillerman, J. A.; Greenwald, M. J.; Stepanov, D. N.; Ciarlette, D. J.

    2010-01-01

    Tokamak diagnostic settings are repeatedly modified to meet the changing needs of each experiment. Enabling the remote diagnostic control has significant challenges due to security and efficiency requirements. The Operation Request Gatekeeper (ORG) is a software system that addresses the challenges of remotely but securely submitting modification requests. The ORG provides a framework for screening all the requests before they enter the secure machine zone and are executed by performing user authentication and authorization, grammar validation, and validity checks. A prototype ORG was developed for the ITER CODAC that satisfies their initial requirements for remote request submission and has been tested with remote control of the KSTAR Plasma Control System. This paper describes the software design principles and implementation of ORG as well as worldwide test results.

  12. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-01-01

    We are developing large pixel count, fast (≥100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory

  13. Neutron time-of-flight ion temperature diagnostic for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Chrien, R.E.; Simmons, D.F.; Holmberg, D.L.

    1992-01-01

    We are constructing a T i diagnostic for low neutron yield (5 x 10 7 to above 10 9 ) d-d and d-t targets in the Nova facility at Livermore. The diagnostic measures the neutron energy spread with 960 scintillator-photomultiplier detectors located 28 m from the target and operates in the single-hit mode. Each detector can measure a single neutron arrival with time resolution of 1 ns or better. The arrival time distribution is constructed from the results of typically 200--500 detector measurements. The ion temperature is determined from the spread in neutron energy ΔE n ∝ T i 1/2 , which is related to the arrival time spread by Δt/t = 1(1/2 ΔE n /E n ). Each neutron arrival is detected by using a photomultiplier tube to observe the recoil proton from elastic scattering in a fast plastic scintillator. The timing electronics for each channel consist of a novel constant fraction-like discriminator and a multiple hit time-to-digital converter (TDC). The overall system design, together with single channel performance data, is presented

  14. On the absolute calibration of a DT fusion neutron yield diagnostic

    Directory of Open Access Journals (Sweden)

    Ruiz C.L.

    2013-11-01

    Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.

  15. Neutron time-of-flight counters and spectrometers for diagnostics of burning fusion plasmas

    International Nuclear Information System (INIS)

    Elevant, T.; Olsson, M.

    1991-02-01

    Experiment with burning fusion plasmas in tokamaks will place particular requirements on neutron measurements from radiation resistance-, physics-, burn control- and reliability considerations. The possibility to meet these needs by measurements of neutron fluxes and energy spectra by means of time-of-flight techniques are described. Reference counters and spectrometers are proposed and characterized with respect to efficiency, count-rate capabilities, energy resolution and tolerable neutron and γ-radiation background levels. The instruments can be used in a neutron camera and are capable to operate in collimated neutron fluxes up to levels corresponding to full nuclear output power in the next generation of experiments. Energy resolutions of the spectrometers enables determination of ion temperatures from 3 (keV) through analysis of the Doppler broadening. Primarily, the instruments are aimed for studies of 14 (MeV) neutrons produced in (d,t)-plasmas but can, after minor modifications, be used for analysis of 2.45 (MeV) neutrons produced in (d,d)-plasma. (au) (33 refs.)

  16. Vulnerability analysis of DT fusion diagnostics for laser Megajoule facility. A new tool: Diacad

    International Nuclear Information System (INIS)

    D'hose, C.; Baggio, J.; Musseau, O.

    1999-01-01

    The Megajoule laser (LMJ) project is a major component of the French simulation program to study inertial confinement. This new facility will provide an energy 60 times greater than the largest lasers presently available (Phebus, Nova, Omega). Many diagnostic links will have to be developed in order to acquire complementary knowledge in this domain. A computer based tool has been defined. This paper presents the most recent developments of this new CAD (computer assisted diagnosis) tool. We first describe LMJ context, and then the analysis methodology developed to address the sensitivity to transient radiation of nuclear diagnosis links. This tool takes into account the vulnerability of individual parts and the global structure of the link. (A.C.)

  17. On the possibility of laser diagnostics of anisotropically superheated electrons in magnetic fusion systems

    International Nuclear Information System (INIS)

    Kukushkin, A.B.

    1990-01-01

    The anisotropically superheated electrons (ASE) are known to be generated by a resonance interaction of high-frequency electromagnetic waves with electron plasma. Under definite conditions the ASE energy may essentially exceed (by the order of magnitude or even more) thermal energies of background electron plasma, the ASE distribution in pitch-angle being concentrated around definite directions. This situation is typical for, e.g. electron cyclotron heating of magnetic mirror plasmas (generation of 'sloshing' electrons) and for current drive in tokamaks by means of lower-hybrid or, sometimes, electron cyclotron waves. In this work, an analysis of the possibility of the ASE laser diagnostics is based on the calculations of Thomson scattering of laser radiation by plasma electrons. The model electron velocity distribution functions, which provide qualitative description of the ASE peculiar features, were used in calculations. (author) 4 refs., 1 fig

  18. Diagnostics

    DEFF Research Database (Denmark)

    Donné, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems...... on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R......&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all...

  19. Optical diagnostics of CO2 laser-fusion targets using backscattered light

    International Nuclear Information System (INIS)

    Casperson, D.E.

    1981-01-01

    With the f/2.4 focusing optics on one of the eight Helios CO 2 laser beam lines, direct backscattered light from a variety of glass microballoon targets has been observed. The quantities that have been measured include: (1) the total backscattered energy; (2) relative amplitudes of the backscattered fundamental and low harmonics (n = 1, 2, 3) of the 10.6 μm incident light; (3) the 3/2 harmonic emission from a double pulse backscatter experiment; (4) the temporally resolved 10.6 μm light using a fast pyroelectric detector and a Los Alamos 5-GHz oscilloscope; and (5) the time-integrated spectrally resolved fundamental using a 3/4 meter spectrometer and a high resolution pyroelectric detector array (resolution approx. 40 A at 10.6 μm). The suitability of these diagnostics for evaluating the CO 2 laser plasma in terms of stimulated scattering processes, plasma density gradients, velocity of the critical surface, etc., is discussed

  20. Irradiation tests of radiation resistance optical fibers for fusion diagnostic application

    Science.gov (United States)

    Kakuta, Tsunemi; Shikama, Tatsuo; Nishitani, Takeo; Yamamoto, Shin; Nagata, Shinji; Tsuchiya, Bun; Toh, Kentaro; Hori, Junichi

    2002-11-01

    To promote development of radiation-resistant core optical fibers, the ITER-EDA (International Thermonuclear Experimental Reactor-Engineering Design Activity) recommended carrying out international round-robin irradiation tests of optical fibers to establish a reliable database for their applications in the ITER plasma diagnostics. Ten developed optical fibers were irradiation-tested in a Co-60 gamma cell, a Japan Materials Testing Reactor (JMTR). Also, some of them were irradiation tested in a fast neutron irradiation facility of FNS (Fast Neutron Source), especially to study temperature dependence of neutron-associated irradiation effects. Included were several Japanese fluorine doped fibers and one Japanese standard fiber (purified and undoped silica core), as well as seven Russian fibers. Some of Russian fibers were drawn by Japanese manufactures from Russian made pre-form rods to study effects of manufacturing processes to radiation resistant properties. The present paper will describe behaviors of growth of radiation-induced optical transmission loss in the wavelength range of 350-1750nm. Results indicate that role of displacement damages by fast neutrons are very important in introducing permanent optical transmission loss. Spectra of optical transmission loss in visible range will depend on irradiation temperatures and material parameters of optical fibers.

  1. Initial results of tests of depth markers as a surface diagnostic for fusion devices

    Directory of Open Access Journals (Sweden)

    L.A. Kesler

    2017-08-01

    Full Text Available The Accelerator-Based In Situ Materials Surveillance (AIMS diagnostic was developed to perform in situ ion beam analysis (IBA on Alcator C-Mod in August 2012 to study divertor surfaces between shots. These results were limited to studying low-Z surface properties, because the Coulomb barrier precludes nuclear reactions between high-Z elements and the ∼1 MeV AIMS deuteron beam. In order to measure the high-Z erosion, a technique using deuteron-induced gamma emission and a low-Z depth marker is being developed. To determine the depth of the marker while eliminating some uncertainty due to beam and detector parameters, the energy dependence of the ratio of two gamma yields produced from the same depth marker will be used to determine the ion beam energy loss in the surface, and thus the thickness of the high-Z surface. This paper presents the results of initial trials of using an implanted depth marker layer with a deuteron beam and the method of ratios. First tests of a lithium depth marker proved unsuccessful due to the production of conflicting gamma peaks, among other issues. However, successful trials with a boron depth marker show that it is possible to measure the depth of the marker layer with the method of gamma yield ratios.

  2. Low-noise cable for diagnostics, control and instrumentation of the ASDEX tokamak fusion experiment

    International Nuclear Information System (INIS)

    Gernhardt, J.

    1988-11-01

    ASDEX (Axially Symmetric Divertor EXperiment) is a large tokamak (R=1.65 m; a=0.4 m) with an air transformer. The relatively large stray field, Bz=10 mT=(100 G); for ρ=5 m, Bz=40 mT=(400 G); for ρ=3 m, BΦ=0.3 T=(3 kG); for ρ=3m, compared with that of an iron transformer, and the cable length 1≤30 m from the experiment to the control room, make mainly the magnetically induced and capacitively coupled noise signal in the cable relatively high. As a result of neutral injection (> 4 MW; 40 kV) and lower hybrid ion cyclotron and Alfven wave heating strong E-fields are produced and noise is coupled into the cables. These magnetic and electric field gradients during the plasma shot vary with time and location. This report tries to show how these noise signals can be reduced without reducing the broadcast frequency of the signal. The Electro Magnetic Compatibility and Interference (EMC, EMI) are discussed. The cost of diagnostic cable, connectors and cable ducts without mounting is approximately DM 700,000.--. (orig.)

  3. Development of precise measurement method of neutron energy for plasma temperature diagnostics in thermonuclear fusion

    International Nuclear Information System (INIS)

    Mori, Chizuo; Gotoh, Junichi; Uritani, Akira; Miyahara, Hiroshi; Ikeda, Yuichiro; Kasugai, Yoshimi; Kaneko, Junichi

    1998-01-01

    There are many types of fast neutron spectrometers for plasma temperature diagnostics, 28 Si(n,α) 25 Mg reaction giving the energy resolution of 2.2% for 14 MeV neutrons, the 12 C(n,α) 9 Be reaction giving the resolution of 2.15%. These detectors, however suffer from radiation damage, which demands to exchange the detector to a new one in every a few month depending on the usage. Recoil proton method has also been developed by using liquid scintillator or plastic scintillator, as a neutron-to-proton converter in front of a Si-detector, which is called counter telescope type, giving a resolution of 4.0%. This type of spectrometer can reduce radiation damage by placing Si-detector at outside Neutron beam. The scintillator can measure the lost energy of protons in the converter (i.e. the scintillator) and the measured energy loss can be used for improving the energy resolution. However, the energy resolution of organic scintillator itself is generally not so good. We proposed to use a proportional counter with CH 4 as counting gas and also as a neutron-proton converter, which has far better energy resolution than plastic scintillators, although the time resolution of counting in proportional counters is generally inferior to that in organic scintillation counters. The characteristics of the new spectrometer were experimentally studied and also were simulated with analytical calculation. (author)

  4. Image fusion analysis of 99mTc-HYNIC-Tyr3-octreotide SPECT and diagnostic CT using an immobilisation device with external markers in patients with endocrine tumours

    International Nuclear Information System (INIS)

    Gabriel, Michael; Hausler, Florian; Moncayo, Roy; Decristoforo, Clemens; Virgolini, Irene; Bale, Reto; Kovacs, Peter

    2005-01-01

    The aim of this study was to assess the value of multimodality imaging using a novel repositioning device with external markers for fusion of single-photon emission computed tomography (SPECT) and computed tomography (CT) images. The additional benefit derived from this methodological approach was analysed in comparison with SPECT and diagnostic CT alone in terms of detection rate, reliability and anatomical assignment of abnormal findings with SPECT. Fifty-three patients (30 males, 23 females) with known or suspected endocrine tumours were studied. Clinical indications for somatostatin receptor (SSTR) scintigraphy (SPECT/CT image fusion) included staging of newly diagnosed tumours (n=14) and detection of unknown primary tumour in the presence of clinical and/or biochemical suspicion of neuroendocrine malignancy (n=20). Follow-up studies after therapy were performed in 19 patients. A mean activity of 400 MBq of 99m Tc-EDDA/HYNIC-Tyr 3 -octreotide was given intravenously. SPECT using a dual-detector scintillation camera and diagnostic multi-detector CT were sequentially performed. To ensure reproducible positioning, patients were fixed in an individualised vacuum mattress with modality-specific external markers for co-registration. SPECT and CT data were initially interpreted separately and the fused images were interpreted jointly in consensus by nuclear medicine and diagnostic radiology physicians. SPECT was true-positive (TP) in 18 patients, true-negative (TN) in 16, false-negative (FN) in ten and false-positive (FP) in nine; CT was TP in 18 patients, TN in 21, FP in ten and FN in four. With image fusion (SPECT and CT), the scan result was TP in 27 patients (50.9%), TN in 25 patients (47.2%) and FN in one patient, this FN result being caused by multiple small liver metastases; sensitivity was 95% and specificity, 100%. The difference between SPECT and SPECT/CT was statistically as significant as the difference between CT and SPECT/CT image fusion (P<0

  5. Stimulated cold fusion by positronium atoms, cross sections, and wall interactions in plasmas, used to diagnostics

    International Nuclear Information System (INIS)

    Emami, Z.

    2005-01-01

    Because of the technical complexities, involved in the controlled thermonuclear, reactions, a simple vicegerent agent cold plasma, stimulated by positronium atoms (achieved through a ring storage) as stimulus, introduced by this author in ITC 12 conference. In the present paper, the interaction between γ rays emitted through positronium atoms annihilation (in the forms of doublet and triplet electromagnetic photonic radiation) with plasma particles (including electrons, ions and neutral particles) investigated. Proper lifetime of singlet γ rays τs are about 100 ns and from that of triplet γ rays, i.e τt about 100 fems, reside in the following transition times in Ne and Argon elements in He-Ne and Ar lasers respectively: Ne*(3S2) [transition time τ = 105 ns] -> Ne*(2P4); Ar+*(3P4 4S) [transition time τ = 105 fems] -> Ar+(3P5). Then the interactions of γ rays with mater in plasma could follow up as treated from that of the laser and mater in one extreme while the comparison of this situation with normal plasmas in other extreme could serve as diagnostics key role in magnetically confined plasmas reactors. Collisions between charge and neutral species in plasma with electromagnetic radiation (γ photonic radiation) including the energy loss and scattering lead to different consequences. Light electrons can take up appreciably amounts of energy from the incident rays, lead to heating cold plasma, whereas massive ions absorb very little energy. Thus loss of incident energy in radiation occurs almost entirely in collisions with electrons , which, referred to the γ rays energy this would led to plasma heating about thermonuclear reaction ( Eγ = hν = 0.5 MeV). The heavy ions and neutral species in interaction with electromagnetic γ radiation, result on the other hand in scattering, in turn may increase the ionization level of the cold plasma, toward fully ionized plasma. Although all the essential features of these different interaction cross sections deduced

  6. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    Science.gov (United States)

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of

  7. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors. Comparison with positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Nakajo, Kazuya; Tatsumi, Mitsuaki; Inoue, Atsuo

    2010-01-01

    We compared the diagnostic accuracy of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and PET/magnetic resonance imaging (MRI) fusion images for gynecological malignancies. A total of 31 patients with gynecological malignancies were enrolled. FDG-PET images were fused to CT, T1- and T2-weighted images (T1WI, T2WI). PET-MRI fusion was performed semiautomatically. We performed three types of evaluation to demonstrate the usefulness of PET/MRI fusion images in comparison with that of inline PET/CT as follows: depiction of the uterus and the ovarian lesions on CT or MRI mapping images (first evaluation); additional information for lesion localization with PET and mapping images (second evaluation); and the image quality of fusion on interpretation (third evaluation). For the first evaluation, the score for T2WI (4.68±0.65) was significantly higher than that for CT (3.54±1.02) or T1WI (3.71±0.97) (P<0.01). For the second evaluation, the scores for the localization of FDG accumulation showing that T2WI (2.74±0.57) provided significantly more additional information for the identification of anatomical sites of FDG accumulation than did CT (2.06±0.68) or T1WI (2.23±0.61) (P<0.01). For the third evaluation, the three-point rating scale for the patient group as a whole demonstrated that PET/T2WI (2.72±0.54) localized the lesion significantly more convincingly than PET/CT (2.23±0.50) or PET/T1WI (2.29±0.53) (P<0.01). PET/T2WI fusion images are superior for the detection and localization of gynecological malignancies. (author)

  8. Excitation cross sections for Li3+, Ne10+ and Ar18++H(1s) collisions of interest in fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Suarez, J; Errea, L F; Guzman, F; Pons, B

    2013-01-01

    We have calculated state-selective excitation cross sections in fully stripped Li 3+ , Ne 10+ and Ar 18+ +H(1s) collisions from low (1 keV/amu) to high (1000 keV/amu) impact energies, relevant in fusion plasma diagnostics. In order to cover this broad impact energy range, three different theoretical methods have been employed: the semi-classical molecular and one-centre atomic-orbital close-coupling approaches, and the classical trajectory Monte Carlo method. Recommended partial excitation cross sections are provided by merging the results obtained with each method in the energy range where they are the most accurate. (paper)

  9. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  10. Diagnostic of the spatial and velocity distribution of alpha particles in tokamak fusion reactor using beat-wave generated lower hybrid wave. Progress report, 1994-1995

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.

    1995-01-01

    The alpha particle population from fusion reactions in a DT tokamak reactor can have dramatic effects on the pressure profiles, energetic particle confinement, and the overall stability of the plasma; thus leading to important design consideration of a fusion reactor based on the tokamak concept. In order to fully understand the effects of the alpha population, a non-invasive diagnostic technique suitable for use in a reacting plasma environment needs to be developed to map out both the spatial and velocity distribution of the alphas. The proposed experimental goals for the eventual demonstration of LH wave interaction with a fast ion population is given in the reduced 3 year plan in table 1. At present time the authors are approaching the 8th month in their first year of this project. Up to now, their main effort has been concentrated in the operation of the two beat wave sources in burst mode. The second priority in the experimental project is the probe diagnostics and computer aided data acquisition system. The progress made so far is given, and they are ready to perform the beat-wave generated lower hybrid wave experiment. Some theoretical calculation had been reported at APS meetings. More refined theoretical models are being constructed in collaboration with Drs. J. Rogers and E. Valeo at PPPL

  11. Diagnostic method for lumbar foraminal stenosis based on the clinical results of transforaminal lumbar interbody fusion (TLIF). Utility of the foraminal stenosis score

    International Nuclear Information System (INIS)

    Yamada, Katsutaka; Nakamura, Jun-ichiro; Mitsugi, Naoto; Sato, Masatsune; Saito, Tomoyuki

    2010-01-01

    In this study we analyzed 73 cases treated by transforaminal lumbar interbody fusion (TLIF) for lumbar foraminal stenosis or central canal stenosis and foraminal stenosis, and based on the perioperative findings and outcome of treatment, we considered the diagnostic procedure for lumbar foraminal stenosis in the future. In 25 cases (34.2%) cases there was actually no clear perioperative evidence of foraminal stenosis. We compared the preoperative clinical and imaging findings in the group with perioperative findings and the group without perioperative findings performed a multiple logistic regression analysis to identify factors associated with foraminal stenosis. We also calculated the odds ratio for the perioperative findings and proposed a foraminal stenosis scoring system. (author)

  12. Charge-exchange diagnostic of fusion alpha particles and ICRF driven minority ions in MeV energy range in JET plasma

    International Nuclear Information System (INIS)

    Izvozchikov, A.B.; Khudoleev, A.V.; Petrov, M.P.; Petrov, S.Ya.; Kozlovskij, S.S.; Corti, S.; Gondahalekar, A.

    1991-12-01

    An important concern in alpha particle heating physics is that fusion alpha particles will be lost before giving all their energy to heat the plasma. In other words, that the radial diffusion time of the alphas may be shorter than their slowing down time in the plasma core. Therefore radially resolved measurements of density and energy spectrum of slowing-down alphas confined in the plasma are high priority diagnostic objectives. In this report application of Charge Exchange Neutral Particle Analysis on Joint European Torus will be discussed. After a description of physical principles of the method a suitable Neutral Particle Analyzer (NPA) will be described in detail and estimates of measurement performance made for different plasma heating and confinement modes in JET. (author)

  13. Dirac R -matrix calculations for the electron-impact excitation of neutral tungsten providing noninvasive diagnostics for magnetic confinement fusion

    Science.gov (United States)

    Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.

    2018-05-01

    Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.

  14. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W. [Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw (Poland)

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  15. Vulnerability analysis of DT fusion diagnostics for laser Megajoule facility. A new tool: Diacad; Analyse de vulnerabilite de chaines de diagnostic pour la fusion DT dans le cadre du laser megajoule. Un nouvel outil: diacad

    Energy Technology Data Exchange (ETDEWEB)

    D' hose, C.; Baggio, J.; Musseau, O. [CEA Bruyeres-le-Chatel, 91 (France)

    1999-07-01

    The Megajoule laser (LMJ) project is a major component of the French simulation program to study inertial confinement. This new facility will provide an energy 60 times greater than the largest lasers presently available (Phebus, Nova, Omega). Many diagnostic links will have to be developed in order to acquire complementary knowledge in this domain. A computer based tool has been defined. This paper presents the most recent developments of this new CAD (computer assisted diagnosis) tool. We first describe LMJ context, and then the analysis methodology developed to address the sensitivity to transient radiation of nuclear diagnosis links. This tool takes into account the vulnerability of individual parts and the global structure of the link. (A.C.)

  16. Genomic diagnostics leading to the identification of a TFG-ROS1 fusion in a child with possible atypical meningioma

    DEFF Research Database (Denmark)

    Rossing, Maria; Yde, Christina Westmose; Sehested, Astrid

    2017-01-01

    Meningiomas are rare in children. They are highly complex, harboring unique clinical and pathological characteristics, and many occur in patients with neurofibromatosis type 2. Hereby, we present a case of a two-year-old boy presented with a diagnostically challenging intraventricular tumor...... molecular finding allowed the potential use of precision medicine and the patient was enrolled in the AcSé phase 2 trial with crizotinib (NCT02034981), leading to a prolonged partial tumor response which is persisting since 14 months. This case highlights the value of precision cancer medicine in children....

  17. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  18. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  19. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  20. The software-defined fast post-processing for GEM soft x-ray diagnostics in the Tungsten Environment in Steady-state Tokamak thermal fusion reactor

    Science.gov (United States)

    Krawczyk, Rafał Dominik; Czarski, Tomasz; Linczuk, Paweł; Wojeński, Andrzej; Kolasiński, Piotr; GÄ ska, Michał; Chernyshova, Maryna; Mazon, Didier; Jardin, Axel; Malard, Philippe; Poźniak, Krzysztof; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2018-06-01

    This article presents a novel software-defined server-based solutions that were introduced in the fast, real-time computation systems for soft X-ray diagnostics for the WEST (Tungsten Environment in Steady-state Tokamak) reactor in Cadarache, France. The objective of the research was to provide a fast processing of data at high throughput and with low latencies for investigating the interplay between the particle transport and magnetohydrodynamic activity. The long-term objective is to implement in the future a fast feedback signal in the reactor control mechanisms to sustain the fusion reaction. The implemented electronic measurement device is anticipated to be deployed in the WEST. A standalone software-defined computation engine was designed to handle data collected at high rates in the server back-end of the system. Signals are obtained from the front-end field-programmable gate array mezzanine cards that acquire and perform a selection from the gas electron multiplier detector. A fast, authorial library for plasma diagnostics was written in C++. It originated from reference offline MATLAB implementations. They were redesigned for runtime analysis during the experiment in the novel online modes of operation. The implementation allowed the benchmarking, evaluation, and optimization of plasma processing algorithms with the possibility to check the consistency with reference computations written in MATLAB. The back-end software and hardware architecture are presented with data evaluation mechanisms. The online modes of operation for the WEST are discussed. The results concerning the performance of the processing and the introduced functionality are presented.

  1. Absolute spectral characterization of silicon barrier diode: Application to soft X-ray fusion diagnostics at Tore Supra

    International Nuclear Information System (INIS)

    Vezinet, D.; Mazon, D.; Malard, P.

    2013-01-01

    This paper presents an experimental protocol for absolute calibration of photo-detectors. Spectral characterization is achieved by a methodology that unlike the usual line emissions-based method, hinges on the Bremsstrahlung radiation of a Soft X-Ray (SXR) tube only. Although the proposed methodology can be applied virtually to any detector, the application presented in this paper is based on Tore Supra's SXR diagnostics, which uses Silicon Surface Barrier Diodes. The spectral response of these n-p junctions had previously been estimated on a purely empirical basis. This time, a series of second-order effects, like the spatial distribution of the source radiated power or multi-channel analyser non linearity, are taken into account to achieve accurate measurements. Consequently, a parameterised physical model is fitted to experimental results and the existence of an unexpected dead layer (at least 5 μm thick) is evidenced. This contribution also echoes a more general on-going effort in favour of long-term quality of passive radiation measurements on Tokamaks

  2. Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium-tritium fusion plasma diagnostics

    Science.gov (United States)

    Rigamonti, D.; Giacomelli, L.; Gorini, G.; Nocente, M.; Rebai, M.; Tardocchi, M.; Angelone, M.; Batistoni, P.; Cufar, A.; Ghani, Z.; Jednorog, S.; Klix, A.; Laszynska, E.; Loreti, S.; Pillon, M.; Popovichev, S.; Roberts, N.; Thomas, D.; Contributors, JET

    2018-04-01

    An accurate calibration of the JET neutron diagnostics with a 14 MeV neutron generator was performed in the first half of 2017 in order to provide a reliable measurement of the fusion power during the next JET deuterium-tritium (DT) campaign. In order to meet the target accuracy, the chosen neutron generator has been fully characterized at the Neutron Metrology Laboratory of the National Physical Laboratory (NPL), Teddington, United Kingdom. The present paper describes the measurements of the neutron energy spectra obtained using a high-resolution single-crystal diamond detector (SCD). The measurements, together with a new neutron source routine ‘ad hoc’ developed for the MCNP code, allowed the complex features of the neutron energy spectra resulting from the mixed D/T beam ions interacting with the T/D target nuclei to be resolved for the first time. From the spectral analysis a quantitative estimation of the beam ion composition has been made. The unprecedented intrinsic energy resolution (<1% full width at half maximum (FWHM) at 14 MeV) of diamond detectors opens up new prospects for diagnosing DT plasmas, such as, for instance, the possibility to study non-classical slowing down of the beam ions by neutron spectroscopy on ITER.

  3. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  4. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  5. Plasma diagnostics for tokamaks and stellarators. Proceedings of the IV Course and Workshop on Magnetic Confinement Fusion. UIMP Santander (Spain), June 1992

    International Nuclear Information System (INIS)

    Stott, P. E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs

  6. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  7. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  8. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  9. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  10. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  12. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.W.

    1999-01-01

    The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population

  13. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through...... individual fusion events using time-lapse and antagonists of CD47 and syncytin-1. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending...... broad contact surfaces between the partners' cell membrane while syncytin-1 mediate fusion through phagocytic-cup like structure. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc....

  14. Fusion neutronics plan in the development of fusion reactor. With the aim of realizing electric power

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Morimoto, Yuichi; Ochiai, Kentarou; Sugimoto, Masayoshi; Nishitani, Takeo; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    On June 1992, Atomic Energy Commission in Japan has settled Third Phase Program of Fusion Research and Development to achieve self-ignition condition, to realize long pulse burning plasma and to establish basis of fusion engineering for demonstration reactor. This report describes research plan of Fusion Neutron Laboratory in JAERI toward a development of fusion reactor with an aim of realizing electric power. The fusion neutron laboratory has a fusion neutronics facility (FNS), intense fusion neutron source. The plan includes research items in the FNS; characteristics of shielding and breeding materials, nuclear characteristics of materials, fundamental irradiation process of insulator, diagnostics materials and structural materials, and development of in-vessel diagnostic technology. Upgrade of the FNS is also described. Also, the International Fusion Material Irradiation Facility (IFMIF) for intense neutron source to develop fusion materials is described. (author)

  15. Ultrasound-guided image fusion with computed tomography and magnetic resonance imaging. Clinical utility for imaging and interventional diagnostics of hepatic lesions

    International Nuclear Information System (INIS)

    Clevert, D.A.; Helck, A.; Paprottka, P.M.; Trumm, C.; Reiser, M.F.; Zengel, P.

    2012-01-01

    Abdominal ultrasound is often the first-line imaging modality for assessing focal liver lesions. Due to various new ultrasound techniques, such as image fusion, global positioning system (GPS) tracking and needle tracking guided biopsy, abdominal ultrasound now has great potential regarding detection, characterization and treatment of focal liver lesions. Furthermore, these new techniques will help to improve the clinical management of patients before and during interventional procedures. This article presents the principle and clinical impact of recently developed techniques in the field of ultrasound, e.g. image fusion, GPS tracking and needle tracking guided biopsy and discusses the results based on a feasibility study on 20 patients with focal hepatic lesions. (orig.) [de

  16. Diagnostic Accuracy of Robot-Guided, Software Based Transperineal MRI/TRUS Fusion Biopsy of the Prostate in a High Risk Population of Previously Biopsy Negative Men

    Directory of Open Access Journals (Sweden)

    Malte Kroenig

    2016-01-01

    Full Text Available Objective. In this study, we compared prostate cancer detection rates between MRI-TRUS fusion targeted and systematic biopsies using a robot-guided, software based transperineal approach. Methods and Patients. 52 patients received a MRIT/TRUS fusion followed by a systematic volume adapted biopsy using the same robot-guided transperineal approach. The primary outcome was the detection rate of clinically significant disease (Gleason grade ≥ 4. Secondary outcomes were detection rate of all cancers, sampling efficiency and utility, and serious adverse event rate. Patients received no antibiotic prophylaxis. Results. From 52 patients, 519 targeted biopsies from 135 lesions and 1561 random biopsies were generated (total n=2080. Overall detection rate of clinically significant PCa was 44.2% (23/52 and 50.0% (26/52 for target and random biopsy, respectively. Sampling efficiency as the median number of cores needed to detect clinically significant prostate cancer was 9 for target (IQR: 6–14.0 and 32 (IQR: 24–32 for random biopsy. The utility as the number of additionally detected clinically significant PCa cases by either strategy was 0% (0/52 for target and 3.9% (2/52 for random biopsy. Conclusions. MRI/TRUS fusion based target biopsy did not show an advantage in the overall detection rate of clinically significant prostate cancer.

  17. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  18. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  19. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  20. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  1. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    International Nuclear Information System (INIS)

    Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.

    2016-01-01

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D"3He, and T"3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of T_i(t) and T_e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  2. New neutron cross sections for fusion materials studies

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Smither, R.K.

    1985-01-01

    Neutron cross sections are being developed for a variety of fusion-related applications including neutron dosimetry, fusion plasma diagnostics, the activation of very long-lived isotopes, and high-energy accelerator neutron sources

  3. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P; Jarvis, O N; Sadler, G J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F E [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  4. Nuclear diagnostics in support of ICF experiments

    International Nuclear Information System (INIS)

    Moran, M.J.; Hall, J.

    1996-01-01

    As the yields of Inertial Confinement Fusion (ICF) experiments increase to NIF levels new diagnostic techniques for studying details of fusion burn behavior will become feasible. The new techniques will provide improved measurements of fusion burn temperature and history. Improved temperature measurements might be achieved with magnetic spectroscopy of fusion neutrons. High-bandwidth fusion reaction history will be measured with fusion-specific γ-ray diagnostics. Additional energy-resolved γ-ray might be able to study a selection of specific behaviors during fusion burn. Present ICF yields greater than 10 13 neutrons are sufficient to demonstrate the basic methods that underlie the new techniques. As ICF yields increase, the diagnostics designs adjusted accordingly in order to provide clear and specific data on fusion burn performance

  5. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  6. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  7. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  8. Canadian fusion program

    International Nuclear Information System (INIS)

    Brown, T.S.

    1982-06-01

    The National Research Council of Canada is establishing a coordinated national program of fusion research and development that is planned to grow to a total annual operating level of about $20 million in 1985. The long-term objective of the program is to put Canadian industry in a position to manufacture sub-systems and components of fusion power reactors. In the near term the program is designed to establish a minimum base of scientific and technical expertise sufficient to make recognized contributions and thereby gain access to the international effort. The Canadian program must be narrowly focussed on a few specializations where Canada has special indigenous skills or technologies. The programs being funded are the Tokamak de Varennes, the Fusion Fuels Technology Project centered on tritium management, and high-power gas laser technology and associated diagnostic instrumentation

  9. Undifferentiated myxoid lipoblastoma with PLAG1-HAS2 fusion in an infant; morphologically mimicking primitive myxoid mesenchymal tumor of infancy (PMMTI)--diagnostic importance of cytogenetic and molecular testing and literature review.

    Science.gov (United States)

    Warren, Mikako; Turpin, Brian K; Mark, Melissa; Smolarek, Teresa A; Li, Xia

    2016-01-01

    Lipoblastoma is a benign myxoid neoplasm arising in young children that typically demonstrates adipose differentiation. It is often morphologically indistinguishable from primitive myxoid mesenchymal tumor of infancy (PMMTI), which is characterized by a well-circumscribed myxoid mass with a proliferation of primitive mesenchymal cells with mild cytologic atypia. PMMTI occurs in the first year of life and is known to have locally aggressive behavior. No specific genetic rearrangements have been reported to date. In contrast, the presence of PLAG1 (Pleomorphic Adenoma Gene 1) rearrangement is diagnostic for lipoblastoma. We hereby demonstrate the combined application of multiple approaches to tackle the diagnostic challenges of a rapidly growing neck tumor in a 3-month-old female. An incisional tumor biopsy had features of an undifferentiated, myxoid mesenchymal neoplasm mimicking PMMTI. However, tumor cells showed diffuse nuclear expression by immunohistochemical (IHC) stain. Conventional cytogenetic and fluorescence in situ hybridization (FISH) analyses as well as next generation sequencing (NGS) demonstrated evidence of PLAG1 rearrangement, confirming the diagnosis of lipoblastoma. This experience warrants that undifferentiated myxoid lipoblastoma can mimic PMMTI, and the combination of cytogenetic and molecular approaches is essential to distinguish these two myxoid neoplasms. Literature on lipoblastomas with relevant molecular and cytogenetic findings is summarized. Our case is the first lipoblastoma diagnosed with a PLAG1 fusion defined by NGS technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  11. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  12. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Neubauer, O.; Wolters, J. [Forschungszentrum Juelich GmbH (Germany)

    2009-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  13. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H.; Knauff, R. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany); Neubauer, O.; Wolters, J.; Offermanns, G.; Biel, W. [Forschungszentrum Juelich GmbH (Germany)

    2011-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  14. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  15. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  16. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  17. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  18. Simulation results for PLATO: a prototype hybrid X-ray photon counting detector with a low energy threshold for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Habib, A.; Menouni, M.; Pangaud, P.; Morel, C.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.

    2017-01-01

    PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.

  19. Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, Antti, E-mail: antti.hakola@vtt.fi [VTT Technical Research Centre of Finland, VTT (Finland); Likonen, Jari [VTT Technical Research Centre of Finland, VTT (Finland); Karhunen, Juuso; Korhonen, Juuso T. [Department of Applied Physics, Aalto University (Finland); Aints, Märt; Laan, Matti; Paris, Peeter [Department of Physics, University of Tartu (Estonia); Kolehmainen, Jukka; Koskinen, Mika; Tervakangas, Sanna [DIARC-Technology Oy, Espoo (Finland)

    2015-10-15

    Highlights: • Feasibility of the arc-discharge and plasma-sputtering techniques in removing deposited layers from ITER-relevant samples demonstrated. • Samples with the size of an A4 paper can be cleaned from 1-μm thick deposited layers in 10–20 minutes by the arc-discharge method. • The plasma-sputtering method is 5–10 times slower but the resulting surfaces are very smooth. • Arc-discharge method could be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER, plasma sputtering is preferred for diagnostics mirrors. - Abstract: We have studied the feasibility of arc-discharge and plasma-sputtering methods in removing deposited layers from ITER-relevant test samples. Prototype devices have been designed and constructed for the experiments and the cleaning process is monitored by a spectral detection system. The present version of the arc-discharge device is capable of removing 1-μm thick layers from 350-mm{sup 2} areas in 4–8 s, but due to the increased roughness of the cleaned surfaces and signs of local melting, mirror-like surfaces cannot be treated by this technique. The plasma-sputtering approach, for its part, is some 5–10 times slower in removing the deposited layers but no changes in surface roughness or morphology of the samples could be observed after the cleaning phase. The arc-discharge technique could therefore be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER while in the case of diagnostics mirrors plasma sputtering is preferred.

  20. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  1. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  2. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  4. Diagnostics for pellet experiments

    International Nuclear Information System (INIS)

    Johnson, R.R.

    1978-01-01

    The target diagnostics which are being used and planned in current laser driven ICF Experiments are described. Most of these diagnostics can be easily applied to future ion-beam fusion experiments. The status of laser fusion diagnostics has been much improved in the last 5 years and further improvements can be expected and should be available when the first ICF experiments using ion beams are performed. As an example, x-ray temporal and spatial resolutions are now approximately 5 psec and 3 μm, which is approximately a factor of 4 better than the resolution reported in the first implosion experiments. As one plans ahead for ion-beam fusion experiments it should be emphasized that high yield experiments are easier to diagnose provided adequate shielding is employed. However, in the event that the first high yield experiments fail it will be necessary to have diagnostics available to determine where the problems lie. In laser fusion it is interesting to note that higher laser powers are required now for breakeven experiments than first anticipated, mainly because some aspects of the laser-interaction physics were not recognized until the experiments were carefully diagnosed. Thus as has been pointed out, it may be necessary to increase the energy of the ion-beam driver to enable us to do breakeven experiments with high confidence

  5. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0.8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Dickens, J.K.; Hill, N.W.; Hou, F.S.; McConnell, J.W.; Spencer, R.R.; Tsang, F.Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report

  6. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing object...

  7. Fusion technology 1998

    International Nuclear Information System (INIS)

    Beaumont, B.; Libeyre, P.; Gentile, B. de; Tonon, G.

    1998-01-01

    The Symposium On Fusion Technology (SOFT) is held every two years with the objective to set the stage for the exchange of information on the design, construction and operation of fusion experiments and on the technology which is being developed for the next step devices and fusion reactors. By decision of the International Organizing Committee, the 20. SOFT includes invited talks, and oral and poster contributions in the following topics: plasma facing components, plasma heating and current drive, plasma engineering and control, experimental systems and diagnostics, magnets and power supplies, fuel technologies, remote operation, blanket and shield technologies, safety and environment, and system engineering and future devices. This symposium differs from the previous ones of this series by the way the present proceedings are produced. In order to have the written material available to the participants and the community at the nearest to the conference event, the papers have been collected 2 months in advance and printed in the present books. The goal was to deliver them to each participant upon arrival to the conference centre. These books contain all the papers corresponding to poster presentation, and the abstracts of the oral contributions and invited papers. The papers corresponding to these presentations, both oral and invited, will be published in 1999, after a standard review process, in a supplement of Fusion Engineering and Design. (author)

  8. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  9. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  10. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  11. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  12. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  13. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  14. LHD neutron diagnostics

    International Nuclear Information System (INIS)

    Isobe, M.; Ogawa, K.; Kobuchi, T.

    2015-01-01

    The Large Helical Device (LHD) project will step into a next stage, i.e. experiment by using deuterium gases after two years of preparation. A comprehensive set of neutron and γ-ray diagnostics is going to be installed on the LHD towards extension of energetic-particle (EP) physics research in heliotron plasmas. Conceptual design of fusion products diagnostics for the LHD was made in late 1990s. After conclusion of agreements for the LHD deuterium experiment with local government bodies, development of FPs diagnostics has begun lately. Because there are a lot of tasks to do, all Japan fusion neutron and γ-ray diagnostics team has been organized in the collaboration framework of National Institute for Fusion Science. FPs diagnostics system on the LHD will consist of 1) wide dynamic range neutron flux monitor (NFM), 2) neutron activation system (NAS), 3) vertical neutron camera (VNC). In addition to these, we are developing a directional scintillating fiber detector, an artificial diamond detector and a γ-ray scintillation detector for confinement study of MeV ions. A neutron energy spectrometer prototype is also being developed and tested in KSTAR. In this paper, roles of NFM, NAS and VNC and current status of implementation onto the LHD are briefly described. (author)

  15. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-10-01

    In order for ITER to meet its operational and programmatic goals, it will be necessary to measure a wide range of plasma parameters. Some of the required parameters e.g., neutron yield, fusion power and power density, ion temperature profile in the core plasma, and characteristics of confined and escaping alpha particle populations are best measured by fusion product diagnostic techniques. To make these measurements, ITER will have dedicated diagnostic systems, including radial and vertical neutron cameras, neutron and gamma ray spectrometers, internal and external fission chambers, a neutron activation system, and diagnostics for confined and escaping alpha particles. Engineering integration of many of these systems is in progress, and other systems are under investigation. This paper summarizes the present state of design of fusion product diagnostic systems for ITER and discusses expected measurement capability

  16. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  17. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  18. Fusion events

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The fusion reactions between low energy heavy ions have a very high cross section. First measurements at energies around 30-40 MeV/nucleon indicated no residue of either complete or incomplete fusion, thus demonstrating the disappearance of this process. This is explained as being due to the high amount o energies transferred to the nucleus, what leads to its total dislocation in light fragments and particles. Exclusive analyses have permitted to mark clearly the presence of fusion processes in heavy systems at energies above 30-40 MeV/nucleon. Among the complete events of the Kr + Au reaction at 60 MeV/nucleon the majority correspond to binary collisions. Nevertheless, for the most considerable energy losses, a class of events do occur for which the detected fragments appears to be emitted from a unique source. These events correspond to an incomplete projectile-target fusion followed by a multifragmentation. Such events were singled out also in the reaction Xe + Sn at 50 MeV/nucleon. For the events in which the energy dissipation was maximal it was possible to isolate an isotropic group of events showing all the characteristics of fusion nuclei. The fusion is said to be incomplete as pre-equilibrium Z = 1 and Z = 2 particles are emitted. The cross section is of the order of 25 mb. Similar conclusions were drown for the systems 36 Ar + 27 Al and 64 Zn + nat Ti. A cross section value of ∼ 20 mb was determined at 55 MeV/nucleon in the first case, while the measurement of evaporation light residues in the last system gave an upper limit of 20-30 mb for the cross section at 50 MeV/nucleon

  19. Nuclear fusion research in Australia

    International Nuclear Information System (INIS)

    Cheetham, A.D.

    1997-01-01

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development

  20. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  1. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  2. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  3. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  4. Progress of laser fusion research

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1988-01-01

    The history of the research on nuclear fusion utilizing laser is described. It started in USSR in 1968, but the full scale start of laser implosion nuclear fusion was in 1972. In Osaka University, nuclear fusion neutrons were detected with a solid deuterium target and the phenomenon of parametric abnormal absorption in laser plasma was found in 1971. The new type target for implosion nuclear fusion ''Canon ball'' was devised in 1975. The phenomenon of the abnormal transmission of laser beam through a thin metal film in a multiple film target was found in 1976, and named ''Osaka effect''. Also the development of lasers has been advanced, and in 1983, a largest glass laser in the world, Gekko 12, with 12 beams, 30 kJ output, 55 TW, was completed. The new target LHART was devised, which enabled the generation of 10 trillion D-T reaction neutrons. Due to the development of high power laser technology, the realization of the new design of fuel pellets, the evaluation of the data by computer simulation, and the realization of new plasma diagnostic method, the research on laser nuclear fusion has developed rapidly, and the attainment of break-even is expected in 1990s. The features of inertial nuclear fusion are enumerated. (Kako, I.)

  5. Fusion programs in Applied Plasma Physics

    International Nuclear Information System (INIS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections

  6. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    International Nuclear Information System (INIS)

    1993-07-01

    This report discusses research being conducted at MIT's plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory

  7. Data fusion in metabolomic cancer diagnostics

    DEFF Research Database (Denmark)

    Bro, Rasmus; Nielsen, Hans Jørgen; Savorani, Francesco

    2013-01-01

    We have recently shown that fluorescence spectroscopy of plasma samples has promising abilities regarding early detection of colorectal cancer. In the present paper, these results were further developed by combining fluorescence with the biomarkers, CEA and TIMP-1 and traditional metabolomic meas...... measurements in the form of (1)H NMR spectroscopy. The results indicate that using an extensive profile established by combining such measurements together with the biomarkers is better than using single markers....

  8. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  9. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  10. Laser fusion experiments at LLL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  11. Laser fusion experiments at LLL

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future

  12. Splenogonadal Fusion

    Directory of Open Access Journals (Sweden)

    Sung-Lang Chen

    2008-11-01

    Full Text Available Splenogonadal fusion (SGF is a rare congenital non-malignant anomaly characterized by fusion of splenic tissue to the gonad, and can be continuous or discontinuous. Very few cases have been diagnosed preoperatively, and many patients who present with testicular swelling undergo unnecessary orchiectomy under the suspicion of testicular neoplasm. A 16-year-old boy presented with a left scrotal mass and underwent total excision of a 1.6-cm tumor without damaging the testis, epididymis or its accompanying vessels. Pathologic examination revealed SFG (discontinuous type. If clinically suspected before surgery, the diagnosis may be confirmed by Tc-99m sulfur colloid imaging, which shows uptake in both the spleen and accessory splenic tissue within the scrotum. Frozen section should be considered if there remains any doubt regarding the diagnosis during operation.

  13. Annual progress report 1993. Work in controlled thermonuclear fusion research performed in the fusion research unit under the contract of association between Euratom and Risoe National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    The programme of the Research Unit of the Fusion Association Euratom-Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of pellet injectors for fusion experiments, and (c) development of diagnostics for fusion plasmas. The activities in technology cover radiation damage of fusion reactor materials. A summary of the activities in 1993 is presented. (au) (4 tabs., 21 ills., 64 refs.)

  14. Electron-beam-fusion progress report, 1975

    International Nuclear Information System (INIS)

    1976-06-01

    Summaries of research work are given on electron sources, insulation problems, and power supplies. Some theoretical work is reported on fusion target design, self-consistent deposition and hydrodynamic calculations, analysis of x-ray pinhole data, diode code calculations, magnetically insulated diodes and transmission lines, ion sheath motion in plasma-filled diodes, relativistic distribution functions, macroscopic properties, and kinetic theory, heavy ion pulsed fusion, and collective ion acceleration. Some experimental work on targets, diode physics, and diagnostic developments is given

  15. Fusion Machines

    International Nuclear Information System (INIS)

    Weynants, R.R.

    2004-01-01

    A concise overview is given of the principles of inertial and magnetic fusion, with an emphasis on the latter in view of the aim of this summer school. The basis of magnetic confinement in mirror and toroidal geometry is discussed and applied to the tokamak concept. A brief discussion of the reactor prospects of this configuration identifies which future developments are crucial and where alternative concepts might help in optimising the reactor design. The text also aims at introducing the main concepts encountered in tokamak research that will be studied and used in the subsequent lectures

  16. Fusion Canada issue 10

    International Nuclear Information System (INIS)

    1990-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Fusion Materials Research, ITER physics research, fusion performance record at JET, and design options for reactor building. 4 figs

  17. Reversed field pinch diagnostics

    International Nuclear Information System (INIS)

    Weber, P.G.

    1986-01-01

    The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP

  18. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  19. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  20. Development of an in-situ diagnostic for the measurement of the hydrogen content of amorphous hydrocarbon layers in fusion devices; Entwicklung einer In-situ-Messmethode zur Bestimmung des Wasserstoffgehalts amorpher Kohlenwasserstoffschichten in Fusionsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Irrek, F.

    2008-07-15

    A diagnostic method, the laser-induced thermal desorption spectroscopy (LDS), is developed to measure in situ the hydrogen inventory in the surface of plasma-facing components in fusion experiments. Its capabilities will be demonstrated in TEXTOR. In LDS, during the plasma discharge a laser beam is used to heat a spot on a surface close to the plasma to a temperature of 1400 to 2100 K to a depth of 100 {mu}m. Trapped hydrogen will be released into the plasma where it emits line radiation. The emitted H{sub a}-light is quantitatively measured. The amount of released hydrogen is calculated from the intensity of this emission using conversion factors (S/XB){sub eff}. The laser light (Nd:YAG, 1064 nm) is conducted via light fibres. At TEXTOR, a 5 mm{sup 2} sized homogeneous laser spot is created with a pulse duration of 1.5 ms, and an Energy of 5 J, typically. Below the laser spot a volume of at most 1 mm{sup 3} is desorbed. The generated temperature is calculated numerically and indirectly deduced from surface changings. Depending on the conditions during the layer formation the hydrogen content of the hydrocarbon layer will vary and different fractions of the released molecules (H{sub 2}, CH{sub 4}, C{sub 2}H{sub 4}) are created during the laser heating. The release of atomic hydrogen by laser desorption was not found. The emitted light is measured by means of narrow-band interference filters and a CCD-camera. The fraction of the light emission which lies outside the observation volume is estimated using simulations of the emission by the neutral gas transport Monte Carlo code EIRENE for each molecular fraction. Conversion factors (S/XB){sub eff} were measured in various reference plasmas (T{sub e}=22-30 eV, n{sub e}=1-11 x 10{sup 18} m{sup -3} and T{sub e}=50-74 eV, n{sub e}=1-5 x 10{sup 18} m{sup -3}) by desorbing prepared graphite samples which release a known amount of hydrogen with a known molecular distribution. LDS measurements were carried out in TEXTOR at

  1. Study of charged fusion products in laser produced plasmas

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1981-07-01

    Charged reaction products play a central role in inertial confinement fusion. The investigation of the various processes these particles undergo in laser produced plasmas, their influence on the dynamics of the fusion and their utilization as a diagnostic tool are the main subjects of this thesis. (author)

  2. Methods of detection using a cellulose binding domain fusion product

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Particle beam fusion progress report, January-June 1980

    International Nuclear Information System (INIS)

    1981-05-01

    An overview and technical summaries are given for research progress in each of the following general areas: (1) fusion target studies; (2) target experiments; (3) particle beam source theory; (4) diagnostics development; (5) particle beam experiments; (6) pulsed power research and development; (7) pulse power application; and (8) Electron Beam Fusion Accelerator project

  4. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  5. Radiation hardening of diagnostics

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1991-01-01

    The world fusion program has advanced to the stage where it is appropriate to construct a number of devices for the purpose of burning DT fuel. In these next-generation experiments, the expected flux and fluence of 14 MeV neutrons and associated gamma rays will pose a significant challenge to the operation and diagnostics of the fusion device. Radiation effects include structural damage to materials such as vacuum windows and seals, modifications to electrical properties such as electrical conductivity and dielectric strength and impaired optical properties such as reduced transparency and luminescence of windows and fiber optics during irradiation. In preparation for construction and operation of these new facilities, the fusion diagnostics community needs to work with materials scientists to develop a better understanding of radiation effects, and to undertake a testing program aimed at developing workable solutions for this multi-faceted problem. A unique facility to help in this regard is the Los Alamos Spallation Radiation Effects Facility, a neutron source located at the beam stop of the world's most powerful accelerator, the Los Alamos Meson Physics Facility (LAMPF). The LAMPF proton beam generates 10 16 neutrons per second because of ''spallation'' reactions when the protons collide with the copper nuclei in the beam stop

  6. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  7. Fusion cuisine

    DEFF Research Database (Denmark)

    Peters, Chris; Broersma, Marcel

    2018-01-01

    JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze to the out......JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze...... to the outside for conceptual inspiration and methodological tools lends itself to a journalism studies that is a fusion cuisine of media, communication, and related scholarship. However, what happens when this object becomes as fragmented and multifaceted as the ways we study it? This essay addresses...

  8. Diagnostics and control for the steady state and pulsed tokamak DEMO

    Czech Academy of Sciences Publication Activity Database

    Orsitto, F.P.; Villari, R.; Moro, F.; Todd, T.N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Ďuran, Ivan; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.

    2016-01-01

    Roč. 56, č. 2 (2016), č. článku 026009. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : measurement systems, fusion reactor, fusion plasma diagnostics * fusion reactor * fusion plasma diagnostics * DEMO * Hall sensors * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/2/026009

  9. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  10. Fusion Canada issue 28

    International Nuclear Information System (INIS)

    1995-06-01

    A short bulletin from the National Fusion Program highlighting in this issue the Canada - US fusion meeting in Montreal, fusion breeder work in Chile, new management at CFFTP, fast electrons in tokamaks: new data from TdeV, a program review of CCFM and Velikhov to address Montreal fusion meeting. 1 fig

  11. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  12. Fusion Energy Division annual progress report, period ending December 31, 1988

    International Nuclear Information System (INIS)

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety

  13. Fusion Energy Division annual progress report, period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  14. Interest of atomic physic for fusion

    International Nuclear Information System (INIS)

    Breton, C.; De Michelis, C.; Mattioli, M.; Platz, P.; Ramette, J.; Saoutic, B.

    1984-01-01

    Impurity radiation is one of the most important energy loss mechanism of fusion plasmas. Atomic processes and hypothesis of the model used in evaluating the power radiated are described. The use of radiation as a diagnostic tool for plasma physicist is reviewed [fr

  15. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  16. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  17. Summary from working group on noninterceptive diagnostics

    International Nuclear Information System (INIS)

    Chamberlin, D.D.

    1985-01-01

    The working group for noninterceptive diagnostics spent much of its time comparing diagnostic techniques from different fields and their possible application to high-power injectors. The group included backgrounds from electron beam diagnostics, fusion power diagnostics, cw ion source and transport design, and ion beam of diagnostics. The probability of success for adapting techniques from these different areas is quite difficult to judge, short of a detailed examination of each application. Unexpected flaws or unforeseen noise sources can eliminate an idea that would otherwise appear promising. The report presents several ideas that were discussed, with an indication of those ideas most likely to succeed if implemented

  18. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  19. Fusion energy

    International Nuclear Information System (INIS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  20. Summary on inertial confinement fusion

    International Nuclear Information System (INIS)

    Meyer-Ter-Vehn, J.

    1995-01-01

    Highlights on inertial confinement during the fifteenth international conference on plasma physics and controlled nuclear fusion are briefly summarized. Specifically the following topics are discussed: the US National Ignition Facility presently planned by the US Department of Energy; demonstration of diagnostics for hot spot formation; declassification of Hohlraum target design; fusion targets, in particular, the Hohlraum target design for the National Ignition Facility (NIF), Hohlraum experiments, direct drive implosions, ablative Rayleigh-Taylor instabilities, laser imprinting (of perturbations by the laser on the laser target surface), hot spot formation and mixing, hot spot implosion experiments at Lawrence Livermore National Laboratory, Livermore, USA, time resolving hot spot dynamics at the Institute of Laser Engineering (ILE), Osaka, Japan, laser-plasma interaction

  1. Anato-metabolic fusion of PET, CT and MRI images

    International Nuclear Information System (INIS)

    Przetak, C.; Baum, R.P.; Niesen, A.; Slomka, P.; Proeschild, A.; Leonhardi, J.

    2000-01-01

    The fusion of cross-sectional images - especially in oncology - appears to be a very helpful tool to improve the diagnostic and therapeutic accuracy. Though many advantages exist, image fusion is applied routinely only in a few hospitals. To introduce image fusion as a common procedure, technical and logistical conditions have to be fulfilled which are related to long term archiving of digital data, data transfer and improvement of the available software in terms of usefulness and documentation. The accuracy of coregistration and the quality of image fusion has to be validated by further controlled studies. (orig.) [de

  2. Fusion Plasma Theory: Task 1, Magnetic confinement Fusion Plasma Theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1993-01-01

    The research performed under this grant during the current year has concentrated on few tokamak plasma confinement issues: applications of our new Chapman-Enskog-like approach for developing hybrid fluid/kinetic descriptions of tokamak plasmas; multi-faceted studies as part of our development of a new interacting island paradigm for the tokamak equilibrium'' and transport; investigations of the resolution power of BES and ECE diagnostics for measuring core plasma fluctuations; and studies of net transport in the presence of fluctuating surfaces. Recent progress and publications in these areas, and in the management of the NERSC node and the fusion theory workstations are summarized briefly in this report

  3. Fusion technology: The Iter fusion experiment

    International Nuclear Information System (INIS)

    Dietz, K.J.

    1994-01-01

    Plans for the Iter international fusion experiment, in which the European Union, Japan, Canada, Russia, Sweden, Switzerland, and the USA cooperate, were begun in 1985, and construction work started in early 1994. These activities serve for the preparation of the design and construction documents for a research reactor in which a stable fusion plasma is to be generated. This is to be the basis for the construction of a fusion reactor for electricity generation. Preparatory work was performed in the Tokamak experiments with JET and TFTR. The fusion power of 1.5 GW will be attained, thus enabling Iter to keep a deuterium-tritium plasma burning. (orig.) [de

  4. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  5. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  6. Low activation diagnostic equipment design studies

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Cheng, E.T.; Fisher, R.K.

    1985-01-01

    The low activation fusion concept has been applied to the diagnostic equipment in a fusion reactor. The components where fabrication from low activation materials is feasible have been identified. Other systems where higher activation elements are required can have their activation reduced by design approaches which include shielding and operation only in low flux regions of the reactor. Some components will not operate in a high flux so activation is not a major concern. This low activation diagnostic equipment study completes a series of low activation studies where all the components in a fusion power reactor have now been evaluated. It is concluded that a completely low activation fusion reactor is feasible with all components meeting the functional requirements. This provides an environmentally benign energy source with a high confidence level in meeting safety criteria in operation, maintenance and waste disposal

  7. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  8. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  9. Fusion Canada issue 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs.

  10. Fusion Canada issue 27

    International Nuclear Information System (INIS)

    1995-03-01

    A short bulletin from the National Fusion Program highlighting in this issue ITER reactor siting, a major upgrade for TdeV tokamak, Ceramic Breeders: new tritium mapping technique and Joint Fusion Symposium. 2 figs

  11. Fusion Canada issue 20

    International Nuclear Information System (INIS)

    1993-03-01

    Fusion Canada's publication of the National Fusion Program. Included in this issue is the CFFTP Industrial Impact Study, CCFM/TdeV Update:helium pumping, research funds, and deuterium in beryllium - high temperature behaviour. 3 figs

  12. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs

  13. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  14. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Information is given on each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of CTR concepts, and (4) cross section measurements and techniques

  15. Fusion Canada issue 6

    International Nuclear Information System (INIS)

    1989-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a funding report for CFFTP, a technical update for Tokamak de Varennes and a network for university research by the National Fusion Program. 4 figs

  16. Multi-terawatt fusion laser systems

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1993-01-01

    The evolution of laser fusion systems started with a description of the basic principles of the laser in 1959, then a physical demonstration showing 1000 Watts of peak optical power in 1961 to the present systems that deliver 10 14 watts of peak optical power, are presented. Physical limits to large systems are reviewed: thermal limits, material stress limits, structural limits and stability, parasitic coupling, measurement precision and diagnostics. The various steps of the fusion laser-system development process are then discussed through an historical presentation. 3 figs., 8 refs

  17. Computer-based image analysis in radiological diagnostics and image-guided therapy: 3D-Reconstruction, contrast medium dynamics, surface analysis, radiation therapy and multi-modal image fusion

    International Nuclear Information System (INIS)

    Beier, J.

    2001-01-01

    This book deals with substantial subjects of postprocessing and analysis of radiological image data, a particular emphasis was put on pulmonary themes. For a multitude of purposes the developed methods and procedures can directly be transferred to other non-pulmonary applications. The work presented here is structured in 14 chapters, each describing a selected complex of research. The chapter order reflects the sequence of the processing steps starting from artefact reduction, segmentation, visualization, analysis, therapy planning and image fusion up to multimedia archiving. In particular, this includes virtual endoscopy with three different scene viewers (Chap. 6), visualizations of the lung disease bronchiectasis (Chap. 7), surface structure analysis of pulmonary tumors (Chap. 8), quantification of contrast medium dynamics from temporal 2D and 3D image sequences (Chap. 9) as well as multimodality image fusion of arbitrary tomographical data using several visualization techniques (Chap. 12). Thus, the software systems presented cover the majority of image processing applications necessary in radiology and were entirely developed, implemented and validated in the clinical routine of a university medical school. (orig.) [de

  18. Ultrasound-guided image fusion with computed tomography and magnetic resonance imaging. Clinical utility for imaging and interventional diagnostics of hepatic lesions; Ultraschallgestuetzte Bildfusion mittels CT und MRT. Klinische Bedeutung fuer die bildgebende und interventionelle Diagnostik von Leberlaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Clevert, D.A.; Helck, A.; Paprottka, P.M.; Trumm, C.; Reiser, M.F. [Klinikum der Ludwig-Maximilians-Universitaet, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Zengel, P. [Klinikum der Ludwig-Maximilians-Universitaet, Campus Grosshadern, Klinik fuer Hals-, Nasen- und Ohrenheilkunde, Muenchen (Germany)

    2012-01-15

    Abdominal ultrasound is often the first-line imaging modality for assessing focal liver lesions. Due to various new ultrasound techniques, such as image fusion, global positioning system (GPS) tracking and needle tracking guided biopsy, abdominal ultrasound now has great potential regarding detection, characterization and treatment of focal liver lesions. Furthermore, these new techniques will help to improve the clinical management of patients before and during interventional procedures. This article presents the principle and clinical impact of recently developed techniques in the field of ultrasound, e.g. image fusion, GPS tracking and needle tracking guided biopsy and discusses the results based on a feasibility study on 20 patients with focal hepatic lesions. (orig.) [German] Bei der Bildfusion von Ultraschall mit anderen schnittbildgebenden Verfahren (CT, MRT) handelt es sich um ein relativ neuartiges Verfahren, welches unter Studienbedingungen jedoch bereits erfolgreich eingesetzt wurde. In der folgenden Machbarkeitsstudie soll der Nutzen weiterfuehrender Anwendungen der sonographischen Bildfusion, dem so genannten Global-Positioning-System- (GPS-) und Needle-Tracking, untersucht werden. Dabei handelt es sich um Instrumente, die insbesondere die Diagnostik und das Staging (GPS-Tracking) bzw. die bioptische Abklaerung (Needle-Tracking) von Patienten mit fokalen Leberlaesionen erleichtern. In diesem Artikel werden das Prinzip und die Anwendungsmoeglichkeiten dieser neuen Techniken anhand konkreter Beispiele in einem Kollektiv von 20 Patienten mit fokalen Leberlaesionen vorgestellt und erlaeutert. (orig.)

  19. Fusion Canada issue 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs.

  20. User's perspective on fusion

    International Nuclear Information System (INIS)

    Ashworth, C.P.

    1976-01-01

    The need in fusion, from the electric utilities viewpoint, is for fusion to be a real option, not huge, complicated nuclear plants costing $10 billion each and requiring restructuring the energy industry to provide and use them. A course for future fusion reactor work in order to be a real option is discussed. The advantages of alternate concepts to the tokamak are presented

  1. Fusion Canada issue 17

    International Nuclear Information System (INIS)

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs

  2. Fusion Canada issue 18

    International Nuclear Information System (INIS)

    1992-08-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs

  3. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  4. Fusion Canada issue 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs.

  5. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1986-01-01

    This report on the International Symposium on Heavy Ion Fusion held May 27-29, 1986 summarizes the problems and achievements in the areas of targets, accelerators, focussing, reactor studies, and system studies. The symposium participants recognize that there are large uncertainties in Heavy Ion Fusion but many of them are also optimistic that HIF may ultimately be the best approach to fusion

  6. Fusion Canada issue 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs.

  7. Fusion Canada issue 25

    International Nuclear Information System (INIS)

    1994-08-01

    A short bulletin from the National Fusion Program highlighting in this issue an economic impact study of the Canadian site for ITER, Harvey Skarsgard: fusion pioneer retires, NFP: Phillips and Holtslander exchange roles, Europe's fusion funding proposals and an update of CCFM/TdeV. 1 fig

  8. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  9. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  10. Fusion Canada issue 9

    International Nuclear Information System (INIS)

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs

  11. Recent diagnostic developments on LHD

    International Nuclear Information System (INIS)

    Sudo, S; Ozaki, T; Ashikawa, N; Emoto, M; Goto, M; Hamada, Y; Ida, K; Ido, T; Iguchi, H; Inagaki, S; Isobe, M; Kawahata, K; Khlopenkov, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Morita, S; Muto, S; Nagayama, Y; Nakanishi, H; Narihara, K; Nishizawa, A; Ohdachi, S; Osakabe, M; Peterson, B J; Sakakibara, S; Sasao, M; Sato, K; Shoji, M; Tamura, N; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K; Watanabe, T; Yamada, I; Goncharov, P; Ejiri, A; Okajima, S; Mase, A; Tsuji-Iio, S; Akiyama, T; Lyon, J F; Vyacheslavov, L N; Sanin, A

    2003-01-01

    The recent diagnostic developments on the large helical device (LHD) are described briefly. LHD is the largest helical machine with all superconducting coils, and its purpose is to prove the ability of a helical system to confine a fusion-relevant plasma in steady state. According to the missions of LHD research, the diagnostic devices are categorized as follows: diagnostics for (i) high nτ E T plasmas and transport physics; (ii) magnetohydrodynamic stability; (iii) long pulse operation and divertor function; and (iv) energetic particles. These are briefly described focusing on the recent developments of the devices. Since the LHD experiment started in March 1998, five series of experimental campaigns have been carried out. The LHD diagnostics during these periods were operated successfully, and contributed to the analysis of the experimental results

  12. Fusion technology projects

    International Nuclear Information System (INIS)

    Elen, J.D.

    1986-05-01

    The protection of the first wall by ceramic coatings against melting by plasma disruptions, was studied by computational heat transfer analysis. The compilation of a European Fusion File of nuclear data in its first version is presented. A specific contribution is the revision of the lead cross sections for (n,n 1 ), (n,2n) and (n,3n) reactions. The activations of neutron flux monitors for the JET neutron diagnostics system were recalculated using a 3D model of the torus and its D-shaped plasma. Calculations of nuclear heating and radiation damage parameters were performed for the lithium-lead blanket concept in the NET-II torus geometry, using a simplified blanket model. Results of low cycle fatigue and tensile testing of the reference heat of stainless steel 316 L is reported. The latter including the effect of a HFR-irradiation to 5 dpa and 40 appm helium. The design of a 12 Tesla niobium-tin insert coil for the SULTAN test facility is presented, including the start of its conductor development. The next step will be the development of a 32 kA (11 Tesla) conductor for the toroidal field coils of NET, as regulated under magnet system studies. The results are presented of two EXOTIC experiments: irradiation of ceramic lithium compounds for tritium breeding. (Auth.)

  13. Fusion advanced studies Torus

    International Nuclear Information System (INIS)

    2007-01-01

    The successful development of ITER and DEMO scenarios requires preparatory activities on devices that are smaller than ITER, sufficiently flexible and capable of investigating the peculiar physics of burning plasma conditions. The aim of the Fusion Advanced Studies Torus (FAST) proposal [2.1] (formerly FT3 [2.2]) is to show that the preparation of ITER scenarios and the development of new expertise for the DEMO design and RD can be effectively implemented on a new facility. FAST will a) operate with deuterium plasmas, thereby avoiding problems associated with tritium, and allow investigation of nonlinear dynamics (which are important for understanding alpha particle behaviour in burning plasmas) by using fast ions accelerated by heating and current drive systems; b) work in a dimensionless parameter range close to that of ITER; c) test technical innovative solutions, such as full-tungsten plasma-facing components and an advanced liquid metal divertor target for the first wall/divertor, directly relevant for ITER and DEMO; d) exploit advanced regimes with a much longer pulse duration than the current diffusion time; e) provide a test bed for ITER and DEMO diagnostics; f) provide an ideal framework for model and numerical code benchmarks, their verification and validation in ITER/ DEMO-relevant plasma conditions

  14. Argus Laser Fusion Facility

    International Nuclear Information System (INIS)

    Speck, D.R.; Simmons, W.W.

    1976-01-01

    ARGUS is a two-beam Nd: glass laser system built for laser fusion irradiation experiments. It is the first glass laser system planned and built with the understanding that small-scale beam break-up is the dominant performance limiting factor in obtaining high output power. Accordingly, five vacuum spatial filters are located at strategic intervals along each chain to eliminate the accumulated small-scale filamentation. This strategy permits cascading of amplifiers to obtain a focusable output of more than one terawatt per arm in a spatially clean beam of 20 centimeter diameter. Beam diagnostics which characterize each shot include the time-integrated spatial profile and the time resolved intensity/power at the target. Demonstrated performance to date includes: (1) Peak power in excess of 2 TW at the target is achieved with regularity. (2) Maximum system brightness is in excess of 10 17 watts/cm 2 ster. (3) Shot-to-shot pointing stability within 50 μ radians is achieved over periods of days. (4) Successful target experiments have been performed with pulses of from 30 to 500 ps duration

  15. Millimeter-wave receiver design for plasma diagnostics

    DEFF Research Database (Denmark)

    Leipold, Frank; Hansen, S. K.; Jacobsen, Asger Schou

    2016-01-01

    Scattered millimeter waves entering from the collective Thomson scattering diagnostic at ASDEX Upgrade fusion device are generally elliptically polarized. In order to convert the millimeter waves to linearly polarized waves (required for the detector), birefringent window assemblies (sapphire) ha...

  16. Supervisory Control and Diagnostics System Distributed Operating System

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1979-01-01

    This paper contains a description of the Supervisory Control and Diagnostics System (SCDS) Distributed Operating System. The SCDS consists of nine 32-bit minicomputers with shared memory. The system's main purpose is to control a large Mirror Fusion Test Facility

  17. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  18. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  19. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  20. Fusion technology 1992

    International Nuclear Information System (INIS)

    Ferro, C.; Gasparatto, M.; Knoepfel, H.

    1993-01-01

    The aim of the biennial series of symposia on the title subject, organized by the European Fusion Laboratories, is the exchange of information on the design, construction and operation of fusion experiments and on the technology being developed for the next step devices and fusion reactors. The coverage of the volume includes the technological aspects of fusion reactors in relation to new developments, this forming a guideline for the definition of future work. These proceedings comprise three volumes and contain both the invited lectures and contributed papers presented at the symposium which was attended by 569 participants from around the globe. The 343 papers, including 12 invited papers, characterize the increasing interest of industry in the fusion programme, giving a broad and current overview on the progress and trends fusion technology is experiencing now, as well as indicating the future for fusion devices

  1. Molecular Diagnostics

    OpenAIRE

    Choe, Hyonmin; Deirmengian, Carl A.; Hickok, Noreen J.; Morrison, Tiffany N.; Tuan, Rocky S.

    2015-01-01

    Orthopaedic infections are complex conditions that require immediate diagnosis and accurate identification of the causative organisms to facilitate appropriate management. Conventional methodologies for diagnosis of these infections sometimes lack accuracy or sufficient rapidity. Current molecular diagnostics are an emerging area of bench-to-bedside research in orthopaedic infections. Examples of promising molecular diagnostics include measurement of a specific biomarker in the synovial fluid...

  2. The 22nd symposium on fusion technology

    International Nuclear Information System (INIS)

    Taehtinen, S.; Rintamaa, R.; Asikainen, M.; Tuomisto, H.

    2002-01-01

    The Symposium on Fusion Technology (SOFT) was held at the Marina Congress Center, Helsinki, Finland, from 9th to 13th September 2002. It was organized by the Association Euratom-Tekes and hosted by the VTT Technical Research Centre of Finland, Fortum Nuclear Services Ltd. and PrizzTech Oy. The sympoisum included invited and contributed papers as well as poster presentations and an industrial and R and D exhibition. The main topics included all aspects of fusion technology: current and future devices, plasma facing components, plasma heating and current drive, plasma engineering and control, diagnostics, data acquisition and remote participation, magnets and power supplies, fuel cycle, remote handling, vessel, blanket and shield, safety and environment, power plant and socio-economic studies, inertial fusion energy, and transfer of technology. The number of invited speakers was 15, selected presentations 22 and poster presentations 404. The abstracts of the presentations and posters are included in this book. (orig.)

  3. International Conference on Plasma Diagnostics. Slides, papers and posters of Plasma Diagnostics 2010

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Bonhomme, G.; Grisolia, C.; Hirsch, M.; Klos, Z.; Mazouffre, S.; Musielok, J.; Ratynskaya, S.; Sadowski, M.; Van de Sanden, R.; Sentis, M.; Stroth, U.; Tereshin, V.; Tichy, M.; Unterberg, B.; Weisen, H.; Zoletnik, S.

    2011-01-01

    Plasma diagnostics 2010 is an International Conference on Diagnostic Methods involved in Research and Applications of Plasmas, originating on combining the 5. German-Polish Conference on Plasma Diagnostics for Fusion and Applications and the 7. French-Polish Seminar on Thermal Plasma in Space and Laboratory. The Scientific Committee of 'Plasma 2007' decided to concentrate the attention of future conferences more on the diagnostic development and diagnostic interpretation in the fields of high and low temperature plasmas and plasma applications. It is aimed at involving all European activities in the fields. The Scientific Program will cover the fields from low temperature laboratory to fusion plasmas of various configurations as well as dusty and astrophysical plasmas and industrial plasma applications

  4. Economics of fusion research

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  5. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  6. XML Diagnostics Description Standard

    International Nuclear Information System (INIS)

    Neto, A.; Fernandes, H.; Varandas, C.; Lister, J.; Yonekawa, I.

    2006-01-01

    A standard for the self-description of fusion plasma diagnostics will be presented, based on the Extensible Markup Language (XML). The motivation is to maintain and organise the information on all the components of a laboratory experiment, from the hardware to the access security, to save time and money when problems arises. Since there is no existing standard to organise this kind of information, every Association stores and organises each experiment in different ways. This can lead to severe problems when the organisation schema is poorly documented or written in national languages. The exchange of scientists, researchers and engineers between laboratories is a common practice nowadays. Sometimes they have to install new diagnostics or to update existing ones and frequently they lose a great deal of time trying to understand the currently installed system. The most common problems are: no documentation available; the person who understands it has left; documentation written in the national language. Standardisation is the key to solving all the problems mentioned. From the commercial information on the diagnostic (component supplier; component price) to the hardware description (component specifications; drawings) to the operation of the equipment (finite state machines) through change control (who changed what and when) and internationalisation (information at least in the native language and in English), a common XML schema will be proposed. This paper will also discuss an extension of these ideas to the self-description of ITER plant systems, since the problems will be identical. (author)

  7. Diagnostic needs for fluctuations and transport studies

    International Nuclear Information System (INIS)

    Carreras, B.A.

    1992-01-01

    The identification of fundamental transport mechanisms in magnetically confined plasmas is a critical issue for the magnetic fusion program. Recent progress in understanding fluctuations and transport is well correlated with the development and use of new diagnostics, but there a great deal of information is still missing. Some of the required measurements are well beyond our present diagnostic capabilities, but some are within reach and could answer critical questions in this area of research. Some of these critical issues are discussed

  8. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88

  9. Laser fusion experiments at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1975-01-01

    A short review is given of some of the important dates in the experimental fusion program at Livermore. A few of the parameters of the laser systems which are being used for these experiments are mentioned. Some information about specialized diagnostics which have been developed at the Livermore Laboratory for these experiments is described. The focusing arrangements for each of the systems are discussed. Experiments both on planar targets and on targets for laser fusion are described

  10. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  11. Fusion profile measurement on Tore-Supra

    International Nuclear Information System (INIS)

    Martin, G.; Gilles, P.; Joyer, P.

    1990-01-01

    The new diagnostic set on Tore-Supra to observe charged fusion particles is described. The detector is a multiple strip chips and equivalent to 16 small detectors placed close to one another. For given toroidal and poloidal fields, the knowledge of the pitch angle allows to calculate the particle trajectories. The proton flux on the detector is the highest for the most central trajectory. The detector efficiency, resolution and first experimental results are discussed

  12. Diagnostics for FIRE: A Status Report

    International Nuclear Information System (INIS)

    Kenneth M. Young

    2002-01-01

    The mission for the proposed FIRE (Fusion Ignition Research Experiment) device is to ''attain, explore, understand and optimize fusion-dominated plasmas.'' Operation at Q * 5, for 20 sec with a fusion power output of *150 MW is the major goal. Attaining this mission sets demands for plasma measurement that are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. Because of the planned operation in advanced tokamak scenarios, with steep transport barriers, the diagnostic instrumentation must be able to provide fine spatial and temporal resolution. It must also be able to withstand the impact of the intense neutron and gamma irradiation. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many components will operate close to the first wall, e.g. ceramics and mineral insulated cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be selected and mounted so that they will operate and survive in fluxes which require special material selection. The measurement requirements have been assessed so that the diagnostics for the FIRE device can be defined. Clearly a better set of diagnostics of alpha-particles than that available for TFTR is essential, since the alpha-particles provide the dominant sources of heating and of instability-drive in the plasma

  13. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  14. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  15. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  16. Laser fusion overview

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  17. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  18. Historic overview of inertial confinement fusion: What have we learned

    International Nuclear Information System (INIS)

    Glass, A.J.

    1986-01-01

    Although laser fusion has been the subject of research since the early 1960s, it has only been intensively studied for about 14 years. During that time, substantive advances have been made in our understanding of the complex physics of laser-heated plasmas, in the development of sophisticated diagnostic instrumentation, and in the technology of fusion targets and inertial fusion drivers. These advances will be reviewed. Of equal importance are the lessons learned in the economic and political arenas. These lessons may be of greater significance for scientific endeavors in other fields of research. The economic and political issues surrounding inertial fusion research will be discussed. Possible future directions for inertial fusion development will be presented

  19. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  20. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  1. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  2. Fusion facility siting considerations

    International Nuclear Information System (INIS)

    Bussell, G.T.

    1985-01-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  3. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  4. Companion diagnostics

    DEFF Research Database (Denmark)

    Jørgensen, Jan Trøst; Hersom, Maria

    2016-01-01

    of disease mechanisms, things are slowly changing. Within the last few years, we have seen an increasing number of predictive biomarker assays being developed to guide the use of targeted cancer drugs. This type of assay is called companion diagnostics and is developed in parallel to the drug using the drug-diagnostic...... co-development model. The development of companion diagnostics is a relatively new discipline and in this review, different aspects will be discussed including clinical and regulatory issues. Furthermore, examples of drugs, such as the ALK and PD-1/PD-L1 inhibitors, that have been approved recently....... Despite having discussed personalized medicine for more than a decade, we still see that most drug prescriptions for severe chronic diseases are largely based on 'trial and error' and not on solid biomarker data. However, with the advance of molecular diagnostics and a subsequent increased understanding...

  5. HEDP and new directions for fusion energy

    International Nuclear Information System (INIS)

    Kirkpatrick, Ronald C.

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  6. Inertial fusion energy

    International Nuclear Information System (INIS)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  7. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  8. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  9. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  10. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  11. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  12. Fusion Programme SCK-CEN - Annual report 2009

    International Nuclear Information System (INIS)

    Massaut, V.

    2009-01-01

    This report summarizes the Research and Development work carried out at SCK-CEN on fusion technology in the year 2009. This covers mostly the work done under the EFDA agreement as well as the new developments carried out within the so-called Broader Approach of fusion such as - studies on structural and first wall materials for ITER and DEMO - studies and testing on the radiation resistance of instruments and componenets for the diagnostic and remote handling - development of irradiation devices and systems for the testing of fusion materials under representative environment.

  13. Fusion Programme SCK-CEN - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V

    2009-10-15

    This report summarizes the Research and Development work carried out at SCK-CEN on fusion technology in the year 2009. This covers mostly the work done under the EFDA agreement as well as the new developments carried out within the so-called Broader Approach of fusion such as - studies on structural and first wall materials for ITER and DEMO - studies and testing on the radiation resistance of instruments and componenets for the diagnostic and remote handling - development of irradiation devices and systems for the testing of fusion materials under representative environment.

  14. Fusion technology programme

    International Nuclear Information System (INIS)

    Elen, J.D.

    1981-10-01

    In the water cooled INTOR blanket modules a loss of coolant accident will result in melting of the lead rods after 1 minute and of the ss first wall after 3 minutes. Also partial melting and evaporization of the ss first wall as caused by plasma disruption was analysed. Part of the UKCTR-IIIA neutron reaction cross section data library is based on calculations using the nuclear-model code THRES-2. Results of a revision using the modified THRES-F code are reported. A combined preequilibrium and equilibrium model was applied for calculation of neutron emission spectra and of their angular distributions. Neutron transport calculations are reported to determine the polodial distribution of activation of various threshold detectors, which will be placed on the plasma chamber of JET as part of the diagnostic system. In vanadium the preinjection of helium by means of cyclotron irradiation is shown to lead to a lower cavity concentration and a slightly larger cavity size as a result of a following fast neutron irradiation in the core of the HFR reactor. In the V - 1% Cr - 0.1% Ti alloy preinjected helium has the opposite effect on cavity concentration and size. The ratio between helium production and displacement damage in ss 316 by irradiation in the HFR is shown to meet the fusion reactor condition. The development of high current superconducting niobium-tin cables is introduced as a new activity at ECN. Results are shown of a technique for welding multifilament wires. The conductor concept for a small prototype toroidal field coil is presented. Progress is reported of fabrication of a 8 Tesla niobium-titanium insert coil for the SULTAN conductor test facility

  15. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  16. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  17. Progress in Neutron Diagnostics at JET

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Bonheure, G.; Murari, A.; Bertalot, L.; Angelone, M.; Pillon, M.; Conroy, S.; Ericsson, G.; Kaellne, J.; Popovichev, S.

    2006-01-01

    Roč. 56, suppl.B (2006), B118-B124 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22nd./. Praha, 26.6.2006-29.6.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * JET * fusion * neutrons diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  18. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  19. Infrared laser diagnostics for ITER

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Richards, R.K.; Ma, C.H.

    1995-01-01

    Two infrared laser-based diagnostics are under development at ORNL for measurements on burning plasmas such as ITER. The primary effort is the development of a CO 2 laser Thomson scattering diagnostic for the measurement of the velocity distribution of confined fusion-product alpha particles. Key components of the system include a high-power, single-mode CO 2 pulsed laser, an efficient optics system for beam transport and a multichannel low-noise infrared heterodyne receiver. A successful proof-of-principle experiment has been performed on the Advanced Toroidal Facility (ATF) stellerator at ORNL utilizing scattering from electron plasma frequency satellites. The diagnostic system is currently being installed on Alcator C-Mod at MIT for measurements of the fast ion tail produced by ICRH heating. A second diagnostic under development at ORNL is an infrared polarimeter for Faraday rotation measurements in future fusion experiments. A preliminary feasibility study of a CO 2 laser tangential viewing polarimeter for measuring electron density profiles in ITER has been completed. For ITER plasma parameters and a polarimeter wavelength of 10.6 microm, a Faraday rotation of up to 26 degree is predicted. An electro-optic polarization modulation technique has been developed at ORNL. Laboratory tests of this polarimeter demonstrated a sensitivity of ≤ 0.01 degree. Because of the similarity in the expected Faraday rotation in ITER and Alcator C-Mod, a collaboration between ORNL and the MIT Plasma Fusion Center has been undertaken to test this polarimeter system on Alcator C-Mod. A 10.6 microm polarimeter for this measurement has been constructed and integrated into the existing C-Mod multichannel two-color interferometer. With present experimental parameters for C-Mod, the predicted Faraday rotation was on the order of 0.1 degree. Significant output signals were observed during preliminary tests. Further experiment and detailed analyses are under way

  20. Incomplete fusion studies

    International Nuclear Information System (INIS)

    Singh, B.P.

    2011-01-01

    In order to study the incomplete fusion reaction dynamics at energies ≅ 4-7 MeV/nucleon, several experiments have been carried out using accelerator facilities available in India. The measurements presented here cover a wide range of projectile-target combinations and enhance significantly our knowledge about incomplete fusion reaction dynamics. Here, the three sets of measurements have been presented; (i) excitation functions, (ii) forward recoil range distributions and (iii) the spin distributions. The first evidence of these reactions has been obtained from the measurement and analysis of excitation functions for xn/αxn/2αxn-channels. The measured excitation functions have been analyzed within the framework of compound nucleus model. The results obtained indicate the occurrence of fusion incompleteness at low beam energies. However, in order to determine the relative contribution of complete and incomplete fusion reaction processes, the recoil range distributions of the heavy residues have also been measured and analyzed within the framework of breakup fusion model which confirmed the fusion incompleteness in several heavy ion reactions involving α-emitting reaction channels. Further, in order to study the role of l-values in these reactions the spin distributions of the residues populated in case of complete and incomplete channels have been measured and are found to be distinctly different. The analysis of the data on spin distribution measurements indicate that the mean values of driving input angular momenta associated with direct-α-emitting (incomplete fusion) channels are higher than that observed for fusion-evaporation xn or α-emitting (complete fusion) channels, and is found to increase with direct α-multiplicity in the forward cone. One of the important conclusions drawn in the present work is that, there is significant incomplete fusion contribution even at energies slightly above the barrier. Further, the projectile structure has been found to

  1. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  2. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  4. Powerful lasers for thermonuclear fusion

    International Nuclear Information System (INIS)

    Basov, N.; Krokhin, O.; Sklizkov, G.; Fedotov, S.

    1977-01-01

    The parameters are discussed of the radiation of powerful lasers (internal energy of the plasma determined by the volume, density and temperature of the plasma, duration of the heating pulse, focusing of the laser pulse energy in a small volume of matter, radiation contrast) for attaining an effective thermonuclear fusion at minimum microexplosion energy. A survey is given of the methods of shaping laser pulses with limit parameters, and the principle of the construction of powerful laser systems is described. The general diagram and parameters are given of the Delfin thermonuclear apparatus and a diagram is presented of the focusing system of high luminosity for spherical plasma heating using spherical mirrors. A diagram is presented of the vacuum chamber and of the complex diagnostic apparatus for determining the basic parameters of thermonuclear plasma in the Delfin apparatus. The prospects are indicated of the further development of thermonuclear laser apparatus with neodymium and CO 2 lasers. (B.S.)

  5. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  6. Fusion Canada issue 8

    International Nuclear Information System (INIS)

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs

  7. Fusion Canada issue 15

    International Nuclear Information System (INIS)

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it's role. 1 fig

  8. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  9. Fusion helps diversification

    NARCIS (Netherlands)

    Liang, S.; Ren, Z.; de Rijke, M.

    2014-01-01

    A popular strategy for search result diversification is to first retrieve a set of documents utilizing a standard retrieval method and then rerank the results. We adopt a different perspective on the problem, based on data fusion. Starting from the hypothesis that data fusion can improve performance

  10. Fusion Canada issue 22

    International Nuclear Information System (INIS)

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs

  11. International fusion research council

    International Nuclear Information System (INIS)

    Belozerov, A.N.

    1977-01-01

    A brief history of the International Fusion Research Council (IFRC) is given and the minutes of the 1976 meeting in Garching are summarized. At the Garching meeting, the IFRC evaluated the quality of papers presented at recent IAEA conferences on plasma physics and controlled thermonuclear research, and made recommendations on the organization and timing of future meetings on nuclear fusion

  12. Fusion Canada issue 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it`s role. 1 fig.

  13. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  14. Fusion Canada issue 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs.

  15. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  16. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  17. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  18. The IGNITEX fusion project

    International Nuclear Information System (INIS)

    Carrera, R.

    1987-01-01

    The author discusses the recently proposed fusion ignition experiment, IGNITEX. He emphasizes the basic ideas of this concept rather than the specific details of the physics and engineering aspects of the experiment. This concept is a good example of the importance of maintaining an adequate balance between the basic scientific progress in fusion physics and the new technologies that are becoming available in order to make fusion work. The objective of the IGNITEX project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. Being able to study this not-yet-produced regime of plasma operation is essential to fusion research. Two years after the fission nuclear reaction was discovered, a non-self-sustained fission reaction was produced in a laboratory, and in one more year a self-sustained reaction was achieved at the University of Chicago. However, after almost forty years of fusion research, a self-sustained fusion reaction has yet not been produced in a laboratory experiment. This fact indicates the greater difficulty of the fusion experiment. Because of the difficulty involved in the production of a self-sustained fusion reaction, it is necessary to propose such an experiment with maximum ignition margins, maximum simplicity, and minimum financial risk

  19. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  20. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Ogden, J.M.

    2002-01-01

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  1. Fusion Canada issue 4

    International Nuclear Information System (INIS)

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig

  2. Fusion Canada issue 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington`s Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs.

  3. Fusion Canada issue 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs.

  4. Fusion Canada issue 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig.

  5. Fusion Canada issue 19

    International Nuclear Information System (INIS)

    1992-12-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the IAEA Plasma Biasing Meeting, the new IEA program -Nuclear Technology of Fusion reactors, TFTR tritium purification system, an update by CCFM on machine additions and modifications, and news of a new compact Toroid injector at the University of Saskatchewan. 1 fig

  6. Fusion Canada issue 14

    International Nuclear Information System (INIS)

    1991-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on a fusion cooperation agreement between Japan and Canada, an update at Tokamak de Varennes on plasma biasing experiments and boronization tests and a collaboration between Canada and the U.S. on a compact toroid fuelling gun. 4 figs

  7. Fusion Canada issue 12

    International Nuclear Information System (INIS)

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington's Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs

  8. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  9. Industry's role in inertial fusion

    International Nuclear Information System (INIS)

    Glass, A.J.

    1983-01-01

    This paper is an address to the Tenth Symposium on Fusion Engineering. The speaker first addressed the subject of industry's role in inertial fusion three years earlier in 1980, outlining programs that included participation in the Shiva construction project, and the industrial participants' program set up in the laser fusion program to bring industrial scientists and engineers into the laboratory to work on laser fusion. The speaker is now the president of KMS Fusion, Inc., the primary industrial participant in the inertial fusion program. The outlook for fusion energy and the attitude of the federal government toward the fusion program is discussed

  10. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  11. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  12. Decomposition of incomplete fusion

    International Nuclear Information System (INIS)

    Sobotka, L.B.; Sarantities, D.G.; Stracener, D.W.; Majka, Z.; Abenante, V.; Semkow, T.M.; Hensley, D.C.; Beene, J.R.; Halbert, M.L.

    1989-01-01

    The velocity distribution of fusion-like products formed in the reaction 701 MeV 28 Si+ 100 Mo is decomposed into 26 incomplete fusion channels. The momentum deficit of the residue per nonevaporative mass unit is approximately equal to the beam momentum per nucleon. The yields of the incomplete fusion channels correlate with the Q-value for projectile fragmentation rather than that for incomplete fusion. The backward angle multiplicities of light particles and heavy ions increase with momentum transfer, however, the heavy ion multiplicities also depend on the extent of the fragmentation of the incomplete fusion channel. These data indicate that at fixed linear momentum transfer, increased fragmentation of the unfused component is related to a reduced transferred angular momentum. 22 refs., 6 figs., 1 tab

  13. Nuclear fusion: The issues

    International Nuclear Information System (INIS)

    Griffin, R.D.

    1993-01-01

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included

  14. Fusion safety data base

    International Nuclear Information System (INIS)

    Laats, E.T.; Hardy, H.A.

    1983-01-01

    The purpose of this Fusion Safety Data Base Program is to provide a repository of data for the design and development of safe commercial fusion reactors. The program is sponsored by the United States Department of Energy (DOE), Office of Fusion Energy. The function of the program is to collect, examine, permanently store, and make available the safety data to the entire US magnetic-fusion energy community. The sources of data will include domestic and foreign fusion reactor safety-related research programs. Any participant in the DOE Program may use the Data Base Program from his terminal through user friendly dialog and can view the contents in the form of text, tables, graphs, or system diagrams

  15. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  16. Some fusion perspectives

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1977-01-01

    Some of the concepts of nuclear fusion reactions, advanced fusion fuels, environmental impacts, etc., are explored using the following general outline: I. Principles of Fusion (Nuclear Fuels and Reactions, Lawson Condition, n tau vs T, Nuclear Burn Characteristics); II. Magnetic Mirror Possibilities (the Ion Layer and Electron Layer, Exponential Build-up at MeV energies, Lorentz trapping at GeV energies); III. Pellet Fuel Fusion Prospects (Advanced Pellet Fuel Fusion Prospects, Burn Characteristics and Applications, Excitation-heating Prospects for Runaway Ion Temperatures). Inasmuch as the outline is very skeletal, a significant research and development effort may be in order to evaluate these prospects in more detail and hopefully ''harness the H-bomb'' for peaceful applications, the author concludes. 28 references

  17. Diagnostic development

    International Nuclear Information System (INIS)

    Barnett, C.F.; Brisson, D.A.; Greco, S.E.

    1978-01-01

    During the past year the far-infrared or submillimeter diagnostic research program resulted in three major developments: (1) an optically pumped 0.385-μm D 2 O-laser oscillator-amplifier system was operated at a power level of 1 MW with a line width of less than 50 MHz; (2) a conical Pyrex submillimeter laser beam dump with a retention efficiency greater than 10 4 was developed for the ion temperature Thompson scattering experiment; and (3) a new diagnostic technique was developed that makes use of the Faraday rotation of a modulated submillimeter laser beam to determine plasma current profile. Measurements of the asymmetric distortion of the H/sub α/ (6563 A) spectral line profile show that the effective toroidal drift velocity, dv/sub two vertical bars i/dT/sub i/, may be used as an indicator of plasma quality and as a complement to other ion temperature diagnostics

  18. [Fusion research/tokamak]. Final report, 1 May 1988 - 30 April 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Fusion Research Center Program are: (1) to advance /the transport studies of tokamaks, including the development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the text-upgrade tokamak. Work is described on five basic categories: (1) magnetic fusion energy database; (2) computational support and numerical modeling; (3) support for TEXT-upgrade and diagnostics; (4) transport studies; and (5) Alfven waves

  19. Investigations of image fusion

    Science.gov (United States)

    Zhang, Zhong

    1999-12-01

    The objective of image fusion is to combine information from multiple images of the same scene. The result of image fusion is a single image which is more suitable for the purpose of human visual perception or further image processing tasks. In this thesis, a region-based fusion algorithm using the wavelet transform is proposed. The identification of important features in each image, such as edges and regions of interest, are used to guide the fusion process. The idea of multiscale grouping is also introduced and a generic image fusion framework based on multiscale decomposition is studied. The framework includes all of the existing multiscale-decomposition- based fusion approaches we found in the literature which did not assume a statistical model for the source images. Comparisons indicate that our framework includes some new approaches which outperform the existing approaches for the cases we consider. Registration must precede our fusion algorithms. So we proposed a hybrid scheme which uses both feature-based and intensity-based methods. The idea of robust estimation of optical flow from time- varying images is employed with a coarse-to-fine multi- resolution approach and feature-based registration to overcome some of the limitations of the intensity-based schemes. Experiments show that this approach is robust and efficient. Assessing image fusion performance in a real application is a complicated issue. In this dissertation, a mixture probability density function model is used in conjunction with the Expectation- Maximization algorithm to model histograms of edge intensity. Some new techniques are proposed for estimating the quality of a noisy image of a natural scene. Such quality measures can be used to guide the fusion. Finally, we study fusion of images obtained from several copies of a new type of camera developed for video surveillance. Our techniques increase the capability and reliability of the surveillance system and provide an easy way to obtain 3-D

  20. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  1. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  2. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Science.gov (United States)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  3. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    International Nuclear Information System (INIS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-01-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed

  4. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N. [Institution Project center ITER, Moscow (Russian Federation)

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  5. US fusion community discussion on fusion strategies

    International Nuclear Information System (INIS)

    Marton, W.A.

    1998-01-01

    On April 26 - May 1, 1998, a US Fusion Community Forum for Major Next-Step Experiments was held at Madison, Wisconsin, USA. Both the Single Integrated Step strategy and the Multiple Machine strategy have substantial support from the about 180 scientists and engineers who participated

  6. Shiva optical diagnostics

    International Nuclear Information System (INIS)

    Rienecker, F.; Kobierecki, M.; Ozarski, R.; Seppala, L.; Manes, K.; Merritt, B.

    1977-01-01

    In the laser fusion program at Lawrence Livermore Laboratory, no target experiment is complete unless it is complemented by careful measurements of the laser pulse that irradiates the target. For this purpose, an incident beam diagnostics (IBD) package has been designed for the Shiva laser. The package will furnish data on items such as the total energy and the focusable energy out of the laser chain, and the spatial and temporal energy and power distribution at the target plane. Understanding laser-plasma interactions requires knowledge of the amount of 1.06 μm light energy that is scattered in various directions from the target. The light energy that is scattered toward the beam focusing lens is analyzed by a reflected beam diagnostic (RBD) package containing a calorimeter, a multiple image camera and a TV camera. This paper describes the detailed design and operation of the IBD and RBD packages as tools to align spatial filters and targets, as well as to diagnose the laser beams and target reflectivity

  7. Reflectometry diagnostics on TCV

    Science.gov (United States)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  8. First fusion proton measurements in TEXTOR plasmas using

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Mlynář, Jan; Van Wassenhove, G.; Hult, M.; González de Orduña, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-01-01

    Roč. 83, č. 10 (2012), 10D318 ISSN 0034-6748. [Topical Conference High-Temperature Plasma Diagnostics/19./. Monterey, 06.05.2012-10.05.2012] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * fusion * activation * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.602, year: 2012 http://rsi.aip.org/resource/1/rsinak/v83/i10/p10D318_s1

  9. Experimental laser fusion devices and related vacuum problems

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Campbell, D.E.; Glaros, S.S.; Hurley, C.A.; Kobierecki, M.W.; McFann, C.B. Jr.; Monjes, J.A.; Patton, H.G.; Rienecker, F. Jr.

    1977-01-01

    Laser fusion experiments require hard vacuum in the laser-beam spatial filters, target chambers and for target diagnostics instruments. Laser focusing lenses and windows, and target alignment windows must hold vacuum without optical distortion, and must be protected from target debris. The vacuum must be sufficient to prevent residual gas breakdown in focused laser light, avoid arcing at high voltage terminals, minimize contamination and melting of cryogenic targets, and prevent adsorption of the target's microfusion radiation before it reaches the diagnostics instruments

  10. Diagnostic dilemma

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Dobrovolny, Robert; Nazarenko, Irina

    2011-01-01

    Fabry disease, an X-linked lysosomal storage disorder, results from the deficient activity of a-galactosidase A (a-Gal A). In affected males, the clinical diagnosis is confirmed by the markedly decreased a-Gal A activity. However, in female heterozygotes, the a-Gal A activity can range from low t...... on enzyme replacement therapy. Thus, gene dosage analyses can detect large deletions (>50bp) in suspect heterozygotes for X-linked and autosomal dominant diseases that are "sequencing cryptic," resolving molecular diagnostic dilemmas....... to normal due to random X-chromosomal inactivation, and diagnostic confirmation requires identification of the family's a-Gal A gene mutation. In a young female who had occasional acroparesthesias, corneal opacities, and 15 to 50% of the lower limit of normal leukocyte a-Gal A activity, a-Gal A sequencing...... in two expert laboratories did not identify a confirmatory mutation, presenting a diagnostic dilemma. A renal biopsy proved diagnostic and renewed efforts to detect an a-Gal A mutation. Subsequent gene dosage analyses identified a large a-Gal A deletion confirming her heterozygosity, and she was started...

  11. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  12. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  13. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  14. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  15. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  16. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  17. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  18. Japanese fusion research

    International Nuclear Information System (INIS)

    Uchida, T.

    1987-01-01

    The Japan experience during thirty years in nuclear fusion research is reported, after attending the 1st Geneva Conference in 1955, Osaka University, immedeately began linear pinch study using capacitor bank discharge. Subsequently to his trial several groups were organized to ward fusion R and D at universities in Tokyo, Nagoya, Kyoto, Sendai and son on. Based upon the recommendation of Japan Science Council, Institut of Plasma Physics (IPP) was established at Nagoya University in 1961 When the 1st International Conference on Plasma Physics and Controlled Nuclear Fusion Research was held in Saltzburg. The gloomy Bohm barrier had stood in front of many of experiments at that time. (author) [pt

  19. MAST magnetic diagnostics

    Science.gov (United States)

    Edlington, T.; Martin, R.; Pinfold, T.

    2001-01-01

    The mega-ampere spherical tokamak (MAST) experiment is a new, large, low aspect ratio device (R=0.7-0.8 m, a=0.5-0.65 m, maximum BT˜0.63 T at R=0.7 m) operating its first experimental physics campaign. Designed to study a wide variety of plasma shapes with up to 2 MA of plasma current with an aspect ratio down to 1.3, the poloidal field (PF) coils used for plasma formation, equilibrium and shaping are inside the main vacuum vessel. For plasma control and to investigate a wide range of plasma phenomena, an extensive set of magnetic diagnostics have been installed inside the vacuum vessel. More than 600 vacuum compatible, bakeable diagnostic coils are configured in a number of discrete arrays close to the plasma edge with about half the coils installed behind the graphite armour tiles covering the center column. The coil arrays measure the toroidal and poloidal variation in the equilibrium field and its high frequency fluctuating components. Internal coils also measure currents in the PF coils, plasma current, stored energy and induced currents in the mechanical support structures of the coils and graphite armour tiles. The latter measurements are particularly important when halo currents are induced following a plasma termination, for example, when the plasma becomes vertically unstable. The article describes the MAST magnetic diagnostic coil set and their calibration. The way in which coil signals are used to control the plasma equilibrium is described and data from the first MAST experimental campaign presented. These coil data are used as input to the code EFIT [L. Lao et al., Nucl. Fusion 25, 1611 (1985)], for measurement of halo currents in the vacuum vessel structure and for measurements of the structure of magnetic field fluctuations near the plasma edge.

  20. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  1. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  2. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  3. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  4. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  5. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  6. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  7. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  8. Why and how of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1977-01-01

    The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly

  9. Intensified CCD for ultrafast diagnostics

    International Nuclear Information System (INIS)

    Cheng, J.; Tripp, G.; Coleman, L.

    1978-01-01

    Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail

  10. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  11. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  12. Technology spinoffs from the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1984-02-01

    This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage

  13. Precision operation of the Nova laser for fusion experiments

    International Nuclear Information System (INIS)

    Caird, J.A.; Ehrlich, R.B.; Hermes, G.L.; Landen, O.L.; Laumann, C.W.; Lerche, R.A.; Miller, J.L.; Murray, J.E.; Nielsen, N.D.; Powell, H.T.; Rushford, M.C.; Saunders, R.L.; Thompson, C.E.; VanArsdall, P.J.; Vann, C.S.; Weiland, T.L.

    1994-01-01

    The operation of a Neodymium glass laser of a special design for fusion experiments is improved by a better pulse synchronization, the gain stabilization, and the laser diagnostics. We used sensor upgrading and antifriction coating of focusing lenses. The pointing accuracy of the Nova laser meets now our goal for precision operation. (AIP) copyright 1994 American Institute of Physics

  14. Achievements and challenges in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1978-01-01

    Recent developments in particle beam fusion research, as well as critical issues which remain to be solved are summarized. Until now primary emphasis has been on driver development, but as sources have increased in energy output and intensity and diagnostic techniques have improved, implosion studies have been initiated

  15. High temperature gases: progress towards nuclear fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Savic, P.

    1975-11-01

    The basics of producing gaseous plasmas are outlined. The use of shock waves for heating is reviewed along with diagnostic techniques to measure various plasma properties. The use of hot plasmas in the CTR program is mentioned along with some basic fusion-directed studies. (MOW)

  16. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  17. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  18. International aspects of fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1979-12-01

    International collaborative efforts in magnetic confinement fusion in which the USA is involved are reviewed. These efforts are carried under the auspices of international agencies and through bilateral agreements

  19. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  20. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-04-01

    KfK participates to the Fusion Technology Programme of the European Community. Most of the work in progress addresses the Next European Torus (NET) and the long term technology aspects as defined in the 82/86 programme. A minor part serves to preparation of future contributions and to design studies on fusion concepts in a wider perspective. The Fusion Technology Programme of Euratom covers mainly aspects of nuclear engineering. Plasma engineering, heating, refueling and vacuum technology are at present part of the Physics Programme. In view of NET, integration of the different areas of work will be mandatory. KfK is therefore prepared to address technical aspects beyond the actual scope of the physics experiments. The technology tasks are reported project wise under title and code of the Euratom programme. Most of the projects described here are shared with other European fusion laboratories as indicated in the table annexed to this report. (orig./GG)

  1. Fusion-breeder program

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The various approaches to a combined fusion-fission reactor for the purpose of breeding 239 Pu and 233 U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed

  2. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  3. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  4. Fusion Canada issue 11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-06-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on operation at Tokamak de Varennes, CRITIC irradiations at AECL, Tritium systems at TFTR, physics contribution at ITER. 4 figs.

  5. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  6. Fusion technology development

    International Nuclear Information System (INIS)

    1979-08-01

    This report includes information on the following chapters: (1) conceptual design studies, (2) magnetics, (3) plasma heating, fueling, and exhaust, (4) materials for fusion reactors, (5) alternate applications, and (6) environment and safety

  7. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  8. Fusion cost normalization

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.

    1978-01-01

    The categorization and accounting methods described in this paper provide a common format that can be used to assess the economic character of magnetically confined fusion reactor design concepts. The format was developed with assistance from the fusion economics community, thus ensuring that the methods meet with the approval of potential users. The format will aid designers in the preparation of design concept cost estimates and also provide policy makers with a tool to assist in appraising which design concepts may be economically promising. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising concepts, thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  9. Complimentary Advanced Fusion Exploration

    National Research Council Canada - National Science Library

    Alford, Mark G; Jones, Eric C; Bubalo, Adnan; Neumann, Melissa; Greer, Michael J

    2005-01-01

    .... The focus areas were in the following regimes: multi-tensor homographic computer vision image fusion, out-of-sequence measurement and track data handling, Nash bargaining approaches to sensor management, pursuit-evasion game theoretic modeling...

  10. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  11. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  12. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  13. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Sakanaka, P.H.

    1984-01-01

    A simplified review on the status of the controlled thermonuclear fusion research aiming to present the motivation, objective, necessary conditions and adopted methods to reach the objective. (M.C.K.) [pt

  14. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  15. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  16. Plasma diagnostics surface analysis and interactions

    CERN Document Server

    Auciello, Orlando

    2013-01-01

    Plasmas and their interaction with materials have become subjects of major interest because of their importance in modern forefront technologies such as microelectronics, fusion energy, and space. Plasmas are used in microelectronics to process semiconductors (etching of patterns for microcircuits, plasma-induced deposition of thin films, etc.); plasmas produce deleterious erosion effects on surfaces of materials used for fusion devices and spaceships exposed to the low earth environment.Diagnostics of plasmas and materials exposed to them are fundamental to the understanding of the physical a

  17. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  18. The fusion dilemma

    International Nuclear Information System (INIS)

    Carruthers, R.

    1981-01-01

    The present position in fusion research is reviewed and discussed with relation to the requirements of an economic reactor. Meeting these requirements calls for a mission-oriented project of interdisciplinary character whose timely evolution from one with a research orientation, is a challenging management problem. The cost-effectiveness of future expenditure on fusion research is dependent upon acknowledging this challenge and realistically facing the difficult tasks which it presents. (U.K.)

  19. Possible fusion reactor

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1976-05-01

    A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor

  20. Fusion power plant economics

    International Nuclear Information System (INIS)

    Miller, R.L.

    1996-01-01

    The rationale, methodology, and updated comparative results of cost projections for magnetic-fusion-energy central-station electric power plants are considered. Changing market and regulatory conditions, particularly in the U.S., prompt fundamental reconsideration of what constitutes a competitive future energy-source technology and has implications for the direction and emphasis of appropriate near-term research and development programs, for fusion and other advanced generation systems. 36 refs., 2 figs., 2 tabs

  1. Sonoluminescence and bubble fusion

    OpenAIRE

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  2. Fusion reactor materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The following topics are briefly discussed: (1) surface blistering studies on fusion reactor materials, (2) TFTR design support activities, (3) analysis of samples bombarded in-situ in PLT, (4) chemical sputtering effects, (5) modeling of surface behavior, (6) ion migration in glow discharge tube cathodes, (7) alloy development for irradiation performance, (8) dosimetry and damage analysis, and (9) development of tritium migration in fusion devices and reactors

  3. Bringing together fusion research

    International Nuclear Information System (INIS)

    Leiser, M.

    1982-01-01

    The increasing involvement of the IAEA in fusion, together with the growing efforts devoted to this area, are described. The author puts forward the idea that one of the most important aspects of this involvement is in providing a world-wide forum for scientists. The functions of the IFRC (International Fusion Research Council) as an advisory group are outlined, and the role played by IFRC in the definition and objectives of INTOR (International Tokamak Reactor) are briefly described

  4. Fusion Canada issue 13

    International Nuclear Information System (INIS)

    1991-01-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Canada's plans to participate in the Engineering Design Activities (EDA), bilateral meetings with Canada and the U.S., committee meeting with Canada-Europe, an update at Tokamak de Varennes on Plasma Biasing experiments and boronized graphite tests, fusion materials research at the University of Toronto using a dual beam accelerator and a review of the CFFTP and the CCFM. 2 figs

  5. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  6. Fusion Guidance in Endovascular Peripheral Artery Interventions: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl; Zwam, Willem H. van, E-mail: w.van.zwam@mumc.nl [Maastricht University Medical Center, Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl [Maastricht University Medical Center, Department of Surgery (Netherlands); Nelemans, Patricia J., E-mail: patty.nelemans@maastrichtuniversity.nl [Maastricht University Medical Centre, Department of Epidemiology (Netherlands); Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Das, Marco, E-mail: m.das@mumc.nl [Maastricht University Medical Center, Department of Radiology (Netherlands)

    2015-04-15

    PurposeThis study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA).MethodsFusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusion road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography.ResultsAverage time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation).ConclusionsFluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety.

  7. Fusion Guidance in Endovascular Peripheral Artery Interventions: A Feasibility Study

    International Nuclear Information System (INIS)

    Sailer, Anna M.; Haan, Michiel W. de; Graaf, Rick de; Zwam, Willem H. van; Schurink, Geert Willem H.; Nelemans, Patricia J.; Wildberger, Joachim E.; Das, Marco

    2015-01-01

    PurposeThis study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA).MethodsFusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusion road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography.ResultsAverage time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation).ConclusionsFluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety

  8. Fusion guidance in endovascular peripheral artery interventions: a feasibility study.

    Science.gov (United States)

    Sailer, Anna M; de Haan, Michiel W; de Graaf, Rick; van Zwam, Willem H; Schurink, Geert Willem H; Nelemans, Patricia J; Wildberger, Joachim E; Das, Marco

    2015-04-01

    This study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA). Fusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusion road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography. Average time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation). Fluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety.

  9. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  10. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  11. Perspectives of fusion power

    International Nuclear Information System (INIS)

    Jensen, V.O.

    1984-01-01

    New and practically inexhaustible sources of energy must be developed for the period when oil, coal and uranium will become scarce and expensive. Nuclear fusion holds great promise as one of these practically inexhaustible energy sources. Based on the deuteriumtritium reaction with tritium obtained from naturally occuring lithium, which is also widely available in Europe, the accessible energy resources in the world are 3.10 12 to 3.10 16 toe; based on the deuterium-deuterium reaction, the deuterium content of the oceans corresponds to 10 20 toe. It is presently envisaged that in order to establish fusion as a large-scale energy source, three major thresholds must be reached: - Scientific feasibility, - Technical feasibility, i.e. the proof that the basic technical problems of the fusion reactor can be solved. - Commercial feasibility, i.e. proof that fusion power reactors can be built on an industrial scale, can be operated reliably and produce usable energy at prices competitive with other energy sources. From the above it is clear that the route to commercial fusion will be long and costly and involve the solution of extremely difficult technical problems. In view of the many steps which have to be taken, it appears unlikely that commercial fusion power will be in general use within the next 50 years and by that time world-wide expenditure on research, development and demonstration may well have exceeded 100 Bio ECU. (author)

  12. IFMIF suitability for evaluation of fusion functional materials

    International Nuclear Information System (INIS)

    Casal, N.; Sordo, F.; Mota, F.; Jordanova, J.; Garcia, A.; Ibarra, A.; Vila, R.; Rapisarda, D.; Queral, V.; Perlado, M.

    2011-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusion materials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functional materials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor.

  13. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  14. Advanced fusion reactor

    International Nuclear Information System (INIS)

    Tomita, Yukihiro

    2003-01-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p- 6 Li and p- 11 B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D- 3 He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D- 3 He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of 3 He per a year. On the other hand, 1 million tons of 3 He is estimated to be in the moon. The 3 He of about 10 23 kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  15. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  16. Fusion Canada issue 29

    International Nuclear Information System (INIS)

    1995-10-01

    A short bulletin from the National Fusion Program highlighting in this issue Canada-Europe Accords: 5 year R and D collaboration for the International Thermonuclear Experimental Reactor (ITER) AECL is designated to arrange and implement the Memorandum of Understanding (MOU) and the ITER Engineering Design Activities (EDA) while EUROTAM is responsible for operating Europe's Fusion R and D programs plus MOU and EDA. The MOU includes tokamaks, plasma physics, fusion technology, fusion fuels and other approaches to fusion energy (as alternatives to tokamaks). STOR-M Tokamak was restarted at the University of Saskatchewan following upgrades to the plasma chamber to accommodate the Compact Toroid (CT) injector. The CT injector has a flexible attachment thus allowing for injection angle adjustments. Real-time video images of a single plasma discharge on TdeV showing that as the plasma density increases, in a linear ramp divertor, the plasma contact with the horizontal plate decreases while contact increases with the oblique plate. Damage-resistant diffractive optical elements (DOE) have been developed for Inertial Confinement Fusion (ICF) research by Gentac Inc. and the National Optics Institute, laser beam homogeniser and laser harmonic separator DOE can also be made using the same technology. Studies using TdeV indicate that a divertor will be able to pump helium from the tokamak with a detached-plasma divertor but helium extraction performance must first be improved, presently the deuterium:helium retention radio-indicates that in order to pump enough helium through a fusion reactor, too much deuterium-tritium fuel would be pumped out. 2 fig

  17. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  18. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  19. Fusion technology development annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    1997-03-01

    In FY96, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Design Studies (Section 2), Plasma Interactive Materials (Section 3), SiC/SiC Composite Material Development (Section 4), Magnetic Diagnostic Probes (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, the authors carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry

  20. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management

  1. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  2. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  3. Thyroid diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Scriba, P C; Boerner, W; Emrich, S; Gutekunst, R; Herrmann, J; Horn, K; Klett, M; Krueskemper, H L; Pfannenstiel, P; Pickardt, C R

    1985-03-01

    None of the in-vitro and in-vivo methods listed permits on unambiguous diagnosis when applied alone, owing to the fact that similar or even identical findings are obtained for various individual parameters in different thyroid diseases. Further, especially the in-vitro tests are also subject to extrathyroidal effects which may mask the typical findings. The limited and varying specificity and sensitivity of the tests applied, as well as the falsification of results caused by the patients' idiosyncracies and the methodology, make it necessary to interpret and evaluate the in-vivo and in-vitro findings only if the clinical situation (anamnesis and physical examination) is known. For maximum diagnostic quality of the tests, the initial probability of the assumed type of thyroid disease must be increased (formulation of the clinical problem). The concepts of exclusion diagnosis and identification must be distinguished as well as the diagnosis of functional disturbances on the one hand and of thyroid diseases on the other. Both of this requires a qualified, specific and detailed anamnesis and examination procedure, and the clinical examination remains the obligatory basis of clinical diagnostics. In case of inexplicable discrepancies between the clinical manifestations and the findings obtained with specific methods, or between the findings obtained with a specific method, the patient should be referred to an expert institution, or the expert institution should be consulted.

  4. Thyroid diagnostics

    International Nuclear Information System (INIS)

    Scriba, P.C.; Boerner, W.; Emrich, S.; Gutekunst, R.; Herrmann, J.; Horn, K.; Klett, M.; Krueskemper, H.L.; Pfannenstiel, P.; Pickardt, C.R.; Reiners, C.; Reinwein, D.; Schleusener, H.

    1985-01-01

    None of the in-vitro and in-vivo methods listed permits on unambiguous diagnosis when applied alone, owing to the fact that similar or even identical findings are obtained for various individual parameters in different thyroid diseases. Further, especially the in-vitro tests are also subject to extrathyroidal effects which may mask the typical findings. The limited and varying specificity and sensitivity of the tests applied, as well as the falsification of results caused by the patients' idiosyncracies and the methodology, make it necessary to interpret and evaluate the in-vivo and in-vitro findings only if the clinical situation (anamnesis and physical examination) is known. For maximum diagnostic quality of the tests, the initial probability of the assumed type of thyroid disease must be increased (formulation of the clinical problem). The concepts of exclusion diagnosis and identification must be distinguished as well as the diagnosis of functional disturbances on the one hand and of thyroid diseases on the other. Both of this requires a qualified, specific and detailed anamnesis and examination procedure, and the clinical examination remains the obligatory basis of clinical diagnostics. In case of inexplicable discrepancies between the clinical manifestations and the findings obtained with specific methods, or between the findings obtained with a specific method, the patient should be referred to an expert institution, or the expert institution should be consulted. (orig./MG) [de

  5. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  6. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  7. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  8. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1986-05-01

    In 1982, KfK joined the fusion programme of EURATOM as a further association introducing its experience in nuclear technology. KfK closely cooperates with IPP Garching, the two institutions forming a research unit aiming at planning and realization of future development steps of fusion. KfK has combined its forces in the Nuclear Fusion Project (PKF) with participation of several KfK departments to the project tasks. Previous work of KfK in magnetic fusion has addressed mainly superconducting magnets, plasma heating by cluster ions and studies on structural materials. At present, emphasis of our work has concentrated increasingly on the nuclear part, i.e. the first wall and blanket structures and the elements of the tritium extraction and purification system. Associated to this component development are studies of remote maintenance and safety. Most of the actual work addresses NET, the next step to a demonstration of fusion feasibility. NET is supposed to follow JET, the operating plasma physics experiment of Euratom, on the 1990's. Detailed progress of the work in the past half year is described in this report. (orig./GG)

  9. Challenges of nuclear fusion

    International Nuclear Information System (INIS)

    Kunkel, W.B.

    1987-01-01

    After 30 years of research and development in many countries, the magnetic confinement fusion experiments finally seem to be getting close to the original first goal: the point of ''scientific break-even''. Plans are being made for a generation of experiments and tests with actual controlled thermonuclear fusion conditions. Therefore engineers and material scientists are hard at work to develop the required technology. In this paper the principal elements of a generic fusion reactor are described briefly to introduce the reader to the nature of the problems at hand. The main portion of the presentation summarises the recent advances made in this field and discusses the major issues that still need to be addressed in regard to materials and technology for fusion power. Specific examples are the problems of the first wall and other components that come into direct contact with the plasma, where both lifetime and plasma contamination are matters of concern. Equally challenging are the demands on structural materials and on the magnetic-field coils, particularly in connection with the neutron-radiation environment of fusion reactors. Finally, the role of ceramics must be considered, both for insulators and for fuel breeding purposes. It is evident that we still have a formidable task before us, but at this point none of the problems seem to be insoluble. (author)

  10. The need for fusion

    International Nuclear Information System (INIS)

    Llewellyn Smith, Chris

    2005-01-01

    World energy use is predicted to double in the next 40 years. Currently 80% is provided by burning fossil fuels, but this is not sustainable indefinitely because (i) it is driving climate change, and (ii) fossil fuels will eventually be exhausted (starting with oil). The resulting potential energy crisis requires increased investment in energy research and development (which is currently very small on the scale of the $3 trillion p.a. energy market, and falling). The wide portfolio of energy work that should be supported must include fusion, which is one of the very few options that are capable in principle of supplying a large fraction of need. The case for fusion has been strengthened by recent advances in plasma physics and fusion technology that are reflected in the forthcoming European Fusion Power Plant Conceptual Study, which addresses safety and cost issues. The big questions are - How can we deliver fusion power as fast as possible? How long is it likely to take? I argue for a fast track programme, and describe a fast-track model developed at Culham, which is intended to stimulate debate on the way ahead and the resources that are needed

  11. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.

    2010-01-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  12. Material for fusion reactor

    International Nuclear Information System (INIS)

    Abhishek, Anuj; Ranjan, Prem

    2011-01-01

    To make nuclear fusion power a reality, the scientists are working restlessly to find the materials which can confine the power generated by the fusion of two atomic nuclei. A little success in this field has been achieved, though there are still miles to go. Fusion reaction is a special kind of reaction which must occur at very high density and temperature to develop extremely large amount of energy, which is very hard to control and confine within using the present techniques. As a whole it requires the physical condition that rarely exists on the earth to carry out in an efficient manner. As per the growing demand and present scenario of the world energy, scientists are working round the clock to make effective fusion reactions to real. In this paper the work presently going on is considered in this regard. The progress of the Joint European Torus 2010, ITER 2005, HiPER and minor works have been studied to make the paper more object oriented. A detailed study of the technological and material requirement has been discussed in the paper and a possible suggestion is provided to make a contribution in the field of building first ever nuclear fusion reactor

  13. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  14. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  15. Vacuum engineering for fusion research and fusion reactors

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1976-01-01

    The following topics are described: (1) surface pumping by cryogenic condensation, (2) operation of large condensing cryopumps, (3) pumping for large fusion experiments, and (4) vacuum technology for fusion reactors

  16. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  17. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  18. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  19. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  20. Laser for fusion energy

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1995-01-01

    Solid state lasers have proven to be very versatile tools for the study and demonstration of inertial confinement fusion principles. When lasers were first contemplated to be used for the compression of fusion fuel in the late 1950s, the laser output energy levels were nominally one joule and the power levels were 10 3 watts (pulse duration's of 10 -3 sec). During the last 25 years, lasers optimized for fusion research have been increased in power to typically 100,000 joules with power levels approaching 10 14 watts. As a result of experiments with such lasers at many locations, DT target performance has been shown to be consistent with high gain target output. However, the demonstration of ignition and gain requires laser energies of several megajoules. Laser technology improvements demonstrated over the past decade appear to make possible the construction of such multimegajoule lasers at affordable costs. (author)

  1. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  2. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  3. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  4. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  5. On impact fusion

    International Nuclear Information System (INIS)

    Winterberg, F.

    1997-01-01

    Impact fusion is a promising, but much less developed road towards inertial confinement fusion. It offers an excellent solution to the so-called stand-off problem for thermonuclear microexplosions but is confronted with the challenge to accelerate macroscopic particles to the needed high velocities of 10 2 -10 3 km/s. To reach these velocities, two ways have been studied in the past. The electric acceleration of a beam of microparticles, with the particles as small as large clusters, and the magnetic acceleration of gram-size ferromagnetic or superconducting projectiles. For the generation of an intense burst of soft X-rays used for the indirect drive, impact fusion may offer new promising possibilities

  6. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  7. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  8. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  9. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  10. Diagnostic accuracy of organ electrodermal diagnostics | Szopinski ...

    African Journals Online (AJOL)

    Objective. To estimate the diagnostic accuracy as well as the scope of utilisation of a new bio-electronic method of organ diagnostics. Design. Double-blind comparative study of the diagnostic results obtained by means of organ electrodermal diagnostics (OED) and clinical diagnoses, as a criterion standard. Setting.

  11. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  12. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  13. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  14. TFTR diagnostic control and data acquisition system

    International Nuclear Information System (INIS)

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-01-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development

  15. SNS Diagnostics

    International Nuclear Information System (INIS)

    Shea, T.J.; Cameron, P.; Doolittle, L.; Power, J.

    2000-01-01

    The Spallation Neutron Source (SNS) Project is a collaborative effort to build the next generation neutron science facility at Oak Ridge, TN. The facility will deliver a 2 MW proton beam to a liquid mercury target. Neutrons from this target will be moderated and sent to several state-of-the-art instruments. Six national laboratories are involved in SNS construction. Berkeley (LBNL) will build the front end that produces a 2.5 MeV, 52 mA H-beam. Los Alamos (LANL) is responsible for the 1 GeV linac with a superconducting section provided by Thomas Jefferson (JLab). Brookhaven (BNL) is building the transfer lines and accumulator ring. Oak Ridge (ORNL) and Argonne (ANL) have responsibility for the target and instruments. All activities are coordinated by the SNS project office at Oak Ridge. The high beam power, a desired availability of 95%, and an aggressive commissioning schedule lead to some interesting challenges in beam diagnostics

  16. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  17. Nuclear fusion: Pursuing the Soft [Symposium on fusion technology] option

    International Nuclear Information System (INIS)

    Kenward, M.

    1991-01-01

    Fusion research has come a long way since the fusion community held the first Symposium on fusion technology (Soft) in Britain 30 years ago. Some of the recent achievements of the Jet project are reported from this year's symposium, the 16th in the series, held in London at the beginning of September. (author)

  18. Fusion Energy Update

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1982-01-01

    Fusion Energy Update (CFU) provides monthly abstracting and indexing coverage of current scientific and technical reports, journal articles, conference papers and proceedings, books, patents, theses, and monographs for all sources on fusion energy. All information announced in CFU, plus additional backup information, is included in the energy information data base of the Department of Energy's Technical Information Center. The subject matter covered by CFU includes plasma physics, the physics and engineering of blankets, magnet coils and fields, power supplies and circuitry, cooling systems, fuel systems, radiation hazards, power conversion systems, inertial confinement systems, and component development and testing

  19. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  20. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  1. Pulsed power for fusion

    International Nuclear Information System (INIS)

    Martin, T.H.

    1976-01-01

    A review which traces the development of high power pulsed accelerators from the original inception at the Atomic Weapons Research Establishment, Aldermaston, England, for Bremsstrahlung output, through the low impedance accelerators, to the double-sided accelerators for fusion will be given. Proto II is presently being assembled at Sandia and preliminary testing on the Marx has been completed. Examples of various techniques will be shown from Sandia accelerators. Requirements for accelerators capable of achieving fusion levels will be developed and problem areas outlined. The diode insulator flashover problem presently limits the maximum current available from the accelerators

  2. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  3. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  4. Thermonuclear fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B

    1977-01-01

    The present state and future possibilities of controlled-nuclear-fusion research are reviewed, including basic concepts and problems, as well as various approaches based on magnetic- and nonmagnetic-confinement schemes. Considerable progress has so far been made in both plasma physics and fusion-reactor technology, and a closer relationship has been established between theory and experiments. Still, none of the present approaches will, for certain, lead to the final solution of a full-scale reactor. Intensified work along broad lines, with emphasis also on basic research and new ideas, is necessary for future success.

  5. The European Fusion Programme

    International Nuclear Information System (INIS)

    Palumbo, D.

    1983-01-01

    The European Fusion Programme is coordinated by Euratom and represents a long term cooperative project of Member States of the European Communities in the field of fusion, designed to lead to the joint construction of prototypes. The main lines of the programme proposed for 1982 to 1986 are: (1) the continuation of a strong effort on tokamaks with emphasis on JET construction, operation and upgrading, (2) conceptual design of NET and development of the related technology, and (3) further work on two alternative magnetic confinement systems. The current status and future plans for this programme are discussed in the paper. (author)

  6. Atomic data for fusion

    International Nuclear Information System (INIS)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research

  7. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  8. Advanced fusion concepts program

    International Nuclear Information System (INIS)

    Dove, W.F.

    1978-01-01

    While the prospects for the eventual development of a tokamak-based fusion reactor appear promising at the present time, the Department of Energy maintains a vigorous program in alternate magnetic fusion concepts. Several of the concepts presently supported include the toroidal reversed field pinch, Tormac, Elmo Bumpy Torus, and various linear options. Recent technical accomplishments and program evaluations indicate that the possibility now exists for undertaking the next development stage, a proof-of-principle experiment, for a few of the most promising alternate concepts

  9. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  10. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-05-01

    In the current Fusion Technology Programme of the European Community the KfK association is working at present on 16 R and D contracts. Most of the work is strongly oriented towards the Next European Torus. Direct support to NET is given by three KfK delegates being member of the NET study group. In addition to the R and D contracts the association is working on 11 NET study contracts. Though KfK contributes to all areas defined in fusion technology, the main emphasis is put on superconducting magnet and breeding blanket development. Other important fields are tritium technology, materials research, and remote handling. (orig./GG)

  11. Cold fusion in perspective

    International Nuclear Information System (INIS)

    Sanford, L.

    1989-01-01

    Since early April a great deal of excitement has been created over the Fleischmann/Pons cold fusion experiment, which if it performs as advertised, could turn out to be mankind's best hope of heading off the energy crisis scheduled for early in the next century. Dozens of groups around the world are now attempting to duplicate the experiment to see if Fleischmann and Pons' discovery is an experimental mistake, an unknown electrochemical effect or a new kind of fusion reaction. This article puts the experiment into the perspective of today and looks at how it might affect the energy scene tomorrow if it should turn out to be commercially exploitable. (author)

  12. Edge plasma diagnostics in the compact helical system (CHS) device using fast neutral lithium beam

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Mario

    1992-05-01

    This paper reports the research activities of the author on using fast neutral lithium beam edge plasma diagnostic, at the Japanese National Institute for Fusion Science compact helical system (CHS). (author). 20 figs.

  13. Fault-tolerant and Diagnostic Methods for Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2003-01-01

    to diagnose faults and autonomously provide valid navigation data, disregarding any faulty sensor data and use sensor fusion to obtain a best estimate for users. This paper discusses how diagnostic and fault-tolerant methods are applicable in marine systems. An example chosen is sensor fusion for navigation......Precise and reliable navigation is crucial, and for reasons of safety, essential navigation instruments are often duplicated. Hardware redundancy is mostly used to manually switch between instruments should faults occur. In contrast, diagnostic methods are available that can use analytic redundancy...

  14. Multisensor data fusion algorithm development

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  15. Atomic physics issues in fusion

    International Nuclear Information System (INIS)

    Post, D.E.

    1982-01-01

    Atomic physics issues have played a large role in controlled fusion research. A general introduction to the present role of atomic processes in both inertial and magnetic controlled fusion work is presented. (Auth.)

  16. Bringing fusion electric power closer

    International Nuclear Information System (INIS)

    Kintner, E.

    1977-01-01

    A review of the controlled fusion research program is given. The tokamak research program is described. Beam injection heating, control systems, and the safety of fusion reactors are topics that are also discussed

  17. Fusion technology status and requirements

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1982-01-01

    This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined

  18. The quest for fusion energy

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1997-10-01

    A brief history of the magnetic fusion program from the point of view of a stellarator enthusiast who worked at a major tokamak laboratory. The reason that success in the magnetic fusion energy program is essential is presented. (author)

  19. Prospect for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1994-01-01

    This paper presents recent inertial fusion experiments at Osaka. The inertial fusion energy reactor used for these experiments was designed according to some principles based on environmental, social and safety considerations. (TEC). 1 fig., 1 ref

  20. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations