WorldWideScience

Sample records for diagnostic radiology systems

  1. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    Science.gov (United States)

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  2. Cognitive and system factors contributing to diagnostic errors in radiology.

    Science.gov (United States)

    Lee, Cindy S; Nagy, Paul G; Weaver, Sallie J; Newman-Toker, David E

    2013-09-01

    In this article, we describe some of the cognitive and system-based sources of detection and interpretation errors in diagnostic radiology and discuss potential approaches to help reduce misdiagnoses. Every radiologist worries about missing a diagnosis or giving a false-positive reading. The retrospective error rate among radiologic examinations is approximately 30%, with real-time errors in daily radiology practice averaging 3-5%. Nearly 75% of all medical malpractice claims against radiologists are related to diagnostic errors. As medical reimbursement trends downward, radiologists attempt to compensate by undertaking additional responsibilities to increase productivity. The increased workload, rising quality expectations, cognitive biases, and poor system factors all contribute to diagnostic errors in radiology. Diagnostic errors are underrecognized and underappreciated in radiology practice. This is due to the inability to obtain reliable national estimates of the impact, the difficulty in evaluating effectiveness of potential interventions, and the poor response to systemwide solutions. Most of our clinical work is executed through type 1 processes to minimize cost, anxiety, and delay; however, type 1 processes are also vulnerable to errors. Instead of trying to completely eliminate cognitive shortcuts that serve us well most of the time, becoming aware of common biases and using metacognitive strategies to mitigate the effects have the potential to create sustainable improvement in diagnostic errors.

  3. Diagnostic and interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, Thomas J. [Klinikum der Johann Wolfgang Goethe-Universitaet, Frankfurt am Main (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Reith, Wolfgang [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Diagnostische und Interventionelle Neuroradiologie; Rummeny, Ernst J. (ed.) [Technische Univ. Muenchen Klinikum rechts der Isar, Muenchen (Germany). Inst. fuer Radiologie

    2016-08-01

    This exceptional book covers all aspects of diagnostic and interventional radiology within one volume, at a level appropriate for the specialist. From the basics through diagnosis to intervention: the reader will find a complete overview of all areas of radiology. The clear, uniform structure, with chapters organized according to organ system, facilitates the rapid retrieval of information. Features include: Presentation of the normal radiological anatomy Classification of the different imaging procedures according to their diagnostic relevance Imaging diagnosis with many reference images Precise description of the interventional options The inclusion of many instructive aids will be of particular value to novices in decision making: Important take home messages and summaries of key radiological findings smooth the path through the jungle of facts Numerous tables on differential diagnosis and typical findings in the most common diseases offer a rapid overview and orientation Diagnostic flow charts outline the sequence of diagnostic evaluation All standard procedures within the field of interventional radiology are presented in a clinically relevant and readily understandable way, with an abundance of illustrations. This is a textbook, atlas, and reference in one: with more than 2500 images for comparison with the reader's own findings. This comprehensive and totally up-to-date book provides a superb overview of everything that the radiology specialist of today needs to know.

  4. Radiological diagnostics in hyperparathyroidism

    International Nuclear Information System (INIS)

    Moedder, U.; Kuhn, F.P.; Gruetzner, G.

    1991-01-01

    The most important radiologically detectable effects of the primary and secondary hyperparathyroidism of the skeletal system and the periarticular soft tissue structures are presented. In the following sensitivity and specificity of radiological imaging - sonography, scintigraphy, computed tomography, magnetic resonance imaging, arteriography and selective venous sampling - in the preoperative diagnostic of the parathyroid adenomas are discussed. Therefore, radiological imaging can be omitted before primary surgery. It was only in secondary surgery that radiological process proved useful and a guide during surgical intervention. (orig.) [de

  5. Procedures in diagnostic radiology

    International Nuclear Information System (INIS)

    Doyle, T.; Hare, W.S.C.; Thomson, K.; Tess, B.

    1989-01-01

    This book outlines the various procedures necessary for the successful practice of diagnostic radiology. Topics covered are: general principles, imaging of the urinary and gastrointestinal tracts, vascular radiology, arthrography, and miscellaneous diagnostic radiologic procedures

  6. Quality control procedures of dental diagnostic radiology systems

    International Nuclear Information System (INIS)

    Andrade, Paula Serra Sasaki

    2007-01-01

    This work presents quality control reference procedures for dental diagnostic radiology systems, following the recommendations of the Publication 453 of the Brazilian Health Ministry (PF453), to be applied in dental clinics, in order to achieve an improvement in the radiological image qualities and the patient dose reduction. All tests were applied in an intraoral X rays system, following the methodology developed and the requirements of the PF 453. In order to verify the best quality of the image in relation to the smaller exposition time an object test was also developed in this work. The use of this object allowed the reduction of the exposition time of 0.5 seconds, the maximum value of the linear region of the characteristic curve, for 0.2 seconds. The tested X rays system showed a very good agreement with the applied procedures, detaching the reduction of the skin entrance dose using the film-holding devices. However, the size of the field increased and exceeded the maximum value of 6 cm recommended in the standard. The importance of the quality control in dental diagnostic radiology systems is essential due to the constant use of X radiation in dental clinics. The PF453 recommends the frequency of at least two years for the constancy tests. However, it is suggested that the professional, surgeon-dentist, should be responsible for the internal control of the image quality obtained from the X rays device. This can be done through monthly exposures of the object test developed in this work. (author)

  7. Pitfalls in diagnostic radiology

    International Nuclear Information System (INIS)

    Peh, Wilfred C.G.

    2015-01-01

    Only textbook to focus primarily on the topic of pitfalls in diagnostic radiology. Highlights the pitfalls in a comprehensive and systematic manner. Written by experts in different imaging modalities and subspecialties from reputable centers across the world. The practice of diagnostic radiology has become increasingly complex, with the use of numerous imaging modalities and division into many subspecialty areas. It is becoming ever more difficult for subspecialist radiologists, general radiologists, and residents to keep up with the advances that are occurring year on year, and this is particularly true for less familiar topics. Failure to appreciate imaging pitfalls often leads to diagnostic error and misinterpretation, and potential medicolegal problems. Diagnostic errors may be due to various factors such as inadequate imaging technique, imaging artifacts, failure to recognize normal structures or variants, lack of correlation with clinical and other imaging findings, and poor training or inexperience. Many, if not most, of these factors are potentially recognizable, preventable, or correctable. This textbook, written by experts from reputable centers across the world, systematically and comprehensively highlights the pitfalls that may occur in diagnostic radiology. Both pitfalls specific to different modalities and techniques and those specific to particular organ systems are described with the help of numerous high-quality illustrations. Recognition of these pitfalls is crucial in helping the practicing radiologist to achieve a more accurate diagnosis.

  8. Pitfalls in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Peh, Wilfred C.G. (ed.) [Khoo Teck Puat Hospital (Singapore). Dept. of Diagnostic Radiology

    2015-04-01

    Only textbook to focus primarily on the topic of pitfalls in diagnostic radiology. Highlights the pitfalls in a comprehensive and systematic manner. Written by experts in different imaging modalities and subspecialties from reputable centers across the world. The practice of diagnostic radiology has become increasingly complex, with the use of numerous imaging modalities and division into many subspecialty areas. It is becoming ever more difficult for subspecialist radiologists, general radiologists, and residents to keep up with the advances that are occurring year on year, and this is particularly true for less familiar topics. Failure to appreciate imaging pitfalls often leads to diagnostic error and misinterpretation, and potential medicolegal problems. Diagnostic errors may be due to various factors such as inadequate imaging technique, imaging artifacts, failure to recognize normal structures or variants, lack of correlation with clinical and other imaging findings, and poor training or inexperience. Many, if not most, of these factors are potentially recognizable, preventable, or correctable. This textbook, written by experts from reputable centers across the world, systematically and comprehensively highlights the pitfalls that may occur in diagnostic radiology. Both pitfalls specific to different modalities and techniques and those specific to particular organ systems are described with the help of numerous high-quality illustrations. Recognition of these pitfalls is crucial in helping the practicing radiologist to achieve a more accurate diagnosis.

  9. Diagnostic radiology 1987

    International Nuclear Information System (INIS)

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture

  10. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  11. Radiation protection of patients in diagnostic radiology: implementation of a management system optimization

    International Nuclear Information System (INIS)

    Corpas Rivera, L.; Devesa Pardo, F. J.; Gamez Jimenez, J. L.; Vallejo Carrascal, C.; Garcia de Diego, A. A.; Amador Vela-Hidalgo, J. J.

    2011-01-01

    The enforcement of quality in diagnostic radiology (Royal Decree 1976/1999 laying down the criteria for quality in diagnostic radiology and Royal Decree 815/2001 to justify the use of ionizing radiations for medical exposure, etc.) and recommendations and European regulations on the matter, is done by carrying out the optimization of the doses received, based on image quality in a continuous process of monitoring of such dose from the dose reference Values ??(VRD ) that the system has allowed to establish for each technique.

  12. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  13. Radiological protection and quality control for diagnostic radiology in China

    International Nuclear Information System (INIS)

    Baorong, Yue

    2008-01-01

    Full text: There are 43,000 diagnostic departments, nearly 70,000 X-ray diagnostic facilities, 7,000 CT, 250 million for the annual total numbers of X-ray examinations, 120,000 occupationally exposed workers in diagnostic radiology. 'Basic standards for protection against ionizing radiation and for the safety of radiation sources' is promulgated on October, 2002. This basic standard follows the BSS. 'Rule on the administration of radio-diagnosis and radiotherapy', as a order of the Ministry of Health No. 46, is promulgated by Minister of Health on January 24, 2006. It includes general provisions, requirements and practice, establishment and approval of radio-diagnosis and radiotherapy services, safeguards and quality assurance, and so on. There are a series of radiological protection standards and quality control standards in diagnostic radiology, including 'radiological protection standard for the examination in X-ray diagnosis', 'radiological health protection standards for X-ray examination of child-bearing age women and pregnant women', 'radiological protection standards for the children in X-ray diagnosis', 'standards for radiological protection in medical X-ray diagnosis', 'specification for radiological protection monitoring in medical X-ray diagnosis', 'guide for reasonable application of medical X-ray diagnosis', 'general aspects for quality assurance in medical X-ray image of diagnosis', 'specification of image quality control test for the medical X-ray diagnostic equipment', 'specification of image quality assurance test for X-ray equipment for computed tomography', 'specification for testing of quality control in computed radiography (CR)' and 'specification for testing of quality control in X-ray mammography'. With the X-ray diagnostic equipment, there are acceptant tests, status tests and routing tests in large hospitals. It is poor for routing test in middle and smaller hospitals. CT is used widely in diagnostic radiology, however most workers in CT

  14. Process management and controlling in diagnostic radiology

    International Nuclear Information System (INIS)

    Gocke, P.; Debatin, J.F.; Duerselen, L.F.J.

    2002-01-01

    Systematic process management and efficient quality control is rapidly gaining importance in our healthcare system. What does this mean for diagnostic radiology departments?To improve efficiency, quality and productivity the workflow within the department of diagnostic and interventional radiology at the University Hospital of Essen were restructured over the last two years. Furthermore, a controlling system was established. One of the pursued aims was to create a quality management system as a basis for the subsequent certification according to the ISO EN 9001:2000 norm.Central to the success of the workflow reorganisation was the training of selected members of the department's staff in process and quality management theory. Thereafter, a dedicated working group was created to prepare the reorganisation and the subsequent ISO certification with the support of a consulting partner. To assure a smooth implementation of the restructured workflow and create acceptance for the required ISO-9001 documentation, the entire staff was familiarized with the basic ideas of process- and quality-management in several training sessions.This manuscript summarizes the basic concepts of process and quality management as they were taught to our staff. A direct relationship towards diagnostic radiology is maintained throughout the text. (orig.) [de

  15. Radiological protection of the patient in the diagnostic X-ray

    International Nuclear Information System (INIS)

    Araujo, A.M.C. de

    1983-01-01

    Measures and procedures are given in relation to the radiological protection of the patient in diagnostic radiology. Technical and physical factors of the patient protection are discussed, as radiation beam properties, size of the irradiation field, shieldings, control of the scattered radiation that reaches the imaging record system, films, ecrans and radiographic film processing. General recommendations about the radiation protection of the patient in diagnostic radiology are given. (M.A.) [pt

  16. Spectrum of diagnostic errors in radiology.

    Science.gov (United States)

    Pinto, Antonio; Brunese, Luca

    2010-10-28

    Diagnostic errors are important in all branches of medicine because they are an indication of poor patient care. Since the early 1970s, physicians have been subjected to an increasing number of medical malpractice claims. Radiology is one of the specialties most liable to claims of medical negligence. Most often, a plaintiff's complaint against a radiologist will focus on a failure to diagnose. The etiology of radiological error is multi-factorial. Errors fall into recurrent patterns. Errors arise from poor technique, failures of perception, lack of knowledge and misjudgments. The work of diagnostic radiology consists of the complete detection of all abnormalities in an imaging examination and their accurate diagnosis. Every radiologist should understand the sources of error in diagnostic radiology as well as the elements of negligence that form the basis of malpractice litigation. Error traps need to be uncovered and highlighted, in order to prevent repetition of the same mistakes. This article focuses on the spectrum of diagnostic errors in radiology, including a classification of the errors, and stresses the malpractice issues in mammography, chest radiology and obstetric sonography. Missed fractures in emergency and communication issues between radiologists and physicians are also discussed.

  17. Central nervous system tumors: Radiologic pathologic correlation and diagnostic approach

    Directory of Open Access Journals (Sweden)

    Ishita Pant

    2015-01-01

    Full Text Available Objective: This study was conducted to formulate location-wise radiologic diagnostic algorithms and assess their concordance with the final histopathological diagnosis so as to evaluate their utility in a rural setting where only basic facilities are available. Materials and Methods: A retrospective analysis to assess the concordance of radiology (primarily MRI with final histopathology report was done. Based on the most common incidence of tumor location and basic radiology findings, diagnostic algorithms were prepared. Results: For supratentorial intraaxial parenchymal location concordance was seen in all high-grade astrocytomas, low- and high-grade oligodendrogliomas, metastatic tumors, primitive neuroectodermal tumors, high-grade ependymomas, neuronal and mixed neuro-glial tumors and tumors of hematopoietic system. Lowest concordance was seen in low-grade astrocytomas. In the supratentorial intraaxial ventricular location, agreement was observed in choroid plexus tumors, ependymomas, low-grade astrocytomas and meningiomas; in the supratentorial extraaxial location, except for the lack of concordance in the only case of metastatic tumor, concordance was observed in meningeal tumors, tumors of the sellar region, tumors of cranial and paraspinal nerves; the infratentorial intraaxial parenchymal location showed agreement in low- as well as high-grade astrocytomas, metastatic tumors, high-grade ependymoma, embryonal tumors and hematopoietic tumors; in the infratentorial intraaxial ventricular location, except for the lack of concordance in one case of low-grade astrocytoma and two cases of medulloblastomas, agreement was observed in low- and high-grade ependymoma; infratentorial extraaxial tumors showed complete agreement in all tumors of cranial and paraspinal nerves, meningiomas, and hematopoietic tumors. Conclusion: A location-based approach to central nervous system (CNS tumors is helpful in establishing an appropriate differential diagnosis.

  18. Diagnostic radiology in paediatric palliative care

    International Nuclear Information System (INIS)

    Patel, Preena; Koh, Michelle; Carr, Lucinda; McHugh, Kieran

    2014-01-01

    Palliative care is an expanding specialty within paediatrics, which has attracted little attention in the paediatric radiological literature. Paediatric patients under a palliative care team will have numerous radiological tests which we traditionally categorise under organ systems rather than under the umbrella of palliative medicine. The prevalence of children with life-limiting illness is significant. It has been estimated to be one per thousand, and this may be an underestimate. In this review, we will focus on our experience at one institution, where radiology has proven to be an invaluable partner to palliative care. We will discuss examples of conditions commonly referred to our palliative care team and delineate the crucial role of diagnostic radiology in determining treatment options. (orig.)

  19. Diagnostic radiology in paediatric palliative care

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Preena; Koh, Michelle; Carr, Lucinda; McHugh, Kieran [Great Ormond Street Hospital, Radiology Department, London (United Kingdom)

    2014-01-15

    Palliative care is an expanding specialty within paediatrics, which has attracted little attention in the paediatric radiological literature. Paediatric patients under a palliative care team will have numerous radiological tests which we traditionally categorise under organ systems rather than under the umbrella of palliative medicine. The prevalence of children with life-limiting illness is significant. It has been estimated to be one per thousand, and this may be an underestimate. In this review, we will focus on our experience at one institution, where radiology has proven to be an invaluable partner to palliative care. We will discuss examples of conditions commonly referred to our palliative care team and delineate the crucial role of diagnostic radiology in determining treatment options. (orig.)

  20. Recent trend of diagnostic radiology

    International Nuclear Information System (INIS)

    Kim, S.Y.; Kim, H.K.

    1979-01-01

    Present status and recent trend of diagnostic radiology have been reviewed. The interrelationships and Characteristics of various fields of radiology such as computed tomography, X-ray radiology, and nuclear medicine were discussed. The mevit of computed tomography and the promising use of short lived, accelerator produced radionuclides, and radiotherapy in nuclear medicine were emphasized. (author)

  1. UWGSP6: a diagnostic radiology workstation of the future

    Science.gov (United States)

    Milton, Stuart W.; Han, Sang; Choi, Hyung-Sik; Kim, Yongmin

    1993-06-01

    The Univ. of Washington's Image Computing Systems Lab. (ICSL) has been involved in research into the development of a series of PACS workstations since the middle 1980's. The most recent research, a joint UW-IBM project, attempted to create a diagnostic radiology workstation using an IBM RISC System 6000 (RS6000) computer workstation and the X-Window system. While the results are encouraging, there are inherent limitations in the workstation hardware which prevent it from providing an acceptable level of functionality for diagnostic radiology. Realizing the RS6000 workstation's limitations, a parallel effort was initiated to design a workstation, UWGSP6 (Univ. of Washington Graphics System Processor #6), that provides the required functionality. This paper documents the design of UWGSP6, which not only addresses the requirements for a diagnostic radiology workstation in terms of display resolution, response time, etc., but also includes the processing performance necessary to support key functions needed in the implementation of algorithms for computer-aided diagnosis. The paper includes a description of the workstation architecture, and specifically its image processing subsystem. Verification of the design through hardware simulation is then discussed, and finally, performance of selected algorithms based on detailed simulation is provided.

  2. Diagnostic radiology: I

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter describes the historic development of diagnostic equipment for radiology. The problems associated with fluoroscope design are detailed and the current uses of updated technology, particularly digitization, are considered. Numerous historical photographs are included. 13 refs

  3. 42 CFR 415.180 - Teaching setting requirements for the interpretation of diagnostic radiology and other diagnostic...

    Science.gov (United States)

    2010-10-01

    ... interpretation of diagnostic radiology and other diagnostic tests. 415.180 Section 415.180 Public Health CENTERS... for the interpretation of diagnostic radiology and other diagnostic tests. (a) General rule. Physician fee schedule payment is made for the interpretation of diagnostic radiology and other diagnostic tests...

  4. Establishing diagnostic reference levels in digital radiology

    International Nuclear Information System (INIS)

    Bana, Remy Wilson

    2016-04-01

    Medical application of radiation has gained wider study since diagnostic radiology plays a very important role in modern medicine. The need of the service seems to increase since the invention of digital radiology as a new technology that promises greater accuracy while minimizing patient dose. However, it is not exempted in the harmonization of doses delivered to the patient undergoing same radiologic examination in different institutions either regional or nationwide. The objective of this project was to review the establishment of Diagnostic Reference Levels (DRLs) in digital radiology at National level with the aim to reduce patient dose while maintaining appropriate image quality. A general discussion on digital radiology has been presented focusing on the optimization of patient dose as well as dosimetric quantities used for the establishment of DRLs. Recommendations have been provided for Rwanda to initiate steps to establish National Diagnostic Reference Levels for common procedures in digital radiology. (au)

  5. Diagnostic radiology of the osteo-articular system. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Bohndorf, Klaus; Woertler, Klaus; Imhof, Herwig

    2014-01-01

    The book on diagnostic radiology of the osteo-articular system includes the following chapters: (1) Acute trauma and chronic overstress: essentials; (2) Acute trauma and chronic overstress (according regions); (3) Infections of bones, bone joints and soft tissue; (4) Tumors and tumor-like lesions of bones, bone joints and soft tissue; (5) Bone marrow; (6) Skeleton necrosis; (7) Osteochondrosis; (8) Metabolic, hormone related and toxically induced osteopathy; (9) Constitutional skeleton and bone joint development disturbances; (1) Rheumatic diseases; (11) Different skeletal, bone joint and soft tissue diseases; (12) Interventional actions at the skeleton, soft tissue and bone joints; (13) Radiological imaging of skeleton and bone joints.

  6. Clay as Thermoluminescence Dosemeter in diagnostic Radiology ...

    African Journals Online (AJOL)

    This paper reports the investigation of the basic thermoluminescence properties of clay at x-rays in the diagnostic radiology range, including dose monitoring in abdominal radiography. Clay sourced from Calabar, Nigeria, was tested for thermoluminescence response after irradiation at diagnostic radiology doses, including ...

  7. Pediatric radiological diagnostics in suspected child abuse

    International Nuclear Information System (INIS)

    Erfurt, C.; Schmidt, U.; Hahn, G.; Roesner, D.

    2009-01-01

    Advanced and specialized radiological diagnostics are essential in the case of clinical suspicion of pediatric injuries to the head, thorax, abdomen, and extremities when there is no case history or when ''battered child syndrome'' is assumed on the basis of inadequate trauma. In particular, the aim of this sophisticated diagnostic procedure is the detection of lesions of the central nervous system (CNS) in order to initiate prompt medical treatment. If diagnostic imaging shows typical findings of child abuse, accurate documented evidence of the diagnostic results is required to prevent further endangerment of the child's welfare. (orig.) [de

  8. Diagnostic radiology on multiple injured patients: interdisciplinary management

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Pfeifer, K.J.; Kanz, K.G.; Mutschler, W.

    2001-01-01

    The presence of a radiologist within the admitting area of an emergency department and his capability as a member of the trauma team have a major impact on the role of diagnostic radiology in trauma care. The knowledge of clinical decision criteria, algorithms, and standards of patient care are essential for the acceptance within a trauma team. We present an interdisciplinary management concept of diagnostic radiology for trauma patients, which comprises basic diagnosis, organ diagnosis, radiological ABC, and algorithms of early clinical care. It is the result of a prospective study comprising over 2000 documented multiple injured patients. The radiologist on a trauma team should support trauma surgery and anesthesia in diagnostic and clinical work-up. The radiological ABC provides a structured approach for diagnostic imaging in all steps of the early clinical care of the multiple injured patient. Radiological ABC requires a reevaluation in cases of equivocal findings or difficulties in the clinical course. Direct communication of radiological findings with the trauma team enables quick clinical decisions. In addition, the radiologist can priority-oriented influence the therapy by using interventional procedures. The clinical radiologist is an active member of the interdisciplinary trauma team, not only providing diagnostic imaging but also participating in clinical decisions. (orig.) [de

  9. Rational use of diagnostic radiology

    International Nuclear Information System (INIS)

    Racoveanu, N.T.; Volodin, V.

    1992-01-01

    Radiologists in USA and UK have since early 1970 questioned the efficacy of various radiological investigations and produced substantial evidence that more rational approaches are necessary. WHO initiated, in 1977, a programme which has issued four technical reports giving practical recommendations on how to rationalise the use of radiological examinations. Three main directions are considered: (1) Abandonment of routine radiological examinations, as procedures with no clinical or epidemiologic significance and which represent a waste of resources and patient dose. (2) Patient selection for various radiological investigations based on clinical criteria (high, intermediate, low yield). Selected patients have an increased prevalence of the given disease and the predictive value of radiological investigation is much higher. (3) Use of diagnostic algorithms with higher cost/efficiency and risk/benefit ratios, improving the outcome of radiological examinations. (author)

  10. Diagnostic radiology in the nearest future

    International Nuclear Information System (INIS)

    Lindenbraten, L.D.

    1984-01-01

    Basic trends of diagnostic radiology (DR) development in the nearest future are formulated. Possibilities of perspective ways and means of DR studies are described. The prohlems of strategy, tactics, organization of diagnostic radiological service are considered. An attempt has been made to outline the professional image of a specialist in the DR of the future. It is shown that prediction of the DR future development is the planning stage of the present, the choice of a right way of development

  11. Radiological diagnostics of skeletal tumors

    International Nuclear Information System (INIS)

    Uhl, M.; Herget, G.W.

    2008-01-01

    The book contains contributions concerning the following topics: 1. introduction and fundamentals: WHO classification of bone tumors, imaging diagnostics and their function; localization, typical clinical and radiological criteria, TNM classification and status classification, invasive tumor diagnostics; 2. specific tumor diagnostics: chondrogenic bone tumors, osseous tumors, connective tissue bony tumors, osteoclastoma, osteomyelogenic bone tumors, vascular bone tumors, neurogenic bone tumors, chordoma; adamantinoma of the long tubular bone; tumor-like lesions, bony metastases, bone granulomas, differential diagnostics: tumor-like lesions

  12. Slovenian experience from diagnostic angiography to interventional radiology

    International Nuclear Information System (INIS)

    Pavcnik, Dusan

    2014-01-01

    The purpose of writing this article is to document the important events and people in the first 50 years of diagnostic angiography and interventional radiology in Slovenia. During this period not only did the name of the institutions and departments change, but also its governance. This depicted the important roles different people played at various times in the cardiovascular divisions inside and outside of the diagnostic and interventional radiology. Historical data show that Slovenian radiology has relatively immediately introduced the new methods of interventional radiology in clinical practice

  13. Problems of quality assurance and quality control in diagnostic radiology

    International Nuclear Information System (INIS)

    Angerstein, W.

    1986-01-01

    Topical problems of quality assurance and quality control in diagnostic radiology are discussed and possible solutions are shown. Complex units are differentiated with reference to physicians, technicians, organization of labour, methods of examination and indication. Quality control of radiologic imaging systems should involve three stages: (1) simple tests carried out by radiologic technicians, (2) measurements by service technicians, (3) testing of products by the manufacturer and independent governmental or health service test agencies. (author)

  14. Diagnostic errors in pediatric radiology

    International Nuclear Information System (INIS)

    Taylor, George A.; Voss, Stephan D.; Melvin, Patrice R.; Graham, Dionne A.

    2011-01-01

    Little information is known about the frequency, types and causes of diagnostic errors in imaging children. Our goals were to describe the patterns and potential etiologies of diagnostic error in our subspecialty. We reviewed 265 cases with clinically significant diagnostic errors identified during a 10-year period. Errors were defined as a diagnosis that was delayed, wrong or missed; they were classified as perceptual, cognitive, system-related or unavoidable; and they were evaluated by imaging modality and level of training of the physician involved. We identified 484 specific errors in the 265 cases reviewed (mean:1.8 errors/case). Most discrepancies involved staff (45.5%). Two hundred fifty-eight individual cognitive errors were identified in 151 cases (mean = 1.7 errors/case). Of these, 83 cases (55%) had additional perceptual or system-related errors. One hundred sixty-five perceptual errors were identified in 165 cases. Of these, 68 cases (41%) also had cognitive or system-related errors. Fifty-four system-related errors were identified in 46 cases (mean = 1.2 errors/case) of which all were multi-factorial. Seven cases were unavoidable. Our study defines a taxonomy of diagnostic errors in a large academic pediatric radiology practice and suggests that most are multi-factorial in etiology. Further study is needed to define effective strategies for improvement. (orig.)

  15. Dosimetry in Diagnostic Radiology for Paediatric Patients

    International Nuclear Information System (INIS)

    2013-01-01

    Concern about the radiation dose to children from diagnostic radiology examinations has recently been popularly expressed, particularly as related to computed tomography (CT) procedures. This involves the observation that children can receive doses far in excess of those delivered to adults, in part due to the digital nature of the image receptors that may give no warning to the operator of the dose to the patient. Concern for CT examinations should be extended to the broad range of paediatric diagnostic radiological procedures responsible for radiation doses in children, especially as factors, such as increased radiosensitivity and the longer life expectancy of children, increase the associated radiation risk. In all cases, owing to the added paediatric radiological examination factor of patient size and its associated impact on equipment selection, clinical examination protocol and dosimetric audit, the determination of paediatric dose requires a distinct approach from adult dosimetry associated with diagnostic radiological examinations. In response to this, there is a need to inform health professionals about standardized methodologies used to determine paediatric dose for all major modalities such as general radiography, fluoroscopy and CT. Methodologies for standardizing the conduct of dose audits and their use for the derivation and application of diagnostic reference levels for patient populations, that vary in size, are also required. In addition, a review is needed of the current knowledge on risks specific to non-adults from radiation, and also an analysis of the management of factors contributing to dose from paediatric radiological examinations. In 2007, the IAEA published a code of practice, Dosimetry in Diagnostic Radiology: An International Code of Practice, as Technical Reports Series No. 457 (TRS 457). TRS 457 recommends procedures for dosimetric measurement and calibration for the attainment of standardized dosimetry, and addresses requirements

  16. A management system of data for department of diagnostic radiology and patients using the personal computer

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Park, Tae Joon; Choi, Tae Haing; Lim, Se Hwan; Joon Yang Noh; Kim, Sung Jin

    1996-01-01

    With the use of personal computers generalized, departmental society leveled computerization is going on in some other departments. So we tried to develop a program having a simple user interface, various retrieval functions and, analytic and statistic process system to effectively help patient care suitable for works concerned with department of diagnostic radiology and works of department. This program deals with such target works as department of diagnostic radiology and some works to need a lot of bookkeeping. It is deviced to operate with Windows (Microsoft, America), and central processing unit(486DX-2), memory unit(8 Mbyte). As a developmental tool, Foxpro 2.6 for windows R (Microsoft, America). This program can be easily accessed even by staffs poor at computer and it can make many books recording various check-ups and operations unnecessary, which were difficult to keep. Besides, it can keep data as a unified form, and so it provides patient care and other works with convenience and helps applying those stored data scientific research. The above result shows that works of department can be effectively controlled by analyzing or printing various check-up and operation done by department of diagnostic radiology

  17. Rational use of diagnostic radiology

    International Nuclear Information System (INIS)

    Racoveanu, N.T.; Volodin, V.

    1992-01-01

    The escalating number of radiodiagnostic investigations has, as a consequence, an increase in medical irradiation of patients and of cost of radiological services. Radiologists in USA and UK have since early 1970 questioned the efficacy of various radiological investigations and produced substantial evidence that more rational approaches are necessary. WHO initiated, in 1977, a programme in this direction which has issued four technical reports which give practical recommendations on how to rationalize the use of radiological examinations. Three main directions are considered: (1) Abandonment of routine radiological examinations, as procedures with no clinical or epidemiologic significance and which represent a waste of resources and patient dose. (2) Patient selection for various radiological investigations based on clinical criteria (high, intermediate, low yield). Selected patients have an increased prevalence of the given disease and the predictive value of radiological investigation is much higher. (3) Use of diagnostic algorithms with higher cost/efficiency and risk/benefit ratios, improving the outcome of radiological examinations

  18. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  19. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  20. Quality control in dental diagnostic radiology : anomalous in the use of radiological equipment

    International Nuclear Information System (INIS)

    Alcaraz, M.; Martinez-Beneyto, Y.; Jodar, S.; Velasco, E.; Garcia-Vera, M. C.

    2004-01-01

    7,176 official quality control reports on dental diagnostic radiology were studied, relating to dental clinics located in 37 Spanish provinces covering 16 different autonomous Regions. The reports were issued as a result of the entry into force of Royal Decree 2071/1995 on quality control in General Diagnostic Radiology facilities, this Royal Decree was replaced by R. D. 1976/1999. The reports were writen by the UTPR (Technical Unit of Radiological Protection) Agsigma S. A. L., a company approved by the Nuclear Safety Council, and they correspond with the official reports issued during 1996-2001. This meants that a 5-year period has been monitored in order to observe the impacts of the establlishment of this legislation on quality control in intraoral dental diagnostic radiology facilities. The results show that 72.79% of the reports checked in 2001 would comply with the European Union's official recommendation (70 kVp, 8 mA> 1.5 mm of Al and 20 cm collimator length). Significant alterations have detected in a third (30.59%) of the radiological equipment. (Author) 36 refs

  1. Quality Control in Diagnostic Radiology in the Netherlands (invited paper)

    International Nuclear Information System (INIS)

    Zoetelief, J.

    1998-01-01

    Application of the general principles of radiation protection to medical diagnostic radiology implies that each procedure using X rays or radionuclides is to be justified and optimised. Optimisation in diagnostic radiology implies that the radiation burden to the patient should be as low as possible, but compatible with the image quality necessary to obtain an adequate diagnosis or to guide treatment. Quality control of equipment is a prerequisite for achieving optimisation in diagnostic radiology. This was especially recognised for mammography as employed for breast cancer screening. Existing legislation in the Netherlands includes only a few criteria for equipment used in diagnostic radiology. In addition, the criteria are not all operational and measurement methods are lacking. Therefore, upon the initiative of the Dutch Ministry of Health, Welfare and Sports, the relevant professional societies, in collaboration with the former TNO Centre for Radiological Protection and Dosimetry, formulated eleven guidelines for quality control of equipment used in diagnostic radiology, including test procedures, test frequencies and limiting values. The implementation of quality control of equipment was included in the 1984 European Directive (84/466/Euratom) laying down basic measures for the radiation protection of persons undergoing medical examination or treatment. In the most recent European Directive on medical exposure (97/43/Euratom) the importance of quality control is stressed. In addition, the latter EC directive proposes the use of diagnostic reference levels for limiting the risks for patients undergoing diagnostic radiology. In the Netherlands preliminary reference levels for various procedures employed in diagnostic radiology are suggested. Finally, methods applied in the Netherlands for assessment of image quality are discussed. (author)

  2. Comprehensive Clinical Audits of Diagnostic Radiology Practices: A Tool for Quality Improvement. Quality Assurance Audit for Diagnostic Radiology Improvement and Learning (QUAADRIL)

    International Nuclear Information System (INIS)

    2011-01-01

    Interest in quality assurance processes and quality improvement in diagnostic radiology is being driven by a number of factors. These include the high cost and complexity of radiological equipment, acknowledgement of the possibility of increasing doses to patients, and the importance of radiological diagnosis to patient management within the health care environment. To acknowledge these interests, clinical audits have been introduced and, in Europe, mandated under a European Directive (Council Directive 97/47/EURATOM). Comprehensive clinical audits focus on clinical management and infrastructure, patient related and technical procedures, and education and research. This publication includes a structured set of standards appropriate for diagnostic radiology, an audit guide to their clinical review, and data collection sheets for the rapid production of reports in audit situations. It will be a useful guide for diagnostic radiology facilities wishing to improve their service to patients through timely diagnosis with minimal radiation dose.

  3. Comprehensive Clinical Audits of Diagnostic Radiology Practices: A Tool for Quality Improvement. Quality Assurance Audit for Diagnostic Radiology Improvement and Learning (QUAADRIL)

    International Nuclear Information System (INIS)

    2010-01-01

    Interest in quality assurance processes and quality improvement in diagnostic radiology is being driven by a number of factors. These include the high cost and complexity of radiological equipment, acknowledgement of the possibility of increasing doses to patients, and the importance of radiological diagnosis to patient management within the health care environment. To acknowledge these interests, clinical audits have been introduced and, in Europe, mandated under a European Directive (Council Directive 97/47/EURATOM). Comprehensive clinical audits focus on clinical management and infrastructure, patient related and technical procedures, and education and research. This publication includes a structured set of standards appropriate for diagnostic radiology, an audit guide to their clinical review, and data collection sheets for the rapid production of reports in audit situations. It will be a useful guide for diagnostic radiology facilities wishing to improve their service to patients through timely diagnosis with minimal radiation dose.

  4. Diagnostic radiology dosimetry: status and trends

    International Nuclear Information System (INIS)

    Rivera M, T.

    2015-10-01

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  5. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  6. Total quality management (TQM) in diagnostic radiology

    International Nuclear Information System (INIS)

    Rehani, M.M.

    1995-01-01

    The branch of quality assurance is now taking a new direction towards total quality management (TQM). Being of industrial origin, the concepts and terminologies in TQM are alien to medical and paramedical professionals. However, the impetus it has already made in other areas of health sciences makes medical physicists left out when diagnostic radiology does not encompass TQM. The purpose of this paper is to introduce the terms used in TQM and some aspects of its application to diagnostic radiology. (author). 12 refs., 1 tab

  7. Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology.

    Science.gov (United States)

    Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N

    2017-01-01

    We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.

  8. Changes in IEC standards related to diagnostic radiology

    International Nuclear Information System (INIS)

    Porubszky, T.; Barsai, J.

    2007-01-01

    Complete test of publication follows. Purposes. Technical Committee TC62 of International Electrotechnical Commission (IEC) deals with medical electrical equipment (i.e. medical devices using electricity). Standardization concerning diagnostic radiology equipment is task of its Sub-Committee SC62B. An outlook of its activities and present situation, and especially of radiation protection aspects, is given. Materials and methods. Third edition of basic safety standard for medical electrical equipment IEC 60601-1 was issued in 2005. Elaboration of new collateral and particular standards - applicable together with it - is in progress. These standards are generally at the same time also European - EN - and national standards. There is a great importance of radiation protection in diagnostic X-ray equipment. Collateral standard IEC 6060-1-3 about it was at first issued in 1994. Rapid development of imaging technology demands updating of requirements. SC62B in 2003 founded a maintenance team MT37 for preparation of the second edition of this standard. According to new safety philosophy of IEC all modality specific requirements are to be collected in 'safety and essential performance' particular standards. A new working group WG42 - founded in 2006 - elaborates a new particular standard IEC 60601-2-54 for radiographic and radioscopic equipment. Maintenance team MT32 deals with safety and performance standards for X-ray tube assemblies. The authors actively participate in these activities. Results and discussion. Present and future system of diagnostic radiology IEC standards and some interesting details are presented. Conclusions. International standards - although they are not 'obligatory' - are generally the basis of safety and performance certification of diagnostic radiology equipment and often also of their quality assurance.

  9. The year book of diagnostic radiology 1981

    International Nuclear Information System (INIS)

    Whitehouse, W.M.; Adams, D.F.; Bookstein, J.J.; Gabrielsen, T.O.; Holt, J.F.; Martel, W.; Silver, T.M.; Thornbury, J.R.

    1981-01-01

    The 1981 edition of the Year Book of Diagnostic Radiology fulfills the standards of excellence established by previous volumes in this series. The abstracts were carefully chosen, are concise, and are well illustrated. The book is recommended for all practicing radiologists: for the resident it is a good source from which to select articles to be carefully studied, and as review source before board examinations; for the subspecialist it provides a means to maintain contact with all areas of diagnostic radiology; and for the general radiologist, it is a convenient and reliable guide to new developments in the specialty

  10. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    1975-06-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. This pamphlet will provide physicians and radiologic technologists with information which will aid their appropriate use of gonad shielding

  11. Evaluation of the effectiveness of gonad protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Kawaura, Chiyo; Aoyama, Takahiko; Koyama, Shuji

    2004-01-01

    In the present study we describes the evaluation of the effectiveness of gonad protection in diagnostic radiology based on the measurement of organ and the effective doses with and without lead clothing to gonads. We devised in-phantom dosimetry system and measured organ and effective doses in x-ray radiography and CT examinations with the new dosimetry system. From the data of organ and the effective doses we assessed the effectiveness of radiological protection by the use of lead clothing to gonads. Although in chest radiography and chest CT examinations, the effectiveness of radiological protection was not found, in the case of hip joint radiography (AP), gonad doses decreased remarkably by using lead clothing. The effectiveness of radiological protection, i.e. the ratio of the decreased dose to the dose value without protection, in testis and ovary were found to be 91.4% and 68.0%, respectively. It was also found that gonad doses observed with and without gonad protection were extremely lower than those of threshold for sterility recommended by the International Commission on Radiological Protection 60 (ICRP Publ. 60). (author)

  12. [Evaluation of the effectiveness of gonad protection in diagnostic radiology].

    Science.gov (United States)

    Kawaura, Chiyo; Aoyama, Takahiko; Koyama, Shuji

    2004-01-01

    In the present study we describe the evaluation of the effectiveness of gonad protection in diagnostic radiology based on the measurement of organ and the effective doses with and without lead clothing to gonads. We devised in-phantom dosimetry system and measured organ and effective doses in x-ray radiography and CT examinations with the new dosimetry system. From the data of organ and the effective doses we assessed the effectiveness of radiological protection by the use of lead clothing to gonads. Although in chest radiography and chest CT examinations, the effectiveness of radiological protection was not found, in the case of hip joint radiography (AP), gonad doses decreased remarkably by using lead clothing. The effectiveness of radiological protection, i.e. the ratio of the decreased dose to the dose value without protection, in testis and ovary were found to be 91.4% and 68.0%, respectively. It was also found that gonad doses observed with and without gonad protection were extremely lower than those of threshold for sterility recommended by the International Commission on Radiological Protection 60 (ICRP Publ. 60).

  13. Spectrum of diagnostic errors in radiology

    OpenAIRE

    Pinto, Antonio; Brunese, Luca

    2010-01-01

    Diagnostic errors are important in all branches of medicine because they are an indication of poor patient care. Since the early 1970s, physicians have been subjected to an increasing number of medical malpractice claims. Radiology is one of the specialties most liable to claims of medical negligence. Most often, a plaintiff’s complaint against a radiologist will focus on a failure to diagnose. The etiology of radiological error is multi-factorial. Errors fall into recurrent patterns. Errors ...

  14. The Role of Radiology in the Diagnostic Process: Information, Communication, and Teamwork.

    Science.gov (United States)

    Larson, David B; Langlotz, Curtis P

    2017-11-01

    The diagnostic radiology process represents a partnership between clinical and radiology teams. As such, breakdowns in interpersonal interactions and communication can result in patient harm. We explore the role of radiology in the diagnostic process, focusing on key concepts of information and communication, as well as key interpersonal interactions of teamwork, collaboration, and collegiality, all based on trust. We propose 10 principles to facilitate effective information flow in the diagnostic process.

  15. Metrology of radiation doses in diagnostic radiology

    International Nuclear Information System (INIS)

    Leclet, H.

    2016-01-01

    This article recalls how to calculate effective and equivalent doses in radiology from the measured value of the absorbed dose. The 97/43 EURATOM directive defines irradiation standards for diagnostic radiology (NRD) as the value of the radiation dose received by the patient's skin when the diagnostic exam is performed. NRD values are standard values that can be exceeded only with right medical or technical reasons, they are neither limit values nor optimized values. The purpose of NRD values is to avoid the over-irradiation of patients and to homogenize radiologists' practices. French laws impose how and when radiologists have to calculate the radiation dose received by the patient's skin. The calculated values have to be compared with NRD values and any difference has to be justified. A table gives NRD values for all diagnostic exams. (A.C.)

  16. Health Risks of Diagnostic Radiology

    International Nuclear Information System (INIS)

    Al-Oraby, M.N.A.

    2014-01-01

    Exposure to ionizing radiation during diagnostic radiologic procedures carries small but real risks. Children, young adults and pregnant women are especially vulnerable. Exposure of patients to diagnostic energy levels of ionizing radiation should be kept to the minimum necessary to provide useful clinical information and allay patients concerns about radiation-related risks. Computerized Tomography (CT) accounts for two thirds of the cumulative patient dose from diagnostic radiological procedures and the cumulative dose from CT is rising as technological advances increase the number of indications and the capabilities of CT. Carcinogenesis and teratogenesis are the main concerns with ionizing radiation. The risk increases as the radiation dose increases. There is no minimum threshold and the risk is cumulative: a dose of 1 mSv once a year for 10 years is equivalent to a single dose of 10 mSv. Whenever practical, choose an imaging test that uses less radiation or no radiation and lengthen the periods between follow-up imaging tests. Some patients may avoid screening mammography because of fear of radiation-induced cancer, yet this test uses a very small radiation dose (0.6 mSv, much less than the annual dose from background radiation, 3.6 mSv). (author)

  17. A web-based test of residents' skills in diagnostic radiology

    International Nuclear Information System (INIS)

    Finlay, K.; Norman, G.R.; Keane, D.R.; Stolberg, H.

    2006-01-01

    To develop an objective, Web-based tool for evaluating residents' knowledge of diagnostic radiology. We developed and tested a Web-based evaluation tool (the Diagnostic Radiology Skills Test) that consists of 3 tests, one in each of 3 domains of diagnostic radiology: chest, gastrointestinal, and musculoskeletal imaging. Each test comprises 30 cases representing a range of difficulty in the domain, including normal states, normal variants, typical cases of common diagnoses, and cases with more subtle findings. Cases are presented with a long menu of domain-specific possible diagnoses (response options), each coded for diagnostic appropriateness. Our subjects were 21 residents in postgraduate year (PGY) 2 to 5 and 11 experts in diagnostic radiology. Subjects accessed the tool via a Web site on our Web server. Residents test results were compared for reliability and validity across domain, case, and training level. In addition, results were correlated with commonly used established and objective evaluation tools. The tool demonstrated consistent monotonic improvement in performance with training level. It showed acceptable reliability in discriminating between residents at different performance levels, both within and across training levels (r = 0.53 within level and 0.69 across levels). Test results also had concurrent validity against the American College of Radiology In-Training Examination, a widely accepted objective assessment tool (r = 0.65, P < 0.01), and 2 Objective Structured Clinical Examinations (OSCEs) focusing on diagnostic skills (r = 0.78 and r 0.69, P < 0.01, respectively). Our study demonstrates the feasibility of a Web-based, standardized, objective assessment method for evaluating residents' performance. (author)

  18. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  19. Paediatric doses from diagnostic radiology in Victoria

    International Nuclear Information System (INIS)

    Boal, T.J.; Cardillo, I.; Einsiedel, P.F.

    1998-01-01

    This study examines doses to paediatric patients from diagnostic radiology. Measurements were made at 29 hospitals and private radiology practices in the state of Victoria. Entrance skin doses in air were measured for the exposure factors used by hospital radiology departments and private radiology practices for a standard size 1, 5, 10 and 15 year old child, for the following procedures: chest AP/PA, lat; abdomen AP; pelvis AP; lumbar spine AP, lat; and skull AP, lat. There was a large range of doses for each particular procedure and age group. Factors contributing to the range of doses were identified. Guidance levels for paediatric radiology based on the third quartile value of the skin entrance doses have been recommended and are compared with guidance levels. Copyright (1998) Australasian Physical and Engineering Sciences in Medicine

  20. Test objects for evaluating the performance of radiological imaging systems. Leeds radiological test objects

    International Nuclear Information System (INIS)

    Cowen, A.R.; Clarke, O.F.; Haywood, J.M.; Parker, R.P.

    1985-01-01

    A range of test objects has been developed to assess the imaging performance of conventional and digital radiological imaging systems. These test objects have arisen as a result of involvement in both the laboratory evaluation of radiological imaging systems and the routine maintenance of such equipment in a large diagnostic radiology department. The philosophy behind the design and application of the test objects is briefly described. Particular attention is paid to the advantages of using the threshold-contrast detail-detectability technique to assess overall imaging performance. The great importance of ensuring optimum imaging performance prior to clinical acceptance is stressed. A strategy for implementing the test objects in a clinical department is present. The diagnostic information content of the clinical images which result measures the success of the quality control procedure adopted. (author)

  1. Quality control in diagnostic radiology: experience and challenges

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Mohd Ramli Arshad; Mohd Khalid Matori; Muhammad Jamal Md Isa; Husaini Salleh; Abdullah Tahir Aliyasak; Zainal Jamaluddin; Hasrul Hisham Hussain

    2005-01-01

    Malaysian Institute for Nuclear Technology Research through its Medical Physics Group has been providing Quality Control (QC) services for medical x-ray apparatus used in diagnostic radiology to private clinics and hospitals since the year 1997. The quality control (QC) in diagnostic radiology is considered as part of quality assurance program which provide accurate diagnostic information at the lowest cost and the least exposure of the patients to radiation. Many experience and obstacles were faced by Medical Physics Group. This paper will discuss on some of the experiences and challenges that could be shared together with MINT staff especially in the safety aspect related to electrical and mechanical, radiation protection, performance and standard. The challenging in administrative aspect also will discuss. (Author)

  2. The european approach to quality assurance in diagnostic radiology

    International Nuclear Information System (INIS)

    Benini, A.

    1997-01-01

    The european and increasingly the international organizations are emphasizing the importance of appropriate quality assurance programmes in diagnostic radiology. The European Directive (particularly the directive 84/466/EURATOM). the various publications of the International Commission for radiation protection (ICRP), related to protection of the patients and workers and the Basic Safety Standards of the International Atomic Energy Agency (IAEA) might be considered the landmarks of the new approach to the problems of dose reduction and quality in diagnostic radiology. In particular ICRP maintains a watching brief on all aspects related to radiation protection and makes recommendations concerning basic principles. Since ICRP 26 (1977), several ICRP publications have dealt with all the principal fields of diagnostic radiology. The IAEA has recently published the new Basic Safety Standards including guidance levels for the most common diagnostic investigations.Within the European countries the European Union and the European legislation have strong influence of the implementation of radiation protection and Q A at a national level. This has led to a substantial effort in the european countries to establish national standards and basic quality requirements. (author)

  3. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  4. Relativity Screens for Misvalued Medical Services: Impact on Noninvasive Diagnostic Radiology.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Silva, Ezequiel; Hawkins, C Matthew

    2017-11-01

    In 2006, the AMA/Specialty Society Relative Value Scale Update Committee (RUC) introduced ongoing relativity screens to identify potentially misvalued medical services for payment adjustments. We assess the impact of these screens upon the valuation of noninvasive diagnostic radiology services. Data regarding relativity screens and relative value unit (RVU) changes were obtained from the 2016 AMA Relativity Assessment Status Report. All global codes in the 2016 Medicare Physician Fee Schedule with associated work RVUs were classified as noninvasive diagnostic radiology services versus remaining services. The frequency of having ever undergone a screen was compared between the two groups. Screened radiology codes were further evaluated regarding the RVU impact of subsequent revaluation. Of noninvasive diagnostic radiology codes, 46.0% (201 of 437) were screened versus 22.2% (1,460 of 6,575) of remaining codes (P < .001). Most common screens for which radiology codes were identified as potentially misvalued were (1) high expenditures (27.5%) and (2) high utilization (25.6%). The modality and body region most likely to be identified in a screen were CT (82.1%) and breast (90.9%), respectively. Among screened radiology codes, work RVUs, practice expense RVUs, and nonfacility total RVUs decreased in 20.3%, 65.9%, and 75.3%, respectively. All screened CT, MRI, brain, and spine codes exhibited decreased total RVUs. Policymakers' ongoing search for potentially misvalued medical services has disproportionately impacted noninvasive diagnostic radiology services, risking the introduction of unintended or artificial shifts in physician practice. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Study of the performance of diagnostic radiology instruments during calibration

    International Nuclear Information System (INIS)

    Freitas, Rodrigo N. de; Vivolo, Vitor; Potiens, Maria da Penha A.

    2008-01-01

    Full text: The instruments used in diagnostic radiology measurements represent 8 % of the tested instruments by the calibration laboratory of IPEN annually (approximately 1600 in 2007). Considering that the calibration of this kind of instrument is performed biannually it is possible to conclude that almost 300 instruments are being used to measure the air kerma in diagnostic radiology clinics to determine the in beam values (in front of the patient), attenuated measurements (behind the patient) and scattered radiation. This work presents the results of the calibration of the instruments used in mammography, computed tomography, dental and conventional diagnostic radiology dosimetry, performed during the period of 2005 to 2007. Their performances during the calibrations measurements were evaluated. Although at the calibration laboratory there are three available series of radiation quality to this type of calibration (RQR, N and M, according to standards IEC 61267 and ISO 4037-1.), the applications can be assorted (general radiology, computed tomography, mammography, radiation protection and fluoroscopy). Depending on its design and behaviour , one kind of instrument can be used for one or more type of applications. The instruments normally used for diagnostic radiology measurements are ionization chambers with volumes varying from 3 to 1800 cm 3 , and can be cylindrical, spherical or plane parallel plates kind. They usually are sensitive to photon particles, with energies greater than 15 keV and can be used up to 1200 keV. In this work they were tested in X radiation fields from 25 to 150 kV, in specific qualities depending on the utilization of the instrument. The calibration results of 390 instruments received from 2005 to 2007 were analyzed. About 20 instruments were not able to be calibrated due to bad functioning. The calibration coefficients obtained were between 0.88 and 1.24. The uncertainties were always less than ± 3.6% to instruments used in scattered

  6. ICRP PUBLICATION 121: Radiological Protection in Paediatric Diagnostic and Interventional Radiology

    International Nuclear Information System (INIS)

    Khong, P-L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R.

    2013-01-01

    Paediatric patients have a higher average risk of developing cancer compared with adults receiving the same dose. The longer life expectancy in children allows more time for any harmful effects of radiation to manifest, and developing organs and tissues are more sensitive to the effects of radiation. This publication aims to provide guiding principles of radiological protection for referring clinicians and clinical staff performing diagnostic imaging and interventional procedures for paediatric patients. It begins with a brief description of the basic concepts of radiological protection, followed by the general aspects of radiological protection, including principles of justification and optimisation. Guidelines and suggestions for radiological protection in specific modalities – radiography and fluoroscopy, interventional radiology, and computed tomography – are subsequently covered in depth. The report concludes with a summary and recommendations. The importance of rigorous justification of radiological procedures is emphasised for every procedure involving ionising radiation, and the use of imaging modalities that are non-ionising should always be considered. The basic aim of optimisation of radiological protection is to adjust imaging parameters and institute protective measures such that the required image is obtained with the lowest possible dose of radiation, and that net benefit is maximised to maintain sufficient quality for diagnostic interpretation. Special consideration should be given to the availability of dose reduction measures when purchasing new imaging equipment for paediatric use. One of the unique aspects of paediatric imaging is with regards to the wide range in patient size (and weight), therefore requiring special attention to optimisation and modification of equipment, technique, and imaging parameters. Examples of good radiographic and fluoroscopic technique include attention to patient positioning, field size and adequate collimation

  7. Use of digital speech recognition in diagnostics radiology

    International Nuclear Information System (INIS)

    Arndt, H.; Stockheim, D.; Mutze, S.; Petersein, J.; Gregor, P.; Hamm, B.

    1999-01-01

    Purpose: Applicability and benefits of digital speech recognition in diagnostic radiology were tested using the speech recognition system SP 6000. Methods: The speech recognition system SP 6000 was integrated into the network of the institute and connected to the existing Radiological Information System (RIS). Three subjects used this system for writing 2305 findings from dictation. After the recognition process the date, length of dictation, time required for checking/correction, kind of examination and error rate were recorded for every dictation. With the same subjects, a correlation was performed with 625 conventionally written finding. Results: After an 1-hour initial training the average error rates were 8.4 to 13.3%. The first adaptation of the speech recognition system (after nine days) decreased the average error rates to 2.4 to 10.7% due to the ability of the program to learn. The 2 nd and 3 rd adaptations resulted only in small changes of the error rate. An individual comparison of the error rate developments in the same kind of investigation showed the relative independence of the error rate on the individual user. Conclusion: The results show that the speech recognition system SP 6000 can be evaluated as an advantageous alternative for quickly recording radiological findings. A comparison between manually writing and dictating the findings verifies the individual differences of the writing speeds and shows the advantage of the application of voice recognition when faced with normal keyboard performance. (orig.) [de

  8. Fetal dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Faulkner, K.

    2002-01-01

    Diagnostic radiology examinations are frequently performed in all countries because of the benefit that the patient derives from the resultant diagnosis. Given that so many examinations are performed it is inevitable that there will be occasions when the planned exposure of a woman who is known to be pregnant is contemplated. In these circumstances, there must be rigorous justification of the examination and the procedure itself must be optimised as well. Radiation risks from fetal irradiation are well established. These risks fall into three categories: 1) a cancer induction risk (mainly leukaemia); 2) hereditary effects (as the fetus is a potential parent); 3) a risk of serious mental retardation (if the fetus is exposed in the critical 8-15 weeks period when the forebrain is being developed). Risk factors for these effects have been reviewed by the International Commission on Radiological Protection. Special rules apply to the radiology of women who are or who may be pregnant. These rules have been developed to avoid he unintended irradiation of the fetus. These rules have been variously referred to as the 10-day rule and the 28-day rules, in which radiology of potentially pregnant women is restricted to the first 10 or 28 days following menstruation. It is apparent that the advice provided by national bodies varies, as different rules apply internationally, due presumably to a lack of an international consensus on the subject. The advice from the National Radiological Protection Board, the College of Radiographers and the Royal College of Radiologists applies in the United Kingdom. In summary, the advice is that women of child bearing age are asked before a diagnostic radiology examination in which the pelvis is in, or near, the primary beam are asked if they are, or may be, pregnant. If pregnancy can be excluded then the examination can proceed. If it is likely that the patient is pregnant, then the proposed examination must undergo rigorous justification. If

  9. Moving beyond quality control in diagnostic radiology and the role of the clinically qualified medical physicist.

    Science.gov (United States)

    Delis, H; Christaki, K; Healy, B; Loreti, G; Poli, G L; Toroi, P; Meghzifene, A

    2017-09-01

    Quality control (QC), according to ISO definitions, represents the most basic level of quality. It is considered to be the snapshot of the performance or the characteristics of a product or service, in order to verify that it complies with the requirements. Although it is usually believed that "the role of medical physicists in Diagnostic Radiology is QC", this, not only limits the contribution of medical physicists, but is also no longer adequate to meet the needs of Diagnostic Radiology in terms of Quality. In order to assure quality practices more organized activities and efforts are required in the modern era of diagnostic radiology. The complete system of QC is just one element of a comprehensive quality assurance (QA) program that aims at ensuring that the requirements of quality of a product or service will consistently be fulfilled. A comprehensive Quality system, starts even before the procurement of any equipment, as the need analysis and the development of specifications are important components under the QA framework. Further expanding this framework of QA, a comprehensive Quality Management System can provide additional benefits to a Diagnostic Radiology service. Harmonized policies and procedures and elements such as mission statement or job descriptions can provide clarity and consistency in the services provided, enhancing the outcome and representing a solid platform for quality improvement. The International Atomic Energy Agency (IAEA) promotes this comprehensive quality approach in diagnostic imaging and especially supports the field of comprehensive clinical audits as a tool for quality improvement. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. The genetically significant dose from diagnostic radiology in Great Britain in 1977

    International Nuclear Information System (INIS)

    Darby, S.C.; Kendall, G.M.; Rae, S.; Wall, B.F.

    1980-09-01

    This report is the third in a series concerned with the annual genetically significant dose to the population of Great Britain from diagnostic radiology. It combines information from a frequency survey of diagnostic radiological examinations carried out in Great Britain in 1977 and estimates of gonadal doses for different examination types, together with population and child expectancy data. The annual genetically significant dose from diagnostic radiology carried out in Great Britain in 1977, is estimated to 118 μGy (11.8 millirad) of which 113 μGy (11.3 millirad) is contributed by diagnostic radiology carried out in National Health Service hospitals. There has been a sharp fall in the contribution from obstetric examinations since 1957 when the last national survey was carried out. The contribution from most other examination types is broadly similar and there is little evidence of a change in the overall level of genetically significant dose. This is in spite of an increase in the frequency of radiological examinations per thousand of the population of about 50 per cent. No significant differences were found as between England, Scotland and Wales. The British figure compares favourably with the levels of GSD reported from other countries with developed radiological services. (author)

  11. The quality assurance in diagnostic radiology and their effect in the quality image and radiological protection of the patient

    International Nuclear Information System (INIS)

    Gaona, Enrique

    2002-01-01

    The quality assurance in diagnostic radiology in Mexico before 1997 was virtually nonexistent except in few academic institutions and hospitals. The purpose of this study was to carry out an exploratory survey of the issue of quality control parameters of general and fluoroscopy x-ray systems in the Mexican Republic and their effects in the quality image and radiological protection of the patient. A general result of the survey is that there is not significant difference in the observed frequencies among public and private radiology departments for α = 0.05, then the results are valid for both departments. 37% of x-ray systems belong to public radiology departments. In the radiology departments that didn't agree with the Mexican regulations in: light field to mach the x-ray field, light field intensity, kV, time and output. In those cases, we found a repeat rate of radiography studies >30% with non necessary dose to patient, low quality image and high operating costs of the radiology service. We found in x-ray fluoroscopy systems that 62% had a low quality image due to electronic noise in the television chain. In general the x-ray systems that didn't agree with Mexican regulations are 35% and they can affect in a way or other the quality image and the dose to patient

  12. Quality criteria in diagnostic radiology of the skeleton

    International Nuclear Information System (INIS)

    Freyschmidt, J.

    1985-01-01

    Conventional diagnostic radiology continues to represent the basic technique in skeleton diagnostics and results in decisive diagnoses in more than 80% of all cases. Compared with other examination methods, it is cheap and relatively easy to perform; however, it makes high demands on the physician's clinical and technical expertise. Compared with computerized tomography, conventional radiography has the advantage of decades of experience and of being cheaper by far. The author thinks the following quality criteria to be important in diagnostic radiology of the skeleton: roentgenological examination of one or several skeleton regions in keeping with the clinical issue concerned, accurate visualization of the object in a typical and reproducible projection, radiation quality matched to the dimension of the object, matched mean optical density, visualization of soft tissue near to bones and joints, and radiation dose in keeping with the clinical issue concerned. (orig./MG) [de

  13. Diagnostic radiology of the osteo-articular system. 3. rev. and enl. ed.; Radiologische Diagnostik der Knochen und Gelenke

    Energy Technology Data Exchange (ETDEWEB)

    Bohndorf, Klaus [Medizinische Univ. Wien (Austria). Exzellenzzentrum Hochfeld-Magnetresonanz; Woertler, Klaus (ed.) [Technische Univ. Muenchen Klinikum rechts der Isar (Germany). Inst. fuer Radiologie; Imhof, Herwig

    2014-02-01

    The book on diagnostic radiology of the osteo-articular system includes the following chapters: (1) Acute trauma and chronic overstress: essentials; (2) Acute trauma and chronic overstress (according regions); (3) Infections of bones, bone joints and soft tissue; (4) Tumors and tumor-like lesions of bones, bone joints and soft tissue; (5) Bone marrow; (6) Skeleton necrosis; (7) Osteochondrosis; (8) Metabolic, hormone related and toxically induced osteopathy; (9) Constitutional skeleton and bone joint development disturbances; (1) Rheumatic diseases; (11) Different skeletal, bone joint and soft tissue diseases; (12) Interventional actions at the skeleton, soft tissue and bone joints; (13) Radiological imaging of skeleton and bone joints.

  14. Skeletal diseases. Diagnostic clinical radiology and differential diagnostics. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Freyschmidt, J.

    1997-01-01

    The book focuses on the diagnostic evaluation of idiopathic diseases of the skeleton and bone joints, also including the fundamental healing processes of bone fractures, particularly of stress-induced and pathologic fractures. Ample space has been given to the description and imaging of the course of diseases under treatment by up-to-date therapies, as e.g. for ostitis deformans Paget's disease, or skeletal metastases. This second edition of the book incorporates the progress achieved over the last five years in skeletal diagnostics. The advances in this field have been resulting from basic research work, for instance in molecular biology, or from a variety of completed studies relating to clinical medicine, laboratory chemistry, histopathology and radiology of skeletal diseases, and from experience obtained with the diagnostic radiology methods and techniques, with the potentials and constraints of magnetic resonance imaging (MRI) today being more critically assessed than five years ago. MRI is a modality currently meeting with interest in the context of search for additional diagnostic information, new definition of complete pictures of diseases, or false or overinterpretation of diagnostic findings. (orig./MG). 431 figs [de

  15. Radiation hazards and protection of patient in diagnostic radiology

    International Nuclear Information System (INIS)

    Agarwal, Y.C.; Haldar, P.K.

    1980-01-01

    Biological radiation effects such as somatic certainty effects, somatic stochastic effects and genetic effects are described. Diagnostic radiology, therefore, involves risk to the patient in case of undesirable exposures and in particular to the fetus. Gonad doses in diagnostic radiology which may lead to genetic effects have been found to vary within a wide range. To avoid somatic certainty and to keep genetic effects to a minimum, some suggestions are enumerated. They deal with the choice of technique, proper positioning, use of calibrated equipment and use of techniques like xerography, ultrasonography, thermography etc. (M.G.B.)

  16. new possibilities in diagnostic radiology

    OpenAIRE

    Scheel, Michael

    2014-01-01

    Diffusion Tensor Imaging (DTI) allows a non-invasive diffusion-based tissue characterization and thus offers completely new possibilities in the field of diagnostic radiology. On the one hand, this method allows an improved detection of pathological changes at the microstructural level, which are frequently not detectable in conventional MRI methods. On the other hand new strategies for therapy monitoring are feasible by quantification of diffusion parameters (e.g., Parallel, Radial and Mean ...

  17. Solitary pulmonary nodule: radiologic features and diagnostic approach

    International Nuclear Information System (INIS)

    Rodriguez Cambronero, Luis Enrique

    2012-01-01

    A literature review is conducted on the solitary pulmonary nodule, to determine the diagnostic methods and specific characteristics. The diagnostic methods used have been: chest radiography, computed tomography, positron emission tomography and magnetic resonance imaging. The radiological features are defined: location, size, definition of contours or edges (margins), densitometric and attenuation characteristics, cavitation, air bronchogram, growth, doubling time, satellite nodules, nutrient vessels [es

  18. Patterns of Recent National Institutes of Health (NIH) Funding to Diagnostic Radiology Departments: Analysis Using the NIH RePORTER System.

    Science.gov (United States)

    Franceschi, Ana M; Rosenkrantz, Andrew B

    2017-09-01

    This study aimed to characterize recent National Institutes of Health (NIH) funding for diagnostic radiology departments at US medical schools. This retrospective study did not use private identifiable information and thus did not constitute human subjects research. The public NIH Research Portfolio Online Reporting Tools Expenditure and Results system was used to extract information regarding 887 NIH awards in 2015 to departments of "Radiation-Diagnostic/Oncology." Internet searches were conducted to identify each primary investigator (PI)'s university web page, which was used to identify the PI's departmental affiliation, gender, degree, and academic rank. A total of 649 awards to diagnostic radiology departments, based on these web searches, were included; awards to radiation oncology departments were excluded. Characteristics were summarized descriptively. A total of 61 unique institutions received awards. The top five funded institutions represented 33.6% of all funding. The most common institutes administering these awards were the National Cancer Institute (29.0%) and the National Institute of Biomedical Imaging and Bioengineering (21.6%). Women received 15.9% of awards and 13.3% of funding, with average funding per award of $353,512 compared to $434,572 for men. PhDs received 77.7% of all awards, with average funding per award of $457,413 compared to $505,516 for MDs. Full professors received 51.2% of awards (average funding per award of $532,668), compared to assistant professors who received 18.4% of awards ($260,177). Average funding was $499,859 for multiple-PI awards vs. $397,932 for single-PI awards. Common spending categories included "neurosciences," "cancer," "prevention," and "aging." NIH funding for diagnostic radiology departments has largely been awarded to senior-ranking male PhD investigators, commonly at large major academic medical centers. Initiatives are warranted to address such disparities and promote greater diversity in NIH funding

  19. Litigations in diagnostic radiology

    International Nuclear Information System (INIS)

    Patil, Ranjit

    2014-01-01

    There are various regulatory bodies at the international and national level, which lay down norms for radiation protection. These are the International Commission for Radiation Protection (ICRP) the National Commission for Radiation Protection (NCRP) in America, and the Atomic Energy Regulatory Board (AERB) in India. These bodies recommend norms on various radiation issues. Radiography and radiology are two key tools for diagnosing and treating diseases. Recently there are concerns about the effect of ionizing radiation on man and the frequent use of diagnostic radiographs. The professionals are expected to conduct their actions according to guidelines which reflect new information and changing technology in diagnostic radiography. Failure to do so may have severe legal consequences. Patient protection is a matter of normal course but knowledge and awareness of the legal issues is important to avoid legal hassles. Implications of the radiation protection guidelines are discussed. (author)

  20. Radiological diagnostic in acute chest pain

    International Nuclear Information System (INIS)

    Kawel, Nadine; Bremerich, Jens

    2010-01-01

    Acute chest pain is one of the main symptoms leading to a consultation of the emergency department. Main task of the initial diagnostic is the confirmation or exclusion of a potentially life threatening cause. Conventional chest X-ray and computed tomography are the most significant techniques. Due to limited availability and long examination times magnetic resonance tomography rather plays a limited role in routine clinical workup. In the following paper we will systematically review the radiological diagnostic of the acute life threatening causes of chest pain. Imaging modalities, technical aspects and image interpretation will be discussed. (orig.)

  1. TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates

    Energy Technology Data Exchange (ETDEWEB)

    Sensakovic, W. [Florida Hospital (United States)

    2016-06-15

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.

  2. TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates

    International Nuclear Information System (INIS)

    Sensakovic, W.

    2016-01-01

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant

  3. The role of radiology in diagnostic error: a medical malpractice claims review.

    Science.gov (United States)

    Siegal, Dana; Stratchko, Lindsay M; DeRoo, Courtney

    2017-09-26

    Just as radiologic studies allow us to see past the surface to the vulnerable and broken parts of the human body, medical malpractice claims help us see past the surface of medical errors to the deeper vulnerabilities and potentially broken aspects of our healthcare delivery system. And just as the insights we gain through radiologic studies provide focus for a treatment plan for healing, so too can the analysis of malpractice claims provide insights to improve the delivery of safe patient care. We review 1325 coded claims where Radiology was the primary service provider to better understand the problems leading to patient harm, and the opportunities most likely to improve diagnostic care in the future.

  4. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    Hernández-Ruiz, L.; Jimenez-Flores, Y.; Rivera-Montalvo, T.; Arias-Cisneros, L.; Méndez-Aguilar, R.E.; Uribe-Izquierdo, P.

    2012-01-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  5. Evaluation of the field size in dental diagnostic radiology system

    International Nuclear Information System (INIS)

    Andrade, P.S.; Potiens, M.P.A.

    2006-01-01

    In this work the field size of a dental X rays machine was evaluated considering the recommendation of the Brazilian Health Ministry Regulation 453 which established basic lines of radiological protection in medical and dental diagnostic radiology. The diameter of the field should not be superior to 6 cm in the localized end point, limiting the radiated area and protecting the head-neck region. The measurements were carried out in a dental X rays machine, Dabi Atlante, model Spectro 70X Seletronic. For the field size or useful beam determination, the intra-oral films were positioned on a plain surface to be exposed in four stages and two focus-film distances (FFD), 20 cm and 27.5 cm: 1) with spacer cone; 2) without spacer cone; 3) with spacer cone and film-holding device; 4) without spacer cone and film-holding device. The results show that the diameter of the field size is satisfactory only for FFD = 20 cm. When the film-holding device is used, which is recommended by the Regulation 453, item 5.8 d(ii), the diameter of the field size exceeds the maximum recommended value of 6 cm. (authors)

  6. Web-based tools for quality assurance and radiation protection in diagnostic radiology.

    Science.gov (United States)

    Moores, B M; Charnock, P; Ward, M

    2010-01-01

    Practical and philosophical aspects of radiation protection in diagnostic radiology have changed very little over the past 50 y even though patient doses have continued to rise significantly in this period. This rise has been driven by technological developments, such as multi-slice computed tomography, that have been able to improve diagnostic accuracy but not necessarily provide the same level of risk-benefit to all patients or groups of patients given the dose levels involved. Can practical radiation protection strategies hope to keep abreast of these ongoing developments? A project was started in 1992 in Liverpool that aimed to develop IT driven quality assurance (QA)/radiation protection software tools based upon a modular quality assurance dose data system. One of the modules involved the assessment of the patient entrance surface air kerma (ESAK) for an X-ray examination that was based upon the use of calibrated X-ray tube exposure factors to calculate ESAK as well as collecting appropriate patient details (age, sex, weight, thickness etc). The package also contained modules for logging all necessary equipment performance QA data. This paper will outline the experience gained with this system through its transition from a local application on a stand alone PC within the department to the current web-based approach. Advantages of a web-based approach to delivering such an application as well as centrally storing data originating on many hospital sites will be discussed together with the scientific support processes that can be developed with such a system. This will include local, national and international considerations. The advantages of importing radiographic examination details directly from other electronic storage systems such as a hospital's radiology information system will be presented together with practical outcomes already achieved. This will include the application of statistical techniques to the very large data sets generated. The development

  7. Web-based tools for quality assurance and radiation protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Moores, B. M.; Charnock, P.; Ward, M.

    2010-01-01

    Practical and philosophical aspects of radiation protection in diagnostic radiology have changed very little over the past 50 y even though patient doses have continued to rise significantly in this period. This rise has been driven by technological developments, such as multi-slice computed tomography, that have been able to improve diagnostic accuracy but not necessarily provide the same level of risk-benefit to all patients or groups of patients given the dose levels involved. Can practical radiation protection strategies hope to keep abreast of these ongoing developments? A project was started in 1992 in Liverpool that aimed to develop IT driven quality assurance (QA)/radiation protection software tools based upon a modular quality assurance dose data system. One of the modules involved the assessment of the patient entrance surface air kerma (ESAK) for an X-ray examination that was based upon the use of calibrated X-ray tube exposure factors to calculate ESAK as well as collecting appropriate patient details (age, sex, weight, thickness etc). The package also contained modules for logging all necessary equipment performance QA data. This paper will outline the experience gained with this system through its transition from a local application on a stand alone PC within the department to the current web-based approach. Advantages of a web-based approach to delivering such an application as well as centrally storing data originating on many hospital sites will be discussed together with the scientific support processes that can be developed with such a system. This will include local, national and international considerations. The advantages of importing radiographic examination details directly from other electronic storage systems such as a hospital's radiology information system will be presented together with practical outcomes already achieved. This will include the application of statistical techniques to the very large data sets generated. The development

  8. Thematic plan on diagnostic radiology

    International Nuclear Information System (INIS)

    2003-01-01

    Due to the vital importance of diagnostic radiology in both the diagnosis and management of disease processes, there is a need for a greater coherent international effort to help the developing nations create strategies for the incorporation of imaging into their healthcare systems. To meet the needs of such countries, a comprehensive programme is required to take into consideration the availability of local expertise (medical and technical), the infrastructure (stable electrical supply, water and air-conditioning) and the disease pattern or burden. In short, the total solution requires coordinating the International Atomic Energy Agency efforts with those of other partners. The Agency already has programmes in nuclear medicine and radiation therapy supported by activities in dosimetry and medical physics. Through the Technical Co-operation fund the Agency already supports projects in some areas of diagnostic imaging, dosimetry and radiation protection, but it lacks a comprehensive programme to provide a systematic approach focusing on the medical aspects of imaging science and including all the imaging technologies. Member States require the Agency's assistance in this area since no single UN organisation has the resources or the expertise to do the entire job without help. This document presents the proposed programme strategy and action plan

  9. Learning from diagnostic errors: A good way to improve education in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio, E-mail: antopin1968@libero.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy); Acampora, Ciro, E-mail: itrasente@libero.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy); Pinto, Fabio, E-mail: fpinto1966@libero.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy); Kourdioukova, Elena, E-mail: Elena.Kourdioukova@UGent.be [Department of Radiology, Ghent University Hospital (UZG), MR/-1K12, De Pintelaan 185, B-9000 Ghent (Belgium); Romano, Luigia, E-mail: luigia.romano@fastwebnet.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy); Verstraete, Koenraad, E-mail: Koenraad.Verstraete@UGent.be [Department of Radiology, Ghent University Hospital (UZG), MR/-1K12, De Pintelaan 185, B-9000 Ghent (Belgium)

    2011-06-15

    Purpose: To evaluate the causes and the main categories of diagnostic errors in radiology as a method for improving education in radiology. Material and methods: A Medline search was performed using PubMed (National Library of Medicine, Bethesda, MD) for original research publications discussing errors in diagnosis with specific reference to radiology. The search strategy employed different combinations of the following terms: (1) diagnostic radiology, (2) radiological error and (3) medical negligence. This review was limited to human studies and to English-language literature. Two authors reviewed all the titles and subsequently the abstracts of 491 articles that appeared pertinent. Additional articles were identified by reviewing the reference lists of relevant papers. Finally, the full text of 75 selected articles was reviewed. Results: Several studies show that the etiology of radiological error is multi-factorial. The main category of claims against radiologists includes the misdiagnoses. Radiologic 'misses' typically are one of two types: either missed fractures or missed diagnosis of cancer. The most commonly missed fractures include those in the femur, the navicular bone, and the cervical spine. The second type of 'miss' is failure to diagnose cancer. Lack of appreciation of lung nodules on chest radiographs and breast lesions on mammograms are the predominant problems. Conclusion: Diagnostic errors should be considered not as signs of failure, but as learning opportunities.

  10. Learning from diagnostic errors: A good way to improve education in radiology

    International Nuclear Information System (INIS)

    Pinto, Antonio; Acampora, Ciro; Pinto, Fabio; Kourdioukova, Elena; Romano, Luigia; Verstraete, Koenraad

    2011-01-01

    Purpose: To evaluate the causes and the main categories of diagnostic errors in radiology as a method for improving education in radiology. Material and methods: A Medline search was performed using PubMed (National Library of Medicine, Bethesda, MD) for original research publications discussing errors in diagnosis with specific reference to radiology. The search strategy employed different combinations of the following terms: (1) diagnostic radiology, (2) radiological error and (3) medical negligence. This review was limited to human studies and to English-language literature. Two authors reviewed all the titles and subsequently the abstracts of 491 articles that appeared pertinent. Additional articles were identified by reviewing the reference lists of relevant papers. Finally, the full text of 75 selected articles was reviewed. Results: Several studies show that the etiology of radiological error is multi-factorial. The main category of claims against radiologists includes the misdiagnoses. Radiologic 'misses' typically are one of two types: either missed fractures or missed diagnosis of cancer. The most commonly missed fractures include those in the femur, the navicular bone, and the cervical spine. The second type of 'miss' is failure to diagnose cancer. Lack of appreciation of lung nodules on chest radiographs and breast lesions on mammograms are the predominant problems. Conclusion: Diagnostic errors should be considered not as signs of failure, but as learning opportunities.

  11. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  12. Patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2000-01-01

    Full text: X-ray examinations remain an essential and widely used diagnostic tool in medicine and hence the most significant source of exposure to man-made radiation for populations. Patterns of practice in diagnostic radiology continue to evolve, with overall growth in the numbers of procedures worldwide and, particularly in developed countries, increasing importance for complex procedures such as computed tomography (CT) and interventional techniques. In order to maximise the benefits from x-rays relative to the associated radiation risks, there is a need to ensure the prior justification of all examinations and the optimisation of patient protection such that doses are as low as reasonably practicable to meet specific clinical requirements. Accordingly, patient dosimetry is a fundamental requirement in diagnostic radiology. Detailed measurements for the assessment of risks or comparison of different types of procedure require the estimation of organ and effective doses. Such comprehensive dosimetry necessarily involves the simulation of clinical practice using anthropomorphic phantoms, with either measurements in a physical phantom or calculations utilising a mathematical phantom. Simpler measurements for the routine monitoring of dose in x-ray departments can be based on practical quantities such as entrance surface dose, dose-area product and, for CT, weighted CT dose index and dose-length product. Widescale surveys reveal significant variations between departments in the typical doses for a given type of procedure and potential scope for dose reductions. In order to promote improvements in practice, the results of periodic dose surveys in departments should be compared with appropriate standards, such as diagnostic reference levels for adult and paediatric patients, that are set nationally or locally for the purposes of promoting critical review of the equipment and techniques in use. Patient dosimetry should form an essential element of routine quality

  13. Quality Control in Diagnostic Radiology: Experiences and Achievements

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Husaini Salleh; Muhammad Jamal Md Isa

    2015-01-01

    Malaysian Nuclear Agency through its Medical Physics Group has been providing Quality Control (QC) services for medical X-ray apparatus used in diagnostic radiology to private clinics and hospitals since the year 1997. The Medical Physics Groups services is endorsed by the Malaysian Ministry Of Health (MOH) and is in accordance with the Malaysian Standard MS 838 and the Atomic Energy Licensing Act, 1984. Until today, the scopes of testing services also include all types of medical x-ray apparatus. The quality control (QC) in diagnostic radiology is considered as part of quality assurance program which provide accurate diagnostic information at the lowest cost and the least exposure of the patients to radiation. Many experience and obstacles were faced by Medical Physics Group. This paper will discuss the experiences and achievements of providing QC service from early stage until now so that it can be shared by the citizens of the Malaysian Nuclear Agency. The results of quality assurance inspection of all types of X-ray apparatus for medical conducted by Agency Nuclear Malaysia will be presented in brief. (author)

  14. Picture archiving and communication systems in radiology

    International Nuclear Information System (INIS)

    Piqueras Pardellans, J.; Carreno Pedemonte, J.C.; Lucaya Layret, J.

    1994-01-01

    Picture archiving and communication systems (PACS) constitute a data processing tool that offers new working methods of diagnostic radiology. The definitive aim of a PACS is to allow a radiology service to operate without film images or documents on paper, integrating images and clinical information. Different image acquisition, viewing and storage systems, linked by communications networks, are arranged around a central management and storage system. Their components are described and the advantages, drawbacks and limitations are discussed from the technological point of view and considering their impact on health care, while a critical review is provided of the 1993 status of this issue

  15. Quality control in diagnostic radiology - patient dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Prlic, I; Radalj, Z; Brumen, V; Cerovac, H [Institute for Medical Research and Occupational Health, Laboratory for Radiation Protection and Dosimetry, Zagreb (Croatia); Gladic, J [Institute for Physics, Laboratory for Solid State Physics, Zagreb (Croatia); Tercek, V [Clinical Hospital Sisters of Mercy, Health Physics Department, Zagreb (Croatia)

    1997-12-31

    In order to establish the Quality Criteria for diagnostic radiographic images in the radiology departments in Republic of Croatia we have started the several Quality Control projects on the field. The measurements are performed according to some methodology recommendations in our law but the methodology, measurement principles, measurement equipment, phantoms, measurable parameters for the good use by radiographers, statistical and numerical evaluation, dosimetric philosophy etc. where first recognized as a private/or group hazard of each person involved in the procedure of evaluation of diagnostic radiology images/diagnosis. The important quality elements of the imaging process are: the diagnostic quality of the radiographic image, the radiation dose to the patient and the choice of the radiographic technique. This depends on the x-ray unit (tube) radiation quality, image processing quality and final image evaluation quality. In this paper we will show how the Quality Control measurements can be easily connected to the dose delivered to the patient for the known diagnostic procedure and how this can be used by radiographers in their daily work. The reproducibility of the x-ray generator was checked before the service calibration and after the service calibration. The table of kV dependence and output dose per mAs was calculated and the ESD (entrance surface dose) was measured/calculated for the specific diagnostic procedure. After the phantom calculation were made and the dose prediction for the given procedure was done, measurements were done on the patients (digital dosemeters, TLD and film dosemeter combinations). We are claiming that there is no need to measure each patient if the proper Quality Control measurements are done and the proper table of ESD for each particular x-ray tube in diagnostic departments is calculated for the radiographers daily use. (author). 1 example, 1 fig., 13 refs.

  16. Guidance levels for diagnostic radiology in Romania

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.

    2002-01-01

    Over two decades surveys of radiological practice in Romania have demonstrated wide variations in patient dose levels between different hospitals. Local and national investigations revealed poor performances as well as of radiological equipment, darkroom procedure or technology of investigation. Hitherto, the annual collective effective dose to the population of Romania from diagnostic medical exposures attained a value of 13,820 manSv. Since the annual frequencies of radiological examinations remain unchanged over last ten years, this value is mostly attributed to the individual dose levels in different X-ray procedures. Notwithstanding the huge benefits to patients, the reduction of unnecessary exposures and individual doses are our principal concern and the establishment of national reference dose levels should solve this problem. British experience demonstrated that reference doses are a practical tool in this purpose and the adoption of national reference dose values indicated an overall improvement in patient exposure. Even the local of reference dose values proved a useful way to achieve patient dose reduction. In meantime the optimization of patient protection, each X-ray examination should be conducted with lowest necessary dose to achieve the clinical aim. This paper presents the first approach to establish local reference dose levels for some diagnostic examinations based on the measurements made in six (from the eighth of Eastern territory of Romania) districts, invited to cooperate in this end

  17. Cost/benefit of high technology in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Goethlin, J.H.

    1987-08-01

    High technology is frequently blamed as a main cause for the last decade's disproportionate rise in health expenditure. Total costs for all large diagnostic and therapeutic appliances are typically less than 1% of annual expenditure on health care. CT, DSA, MRI, interventional radiology, ESWL, US, mammography, computers in radiology and PACS may save 10-80% of total cost for diagnosis and treatment of disease. Expenditure on high technology is in general vastly overestimated. Because of its medical utility, a slower deployment cannot be desirable. (orig.)

  18. Cost/benefit of high technology in diagnostic radiology

    International Nuclear Information System (INIS)

    Goethlin, J.H.

    1987-01-01

    High technology is frequently blamed as a main cause for the last decade's disproportionate rise in health expenditure. Total costs for all large diagnostic and therapeutic appliances are typically less than 1% of annual expenditure on health care. CT, DSA, MRI, interventional radiology, ESWL, US, mammography, computers in radiology and PACS may save 10-80% of total cost for diagnosis and treatment of disease. Expenditure on high technology is in general vastly overestimated. Because of its medical utility, a slower deployment cannot be desirable. (orig.)

  19. 2000 RSNA annual oration in diagnostic radiology: The future of interventional radiology.

    Science.gov (United States)

    Becker, G J

    2001-08-01

    Origins in imaging, procedural emphasis, and dependence on innovation characterize interventional radiology, which will continue as the field of image-guided minimally invasive therapies. A steady supply of innovators will be needed. Current workforce shortages demand that this problem be addressed and in an ongoing fashion. Interventional radiology's major identity problem will require multiple corrective measures, including a name change. Diagnostic radiologists must fully embrace the concept of the dedicated interventionalist. Interspecialty turf battles will continue, especially with cardiologists and vascular surgeons. To advance the discipline, interventional radiologists must remain involved in cutting-edge therapies such as endograft repair of aortic aneurysms and carotid stent placement. As the population ages, interventionalists will experience a shift toward a greater emphasis on cancer treatment. Political agendas and public pressure will improve access to care and result in managed health care reforms. Academic centers will continue to witness a decline in time and resources available to pursue academic missions. The public outcry for accountability will result in systems changes aimed at reducing errors and process changes in the way physicians are trained, certified, and monitored. Evidence-based medicine will be the watchword of this century. Interventional radiology will maintain its role through development of methods for delivery of genes, gene products, and drugs to specific target sites; control of angiogenesis and other biologic processes; and noninvasive image-guided delivery of various forms of energy for ablation.

  20. Quality control procedures of dental diagnostic radiology systems; Elaboracao de um procedimento para controle de qualidade em sistemas de radiodiagnostico odontologico

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Paula Serra Sasaki

    2007-07-01

    This work presents quality control reference procedures for dental diagnostic radiology systems, following the recommendations of the Publication 453 of the Brazilian Health Ministry (PF453), to be applied in dental clinics, in order to achieve an improvement in the radiological image qualities and the patient dose reduction. All tests were applied in an intraoral X rays system, following the methodology developed and the requirements of the PF 453. In order to verify the best quality of the image in relation to the smaller exposition time an object test was also developed in this work. The use of this object allowed the reduction of the exposition time of 0.5 seconds, the maximum value of the linear region of the characteristic curve, for 0.2 seconds. The tested X rays system showed a very good agreement with the applied procedures, detaching the reduction of the skin entrance dose using the film-holding devices. However, the size of the field increased and exceeded the maximum value of 6 cm recommended in the standard. The importance of the quality control in dental diagnostic radiology systems is essential due to the constant use of X radiation in dental clinics. The PF453 recommends the frequency of at least two years for the constancy tests. However, it is suggested that the professional, surgeon-dentist, should be responsible for the internal control of the image quality obtained from the X rays device. This can be done through monthly exposures of the object test developed in this work. (author)

  1. Radiation protection of patients in diagnostic radiology: implementation of a management system optimization; Proteccion radiologica de pacientes en radiodiagnostico: implantacion de un sistema de gestion de la optimizacion

    Energy Technology Data Exchange (ETDEWEB)

    Corpas Rivera, L.; Devesa Pardo, F. J.; Gamez Jimenez, J. L.; Vallejo Carrascal, C.; Garcia de Diego, A. A.; Amador Vela-Hidalgo, J. J.

    2011-07-01

    The enforcement of quality in diagnostic radiology (Royal Decree 1976/1999 laying down the criteria for quality in diagnostic radiology and Royal Decree 815/2001 to justify the use of ionizing radiations for medical exposure, etc.) and recommendations and European regulations on the matter, is done by carrying out the optimization of the doses received, based on image quality in a continuous process of monitoring of such dose from the dose reference Values ??(VRD ) that the system has allowed to establish for each technique.

  2. Clinical dosimetry in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.; Jovanovska, A.

    2012-01-01

    Full text: Introduction: Diagnostic and interventional procedures involving x-rays are the most significant contributor to total population dose form man made sources of ionizing radiation. Purpose and aim: X-ray imaging generally covers a diverse range of examination types, many of which are increasing in frequency and technical complexity. Materials and methods: The European Directives 96/29 and 97/43 EURATOM stress the importance of accurate dosimetry and require calibration of all measuring equipment related to application of ionizing radiation in medicine. Results: The paper gives and overview of current system of dosimetry of ionizing radiations that is relevant for metrology and clinical applications. It also reflects recently achieved international harmonization in the field promoted by International Atomic Energy Agency (IAEA). Discussion: Objectives of clinical dose measurements in diagnostic and interventional radiology are multiple, as assessment of equipment performance, or assessment of risk emerging from use of ionizing radiation Conclusion: Therefore, from the clinical point of view, the requirements for dosimeters and procedures to assess dose to standard dosimetry phantoms and patients in clinical diverse modalities, as computed tomography are presented

  3. Cost-benefit analysis in decision making for diagnostic radiology

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Hilberg, A.W.

    1982-02-01

    This paper reviews certain current concepts and methods relating to benefit-risk analysis, in terms of economic costs and raidation risks to health, in relation to the benefits from diagnostic radiology in clinical medicine

  4. Current state of a dosimetric evaluation programme in diagnostic radiology installations in Spain

    International Nuclear Information System (INIS)

    Vano, E.; Gonzalez, L.; Calzado, A.; Delgado, V.; Moran, P.; Sanchez, B.; Murias, F.

    1988-01-01

    The Medical Physics Group at the School of Medicine of the Complutense University of Madrid, started a programme on the study of radiation doses in relation to Diagnostic Radiology in the area of Madrid in 1986, in cooperation with the Department of Health and Consumer Affairs, and several Madrid area hospitals as well as some Outpatient Centers. In Spain, the National Health Service (NHS) (through the National Institute of Health, INSALUD), potentially cares for the health of approximately 94% of the population. This figure reaches 99% at the Community of Madrid. Radiological examinations are performed mainly in Hospitals and Outpatient Centers (the latter making up a first link in the patient's radiological diagnosis). Private Diagnostic Radiology is used by the remaining 6% of the population (not taking into account the population attended in military hospitals), and by patients who in spite of having access to NHS Diagnostic Radiology Services, prefer to choose the private sector for different reasons. Besides the data we obtained during the first year of study from four large Madrid-area hospitals (and a few outpatient centers); we have used data furnished by the Department of Health and Consumer Affairs, the INSALUD and other sources

  5. Software for the estimation of organ equivalent and effective doses from diagnostic radiology procedures

    International Nuclear Information System (INIS)

    Osei, Ernest K; Barnett, Rob

    2009-01-01

    Diagnostic radiological imaging such as conventional radiography, fluoroscopy and computed tomography (CT) examinations will continue to provide tremendous benefits in modern healthcare. The benefit derived by the patient should far outweigh the risk associated with a properly conducted imaging examination. Nonetheless, it is very important to be able to quantify the risk associated with any radiological examination of patients, and effective dose has been considered a useful indicator of patient exposure. Quantification of the risks associated with radiological imaging is very important as such information will be helpful to physicians and their patients for comparing risks from various imaging examinations and for making informed decisions whenever there is a need for any radiological imaging. The determination of equivalent and effective doses in diagnostic radiology is of interest as a basis for estimates of risk from medical exposures. In this paper we describe a simple computer program OrgDose, which calculates the doses to 27 organs in the body and then calculates the organ equivalent and effective doses and the risk from various procedures in the radiology department including conventional radiography, fluoroscopy and computed tomography examinations. The program will be a useful tool for the medical and paramedical personnel who are involved with assessing organ and effective doses and risks from diagnostic radiology procedures.

  6. Radiologic diagnostics of dementia

    International Nuclear Information System (INIS)

    Essig, M.; Schoenberg, S.O.

    2003-01-01

    Dementia is one of the most common diseases in the elderly population and is getting more and more important with the ageing of the population. A radiologic structural examination with CT or MRI is meanwhile a standard procedure in the diagnostic work up of patients with dementia syndrome. Radiology enables an early diagnosis and a differential diagnosis between different causes of dementia. Because structural changes occur only late in the disease process, a more detailed structural analysis using volumetric techniques or the use of functional imaging techniques is mandatory. These days, structural imaging uses MRI which enables to detect early atrophic changes at the medial temporal lobe with focus on the amygdala hippocampal complex. These changes are also present in the normal ageing process. In patients with Alzheimer's disease, however, they are more rapid and more pronounced. The use of functional imaging methods such as perfusion MRI, diffusion MRI or fMRI allow new insights into the pathophysiologic changes of dementia. The article gives an overview of the current status of structural imaging and an outlook into the potential of functional imaging methods. Detailed results of structural and functional imaging are presented in other articles of this issue. (orig.) [de

  7. Report of a consultants meeting on dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.

    1999-01-01

    During its biennial meeting in 1996, the Standing Advisory Committee 'SSDL Scientific Committee', recommended extending the long experience of the Agency in the field of standardization and monitoring dosimetry calibrations at radiotherapy and radiation protection level for the Secondary Standard Dosimetry Laboratory (SSDL) Network, to the field of diagnostic x-ray dosimetry. It was emphasized that 'Measurements on diagnostic x-ray machines have become increasingly important and some SSDLs are involved in such measurements. The Agency's dosimetry laboratory should, therefore, have proper radiation sources available to provide traceable calibrations to the SSDLs'. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments

  8. Audit Programmes in a Diagnostic Radiological Facility (invited paper)

    International Nuclear Information System (INIS)

    Moores, B.M.; Connolly, P.A.; Cole, P.R.

    1998-01-01

    The effective implementation of optimisation strategies for radiation protection in diagnostic radiology including nuclear medicine requires mechanisms for ongoing audit of all relevant factors. The Quality Criteria of the Commission of European Communities highlights clearly the three aspects of a radiological examination which needed to be considered, which are: (i) radiographic technique, (ii) patient dose, and (iii) image quality. Therefore, it is important that the choice of a known and acceptable radiographic technique provides a known outcome in terms of patient dose and image quality. This requirement should be capable of being achieved throughout Europe and capable of being updated as new radiological strategies are developed. Audit programmes aimed at monitoring that this situation exists may be considered at three levels: Level 1 involves routine, periodic, assessment of patient doses on a representative sample of patients undergoing a particular type of examination. Results from this audit are then compared with acceptable and clearly defined diagnostic reference levels or reference dose values which provides a framework for guidance on acceptable practice. A summary of such level 1 programmes which are being pursued in Europe is presented. Level 2 audit programmes, beside patient dose assessment, will also involve an assessment of all those parameters relevant to an X ray examination which may have a bearing on the actual dose delivered to the patient. Such level 2 audit programmes provide the basis for implementation of optimisation strategies for radiation protection in terms of risk reduction, one of the fundamental tenets of radiation protection philosophy. Level 3 audit programmes also include assessment and verification of image quality requirements for particular examinations. This latter aspect is a necessary basis for overall optimisation of radiation protection in diagnostic radiology. (author)

  9. Nordic Guidance Levels for Patient Doses in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Saxebol, G.; Olerud, H.M.; Hjardemaal, O.; Leitz, W.; Servomaa, A.; Walderhaug, T.

    1998-01-01

    Within the framework of Nordic authoritative cooperation in radiation protection and nuclear safety, recommendations have been prepared dealing with dose constraints in diagnostic radiology. A working group with participants from all the Nordic countries has met and discussed possible implementations of the ICRP dose constraint for medical radiology. Dose constraints, expressed as guidance levels, were specified for six different radiological examinations, i.e. chest, pelvis, lumbar spine, urography, barium meal and enema in units of kerma-area product and entrance surface dose. The recommendations are described in report No 5 in the series 'Report on Nordic Radiation Protection Cooperation'. Examples of dose distributions and factors affecting the patient dose are described in the report. (author)

  10. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [University of Kentucky (United States)

    2016-06-15

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.

  11. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Zhang, J.

    2016-01-01

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant

  12. Patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Rweyemamu, M.

    2013-04-01

    The objective of this project was to review patient dosimetry aiming at reducing the patient dose during diagnostic procedures while maintaining the best image quality in order to protect patients from ionizing radiation. CT examination was selected in this study to represent imaging protocols with high patient doses used in diagnostic radiology. Dosimetric parameters in CT which are CTDI, CTDIW, DLP, MSAD, organ dose and effective dose were discussed. Parameters such as tube current, tube voltage, filtration, scan volume and slice thickness were found to affect patient dose, therefore proper management of these factors was recommended. For optimization of protection of the patient, application of the “as low as reasonably achievable” (ALARA) principle was recommended as an important key for avoiding overexposure and minimizing patient doses. Also it was recommended that CT examinations should be performed if and only if is the only suitable option when weighed against other options which do not involve ionizing radiation exposure. (author)

  13. Research in diagnostic radiology: a holistic perspective

    International Nuclear Information System (INIS)

    Abrams, H.L.

    1981-01-01

    This 24th Annual Crookshank Lecture of the Royal College of Radiologists reviews the continuity and interactive relationships among the various components of radiological research, with particular reference to imaging. The following aspects are considered: 1) Clinical decision-making indications vs. yield and cost vs. utility in relation to diagnostic processes. 2) Generation of the image, including x-ray tubes, cinefluorography, ultrasound, CT, N.M.R.; biological radiation effects. 3) Enhancement of the image, optimised information yield. 4) Image perception 5) Boundaries of the radiological process, e.g. radioimmunoassay, isotopes in tumour therapy, venous sampling for assay 6) Image interpretation, its pathophysiological roots and resultant disease research 7) Impact of the image, and the effect of the decision process of therapeutic alternatives. (U.K.)

  14. Radiology examination as a diagnostic aid in presentations with ...

    African Journals Online (AJOL)

    Radiology examination as a diagnostic aid in presentations with wide differential diagnoses: Case report of new Hodgkin's lymphoma on a background of poorly controlled HIV. Rachel Hubbard, Jalpa Kotecha, Thomas Nash, Yu Jin Lee, Nasir Khan, Farhat Kazmi ...

  15. Evaluation of entrance skin dose to the skull in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamed, Anas Ali Elbushari

    2015-12-01

    Diagnostic x-ray radiology is a common diagnostic practice.Despite of its increasing hazard to human beings, imaging procedures should be achieved with less radiation dose and sufficient image quality. The aim of this study was to estimate the entrance skin dose(ESD) for patients undergoing selected diagnostic x-ray examinations in four hospitals.The study included the examinations of the skull; posterior- anterior(PA) and lateral projections. Fifty patients were enrolled in this study. ESDs were estimated from patients specific exposure parameters using established relation between output (μGy/mAs) and tube voltage(kVp). The estimated ESDs ranged from 0.0097-0.1846 mGy for skull (PA), 0.0097-0.1399 mGy for skull (LAT). These values were acceptable as compared with the international reference dose levels. This study provides additional data that can help the regulatory authority to establish reference dose levels for diagnostic radiology in Sudan.(Author)

  16. Rapporteurs' report: Workshop on ethical issues in diagnostic radiology

    International Nuclear Information System (INIS)

    O'Reilly, G.; Gruppetta, E.; Christofides, S.; Schreiner-Karoussou, A.; Dowling, A.

    2009-01-01

    This paper presents the summary reports of the session rapporteurs at the Workshop on Ethical Issues in Diagnostic Radiology. The summaries reflect the extent to which the topics discussed are well reflected in the papers presented in this proceedings. (authors)

  17. Radiologic studies in two outbreaks of isolated vasculitis in the central nervous system

    International Nuclear Information System (INIS)

    Robertson, H.J.; Perez, M.; Tilton, A.H.; Garcia, C.; McGarry, P.

    1989-01-01

    Cerebral vasculitis is only occasionally diagnosed with angiography. Two outbreaks of isolated central nervous system vasculitis permitted a comparison of the accuracy of diagnostic radiologic studies. Two new radiologic features and methods of diagnosis are discussed

  18. Picture archiving and communication systems for diagnostic radiology

    International Nuclear Information System (INIS)

    Huang, H.K.; Mankovich, N.J.; Kangarloo, H.; Boechat, M.I.; Dietrich, R.; Hall, T.; Taira, R.K.; Cho, P.S.; Stewart, B.K.

    1987-01-01

    The authors developed two picture archiving and communication system (PACS) modules for pediatric radiology and for coronary care unit use. Both modules have been in clinical operation 24 hours a day, 7 days a week, since March 1987. This exhibit presents all components used in these two modules, including a computed radiographic unit, two film laser scanners, a minicomputer, two large processors, one communication system, one digital optical disk library, one six-512-line monitor station, two three 1,024-line monitor stations, a two-2,048-line monitor station, and one laser film printer. The exhibit summarizes clinical evaluations of these two modules

  19. Excercises in diagnostic radiology. Vol. 8. 2. ed.

    International Nuclear Information System (INIS)

    Langston, C.S.; Squire, L.F.

    1982-01-01

    Diagnostic radiology in emergency patients as a supplement to anamnesis and examination has gained increasing importance in the last few years. Usually, the physician in charge has only few sigus to go by when a patient is gent to radiology. The most frequent sigus are pectoral pain, headache, dysponea, etc. The cases in this book have been selected accordingly. Although the names have been invented the case histories presented have not been greatly changed. The original 'negatives' of the anamnesis presented in most cases unless they would have taken up too much space. No important information has been omitted. Untypical and unusual cases are characterized as such. (orig./MG) [de

  20. Patients exposure assessment for radiographic procedures in diagnostic radiology

    International Nuclear Information System (INIS)

    Arandjic, D.; Ciraj-Bjelac, O.; Stankovic, K.; Lazarevic, Dj.; Ciraj-Bjelac, O.)

    2007-01-01

    In this work the results of dose assessment for the most frequent radiographic procedures in diagnostic radiology are shown. Entrance surface doses were assessed for 7 radiographic procedures. Three hospitals, six x-ray units in total, were enrolled in investigation. Patient doses were estimated based on results of x-ray tube output measurements. Finally, doses were compared with Diagnostic reference level. Higher dose values were observed for chest examinations. In comparison with results from other countries, doses from this procedure in Serbia are significantly higher. Estimated doses for other procedures were well below Diagnostic reference levels [sr

  1. Early resident-to-resident physics education in diagnostic radiology.

    Science.gov (United States)

    Kansagra, Akash P

    2014-01-01

    The revised ABR board certification process has updated the method by which diagnostic radiology residents are evaluated for competency in clinical radiologic physics. In this work, the author reports the successful design and implementation of a resident-taught physics course consisting of 5 weekly, hour-long lectures intended for incoming first-year radiology residents in their first month of training. To the author's knowledge, this is the first description of a course designed to provide a very early framework for ongoing physics education throughout residency without increasing the didactic burden on faculty members. Twenty-six first-year residents spanning 2 academic years took the course and reported subjective improvement in their knowledge (90%) and interest (75%) in imaging physics and a high level of satisfaction with the use of senior residents as physics educators. Based on the success of this course and the minimal resources required for implementation, this work may serve as a blueprint for other radiology residency programs seeking to develop revised physics curricula. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. 42 CFR 413.122 - Payment for hospital outpatient radiology services and other diagnostic procedures.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Payment for hospital outpatient radiology services... radiology services and other diagnostic procedures. (a) Basis and purpose. (1) This section implements section 1833(n) of the Act and establishes the method for determining Medicare payments for radiology...

  3. Assessment of the radiation risk from diagnostic radiology

    International Nuclear Information System (INIS)

    Streffer, C.; Mueller, W.U.

    1995-01-01

    In any assessment of radiation risks from diagnostic radiology the main concern is the possible induction of cancer. It now appears to be beyond all doubt that ionizing rays invite the development of cancer in humans. The radiation doses encountered in diagnostic radiology generally vary from 1 to 50 mSv. For this dose range, no measured values are available to ascertain cancer risks from ionizing rays. The effects of such doses must therefore be extrapolated from higher dose levels under consideration of given dose-effect relationships. All relevant figures for diagnostic X-ray measures are therefore mathematically determined approximate values. The stochastic radiation risk following non-homogeneous radiation exposure is assessed on the basis of the effective dose. This dose was originally introduced to ascertain the risk from radioactive substances incorporated at the working place. A secondary intention was to trigger further developmental processes in radiation protection. Due to the difficulties previously outlined and the uncertainties surrounding the determination and assessment of the effective dose from diagnostic X-ray procedures, this dose should merely be used for technological refinements and comaprisons of examination procedures. It appears unreasonable that the effective doses determined for the individual examinations are summed up to obtain a collective effective dose and to multiply this with a risk factor so as to give an approximation of the resulting deaths from cancer. A reasonable alternative is to inform patients subjected to X-ray examinations about the associated radiation dose and to estimate form this the magnitude of the probable radiation risk. (orig./MG) [de

  4. Computational evaluation of a pencil ionization chamber in a standard diagnostic radiology beam

    International Nuclear Information System (INIS)

    Mendonca, Dalila Souza Costa; Neves, Lucio Pereira; Perini, Ana Paula; Belinato, Walmir

    2016-01-01

    In this work a pencil ionization chamber was evaluated. This evaluation consisted in the determination of the influence of the ionization chamber components in its response. For this purpose, the Monte Carlo simulations and the spectrum of the standard diagnostic radiology beam (RQR5) were utilized. The results obtained, showed that the influence of the ionization chamber components presented no significant influence on the chamber response. Therefore, this ionization chamber is a good alternative for dosimetry in diagnostic radiology. (author)

  5. Imaging and radiology

    Science.gov (United States)

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  6. Development of an international code of practice for dosimetry in X-ray diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.; Carlsson, G.A.; Dance, D.R.; DeWerd, L.A.; Kramer, H.-M.; Ng, K.-H.

    2001-01-01

    Medical x-ray examinations contribute greatly to the population dose from man-made radiation sources. There is a need to control this dose and therefore to optimise the design and use of x-ray imaging systems. A key stage in this process is the standardisation of the procedures for dose measurement in the clinic. The Dosimetry and Medical Radiation Physics Section of the IAEA has a number of activities to further advance the standards for x-ray diagnostics. One of these activities is the coordination of a working group to develop a code of practice, which will facilitate the IAEA calibration activities, TLD intercomparisons and audits, educational activities, and technical assistance to Member States. The code of practice will aid in the standardisation of various dosimetric techniques in x-ray diagnostic radiology. The CoP working group has had an initial meeting to review the current status of dosimetry for conventional radiology, fluoroscopy, mammography, computed tomography and dental radiology. The CoP will include the establishment of standards and calibrations at the SSDLs, phantom and patient measurements and procedures for dosimetry in the clinic. (author)

  7. Diagnostic efficacy of handheld devices for emergency radiologic consultation.

    LENUS (Irish Health Repository)

    Toomey, Rachel J

    2010-02-01

    Orthopedic injury and intracranial hemorrhage are commonly encountered in emergency radiology, and accurate and timely diagnosis is important. The purpose of this study was to determine whether the diagnostic accuracy of handheld computing devices is comparable to that of monitors that might be used in emergency teleconsultation.

  8. Diagnostic radiology on multiple injured patients: interdisciplinary management; Radiologische Diagnostik beim Polytrauma: interdisziplinaeres Management

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmaier, U.; Pfeifer, K.J. [Inst. fuer Radiologische Diagnostik, Klinikum der Univ. Muenchen (Germany); Kanz, K.G.; Mutschler, W. [Chirurgische Klinik Innenstadt, Klinikum der Univ. Muenchen, (Germany)

    2001-06-01

    The presence of a radiologist within the admitting area of an emergency department and his capability as a member of the trauma team have a major impact on the role of diagnostic radiology in trauma care. The knowledge of clinical decision criteria, algorithms, and standards of patient care are essential for the acceptance within a trauma team. We present an interdisciplinary management concept of diagnostic radiology for trauma patients, which comprises basic diagnosis, organ diagnosis, radiological ABC, and algorithms of early clinical care. It is the result of a prospective study comprising over 2000 documented multiple injured patients. The radiologist on a trauma team should support trauma surgery and anesthesia in diagnostic and clinical work-up. The radiological ABC provides a structured approach for diagnostic imaging in all steps of the early clinical care of the multiple injured patient. Radiological ABC requires a reevaluation in cases of equivocal findings or difficulties in the clinical course. Direct communication of radiological findings with the trauma team enables quick clinical decisions. In addition, the radiologist can priority-oriented influence the therapy by using interventional procedures. The clinical radiologist is an active member of the interdisciplinary trauma team, not only providing diagnostic imaging but also participating in clinical decisions. (orig.) [German] Die Anwesenheit des Radiologen im Schockraum und dessen Teamfaehigkeit bestimmen den Status der diagnostischen Radiologie in der Traumaversorgung. Voraussetzung zur Mitarbeit im interdisziplinaeren Traumateam ist die detaillierte Kenntnis der wesentlichen Entscheidungskriterien, Algorithmen und Behandlungsablaeufe. Das hier vorgestellte interdisziplinaere Managementkonzept der radiologischen Diagnostik beim Polytrauma mit Basisdiagnostik, Organdiagnostik, radiologischer ABC-Regel und Algorithmen zur fruehklinischen Behandlung beruht auf einer prospektiven Polytraumastudie mit

  9. The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program.

    Science.gov (United States)

    Collado-Mesa, Fernando; Alvarez, Edilberto; Arheart, Kris

    2018-02-21

    Advances in artificial intelligence applied to diagnostic radiology are predicted to have a major impact on this medical specialty. With the goal of establishing a baseline upon which to build educational activities on this topic, a survey was conducted among trainees and attending radiologists at a single residency program. An anonymous questionnaire was distributed. Comparisons of categorical data between groups (trainees and attending radiologists) were made using Pearson χ 2 analysis or an exact analysis when required. Comparisons were made using the Wilcoxon rank sum test when the data were not normally distributed. An α level of 0.05 was used. The overall response rate was 66% (69 of 104). Thirty-six percent of participants (n = 25) reported not having read a scientific medical article on the topic of artificial intelligence during the past 12 months. Twenty-nine percent of respondents (n = 12) reported using artificial intelligence tools during their daily work. Trainees were more likely to express doubts on whether they would have pursued diagnostic radiology as a career had they known of the potential impact artificial intelligence is predicted to have on the specialty (P = .0254) and were also more likely to plan to learn about the topic (P = .0401). Radiologists lack exposure to current scientific medical articles on artificial intelligence. Trainees are concerned by the implications artificial intelligence may have on their jobs and desire to learn about the topic. There is a need to develop educational resources to help radiologists assume an active role in guiding and facilitating the development and implementation of artificial intelligence tools in diagnostic radiology. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Quantitative evaluation of risks for individuals in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Iinuma, T A; Tateno, Y; Hashizume, T [National Inst. of Radiological Sciences, Chiba (Japan)

    1980-05-01

    A method to estimate quantitatively risks of individual patients due to exposure to diagnostic radiation (carcinogenetic and genetic effects of radiation) was proposed on the basis of ICRP-26. Carcinogenetic effect of radiation was calculated by multiplying mean dose equivalent for each organ per each radiological examination by shortening of average life-expectancy which was calculated from incidence of fetal carcinoma of each organ, latent period of carcinoma, and incidence period of carcinoma. Genetic effect of radiation was calculated by multiplying mean dose equivalent for gonad per each radiological examination by incidence of genetically severe radiation damages due to parent's exposure and child expectancy rate. Three examples were shown on calculations of risks in the photofluorographic examinations of the stomach and chest, and mammography. The same method of calculation could be applied to the in-vivo nuclear medicine examinations. Further investigation was required to calculate the risks quantitatively for various types of diagnostic procedures using radiation.

  11. Quantitative evaluation of risks for individuals in diagnostic radiology

    International Nuclear Information System (INIS)

    Iinuma, T.A.; Tateno, Yukio; Hashizume, Tadashi

    1980-01-01

    A method to estimate quantitatively risks of individual patients due to exposure to diagnostic radiation (carcinogenetic and genetic effects of radiation) was proposed on the basis of ICRP-26. Carcinogenetic effect of radiation was calculated by multiplying mean dose equivalent for each organ per each radiological examination by shortening of average life-expectancy which was calculated from incidence of fetal carcinoma of each organ, latent period of carcinoma, and incidence period of carcinoma. Genetic effect of radiation was calculated by multiplying mean dose equivalent for gonad per each radiological examination by incidence of genetically severe radiation damages due to parent's exposure and child expectancy rate. Three examples were shown on calculations of risks in the photofluorographic examinations of the stomach and chest, and mammography. The same method of calculation could be applied to the in-vivo nuclear medicine examinations. Further investigation was required to calculate the risks quantitatively for various types of diagnostic procedures using radiation. (Tsunoda, M.)

  12. Patient dosimetry in diagnostic radiology

    Directory of Open Access Journals (Sweden)

    Ciraj-Bjelac Olivera F.

    2003-01-01

    Full Text Available The objective of this work is to assess patient organ doses, effective doses and entrance surface doses in conventional diagnostic radiology procedures for standard adult patient. The survey consists of measurements of doses delivered to 239 patients in nine types of X-ray examinations. Three types of data were collected: X-ray machine data, patient data, and output measurements. Entrance surface dose was assessed based on the survey data and subsequently, using conversion coefficients, the organ doses and effective doses were calculated. Values of the entrance surface dose and the effective dose were estimated to be 0.4 to 5.8 mGy and 0.03 to 3.00 mSv for different examinations. Derived doses were compared with recommended general diagnostic reference levels. The impact of examination parameters on dose values was discussed. Except for posterior-anterior chest examination, all estimated doses are lower than stated reference levels. Survey data are aimed at helping development of national quality control and radiation protection programmed for medical exposures.

  13. Surgical requirements for radiological diagnostics of liver pathologies

    International Nuclear Information System (INIS)

    Gruenberger, T.

    2004-01-01

    Radiology is an essential preoperative tool for a liver surgeon to plan extent of resection and potential difficulties during liver surgery. Primary goal in defining liver pathologies is a careful patients' history, a clinical evaluation and reviewing at least one radiological film one could acquire. Don't rely on written reports that may direct you in a useless track. This overview tries to address the essential radiological requests of a surgeon in defining liver tumors ethiology and best optional treatment. Major advances in radiologic diagnostics led to an improvement in the adequate staging of a given liver pathology. Therefore we are nowadays able to inform our patients about possible treatment options without leaving a big gap to possible intra-operative findings which may alter the therapy. Surgical exploration to define therapeutic strategies becomes fundamental only in a minority of patients with unclear preoperative imaging studies. Interdisciplinary groups should define future strategies in a patient with a given liver pathology. Specialisation has defined the hepatobiliary surgeon which should be consulted in case of a liver or biliary tumor to guide possible therapeutic treatment options. (orig.) [de

  14. Evolution of diagnostic reference levels in Spanish intraoral radiology

    International Nuclear Information System (INIS)

    Alcaraz, M.; Velasco, F.; Martinez-Beneyto, Y.; Alcaraz-Saura, M.; Velasco, E.; Achel, G. D.; Canteras, M.

    2008-01-01

    A total of 16 175 official reports of quality assurance on dental radiodiagnostic surgeries from 16 Spanish autonomous regions compiled during 2002-09 were studied to determine the evolution of diagnostic reference levels (DRLs) for obtaining a diagnostic image in the normal conditions of clinical practice in Spanish dental clinics. A DRL of 3.1 mGy was set in 2009, which represents a 35.4 % decrease compared with the dose determined in 2002 (4.8 mGy). During the same period, the mean dose fell by only 17.2 %. The DRL recommended by the European Union in 2004 for intraoral radiology is 4 mGy, and this study shows that 83.4 % of the installations used a dose below this. Of the installations using indirect or direct digital systems 1.1 and 1.2 %, respectively, used doses higher than those recommended, while 14.2 % of those using radiographic film exceeded this limit. (authors)

  15. Tasks of physicists and graduated engineers in diagnostic radiology

    International Nuclear Information System (INIS)

    Angerstein, W.

    1987-01-01

    The tasks of physicists and engineers in diagnostic radiology are compiled and trends of development are discussed. Specific duties can be selected from these tasks for each department and physicist individually. An attempt is made to characterize the specific tasks of medical physics. The most important tasks are concerning subjects of (1) investment planning, (2) quality control and quality assurance, (3) service and maintenance, (4) radiation protection and electrical safety, (5) development, testing and adaption of equipment, (6) assistance in running the radiologic department, (7) research, (8) pre- and postgraduate training, (9) educational training, (10) miscellaneous. (author)

  16. Pre-surgical radiologic diagnostics of pancreas diseases

    International Nuclear Information System (INIS)

    Seifried, C.

    1979-01-01

    At the example of a comparative study with 112 patients it should be demonstrated that the different radiologic techniques are complementary in pancreas diagnostics with respect to their indication and proposition. The study yields the following procedure for the pancreas diagnostics: cysts and pancreatites are diagnosed by means of sonography and computed tomography. Stomach-colon-barium passage and intravenous cholangio cholecystography can be applied for clarification of functional reactions on the stomach-colon regions, respectively the biliary region. Only in a complicated process, e.g. in a sustaining tumor suspicion or before surgery should angiography be used. In pancreatitis also the endoscopic retrograde cholangio-pancreatiography is used. Tumors are generally submitted to angiography for clarification of diagnosis, resiscivity, and vessel conditions. (orig./MG) [de

  17. DXRaySMCS. First user friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation in Iran

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Zare, H.; Moradi Faradanbe, H.

    2008-01-01

    An accurate knowledge of the output energy spectra of an x-ray tube is essential in many areas of radiological studies. It forms the basis of almost all image quality simulations and enable system designers to predict patient dose more accurately. Many radiological physics problems that can be solved by Monte Carlo simulation methods require an x-ray spectra as input data. Computer simulation of x-ray spectra is one of the most important tools for investigation of patient dose and image quality in diagnostic radiology systems. In this work the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of x-ray spectra in diagnostic radiology, Electron's path in the target was followed until it's energy was reduced to 10 keV. A user friendly interface named 'Diagnostic X-ray Spectra by Monte Carlo Simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user friendly interface for modifying the MCNP input file, launching the MCNP program to simulate electron and photon transport and processing the MCNP output file to yield a summary of the results (Relative Photon Number per Energy Bin). In this article the development and characteristics of DXRaySMCS are outlined. As part of the validation process, out put spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study. (author)

  18. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P Thermoluminescent Dosemeter and its applications in diagnostic radiology - a review

    International Nuclear Information System (INIS)

    Fung, K.L.

    2004-01-01

    This study investigated the dosimetric properties of the high sensitivity TLD (Thermoluminescent Dosemeter) of LiF:Mg,Cu,P and its applications in diagnostic radiology. A reproducible readout and annealing regime for this high sensitivity TLD was developed in the initial part of this study with the newly installed automatic TLD Reader system. Basic dosimetric characteristics of this T.L. dosemeter were then investigated. This paved the foundation for subsequent selected novel application studies in diagnostic radiology. This study exploits the favourable dosimetric properties of these T.L. dosemeters in some selected novel dosimetric applications in diagnostic radiology with an anthropomorphic phantom. The applications studied in radiological procedures included: dose reduction in lumbar spine radiography utilizing the 'anode heel effect'; gonad dose variation with kV p in chest radiography; foetal dose comparison between computed tomography (CT) and computed radiography (CR) in X-ray pelvimetry; lens dose reduction with bismuth eye-shields in CT brain studies; foetal dose assessment of early pregnancy in common high risk radiological examinations. It is anticipated that the unique and favourable dosimetric performance of LiF:Mg,Cu,P T.L. phosphor will be exploited further in measurements of low level dose received by patients and staff in diagnostic radiological procedures such as paediatric X-ray examinations

  19. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P Thermoluminescent Dosemeter and its applications in diagnostic radiology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Fung, K.L. E-mail: orkarl@polyu.edu.hk

    2004-05-01

    This study investigated the dosimetric properties of the high sensitivity TLD (Thermoluminescent Dosemeter) of LiF:Mg,Cu,P and its applications in diagnostic radiology. A reproducible readout and annealing regime for this high sensitivity TLD was developed in the initial part of this study with the newly installed automatic TLD Reader system. Basic dosimetric characteristics of this T.L. dosemeter were then investigated. This paved the foundation for subsequent selected novel application studies in diagnostic radiology. This study exploits the favourable dosimetric properties of these T.L. dosemeters in some selected novel dosimetric applications in diagnostic radiology with an anthropomorphic phantom. The applications studied in radiological procedures included: dose reduction in lumbar spine radiography utilizing the 'anode heel effect'; gonad dose variation with kV{sub p} in chest radiography; foetal dose comparison between computed tomography (CT) and computed radiography (CR) in X-ray pelvimetry; lens dose reduction with bismuth eye-shields in CT brain studies; foetal dose assessment of early pregnancy in common high risk radiological examinations. It is anticipated that the unique and favourable dosimetric performance of LiF:Mg,Cu,P T.L. phosphor will be exploited further in measurements of low level dose received by patients and staff in diagnostic radiological procedures such as paediatric X-ray examinations.

  20. Required internship in diagnostic radiology in the fifth year of medicine at Montreal University

    International Nuclear Information System (INIS)

    Saint-Georges, G.; Raymond-Tremblay, D.; Danais, S.; Dussault, R.; Grignon, A.; Lafortune, M.; Saltiel, J.

    1984-01-01

    Problems of methodology, organization, and evaluation confronting the radiology departments of the university hospitals affiliated with the University of Montreal, the medical students, and the University itself in connection with an elective internship in radiology offered in the fifth year of medicine, resulted in the formation of a committee to reorganize the course of study. In this concise article the authors describe this and other measures taken by the University to solve these problems. The committees' main purpose was to restructure the internship which was made compulsory so that future physicians would be prepared to draw on the resources of diagnostic radiology and nuclear medicine. To this end, the committee formulated the objectives, content, evaluation system, and pedagogical methods to be used in those courses. The 25 self-teaching modules, together with the observation and practical interpretation of radiology sessions, proved highly useful in solving the initial problems, and were of particular interest to the students. (author)

  1. Evaluations of gonad and fetal doses for diagnostic radiology.

    Science.gov (United States)

    Tung, C J; Tsai, H Y

    1999-07-01

    A national survey of patient doses for diagnostic radiology was planned in the Republic of China. We performed a pilot study for this survey to develop a protocol of the dose assessments. Entrance skin doses and organ (including ovary, testicle and uterus) doses were measured by thermoluminescent dosimeters and calculated by means of Monte Carlo simulations for several diagnostic procedures. We derived a formula and used the RadComp software for the computation of entrance skin doses. This formula involves several factors, such as kVp, mAs, the focus-to-skin-distance and aluminum filtration. RadComp software was applied to obtain free-air entrance exposures which were converted to entrance skin doses by considering the backscattering radiation from the body. Organ doses were measured using a RANDO phantom and calculated using a mathematical phantom for several diagnostic examinations. Genetically significant doses were calculated from ovary and testicle doses for the evaluation of hereditary effects. Embryo/fetal doses were determined from the uterine doses by considering the increase in uterus size with gestational age. We found that the patient doses studied in this work were all below the reference doses recommended by the National Radiological Protection Board of the U.K.

  2. A review of current radiation protection in radiological diagnostics in Montenegro

    International Nuclear Information System (INIS)

    Mijovic, Slavoljub; Kovacevic, Zarko; Vuceljic, Mira; Scepanovic, Mara; Picuric, Ivana; Mardjokic, Aleksandar

    2008-01-01

    After getting independence 2006 year and became 192nd member of UN, Montenegro state is conducting measures for radiation protection autonomously. Because of complexity of such issues, Montenegro faced a lot of problems: lack of a national legal system in this field, expertise, appropriate equipments etc. Some estimates have shown that the major exposures of populations in Montenegro to ionizing radiation are due to the medical care. The purpose of this work is to analyze current protection in radiological diagnostics in Montenegro and compare it with international standards. It could be clearly stated where they are in agreement or disagreement. The method of analyzing is a holistic one, starting from the law, regulations and decisions through the protocols of quality controls and finishing with the reports and database of important parameters and data. The main findings are stated as follows: although the current radiation protection in radiological diagnostics is conducting according the law of former Federal Republic of Yugoslavia (FRY) and its regulations and decisions, the overall legal system is still satisfactory; Identification and location of radiation sources through a system of notification and maintaining a national inventory is not satisfactory; There are a lack of expertise and equipments for the technical services, although the procedures and protocols of the quality control are at a satisfactory level; There is a lack of knowledge of professional staff working in this field. The practice is sometimes operated carelessly; The patients protection is satisfactory but there is not care to decrease a level of exposure according the ALARA principle. (author)

  3. Challenges in setting up quality control in diagnostic radiology ...

    African Journals Online (AJOL)

    Journal Home > Vol 24, No 4 (2015) >. Log in or ... Quality control (QC) on diagnostic radiology equipment form part of the fundamental requirements for the ... Inadequate cooperation by facilities management, lack of QC equipment and insufficient staff form the major challenges in setting up QC in the facilities under study.

  4. Genetically significant dose from diagnostic radiology in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Darby, S C; Wall, B F [National Radiological Protection Board, Harwell (UK)

    1981-01-01

    A brief discussion is presented of the use of population and child expectancy data to estimate the annual genetically significant dose for diagnostic radiology (GSD). The current estimate of GSD is compared with that reported in a survey 20 years previously. Comparisons are made with estimates of GSD from other countries.

  5. Exposure of the bulgarian population from diagnostic radiology during 2001/2006 y

    International Nuclear Information System (INIS)

    Kostova-Lefterova, D.; Ingilizova, K.

    2008-01-01

    Each Member State of the European Union is currently committed to produce national legislation, demonstrating conformity with the European Directive on medical exposures. According to the Directive, each country shall estimate the medical exposure of its population. For this purpose it is necessary to calculate the individual effective dose from each type of diagnostic radiology examination and the frequency of the examinations. The collective effective dose (CED) is disputable indicator for the medical exposures but it is a criterion for the level of the country on the radiation protection of persons undergoing medical exposure. The individual effective doses from each type of diagnostic radiology examination will depend on the patient's age, sex, weight, the number and type of images, the screening time and also the equipment used. Some mean values can be obtained through surveys of patient dose and compared with the national or European reference doses for 'standard sized' patients. The aim of this investigation is to assess the exposure of Bulgarian population undergoing diagnostic radiology examinations. The diagnostic radiology procedures are in 30 positions, distributed in 3 age groups: 0 - 17 y., 17 - 45 y. and over 45 y. For the assessment of the CED the generally accepted formula has been applied. The individual effective doses have been established on the basis of standard tablegrams for the radiographic diagnostic examinations and the results from the national research project 'Phare' in 2002. Presented data are: average number of examinations 3848.92x10 3 , frequency in thousands 500, annual effective individual dose 0.89 mSv/y and average annual collective effective dose - 3314.59 man.Sv/y. The mean effective dose per caput of population for medical exposures can then be compared with that of other countries having similar levels of health care. Comparisons can also be made with exposure of the population from other sources of radiation. The dynamics

  6. Survey of diagnostic radiology in the Republic of Ireland

    International Nuclear Information System (INIS)

    Cunningham, J.D.; Howett, D.; Hone, C.; Mulholland, C.

    1988-03-01

    This survey examined a number of aspects of the practice of diagnostic radiology in Ireland. These included the frequency of examinations, the gonadal and active bone marrow doses to patients, the genetically significant dose, the standard of design of x-ray rooms and of performance of equipment, and an inventory of equipment currently in use (author)

  7. Radiology systems architecture.

    Science.gov (United States)

    Deibel, S R; Greenes, R A

    1996-05-01

    This article focuses on the software requirements for enterprise integration in radiology. The needs of a future radiology systems architecture are examined, both at a concrete functional level and at an abstract system-properties level. A component-based approach to software development is described and is validated in the context of each of the abstract system requirements for future radiology computing environments.

  8. National radiology standards in X-ray diagnostic incl. interventional radiology

    International Nuclear Information System (INIS)

    Valek, V.; Kratochvil, P.

    2005-01-01

    In 2004 the Ministry of Health care started within the frame of the program for support of quality in health care a project consisting of 4 separate tasks: creating of standards for medical irradiation in radiodiagnostics, in radiotherapy , in nuclear medicine and creating of standards for patients dose assessment in radiophysics. This document continues with description of a part of the project aimed on X-ray radiodiagnostics. The authors of the project were chosen based on their bids to the public grant issued by the Ministry of Health care. The authors used recommendations, guidelines and instructions of international professional societies and IAEA, as well as the already existing procedures and practices while considering possibilities and state of the praxis in the Czech Republic. The outcome of authors work is now an interim version of a document that will be published in the bulletin of the Ministry of Health care. The document contains a set of standards that cover the whole range o fall complimentarily performed ways of patients irradiation in X-ray diagnostics and interventional radiology . The standards are divided to several categories according to the requirement of the Ministry of Health care based on the diagnostic appliances used for diagnostic irradiation i.e. radiography , fluoroscopy, mammography, stomatology, computer tomography, angiography, interventional radiography and cardiography. (authors)

  9. RANZAR Body Systems Framework of diagnostic imaging examination descriptors

    International Nuclear Information System (INIS)

    Pitman, Alexander D.; Penlington, Lisa; Doromal, Darren; Vukolova, Natalia; Slater, Gregory

    2014-01-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were ‘greyed out’. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities.

  10. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    Science.gov (United States)

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  11. Radiology. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Reiser, Maximilian; Kuhn, Fritz-Peter; Debus, Juergen

    2011-01-01

    The text book on radiology covers the following issues: Part A: General radiology: Fundamental physics: radiation biology; radiation protection fundamentals: radiologic methods; radiotherapy; nuclear medicine. Part B: Special radiology: Thorax; heart; urogenital tract and retroperitoneum; vascular system and interventional radiology; esophagus, stomach, small and large intestines; liver, biliary system, pancreas and spleen; mammary glands; central nervous system; spinal cord and spinal canal; basis of the skull, facial bones and eye socket; neck; pediatric imaging diagnostics.

  12. Probability of causation tables and their possible implications for the practice of diagnostic radiology

    International Nuclear Information System (INIS)

    Gur, D.; Wald, N.

    1986-01-01

    In compliance with requirements in the Orphan Drug Act (97-414) of 1983, tables were recently constructed by an ad hoc committee of the National Institutes of Health (NIH) in which the probabilities that certain specific cancers are caused by previous radiation exposure are estimated. The reports of the NIH committee and a National Academy of Science oversight committee may have broad implications for the future practice of diagnostic radiology. The basis on which the probability of causation tables were established and some of the possible implications for diagnostic radiology are discussed

  13. Risks and benefits of diagnostic radiology. A contribution to quality assurance

    International Nuclear Information System (INIS)

    Angerstein, W.

    1995-01-01

    After some introductory remarks on the necessity of determining quantitative standards in diagnostic radiology as one of the key subjects in medicine, the author discusses eight statistical quantities that describe and elucidate the activities in the subject field. These quantities establish a connection between parameters such as number of images, examinations, patients and the number of therapy-relevant diagnoses, false diagnoses and incidents, and establish a relationship to the collective dose as a value indicating the radiation dose and the number of radiation injuries. These quantities can in principle be derived as retrospective or prospective data. Knowledge of these quantities would indeed represent an essential contribution to assessing the value of diagnostic radiology, risks involved, and achievement of quality assurance goals. For a number of relevant quotients, the article gives concrete values derived on the basis of evaluation of data collected at various medical centers, or obtained from regional or Land statistics of the former GDR. These data and the collective dose to be computed in addition, allow to derive a quotient composed of the benefits and the risks of diagnostic radiology, giving the relationship between the number of therapy-relevant diagnoses and the number of casualties. The value of this quotient depends on the examination method applied and usually is between 1000 and more than 100 000, and thus is lower than the risk quotients calculated for other fields of medicine, or non-medical fields [de

  14. Telemedicine-based system for quality management and peer review in radiology.

    Science.gov (United States)

    Morozov, Sergey; Guseva, Ekaterina; Ledikhova, Natalya; Vladzymyrskyy, Anton; Safronov, Dmitry

    2018-06-01

    Quality assurance is the key component of modern radiology. A telemedicine-based quality assurance system helps to overcome the "scoring" approach and makes the quality control more accessible and objective. A concept for quality assurance in radiology is developed. Its realization is a set of strategies, actions, and tools. The latter is based on telemedicine-based peer review of 23,199 computed tomography (CT) and magnetic resonance imaging (MRI) images. The conception of the system for quality management in radiology represents a chain of actions: "discrepancies evaluation - routine support - quality improvement activity - discrepancies evaluation". It is realized by an audit methodology, telemedicine, elearning, and other technologies. After a year of systemic telemedicine-based peer reviews, the authors have estimated that clinically significant discrepancies were detected in 6% of all cases, while clinically insignificant ones were found in 19% of cases. Most often, problems appear in musculoskeletal records; 80% of the examinations have diagnostic or technical imperfections. The presence of routine telemedicine support and personalized elearning allowed improving the diagnostics quality. The level of discrepancies has decreased significantly (p elearning significantly decrease the number of discrepancies. • Teleradiology allows linking all primary-level hospitals to a common peer review network.

  15. Course of radiological protection and safety in the medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Dominguez A, C.E.

    1997-01-01

    The obtention of images of human body to the medical diagnostic is one of the more old and generalized applications for X-ray. Therefore the design and performance of equipment and installations as well as the operation procedures must be oriented toward safety with the purpose to guarantee this radiological practice will bring a net positive benefit to the society. Given that in Mexico only exists the standardization related to source and equipment generators of ionizing radiation in the industrial area and medical therapy, but not so to the medical diagnostic area it is the purpose of this work to present those standards related with this application branch. Also it is presented the preparation of a manual for the course named Formation of teachers in radiological protection and safety in the X-ray medical diagnostic in 1997 which was imparted at ININ. (Author)

  16. Sampling on radiological protection training in diagnostic radiology

    International Nuclear Information System (INIS)

    Gaona, E.

    2001-01-01

    Radiological security aspects were evaluated in radiology departments from Mexico City. The study was carried out in two stages, the first one evaluated 40 departments just before the implementation of the new Official Mexican Standards related to Radiological Security and Quality Control in Radiology; in the second stage 33 departments were evaluated 2 years after those standards were implanted, showing a favorable impact of the training programs for the type of answers obtained [es

  17. Proposal of dose constraint values to the patient in diagnostic radiology

    International Nuclear Information System (INIS)

    Arranz, L.; Sastre, J.M.; Ferrer, N.; Andres, J.C. De; Guibelalde, E.; Tobarra, B.; Madrid, G.

    1996-01-01

    A dose constraint is the value of an individual dose not to be exceeded in the individual dose distribution considered in an optimization process. The objective of a dose constraints is to set a ceiling to the doses to individual from a source, practice or task which are considered acceptable in the optimization process at the design stage. Implicitly, as C. Zuur states, dose constraints are below the relevant dose limit and usually should be established as local or national levels. Exposures for medical purposes are not subject to dose limits and hence dose constraints were recommended by the ICRP just for occupational and public exposures. However, as an effective tool for optimization for medical exposures, ICRP-60 in paragraph 180 recognizes the value of applying this concept to patient diagnostic radiology with some peculiarities: 'Considerations should be given to the use of dose constraints, or investigation levels, selected by the appropriate professional or regulatory agency, for application in some common diagnostic procedures. They should be applied with flexibility to allow higher cases where indicated by sound clinical judgement.' This paper analyzes retrospectively the dose levels imparted to patient in some common examinations (chest, lumbar spine and mammography) at different optimization stages of different facilities to propose some local constraints for diagnostic examinations. Dose values have been obtained under routine working conditions. Centres included in the survey have been chosen all over Spain, classifying them with particular attention to the following aspects: -Organizational aspects of the diagnostic radiology service, i.e., operational, technical and clinical criteria, as well as quality requirements. - Evaluation and revision of routine medical protocols. -Quality control of the radiological equipment. - Quality criteria for the surveillance of the weekly procedures, with requirements of proper training of die technical staff

  18. Quality assurance, quality control and quality audit in diagnostic radiology

    International Nuclear Information System (INIS)

    Vassileva, J.

    2009-01-01

    Full text:The lecture aims to present contemporary view of quality assurance in X-Ray diagnosis and its practical realization in Bulgaria. In the lecture the concepts of quality assurance, quality control and clinical audit will be defined and their scope will be considered. An answer of the following questions will be given: why is it necessary to determine the dose of patient in X-ray studies, what is the reference dose level and how it is used for dosimetric quantity which characterized the patient's exposure in X-ray, mammography and CT scans and how they are measured, who conducted the measurement and how to keep the records, what are the variations of doses in identical tests and what defines them? The findings from a national survey of doses in diagnostic radiology, conducted in 2008-2009 and the developed new national reference levels will be presented. The main findings of the first tests of radiological equipment and the future role of quality control as well as the concept of conducting clinical audit and its role in quality assurance are also presented. Quality assurance of the diagnostic process with minimal exposure of patients is a strategic goal whose realization requires understanding, organization and practical action, both nationally and in every hospital. To achieve this the important role of education and training of physicians, radiological technicians and medical physicists is enhanced

  19. Magnitudes and units in the X-ray dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Tovar M, V. M.; Cejudo A, J.; Vergara M, F.

    2009-10-01

    The dosimetry objective in the radiological image is the quantification from the exposition to the radiation with a commitment of optimizing the image quality to the reason of the absorbed dose. The dosimetry has the meaning of avoiding excessive dose that could imply a significant risk of deterministic effects induction. The dosimetric magnitudes and dosimetry protocols in the radiological image, are those that are related to the risks for the patient. Exist in diagnostic radiology two fundamentals reason to measure or to estimate the patient radiation dose. First, the mensurations are a means to verify the good practices and an aid to the optimization of the patient protection. Second, the absorbed dose estimation to tissues and organs in the patient are necessary to determine the risks, and this way to indicate that the radiological techniques employees can be justified and in investigated cases of over exposition. (Author)

  20. Examinations and patient management in radiologic diagnostics by means of a computerized data-processing communications system

    International Nuclear Information System (INIS)

    Klotz, E.; Remplik, V.; Opfer, M.; Wilde, E.

    1986-01-01

    Concept, realization and a two-year experience in routine use of a computerized data-processing communications system supporting the central radiology department in a 1.625-bed, municipal hospital are discussed. Via the hospital ward-linked terminal network, routine X-ray examination is so ordered, that individual medical case information is provided, which certifies qualified clinical and diagnostic procedure along with good patient preparation and transportation. Complete information and documentation are also ensured. It was shown, that good motivation among involved radiologists and their close working-association with other departments are mandatory from the start to maintain exact time schedules and satisfactory completion of ordered X-ray procedures. Subsequently, the assistance through computerized data-processing becomes an accepted help - so far as it is appropriately used - as time goes by in its routine use. (orig.) [de

  1. Quality control of conventional diagnostic radiology equipment in Serbia and Montenegro

    International Nuclear Information System (INIS)

    Ciraj, O.; Kosutic, D.; Markovic, S.

    2003-01-01

    There are more than 1500 diagnostic X-ray tubes in service in Serbia and Montenegro. Diagnostic X-ray equipment is checked on annual basis. X-ray equipment Qc protocols have been adopted from several international standards and guidelines [1,2], which have been modified according our practice and measuring equipment. According our inventory, about one half of all installed units is used for conventional X-ray diagnostics, 10% are mobile units, 2% of all in units in operation are mammographic devices an another 2% are computed tomography units. In addition there are about 600 dental X-ray units, which is 36% of all units. It is worth mentioning that almost 30 % of all installed units have single-phase generators, another 25% are tree phase (six and twelve pulse) generators and nearly 9% are high frequency units. Majority of units was installed more than 25 years ago. The Quality Control (QC) in radiography is a central part of QA programme, which deals with equipment maintenance and monitoring. QA in diagnostic radiology is a mean of maintaining standards in imaging and working towards minimizing patient and staff doses. As a part of QA programme in diagnostic radiology, the performance characteristics of 96 conventional X-ray units were measured in six months period during 2003. The diagnostic units were located in hospitals all over the country. They represent 25% of the total conventional diagnostic units of the country. About one half of measured X-ray units were new-installed. QC program has positive effect on X-ray equipment performance in a period of a few years. It is essential to perform QC tests for all installed X-ray units at least on annual basis. This would lead to production of consistent X-ray images, with minimal retake rate and hence, will contribute to decreasing of the patient dose. Patient doses are determined by multitude factors which interact in very complicated manner. It is very important to perform real patient dose measurements in

  2. Clinical applications of SONIALVISION 100 digital diagnostic table system

    International Nuclear Information System (INIS)

    Shiomi, Takeshi; Shimizu, Tatsuya; Iinuma, Masao; Takemoto, Hajime; Tanaka, Shuji

    2003-01-01

    This report refers to the clinical applications of our newly developed SONIALVISION 100 fully digitalized X-ray diagnostic table system. The main design concept of the SONIALVISION 100 system is the improvement of workflow in various clinical fields. The development of digital imaging technologies has come to allow fully digitalized X-ray diagnostic table systems to be widely utilized in various clinical applications, including interventional radiology (IVR) and examinations using contrast medium. This report mainly refers to the clinical applications of the Shimadzu SONIALVISION 100 digitalized X-ray diagnostic table system, also presenting some typical image data demonstrating the high efficiency, made available through the use of this new system, in high-speed spot imaging and digital tomography. (author)

  3. Indonesia's experience with IAEA-CRP on radiation protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Nasukha

    2001-01-01

    IAEA-CRP on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction has as participants some Asian and East European countries. Indonesia is one of participants that followed the IAEA program. This paper is not a discussion of CRP-results since it will be published as a TECDOC soon. But the work on evaluation of examination frequencies, film reject rate analysis, patient dose measurements, image quality before and after Quality Control (QC) and QC itself, gave some experiences to investigators to be explored and presented. Experiences could be in the form of problems, how to solve problems and some suggestions, starting from no QC up to complicated QC to be faced in conventional radiography to CT-scan and fluoroscopy units. These valuable experiences of Indonesia are proven exercise of IAEA-CRP as a good start for next CRP or national projects in diagnostic radiology. (author)

  4. Radiation protection in medical diagnostic radiology in the city of Sobral, Brazil

    International Nuclear Information System (INIS)

    Menezes, F.L.; Paschoal, C.M.M.; Ferreira, F.C.L.; Alcantara, M.C.

    2015-01-01

    The objective of this study was to evaluate the suitability to radiation protection of four diagnostic radiology medical services in the city of Sobral-CE, Northeast of Brazil, and to analyze results of the literature for the cities of Rio Branco-AC, North of Brazil, and Rio de Janeiro-RJ, South-east of Brazil. In Sobral-CE, it was performed interviews and direct observations with reference to Brazilian law, the National Ordinance No.453/1998 of the Ministry of Health that regulates the operation of medical and odontological diagnostic radiology services. The results show the occurrence of many items in disagreement with the standard. The technical and operational infractions have basically due to unfamiliarity with the legislation, the lack of investment in training and/or professional development courses. (authors)

  5. The current contribution of diagnostic radiology to the population dose in Great Britain

    International Nuclear Information System (INIS)

    Wall, B.F.; Rae, S.; Kendall, G.M.; Darby, S.C.; Fischer, E.S.; Harries, S.V.

    1980-01-01

    The National Radiological Protection Board of the UK has just completed a national survey to determine the genetically significant dose (GSD) to the population of Great Britain from diagnostic radiology. A statistically selected sample of about 80 hospitals spread throughout England, Scotland and Wales has supplied information on the numbers of patients examined in their X-ray departments during a week in June 1977, together with details of age, sex and examination technique. This sample is sufficient to make a reliable estimate of the total diagnostic work-load in all National Health Service Hospitals throughout Great Britain for a year. Gonadal doses from 16 examination types that are likely to be the main contributors to the GSD have been measured on nearly 5000 patients at 20 hospitals throug'out the country using specially developed thermoluminescent dosemeters. These gonadal doses are combined with the examination frequency figures and current values for child expectancy derived from data supplied by tthe registrar general, to estimate the GSD. Those changes in practice which have occurred since the late 1950's which may have influenced the new value for the GSD are discussed, as well as the progress that has been made in estimating population somatic doses from diagnostic radiology using clinical measurements that are currently underway. (H.K.)

  6. Radiology. 3. rev. and enl. ed.; Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Maximilian [Klinikum der Universitaet Muenchen (Germany). Inst. fuer Klinische Radiologie; Kuhn, Fritz-Peter [Klinikum Kassel (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Debus, Juergen [Radiologische Universitaetsklinik, Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie

    2011-07-01

    The text book on radiology covers the following issues: Part A: General radiology: Fundamental physics: radiation biology; radiation protection fundamentals: radiologic methods; radiotherapy; nuclear medicine. Part B: Special radiology: Thorax; heart; urogenital tract and retroperitoneum; vascular system and interventional radiology; esophagus, stomach, small and large intestines; liver, biliary system, pancreas and spleen; mammary glands; central nervous system; spinal cord and spinal canal; basis of the skull, facial bones and eye socket; neck; pediatric imaging diagnostics.

  7. Quality control in diagnostic radiology: software (Visual Basic 6) and database applications

    International Nuclear Information System (INIS)

    Md Saion Salikin; Muhammad Farid Abdul Khalid

    2002-01-01

    Quality Assurance programme in diagnostic Radiology is being implemented by the Ministry of Health (MoH) in Malaysia. Under this program the performance of an x-ray machine used for diagnostic purpose is tested by using the approved procedure which is commonly known as Quality Control in diagnostic radiology. The quality control or performance tests are carried out b a class H licence holder issued the Atomic Energy Licensing Act 1984. There are a few computer applications (software) that are available in the market which can be used for this purpose. A computer application (software) using Visual Basics 6 and Microsoft Access, is being developed to expedite data handling, analysis and storage as well as report writing of the quality control tests. In this paper important features of the software for quality control tests are explained in brief. A simple database is being established for this purpose which is linked to the software. Problems encountered in the preparation of database are discussed in this paper. A few examples of practical usage of the software and database applications are presented in brief. (Author)

  8. Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability

    Energy Technology Data Exchange (ETDEWEB)

    Rengier, Fabian, E-mail: fabian.rengier@web.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Häfner, Matthias F. [University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Unterhinninghofen, Roland [Karlsruhe Institute of Technology (KIT), Institute for Anthropomatics, Department of Informatics, Adenauerring 2, 76131 Karlsruhe (Germany); Nawrotzki, Ralph; Kirsch, Joachim [University of Heidelberg, Institute of Anatomy and Cell Biology, Im Neuenheimer Feld 307, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Giesel, Frederik L. [University of Heidelberg, Institute of Anatomy and Cell Biology, Im Neuenheimer Feld 307, 69120 Heidelberg (Germany); University Hospital Heidelberg, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany)

    2013-08-15

    Purpose: Integrating interactive three-dimensional post-processing software into undergraduate radiology teaching might be a promising approach to synergistically improve both visual-spatial ability and radiological skills, thereby reducing students’ deficiencies in image interpretation. The purpose of this study was to test our hypothesis that a hands-on radiology course for medical students using interactive three-dimensional image post-processing software improves radiological knowledge, diagnostic skills and visual-spatial ability. Materials and methods: A hands-on radiology course was developed using interactive three-dimensional image post-processing software. The course consisted of seven seminars held on a weekly basis. The 25 participating fourth- and fifth-year medical students learnt to systematically analyse cross-sectional imaging data and correlated the two-dimensional images with three-dimensional reconstructions. They were instructed by experienced radiologists and collegiate tutors. The improvement in radiological knowledge, diagnostic skills and visual-spatial ability was assessed immediately before and after the course by multiple-choice tests comprising 64 questions each. Wilcoxon signed rank test for paired samples was applied. Results: The total number of correctly answered questions improved from 36.9 ± 4.8 to 49.5 ± 5.4 (p < 0.001) which corresponded to a mean improvement of 12.6 (95% confidence interval 9.9–15.3) or 19.8%. Radiological knowledge improved by 36.0% (p < 0.001), diagnostic skills for cross-sectional imaging by 38.7% (p < 0.001), diagnostic skills for other imaging modalities – which were not included in the course – by 14.0% (p = 0.001), and visual-spatial ability by 11.3% (p < 0.001). Conclusion: The integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves radiological reasoning, diagnostic skills and visual-spatial ability, and thereby

  9. Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability

    International Nuclear Information System (INIS)

    Rengier, Fabian; Häfner, Matthias F.; Unterhinninghofen, Roland; Nawrotzki, Ralph; Kirsch, Joachim; Kauczor, Hans-Ulrich; Giesel, Frederik L.

    2013-01-01

    Purpose: Integrating interactive three-dimensional post-processing software into undergraduate radiology teaching might be a promising approach to synergistically improve both visual-spatial ability and radiological skills, thereby reducing students’ deficiencies in image interpretation. The purpose of this study was to test our hypothesis that a hands-on radiology course for medical students using interactive three-dimensional image post-processing software improves radiological knowledge, diagnostic skills and visual-spatial ability. Materials and methods: A hands-on radiology course was developed using interactive three-dimensional image post-processing software. The course consisted of seven seminars held on a weekly basis. The 25 participating fourth- and fifth-year medical students learnt to systematically analyse cross-sectional imaging data and correlated the two-dimensional images with three-dimensional reconstructions. They were instructed by experienced radiologists and collegiate tutors. The improvement in radiological knowledge, diagnostic skills and visual-spatial ability was assessed immediately before and after the course by multiple-choice tests comprising 64 questions each. Wilcoxon signed rank test for paired samples was applied. Results: The total number of correctly answered questions improved from 36.9 ± 4.8 to 49.5 ± 5.4 (p < 0.001) which corresponded to a mean improvement of 12.6 (95% confidence interval 9.9–15.3) or 19.8%. Radiological knowledge improved by 36.0% (p < 0.001), diagnostic skills for cross-sectional imaging by 38.7% (p < 0.001), diagnostic skills for other imaging modalities – which were not included in the course – by 14.0% (p = 0.001), and visual-spatial ability by 11.3% (p < 0.001). Conclusion: The integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves radiological reasoning, diagnostic skills and visual-spatial ability, and thereby

  10. The diagnostic significance of clinical and radiological findings in osteogenesis imperfection

    International Nuclear Information System (INIS)

    Xu Deyong; Xu Zushan; Shen Qijie

    1997-01-01

    Purpose: To define the diagnostic criteria of osteogenesis imperfection. Materials and methods: The clinical and radiologic manifestations of 68 patients with osteogenesis imperfection were studied retrospectively. Results: (1) A generalized decrease in osseous density (osteoporosis or osteopenia) with abnormal fragility of bone (68 cases). (2) Blue sclera (61 cases). (3) Dentinogenesis imperfection with opalescent bluish-gray tint (49 cases). (4) Progressive hearing loss (prior to the age of 40 years)-premature otosclerosis (38 cases). Other abnormalities such as abnormal contour and structure (68 cases), growth retardation (49 cases), episodic diaphoresis (24 cases), with abnormal temperature regulation (16 cases), hyperplastic scars (11 cases) and tendency of subcutaneous bruise (6 cases), all these were not characteristic features. Conclusion: Among all clinical and radiological findings, osteopenia with abnormal fragility of bone; blue sclera dentinogenesis imperfection with opalescent bluish-gray tint and premature otosclerosis are the most common and characteristic findings which can be taken as the diagnostic criteria of osteogenesis imperfection

  11. Pediatric radiological diagnostics in suspected child abuse; Kinderradiologische Diagnostik bei Verdacht auf Kindesmisshandlung

    Energy Technology Data Exchange (ETDEWEB)

    Erfurt, C.; Schmidt, U. [Technische Universitaet Dresden, Institut fuer Rechtsmedizin, Medizinische Fakultaet, Dresden (Germany); Hahn, G. [Universitaetsklinikum Carl Gustav Carus, Dresden, Abteilung Kinderradiologie, Institut und Poliklinik fuer Radiologische Diagnostik, Dresden (Germany); Roesner, D. [Universitaetsklinikum Carl Gustav Carus, Dresden, Klinik und Poliklinik fuer Kinderchirurgie, Dresden (Germany)

    2009-10-15

    Advanced and specialized radiological diagnostics are essential in the case of clinical suspicion of pediatric injuries to the head, thorax, abdomen, and extremities when there is no case history or when ''battered child syndrome'' is assumed on the basis of inadequate trauma. In particular, the aim of this sophisticated diagnostic procedure is the detection of lesions of the central nervous system (CNS) in order to initiate prompt medical treatment. If diagnostic imaging shows typical findings of child abuse, accurate documented evidence of the diagnostic results is required to prevent further endangerment of the child's welfare. (orig.) [German] Klinisch diagnostizierte Verletzungen an Kopf, Thorax, Abdomen oder Extremitaeten eines Kindes bei scheinbar leerer Anamnese oder Angabe eines inadaequaten Traumas erfordern beim Verdacht auf ein Battered-Child-Syndrom eine erweiterte und spezialisierte radiologische Diagnostik. Diese soll insbesondere im Bereich des ZNS Verletzungsfolgen erfassen, um therapeutische Massnahmen einleiten zu koennen. Bei typischen, auf eine Misshandlung hinweisenden radiologischen Befunden ist eine praezise beweissichere Befunddokumentation erforderlich, um eine weitere Kindeswohlgefaehrdung zu vermeiden. (orig.)

  12. Implementation of the International Code of Practice on Dosimetry in Diagnostic Radiology (TRS 457): Review of Test Results

    International Nuclear Information System (INIS)

    2011-01-01

    In 2007, the IAEA published Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457). This publication recommends procedures for calibration and dosimetric measurement for the attainment of standardized dosimetry. It also addresses requirements both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. The implementation of TRS No. 457 decreases the uncertainty in the dosimetry of diagnostic radiology beams and provides Member States with a unified and consistent framework for dosimetry in diagnostic radiology, which previously did not exist. A coordinated research project (CRP E2.10.06) was established in order to provide practical guidance to professionals at SSDLs and to clinical medical physicists on the implementation of TRS No. 457. This includes the calibration of radiological dosimetry instrumentation, the dissemination of calibration coefficients to clinical centres and the establishment of dosimetric measurement processes in clinical settings. The main goals of the CRP were to: Test the procedures recommended in TRS No. 457 for calibration of radiation detectors in different types of diagnostic beams and measuring instruments for varying diagnostic X ray modalities; Test the clinical dosimetry procedures, including the use of phantoms and patient dose surveys; Report on the practical implementation of TRS No. 457 at both SSDLs and hospital sites. Testing of TRS No. 457 was performed by a group of medical physicists from hospitals and SSDLs from various institutions worldwide

  13. The frequency of diagnostic errors in radiologic reports depends on the patient's age

    International Nuclear Information System (INIS)

    Diaz, Sandra; Ekberg, Olle

    2010-01-01

    Background: Patients who undergo treatment may suffer preventable medical errors. Some of these errors are due to diagnostic imaging procedures. Purpose: To compare the frequency of diagnostic errors in different age groups in an urban European population. Material and Methods: A total of 19 129 reported radiologic examinations were included. During a 6-month period, the analyzed age groups were: children (aged 0-9 years), adults (40-49 years), and elderly (86-95 years). Results: The frequency of radiologic examinations per year was 0.3 in children, 0.6 in adults, and 1.1 in elderly. Significant errors were significantly more frequent in the elderly (1.7%) and children (1.4%) compared with adults (0.8%). There were 60 false-positive reports and 232 false-negative reports. Most errors were made by staff radiologists after hours when they reported on examinations outside their area of expertise. Conclusion: Diagnostic errors are more frequent in children and the elderly compared with middle-aged adults

  14. Occupational Exposure to Diagnostic Radiology in Workers without Training in Radiation Safety

    International Nuclear Information System (INIS)

    Gaona, Enrique; Enriquez, Jesus G. Franco

    2004-01-01

    The physicians, technicians, nurses, and others involved in radiation areas constitute the largest group of workers occupationally exposed to man-made sources of radiation. Personnel radiation exposure must be monitored for safety and regulatory considerations, this assessment may need to be made over a period of one month or several months. The purpose of this study was to carry out an exploratory survey of occupational exposures associated with diagnostic radiology. The personnel dosimeters used in this study were thermoluminescent dosimeters (TLDs). The reported number of monitored workers was 110 of different departments of radiology of the Mexican Republic without education in radiation safety, included general fluoscopic/radiographic imaging, computed tomography and mammography procedures. Physicians and X-ray technologist in diagnostic radiology receive an average annual effective dose of 2.9 mSv with range from 0.18 to 5.64 mSv. The average level of occupational exposures is generally similar to the global average level of natural radiation exposure. The annual global per capita effective dose due to natural radiation sources is 2.4 mSv (UNSCEAR 2000 Report). There is not significant difference between average occupational exposures and natural radiation exposure for p < 0.05

  15. Teaching Critical Thinking in Graduate Medical Education: Lessons Learned in Diagnostic Radiology.

    Science.gov (United States)

    Morrissey, Benjamin; Heilbrun, Marta E

    2017-01-01

    The 2014 Institute of Medicine report, Graduate Medical Education that Meets the Nation's Health Needs , challenged the current graduate medical training process and encouraged new opportunities to redefine the fundamental skills and abilities of the physician workforce. This workforce should be skilled in critically evaluating the current systems to improve care delivery and health. To meet these goals, current challenges, motivations, and educational models at the medical school and graduate medical education levels related to formal training in nonclinical aspects of medicine, especially critical thinking, are reviewed. Our diagnostic radiology training program is presented as a "case study" to frame the review.

  16. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Science.gov (United States)

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Communication in diagnostic radiology: meeting the challenges of complexity.

    Science.gov (United States)

    Larson, David B; Froehle, Craig M; Johnson, Neil D; Towbin, Alexander J

    2014-11-01

    As patients and information flow through the imaging process, value is added step-by-step when information is acquired, interpreted, and communicated back to the referring clinician. However, radiology information systems are often plagued with communication errors and delays. This article presents theories and recommends strategies to continuously improve communication in the complex environment of modern radiology. Communication theories, methods, and systems that have proven their effectiveness in other environments can serve as models for radiology.

  18. Factors affecting patient dose in diagnostic radiology

    International Nuclear Information System (INIS)

    Poletti, J.L.

    1994-03-01

    The report, Factors Affecting Patient Dose in Diagnostic Radiology is divided into three main sections. Part one is introductory and covers the basic principles of x-ray production and image formation. It includes discussion of x-ray generators and x-ray tubes, radiation properties and units, specification and measurement of x-ray beams, methods of patient dose measurement, radiation effects, radiation protection philosophy and finally the essentials of imaging systems. Part two examines factors affecting the x-ray output of x-ray machines and the characteristics of x-ray beams. These include the influence of heat ratings, kVp, waveform, exposure timer, filtration, focus-film distance, beam intensity distribution, x-ray tube age and focal spot size. Part three examines x-ray machine, equipment and patient factors which affect the dose received by individual patients. The factors considered include justification of examinations, choice of examination method, film/screen combinations, kVp, mAs, focus-film distance, collimation and field size, exposure time, projection, scatter, generator calibration errors, waveform, filtration, film processing and patient size. The patient dose implications of fluoroscopy systems, CT scanners, special procedures and mammography are also discussed. The report concludes with a brief discussion of patient dose levels in New Zealand and dose optimisation. 104 refs., 32 figs., 27 tabs

  19. Radiation protection of patients in general diagnostic radiology in Lithuania

    International Nuclear Information System (INIS)

    Morkunas, G.; Ziliukas, J.

    2001-01-01

    The situation in control of exposure due to general diagnostic radiological examinations in Lithuania is described. Experience in creation of legal basis for radiation protection, results of measurements of patients' doses and quality control tests of x-ray units are given. The main problems encountered in implementation of international recommendations and requirements of European Medical Exposure Directive are discussed. (author)

  20. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2011-01-01

    . Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal......Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub......-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic...

  1. Guidelines for Quality Control of Equipment Used in Diagnostic Radiology in the Netherlands

    International Nuclear Information System (INIS)

    Berg, L. van den; Aarts, C.N.M.; Beentjes, L.B.; Dalen, A. van; Elsakkers, P.; Julius, H.W.; Kicken, P.J.H.; Meer, F. van der; Teeuwisse, W.; Thijssen, M.A.O.; Zoetelief, J.

    1998-01-01

    The Dutch working group on 'Quality Criteria for Equipment Used in Diagnostic Radiology' has formulated guidelines providing technical criteria for equipment used in conventional diagnostic radiology. These guidelines are applicable to the technical parameters having a major impact on image quality and patient dose and include methods for testing. The following parameters are included: tube voltage, automatic exposure control, film processing, film-screen combination, light tightness and illumination of the dark room, half-value layer and filtration, light field, grid, focal spot size, viewing boxes and geometrical indicators. Each guideline consists of the following chapters: (1) Scope and field of application, (2) Background information, (3) Test procedure, (4) Test frequency, (5) Registration of observations, (6) Evaluation and interpretation, (7) Test report. Chapter 3 includes both the principles of the test method and a step by step description of the procedures. The principles of the test procedure provide a basis for adaptation to local circumstances. The step by step test procedure allows a quality control measurement to be performed with limited physical knowledge of the equipment. Chapter 6 includes limiting values. Draft guidelines were evaluated in practice in 20 hospitals. The final document has been accepted by the professional societies in the Netherlands and the Dutch Minister of Health as a reference set of tools to perform Quality Control of equipment used for conventional diagnostic radiology. (author)

  2. Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability.

    Science.gov (United States)

    Rengier, Fabian; Häfner, Matthias F; Unterhinninghofen, Roland; Nawrotzki, Ralph; Kirsch, Joachim; Kauczor, Hans-Ulrich; Giesel, Frederik L

    2013-08-01

    Integrating interactive three-dimensional post-processing software into undergraduate radiology teaching might be a promising approach to synergistically improve both visual-spatial ability and radiological skills, thereby reducing students' deficiencies in image interpretation. The purpose of this study was to test our hypothesis that a hands-on radiology course for medical students using interactive three-dimensional image post-processing software improves radiological knowledge, diagnostic skills and visual-spatial ability. A hands-on radiology course was developed using interactive three-dimensional image post-processing software. The course consisted of seven seminars held on a weekly basis. The 25 participating fourth- and fifth-year medical students learnt to systematically analyse cross-sectional imaging data and correlated the two-dimensional images with three-dimensional reconstructions. They were instructed by experienced radiologists and collegiate tutors. The improvement in radiological knowledge, diagnostic skills and visual-spatial ability was assessed immediately before and after the course by multiple-choice tests comprising 64 questions each. Wilcoxon signed rank test for paired samples was applied. The total number of correctly answered questions improved from 36.9±4.8 to 49.5±5.4 (pability by 11.3% (psoftware into undergraduate radiology education effectively improves radiological reasoning, diagnostic skills and visual-spatial ability, and thereby even diagnostic skills for imaging modalities not included in the course. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Digital radiology and digitally formatted image management systems

    International Nuclear Information System (INIS)

    Cox, G.G.; Dwyer, S.J. III; Templeton, A.W.

    1987-01-01

    The number of diagnostic examinations performed with digitally formatted imaging equipment is increasing. Digital general-purpose and fluoroscopic radiology systems are being clinically evaluated. Digitizing conventional x-ray films, such as mammograms, frequently improves the diagnostic quality of the images. The digitizing process with laser has also afforded the opportunity to document required spatial resolution for digital imaging and network systems. The use of digitally formatted image instrumentation imposes new requirements on the acquisition, display and manipulation, transmission, hard copy image recording, and archiving of diagnostic data. Networking of digitally formatted image data offers many advantages for managing digital information. This paper identifies and describes digital radiographic systems. Parameters required for designing and implementing a digital image management system are outlined. Spatial and contrast resolution requirements are identified. The key parameters include the amount of image data generated each working day, the retrieval rate of the generated data, the display hardware and software needed for interactive diagnosis display stations, the requirements for analog hard copy generation, and on-line and long-term archiving requirements. These image management systems are often called PACS (Picture Archiving and Communication Systems)

  4. Studies on optimization of radiation protection for patients in diagnostic radiology

    International Nuclear Information System (INIS)

    Wei, Z.; Zhang, Q.; Li, W.; Li, K.; Wei, L.; Zong, X.; Qiang, Z.; Wu, Y.

    1994-01-01

    For the exposure of patients in diagnostic radiology, individual dose limit does not apply, but optimization of radiological protection may play a major role. This project has been carried out with the purpose of improving the protection of patients in medical diagnostic radiology in China utilizing the principles of optimization. Taking Sichuan, Shandong and Beijing as surveyed areas, we investigated the present situation of the protection of patients. In the survey, the patient doses were classified into practical dose, justified dose and optimized dose to evaluate the influences of managerial and equipment factors separately. The results show that there are some urgent protection problems in X-ray protection to be solved in the surveyed regions. This paper, however, points out that the prospects of reducing patient doses are encouraging provided that appropriate measures are adopted. For instance, taking proper managerial measures without radical change of existing equipments may reduce patient doses in chest fluoroscopy and radiography by 40% and 18% respectively; refitting some equipment may reduce the doses by 82.4% in chest fluoroscopy, 66% in chest radiography, and 80% in barium meal examination of the gastrointestinal (GI) tract. Using chest radiography instead of fluoroscopy supplemented by other protection measures may reduce the doses by 91.7%. Optimization analysis shows that adoption of the above measures conforms to the principle of optimization of radiation protection. (authors). 5 refs., 7 tabs

  5. Diagnostic radiology of thoracic diseases. Textbook and atlas. 4. compl. rev. and enl. ed.; Radiologische Diagnostik der Thoraxerkrankungen. Lehrbuch und Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Sebastian

    2010-07-01

    The book on diagnostic radiology of thoracic diseases covers the following topics: diagnostic techniques and normal diagnostic findings using x-ray radiography, CT, scintigraphy, angiography, bronchography, ultrasonography and NMR imaging; malformations; infections; emphysema, chronic lung diseases and asthma; inhalation damage and pneumoconiosis; neoplasm; vascular diseases; thorax injuries, pleura diseases, heart diseases, mediastinum diseases; midriff diseases; thoracic wall diseases; pathological pattern in CT; radiological indications and differential diagnostics; thoracic interventions.

  6. Education and training in radiological protection for diagnostic and interventional procedures ICRP 113 in brief

    International Nuclear Information System (INIS)

    Salama, S.; Gomaa, M. A.; Alshoufi, J.H.

    2013-01-01

    The international commission on radiological protection (ICRP) is the primary body in protection against ionizing radiation. Among its latest publication is ICRP publication 113 e ducation and training in radiological protection for diagnostic and interventional procedures . This document introduces diagnostic and interventional medical procedures using ionizing radiations in deep details. The document is approved by the commission in October 2010 and translated into Arabic at December 2011. This work is a continuation of the efforts series to translate some of the most important of the radiological protection references into the Arabic; aiming to maximize the benefit. The previous translation include WHO handbook on indoor radon: a public health perspective, issued by world health organization 2009 and Radiation Protection in Medicine, ICRP Publication 105 2007 that translated into Arabic with support of Arab atomic energy authority at 2011.

  7. Development of an instrument to measure the clinical learning environment in diagnostic radiology

    International Nuclear Information System (INIS)

    Bloomfield, L.; Subramaniam, R.

    2008-01-01

    A clinical learning environment survey instrument was developed that provided insights into diagnostic radiology trainees' perceptions of the culture and context of the hospital-based training programme. The survey was completed by trainees allocated to 37 important training hospitals in Australia, New Zealand and Singapore in 2006. The main findings were that most obvious strengths of the diagnostic radiology programme are the wide variety of work-based learning opportunities and the social atmosphere. These were well regarded in all training sites. Work overload was seen as a significant problem in most hospitals and will probably remain a challenge. The areas that are most likely to repay efforts to bring about change are supervision and feedback. The study provides baseline data against which the influence of changes to the training programme may be evaluated.

  8. Fine tuning of work practices of common radiological investigations performed using computed radiography system

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Timothy Peace, B.S.; Sunny, S.; Victor Raj, D.

    2007-01-01

    Introduction: The advent of the computed radiography (CR) has brought about remarkable changes in the field of diagnostic radiology. A relatively large cross-section of the human population is exposed to ionizing radiation on account of common radiological investigations. This study is intended to audit radiation doses imparted to patients during common radiological investigations involving the use of CR systems. Method: The entrance surface doses (ESD) were measured using thermoluminescent dosimeters (TLD) for various radiological investigations performed using the computed radiography (CR) systems. Optimization of radiographic techniques and radiation doses was done by fine tuning the work practices. Results and conclusion: Reduction of radiation doses as high as 47% was achieved during certain investigations with the use of optimized exposure factors and fine-tuned work practices

  9. Changes in the ocular surface: initial observations from a pilot study of diagnostic radiology technicians (radiographers)

    International Nuclear Information System (INIS)

    Guerdal, Canan; Aydin, Sevda; Sengoer, Tomris; Onmus, Hale; Oezarar, Muemtaz

    2002-01-01

    The purpose of this study was to evaluate the clinical and cytological changes in the ocular surface of radiology technicians (radiographers) exposed to diagnostic doses of radiation. The Schirmer, Rose Bengal staining and Tear-Break-Up-Time tear function tests were carried out following routine ophthalmic examination in 15 radiology technicians (group I) and 15 controls (group II). Impression cytology was performed by placing 5-mm-thick half-circular cellulose acetate filter paper in the upper and lower quadrants around the limbus. The cytological evaluation was made using the mapping technique. Significantly increased dry eye was detected in group I. In the impression cytology investigation, squamous metaplasia and intraepithelial lymphocytic infiltration was noted in all the group-I cases. A distinct change was observed between the regions showing squamous metaplasia and neigbouring normal epithelial cell structure. Dry eye and ocular surface cytological changes were observed in diagnostic radiology technicians. Routine ophthalmic evaluation of radiology technicians would be beneficial in detecting early cytological changes and dry eye. (orig.)

  10. 1987 year book of diagnostic radiology

    International Nuclear Information System (INIS)

    Bragg, D.G.; Keats, T.E.; Kieffer, S.A.; Kirkpatrick, J.A. Jr.; Koehler, P.R.

    1987-01-01

    The book is divided into seven sections, which cover neuroradiology, the thorax, the abdomen, the musculoskeletal system, pediatric radiology, radiation physics, and cardiovascular and interventional radiology. Each of the seven editors was responsible for one section. These editors gleaned what they thought were the most important articles from 78 medical journals worldwide, wrote abstracts, and then commented on their relevance. For each journal article, the heading lists the title of the paper, the authors, the authors' affiliations, and the journal name. If an article contained an important table or figure, it was reproduced for the review

  11. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.

    Science.gov (United States)

    Bahreyni Toossi, M T; Moradi, H; Zare, H

    2008-01-01

    In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.

  12. A review of the fundamental principles of radiation protection when applied to the patient in diagnostic radiology

    International Nuclear Information System (INIS)

    Moores, B. Michael

    2017-01-01

    A review of the role and relevance of the principles of radiation protection of the patient in diagnostic radiology as specified by ICRP has been undertaken when diagnostic risks arising from an examination are taken into account. The increase in population doses arising from diagnostic radiology over the past 20 years has been due to the widespread application of higher dose CT examinations that provide significantly more clinical information. Consequently, diagnostic risks as well as radiation risks need to be considered within the patient radiation protection framework. Justification and optimisation are discussed and the limitations imposed on patient protection by employing only a radiation risk framework is highlighted. The example of radiation protection of the patient in breast screening programmes employing mammography is used to highlight the importance of defined diagnostic outcomes in any effective radiation protection strategy. (author)

  13. Endoscopic and radiological diagnostics of esophagus diseases in dogs

    Directory of Open Access Journals (Sweden)

    Krstić Vanja

    2006-01-01

    Full Text Available In order to expand the range of diagnostic methods for determining diseases of the esophagus and to make them more present in everyday practise, it is desirable to work out in more detail the procedure of endoscopic and radiological examinations, determine their limitations and possibilities, describe the topographic-anatomical and morphological status of the esophagus in an endoscopic and radiological picture, as well as to define which diseases of this organ are most represented. The paper presents the results of six-month investigations of esophagus diseases in dogs of different breeds and ages. A total of 15 animals were examined: 2 golden retrievers, 2 rottweilers, 5 German shepherds, 3 giant schnauzers, 2 cross-breeds, and 1 dalmatian. Cases of chronic esophagitis were described, as well as the presence of a foreign body and megaesophagus, and the prescribed therapy for all these diseases.

  14. CHALLENGES IN SETTING UP QUALITY CONTROL IN DIAGNOSTIC RADIOLOGY FACILITIES IN NIGERIA.

    Science.gov (United States)

    Inyang, S O; Egbe, N O; Ekpo, E

    2015-01-01

    The Nigerian Nuclear Regulatory Authority (NNRA) was established to regulate and control the use of radioactive and radiation emitting sources in Nigeria. Quality control (QC) on diagnostic radiology equipment form part of the fundamental requirements for the authorization of diagnostic radiology facilities in the Country. Some quality control tests (output, exposure linearity and reproducibility) were measured on the x-ray machines in the facilities that took part in the study. Questionnaire was developed to evaluate the frequencies at which QC tests were conducted in the facilities and the challenges in setting up QC. Results show great variation in the values of the QC parameters measured. Inadequate cooperation by facilities management, lack of QC equipment and insufficient staff form the major challenges in setting up QC in the facilities under study. The responses on the frequencies at which QC tests should be conducted did not correspond to the recommended standards; indicating that personnel were not familiar with QC implementation and may require further training on QC.

  15. Quality criteria in diagnostic radiology of the skull

    International Nuclear Information System (INIS)

    Friedmann, G.

    1985-01-01

    Diagnostic survey radiology of the skull relies on pictures to be taken if indicated and to meet all conceivable requirements. Those radiograph directions and projections were selected out of the profusion of known and described ones which allow both as small a number of pictures and as comprehensive a demonstration of all skull sections and1structures as possible. With this in mind, quality criteria for plain radiographs of the skull taken laterally and sagittably, for partial radiographs of the visceral cranium including orbit and of the base of the skull including petrons bone are described. (orig./MG) [de

  16. Diagnostic efficacy of radiological examinations in clefts of the hard palate

    International Nuclear Information System (INIS)

    Cieslinska-Wilk, G.

    1992-01-01

    The aim of the work has been: 1) evaluating the efficiency of individual radiological methods in visualizing the bone structure of the hard palate; 2) elaboration of a method for skull examination, by means of which the hard palate region in patients would be best visible; 3) presentation of radiological symptomatology of hard palate clefts; 4) establishing algorithms of diagnostic procedure and determining the type of radiological examination most helpful in planning the treatment of this anomaly. Selected problems from normal anatomy of the hard palate are presented, and the technique of radiological examination in the form of occlusal radiograms, pantomography and computerized tomography (CT) are discussed. Clinical material encompassed the total of 312 patients. A total of 470 radiograms were performed, 150 occlusal ones of hard palate, 200 pantomograms (jointly with the control group) as well as 120 scannings during CT examination. It has been stated the greatest efficiency and effectiveness in planning the treatment are ascribed to computerized tomography, the second place goes to pantomography, on the third position are occlusal radiograms targeted at the region of the cleft. Algorithms have been provided for roentgen-diagnostic procedure in cases of the hard palate clefts, with an emphasis that the very first examination of a child should include the occlusal radiograms targeted at the cleft region and pantomogram; in the course of conservative treatment only pantomogram is proposed to be made, and in case of planned operative procedure - CT examination. For evaluating the calcification of the cleft, the best and with the least irradiation are the intraoral occlusal radiograms, targeted at the region of the cleft, performed 12 months after the operation. (author). 100 refs, 21 figs, 12 tabs

  17. Upgrading the Medical Physics Calibration Laboratory Towards ISO/IEC 17025: Radiation Standards and Calibration in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Muhammad Jamal Md Isa; Abd Aziz Mhd Ramli; Wan Hazlinda Ismail; Norhayati Abdullah; Shahrul Azlan Azizan; Siti Sara Deraman; Nor Azlin Azraai; Md Khairusalih Md Zin

    2010-01-01

    Calibration of quality control (QC) test tools used in diagnostic radiology is legally required under the Ministry of Health (MOH) requirement. The Medical Physics Calibration Laboratory of the Malaysian Nuclear Agency is the national focal point for the calibration of quality control test tools used in diagnostic radiology. The Medical Physics Calibration Laboratory has measurement traceability to primary standard dosimetry laboratory (Physikalisch-Technische Bundesanstalt (PTB)), thus providing an interface between the primary standard dosimetry laboratory and Malaysian hospitals, clinics and license class H holder. The Medical Physics Calibration Laboratory facility is comprised of a constant potential x-ray system with a capability of 160 kV tube and a series of reference and working standard ion chambers. The stability of reference and working standard ion chambers was measured using strontium-90. Dosimetric instruments used in diagnostic radiology is calibrated in terms of air kerma to comply with an International Code of Practices of dosimetry for example IAEA's Technical Report Series number 457. The new series of standard radiation qualities was established based on ISO/IEC 61267. The measurement of beam homogeneity was measured using film and ion chamber to define the field size at certain distance and kV output was measured using the spectrometer and non-invasive kVp meter. The uncertainties measurement was determined with expended uncertainties to a level of confidence of approximately 95% (coverage factor k=2). This paper describes the available facility and the effort of the Medical Physics Calibration Laboratory to upgrade the laboratory towards ISO/IEC 17025. (author)

  18. Development of Tandem ionization chambers for use in quality control programs in radiotherapy and diagnostic radiology

    International Nuclear Information System (INIS)

    Costa, Alessandro Martins da

    2003-01-01

    A quality control program of X-ray equipment used in diagnostic radiology and radiotherapy requires the check of the beam qualities constancy in terms of the half-value layers. In this work, two special double-faced parallel-plate ionization chambers were developed with inner electrodes of different materials, in tandem system. The different energy response of the two faces of each chamber allowed the development of tandem systems useful for the check of beam qualities constancy. The main application of these ionization chambers will be in quality control programs of diagnostic and therapeutic X-ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the tandem chambers may also be utilized for measurements of air kerma values (and air kerma rates) in kilo voltage X-radiation fields used for diagnostic and therapeutic procedures. The chambers were studied in relation to their operational characteristics, and they were calibrated in X-ray beams in accordance to international recommendations. They presented a very good level of performance. In this developed system no absorbers or special set-ups are necessary. A methodology of use of the chambers in the quality control of diagnostic and therapeutic X-ray systems was established, with the elaboration of the respective procedures. (author)

  19. Diagnostic reference levels and complexity indices in interventional radiology: a national programme

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Cruces, R.; Perez-Martinez, M.; Pastor-Vega, J.M.; Canete, S. [University of Malaga, School of Medicine, Malaga (Spain); Vano, E.; Fernandez-Soto, J.M.; Sanchez-Casanueva, R.; Gallego-Beuter, J.J. [Complutense University, San Carlos Hospital, Medical School, Madrid (Spain); Carrera-Magarino, F.; Moreno-Rodriguez, F.; Moreno-Sanchez, T. [Juan Ramon Jimenez University Hospital, Huelva (Spain); Soler-Cantos, M.M.; Canis-Lopez, M. [Reina Sofia University Hospital, Cordoba (Spain); Hernandez-Armas, J.; Diaz-Romero, F.J. [University Hospital of Canary Islands, Tenerife (Spain); Rosales-Espizua, F.; Lopez-Medina, A.; Gonzalez-de-Garay, M. [Basurto Hospital, Bilbao (Spain); Martin-Palanca, A. [Virgen de la Victoria University Hospital, Malaga (Spain); Gil-Agudo, A.; Zarca-Diaz, M.A.; Zapata-Jimenez, J.C. [General University Hospital, Ciudad Real (Spain); Parra-Osorio, V.; Munoz Ruiz-Canela, J.J.; Moreno-Saiz, C.; Galan-Montenegro, P. [Carlos Haya University Hospital, Malaga (Spain)

    2016-12-15

    To propose national diagnostic reference levels (DRLs) for interventional radiology and to evaluate the impact of the procedural complexity on patient doses. Eight interventional radiology units from Spanish hospitals were involved in this project. The participants agreed to undergo common quality control procedures for X-ray systems. Kerma area product (KAP) was collected from a sample of 1,649 procedures. A consensus document established the criteria to evaluate the complexity of seven types of procedures. DRLs were set as the 3rd quartile of KAP values. The KAP (3rd quartile) in Gy cm{sup 2} for the procedures included in the survey were: lower extremity arteriography (n = 784) 78; renal arteriography (n = 37) 107; transjugular hepatic biopsies (THB) (n = 30) 45; biliary drainage (BD) (n = 314) 30; uterine fibroid embolization (UFE) (n = 56) 214; colon endoprostheses (CE) (n = 31) 169; hepatic chemoembolization (HC) (n = 269) 303; femoropopliteal revascularization (FR) (n = 62) 119; and iliac stent (n = 66) 170. The complexity involved the increases in the following KAP factors from simple to complex procedures: THB x4; BD x13; UFE x3; CE x3; HC x5; FR x5 and IS x4. The evaluation of the procedure complexity in patient doses will allow the proper use of DRLs for the optimization of interventional radiology. (orig.)

  20. Human engineering of a radiological diagnostic system

    International Nuclear Information System (INIS)

    Andou, Eiji; Yuba, Fumimaro; Kotoh, Yukitoshi; Oohara, Kazuo; Uto, Fumiaki.

    1992-01-01

    Current practices for patient safety control in radiological diagnosis may involve problems. For solving of these problems, we have to bear in mind that the mental and physical capacity of patients tend to be limited during radiological testing. When radiography is performed using a general X-ray device at a source table distance (STD) of 100 cm, the patient's head can touch the X-ray tube housing during position adjustment on the stand (up and down adjustment) or the patient is made to take an unnatural posture during body positioning. With this in mind, we carried out a questionnaire survey about source image receptor distance (SID). This survey disclosed that more than 92% of the institutions have adapted 100 cm STD. We then conducted a three-dimensional analysis of a patient's posture and motion by video taping patients during positioning on a roentgenographic table. This analysis revealed that the adoption of the 120 cm STD resulted in less contact between the patient's head and X-ray tube housing, less of unnatural body position and less time required for positioning adjustment when compared to those at 100 cm STD. These results indicate that the current STD (100 cm) is not suitable for safe and smooth adjustment of the positioning of a patient's body of a roentgenographic table. We examined the optimun STD, taking into consideration the dimensions of patient's movement and posture during an X-ray examination. (author)

  1. Radiological diagnostics of muscle diseases

    International Nuclear Information System (INIS)

    Weber, M.A.; Essig, M.; Kauczor, H.U.

    2007-01-01

    Muscular diseases are a heterogeneous group of diseases with difficult differential diagnosis. This article reviews morphological and functional radiological techniques for assessment of muscular diseases. Morphological techniques can describe edema-like changes, lipomatous and atrophic changes of muscular tissue. However, these imaging signs are often not disease-specific. As a result, clinicians assign radiology a secondary role in the management of muscular diseases. Meanwhile, functional radiological techniques allow the assessment of muscle fiber architecture, skeletal muscle perfusion, myocellular sodium-homoeostasis, lipid- and energy-phosphate metabolism, etc. By detecting and spatially localizing pathophysiological phenomena, these new techniques can increase the role of radiology in muscular diseases. (orig.)

  2. Mamma diagnostics for MTRA (medical-radiological personnel)/RT (radiologists); Mammadiagnostik fuer MTRA/RT

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Uwe; Baum, Friedemann

    2014-07-01

    The text book on mamma diagnostics for MTRA (medical-radiological personnel)/RT (radiologists) covers the following issues: Anatomy, development and physiology of mammary glands; tumor development an breast cancer risk; pathology, non-imaging diagnostics; mammography: physical-technical fundamentals; mammography: analogue technique; mammography: digital technique; mammography: quality assurance; mammography: legal questions and radiation protection; mammography: new developments; mammography: setting technique; mammography: use and appraisal; mamma-sonography: technique and methodology; mamma-sonography: assignment and appraisal, mamma-NMR: technique and methodology; mamma-NMR: assignment and appraisal lymph node diagnostics; mamma interventions; biopsy; mamma interventions: marking examination concepts; therapeutic concepts; hygienic concepts; communication and interaction.

  3. Orthopaedic positioning in diagnostic radiology. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Bernau, A.

    1990-01-01

    Effective roentgenology of the skeletal system very much relies on good knowledge of three main factors, namely patient positioning, film cassette positioning, and radiation field. The functional approach developed in orthopaedic diagnostics has been adopted for practical adjustment techniques in all X-ray examinations, so that e.g. examinations of the vertebral column and lower extremities now are carried out in upright position instead of the lying position, which of course corresponds to the real functional demand. In order to guarantee good reproducibility of X-ray images, a high standardization of positioning and adjustment techniques is to be achieved. The aspect of optimum radiological protection is also discussed, referring to shielding of the gonads, foils, measures for reduction of scattered radiation fields, and unambiguous labelling of film material. (orig./GDG) With 490 figs. and 1 separate folded tab [de

  4. Evaluation of PC-based diagnostic radiology workstations

    International Nuclear Information System (INIS)

    Pollack, T.; Brueggenwerth, G.; Kaulfuss, K.; Niederlag, W.

    2000-01-01

    Material and Methods: During February 1999 and September 1999 medical users at the hospital Dresden-Friedrichstadt Germany had tested 7 types of radiology diagnostic workstations. Two types of test methods were used: In test type 1 ergonomic and handling functions were evaluated impartial according to 78 selected user requirements. In test type 2 radiologists and radiographers (3+4) performed 23 work flow steps with a subjectively evaluation. Results: By using a progressive rating no product could fully meet the user requirements. As a result of the summary evaluation for test 1 and test 2 the following compliance rating was calculated for the different products: Rad Works (66%), Magic View (63%), ID-Report (58%), Impax 3000 (53%), Medical Workstation (52%), Pathspeed (46%) and Autorad (39%). (orig.) [de

  5. A REVIEW OF THE FUNDAMENTAL PRINCIPLES OF RADIATION PROTECTION WHEN APPLIED TO THE PATIENT IN DIAGNOSTIC RADIOLOGY.

    Science.gov (United States)

    Moores, B Michael

    2017-06-01

    A review of the role and relevance of the principles of radiation protection of the patient in diagnostic radiology as specified by ICRP has been undertaken when diagnostic risks arising from an examination are taken into account. The increase in population doses arising from diagnostic radiology over the past 20 years has been due to the widespread application of higher dose CT examinations that provide significantly more clinical information. Consequently, diagnostic risks as well as radiation risks need to be considered within the patient radiation protection framework. Justification and optimisation are discussed and the limitations imposed on patient protection by employing only a radiation risk framework is highlighted. The example of radiation protection of the patient in breast screening programmes employing mammography is used to highlight the importance of defined diagnostic outcomes in any effective radiation protection strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine: 2004-2008 Review

    International Nuclear Information System (INIS)

    Roch, P.; Aubert, B.

    2013-01-01

    After 5 y of collecting data on diagnostic reference levels (DRLs), the Nuclear Safety and Radiation Protection French Inst. (IRSN) presents the analyses of this data. The analyses of the collected data for radiology, computed tomography (CT) and nuclear medicine allow IRSN to estimate the level of regulatory application by health professionals and the representativeness of current DRL in terms of relevant examinations, dosimetric quantities, numerical values and patient morphologies. Since 2004, the involvement of professionals has highly increased, especially in nuclear medicine, followed by CT and then by radiology. Analyses show some discordance between regulatory examinations and clinical practice. Some of the dosimetric quantities used for the DRL setting are insufficient or not relevant enough, and some numerical values should also be reviewed. On the basis of these findings, IRSN formulates recommendations to update regulatory DRL with current and relevant examination lists, dosimetric quantities and numerical values. (authors)

  7. Quality assurance in diagnostic radiology

    International Nuclear Information System (INIS)

    1982-01-01

    The present guide endeavours to provide an outline of the type of quality assurance programme to be recommended for (1) routine implementation by those performing radiodiagnostic procedures (medical radiology technicians, medical physicists, and radiologists), (2) for application by the responsible national authorities, and (3) for use by international bodies such as the International Society of Radiology (ISR), the International Commission on Radiological Protection (ICRP), and the International Commission on Radiation Units and Measurements (ICRU)

  8. Occupational radiological protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Mota, H.C.

    1983-01-01

    The following topics are discussed: occupational expossure (the ALARA principle, dose-equivalent limit, ICRP justification); radiological protection planning (general aspects, barrier estimation) and determination of the occupational expossures (individual monitoring). (M.A.) [pt

  9. Quality management systems in radiology

    Directory of Open Access Journals (Sweden)

    Geoffrey K. Korir

    2013-08-01

    Objective: To assess the level of quality management systems in X-ray medical facilities in Kenya. Methods: Quality management inspection, quality control performance tests and patient radiation exposure were assessed in 54 representative X-ray medical facilities. Additionally, a survey of X-ray examination frequency was conducted in 140 hospitals across the country. Results: The overall findings placed the country’s X-ray imaging quality management systems at 61±3% out of a possible 100%. The most and the least quality assurance performance indicators were general radiography X-ray equipment quality control tests at 88±4%, and the interventional cardiology adult examinations below diagnostic reference level at 25±1%, respectively. Conclusions: The study used a systematic evidence-based approach for the assessment of national quality management systems in radiological practice in clinical application, technical conduct of the procedure, image quality criteria, and patient characteristics as part of the quality management programme.

  10. Digital imaging in diagnostic radiology

    International Nuclear Information System (INIS)

    Newell, J.D. Jr.; Kelsey, C.A.

    1990-01-01

    This monograph on digital imaging provides a basic overview of this field at the present time. This paper covers clinical application, including subtraction angiography; chest radiology; genitourinary, gastrointestinal, and breast radiology; and teleradiology. The chest section also includes an explanation of multiple beam equalization radiography. The remaining chapters discuss some of the technical aspects of digital radiology. It includes the basic technology of digital radiography, image compression, and reconstruction information on the economics of digital radiography

  11. Evaluation Of The Diagnostic Performance Of A Multimedia Medical Communications System.

    Science.gov (United States)

    Robertson, John G.; Coristine, Marjorie; Goldberg, Morris; Beeton, Carolyn; Belanger, Garry; Tombaugh, Jo W.; Hickey, Nancy M.; Millward, Steven F.; Davis, Michael; Whittingham, David

    1989-05-01

    The central concern of radiologists when evaluating Picture Archiving Communication System (PACS) is the diagnostic performance of digital images compared to the original analog versions of the same images. Considerable work has been done comparing the ROC curves of various types of digital systems to the corresponding analog systems for the detection of specific phantoms or diseases. Although the studies may notify the radiologists that for a specific lesion a digital system may perform as well as the analog system, it tells the radiologists very little about the impact on diagnostic performance of a digital system in the general practice of radiology. We describe in this paper an alternative method for evaluating the diagnostic performance of a digital system and a preliminary experiment we conducted to test the methodology.

  12. Comprehensive analysis of a Radiology Operations Management computer system.

    Science.gov (United States)

    Arenson, R L; London, J W

    1979-11-01

    The Radiology Operations Management computer system at the Hospital of the University of Pennsylvania is discussed. The scheduling and file room modules are based on the system at Massachusetts General Hospital. Patient delays are indicated by the patient tracking module. A reporting module allows CRT/keyboard entry by transcriptionists, entry of standard reports by radiologists using bar code labels, and entry by radiologists using a specialty designed diagnostic reporting terminal. Time-flow analyses demonstrate a significant improvement in scheduling, patient waiting, retrieval of radiographs, and report delivery. Recovery of previously lost billing contributes to the proved cost effectiveness of this system.

  13. A conceptual framework for managing radiation dose to patients in diagnostic radiology using reference dose levels

    International Nuclear Information System (INIS)

    Almen, Anja; Baath, Magnus

    2016-01-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. (authors)

  14. X-ray scatter data for diagnostic radiology

    International Nuclear Information System (INIS)

    Dick, C.E.; Soares, C.G.; Motz, J.W.

    1978-01-01

    The ratio of the scattered to the total X-ray fluence (scatter fraction) at the centre of the image plane for X-rays transmitted through polystyrene phantoms has been measured for X-ray energies of 32 and 69 keV, X-ray beam diameters from 4 to 40 cm, phantom thicknesses from 5 to 30 cm and phantom-to-image-plane separations from 0.3 to 40 cm. The experimental values for this ratio have less than a 10% variation for these two X-ray energies and the experimental data show good agreement with Monte Carlo calculations and available experimental results for low atomic number materials. Based on these results, simple curves are generated which give estimates (+ - 10%) of the scatter fraction for all combinations of the geometric parameters encountered in diagnostic radiology. (author)

  15. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic

    International Nuclear Information System (INIS)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner

    2013-01-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers

  16. Diagnostic accuracy of the Barr and Blethyn radiological scoring systems for childhood constipation assessed using colonic transit time as the gold standard

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Claire R.; Wylie, Anna B.Z.; Adams, Charlotte [Royal Victoria Infirmary, Department of Paediatric Surgery, Newcastle upon Tyne (United Kingdom); Lee, Richard E. [Royal Victoria Infirmary, Department of Radiology, Newcastle upon Tyne (United Kingdom); Jaffray, Bruce [University of Newcastle upon Tyne, School of Clinical Medical Sciences (Child Health), Sir James Spence Institute, Newcastle upon Tyne (United Kingdom)

    2009-07-15

    Constipation is a common childhood symptom and abdominal radiography is advocated in diagnosis and management. To assess the reproducibility and diagnostic accuracy of the Barr and Blethyn systems for quantifying constipation on abdominal radiographs in children. Radiographs were scored by three observers of increasing radiological experience (student, junior doctor, consultant). Abdominal radiographs produced during measurement of colonic transit time (CTT) were classified as constipated or normal based on the value of the transit time, and were scored using both systems by observers blinded to the CTT. Abdominal radiographs obtained in children for reasons other than constipation were classed as normal and similarly scored. Reproducibility was measured using the kappa statistic. Diagnostic accuracy was measured using the area under the curve (AUC) for the receiver operator characteristic (ROC) curve. Using either system, scores were higher for constipated children (P<0.01). The consultant produced higher scores than the other observers (P<0.01). Interobserver reproducibility was moderate with the best kappa value only 0.48. The best correlation between score and CTT was 0.51 (junior doctor scores). Diagnostic accuracy of the scores was only moderate, with the largest AUC for a ROC curve of 0.84 for the consultant using the Barr score. Scoring of abdominal radiographs in the assessment of childhood constipation should be abandoned because it is dependent on the experience of the observer, is poorly reproducible, and does not accurately discriminate between constipated children and children without constipation. (orig.)

  17. Diagnostic accuracy of the Barr and Blethyn radiological scoring systems for childhood constipation assessed using colonic transit time as the gold standard

    International Nuclear Information System (INIS)

    Jackson, Claire R.; Wylie, Anna B.Z.; Adams, Charlotte; Lee, Richard E.; Jaffray, Bruce

    2009-01-01

    Constipation is a common childhood symptom and abdominal radiography is advocated in diagnosis and management. To assess the reproducibility and diagnostic accuracy of the Barr and Blethyn systems for quantifying constipation on abdominal radiographs in children. Radiographs were scored by three observers of increasing radiological experience (student, junior doctor, consultant). Abdominal radiographs produced during measurement of colonic transit time (CTT) were classified as constipated or normal based on the value of the transit time, and were scored using both systems by observers blinded to the CTT. Abdominal radiographs obtained in children for reasons other than constipation were classed as normal and similarly scored. Reproducibility was measured using the kappa statistic. Diagnostic accuracy was measured using the area under the curve (AUC) for the receiver operator characteristic (ROC) curve. Using either system, scores were higher for constipated children (P<0.01). The consultant produced higher scores than the other observers (P<0.01). Interobserver reproducibility was moderate with the best kappa value only 0.48. The best correlation between score and CTT was 0.51 (junior doctor scores). Diagnostic accuracy of the scores was only moderate, with the largest AUC for a ROC curve of 0.84 for the consultant using the Barr score. Scoring of abdominal radiographs in the assessment of childhood constipation should be abandoned because it is dependent on the experience of the observer, is poorly reproducible, and does not accurately discriminate between constipated children and children without constipation. (orig.)

  18. Morphological, clinical and radiological aspects in diagnostics of bronchopulmonary diseases and their complications in children with dysplasia of connective tissue

    Directory of Open Access Journals (Sweden)

    Palchik S.M.

    2016-06-01

    Full Text Available The article provides an overview of the literature devoted to study of radiological, morphological and clinical aspects of diagnostics of respiratory diseases and their complications in children with dysplasia of connective tissue nowadays. We made an analysis of the role of connective tissue disorders in pathogenesis of bronchopulmonary diseases. Theoretically was substantiated the importance of radiological methods in early diagnostics of this disease in children.

  19. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India.

    Science.gov (United States)

    Sonawane, A U; Singh, Meghraj; Sunil Kumar, J V K; Kulkarni, Arti; Shirva, V K; Pradhan, A S

    2010-10-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  20. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    International Nuclear Information System (INIS)

    Sonawane, A.U.; Singh, Meghraj; Sunil Kumar, J.V.K.; Kulkarni, Arti; Shirva, V.K.; Pradhan, A.S.

    2010-01-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body. (author)

  1. Radiology

    International Nuclear Information System (INIS)

    Edholm, P.R.

    1990-01-01

    This is a report describing diagnostic techniques used in radiology. It describes the equipment necessary for, and the operation of a radiological department. Also is described the standard methods used in radiodiagnosis. (K.A.E.)

  2. Diagnostic information management system for the evaluation of medical images

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina

    1985-04-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions.

  3. Diagnostic information management system for the evaluation of medical images

    International Nuclear Information System (INIS)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina.

    1985-01-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions. (author)

  4. Pediatric radiology for medical-technical radiology assistants/radiologists

    International Nuclear Information System (INIS)

    Oppelt, Birgit

    2010-01-01

    The book on pediatric radiology includes the following chapter: differences between adults and children; psycho-social aspects concerning the patient child in radiology; relevant radiation doses in radiology; help for self-help: simple phantoms for image quality estimation in pediatric radiology; general information; immobilization of the patient; pediatric features for radiological settings; traumatology; contrast agents; biomedical radiography; computerized tomography; NMR imaging; diagnostic ultrasonography; handling of stress practical recommendations; medical displays.

  5. Radiology today

    International Nuclear Information System (INIS)

    Donner, M.W.; Heuck, F.H.W.

    1981-01-01

    The book encompasses the proceedings of a postgraduate course held in Salzburg in June 1980. 230 radiologists from 17 countries discussed here the important and practical advances of diagnostic radiology, nuclear medicine and ultrasound as they contribute to gastrointestinal, urologic, skeletal, cardiovascular, pediatric, and neuroradiology. The book contains 55 single contributions of different authors to the following main themes: Cardiovascular, Radiology, pulmonary radiology, gastrointestinal radiology, urinary tract radiology, skeletal radiology, mammography, lymphography, ultrasound, ENT radiology, and neuroradiology. (orig./MG)

  6. Software for the estimation of foetal radiation dose to patients and staff in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Osei, E K [Department of Radiation Physics, Princess Margaret Hospital, 610 University Avenue, Toronto ON M5G 2M9 (Canada); Darko, J B [Department of Radiation Physics, Princess Margaret Hospital, 610 University Avenue, Toronto ON M5G 2M9 (Canada); Faulkner, K [Quality Assurance Centre, Newcastle General Hospital, Westgate Road, Newcastle Upon Tyne NE4 6BE (United Kingdom); Kotre, C J [Regional Medical Physics Department, Newcastle General Hospital, Westgate Road, Newcastle Upon Tyne NE4 6BE (United Kingdom)

    2003-06-01

    Occasionally, it is clinically necessary to perform a radiological examination(s) on a woman who is known to be pregnant or an examination is performed on a woman who subsequently discovers that she was pregnant at the time. In radiological examinations, especially of the lower abdomen and pelvis area, the foetus is directly irradiated. It is therefore important to be able to determine the absorbed dose to the foetus in diagnostic radiology for pregnant patients as well as the foetal dose from occupational exposure of the pregnant worker. The determination of the absorbed dose to the unborn child in diagnostic radiology is of interest as a basis for risk estimates from medical exposure of the pregnant patient and occupational exposure of the pregnant worker. In this paper we describe a simple computer program, FetDose, which calculates the dose to the foetus from both medical and occupational exposures of the pregnant woman. It also calculates the risks of in utero exposure, compares calculated doses with published data in the literature and provides information on the natural spontaneous risks. The program will be a useful tool for the medical and paramedical personnel who are involved with foetal dose (and hence risks) calculations and counselling of pregnant women who may be concerned about in utero exposure of their foetuses.

  7. Software for the estimation of foetal radiation dose to patients and staff in diagnostic radiology

    International Nuclear Information System (INIS)

    Osei, E K; Darko, J B; Faulkner, K; Kotre, C J

    2003-01-01

    Occasionally, it is clinically necessary to perform a radiological examination(s) on a woman who is known to be pregnant or an examination is performed on a woman who subsequently discovers that she was pregnant at the time. In radiological examinations, especially of the lower abdomen and pelvis area, the foetus is directly irradiated. It is therefore important to be able to determine the absorbed dose to the foetus in diagnostic radiology for pregnant patients as well as the foetal dose from occupational exposure of the pregnant worker. The determination of the absorbed dose to the unborn child in diagnostic radiology is of interest as a basis for risk estimates from medical exposure of the pregnant patient and occupational exposure of the pregnant worker. In this paper we describe a simple computer program, FetDose, which calculates the dose to the foetus from both medical and occupational exposures of the pregnant woman. It also calculates the risks of in utero exposure, compares calculated doses with published data in the literature and provides information on the natural spontaneous risks. The program will be a useful tool for the medical and paramedical personnel who are involved with foetal dose (and hence risks) calculations and counselling of pregnant women who may be concerned about in utero exposure of their foetuses

  8. Dose classification scheme for digital imaging techniques in diagnostic radiology

    International Nuclear Information System (INIS)

    Hojreh, A.

    2002-04-01

    Purpose: image quality in diagnostic radiology is determined in crucial extent by the signal-noise-ratio, which is proportional to the applied x-ray dose. Onward technological developments in the diagnostic radiology are therefore frequently connected with a dose increase, which subjectively is hardly or even not perceptible. The aim of this work was to define reproducible standards for image quality as a function of dose and expected therapeutical consequence in case of computed tomography of the paranasal sinuses and the upper and lower jaw (dental CT), whereby practical-clinical purposes are considered. Materials and methods: the image quality of computed tomography of the paranasal sinuses and dental CT was determined by standard deviation of the CT-numbers (pixel noise) in a region of interest of the phantom of American Association of Physicists in Medicine (AAPM phantom) and additionally in the patients CT images. The diagnostic quality of the examination was classified on the basis of patients CT images in three dose levels (low dose, standard dose and high dose). Results: the pixel noise of CT of the paranasal sinuses with soft tissue reconstruction amounts to 19.3 Hounsfield units (HU) for low dose, 8.8 HU for standard dose, and below 8 HU for high dose. The pixel noise of the dental CT with bone (high resolution) reconstruction amounts to 344 HU for low dose, 221 HU for standard dose, and below 200 HU for high dose. Suitable indications for low dose CT are the scanning of body regions with high contrast differences, like the bony delimitations of air-filled spaces of the facial bones, and radiological follow-up examinations with dedicated questions such as axis determination in dental implantology, as well as the images of objects with small diameter such as in case of children. The standard dose CT can be recommended for all cases, in which precise staging of the illness plays an indispensable role for the diagnosis and therapy planning. With high dose

  9. Congenital diseases and syndromes. An illustrated radiological guide

    Energy Technology Data Exchange (ETDEWEB)

    Al-Tubaikh, Jarrah Ali [Universitaetsklinikum Muenchen, Klinikum Grosshadern (Germany). Inst. fuer Klinische Radiologie; Sabah Hospital (Kuwait). Dept. of Diagnostic Radiology; Reiser, Maximilian F. [Universitaetsklinikum Muenchen, Klinikum Grosshadern (Germany). Inst. fuer Klinische Radiologie

    2009-07-01

    Congenital Diseases and Syndromes - An Illustrated Radiological Guide is designed to serve the radiologist as an easy-to-use visual guide that illustrates the typical diagnostic radiological features of the most common congenital diseases and syndromes. The book is organised according to body system, with chapters focusing on the CNS, the head and neck, the chest and heart, the abdomen and pelvis, and the musculoskeletal system. A final chapter is devoted to phakomatosis. Each syndrome or disease is illustrated by multiple images as well as by high-quality digital medical illustrations depicting those radiological signs that are difficult to detect. The reader is thereby familiarised with the various congenital anomalies from the radiological point of view. In addition, etiology, diagnostic criteria, and main symptoms are described, and potential differential diagnoses highlighted. This book will be immensely useful for junior radiologists, radiology students, and doctors in any specialty who are interested in congenital malformations and syndromes. (orig.)

  10. Congenital diseases and syndromes. An illustrated radiological guide

    International Nuclear Information System (INIS)

    Al-Tubaikh, Jarrah Ali; Sabah Hospital; Reiser, Maximilian F.

    2009-01-01

    Congenital Diseases and Syndromes - An Illustrated Radiological Guide is designed to serve the radiologist as an easy-to-use visual guide that illustrates the typical diagnostic radiological features of the most common congenital diseases and syndromes. The book is organised according to body system, with chapters focusing on the CNS, the head and neck, the chest and heart, the abdomen and pelvis, and the musculoskeletal system. A final chapter is devoted to phakomatosis. Each syndrome or disease is illustrated by multiple images as well as by high-quality digital medical illustrations depicting those radiological signs that are difficult to detect. The reader is thereby familiarised with the various congenital anomalies from the radiological point of view. In addition, etiology, diagnostic criteria, and main symptoms are described, and potential differential diagnoses highlighted. This book will be immensely useful for junior radiologists, radiology students, and doctors in any specialty who are interested in congenital malformations and syndromes. (orig.)

  11. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  12. Excercises in diagnostic radiology. Vol. 8. Uebungen in radiologischer Diagnostik. Bd. 8. Notfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Langston, C S; Squire, L F

    1982-01-01

    Diagnostic radiology in emergency patients as a supplement to anamnesis and examination has gained increasing importance in the last few years. Usually, the physician in charge has only few signs to go by when a patient is sent to radiology. The most frequent signs are pectoral pain, headache, dyspenea, etc. The cases in this book have been selected accordingly. Although the names have been invented the case histories presented have not been greatly changed. The original 'negatives' of the anamnesis are not presented in most cases as they would have taken up too much space. No important information has been omitted. A typical and unusual cases are characterized as such.

  13. A national survey of occupational radiation exposure among diagnostic radiologic technologists in South Korea

    International Nuclear Information System (INIS)

    Lee, Jeeyoung; Cha, Eun Shil; Jeong, Meeseon; Lee, Won Jin

    2015-01-01

    The objective of this study was to investigate representative occupational characteristics and radiation exposure for South Korean radiologic technologists. The authors conducted a national survey by stratified sampling of South Korean administrative districts and types of medical facilities. A total of 585 technologists were surveyed, and survey data were linked with dosimetry data from the National Dose Registry. A total of 73 % of radiologic technologists sampled were male, 62 % were younger than age 40 and 86.5 % began employment after 1990. The most frequent practices among radiologic technologists were diagnostic routine X-ray followed by computed tomography (CT) and portable X-ray. Male workers were more frequently involved in CT, portable X-ray and interventional radiology whereas female workers carried out most mammography procedures. The average annual effective dose was 2.3 mSv for male and 1.3 mSv for female workers. The dose was significantly higher for workers in the provinces and those who had recently started work. (authors)

  14. Quality assurance in diagnostic radiology in Hungary - first experiences in acceptance testing

    International Nuclear Information System (INIS)

    Porubszky, T.; Pellet, S.; Ballay, L.; Talian, L.; Giczi, F.

    2003-01-01

    It is a general experience that optimum imaging with minimum patient doses, moreover, the safe operation and long life of X-ray equipment can be assured by regular measurement of technical parameters and checking of their constancy (routine performance testing) only. These tests are generally known as quality control, while together with the so-called corrective actions and its management it is called (physical-technical) quality assurance (QA). In the European Union, Directive 97/43/EURATOM about radiation protection of patients requires - among others - the good practice of (physical-technical) quality assurance. In Hungary, Decree No. 31/2001. (X.3.) of the Minister of Health harmonizes all of its requirements. Acceptance testing of new diagnostic X-ray equipment is assigned to NPHC-NRIRR. QA has been a daily practice in radiation therapy and nuclear medicine for a long time. A National Patient Dose Assessment Programme has also successfully run since 1989. We had, however, only few preliminaries in QA in diagnostic radiology in the second half of the eighties. Nowadays there are running QA programmes in some hospitals and mammography centres. he testing activity of our institute is independent from manufacturers, it is run within the frame of an accredited testing laboratory, using calibrated measuring instruments and based on valid international standards. So the started way of implementing QA in diagnostic radiology needs a lot of further efforts, adapting experiences of other countries, and also some financial help to reach an acceptable level in the EU. (authors)

  15. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    Directory of Open Access Journals (Sweden)

    Sonawane A

    2010-01-01

    Full Text Available We conducted a radiological safety and quality assurance (QA audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp, linearity of tube current (mA station and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM (Model RAD/FLU-9001, dose Test-O-Meter (ToM (Model 6001, ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%, lack of congruence of radiation and optical field (23%, nonlinearity of mA station (16% and timer (9%, improper collimator/diaphragm (19.6%, faulty adjustor knob for alignment of field size (4%, nonavailability of warning light (red light at the entrance of the X-ray room (29%, and use of mobile protective barriers without lead glass viewing window (14%. The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  16. Radiology illustrated. Pediatric radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-One (ed.) [Seoul National Univ. College of Medicine (Korea, Republic of). Dept. of Radiology

    2014-11-01

    Depicts characteristic imaging findings of common and uncommon diseases in the pediatric age group. Will serve as an ideal diagnostic reference in daily practice. Offers an excellent teaching aid, with numerous high-quality illustrations. This case-based atlas presents images depicting the findings typically observed when imaging a variety of common and uncommon diseases in the pediatric age group. The cases are organized according to anatomic region, covering disorders of the brain, spinal cord, head and neck, chest, cardiovascular system, gastrointestinal system, genitourinary system, and musculoskeletal system. Cases are presented in a form resembling teaching files, and the images are accompanied by concise informative text. The goal is to provide a diagnostic reference suitable for use in daily routine by both practicing radiologists and radiology residents or fellows. The atlas will also serve as a teaching aide and a study resource, and will offer pediatricians and surgeons guidance on the clinical applications of pediatric imaging.

  17. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Current aspects in the development of the quality control in the conventional X-ray diagnostic radiology

    International Nuclear Information System (INIS)

    Stoeva, M.; Velkova, K.

    2004-01-01

    The role of the X-ray diagnostic radiology as one of the main factors forming the general public dose is indisputable. Following the requirement for justification of the application of X-rays for medical purposes, certain criteria for assessment of the parameters of the X-ray diagnostic equipment are formed and maximum permissible values defined. The latter are developed by the international and national radiation protection organizations and introduced both in the international and national legislation. The importance of the quality assurance concept for the radiation protection of the patient and staff in diagnostic radiology turned the quality control into main toll for obtaining high quality images with minimum dose to the patient and staff. X-ray diagnostics is one of the most common methods used in the medical practice. This is the main reason for the increase of the quality control protocols, winch makes their handling difficult. The latest developments in this area bring forward the idea for the development of specialized quality control software, which is capable of: 1) full or semi-automated calculation and assessment of the parameters of the X-ray diagnostic units; 2) tools for data handling and access; 3) tools for data analysis based on predefined procedures

  19. Calculation of radiation exposure in diagnostic radiology. Method and surveys

    International Nuclear Information System (INIS)

    Duvauferrier, R.; Ramee, A.; Ezzeldin, K.; Guibert, J.L.

    1984-01-01

    A computerized method for evaluating the radiation exposure of the main target organs during various diagnostic radiologic procedures is described. This technique was used for educational purposes: study of exposure variations according to the technical modalities of a given procedure, and study of exposure variations according to various technical protocols (IVU, EGD barium study, etc.). This method was also used for studying exposure of patients during hospitalization in the Rennes Regional Hospital Center (France) in 1982, according to departments (urology, neurology, etc.). This method and results of these three studies are discussed [fr

  20. Dose audit for patients undergoing two common radiography examinations with digital radiology systems.

    Science.gov (United States)

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey.

  1. Radiological diagnostics in oncology. Vol. 2. Gasterointestinal tract, urogenital tract, retroperitoneum

    International Nuclear Information System (INIS)

    Layer, G.

    2008-01-01

    The radiological diagnostics is of main importance for identification, status classification, therapy planning and control and aftertreatment of tumor diseases; therefore there is a need for appropriate requirements dependent on the specific case. The volume contains the following contributions: oesophasus carcinoma, stomach carcinoma, small intestine carcinoma, colorectal carcinoma, liver carcinoma, gall bladder and biliary tract carcinoma, exocrine pancreas carcinoma, kidney and urinary tract carcinomas, testicular carcinoma, prostate carcinoma, malign tumor in the adrenal gland, uterus carcinoma, uterine carcinoma

  2. Brachytherapy, diagnostic radiology, mammographic radiology and ophthalmic applicators. An assessment of current and future needs in the UK and the role of NPL

    International Nuclear Information System (INIS)

    Angliss, R.; Bass, G.; Sander, T.

    2001-01-01

    Several UK hospitals were visited by NPL staff to discuss the current practises and future developments in brachytherapy, diagnostic and mammographic radiology and ophthalmic applicators. The results of the discussions are presented here, including NPL's role in each of these areas is discussed. (author)

  3. Diagnostic imaging, a 'parallel' discipline. Can current technology provide a reliable digital diagnostic radiology department

    International Nuclear Information System (INIS)

    Moore, C.J.; Eddleston, B.

    1985-01-01

    Only recently has any detailed criticism been voiced about the practicalities of the introduction of generalised, digital, imaging complexes in diagnostic radiology. Although attendant technological problems are highlighted the authors argue that the fundamental causes of current difficulties are not in the generation but in the processing, filing and subsequent retrieval for display of digital image records. In the real world, looking at images is a parallel process of some complexity and so it is perhaps untimely to expect versatile handling of vast image data bases by existing computer hardware and software which, by their current nature, perform tasks serially. (author)

  4. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF:Mg,Cu,P thermoluminescence dosimeters for use in diagnostic radiology

    International Nuclear Information System (INIS)

    Dong, S.L.; Chu, T.C.; Lan, G.Y.; Wu, T.H.; Lin, Y.C.; Lee, J.S.

    2002-01-01

    Monitoring radiation exposure during diagnostic radiographic procedures has recently become an area of interest. In recent years, the LiF:Mg,Cu,P thermoluminescence dosimeter (TLD-100H) and the highly sensitive metal oxide semiconductor field effect transistor (MOSFET) dosimeter were introduced as good candidates for entrance skin dose measurements in diagnostic radiology. In the present study, the TLD-100H and the MOSFET dosimeters were evaluated for sensitivity, linearity, energy, angular dependence, and post-exposure response. Our results indicate that the TLD-100H dosimeter has excellent linearity within diagnostic energy ranges and its sensitivity variations were under 3% at tube potentials from 40 Vp to 125 kVp. Good linearity was also observed with the MOSFET dosimeter, but in low-dose regions the values are less reliable and were found to be a function of the tube potentials. Both dosimeters also presented predictable angular dependence in this study. Our findings suggest that the TLD-100H dosimeter is more appropriate for low-dose diagnostic procedures such as chest and skull projections. The MOSFET dosimeter system is valuable for entrance skin dose measurement with lumbar spine projections and certain fluoroscopic procedures

  5. Diagnostic Accuracy of CT in Paediatric Intracranial Neoplastic Lesions - Radiologic and Pathologic Correlation

    International Nuclear Information System (INIS)

    Qureshi, A.

    2011-01-01

    The frequency of paediatric tumours in developing countries could be attributed to the increased percentage (39% of total population of children) in the overall population. Therefore, extensive researches should be under taken in the field of Paediatric Oncology in the third world. Objective: This study was conducted to determine the diagnostic accuracy of CT by comparing the pre-operative radiological findings of paediatric brain tumours with post-operative histopathological findings on the basis of characteristic radiological features of various tumours. Materials and Methods: This was a hospital based prospective, cross-sectional and descriptive study carried out in Radiology Dept, KEMU / Mayo Hospital, Lahore. Study was conducted over a period of 3 years from June 2005 till June 2008 and comprised of 100 cases of paediatric brain tumours up to 12 years of age. Cases were also collected from Mayo and Children Hospital, Lahore. Results: Topographically, supratentorial tumours were found more than infratentorial 55 : 45. Low grade were more common than high grade 73 : 27. The most common tumour was astrocytoma with 52 cases. Medulloblastoma ranked the second with 16 cases followed by craniopharyngioma with 12 cases. Conclusion: The diagnostic accuracy of CT scan was found to be 83% when correlated with histopathology. CT proved fairly accurate in detection of paediatric intracranial neoplastic lesions. As CT is relatively commonly available inexpensive modality than MRI so it can be used as non invasive imaging modality. (author)

  6. X ray spectra and qualities for use in diagnostic radiology and equipment calibration

    International Nuclear Information System (INIS)

    Souza, Karla Cristina de

    1996-12-01

    The goal of this work was the standardization of radiation qualities of diagnostic X ray equipment of the Assay Laboratory of the Institute for Radiation Protection and Dosimetry (IRD) of the National Commission of Nuclear Energy, Brazil. X ray spectra were determined from pulse height distribution measured directly on the primary beam using a high pure planar Ge detector. A program was developed to convert pulse height distribution into radiation spectra in the range from 20 to 150 keV. X ray qualities based on those used by the 'Physikalish-Technish Bundesantalt' (PTB) primary laboratory were implanted in three radiological equipment of the Assay Laboratory. These qualities simulate radiation beams on patients submitted to typical radiological examinations. Besides the spectrometric system, a reference measurement system based on an ionization chamber calibrated in air kerma was used to establish parameters such as kilovoltage, first and second half-value layer, mean energy, effective energy and inherent filtration. Our data have shown that the implantation of these radiation qualities in the Assay Laboratory results on a metrological basis for calibration of dose measurement assemblies and kV-meters, like those used by IRD to evaluate the parameters of X ray equipment around the country. A catalogue of spectral data resulting from this work is a data bank that allows various applications like dose calculation using Monte Carlo simulation techniques. (author)

  7. A study of radiological protection for women of reproductive age in diagnostic radiology. Questionnaire for medical radiation technologists

    International Nuclear Information System (INIS)

    Tsubone, Chie; Ban, Nobuhiko; Kai, Michiaki

    2005-01-01

    There has been great concern regarding the radiation protection for women of reproductive age when exposed to diagnostic radiation. The 10-day-rule proposed by the ICRP has not been recommended since 1983 because the risk to embryo and fetus within four weeks after menstruation may be small. However, some expects see that incomplete abandon of the 10-day-rule might cause confusion among the medical doctors and patients, and consequently unwarranted abortion happens. This paper surveyed the views of radiation technologies in hospitals and discussed how radiation exposure of women of reproductive age in medicine should be controlled. We found that the views to be 10-day-rule were spilt 50:50 and that radiation technologists do not necessarily think the 10-day-rule should be abandoned. Even the radiation technologists who are supposed to be able to explain to the patients the health risk following diagnostic exposure do not fully understand the risk involved. In conclusion, although a low-dose risk of diagnostic exposure should be sufficiently educated in order to obtain an exact understanding, the 10-day-rule may be useful in order to actually avoid any trouble in diagnostic radiology. (author)

  8. Advance of the National Program of Radiological Protection and Safety for medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Verdejo S, M.

    1999-01-01

    The National Program of Radiological Protection and Safety for medical diagnostic with X-ray (Programa Nacional de Proteccion y Seguridad Radiologica para diagnostico medico con rayos X) was initiated in the General Direction of Environmental Health (Direccion General de Salud Ambiental) in 1995. Task coordinated with different dependences of the Public Sector in collaboration between the Secretary of Health (Secretaria de Salud), the National Commission of Nuclear Safety and Safeguards (Comision Nacional de Seguridad Nuclear y Salvaguardias) and, the National Institute of Nuclear Research (Instituto Nacional de Investigaciones Nucleares). The surveillance to the fulfilment of the standardization in matter of Radiological Protection and Safety in the medical diagnostic with X-rays has been obtained for an important advance in the Public sector and it has been arousing interest in the Private sector. (Author)

  9. Radiological protection system in the era of nuclear renaissance expectation for development of radiological protection system

    International Nuclear Information System (INIS)

    Toyomatsu, Hideki

    2008-01-01

    The current radiological protection system, which was established mainly by the ICRP and UNSCEAR, has contributed to the prevention of potential radiological health hazards, and has been a fundamental concept during the development of nuclear energy. Through a detailed discussion regarding the new ICRP recommendations, the world nuclear industry has reached a consensus that the current radiological protection system keeps its integrity in principle although it involves some remaining issues, such as the disposal of radioactive waste. In order to maximize the advantages of nuclear energy while keeping the integrity of radiological protection system, it is essential to address the characteristics of radiation, which is specific to nuclear energy, so that nuclear energy can coexist with other energy sources. The three basic principles of radiological protection (i.e., justification, optimization and dose limits), which were completed in the 1990 recommendations of ICRP, should be retained as the basic concepts for the future radiological protection system in order to maintain the continuity and consistency of the radiological protection system. The radiological protection system can be furthermore developed only by combining the above three principles with best practices extracted from utilities' field experience. The significant reduction of radiation exposures received by members of the public and radiation workers in the field has resulted from the efforts by the world utilities to achieve the optimization. In order to correctly apply the theory to the work practices, it is essential to see how the theory is practically used in the field. Such a process should be also emphasized in the revision work of the IAEA Basic Safety Standards (BSS), which is currently under progress. Integrating the theory in the work practices is the key to the true development of nuclear renaissance, which could lead to the establishment of the nuclear safety regime. (author)

  10. SU-E-E-01: ABR Diagnostic Radiology Core Exam: Was Our Redesigned Physics Course Successful in Teaching Physics to Radiology Residents?

    International Nuclear Information System (INIS)

    Kanal, K; Hoff, M; Dickinson, R; Zamora, D; Stewart, B

    2014-01-01

    Purpose: Our purpose is to evaluate the effectiveness of our two year physics course in preparing radiology residents for the American Board of Radiology (ABR) diagnostic radiology exam. Methods: We designed a new two-year physics course that integrates radiology clinical content and practice and is primarily based on the AAPM curriculum and RSNA/AAPM physics modules. Biweekly classes focus on relevant concepts from assigned reading and use audience response systems to encourage participation. Teaching efficiency is optimized through lecturer rotations of physicists, radiologists, and guest speakers. An emphasis is placed on clinical relevance by requiring lab work and providing equipment demonstrations. Periodic quiz were given during the course. The course website was also redesigned for usability, and physics review lectures were conducted two weeks before the board exam to refresh key concepts. At the completion of our first two-year course, we conducted a confidential evaluation of the faculty and course. The evaluation assessed metrics such as overall organization, clinical relevance of content, and level of difficulty, with a rating scale from poor to excellent. Results: Our evaluation indicated that the redesigned course provided effective board exam preparation, with most responses between good and excellent. There was some criticism on the course length and on chronological discontinuity, but the review lectures were appreciated by the residents. All of our residents passed the physics component of the ABR exam with scores exceeding the minimum passing score by a significant margin. Conclusion: The course evaluation and board exam results indicate that our new two-year course format provides valuable board exam preparation. This is possible thanks to the time and effort taken by the physics faculty on ensuring the residents get quality physics education

  11. Radiology trainer. Torso, internal organs and vessels. 2. ed.

    International Nuclear Information System (INIS)

    Staebler, Axel; Erlt-Wagner, Birgit

    2013-01-01

    The radiology training textbook is based on case studies of the clinical experience, including radiological imaging and differential diagnostic discussion. The scope of this volume covers the torso, internal organs and vessels. The following issues are discussed: lungs, pleura, mediastinum; heart and vascular system; upper abdomen organs; gastrointestinal tract; urogenital system.

  12. Determining and managing fetal radiation dose from diagnostic radiology procedures in Turkey

    International Nuclear Information System (INIS)

    Ozbayrak, Mustafa; Cavdar, Iffet; Seven, Mehmet; Uslu, Lebriz; Yeyin, Nami; Tanyildizi, Handan; Abuqbeitah, Mohammad; Acikgoz, A. Serdar; Tuten, Abdullah; Demir, Mustafa

    2015-01-01

    We intended to calculate approximate fetal doses in pregnant women who underwent diagnostic radiology procedures and to evaluate the safety of their pregnancies. We contacted hospitals in different cities in Turkey where requests for fetal dose calculation are usually sent. Fetal radiation exposure was calculated for 304 cases in 218 pregnant women with gestational ages ranging from 5 days to 19 weeks, 2 days. FetDose software (ver. 4.0) was used in fetal dose calculations for radiographic and computed tomography (CT) procedures. The body was divided into three zones according to distance from the fetus. The first zone consisted of the head area, the lower extremities below the knee, and the upper extremities; the second consisted of the cervicothoracic region and upper thighs; and the third consisted of the abdominopelvic area. Fetal doses from radiologic procedures between zones were compared using the Kruskal-Wallis test and a Bonferroni-corrected Mann-Whitney U-test. The average fetal doses from radiography and CT in the first zone were 0.05 ± 0.01 mGy and 0.81 ± 0.04 mGy, respectively; 0.21 ± 0.05 mGy and 1.77 ± 0.22 mGy, respectively, in the second zone; and 6.42 ± 0.82 mGy and 22.94 ± 1.28 mGy, respectively, in the third zone (p < 0.001). Our results showed that fetal radiation exposures in our group of pregnant women did not reach the level (50 mGy) that is known to increase risk for congenital anomalies. Fetal radiation exposure in the diagnostic radiology procedures in our study did not reach risk levels that might have indicated abortion

  13. Determining and managing fetal radiation dose from diagnostic radiology procedures in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayrak, Mustafa; Cavdar, Iffet; Seven, Mehmet; Uslu, Lebriz; Yeyin, Nami; Tanyildizi, Handan; Abuqbeitah, Mohammad; Acikgoz, A. Serdar; Tuten, Abdullah; Demir, Mustafa [Istanbul University, Istanbul (Turkmenistan)

    2015-12-15

    We intended to calculate approximate fetal doses in pregnant women who underwent diagnostic radiology procedures and to evaluate the safety of their pregnancies. We contacted hospitals in different cities in Turkey where requests for fetal dose calculation are usually sent. Fetal radiation exposure was calculated for 304 cases in 218 pregnant women with gestational ages ranging from 5 days to 19 weeks, 2 days. FetDose software (ver. 4.0) was used in fetal dose calculations for radiographic and computed tomography (CT) procedures. The body was divided into three zones according to distance from the fetus. The first zone consisted of the head area, the lower extremities below the knee, and the upper extremities; the second consisted of the cervicothoracic region and upper thighs; and the third consisted of the abdominopelvic area. Fetal doses from radiologic procedures between zones were compared using the Kruskal-Wallis test and a Bonferroni-corrected Mann-Whitney U-test. The average fetal doses from radiography and CT in the first zone were 0.05 ± 0.01 mGy and 0.81 ± 0.04 mGy, respectively; 0.21 ± 0.05 mGy and 1.77 ± 0.22 mGy, respectively, in the second zone; and 6.42 ± 0.82 mGy and 22.94 ± 1.28 mGy, respectively, in the third zone (p < 0.001). Our results showed that fetal radiation exposures in our group of pregnant women did not reach the level (50 mGy) that is known to increase risk for congenital anomalies. Fetal radiation exposure in the diagnostic radiology procedures in our study did not reach risk levels that might have indicated abortion.

  14. The Technologist Function in Fields Related to Radiology: Tasks in Radiation Therapy and Diagnostic Ultrasound. Research Report No. 9; Relating Technologist Tasks in Diagnostic Radiology, Ultrasound and Radiation Therapy. Research Report No. 10.

    Science.gov (United States)

    Gilpatrick, Eleanor

    The two research reports included in this document describe the application of the Health Services Mobility Study (HSMS) task analysis method to two technologist functions and examine the interrelationships of these tasks with those in diagnostic radiology. (The HSMS method includes processes for using the data for designing job ladders, for…

  15. Radiological functional analysis of the vascular system contrast media, methods, results

    CERN Document Server

    1983-01-01

    Scientists and engineers have been involved in medical radiology from the very beginning. At times advances in this field occur at a tremen­ dously fast pace. Developments in radiological diagnostics have - technologically and medically speaking - focused on morphology. At present, computer-aided tomography (CAT) is at a high point in deve1opment, medical application, and validation. The preconditions for this success were rapid advances in electronics and computer technology - in hardware and in software - and an unexpected cost reduction in these fields; the co operation of various scientific disci­ plines was also essential. Functional radiological diagnosis has been neglected in part, owing to the emphasis on morphology, but alone the synthesis of morphology and function prornises further advances. Apart from the limited capabilities ofuItrasonic techniques there is no way other than using X-rays to carry out functional studies of organs and their systems through an intact body surface. It is frequently...

  16. Pediatric radiology

    International Nuclear Information System (INIS)

    Benz-Bohm, G.

    1997-01-01

    Pediatric radiology is an important subsection of diagnostic radiology involving specific difficulties, but unfortunately is quite too often neglected as a subject of further education and training. The book therefore is not intended for specialists in the field, but for radiologists wishing to plunge deeper into the matter of pediatric radiology and to acquire a sound, basic knowledge and information about well-proven modalities, the resulting diagnostic images, and interpretation of results. The book is a compact guide and a helpful source of reference and information required for every-day work, or in special cases. With patients who are babies or children, the challenges are different. The book offers all the information needed, including important experience from pediatric hospital units that may be helpful in diagnostic evaluation, information about specific dissimilarities in anatomy and physiology which affect the imaging results, hints for radiology planning and performance, as well as information about the various techniques and their indication and achievements. The book presents a wide spectrum of informative and annotated images. (orig./CB) [de

  17. Dental and dental hygiene students' diagnostic accuracy in oral radiology: effect of diagnostic strategy and instructional method.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2014-09-01

    There has been much debate surrounding diagnostic strategies and the most appropriate training models for novices in oral radiology. It has been argued that an analytic approach, using a step-by-step analysis of the radiographic features of an abnormality, is ideal. Alternative research suggests that novices can successfully employ non-analytic reasoning. Many of these studies do not take instructional methodology into account. This study evaluated the effectiveness of non-analytic and analytic strategies in radiographic interpretation and explored the relationship between instructional methodology and diagnostic strategy. Second-year dental and dental hygiene students were taught four radiographic abnormalities using basic science instructions or a step-by-step algorithm. The students were tested on diagnostic accuracy and memory immediately after learning and one week later. A total of seventy-three students completed both immediate and delayed sessions and were included in the analysis. Students were randomly divided into two instructional conditions: one group provided a diagnostic hypothesis for the image and then identified specific features to support it, while the other group first identified features and then provided a diagnosis. Participants in the diagnosis-first condition (non-analytic reasoning) had higher diagnostic accuracy then those in the features-first condition (analytic reasoning), regardless of their learning condition. No main effect of learning condition or interaction with diagnostic strategy was observed. Educators should be mindful of the potential influence of analytic and non-analytic approaches on the effectiveness of the instructional method.

  18. Calibration of dosimeters used in diagnostic radiology in terms of air kerma rate

    International Nuclear Information System (INIS)

    Soluman, M. H.

    2012-10-01

    This study was performed to determine IEC reference radiation beam quality for calibrating dosimeters used in diagnostic radiology. Additional filtration required to establish certain IEC quality was estimated from beam transmission measurements using Al absorbers. The experiment was carried out using medical x-ray equipment at Neelain Medical Center, Khartoum. The required added filtration thickness required to establish RQA quality was estimated according to the the method described in the IEC standard. The required filtration was estimated for each of radiation quality (40, 60, 80, 100, 120,) kV. Result showed the maximum deviation of 2.3%, for the half value-layers, which complied with the standard requirement of 3%, the additional filtration required for the RQA qualities was found to as follows: 1.2 mmAL (RQA2, 40 kV), 11.0 mmAL (RQA3, 60 kV), 20.7 mmAL ( RQA4, 80 kV), 29.5 mmAL (RQA5, 100 kV) and 33.0 mmAL (AQA6, 120 kV), those qualities recommended to be applied to calibration of the diagnostic radiology measurements instruments in Sudan.(Author)

  19. Evaluation of conventional x-ray diagnostic equipment and radiological protection systems of hospitals and clinics installed in Recife city, Brazil

    International Nuclear Information System (INIS)

    Passos, Robson Silva

    1999-05-01

    Diagnostic radiology is the main contributor to the man-made exposure of general population. Since Quality Assurance (QA) programs ensure high quality diagnostic images with the lowest possible radiation dose to the patient, it has been recommended that all introduce QA programs for their radiological facilities. Consequently it is important to check the adequacy of equipment operating parameters in diagnostic radiography facilities, to ensure that a high quality of service is delivered. The purpose of this study was to evaluate the operating conditions of diagnostic units installed in Recife, Pernambuco. The study included 31 X-ray units from both public and private diagnostic services. The following parameters were evaluated: coincidence between the luminous and radiation fields; alignment of the radiation beam; agreement between the real and preset values of kVp and exposure time; filtration; half value lower (HVL); luminance of the view box; uniformity of the luminance; illuminance of the environment. The results showed that 20% of the equipment surveyed exhibited discrepancies between the luminous and radiation fields greater than 2% of the source to skin distance. The test of kilovoltage showed that 48% of the units do not fulfill the acceptability criteria, presenting discrepancies higher than ± 10% between the measured and preset values. The results of the accuracy of the timer indicated that 81% of the equipment surveyed present a discrepancy greater than ± 10% between the time selected in the control panel and actual exposure time.The test of the filtration shown that, in 20% of the equipment, this was inferior to 2,5 mm Al. The test of the luminance of view box shown that 96% of the equipment, shown a luminance lower of 2.000 cd/m 2 . Related to the test of the uniformity of the luminance, 81 % of the equipment shown a variation of the uniformity higher then 10%. The test of the iluminancy of the environment shown that 61 % of the equipment presented

  20. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Sina, S [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Zeinali, B; Karimipourfard, M; Lotfalizadeh, F; Sadeghi, M [Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of); Faghihi, R [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-06-01

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface of Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities.

  1. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Sina, S; Zeinali, B; Karimipourfard, M; Lotfalizadeh, F; Sadeghi, M; Faghihi, R

    2014-01-01

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface of Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities

  2. Dose audit for patients undergoing two common radiography examinations with digital radiology systems

    Science.gov (United States)

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    PURPOSE We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. MATERIALS AND METHODS Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. RESULTS The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. CONCLUSION This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey. PMID:24317331

  3. Radiology information management system, TOSRIM

    International Nuclear Information System (INIS)

    Tani, Yuichiro; Uchiyama, Akira; Kimura, Hirohito

    1991-01-01

    This is a report on a new type of distributed computer system for radiology departments named 'TOSRIM' (Toshiba radiology information management system), which is designed to be installed between medical diagnosis equipment and a host computer system in a hospital. Recently, a new type of host computer system has been developed which enables doctors to order any of the hospital's entire activities using terminals. By connecting 'TOSRIM' to this type of host computer system, many of the activities of a radiology department can be carried out via terminals without the use of examination requirement forms. As well as being connected to medical diagnosis equipment, 'TOSRIM' can also be connected to a medical imaging system which stores and displays medical images. By means of these connections, doctors will be able to diagnose medical images using display terminals without the need for films. (author)

  4. Radiation exposure and image quality in X-ray diagnostic radiology. Physical principles and clinical applications. 2. ed.

    International Nuclear Information System (INIS)

    Saebel, Manfred; Aichinger, Horst; Dierker, Joachim; Joite-Barfuss, Sigrid

    2012-01-01

    Diagnostic X-rays are the largest contributor to radiation exposure to the general population, and protecting the patient from radiation damage is a major aim of modern health policy. Once the decision has been taken to use ionising radiation for imaging in a particular patient, it is necessary to optimize the image acquisition process taking into account the diagnostic quality of the images and the radiation dose to the patient. Both image quality and radiation dose are affected by a number of parameters, knowledge of which permits scientifically based decision making. The authors of this second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology have spent many years studying the optimization of radiological imaging. In this book they present in detail the basic physical principles of diagnostic radiology and their application to clinical problems. Particular attention is devoted to evaluation of the dose to the patient, the influence of scattered radiation on image quality, the use of antiscatter grids, and optimization of image quality and dose. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader's own programs. Since the first edition, the text, figures, tables, and references have all been thoroughly updated, and more detailed attention is now paid to image quality and radiation exposure when using digital imaging and computed tomography. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers. (orig.)

  5. Implementation of a remote system for monitoring of radiological areas of radiological areas

    International Nuclear Information System (INIS)

    Velazquez E, Walter; Galuppo G, Emiliano; Gutierrez G, Jorge; Reyes R, Jerson

    2008-01-01

    Full text: Introduction: The present work shows the development of a radiation remote monitoring system which control radiological areas in the principal facilities at CCHEN and the development in the last years to use this system called SMARR (Remote Radiological Area Monitoring System). This is an important issue in radiological safety is to know 'on line' and in a 'continuously way' the radiological variables of areas, especially if in these areas people manage radioactive sources or material, the monitoring system are operative on La Reina and Lo Aguirre Nuclear Centers. This 'knowledge' gets a good support to the radiological safety to safeguard the environment and people in the facilities. Nuclear Chilean Commission: Actually, this system is daily operating to register the background radiation and level operation, for example of the facilities research reactor, cyclone, irradiators, in order to probe the behaviors under operational requirements. The system was made using common Geiger Muller and NaI detectors. This signal is received, data by data, for a collector computer which uses a Labview program to do this displayed on a screen computer using graphics to show the activity on a radiological area, and when the lectures pass a setting value automatically the system send by e-mail and text message which also can be received for cell phones enabled for this for the supervisor. Each monitored facility is completely independent of each other and store a data backup, also every installation are monitoring with server computer, it's concentrating the information and allow to view it on line in real time, trough the intranet and internet network. In addition, the information is stored in the special report in the server and available for to do a statistics and identify the operation periods, and control of radioactive sources. The Industry: The radiological protection on industry is necessary today, the typical instrumentation on the industry is growing up in the

  6. Computational Approach for Securing Radiology-Diagnostic Data in Connected Health Network using High-Performance GPU-Accelerated AES.

    Science.gov (United States)

    Adeshina, A M; Hashim, R

    2017-03-01

    Diagnostic radiology is a core and integral part of modern medicine, paving ways for the primary care physicians in the disease diagnoses, treatments and therapy managements. Obviously, all recent standard healthcare procedures have immensely benefitted from the contemporary information technology revolutions, apparently revolutionizing those approaches to acquiring, storing and sharing of diagnostic data for efficient and timely diagnosis of diseases. Connected health network was introduced as an alternative to the ageing traditional concept in healthcare system, improving hospital-physician connectivity and clinical collaborations. Undoubtedly, the modern medicinal approach has drastically improved healthcare but at the expense of high computational cost and possible breach of diagnosis privacy. Consequently, a number of cryptographical techniques are recently being applied to clinical applications, but the challenges of not being able to successfully encrypt both the image and the textual data persist. Furthermore, processing time of encryption-decryption of medical datasets, within a considerable lower computational cost without jeopardizing the required security strength of the encryption algorithm, still remains as an outstanding issue. This study proposes a secured radiology-diagnostic data framework for connected health network using high-performance GPU-accelerated Advanced Encryption Standard. The study was evaluated with radiology image datasets consisting of brain MR and CT datasets obtained from the department of Surgery, University of North Carolina, USA, and the Swedish National Infrastructure for Computing. Sample patients' notes from the University of North Carolina, School of medicine at Chapel Hill were also used to evaluate the framework for its strength in encrypting-decrypting textual data in the form of medical report. Significantly, the framework is not only able to accurately encrypt and decrypt medical image datasets, but it also

  7. Radiology system evolution in the new millennium.

    Science.gov (United States)

    Nauert, R C

    2001-01-01

    For many decades the practice of radiology grew slowly in America and was largely a secondary function under the control of hospitals. In more recent times it has vastly expanded its array of diagnostic, interventional, and therapeutic abilities. There is increasing consumer logic for direct access. Motivations have grown to create large independent entities with broadly diverse capabilities in order to succeed in the new millennium. Most regional markets are evolving rapidly in terms of managed care penetration, health system formation, physician practice consolidation and aggressive purchaser behavior by employers and consumers. To understand the enormity of healthcare evolution, it is useful to look at the industry's paradigm shifts in recent decades. Virtually every aspect of organizational infrastructure, delivery approaches, and the business environment has evolved markedly during the past fifty years. These changes will accelerate. To succeed financially, radiology groups must strengthen their market positions, technical capabilities, continuums of care and geographic dominance. Equally important is the wisdom of diversifying incomes into related services and businesses that provide additional related revenues. Key factors for successful development include facility market growth, full coverage of managed care contracts, high efficiency and aggressive diversification. A fully evolved system generates significant revenues and profitability by protecting and strengthening its financial position in this environment. That is accomplished through the development of strategically located radiology groups, aggressive alliances with medical practices in allied disciplines, and managed radiology departments and facilities for partner health systems. Organizational success ultimately depends on the ability to accept capitated payments under risk-bearing arrangements. The strategic business plan should be organized with the appropriate levels of detail needed to

  8. Risk perception of diagnostic and therapeutic radiological applications. Comparison of experts and the public

    International Nuclear Information System (INIS)

    Arranz, L.; Macias, M.T.; Prades, A.; Sola, R.; Martinez-Arias, R.

    2000-01-01

    Recent research has found many differences between experts and lay people in judgements of radiological risks. However, most of these studies were carried out on experts from nuclear power plants, regulatory bodies etc. This paper analyses the differences among several groups of 'experts' coming from the Health area and the lay people. A survey was designed to assess the perceived seriousness of seven diagnostic and therapeutic applications: conventional diagnostic radiology, computed tomography, chemotherapy, ecography examinations, radiotherapy, and diagnostic and therapeutic nuclear medicine. The questionnaire was distributed to samples of experts (professionals exposed to ionizing radiations, and other health professionals), and outpatients. All samples were selected from ten countries: Argentine, Brazil, Colombia, Cuba, Ecuador, Mexico, Panama, Peru, Uruguay, and Spain, thanks to the collaboration of the different National Radioprotection Societies of the above mentioned countries, and of other concerned professionals (in case they didn't have any association at the time). The following comparisons will be presented: 1) Differences between experts' and the public; 2) differences among several groups of 'experts'; 3) within the 'expert' sample, differences between perceived seriousness as a patient and as a professional at risk; 4) within the public sample, individual differences related to some socio-demographic variables. A cross-cultural analysis of the above mentioned comparisons will also be carried out. (author)

  9. Risk perception of diagnostic and therapeutic radiological applications. Comparison of experts and the public

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, L. [Hospital Ramon y Cajal, Madrid (Spain); Macias, M.T. [CSIC, Madrid (Spain); Prades, A.; Sola, R. [Ciemat, Madrid (Spain); Martinez-Arias, R. [Universidad Complutense, Madrid (Spain)

    2000-05-01

    Recent research has found many differences between experts and lay people in judgements of radiological risks. However, most of these studies were carried out on experts from nuclear power plants, regulatory bodies etc. This paper analyses the differences among several groups of 'experts' coming from the Health area and the lay people. A survey was designed to assess the perceived seriousness of seven diagnostic and therapeutic applications: conventional diagnostic radiology, computed tomography, chemotherapy, ecography examinations, radiotherapy, and diagnostic and therapeutic nuclear medicine. The questionnaire was distributed to samples of experts (professionals exposed to ionizing radiations, and other health professionals), and outpatients. All samples were selected from ten countries: Argentine, Brazil, Colombia, Cuba, Ecuador, Mexico, Panama, Peru, Uruguay, and Spain, thanks to the collaboration of the different National Radioprotection Societies of the above mentioned countries, and of other concerned professionals (in case they didn't have any association at the time). The following comparisons will be presented: 1) Differences between experts' and the public; 2) differences among several groups of 'experts'; 3) within the 'expert' sample, differences between perceived seriousness as a patient and as a professional at risk; 4) within the public sample, individual differences related to some socio-demographic variables. A cross-cultural analysis of the above mentioned comparisons will also be carried out. (author)

  10. Development of radiology in Mongolia

    International Nuclear Information System (INIS)

    Gonchigsuren, D.; Munkhbaatar, D.; Tuvshinjargal, D.; Onkhuudai, P.

    2007-01-01

    First State Central Hospital. The installation of modern diagnostic equipment such as Magnetom and ALOKA provided the Mongolian health care sector with opportunities for high quality of radiological service, upgraded the training of radiologists and served as a good basis for undergraduate medical training. Further development of Radiology still strongly influenced by the Mongolian Radiological Society which is founded in 1995 at the Department of Radiology, Health Sciences University of Mongolia. There are totally circa 256 radiologists of Mongolia which consist 3% of all Mongolian medical doctors. The Mongolian Radiological Society actively supported the introduction of new diagnostic equipment in Mongolia, scientific research and radiologist training. With support of the Mongolian Radiological Society, many scientific reports and articles of Mongolian researchers were presented at international conferences and journals like 'American Journal of Roentgenology', 'Radiographics' etc. Since 1995 'Journal of Diagnostic Imaging' had been published by the Mongolian Radiological Society with the goal of improvement of radiological service and knowledge upgrading of radiologists and other physicians. For the prevention, early detection and treatment management of diseases and disorders, good quality of radiological care often has a decision-making role, what is especially clearly seen in health care systems of developing countries like Mongolia. Mongolian Radiological Society works in collaboration with many international organizations and societies for the improvement of radiological service quality through the introduction of new diagnostic opportunities and upgrading training of radiologists, which will result in higher health care quality for whole Mongolian population. (author)

  11. Radiology information management system, TOSRIM

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yuichiro; Uchiyama, Akira; Kimura, Hirohito (Toshiba Corp., Kawasaki, Kanagawa (Japan))

    1991-02-01

    This is a report on a new type of distributed computer system for radiology departments named 'TOSRIM' (Toshiba radiology information management system), which is designed to be installed between medical diagnosis equipment and a host computer system in a hospital. Recently, a new type of host computer system has been developed which enables doctors to order any of the hospital's entire activities using terminals. By connecting 'TOSRIM' to this type of host computer system, many of the activities of a radiology department can be carried out via terminals without the use of examination requirement forms. As well as being connected to medical diagnosis equipment, 'TOSRIM' can also be connected to a medical imaging system which stores and displays medical images. By means of these connections, doctors will be able to diagnose medical images using display terminals without the need for films. (author).

  12. Pediatric radiology

    International Nuclear Information System (INIS)

    Silverman, F.N.

    1982-01-01

    A literature review with 186 references of diagnostic pediatric radiology, a speciality restricted to an age group rather than to an organ system or technique of examination, is presented. In the present chapter topics follow the basic organ system divisions with discussions of special techniques within these divisions. The diagnosis of congenital malformations, infectious diseases and neoplasms are a few of the topics discussed for the head and neck region, the vertebrae, the cardiovascular system, the respiratory system, the gastrointestinal tract, the urinary tract, and the skeleton

  13. The impact of education on occupational radiation exposure reduction in a diagnostic radiology department

    International Nuclear Information System (INIS)

    Vetter, R.J.; Gray, J.E.

    1987-01-01

    Patient load, number of radiographic exams, complexity of some exams, and associated potential occupational radiation exposure of medical personnel have increased significantly in the past decade. Efforts to reduce exposure through employee education and awareness have resulted in significant reduction in occupational exposure for most diagnostic radiographic areas at Mayo Clinic. This paper reviews trends in occupational radiation exposure from diagnostic x- rays at Mayo Clinic over the past ten years. Changes in employee radiation dose equivalents are correlated with patient workload, complexity of exams, increased interventional radiology and cardiology, and efforts to reduce employee radiation exposure

  14. Radiological impact of diagnostic nuclear medicine technology on the Quebec population (patients and workers) in 1989

    International Nuclear Information System (INIS)

    Renaud, L.; Blanchette, J.

    1992-01-01

    Using the results of a six month survey on the doses received by non-monitored hospital workers from diagnostic nuclear medicine patients (DNMP) in three hospitals and published statistics on Quebec's workers and hospitals, an evaluation of the radiological impact of DNMP has been calculated on the Quebec's population. In 1989, diagnostic nuclear medicine gave an average of 6.4 mSv/act or a total of 2,800 sv-man. The diagnostic nuclear medicine technologists' community received 0.4 Sv-man and the non-monitored hospital workers 1.7 Sv-man from the DNMP in the same year. (author)

  15. Quality control in diagnostic radiology. Historical development and present status in Europe

    International Nuclear Information System (INIS)

    Michael Moores, B.

    2007-01-01

    Complete test of publication follows. Quality control is now an accepted activity within the overall radiation protection framework for diagnostic radiology. Indeed it is now a legal requirement within Member States specified in EC Directives that establish the basic requirements for radiation protection in medicine. This was not always the case and its historical development can be considered in three parts: 1) The development of test procedures and standardisation of practices; 2) Harmonisation of initiatives and the creation of a European dimension in such practices; 3) Its role and function in a changing and evolving technological environment - current status and future needs. The development of tests methods for diagnostic X-ray equipment was initially intimately related to the development of a scientific basis for the X-ray imaging process. Knowledge of the physical basis for image production in film-screen and fluoroscopic processes required the definition and specification and measurement of particular parameters within the image forming chain. The development of test methods and the necessary measuring equipment involved ongoing research and development by physical scientists throughout Europe and North America. However, the many different approaches employed meant that results of measurements could not always be compared. However, once acceptable test methods and equipment had been developed it was possible to standardise practices through the development of test protocols. In 1980 a foundation for collective European actions was established through the EC radiation protection research and development programme. This helped to establish a European wide forum for actions in the field of medical radiation protection including quality control. These initiatives were driven by EC Directives, which were concerned with protection of the worker, general public and patients from medical practices that utilised ionising radiation. Multi national research

  16. Foetal Radiation Dose and Risk from Diagnostic Radiology Procedures: A Multinational Study

    International Nuclear Information System (INIS)

    Osei, Ernest K.; Darko, Johnson

    2012-01-01

    In diagnostic radiology examinations there is a benefit that the patient derives from the resulting diagnosis. Given that so many examinations are performed each year, it is inevitable that there will be occasions when an examination(s) may be inadvertently performed on pregnant patients or occasionally it may become clinically necessary to perform an examination(s) on a pregnant patient. In all these circumstances it is necessary to request an estimation of the foetal dose and risk. We initiated a study to investigate fetal doses from different countries. Exposure techniques on 367 foetuses from 414 examinations were collected and investigated. The FetDoseV4 program was used for all dose and risk estimations. The radiation doses received by the 367 foetuses ranges: <0.001–21.9 mGy depending on examination and technique. The associated probability of induced hereditary effect ranges: <1 in 200000000 (5 × 10 −9 ) to 1 in 10000 (1 × 10 −4 ) and the risk of childhood cancer ranges <1 in 12500000 (8 × 10 −8 ) to 1 in 500 (2 × 10 −3 ). The data indicates that foetal doses from properly conducted diagnostic radiology examinations will not result in any deterministic effect and a negligible risk of causing radiation induced hereditary effect in the descendants of the unborn child

  17. Radiology education: a radiology curriculum for all medical students?

    NARCIS (Netherlands)

    Zwaan, Laura; Kok, E.M.; van der Gijp, Anouk

    2017-01-01

    Diagnostic errors in radiology are frequent and can cause severe patient harm. Despite large performance differences between radiologists and non-radiology physicians, the latter often interpret medical images because electronic health records make images available throughout the hospital. Some

  18. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels

    International Nuclear Information System (INIS)

    Bessa, Ana Carolina Moreira de

    2007-01-01

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were inter compared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: 67 Ga, 201 Tl and 99m Tc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  19. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels

    International Nuclear Information System (INIS)

    Bessa, Ana Carolina Moreira de

    2006-01-01

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were intercompared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: 67 Ga, 201 Tl and 99m Tc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  20. On the problem of radiation damage due to diagnostic radiology of the chest

    International Nuclear Information System (INIS)

    Angerstein, W.

    1979-01-01

    The factors of risk for radiation-induced cancer given by UNSCEAR and ICRP are discussed. Under the uncertain assumption of the validity of these factors for diagnostic radiology the number of lung and breast cancers as well as of leukemias induced by mass chest radiography was estimated. It was found that for 30 chest X-rays per capita in the course of life there would be 180 lung cancers, 5 breast cancers and 27 leukemias in the GDR each year. These figures have been compared with the number of cases of lung tuberculosis and lung cancer detected annually ley mass chest radiography. However, no correlation could be found between diagnostic irradiations and detected cases of cancer. (author)

  1. Knowledge Based Understanding of Radiology Text

    OpenAIRE

    Ranum, David L.

    1988-01-01

    A data acquisition tool which will extract pertinent diagnostic information from radiology reports has been designed and implemented. Pertinent diagnostic information is defined as that clinical data which is used by the HELP medical expert system. The program uses a memory based semantic parsing technique to “understand” the text. Moreover, the memory structures and lexicon necessary to perform this action are automatically generated from the diagnostic knowledge base by using a special purp...

  2. Computer assisted radiology

    International Nuclear Information System (INIS)

    Lemke, H.U.; Jaffe, C.C.; Felix, R.

    1993-01-01

    The proceedings of the CAR'93 symposium present the 126 oral papers and the 58 posters contributed to the four Technical Sessions entitled: (1) Image Management, (2) Medical Workstations, (3) Digital Image Generation - DIG, and (4) Application Systems - AS. Topics discussed in Session (1) are: picture archiving and communication systems, teleradiology, hospital information systems and radiological information systems, technology assessment and implications, standards, and data bases. Session (2) deals with computer vision, computer graphics, design and application, man computer interaction. Session (3) goes into the details of the diagnostic examination methods such as digital radiography, MRI, CT, nuclear medicine, ultrasound, digital angiography, and multimodality imaging. Session (4) is devoted to computer-assisted techniques, as there are: computer assisted radiological diagnosis, knowledge based systems, computer assisted radiation therapy and computer assisted surgical planning. (UWA). 266 figs [de

  3. Diagnostic and interventional radiology in the post-operative period and follow-up of patients after rectal resection with coloanal anastomosis

    International Nuclear Information System (INIS)

    Severini, A.; Civelli, E.M.; Uslenghi, E.; Cozzi, G.; Salvetti, M.; Milella, M.; Gallino, G.; Bonfanti, G.; Belli, F.; Leo, E.

    2000-01-01

    Surgical treatment of carcinoma of the distal third of the rectum with anal sphincter preservation is increasingly used in accredited cancer centers. This study aimed to evaluate the diagnostic usefulness of radiological investigations in the management of patients who had undergone resection with coloanal anastomosis for carcinoma of the rectum, in the immediate post-operative period, during closure of the protective colostomy and in the follow-up of symptomatic recanalized patients. A total of 175 patients who had undergone total rectal resection with end-to-side anastomosis for carcinoma of the distal third of the rectal ampulla, most of whom had received postoperative radiotherapy, were evaluated radiologically. In the postoperative period radiological investigation was ordered only for symptomatic patients to detect pathology of the anastomosis and the pouch sutures and was used direct film abdominal radiography and contrast-enhanced radiography of the rectal stump with a water-soluble radio-opaque agent. Before closure of the colostomy, 2 months after rectal excision or approximately 4 months after if postoperative radiotherapy was given, the anastomosis and pouch of all patients, even asymptomatic ones, were studied with water-soluble contrast enema to check for normal canalization. In the follow-up after recanalization radiological examinations were done to complete the study of the large intestine if the endoscopist was not able to examine it up to the cecum. Of the 175 patients examined radiologically during the postoperative period and/or subsequent follow-up, 95 showed no pathological findings. Seventy-nine patients had fistulas of the coloanal anastomosis or the pouch, 23 of which supplied a presacral collection. In the absence of severe sepsis, the only therapeutic measures were systemic antibiotics and washing of the surgical catheters to maintain efficient operation. In 2 patients in whom transanal drainage was performed radiologically the fistula

  4. Diagnostic and interventional radiology in the post-operative period and follow-up of patients after rectal resection with coloanal anastomosis

    Energy Technology Data Exchange (ETDEWEB)

    Severini, A.; Civelli, E.M.; Uslenghi, E.; Cozzi, G.; Salvetti, M.; Milella, M. [Department of Radiology, National Cancer Institute of Milan, via Venezian 1, I-23100 Milan (Italy); Gallino, G.; Bonfanti, G.; Belli, F.; Leo, E. [Department of Surgery, National Cancer Institute of Milan, via Venezian 1, I-23100 Milan (Italy)

    2000-07-01

    Surgical treatment of carcinoma of the distal third of the rectum with anal sphincter preservation is increasingly used in accredited cancer centers. This study aimed to evaluate the diagnostic usefulness of radiological investigations in the management of patients who had undergone resection with coloanal anastomosis for carcinoma of the rectum, in the immediate post-operative period, during closure of the protective colostomy and in the follow-up of symptomatic recanalized patients. A total of 175 patients who had undergone total rectal resection with end-to-side anastomosis for carcinoma of the distal third of the rectal ampulla, most of whom had received postoperative radiotherapy, were evaluated radiologically. In the postoperative period radiological investigation was ordered only for symptomatic patients to detect pathology of the anastomosis and the pouch sutures and was used direct film abdominal radiography and contrast-enhanced radiography of the rectal stump with a water-soluble radio-opaque agent. Before closure of the colostomy, 2 months after rectal excision or approximately 4 months after if postoperative radiotherapy was given, the anastomosis and pouch of all patients, even asymptomatic ones, were studied with water-soluble contrast enema to check for normal canalization. In the follow-up after recanalization radiological examinations were done to complete the study of the large intestine if the endoscopist was not able to examine it up to the cecum. Of the 175 patients examined radiologically during the postoperative period and/or subsequent follow-up, 95 showed no pathological findings. Seventy-nine patients had fistulas of the coloanal anastomosis or the pouch, 23 of which supplied a presacral collection. In the absence of severe sepsis, the only therapeutic measures were systemic antibiotics and washing of the surgical catheters to maintain efficient operation. In 2 patients in whom transanal drainage was performed radiologically the fistula

  5. The American Board of Radiology Maintenance of Certification (MOC) Program in Radiologic Physics

    International Nuclear Information System (INIS)

    Thomas, Stephen R.; Hendee, William R.; Paliwal, Bhudatt R.

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document the professional development of each diplomate of The American Board of Radiology (ABR) through its focus on the essential elements of quality care in Diagnostic Radiology and its subspecialties, and in the specialties of Radiation Oncology and Radiologic Physics. The initial elements of the ABR-MOC have been developed in accord with guidelines of The American Board of Medical Specialties. All diplomates with a ten-year, time-limited primary certificate in Diagnostic Radiologic Physics, Therapeutic Radiologic Physics, or Medical Nuclear Physics who wish to maintain certification must successfully complete the requirements of the appropriate ABR-MOC program for their specialty. Holders of multiple certificates must meet ABR-MOC requirements specific to the certificates held. Diplomates with lifelong certificates are not required to participate in the MOC, but are strongly encouraged to do so. MOC is based on documentation of individual participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Within these components, MOC addresses six competencies: medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice

  6. Resources planning for radiological incidents management

    Science.gov (United States)

    Hamid, Amy Hamijah binti Ab.; Rozan, Mohd Zaidi Abd; Ibrahim, Roliana; Deris, Safaai; Yunus, Muhd. Noor Muhd.

    2017-01-01

    Disastrous radiation and nuclear meltdown require an intricate scale of emergency health and social care capacity planning framework. In Malaysia, multiple agencies are responsible for implementing radiological and nuclear safety and security. This research project focused on the Radiological Trauma Triage (RTT) System. This system applies patient's classification based on their injury and level of radiation sickness. This classification prioritizes on the diagnostic and treatment of the casualties which include resources estimation of the medical delivery system supply and demand. Also, this system consists of the leading rescue agency organization and disaster coordinator, as well as the technical support and radiological medical response teams. This research implemented and developed the resources planning simulator for radiological incidents management. The objective of the simulator is to assist the authorities in planning their resources while managing the radiological incidents within the Internal Treatment Area (ITA), Reception Area Treatment (RAT) and Hospital Care Treatment (HCT) phases. The majority (75%) of the stakeholders and experts, who had been interviewed, witnessed and accepted that the simulator would be effective to resolve various types of disaster and resources management issues.

  7. Handbook of technical diagnostics fundamentals and application to structures and systems

    CERN Document Server

    2013-01-01

    This book presents concepts, methods and techniques to examine symptoms of faults and failures of structures, systems and components and to monitor functional performance and structural integrity. The book is organized in five parts. Part A introduces the scope and application of technical diagnostics and gives a comprehensive overview of the physics of failure. Part B presents all relevant methods and techniques for diagnostics and monitoring: from stress, strain, vibration analysis, nondestructive evaluation, thermography and industrial radiology to computed tomography and subsurface microstructural analysis. Part C cores the principles and concepts of technical failure analysis, illustrates case studies, and outlines machinery diagnostics with an emphasis on tribological systems. Part D describes the application of structural health monitoring and performance control to plants and the technical infrastructure, including buildings, bridges, pipelines, electric power stations, offshore wind structures, and r...

  8. Radiology in the 21st century

    International Nuclear Information System (INIS)

    Carson, P.L.; Seltzer, S.E.; Gore, J.C.; Heiiman, R.S.; Abrams, H.L.; Davis, K.A.; Henkelman, M.R.

    1987-01-01

    On the leading edge in ''high-tech'' medicine, radiology is experiencing several revolutions simultaneously that promise an exciting future. New imaging methods and digital technologies not only offer novel ways to view tissues but also provide opportunities for quantitative evaluation of function and even permit determination of metabolic status. New approaches to technology assessment are being explored that alter the ways in which equipment and procedures are introduced into clinical medicine. With the plethora of radiology services available, the radiologist must serve as a consultant in the triage of patients in radiology and the dissemination of information from radiology. For similar reasons, training in diagnostic radiology may eventually accommodate to the concept of specialization along organ-system lines. Without question, radiology is destined for an exciting period as it moves into the 21st century

  9. Radiation doses in diagnostic radiology and methods for dose reduction. Report of a co-ordinated research programme (1991-1993)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs.

  10. Radiation doses in diagnostic radiology and methods for dose reduction. Report of a co-ordinated research programme (1991-1993)

    International Nuclear Information System (INIS)

    1995-04-01

    It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs

  11. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology

    International Nuclear Information System (INIS)

    2010-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  12. How doctors generate diagnostic hypotheses: a study of radiological diagnosis with functional magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Marcio Melo

    Full Text Available In medical practice, diagnostic hypotheses are often made by physicians in the first moments of contact with patients; sometimes even before they report their symptoms. We propose that generation of diagnostic hypotheses in this context is the result of cognitive processes subserved by brain mechanisms that are similar to those involved in naming objects or concepts in everyday life.To test this proposal we developed an experimental paradigm with functional magnetic resonance imaging (fMRI using radiological diagnosis as a model. Twenty-five radiologists diagnosed lesions in chest X-ray images and named non-medical targets (animals embedded in chest X-ray images while being scanned in a fMRI session. Images were presented for 1.5 seconds; response times (RTs and the ensuing cortical activations were assessed. The mean response time for diagnosing lesions was 1.33 (SD ±0.14 seconds and 1.23 (SD ±0.13 seconds for naming animals. 72% of the radiologists reported cogitating differential diagnoses during trials (3.5 seconds. The overall pattern of cortical activations was remarkably similar for both types of targets. However, within the neural systems shared by both stimuli, activation was significantly greater in left inferior frontal sulcus and posterior cingulate cortex for lesions relative to animals.Generation of diagnostic hypotheses and differential diagnoses made through the immediate visual recognition of clinical signs can be a fast and automatic process. The co-localization of significant brain activation for lesions and animals suggests that generating diagnostic hypotheses for lesions and naming animals are served by the same neuronal systems. Nevertheless, diagnosing lesions was cognitively more demanding and associated with more activation in higher order cortical areas. These results support the hypothesis that medical diagnoses based on prompt visual recognition of clinical signs and naming in everyday life are supported by similar

  13. Performance study of the primary standard ionization chamber for deployment of the diagnostic radiology qualities

    International Nuclear Information System (INIS)

    Cardoso, Ricardo de Souza; Bossio, Francisco; Quaresma, Daniel da Silva; Peixoto, Jose Guilherme Pereira

    2013-01-01

    Activities radiotherapy, diagnostic radiology and radiation protection, require knowledge of physical and dosimetric parameters, to be applied safely. Aiming to meet demand in Brazil, the National Laboratory of Metrology of Ionising Radiation - LNMRI - is deploying the primary standard for the calibration of secondary standard chambers, used in quality control in hospitals, clinics and industries. (author)

  14. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine

    International Nuclear Information System (INIS)

    Teles, Pedro; Vaz, Pedro; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Lanca, Isabel; Matela, Nuno; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Simaozinho, Paula

    2013-01-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of ≈ 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications

  15. Strategic planning for radiology: opening an outpatient diagnostic imaging center.

    Science.gov (United States)

    Leepson, Evan

    2003-01-01

    Launching a new diagnostic imaging center involves very specific requirements and roadmaps, including five major areas of change that have a direct impact on planning: Imaging and communication technology Finances and reimbursement Ownership structure of imaging entities Critical workforce shortages Imaging is moving outside radiology First, planning must focus on the strategic level of any organization, whether it is a multi-national corporation or a six-person radiology group. Think of all organizations as a triangle with three horizontal levels: strategic, managerial and operational. The strategic level of decision-making is at the top of the triangle, and here is where planning must take place. For strategic planning to work, there must be focused time and energy spent on this activity, usually away from the reading room and imaging center. There are five planning strategies, which must have the explicit goal of developing and growing the imaging center. The five strategies are: Clinical and quality issues, Governance and administration, Technology, Relationships, Marketing and business development. The best way to plan and implement these strategies is to create work groups of radiologists, technologists, and administrative and support staff. Once the group agrees on the strategy and tactic, it takes responsibility for implementation. Embarking on the launch of a new outpatient diagnostic imaging center is no small undertaking, and anyone who has struggled with such an endeavor can readily attest to the associated challenges and benefits. Success depends on many things, and one of the most important factors relates to the amount of time and the quality of effort spent on strategic planning at the outset. Neglecting or skimping on this phase may lead to unforeseen obstacles that could potentially derail the project.

  16. Development of archetypes of radiology for electronic health record

    International Nuclear Information System (INIS)

    Araujo, Tiago V.; Pires, Silvio R.; Paiva, Paulo B.

    2013-01-01

    This paper presents a proposal to develop archetypes for electronic patient records system based the openEHR Foundation model. Archetypes were developed specifically for the areas of radiology and diagnostic imaging, as for the early implementation of an electronic health records system. The archetypes developed are related to the examinations request, their execution and report, corresponding to both the administrative as diagnostic workflow inside a diagnostic imaging sector. (author)

  17. Diagnostic Efficacy of Radiology in the Diagnosis of Giant Cell Tumour of Bone

    Directory of Open Access Journals (Sweden)

    Afia Akhter

    2014-01-01

    Full Text Available Background: Giant cell tumour (GCT is an aggressive and potentially malignant lesion. Microscopic feature reveals osteoclast like giant cells in a mononuclear stromal cells background. The mononuclear stromal cell is interpreted as neoplastic. Objective: As radiological diagnosis is non invasive and cost effective in comparison to histopathological diagnosis, considering the patients’ compliance, the aim of the study was to observe the diagnostic efficacy of radiology in diagnosis of GCT. Materials and method: This cross sectional study was carried out in the department of Pathology, Delta Hopital Ltd., Dhaka, Bangladesh from July 2011 to December 2012. A total of 30 study subjects were enrolled in the study irrespective of age and sex. Biopsy material and relevant data of clinically suspected cases of GCT along with radiology report were sent from National Institute of Traumatology and Orthopaedic Rehabilitation (NITOR, Dhaka, Bangladesh. Histopathological diagnosis was made by expert pathologists. Results: Mean (±SD age of the study subjects was 29.20 (±7.34 years with highest number of patients were observed in 3rd decade and female was predominant (60% with a male female ratio of 1:1.5. Common site of GCT was around knee (50%. Among 30 clinically diagnosed GCT, 25 (83.3% cases were radiologically diagnosed as GCT, 2 (6.7% diagnosed as fibrous dysplasia, 1 (3.3% as chondroblastoma, 1 (3.3% as simple bone cyst and 1 (3.3% as aneurysmal bone cyst. However among 30 clinically diagnosed GCT, 28 (93.3% patients were histopathologically diagnosed as Giant cell lesion and rest 2 (6.7% patients diagnosed as fibrous dysplasia. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of radiological diagnosis of GCT were found to be 92.6%, 100.0%, 100.0%, 40.0% and 90.0%, respectively. Conclusion: Radiology can be effectively used as a screening tool in diagnosing GCT.

  18. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology

    International Nuclear Information System (INIS)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da; Friedrich, Barbara Q.; Silva, Ana Maria Marques da

    2013-01-01

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  19. Computer modeling and design of diagnostic workstations and radiology reading rooms

    Science.gov (United States)

    Ratib, Osman M.; Amato, Carlos L.; Balbona, Joseph A.; Boots, Kevin; Valentino, Daniel J.

    2000-05-01

    We used 3D modeling techniques to design and evaluate the ergonomics of diagnostic workstation and radiology reading room in the planning phase of building a new hospital at UCLA. Given serious space limitations, the challenge was to provide more optimal working environment for radiologists in a crowded and busy environment. A particular attention was given to flexibility, lighting condition and noise reduction in rooms shared by multiple users performing diagnostic tasks as well as regular clinical conferences. Re-engineering workspace ergonomics rely on the integration of new technologies, custom designed cabinets, indirect lighting, sound-absorbent partitioning and geometric arrangement of workstations to allow better privacy while optimizing space occupation. Innovations included adjustable flat monitors, integration of videoconferencing and voice recognition, control monitor and retractable keyboard for optimal space utilization. An overhead compartment protecting the monitors from ambient light is also used as accessory lightbox and rear-view projection screen for conferences.

  20. 76. German radiology congress. Book of abstracts and posters

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This issue presents the abstracts and posters of the 76th German radiology congress held from 24-27 May 1995. The session topics are the abdomen, general radiology and interventional radiology, the thorax, cardiovascular system, neck, head, mamma, muscles and skeleton, neuroradiology, pediatrics, nuclear medicine, radiotherapy, computer applications, diagnostic techniques, physics, and radiobiology. Further information given includes videos, a multimedia forum, a historical poster session, and an author index. (VHE) [de

  1. Radiological approach to systemic connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, W; Schneider, M

    1988-07-01

    Systemic lupus erythematosus (SLE) and progressive systemic sclerosis (PSS) represent the most frequent manifestations of systemic connective tissue diseases (collagen diseases). Radiological examinations are employed to estimate the extension and degree of the pathological process. In addition, progression of the disease can be verified. In both of the above collagen diseases, specific radiological findings can be observed that permit them to be differentiated from other entities. An algorithm for the adequate radiological work-up of collagen diseases is presented.

  2. The radiological diagnosis of frontotemporal dementia in everyday practice: an audit of reports, review of diagnostic criteria, and proposal for service improvement

    International Nuclear Information System (INIS)

    Dewer, B.; Rogers, P.; Ricketts, J.; Mukonoweshuro, W.; Zeman, A.

    2016-01-01

    Aim: To investigate how commonly valuable diagnostic information regarding the frontotemporal dementias (FTDs) may be missed on routine radiological reporting. Materials and methods: The magnetic resonance imaging (MRI) examination results of a series of 39 consecutive patients in whom the diagnosis was initially thought to be a form of FTD were audited. Twenty-two patients satisfied formal diagnostic criteria for subtypes of FTD. The initial non-specialist radiological reports of the MRI examinations were compared with those of a radiologist who specifically examined the images for the possibility of atypical dementia. Results: Six of the 22 original reports provided a full and accurate description of the radiological findings, while two provided a fully accurate interpretation. Conclusion: Valuable diagnostic information may be missed unless clinicians and radiologists jointly review and discuss brain imaging in cases of dementia. The use of standardised scales may enhance the reporting of MRI examinations for dementia. - Highlights: • Relevant MRI findings in dementia are often omitted from non-specialist reports. • 6/22 reports provided full and accurate description of radiological findings. • 2/22 reports provided full and accurate interpretation. • Multidisciplinary meetings between clinicians and radiologists are valuable. • The use of standardised scales may enhance the reporting of ‘dementia scans’.

  3. The RADCAT-3 system for closing the loop on important non-urgent radiology findings: a multidisciplinary system-wide approach.

    Science.gov (United States)

    Dibble, Elizabeth H; Swenson, David W; Cobb, Cynthia; Paul, Timothy J; Karn, Andrew E; Portelli, David C; Movson, Jonathan S

    2017-04-01

    The goal of this project was to create a system that was easy for radiologists to use and that could reliably identify, communicate, and track communication of important but non-urgent radiology findings to providers and patients. Prior to 2012, our workflow for communicating important non-urgent diagnostic imaging results was cumbersome, rarely used by our radiologists, and resulted in delays in report turnaround time. In 2012, we developed a new system to communicate important non-urgent findings (the RADiology CATegorization 3 (RADCAT-3) system) that was easy for radiologists to use and documented communication of results in the electronic medical record. To evaluate the performance of the new system, we reviewed our radiology reports before (June 2011-June 2012) and after (June 2012-June 2014) the implementation of the new system to compare utilization by the radiologists and success in communicating these findings. During the 12 months prior to implementation, 250 radiology reports (0.06 % of all reports) entered our workflow for communicating important non-urgent findings. One-hundred percent were successfully communicated. During the 24 months after implementation, 13,158 radiology reports (1.4 % of all reports) entered our new RADCAT-3 workflow (3995 (0.8 % of all reports) during year 1 and 9163 (1.9 % of all reports) during year 2). 99.7 % of those reports were successfully communicated. We created a reliable system to ensure communication of important but non-urgent findings with providers and/or patients and to document that communication in the electronic medical record. The rapid adoption of the new system by radiologists suggests that they found it easy to use and had confidence in its integrity. This system has the potential to improve patient care by improving the likelihood of appropriate follow-up for important non-urgent findings that could become life threatening.

  4. A frequency survey of radiological examinations carried out in National Health Service hospitals in Great Britain in 1977 for diagnostic purposes

    International Nuclear Information System (INIS)

    Kendall, G.M.; Darby, S.C.; Harries, S.V.; Rae, S.

    1980-06-01

    Medical irradiation is the largest man-made contributor to the radiation dose received by the population of Great Britain, and diagnostic radiology is the most important component of medical irradiation. The work described here is a survey of the numbers and types of radiological examinations carried out in National Health Service hospitals in Great Britain in 1977. The overall level of diagnostic radiology in Great Britain as a whole is reported and separate estimates for England, Wales and Scotland are given. Discussion of topics such as the frequency of particular types of examination, the number of films per examination and the use of gonad shields is included, and the results of the present survey are compared with those of the last national survey which was carried out in 1957. Also reported is an estimate of the amount of radiology undertaken outside the Health Service. The findings will be combined with estimates of gonadal doses from the different examinations and child expectancy data to estimate the genetically significant dose to the population of Great Britain. (author)

  5. Splenic infarct as a diagnostic pitfall in radiology

    Directory of Open Access Journals (Sweden)

    Joshi Sanjeev

    2008-01-01

    Full Text Available Follow-up of colorectal carcinoma after therapy is based on symptoms, tumor markers, and imaging studies. Clinicians sometimes face diagnostic dilemmas because of unusual presentations on the imaging modalities coupled with rising serum markers. We report a case of colorectal carcinoma that presented with gastrointestinal symptoms 14 months after completion of treatment. Investigations showed rise in carcinoembryonic antigen (CEA. Suspecting disease recurrence, complete radioimaging workup was performed; the only abnormality detected was a smooth, hypodense area in the posterior third of the spleen on contrast-enhanced computed tomography abdomen. In view of the previous diagnosis of carcinoma colon, the symptoms reported by the patient, the elevated CEA, and the atypical CECT appearance, a diagnosis of splenic metastasis was made. The patient was subjected to splenectomy as a curative treatment. However, the histopathological report revealed it to be a splenic infarct. The present case reemphasizes the limitations of radiological studies in the follow-up of carcinoma colon.

  6. The quality assurance program data analysis for diagnostic radiology in government hospitals in southern provinces of Syria

    International Nuclear Information System (INIS)

    Kharita, M. H.; Khedr, M. S.; Wannus, K. M.

    2008-01-01

    This study covered comprehensive evaluation for diagnostic radiography and fluorography equipment used in medicine by applying SAEC quality control rules. The results showed that most of considered x-ray equipment have an acceptable performance but few reached 21.6% in radiography and 36.8% in fluorography need repair and recalibration. Also recommendations and guidance for repair and preventative maintenance are required and quality assurance program should be applied in all diagnostic radiology institutions in Syria.(author)

  7. Quality control of diagnostic radiology to reduce absorbed dose of patients in Iran

    International Nuclear Information System (INIS)

    Aghahadi, Bahman.

    1996-01-01

    In order to reduce absorbed dose, to increase the image quality and to reduce the numbers of rejected films various quality control parameters were applied to X ray machines. These parameter are Kilo Volt peak, Milli Ampere, Exposure Time Focal Film Distance, Inherent Filters, Additional Filters Half Value Layer, Processor Condition, Cassettes. To evaluate and to apply these parameters in diagnostic radiological centers, ten hospitals were selected and a total number of 12 X ray machines were kept under quality control program. Considering different kinds of diagnostic radiology examination and to compare the dose before and after implementation of a quality control program, two kinds of examinations include in chest and abdomen examinations were considered. For each X ray machine, ten patients and for all selected centers, 120 patients were selected for chest examination and 120 patients for abdomen examinations; before and after implementation of quality control program, a total of 480 patients were selected randomly to be controlled. Base on different examinations carried out, it was concluded that both exposure conditions and general situations in radiological centers were not acceptable. The dosimetry results show that the average ski dose for chest and abdomen examinations were 0.28 m Gy and 4.23 Gy respectively. Before implementation of quality control step to reduce the surface skin dose, quality control parameters were applied and the exposure conditions were imposed. On average the absorbed doses for chest and abdomen examination were decreased to 79% and 61% respectively after the implementation of the program. From dose reduction point of view, the results of a part of this project which made by co-operation of International Atomic Energy Agency showed that Iran acquired the first grade for chest examination and second grade for abdomen examination. Base on the results obtained, the number of patients under chest and abdomen examination were 4041588 and

  8. Advanced image display systems in radiology

    International Nuclear Information System (INIS)

    Wendler, T.

    1987-01-01

    Advanced image display systems for the fully digital diagnostic imaging departments of the future will be far more than simple replacements of the traditional film-viewing equipment. The new capabilities of very high resolution and highly dynamic displays offer a userfriendly and problem-oriented way of image interpretation. Advanced harware-, software- and human-machine interaction-concepts have been outlined. A scenario for a future way of handling and displaying images, reflecting a new image viewing paradigm in radiology is sketched which has been realized in an experimental image workstation model in the laboratory which, despite its technical complexity, offers a consistent strategy for fast and convenient interaction with image objects. The perspective of knowledge based techniques for workstation control software with object-oriented programming environments and user- and task-adaptive behavior leads to more advanced display properties and a new quality of userfriendliness. 2 refs.; 5 figs

  9. Radiological approach to systemic connective tissue diseases

    International Nuclear Information System (INIS)

    Wiesmann, W.; Schneider, M.

    1988-01-01

    Systemic lupus erythematosus (SLE) and progressive systemic sclerosis (PSS) represent the most frequent manifestations of systemic connective tissue diseases (collagen diseases). Radiological examinations are employed to estimate the extension and degree of the pathological process. In addition, progression of the disease can be verified. In both of the above collagen diseases, specific radiological findings can be observed that permit them to be differentiated from other entities. An algorithm for the adequate radiological work-up of collagen diseases is presented. (orig.) [de

  10. Establish radiation protection programme for diagnostic radiology

    International Nuclear Information System (INIS)

    Mboya, G.

    2014-01-01

    Mammography is an effective method used for breast diagnostics and screening. The aim of this project is to review the literature on how to establish radiation protection programme for mammography in order to protect the patients, the occupationally exposed workers and the members of the public from harmful effects of ionizing radiation. It reviews some of the trends in mammography doses and dosimetric principles such as average glandular dose in the glandular tissue which is used for description of radiation risk, also the factors affecting patient doses are discussed. However, the average glandular dose should not be used directly to estimate the radiation risk from mammography. Risk is calculated under certain assumptions from determined entrance surface air kerma. Given the increase in population dose, emphasis is placed on the justification and optimization of the mammographic procedures. Protection is optimized by the radiation dose being appropriate with the purpose of the mammographic examination. The need to establish diagnostic reference levels as an optimization is also discussed. In order to obtain high quality mammograms at low dose to the breast, it is necessary to use the correct equipment and perform periodic quality control tests on mammography equipment. It is noted that in order to achieve the goal of this project, the application of radiation protection should begin at the time of requesting for mammography examination, positioning of the patient, irradiation, image processing and interpretation of mammogram. It is recommended that close cooperation between radiology technologists, radiologist, medical physicists, regulatory authority and other support workers be required and established to obtain a consistent and effective level of radiation protection in a mammography facility. (author)

  11. Midazolam administration at a department of pediatric radiology: Conscious sedation for diagnostic imaging studies

    International Nuclear Information System (INIS)

    Madzik, J.; Marcinski, A.; Brzewski, M.; Jakubowska, A.; Roik, D.; Majkowska, Z.; Biejat, A.; Krzemien, G.

    2006-01-01

    The aims of the study were to evaluate the usefulness of midazolam administration for sedation prior to some diagnostic examinations in children and to present the requirements and rules for sedation in departments of pediatric radiology. From Oct. 2001 to Aug. 2005, two hundred children were investigated after conscious sedation with midazolam. The examinations were: voiding cystourethrography (129), voiding sonocystography (64), barium enema (3), ultrasonography (1), urography (1), X-ray of facial bone (1), and brain CT (1). The children's age-range was 4 months to 13 years 9 months. The decision for sedation was based on conversation with the child and/or parents, their experience with previous examinations, emotional status of the child, and exclusion of contraindications (renal insufficiency, hepatic failure, respiratory/circulatory insufficiency, allergy to benzodiazepines in anamnesis). Midazolam was given orally in a dose of 0.5 mg/kg body weight, 15-20 minutes before examination (already at the department of pediatric radiology). The parents were informed of the possible side effects and what to do after the procedure. All diagnostic procedures with conscious sedation were well tolerated by the children and accepted by the parents. The parents with experience from previous diagnostic procedures indicated that they would want their child to have midazolam again if the examination needed to be repeated. No significant complications were observed in the children receiving midazolam and few adverse effect on voiding during cystourethrography. In three children (2.5, 3, and 5 years old), paradoxical reactions occurred (psychomotor agitation) which disappeared spontaneously after some minutes and had no influence on the procedure. Application of midazolam for conscious sedation diminished anxiety and discomfort from diagnostic procedures and short anterograde amnesia protected the child's mind from painful experience. Conscious sedation should be widely used in

  12. Quality assurance program on diagnostic radiology

    International Nuclear Information System (INIS)

    Yacovenco, Alejandro; Borges, Jose Carlos; Mota, Helvecio Correa

    1995-01-01

    Aiming to elaborate a methodology to optimize the performance of the Radiology Service of the Military Police Hospital, in Rio de Janeiro, some goals were established: improvement of the attendance to patients; improvement of the qualification of technicians; achievement and maintenance of high degrees of quality in each step of the radiological process; improvement of the image quality; optimization of dose per examination and cost reduction. (author). 8 refs., 3 figs

  13. Quality of life evaluation of workers for diagnostic radiology services

    International Nuclear Information System (INIS)

    Fernandes, Ivani Martins

    2011-01-01

    The main objective of this study was to evaluate the quality of life (QOL) of diagnostic radiology services workers at a hospital of Sao Paulo city. It aimed also to draw the profile of these workers identifying the variables, as its influence on their quality of life. A descriptive exploratory study with qualitative and quantitative approaches was carried out. The data were collected using the questionnaires: the abbreviated instrument for the assessment of the QOL, World Health Organization Quality of Life Instrument bref (WHOQOL-bref) and a questionnaire including the social demographic variables, work conditions and the variables that express the lifestyle of individuals, both questionnaires self-applied. The sample was formed by 118 workers, among them: physicians, technologists/technicians in radiology, nurses, technicians and assistants in nursing, and others health professionals. The data analysis included descriptive statistics, nonparametric tests and the use of a linear regression model. The reliability of the instrument for the studied sample was verified by Cronbach's Alpha Coefficient (α). The WHOQOL-bref proved to be an adequate instrument, with a good level of internal consistency (α=0.884), being easily and quickly administrated for the evaluation of the QOL. The study provided an overview of the perception of quality of life of the studied group. (author)

  14. Quality assurance program in diagnostic radiology

    International Nuclear Information System (INIS)

    Yacovenco, Alejandro; Borges, J.C.

    1994-01-01

    Aiming to elaborate a methodology to optimize the performance of the Radiology Service of the Military Police Hospital, in Rio dee Janeiro, some goals were established: improvement of the attendance to patients; improvement of the qualification of technicians; achievement and maintenance of high degrees of quality in each step of the radiological process; improvement of the image quality; optimization of dose per examination and cost reduction. The procedure used to detect faults in the radiological process was the analysis of causes of film losses. Results show a 70% reduction in the film rejection rate. 74% of total identified faults were due to equipment, 11% to films, 10% to patients and 5% to developing. The reduction in the cost of developed film reached 75%. A training course given to the staff of the radiological service fully reached its goals, contributing, with the staff motivation, mostly to the success of the program. This success indicates that, with a serious persistent work, it is possible to offer to patients services within their expectations, even at a public hospital. Such programs should be supported by health authorities, not only due to their technical and economic needs but, mostly, due to their social implications. (author). 10 refs., 11 figs

  15. General-purpose radiological examination device

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, J

    1978-03-15

    Equipment is described suitable for all radiological examinations using x-ray and neuroradiological diagnostic machines. The equipment consists of a gimbal suspension supporting a base plate and an imaging system, a gantry on which a neurological seat is pivoted capable of isocentrically positioning the patient's head.

  16. Radiology information system: a workflow-based approach

    International Nuclear Information System (INIS)

    Zhang, Jinyan; Lu, Xudong; Nie, Hongchao; Huang, Zhengxing; Aalst, W.M.P. van der

    2009-01-01

    Introducing workflow management technology in healthcare seems to be prospective in dealing with the problem that the current healthcare Information Systems cannot provide sufficient support for the process management, although several challenges still exist. The purpose of this paper is to study the method of developing workflow-based information system in radiology department as a use case. First, a workflow model of typical radiology process was established. Second, based on the model, the system could be designed and implemented as a group of loosely coupled components. Each component corresponded to one task in the process and could be assembled by the workflow management system. The legacy systems could be taken as special components, which also corresponded to the tasks and were integrated through transferring non-work- flow-aware interfaces to the standard ones. Finally, a workflow dashboard was designed and implemented to provide an integral view of radiology processes. The workflow-based Radiology Information System was deployed in the radiology department of Zhejiang Chinese Medicine Hospital in China. The results showed that it could be adjusted flexibly in response to the needs of changing process, and enhance the process management in the department. It can also provide a more workflow-aware integration method, comparing with other methods such as IHE-based ones. The workflow-based approach is a new method of developing radiology information system with more flexibility, more functionalities of process management and more workflow-aware integration. The work of this paper is an initial endeavor for introducing workflow management technology in healthcare. (orig.)

  17. Informatics in radiology: radiology gamuts ontology: differential diagnosis for the Semantic Web.

    Science.gov (United States)

    Budovec, Joseph J; Lam, Cesar A; Kahn, Charles E

    2014-01-01

    The Semantic Web is an effort to add semantics, or "meaning," to empower automated searching and processing of Web-based information. The overarching goal of the Semantic Web is to enable users to more easily find, share, and combine information. Critical to this vision are knowledge models called ontologies, which define a set of concepts and formalize the relations between them. Ontologies have been developed to manage and exploit the large and rapidly growing volume of information in biomedical domains. In diagnostic radiology, lists of differential diagnoses of imaging observations, called gamuts, provide an important source of knowledge. The Radiology Gamuts Ontology (RGO) is a formal knowledge model of differential diagnoses in radiology that includes 1674 differential diagnoses, 19,017 terms, and 52,976 links between terms. Its knowledge is used to provide an interactive, freely available online reference of radiology gamuts ( www.gamuts.net ). A Web service allows its content to be discovered and consumed by other information systems. The RGO integrates radiologic knowledge with other biomedical ontologies as part of the Semantic Web. © RSNA, 2014.

  18. Determination of organ doses in radiographic imaging and diagnostic radiology

    International Nuclear Information System (INIS)

    Rathjen, M.

    1981-01-01

    Earlier publications on diagnostic radiation exposure commonly presented data on the gonadal dose. This emphasis on the genetic radiation risk is no longer valid in view of recent radiobiological findings; equal attention should be paid to the somatic radiation risk which is manifested by the induction of malignant neoplasms, e.g. in the lungs, red bone marrow, thyroid and female breast (ICRP 26). The permissible radiation doses for these organs and the gonals for routine diagnostic radiology are determined. A formula is established on the basis of terms from relevant publications (e.g. open-air dose, backscattering factor) and from the author's own measurements in an Alderson-Rando phantom (depth dose curves, dose decrements). The measurements were carried out using CaP 2 thermoluminescence dosemeters, and the organ doses for the various techniques of X-ray examination were calculated by computer. Calculations of this type will enable the radiologist to determine the patient exposure quickly and easily from the records kept according to Sect. 29 of the X-ray Ordinance. Experimental value from relevant publications are compared with the author's own results. (orig./HP) [de

  19. Quality assurance programme in diagnostic radiology

    International Nuclear Information System (INIS)

    Yacovenco, A.A.

    1996-01-01

    One hundred years after the discovery of X-rays, they continue being nowadays part of physicians' daily activities, and the diagnosis through the use of X-ray equipment is one of the most important fields in clinical medicine, thus becoming the most important cause of human exposure to artificial sources. For this reason, in the last twenty years, most of the developed countries did the utmost to establish programs which could warrant the quality of the radiographic image. Aiming the protection of human being against the harmful effects of ionizing radiations, in December 1980, World Health Organization decided to form a group of professionals highly experienced in medical radiology, and initiate an inspection and quality control program. In September 1988, the Group of Studies of the Program Related to Radiological Protection of the Commission in the European Communities, prepared a working paper in which guidelines were set up regarding quality of images, dosage to patient, and associated radiographic factors, necessary to obtain acceptable radiologic performance. In Brazil, efforts driven in this direction, guided by some equipment testing, starting in 1990, began to be more known. When the Director and the Head of Radiology in the Military Police Hospital of the State of Rio de Janeiro (HPM) reamed about these efforts, they decided to contact the Institute for Radioprotection and Dosimetry (IRD) of Comissao Nacional de Energia Nuclear and submit the problem of low radiologic performance and increasing rates of rejection. Thus, with the coincidence of interests and needs, along with a proposal from the Commission of the European Communities (CEC), IRD decided to offer the author laboratory support to elaborate a Quality Assurance Program (QAP) to be implemented in HPM. (author)

  20. Analysis of data relative to the update of diagnostic reference levels in radiology and nuclear medicine. 2013-2015 review

    International Nuclear Information System (INIS)

    2016-11-01

    Applying the Order of 24 October 2011 on diagnostic reference levels, departments of radiology and nuclear medicine must send a sample of 'patient' dosimetric data to the IRSN each year. The results of the analysis of dosimetric data performed between the 1 January 2013 and the 31 December 2015 presented in this report should enable the authority to define the needs for updating regulation. This assessment takes place in a national and international context particularly rich and active since the last years. More than 20 years after the official introduction of the DRL concept by ICRP and the first regulation requirements at a European level, the good and the bad sides of the DRLs systems implemented by several countries, including France, has shown the necessity of complementary actions regarding some specific practices (pediatrics, interventional radiology). On one hand, from a national point of view, the current collection and analysis system is highly efficient for evaluation of practices in France and for DRL update ability. On the other hand, as an optimization implementation tool, regarding the lack of professionals involvement, the current system should not be considered as fully effective in radiology. However, when the professionals carry out DRL data collection and analysis, optimization actions are implemented for nearly all the cases. During the 2013-2015 period, professionals involvement in DRLs globally improved but is heterogeneous according to the imaging area considered. The participation of conventional radiology professionals is still low, with less than 30% against about 80% in CT and more than 85% in nuclear medicine. From a dosimetric point of view, the national analysis shows an overall decrease of statistical indicators in radiology, computed tomography and nuclear medicine on which DRLs are indexed. These results lead to proposals for updating reference values for a large number of examinations. In addition to the analysis of data collected

  1. A project: 'Radiological protection in radiology', IAEA - Universidad Central de Venezuela

    International Nuclear Information System (INIS)

    Diaz, A.R.; Salazar, G.; Fermin, R.; Gonzalez, M.

    2001-01-01

    For several years a reference center of the UCV has been working on the project VEN/9/007 on dose reduction in diagnostic radiology sponsored by the IAEA. The dose and quality image was evaluated for different types of radiological study (conventional radiology, CT, mammography, interventional radiology) in different facilities at Caracas and others regions of the Venezuela. TL dosimeters were used to assess dose and reduction in dose. Based on the recommendations given by CEC documents on diagnostic quality criteria, a quality control program in radiological protection of patients and staff has been developed, for example: Pilot study by using TLD in personnel radiation monitoring. Comparative study between high and low kVp in chest. Evaluation and dose reduction in chest pediatric. Reduction of radiation dose in studies of billiards via Quality Image and reduction of the dose in studies of colon by enema. Radiation dose of staff in fluoroscopy procedures. Evaluation and dose reduction in dental radiography in public Institutions. A mammography accreditation program for Venezuela, applied to public hospitals. (author)

  2. [No exchange of information without technology : modern infrastructure in radiology].

    Science.gov (United States)

    Hupperts, H; Hermann, K-G A

    2014-01-01

    Modern radiology cannot accomplish the daily numbers of examinations without supportive technology. Even though technology seems to be becoming increasingly more indispensable, business continuity should be ensured at any time and if necessary even with a limited technical infrastructure by business continuity management. An efficient information security management system forms the basis. The early radiology information systems were islands of information processing. A modern radiology department must be able to be modularly integrated into an informational network of a bigger organization. The secondary use of stored data for clinical decision-making support poses new challenges for the integrity of the data or systems because medical knowledge is displayed and provided in a context of treatment. In terms of imaging the creation and distribution radiology services work in a fully digital manner which is often different for radiology reports. Legally secure electronic diagnostic reports require a complex technical infrastructure; therefore, diagnostic findings still need to be filed as a paper document. The internal exchange and an improved dose management can be simplified by systems which continuously and automatically record the doses and thus provide the possibility of permanent analysis and reporting. Communication between patient and radiologist will gain ongoing importance. Intelligent use of technology will convey this to the radiologist and it will facilitate the understanding of the information by the patient.

  3. MO-DE-204-00: International Symposium: Patient Dose Reduction in Diagnostic Radiology

    International Nuclear Information System (INIS)

    2016-01-01

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  4. MO-DE-204-00: International Symposium: Patient Dose Reduction in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  5. Radiology

    International Nuclear Information System (INIS)

    Sykora, A.

    2006-01-01

    In this text-book basic knowledge about radiology, biomedical diagnostic methods (radiography, computer tomography), nuclear medicine and safety and radiation protection of personnel on the radiodiagnostic place of work are presented

  6. Evolution of the system of radiological protection

    International Nuclear Information System (INIS)

    2005-11-01

    One of the main challenges facing radiological protection experts is how to integrate radiological protection within modern concepts of and approaches to risk governance. It is within this context that the International Commission on Radiological Protection (ICRP) decided to develop new general recommendations to replace its Publication 60 recommendations of 1990. In the process of developing these new recommendations, the views of the ICRP have evolved significantly, largely due to stakeholder involvement that has been actively solicited by the ICRP. In this regard, it was upheld during the First Asian Regional Conference organised by the NEA in October 2002 that the implementation of the new system must allow for regional, societal and cultural differences. In order to ensure appropriate consideration of these differences, the NEA organised the Second Asian Regional Conference on the Evolution of the System of Radiological Protection. Held in Tokyo on 28-29 July 2004, the conference included presentations by the ICRP Chair as well as by radiological experts from Australia, China, Japan and Korea. Within their specific cultural and socio-political milieu, Asia-Pacific and western ways of thought on how to improve the current system of radiological protection were presented and discussed. These ways of thinking, along with a summary of the conference results, are described in these proceedings. (author)

  7. Radiological sciences dictionary

    CERN Document Server

    Dowsett, David

    2009-01-01

    The Radiological Sciences Dictionary is a rapid reference guide for all hospital staff employed in diagnostic imaging, providing definitions of over 3000 keywords as applied to the technology of diagnostic radiology.Written in a concise and easy to digest form, the dictionary covers a wide variety of subject matter, including:· radiation legislation and measurement · computing and digital imaging terminology· nuclear medicine radionuclides and radiopharmaceuticals· radiographic contrast agents (x-ray, MRI and ultrasound)· definitions used in ultrasound and MRI technology· statistical exp

  8. Hands-on Physics Education of Residents in Diagnostic Radiology.

    Science.gov (United States)

    Zhang, Jie; Hardy, Peter A; DiSantis, David J; Oates, M Elizabeth

    2017-06-01

    The American Board of Radiology Core Examination integrates assessment of physics knowledge into its overall testing of clinical radiology, with an emphasis on understanding image quality and artifacts, radiation dose, and patient safety for each modality or subspecialty organ system. Accordingly, achieving a holistic approach to physics education of radiology residents is a huge challenge. The traditional teaching of radiological physics-simply through didactic lectures-was not designed for such a holistic approach. Admittedly, time constraints and clinical demands can make incorporation of physics teaching into clinical practice problematic. We created and implemented a week-long, intensive physics rotation for fledgling radiology residents and evaluated its effectiveness. The dedicated physics rotation is held for 1 week during the first month of radiology residency. It comprises three components: introductory lectures, hands-on practical clinical physics operations, and observation of clinical image production. A brief introduction of the physics pertinent to each modality is given at the beginning of each session. Hands-on experimental demonstrations are emphasized, receiving the greatest allotment of time. The residents perform experiments such as measuring radiation dose, studying the relationship between patient dose and clinical practice (eg, fluoroscopy technique), investigating the influence of acquisition parameters (kV, mAs) on radiographs, and evaluating image quality using computed tomography, magnetic resonance imaging, ultrasound, and gamma camera/single-photon emission computed tomography/positron emission tomography phantoms. Quantitative assessment of the effectiveness of the rotation is based on an examination that tests the residents' grasp of basic medical physics concepts along with written course evaluations provided by each resident. The pre- and post-rotation tests show that after the physics rotation, the average correct score of 25

  9. Radiological changes in systemic lupus erythematosis

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, R; Freyschmidt, J; Suedhof-Mueller, G; Menninger, H

    1981-05-01

    In a study of 50 patients with systemic lupus erythematosis, radiologically demonstrable lung changes and pleural effusions were found in 50%. Changes in the peripheral skeleton, such as osteoporosis, erosions or mutilations, were seen in only two patients. Our radiological analysis has shown that systemic lupus erythematosis does not produce changes in the joints, but is responsible for abnormalities in the lungs, as well as for pericardial and pleural effusions.

  10. Optimizing diagnostic workup in the DRG environment: Dynamic algorithms and minimizing radiologic costs may cost your hospital money

    International Nuclear Information System (INIS)

    Saint-Louis, L.A.; Henschke, C.I.; Balter, S.; Whalen, J.P.; Balter, P.

    1987-01-01

    In certain diagnosis-related group (DRG) categories, the availability of sufficient CT scanners or of new equipment, such as MR equipment, can expedite the definitive workup. This will reduce the average length of stay and hospital cost. We analyzed the total hospital and radiologic charges by DRG category for all patients admitted to our hospital in 1985 and 1986. Although the cost per procedure is relatively high, the radiologic component is a small percentage of total hospital costs (median, 3%; maximum, <10%). The authors developed alternative diagnostic algorithms for radiologic-intensive DRG categories. Different diagnostic algorithms proposed for the same clinical problems were compared analytically in terms of impact on the hospital (cost, equipment availability, and length of stay). An example is the workup for FUO. Traditional approach uses plain x-rays and gallium scans and only uses CT when localizing symptoms are present. An alternative approach is to perform CT only. Although more CT examinations would be required, there is considerable reduction in the length of hospital stay and in overall charges. Neurologic and thoracic workups will be given as examples of classes or problems that can be addressed analytically: sequencing of the workup; prevalence; patient population; resource of allocation; and introduction of new imaging modality

  11. 21 CFR 892.1980 - Radiologic table.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A radiologic...

  12. Radiological information management system SRIM-10

    International Nuclear Information System (INIS)

    Shibata, Koichi; Goto, Yoshihisa

    1989-01-01

    A radiological information management system, SRIM-10, has been developed using a personal computer, in order to smoothly manage routine works in radiological division of hospitals. Data base is constructed with radiographic data acuqired directly from x-ray apparatus and patient information acquired using ID card. It is possible to record patient information of about 10,000 patients and radiographic data of about 120,000 exposures. This system can be made up as a multi work station system using a local area network. (author)

  13. Radiological information management system SRIM-10

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Koichi; Goto, Yoshihisa

    1989-03-01

    A radiological information management system, SRIM-10, has been developed using a personal computer, in order to smoothly manage routine works in radiological division of hospitals. Data base is constructed with radiographic data acuqired directly from x-ray apparatus and patient information acquired using ID card. It is possible to record patient information of about 10,000 patients and radiographic data of about 120,000 exposures. This system can be made up as a multi work station system using a local area network. (author).

  14. Digital image information systems in radiology

    International Nuclear Information System (INIS)

    Greinacher, C.F.C.; Luetke, B.; Seufert, G.

    1987-01-01

    About 25% of all patient examinations are performed digitally in a today's radiological department. A computerized system is described that supports generation, transport, interpretation and archiving of digital radiological images (Picture Archiving and Communication System PACS). The technical features concerning image communication via local area networks, image storage on magnetic and optical media and digital workstations for image display and manipulation are described. A structured system architecture is introduced. It allows flexible adaption to individual organizations and minimizes the requirements of the communication network. (orig.) [de

  15. Radiological changes in systemic lupus erythematosis

    International Nuclear Information System (INIS)

    Fritsch, R.; Freyschmidt, J.; Suedhof-Mueller, G.; Menninger, H.; Medizinische Hochschule Hannover

    1981-01-01

    In a study of 50 patients with systemic lupus erythematosis, radiologically demonstrable lung changes and pleural effusions were found in 50%. Changes in the peripheral skeleton, such as osteoporosis, erosions or mutilations, were seen in only two patients. Our radiological analysis has shown that systemic lupus erythematosis does not produce changes in the joints, but is responsible for abnormalities in the lungs, as well as for pericardial and pleural effusions. (orig.) [de

  16. Dictionary of radiology. Radiologisches Woerterbuch

    Energy Technology Data Exchange (ETDEWEB)

    Freye, K; Lammers, W

    1982-01-01

    The dictionary of radiology is based on practical experience in diagnostic radiology. Following a brief clinical introduction, radiological methods including nuclear medicine and the increasingly important field of sonography are presented in alphabetic order, each term with a short definition. The most favourable order of application is determined by the diagnostic value, technical requirements and discomfort of the various methods. Preparative measures, the duration of the examinations, and problems of radiation hygiene are discussed. Illustrative drawings supplement the text. The fields of application given for the various methods are based on the latest state of knowledge. Other methods, e.g. endoscopy in all its variants and thermography, are mentioned whereever they are of diagnostic value. The book has a brief appendix in which the fundamental physical and technical context are explained, also in alphabetic order. Detailed cross-references establish a connection between diseases and diagnostic methods, thus facilitating access to the desired information.

  17. Application of geographic information system for radiologic emergency response

    International Nuclear Information System (INIS)

    Best, R.G.; Doyle, J.F.; Mueller, P.G.

    1998-01-01

    Comprehensive and timely radiological, cultural, and environmental data are required in order to make informed decisions during a radiological emergency. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. The most recent addition to this essential function has been the development of the Field Analysis System for Emergency Response (FASER). It is an integrated system with compatible digital image processing and Geographic Information System (GIS) capabilities. FASER is configured with commercially available off-the-shelf hardware and software components. To demonstrate the potential of the FASER system for radiological emergency response, the system has been utilized in interagency FRMAC exercises to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. (R.P.)

  18. Study on Korean Radiological Emergency System-Care System- and National Nuclear Emergency Preparedness System Development

    International Nuclear Information System (INIS)

    Akhmad Khusyairi; Yudi Pramono

    2008-01-01

    Care system; Radiological Emergency Supporting System. Environmental radiology level is the main aspect that should be concerned deal with the utilization of nuclear energy. The usage of informational technology in nuclear area gives significant contribution to anticipate and to protect human and environment. Since 1960, South Korea has developed environment monitoring system as the effort to protect the human and environment in the radiological emergency condition. Indonesia has possessed several nuclear installations and planned to build and operate nuclear power plants (PLTN) in the future. Therefore, Indonesia has to prepare the integrated system, technically enables to overcome the radiological emergency. Learning from the practice in South Korea, the system on the radiological emergency should be prepared and applied in Indonesia. However, the government regulation draft on National Radiological Emergency System, under construction, only touches the management aspect, not the technical matters. Consequently, when the regulation is implemented, it will need an additional regulation on technical aspect including the consideration on the system (TSS), the organization of operator and the preparation of human resources development of involved institution. For that purpose, BAPETEN should have a typical independence system in regulatory frame work. (author)

  19. Flat-screen detector systems in skeletal radiology

    International Nuclear Information System (INIS)

    Grampp, S.; Czerny, C.; Krestan, C.; Henk, C.; Heiner, L.; Imhof, H.

    2003-01-01

    Implementation of flat-panel detectors and digital integration of the technique instead of the use of conventional radiographs leads to a shortening of the work process. With flat-panel technology the image production process is shortened by more than 30%. Major advantages in the implementation of integrated RIS, PACS and flat-panel detector system are increases in quality because most mistakes in picture labeling can be avoided, easier handling without the need for cassettes, and the possibility of image post-processing. The diagnostic quality of the images in the field of musculoskeletal radiology is, in comparison to conventional radiographs, at least adequate and in most cases markedly improved with a marked reduction in radiation exposure of around 30-50%. With respect to the numerous advantages of the digital techniques and especially flat-panel technology there is a very high likelihood that conventional radiographs will be substituted in the coming years, even though the cost of the new technology is currently significantly higher compared to conventional systems. (orig.) [de

  20. Re-Establishment of Standard Radiation Qualities for Calibration of Dosemeter in Diagnostic Radiology - RQR Series

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Norhayati Abdullah; Mohd Firdaus Abd Rahman

    2016-01-01

    After repairing the high voltage (HV) generator for Philips MG165 X-Ray Machine, the reestablishment of the standard radiation qualities has been done at Medical Physics Calibration Laboratory to meet the IEC and IAEA standard. Standard radiation qualities are the important criteria for calibration of dosemeter in diagnostic radiology. Standard radiation qualities are defined as the added filtration needed to produce and the half value layer (HVL) of the beam for specifies x-ray tube kilo voltage (kV). For calibration of dosemeter in diagnostic radiology, standard radiation qualities RQR represent the beam incident on the patient in general radiography, fluoroscopy and dental application. The HVL were measured using PTW ion chamber of volume 1 cm"3 with PTW electrometer and aluminium filter with 99.9 % purity was used as additional filter for RQR and filter for HVL. The first establishment of standard radiation qualities was made in 2009 for the radiation qualities of RQR. The results of additional filter and 1st HVL from 2009 to 2016 will be discussed further in paper. The ratios of the measured HVL to the standard IEC HVL value for the RQR series also described in this paper. The details of the measurement and the results are described in this paper. (author)

  1. A comparative study of quality control in diagnostic radiology

    International Nuclear Information System (INIS)

    Kharita, M. H.; Khedr, M.S.; Wannus, K.M.

    2008-01-01

    The main objective of this comparative study was to evaluate the national quality assurance program for X-ray diagnostic radiology in Syrian governmental hospitals. Two periods were covered in this study, the first period was from 1986 to 1998 (52 hospitals and 149 X-ray machines were considered) and the second period from 1999 to 2005 (41 hospitals and 95 X-ray machines were considered). Most of the X-ray machines studied were within the acceptable performance, but few machines needed recalibration for some parameters. Considerable improvement of about 50% was reported in the second period. This improvement could be attributed to the establishment of an effective National Regulatory Authority in Syria in 1998 that introduced and gradually enforced the quality assurance requirement for X-ray equipment as part of the licensing process and to the relatively newer X-ray machines covered in the second period. The Author 2008. Published by Oxford Univ. Press. All rights reserved. (authors)

  2. Radiation protection of patients in diagnostic radiology in Estonia

    International Nuclear Information System (INIS)

    Filippova, I.

    2001-01-01

    The medical use of ionizing radiation started at the beginning of the century. It has always been considered necessary, as well as for diagnostic applications where exposure to the patient is the price to pay in order to obtain useful images, as for therapy where the patient is exposed on purpose, in order to kill malignant cells. It is nowadays the major man-made contribution to the population dose. Even with the developments of substitutive imaging or treatment techniques, there is still an increasing demand and many organizations are joining their efforts to try to keep the dose to the patient 'as low as reasonably achievable'. This is particularly the case for the International Commission on Radiological Protection (ICRP) which recommended in publication 26 to follow three main principles: justification, optimisation and limitation. Limitation, however, does not apply to patients since the individuals exposed are expected to benefit from this exposure, but justification and optimization are relevant. (author)

  3. Diagnostic radiology physics: A handbook for teachers and students. Endorsed by: American Association of Physicists in Medicine, Asia-Oceania Federation of Organizations for Medical Physics, European Federation of Organisations for Medical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Dance, D. R. [Royal Surrey County Hospital, Guildford (United Kingdom); Christofides, S. [New Nicosia General Hospital (Cyprus); Maidment, A. D.A. [University of Pennsylvania (United States); McLean, I. D. [International Atomic Energy Agency, Vienna (Austria); Ng, K. H. [University of Malaya, Kuala Lumpur (Malaysia)

    2014-09-15

    This publication is written for students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.

  4. Optimizing radiologic workup: An artificial intelligence approach

    International Nuclear Information System (INIS)

    Swett, H.A.; Rothschild, M.; Weltin, G.G.; Fisher, P.R.; Miller, P.L.

    1987-01-01

    The increasing complexity of diagnostic imaging is presenting an ever-expanding variety of radiologic test options to referring clinicians, making it more difficult for them to plan efficient workup. Diagnosis-oriented reimbursement systems are providing new incentives for hospitals and radiologists to use imaging modalities judiciously. This paper describes DxCON, a developmental artificial intelligence-based computer system, which gives advice to physicians about the optimum sequencing of radiologic tests. DxCON analyzes a physician's proposed workup plan and discusses its strengths and weaknesses. The domain chosen for this research is the imaging workup of obstructive jaundice

  5. Attention for pediatric interventional radiology

    International Nuclear Information System (INIS)

    Zhu Ming; Cheng Yongde

    2005-01-01

    Radiological interventions possess wide utilization in the diagnosis and treatment for pediatric patients. Pediatric interventional radiology is an important branch of interventional radiology and also an important branch of pediatric radiology. Pediatric interventional radiology has grown substantially over the last 30 years, radiologists closely cooperation with surgeons and other physicians providing a new horizon in the management of pediatric diseases in western countries. It includes pediatric cardiac interventional radiology, pediatric neuro-interventional radiology, pediatric vascular interventional radiology, pediatric nonvascular interventional radiology, pediatric tumor interventional radiology and others. In the United States, every children hospital which owns two hundred beds has to have special trained interventional radiologists in radiologic department installing with advanced digital subtraction angiographic equipment. Interventional therapeutic procedures and diagnostic angiography have been proceeding more and more for the congenital and acquired diseases of children. The promising results give use uprising and interventional therapy as an alternative or a replacement or supplement to surgical operation. Pediatric interventional radiology is rather underdeveloped in China with a few special pediatric interventional radiologist, lack of digital subtraction angiography equipment. Pediatric radiologists have no enough field for interventional procedures such as pediatric neuro-interventional radiology and pediatric vascular interventional radiology. In the contrary adult interventional radiologists do have better interventional jobs in China and Pediatric cardiologists also share the same trend. They perform angiocardiography for congenital heart diseases and treat congenital heart disease with interventional procedures including balloon dilation of valves and vessels, coil embolization of collaterals, patent ducts and other arterial fistulae

  6. Role of radiology in occupational medicine

    International Nuclear Information System (INIS)

    Vehmas, T.

    2004-01-01

    This review discusses the contribution of radiology to occupational medicine as well as work-related problems in radiology dept.s. Research issues are emphasized. Radiology has been used especially when diagnosing occupational respiratory and locomotive system problems and solvent-induced encephalo- and hepatopathy. The aim of research in these areas is usually to characterize occupational diseases and to identify physico-chemical hazards in the work place by comparing between groups of workers and non-exposed controls. Radiological imaging allows an objective characterization of the disease, and it may clarify the pathogenesis of the process and provide a useful epidemiological tool. Advanced statistical methods are often needed to adjust analyses for confounding variables. As the diagnostic requirements are increasing, more sensitive and sophisticated radiological methods, such as high-resolution computed tomography, magnetic resonance imaging and magnetic resonance spectroscopy, may be required for the early recognition of occupational health risks. This necessitates good cooperation between occupational health units and well-equipped imaging dept.s. Considering occupational problems in radiology departments, the increasing use of digital radiology requires ergonomic measures to control and prevent locomotive problems caused by work with computers. Radiation protection measures are still worth concern, especially in interventional radiology

  7. Basic quality control in diagnostic radiology

    International Nuclear Information System (INIS)

    Wikstrom, Erik

    2016-01-01

    Along the route toward regular performance of Quality Control in the Diagnostic Imaging sector there are a number of balances to negotiate: Patient/Staff safety considerations vs Regulatory compliance vs Performance of modern equipment vs Clinic's Productivity. At first glance these ambitions may seem in conflict. The tests performed to meet regulatory requirements may or may not bear any semblance to real clinical measurement scenarios. And the process of collecting the data from the quality assurance tests may induce a system down- time that adversely affects the clinic's overall productivity. Furthermore, the time it takes to complete the analysis of the test data and provide the report required to take the facility back into operation is time wasted for patients waiting for a diagnostic imaging exam

  8. Evidence-based Practice of Radiology.

    Science.gov (United States)

    Lavelle, Lisa P; Dunne, Ruth M; Carroll, Anne G; Malone, Dermot E

    2015-10-01

    Current health care reform in the United States is producing a shift in radiology practice from the traditional volume-based role of performing and interpreting a large number of examinations to providing a more affordable and higher-quality service centered on patient outcomes, which is described as a value-based approach to the provision of health care services. In the 1990 s, evidence-based medicine was defined as the integration of current best evidence with clinical expertise and patient values. When these methods are applied outside internal medicine, the process is called evidence-based practice (EBP). EBP facilitates understanding, interpretation, and application of the best current evidence into radiology practice, which optimizes patient care. It has been incorporated into "Practice-based Learning and Improvement" and "Systems-based Practice," which are two of the six core resident competencies of the Accreditation Council for Graduate Medical Education and two of the 12 American Board of Radiology milestones for diagnostic radiology. Noninterpretive skills, such as systems-based practice, are also formally assessed in the "Quality and Safety" section of the American Board of Radiology Core and Certifying examinations. This article describes (a) the EBP framework, with particular focus on its relevance to the American Board of Radiology certification and maintenance of certification curricula; (b) how EBP can be integrated into a residency program; and (c) the current value and likely place of EBP in the radiology information technology infrastructure. Online supplemental material is available for this article. © RSNA, 2015.

  9. A prior authorization program of a radiology benefits management company and how it has affected utilization of advanced diagnostic imaging.

    Science.gov (United States)

    Levin, David C; Bree, Robert L; Rao, Vijay M; Johnson, Jean

    2010-01-01

    Radiology benefits management companies have evolved in recent years to meet the need to control the rapid growth in advanced diagnostic imaging. The Obama administration and other key policymakers have proposed using them as a cost-control mechanism, but little is known about how they operate or what results they have produced. The main tool they use is prior authorization. The authors describe the inner workings of the call center of one radiology benefits management company and how its prior authorization program seems to have slowed the growth in the utilization of MRI, CT, and PET in the large markets of one commercial payer. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. The Application of Strength of Association Statistics to the Item Analysis of an In-Training Examination in Diagnostic Radiology.

    Science.gov (United States)

    Diamond, James J.; McCormick, Janet

    1986-01-01

    Using item responses from an in-training examination in diagnostic radiology, the application of a strength of association statistic to the general problem of item analysis is illustrated. Criteria for item selection, general issues of reliability, and error of measurement are discussed. (Author/LMO)

  11. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P thermoluminescent dosemeter and its applications in diagnostic radiology

    International Nuclear Information System (INIS)

    Fung, K.K.L.

    2000-12-01

    The recent introduction and development of the thermoluminescent (T.L.) phosphor material LiF:Mg,Cu,P (usually named TLD100H or GR200A) has aroused intense interest of scientists in the field of radiation dosimetry due to its very favourable dosimetric characteristics. Both conventional LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P T.L. phosphors are tissue-equivalent but GR200A outperforms in respect of its very much higher sensitivity, by a factor of greater than 25, and a dose detection threshold of less than 1 μGy. A reproducible readout and annealing regime was developed in the initial part of this study with the newly installed automatic TLD (Thermoluminescence Dosimetry) apparatus in the X-ray and Radiation Physics Laboratories of the Hong Kong Polytechnic University. Basic dosimetric characteristics of this T.L. dosemeter (supplied by Harshaw-Bicron Co.) were then investigated. This paved the foundation for subsequent selected novel application studies in diagnostic radiology. Dosimetric characteristics which included linearity, reproducibility, batch uniformity, energy response, and minimum detectable dose were studied using X-rays in the commonly used diagnostic radiology energy range. Favourable dosimetric characteristics were observed from this T.L. phosphor, which agrees well with published studies. The effect of the number of thermal treatment cycles in the initialisation process on dosimetric properties of this T.L. phosphor was also investigated. This study exploits the favourable dosimetric properties of these T.L. dosemeters in some selected novel dosimetric applications in diagnostic radiology with an anthropomorphic phantom using facilities both in these laboratories and also in radiology departments of various district hospitals in Hong Kong. Radiation absorbed dose from the direct or scattered beam, at critical sites inside and on the surface of the phantom, were measured in these radiological studies. The special focus in some of these studies was to

  12. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P thermoluminescent dosemeter and its applications in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Fung, K.K.L

    2000-12-01

    The recent introduction and development of the thermoluminescent (T.L.) phosphor material LiF:Mg,Cu,P (usually named TLD100H or GR200A) has aroused intense interest of scientists in the field of radiation dosimetry due to its very favourable dosimetric characteristics. Both conventional LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P T.L. phosphors are tissue-equivalent but GR200A outperforms in respect of its very much higher sensitivity, by a factor of greater than 25, and a dose detection threshold of less than 1 {mu}Gy. A reproducible readout and annealing regime was developed in the initial part of this study with the newly installed automatic TLD (Thermoluminescence Dosimetry) apparatus in the X-ray and Radiation Physics Laboratories of the Hong Kong Polytechnic University. Basic dosimetric characteristics of this T.L. dosemeter (supplied by Harshaw-Bicron Co.) were then investigated. This paved the foundation for subsequent selected novel application studies in diagnostic radiology. Dosimetric characteristics which included linearity, reproducibility, batch uniformity, energy response, and minimum detectable dose were studied using X-rays in the commonly used diagnostic radiology energy range. Favourable dosimetric characteristics were observed from this T.L. phosphor, which agrees well with published studies. The effect of the number of thermal treatment cycles in the initialisation process on dosimetric properties of this T.L. phosphor was also investigated. This study exploits the favourable dosimetric properties of these T.L. dosemeters in some selected novel dosimetric applications in diagnostic radiology with an anthropomorphic phantom using facilities both in these laboratories and also in radiology departments of various district hospitals in Hong Kong. Radiation absorbed dose from the direct or scattered beam, at critical sites inside and on the surface of the phantom, were measured in these radiological studies. The special focus in some of these studies was to

  13. [Instruction in dental radiology

    NARCIS (Netherlands)

    Sanden, W.J.M. van der; Kreulen, C.M.; Berkhout, W.E.

    2016-01-01

    The diagnostic use of oral radiology is an essential part of daily dental practice. Due to the potentially harmful nature of ionising radiation, the clinical use of oral radiology in the Netherlands is framed by clinical practice guidelines and regulatory requirements. Undergraduate students receive

  14. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  15. The Effects of Fatigue From Overnight Shifts on Radiology Search Patterns and Diagnostic Performance.

    Science.gov (United States)

    Hanna, Tarek N; Zygmont, Matthew E; Peterson, Ryan; Theriot, David; Shekhani, Haris; Johnson, Jamlik-Omari; Krupinski, Elizabeth A

    2018-01-20

    The aim of this study was to assess the effect of overnight shifts (ONS) on radiologist fatigue, visual search pattern, and diagnostic performance. This experimental study was approved by the institutional review board. Twelve radiologists (five faculty members and seven residents) each completed two sessions: one during a normal workday ("not fatigued") and another in the morning after an ONS ("fatigued"). Each radiologist completed the Swedish Occupational Fatigue Inventory. During each session, radiologists viewed 20 bone radiographs consisting of normal and abnormal findings. Viewing time, diagnostic confidence, and eye-tracking data were recorded. Swedish Occupational Fatigue Inventory results demonstrated worsening in all five variables (lack of energy, physical exertion, physical discomfort, lack of motivation, and sleepiness) after ONS (P radiologists were more fatigued with worse diagnostic performance, a 45% increase in view time per case, a 60% increase in total gaze fixations, and a 34% increase in time to fixate on the fracture. The effects of fatigue were more pronounced in residents. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Quality control test solutions for diagnostic radiology, nuclear medicine and health physics with PTW equipment

    International Nuclear Information System (INIS)

    Froescher, Olga

    2007-01-01

    Complete test of publication follows. In 1922 PTW-Freiburg was founded to produce and market a revolutionary new electromechanical component for measuring very small electrical charges. Today PTW is the specialist and one of the global market leaders for manufacturing and supplying high-quality products in diagnostic radiology, nuclear medicine, radiation therapy and health physics. The quality control of X-ray images is influenced by a number of parameters. To maintain a consistent performance of X-ray installations, quality checks have to be conducted regularly. PTW offers a variety of diagnostic test tools for different X-ray devices, and therefore to reduce patient exposure and costs for X-ray departments. PTW's 'Code of Practice' defines in an easy and compact way how to perform quality control measurements on different diagnostic X-ray installations. The necessary equipment for measuring main parameters as well as acceptable limits are mentioned accordingly. The 'Code of Practice' bases on actual standards.

  17. Extending the MEDAS Feature Dictionary to Support Access to Radiological Images

    OpenAIRE

    Kaufman, Bryan L.; Naeymi-Rad, Frank; Charletta, Dale A.; Kepic, Anna; Trace, David A.; Naeymirad, Shon; Carmony, Lowell; Spigos, Dimitrios; Evens, Martha

    1989-01-01

    This paper discusses a method of adding a library of radiological images to MEDAS (the Medical Emergency Decision Assistance System). This library is interfaced with the MEDAS Feature Dictionary [1, 2], a dictionary containing terminology for MEDAS knowledge bases. The connections between the radiological images and the terms in the dictionary are used in two ways: 1) To retrieve the images with free text queries. 2) To help in the evaluation of radiological findings during the diagnostic cyc...

  18. Realization of process improvement at a diagnostic radiology department with aid of simulation modeling.

    Science.gov (United States)

    Oh, Hong-Choon; Toh, Hong-Guan; Giap Cheong, Eddy Seng

    2011-11-01

    Using the classical process improvement framework of Plan-Do-Study-Act (PDSA), the diagnostic radiology department of a tertiary hospital identified several patient cycle time reduction strategies. Experimentation of these strategies (which included procurement of new machines, hiring of new staff, redesign of queue system, etc.) through pilot scale implementation was impractical because it might incur substantial expenditure or be operationally disruptive. With this in mind, simulation modeling was used to test these strategies via performance of "what if" analyses. Using the output generated by the simulation model, the team was able to identify a cost-free cycle time reduction strategy, which subsequently led to a reduction of patient cycle time and achievement of a management-defined performance target. As healthcare professionals work continually to improve healthcare operational efficiency in response to rising healthcare costs and patient expectation, simulation modeling offers an effective scientific framework that can complement established process improvement framework like PDSA to realize healthcare process enhancement. © 2011 National Association for Healthcare Quality.

  19. Hazardous radiological waste-dental and environmental perspective

    International Nuclear Information System (INIS)

    Tripathi, Anurag

    2014-01-01

    Dental radiology is concerned with maxillo-facial radiological diagnostic procedure. It is meant for patient welfare and to generate diagnostically useful information, which can be utilized for patient welfare. If injudiciously used, it can become a source of harmful effluents and solid waste, which may pose risk to health and environment. Professionals of dental radiology should be aware about their responsibility to dispose such waste in the rightful manner to fulfil their medical pledge and ethics of doing no harm. (author)

  20. Radiology – Changing Role in Healthcare

    Directory of Open Access Journals (Sweden)

    Md Khalilur Rahman

    2014-01-01

    differing physical principles of varying complexity.3 Accurate and timely diagnosis has always been the cornerstone of medical care. In the vast majority of conditions this involves clinical radiology, from the relatively simple chest X-ray to diagnose pneumonia to the complexities of computed tomography (CT, magnetic resonance imaging (MRI or positron emission tomography (PET in the management of cancer. This diagnosis relies on the combination of imaging technology and the medical and diagnostic skills of the clinical radiologists making the diagnosis from the images.4 The value of different modalities varies by disease and clinical situation and some modalities have certain limitations in some organ systems. The discipline of musculoskeletal radiology has evolved into a major imaging subspecialty in the years since the first use of X-rays to diagnose fractures. Musculoskeletal radiology expertise has experienced enormous developments in diagnostic sensitivity and specificity and in image guided treatment options, in addition to technologic advances far beyond X-rays through advances in cross-sectional imaging such as CT and MR imaging. These two modern radiographic tools also play predominant role in neuroradiography.5 The field of radiation medicine and nuclear imaging are both progressing rapidly with respect to technologic sophistication and multiplatform interface capabilities. Though PET is not really a new field, it has recently undergone a dramatic revitalization as new clinical indicators are validated for this type of functional imaging. PET recently has an immense positive role in the diagnosis and monitoring of cancer patients. PET-CT is now an indispensable tool in the detection of cancer and cancer therapy.6 Most of us are familiar with the concept of diagnostic radiology in the field of medicine. However, numerous advancements in research have led radiology to play an increasingly promising part in health care not in just terms of spotting problems, but

  1. Determination of Crack Area on Lead Apron used in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Muhammad Jamal Muhammad Isa; Asmaliza Hashim

    2014-01-01

    The study was performed to determine crack area of lead aprons used by personnel as radiation protector from unnecessary radiation in diagnostic radiology. The experiment was done using general X-ray and Computed Radiography (CR) systems. Calibration curve was plotted for beam quality at 80 kVp and source to detector distance (SDD) is 100 cm by selecting manual exposure mode. Lead sheet with thickness from 0.1 to 1.0 mm were used for this purpose. It was used to relate the pixel value of lead sheet images with their thickness. A few sample of lead aprons with different thickness from a hospital and our laboratories were obtained and then undergoing the inspection at our laboratory through this procedure. The samples were divided with two groups based on how long they were used which are less 10 years and more than 10 years. The images data of the sample were obtained and analysis using our developed software. The reference object with known its area was also used in the experiment to ensure our output using the software is reliable and acceptable. The results shown that lead aprons used more than 10 years have depicted more crack areas compare with the lead apron used less than 10 years. (author)

  2. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  3. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  4. Radiological tests versus pathological diagnostics: Complimentary or antagonistic relationship? The experience of a tertiary hospital

    Directory of Open Access Journals (Sweden)

    Maria A Arafah

    2017-01-01

    Full Text Available Introduction: Early detection of breast cancer plays a pivotal role in the outcome of the disease. Diagnostic modalities encompass radiological and pathological findings. The aim of this study is to evaluate the correlation between the results of these two modalities in a tertiary hospital. Materials and Methods: From a total of 180 patients, 203 ultrasound-guided breast core needle biopsies (US-CNBs were included in this study over a period of a year (May 2015 - May 2016. All clinical parameters, the site of the biopsy, the size of the needle, the radiological findings, the pathological diagnoses as well as all available follow-up data were reviewed. The concordance between the radiological and pathological results was studied and a statistical analysis conforms to the Pearson Chi-square test was applied. Results: The majority of our patients were above 40 years of age. A strong and statistically significant association was noted between radiological findings and histopathological results (Pearson's Chi-square test = 186.28, P ≤ 0.0001 with only four discordant cases (1.97%. This discrepancy was not statistically associated with age, site of biopsy, needle size, or number of cores obtained (P = 0.621, P = 0.584, P = 0.786, and P = 0.478, respectively. Conclusions: US-CNB is an accurate method in the diagnosis of breast lesions. Radiological and pathological correlation is of utmost importance in relation to patient's care and to reduce false rates. Follow-up of concordant benign lesions is essential. In addition, the importance of a multidisciplinary breast conference during which input from all teams caring for the patient is strongly emphasized.

  5. Radiologic diagnostics of dementia; Radiologische Demenzdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Essig, M. [Radiologie, Deutsches Krebsforschungszentrum Heidelberg (Germany); Radiologie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg (Germany); Schoenberg, S.O. [Institut fuer klinische Radiologie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2003-07-01

    Dementia is one of the most common diseases in the elderly population and is getting more and more important with the ageing of the population. A radiologic structural examination with CT or MRI is meanwhile a standard procedure in the diagnostic work up of patients with dementia syndrome. Radiology enables an early diagnosis and a differential diagnosis between different causes of dementia. Because structural changes occur only late in the disease process, a more detailed structural analysis using volumetric techniques or the use of functional imaging techniques is mandatory. These days, structural imaging uses MRI which enables to detect early atrophic changes at the medial temporal lobe with focus on the amygdala hippocampal complex. These changes are also present in the normal ageing process. In patients with Alzheimer's disease, however, they are more rapid and more pronounced. The use of functional imaging methods such as perfusion MRI, diffusion MRI or fMRI allow new insights into the pathophysiologic changes of dementia. The article gives an overview of the current status of structural imaging and an outlook into the potential of functional imaging methods. Detailed results of structural and functional imaging are presented in other articles of this issue. (orig.) [German] Demenzielle Syndrome gehoeren zu den haeufigsten Erkrankungen im hoeheren Lebensalter und werden mit einer Zunahme der Ueberalterung in der Bevoelkerung volkswirtschaftlich immer bedeutender. Die radiologische Untersuchung mittels struktureller CT oder MRT gehoert mittlerweile zur Standardabklaerung jeder demenziellen Symptomatik. Sie dient der Frueherkennung und der Differenzialdiagnostik der verschiedenen Ursachen einer Demenz. Dies gilt insbesondere in Hinblick auf zu erwartende und bereits vorhandene Therapiemoeglichkeiten. Da jedoch strukturelle Veraenderungen erst relativ spaet im Fortschreiten der Erkrankung visualisiert werden koennen, sind detaillierte strukturelle

  6. PathBot: A Radiology-Pathology Correlation Dashboard.

    Science.gov (United States)

    Kelahan, Linda C; Kalaria, Amit D; Filice, Ross W

    2017-12-01

    Pathology is considered the "gold standard" of diagnostic medicine. The importance of radiology-pathology correlation is seen in interdepartmental patient conferences such as "tumor boards" and by the tradition of radiology resident immersion in a radiologic-pathology course at the American Institute of Radiologic Pathology. In practice, consistent pathology follow-up can be difficult due to time constraints and cumbersome electronic medical records. We present a radiology-pathology correlation dashboard that presents radiologists with pathology reports matched to their dictations, for both diagnostic imaging and image-guided procedures. In creating our dashboard, we utilized the RadLex ontology and National Center for Biomedical Ontology (NCBO) Annotator to identify anatomic concepts in pathology reports that could subsequently be mapped to relevant radiology reports, providing an automated method to match related radiology and pathology reports. Radiology-pathology matches are presented to the radiologist on a web-based dashboard. We found that our algorithm was highly specific in detecting matches. Our sensitivity was slightly lower than expected and could be attributed to missing anatomy concepts in the RadLex ontology, as well as limitations in our parent term hierarchical mapping and synonym recognition algorithms. By automating radiology-pathology correlation and presenting matches in a user-friendly dashboard format, we hope to encourage pathology follow-up in clinical radiology practice for purposes of self-education and to augment peer review. We also hope to provide a tool to facilitate the production of quality teaching files, lectures, and publications. Diagnostic images have a richer educational value when they are backed up by the gold standard of pathology.

  7. Radiology trainer. Torso, internal organs and vessels. 2. ed.; Radiologie-Trainer. Koerperstamm, innere Organe und Gefaesse

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, Axel [Orthopaedische Klinik Harlaching, Muenchen (Germany). Radiologische Praxis; Erlt-Wagner, Birgit (eds.) [Klinikum der Universitaet Muenchen (Germany). Inst. fuer Klinische Radiologie

    2013-11-01

    The radiology training textbook is based on case studies of the clinical experience, including radiological imaging and differential diagnostic discussion. The scope of this volume covers the torso, internal organs and vessels. The following issues are discussed: lungs, pleura, mediastinum; heart and vascular system; upper abdomen organs; gastrointestinal tract; urogenital system.

  8. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1980-04-01

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  9. A graphical user interface for diagnostic radiology dosimetry using Monte Carlo (MCNP) simulation

    International Nuclear Information System (INIS)

    Collins, P.J.; Gorbatkov, D.; Schultz, F.W.

    2000-01-01

    Monte Carlo methods (for example, MCNP, EGGS4) are the 'gold standard' for both external and internal dosimetry in humans. These powerful simulation tools are, however, general-purpose codes and consequently do not provide a simple user interface for specific dosimetry tasks. We have developed a graphical user interface, for external radiation dosimetry (diagnostic radiology) using MCNP and an anthropomorphic mathematical phantom (Adam/Eva), which enables convenient modification and processing of the MCNP input and output files. The input form displays a colour coded, 3D representation of the phantom with a superimposed 'beam' for the required x-ray projection. The phantom can be rotated through 360 degrees and a transverse section at the level of the mid-point of the beam is also displayed. Text fields enable entry of input data (beam dimensions, source position, kVp, total filtration, focus-to-skin distance). A pull-down menu enables the user to select from 22 standard radiographic views. A standard projection can be modified, or new projection data entered if required. The input program modifies the MCNP input file and initiates processing. An output form displays the organ doses, normalised to unit skin entrance dose (with backscatter) (SED). The user can also enter the SED (calculated or measured) for a particular machine, to obtain the effective dose. To validate the program, the results for a PA Chest study (80 kVp, 2.5 mm Al total filtration) were compared with NRPB data (Jones and Wall, 1985). In conclusion, a convenient and reliable graphical user interface has been developed for MCNP, which enables dosimetry calculation for a full range of diagnostic radiological studies. (author)

  10. University of Saskatchewan Radiology Courseware (USRC): an assessment of its utility for teaching diagnostic imaging in the medical school curriculum.

    Science.gov (United States)

    Burbridge, Brent; Kalra, Neil; Malin, Greg; Trinder, Krista; Pinelle, David

    2015-01-01

    We have found it very challenging to integrate images from our radiology digital imaging repository into the curriculum of our local medical school. Thus, it has been difficult to convey important knowledge related to viewing and interpreting diagnostic radiology images. We sought to determine if we could create a solution for this problem and evaluate whether students exposed to this solution were able to learn imaging concepts pertinent to medical practice. We developed University of Saskatchewan Radiology Courseware (USRC), a novel interactive web application that enables preclinical medical students to acquire image interpretation skills fundamental to clinical practice. This web application reformats content stored in Medical Imaging Resource Center teaching cases for BlackBoard Learn™, a popular learning management system. We have deployed this solution for 2 successive years in a 1st-year basic sciences medical school course at the College of Medicine, University of Saskatchewan. The "courseware" content covers both normal anatomy and common clinical pathologies in five distinct modules. We created two cohorts of learners consisting of an intervention cohort of students who had used USRC for their 1st academic year, whereas the nonintervention cohort was students who had not been exposed to this learning opportunity. To assess the learning experience of the users we designed an online questionnaire and image review quiz delivered to both of the student groups. Comparisons between the groups revealed statistically significant differences in both confidence with image interpretation and the ability to answer knowledge-based questions. Students were satisfied with the overall usability, functions, and capabilities of USRC. USRC is an innovative technology that provides integration between Medical Imaging Resource Center, a teaching solution used in radiology, and a Learning Management System.

  11. [Effectiveness of conventional diagnostic radiology and nuclear medicine in the treatment of pain from bone metastases].

    Science.gov (United States)

    Genovese, Eugenio Annibale; Mallardo, Vania; Vaccaro, Andrea; Santagata, Mario; Raucci, Antonio; D'Agosto, Gianfranco; Fontanarosa, Antonio; Schillirò, Francesco

    2013-01-01

    Bone is one of the most common metastasis sites from solid tumors. Bone pain due to metastatic neoplastic growth is due to tumor infiltration and expansion of bone membranes. Treatment of acute and chronic pain represents one of the greatest problems in clinical oncology, requiring a multidisciplinary approach. This review focuses on the effectiveness of conventional diagnostic radiology and nuclear medicine for the detection, management and treatment of pain from bone metastasis.

  12. Counseling Patients Exposed to Ionizing Radiation in Diagnostic Radiology During Pregnancy

    International Nuclear Information System (INIS)

    Brnic, Z.; Leder, N.I.; Popic Ramac, J.; Vidjak, V.; Knezevic, Z.

    2013-01-01

    There are many false assumptions regarding influence of radiation on pregnant patients and fetus during diagnostic procedures in spite of scientific facts based on studies (both in general population and among physicians). These false assumptions are mostly based on the idea that every diagnostic procedure that uses ionizing radiation is a cause for serious concern and consideration for artificial abortion as a possible solution. We have analysed the data of counselling of pregnant patients exposed to ionizing radiation during diagnostic procedures in University Hospital Merkur, during a period of four years. In this period we had 26 patients come in counselling due to exposure to ionizing radiation during pregnancy. Results show that most of these patients have been exposed to radiation between 2nd and 3rd week of gestation (36 %), between 4th and 5th week - 32 %; before 2nd week - 24%; and after 6th week of gestation less than 8 %. Average doses were: up to 0.01 cGy in 46.2 % patients; 0.01 - 0.15 cGy in 19.2 % patients; 0.2 - 1 cGy in 26.9 % and 1 cGy or more in 7.7 % of patients. No one of the counselled patients had a medical indication for abortion, even though in a small percentage of patients abortion was a personal subjective decision. Considering that there are no Croatian guidelines for counselling patients exposed to ionizing radiation during pregnancy, recommendation is to use International Commission on Radiological Protection (ICRP) guidelines for management of pregnant patients exposed to ionizing radiation.(author)

  13. Radiological error: analysis, standard setting, targeted instruction and teamworking

    International Nuclear Information System (INIS)

    FitzGerald, Richard

    2005-01-01

    Diagnostic radiology does not have objective benchmarks for acceptable levels of missed diagnoses [1]. Until now, data collection of radiological discrepancies has been very time consuming. The culture within the specialty did not encourage it. However, public concern about patient safety is increasing. There have been recent innovations in compiling radiological interpretive discrepancy rates which may facilitate radiological standard setting. However standard setting alone will not optimise radiologists' performance or patient safety. We must use these new techniques in radiological discrepancy detection to stimulate greater knowledge sharing, targeted instruction and teamworking among radiologists. Not all radiological discrepancies are errors. Radiological discrepancy programmes must not be abused as an instrument for discrediting individual radiologists. Discrepancy rates must not be distorted as a weapon in turf battles. Radiological errors may be due to many causes and are often multifactorial. A systems approach to radiological error is required. Meaningful analysis of radiological discrepancies and errors is challenging. Valid standard setting will take time. Meanwhile, we need to develop top-up training, mentoring and rehabilitation programmes. (orig.)

  14. The application of improved, structured and interactive group learning methods in diagnostic radiology

    International Nuclear Information System (INIS)

    Ivarsson, Jonas; Rystedt, Hans; Baath, Magnus; Asplund, Sara; Allansdotter Johnsson, Aase

    2016-01-01

    This study provides an example on how it is possible to design environments in a diagnostic radiology department that could meet learning demands implied by the introduction of new imaging technologies. The innovative aspect of the design does not result from the implementation of any specific tool for learning. Instead, advancement is achieved by a novel set-up of existing technologies and an interactive format that allows for focussed discussions between learners with different levels of expertise. Consequently, the study points to what is seen as the under-explored possibilities of tailoring basic and specialist training that meet the new demands given by leading-edge technologies. (authors)

  15. Complications in diagnostic imaging. 2. ed.

    International Nuclear Information System (INIS)

    Ansell, G.; Wilkins, R.A.; Medical Research Council, Harrow

    1987-01-01

    Thirty-seven chapters review various complications which may arise for patients and staff in medical diagnostic imaging. Five of these chapters are indexed separately covering topics on the complications of using radiopharmaceuticals, safety considerations in magnetic resonance imaging, radiation hazards of diagnostic radiology and medico-legal problems involving diagnostic radiology in both the UK and the USA. (UK)

  16. Integrating pathology and radiology disciplines: an emerging opportunity?

    Science.gov (United States)

    2012-01-01

    Pathology and radiology form the core of cancer diagnosis, yet the workflows of both specialties remain ad hoc and occur in separate "silos," with no direct linkage between their case accessioning and/or reporting systems, even when both departments belong to the same host institution. Because both radiologists' and pathologists' data are essential to making correct diagnoses and appropriate patient management and treatment decisions, this isolation of radiology and pathology workflows can be detrimental to the quality and outcomes of patient care. These detrimental effects underscore the need for pathology and radiology workflow integration and for systems that facilitate the synthesis of all data produced by both specialties. With the enormous technological advances currently occurring in both fields, the opportunity has emerged to develop an integrated diagnostic reporting system that supports both specialties and, therefore, improves the overall quality of patient care. PMID:22950414

  17. Implementation of DICOM Modality Worklist at Patient Registration Systems in Radiology Unit

    Science.gov (United States)

    Kartawiguna, Daniel; Georgiana, Vina

    2014-03-01

    Currently, the information and communication technology is developing very rapidly. A lot of hospitals have digital radiodiagnostic modality that supports the DICOM protocol. However, the implementation of integrated radiology information system with medical imaging equipment is still very limited until now, especially in developing countries like Indonesia. One of the obstacles is high prices for radiology information system. Whereas the radiology information systems can be widely used by radiologists to provide many benefit for patient, hospitals, and the doctors themselves. This study aims to develop a system that integrates the radiology administration information system with radiodiagnostic imaging modalities. Such a system would give some benefits that the information obtained is more accurate, timely, relevant, and accelerate the workflow of healthcare workers. This research used direct observation method to some hospital radiology unit. Data was collected through interviews, questionnaires, and surveys directly to some of the hospital's radiology department in Jakarta, and supported by the literature study. Based on the observations, the prototype of integrated patient registration systems in radiology unit is developed and interfaced to imaging equipment radiodiagnostic using standard DICOM communications. The prototype of radiology patient registration system is tested with the modality MRI and CT scan.

  18. 21 CFR 892.1830 - Radiologic patient cradle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle. (a...

  19. Structured diagnostic imaging in patients with multiple trauma

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M.; Kanz, K.G.

    2002-01-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [de

  20. Improving Communication of Diagnostic Radiology Findings through Structured Reporting

    Science.gov (United States)

    Panicek, David M.; Berk, Alexandra R.; Li, Yuelin; Hricak, Hedvig

    2011-01-01

    Purpose: To compare the content, clarity, and clinical usefulness of conventional (ie, free-form) and structured radiology reports of body computed tomographic (CT) scans, as evaluated by referring physicians, attending radiologists, and radiology fellows at a tertiary care cancer center. Materials and Methods: The institutional review board approved the study as a quality improvement initiative; no written consent was required. Three radiologists, three radiology fellows, three surgeons, and two medical oncologists evaluated 330 randomly selected conventional and structured radiology reports of body CT scans. For nonradiologists, reports were randomly selected from patients with diagnoses relevant to the physician’s area of specialization. Each physician read 15 reports in each format and rated both the content and clarity of each report from 1 (very dissatisfied or very confusing) to 10 (very satisfied or very clear). By using a previously published radiology report grading scale, physicians graded each report’s effectiveness in advancing the patient’s position on the clinical spectrum. Mixed-effects models were used to test differences between report types. Results: Mean content satisfaction ratings were 7.61 (95% confidence interval [CI]: 7.12, 8.16) for conventional reports and 8.33 (95% CI: 7.82, 8.86) for structured reports, and the difference was significant (P radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101913/-/DC1 PMID:21518775

  1. The combined application of radiology, nuclear medicine and fine needle aspiration biopsy cytology (FNAB)

    International Nuclear Information System (INIS)

    Cardozo, P.L.; Ruis, I.A.M.

    1980-01-01

    The combination of diagnostic cytology and diagnostic radiology, including intervention radiology, is a logical one. Radiology can visualize lesions which cannot be found otherwise and under its guidance cytology can obtain a direct and usually diagnostic proof of the true nature of the process with minimal inconvenience and risk for the patient. A survey of the combination of cytology and radiological procedures in the diagnosis work-up is outlined. (Auth.)

  2. Radiological diagnosis of immunologically mediated disorders of the bronchopulmonary system in children and adolescents

    International Nuclear Information System (INIS)

    Ball, F.

    1990-01-01

    After coverage of pathophysiological mechanisms, radiological symptoms and differential diagnosis of bacterial and opportunistic infections of the bronchopulmonary system are discussed as they occur in humoral, cellular and combined congenital and acquired immune deficiencies. The discussion is based on case reports. Humoral deficiences cause recurrent and chronic bacterial infections of the bronchopulmonary system, frequently with bronchiectasis. In the case of cellular and combined immune deficiencies, not only bacterial infections but also the very serious opportunistic infections occur. Opportunistic infections of the lung are predominantly caused by Pneumocystis carinii, by the cytomegaly virus, and by fungi such as Candida, Aspergillus and Mucor. Pneumocystis is also the most frequent cause of opportunistic infections of the lungs in children with AIDS. In contrast to the situation in adults, in children a relatively low-grade lymphocytic interstitial pneumonitis occasionally precedes the typical opportunistic infections. Lymphocytic interstitial pneumonitis and Pneumocystis pneumonia can be differentiated from each other easily in children because of their relatively characteristic appearances. Fungal infections, on the other hand, sometimes pose severe diagnostic problems. Radiological chest findings in autoimmune diseases are discussed. (orig.)

  3. Radiological diagnostics of abdomen and thorax. Image interpretation considering anatomical landmarks and clinical symptoms; Radiologische Diagnostik Abdomen und Thorax. Bildinterpretation unter Beruecksichtigung anatomischer Landmarken und klinischer Symptome

    Energy Technology Data Exchange (ETDEWEB)

    Krombach, Gabriele A. [Universitaetsklinikum Giessen (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Mahnken, Andreas H. (ed.) [Universitaetsklinikum Marburg (Germany). Diagnostische und Interventionelle Radiologie

    2015-07-01

    The book on radiological diagnostics of abdomen and thorax - image interpretation considering anatomical landmarks and clinical symptoms - includes three chapters: (1) imaging of different parts of the body: thorax and abdomen. (II) Thorax: head and neck; mediastinum; heard and pericardium; large vessels; lungs and pleura; mamma. (III) Abdomen: liver; gall bladder and biliary tract; pancreas; gastrointestinal tract; spleen and lymphatic system; adrenal glands; kidneys and urinary tract; female pelvis; male pelvis.

  4. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Micheal A.; Taylor, George A. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); Dwyer, Kathy; Yu-Moe, Winnie [CRICO Risk Management Foundation, Boston, MA (United States)

    2017-06-15

    implicated in pediatric radiology claims was radiography. The highest payouts in pediatric radiology pertained to missed congenital and developmental anomalies (average $1,222,932) such as developmental dysplasia of the hip and congenital central nervous system anomalies. More than half of pediatric radiology claims arose in the ambulatory setting. Pediatric radiology is not immune from claims of medical malpractice and these claims result in high monetary payouts, particularly for missed diagnoses of congenital and developmental anomalies. Our data suggest that efforts to reduce diagnostic error in the outpatient radiology setting, in the interpretation of radiographs, and in the improved diagnosis of fractures and congenital and developmental anomalies would be of particular benefit to the pediatric radiology community. (orig.)

  5. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims

    International Nuclear Information System (INIS)

    Breen, Micheal A.; Taylor, George A.; Dwyer, Kathy; Yu-Moe, Winnie

    2017-01-01

    pediatric radiology claims was radiography. The highest payouts in pediatric radiology pertained to missed congenital and developmental anomalies (average $1,222,932) such as developmental dysplasia of the hip and congenital central nervous system anomalies. More than half of pediatric radiology claims arose in the ambulatory setting. Pediatric radiology is not immune from claims of medical malpractice and these claims result in high monetary payouts, particularly for missed diagnoses of congenital and developmental anomalies. Our data suggest that efforts to reduce diagnostic error in the outpatient radiology setting, in the interpretation of radiographs, and in the improved diagnosis of fractures and congenital and developmental anomalies would be of particular benefit to the pediatric radiology community. (orig.)

  6. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims.

    Science.gov (United States)

    Breen, Micheál A; Dwyer, Kathy; Yu-Moe, Winnie; Taylor, George A

    2017-06-01

    pediatric radiology claims was radiography. The highest payouts in pediatric radiology pertained to missed congenital and developmental anomalies (average $1,222,932) such as developmental dysplasia of the hip and congenital central nervous system anomalies. More than half of pediatric radiology claims arose in the ambulatory setting. Pediatric radiology is not immune from claims of medical malpractice and these claims result in high monetary payouts, particularly for missed diagnoses of congenital and developmental anomalies. Our data suggest that efforts to reduce diagnostic error in the outpatient radiology setting, in the interpretation of radiographs, and in the improved diagnosis of fractures and congenital and developmental anomalies would be of particular benefit to the pediatric radiology community.

  7. MO-C-BRB-01: Introduction [Diagnostic radiology and radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Boone, J. [University of California Davis School of Medicine (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  8. RI Mapping System for Identification of Radiological Contamination in Environmental Water Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Na, Teresa W.; Ha, Jang Ho; Kim, Han Soo; Lee, Seung Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Na, Teresa W.; Lee, Rena [Ewha Womans Univ., Hospital, Seoul (Korea, Republic of)

    2012-03-15

    The interest of radiation protection has risen due to accidents of the Nuclear Power Plant, nuclear terrorism, and the radiological contamination in the city, In this respect, the development of environmental radiation monitoring for the radiological contaminants has been studied. In this study, the experiment for the radiological contamination in the water supply pipe line system has been simulated and preliminarily tested. The CsI(Tl)-PIN diode detectors were used and the preliminary test of radiation monitoring system was performed as multi detection system. The 2D image reconstruction algorithm was also developed for feasibility of the constructed multi-detection system.

  9. Principles of the International Commission on Radiological Protection system of dose limitation

    International Nuclear Information System (INIS)

    Thorne, M.C.

    1987-01-01

    The formulation of a quantitative system of dose limitation based on ICRP principles of 'stochastic' and 'non-stochastic' effects requires that judgements be made on several factors including: relationships between radiation dose and the induction of deleterious effects for a variety of endpoints and radiation types; acceptable levels of risk for radiation workers and members of the public; and methods of assessing whether the cost of introducing protective measures is justified by the reduction in radiation detriment which they will provide. In the case of patients deliberately exposed to ionising radiations, the objectives of radiation protection differ somewhat from those applying to radiation workers and members of the public. For patients, risks and benefits relate to the same person and upper limits on acceptable risks may differ grossly from those appropriate to normal individuals. For these reasons, and because of its historical relationship with the International Congress of Radiology, the ICRP has given special consideration to radiation protection in medicine and has published reports on protection of the patient in diagnostic radiology and in radiation therapy. (author)

  10. Study of an extrapolation chamber in a standard diagnostic radiology beam by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Silva, Rayre Janaina Vieira; Neves, Lucio Pereira; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2016-01-01

    In this work, we studied the influence of the components of an extrapolation ionization chamber in its response. This study was undertaken using the MCNP-5 Monte Carlo code, and the standard diagnostic radiology quality for direct beams (RQR5). Using tally F6 and 2.1 x 10"9 simulated histories, the results showed that the chamber design and material not alter significantly the energy deposited in its sensitive volume. The collecting electrode and support board were the components with more influence on the chamber response. (author)

  11. Angiography - interventional diagnostic applications

    International Nuclear Information System (INIS)

    Schild, H.

    1994-01-01

    The angiography system is very different from the other systems used in diagnostic radiology. The invasivity of angiography requires special, high standards in theoretical and practical training and experience both of beginners and experienced personnel. This textbook fully meets the demand for in-depth and exhaustive information, as it presents: - The fundamentals and techniques of angiography, the vascular anatomy, and many hints and tips of great help in practice. - A comprehensive survey of diagnostic problems and examination approaches, including neuro-angiography, with 221 reproductions of original angiographs, and additional schematic representations. - A special chapter devoted to indication and relevant techniques for the major vascular interventional examinations. - A great number of tables explain at a glance standard examination techniques, indications and diagnostic criteria. (orig./CB) [de

  12. Evaluation of tissue-equivalent materials to be used as human brain tissue substitute in dosimetry for diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.C., E-mail: cassio.c.ferreira@gmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Ximenes Filho, R.E.M., E-mail: raimundoximenes@hotmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Vieira, J.W., E-mail: jwvieira@br.inter.ne [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Av. Professor Luiz Freire, 500 Curado, CEP 50740-540, Recife (Brazil); Escola Politecnica de Pernambuco, Universidade de Pernambuco (EPP/UPE), Rua Benfica, 455, Madalena, CEP 50720-001, Recife (Brazil); Tomal, A., E-mail: alessandratomal@pg.ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Garcia, C.A.B., E-mail: cgarcia@ufs.b [Departamento de Quimica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Maia, A.F., E-mail: afmaia@ufs.b [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil)

    2010-08-15

    Tissue-equivalent materials to be used as substitutes for human brain tissue in dosimetry for diagnostic radiology have been investigated in terms of calculated total mass attenuation coefficient ({mu}/{rho}), calculated mass energy-absorption coefficient ({mu}{sub en}/{rho}) and absorbed dose. Measured linear attenuation coefficients ({mu}) have been used for benchmarking the calculated total mass attenuation coefficient ({mu}/{rho}). The materials examined were bolus, nylon (registered) , orange articulation wax, red articulation wax, PMMA (polymethylmethacrylate), bees wax, paraffin I, paraffin II, pitch and water. The results show that water is the best substitute for brain among the materials investigated. The average percentage differences between the calculated {mu}/{rho} and {mu}{sub en}/{rho} coefficients for water and those for brain were 1.0% and 2.5%, respectively. Absorbed doses determined by Monte Carlo methods confirm water as being the best brain substitute to be used in dosimetry for diagnostic radiology, showing maximum difference of 0.01%. Additionally this study showed that PMMA, a material often used for the manufacturing of head phantoms for computed tomography, cannot be considered to be a suitable substitute for human brain tissue in dosimetry.

  13. Patient dosimetry and quality control in diagnostic radiology

    International Nuclear Information System (INIS)

    Suliman, I. I.

    2007-08-01

    In the first part of the study, entrance surface doses (ESDs) to patients in radiography were estimated from x-ray tube output parameters for a sample of 346 radiographs. The mean ESDs estimated in the hospitals ranged from 0.17 to 0.27 mGy for chest PA, 1.04-2.26 mGy for skull AP/PA, 0.83-1.32 mGy for skull LAT, 1.31-1.89 mGy for pelvis AP, 1.46-3.33 mGy for Lumbar Spine AP and 2.9-9.9 mGy for Lumbar Spine LAT. With the exception of chest PA examination at two hospitals, mean ESDs were found to be within the established international reference doses. In addition, study was performed to compare two methods used for effective dose calculation in diagnostic radiology. Initially, ED values were calculated from ESD values using NRPB-SR262 Monte Carlo data and XDOSE software. Next, the energy imparted to patients was computed using values for entrance skin exposure-area product and half-value layer. Effective doses were then determined from energy imparted using ED/ε conversion factors proposed in the literature. Mean ED values calculated using the two methods were: 21.3-23.4, 14.1-12.8, 7.9-8.5, 232-226, 215-223 and 91-85.6 μSv for chest PA, Skull AP/PA, Skull LAT, Pelvis AP, Lumbar Spine AP and Lumbar Spine LAT examinations, respectively. The values obtained were in agreement between themselves and with data reported in the literature. In the second part, a protocol for quality control (QC) tests has been drafted based on various national and international recommendations. Tests were included for various parts of the imaging chain, i.e. x-ray tube and generator; x-ray tube control system; laser printer and display station; image quality and patient dose. Preliminary tolerance levels have been set for the various tests, after initial measurements. To check the suitability of the QC tests and the stated tolerance levels, measurements were made at the University Hospital Gasthuisberg in Leuven, the Netherland, for equipment used for paediatric radiology and a unit used

  14. Radiation levels in nuclear diagnostic examinations

    International Nuclear Information System (INIS)

    Vermeulen, A.M.T.I.

    1987-01-01

    To estimate the risks for a pregnant radiological worker, radiation level measurements are executed for common nuclear diagnostic techniques. These measurements are combined with the time which the radiologic worker is present during the performance of the diagnostic techniques. It is concluded that a radiologic worker is receiving less than 5 mSv during pregnancy. This is the case with in vivo determination in a department of nuclear medicine with common diagnostic techniques. Reduction of radiation doses during pregnancy is possible by reduction of heart function examinations, skeletal examinations and brain scans. 1 figure; 13 tabs

  15. Radiology of chest diseases

    International Nuclear Information System (INIS)

    Lange, S.; Stark, P.

    1990-01-01

    This book is divided into three parts: The first part - 'Technology and normal findings' - explains current radiological diagnostic methods. The indications for particular examinations are given, with the techniques and possible errors. The second part of the book - 'Diseases of the lung' - gives a systematic description of basic knowledge needed for diagnosis. Each chapter begins with a definition of the disease and a discussion of the diagnostic information that can be expected from the various radiological methods. This is followed by the pathological morphology and pathological physiology and the clinical symptoms. The third part of the book - 'Radiological signs and differential diagnosis' - deals with image patterns, such as segmental opacities, calcification, localized hyperlucency, etc. It begins where the diagnostician must begin - immediate confrontation with the radiograph, analysis of the details, recognition of structures and understanding the image. (orig./DGD) With 381 figs., 42 tabs

  16. Anesthesia for radiologic procedures

    International Nuclear Information System (INIS)

    Forestner, J.E.

    1987-01-01

    Anesthetic techniques for neurodiagnostic studies and radiation therapy have been recently reviewed, but anesthetic involvement in thoracic and abdominal radiology has received little attention. Patient reactions to radiologic contrast media may be of concern to the anesthesiologist, who is often responsible for injecting these agents during diagnostic procedures, and thus is included in this discussion. Finally, the difficulties of administering anesthesia for magnetic resonance imaging (MRI) scans are outlined, in an effort to help anesthesiologist to anticipate problems with this new technologic development. Although there are very few indications for the use of general anesthesia for diagnostic radiologic studies in adults, most procedures performed with children, the mentally retarded, or the combative adult require either heavy sedation or general anesthesia. In selecting an anesthetic technique for a specific procedure, both the patient's disease process and the requirements of the radiologist must be carefully balanced

  17. Radiology trainer. Musculoskeletal system

    International Nuclear Information System (INIS)

    Staebler, A.; Erlt-Wagner, B.

    2006-01-01

    This book enables students to simulate examinations. The Radiology Trainer series comprises the whole knowledge of radiology in the form of case studies for self-testing. It is based on the best-sorted German-language collection of radiological examinations of all organ regions. Step by step, radiological knowledge is trained in order to make diagnoses more efficient. The book series ensures optimal preparation for the final medical examinations and is also a valuable tool for practical training. (orig.)

  18. Lessons learned in radiology

    International Nuclear Information System (INIS)

    Goodenough, D.J.

    2001-01-01

    The paper reviews aspects of the history of radiology with the goal of identifying lessons learned, particularly in the area of radiological protection of the patient in diagnostic and interventional radiology, nuclear medicine and radiotherapy. It is pointed out that since the days of Roentgen there has been a need not only to control and quantify the amount of radiation reaching the patient but also to optimize the imaging process to offer the greatest diagnostic benefit within allowable levels of patient dose. To this end, in diagnostic radiology, one finds the development of better films, X rays tubes, grids, screens and processing techniques, while in fluoroscopy, one sees the increased luminance of calcium tungstate. In interventional radiology, one finds an improvement in catheterization techniques and contrast agents. In nuclear medicine, the development of tracer techniques into modern cameras and isotopes such as technetium can be followed. In radiotherapy, one sees the early superficial X rays and radium sources gradually replaced with radon seeds, supervoltage, 60 Co and today's linear accelerators. Along with the incredible advances in imaging and therapeutic technologies comes the growing realization of the potential danger of radiation and the need to protect the patient (as well as physicians, ancillary personnel and the general population) from unnecessary radiation. The important lesson learned is that we must walk a tightrope, balancing the benefits and risks of any technology utilizing radiation to produce the greatest benefits at the lowest acceptable risk. The alternative techniques using non-ionizing radiation will have to be considered as part of the general armamentarium for medical imaging whenever radiation consequences are unacceptable. (author)

  19. Quality management systems in radiology. Implementation in hospital and radiology practice

    International Nuclear Information System (INIS)

    Teichgraeber, U.; Bucourt, M. de

    2010-01-01

    The concept of quality and the principle of continuous quality improvement are implemented by quality management systems. Quality management systems surpass mere quality control. These systems account for patient and employee needs, the management style and the structure of an enterprise. Many of these quality management systems are used in the health care industry. Some of these systems and their form of application in radiology are introduced here. (orig.)

  20. Standards of diagnostic radiological safety

    International Nuclear Information System (INIS)

    Yacovenco, A.; Ferreira, R.

    1996-01-01

    Brazil as well as many other countries are characterized for the access differentiated from the society to the products of the development. The lacking in specifications tolerance and mainly requirements of security and they of protection have induced to the inadequate utilization of the procedures technical and products in the area of radiology. We in this context are proposing a new mode of relationships between the diverse levels of intervention and responsibility

  1. Solitary pulmonary nodule: radiologic features and diagnostic approach; Nodulo pulmonar solitario: caracteristicas radiologicas y abordaje diagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cambronero, Luis Enrique

    2012-07-01

    A literature review is conducted on the solitary pulmonary nodule, to determine the diagnostic methods and specific characteristics. The diagnostic methods used have been: chest radiography, computed tomography, positron emission tomography and magnetic resonance imaging. The radiological features are defined: location, size, definition of contours or edges (margins), densitometric and attenuation characteristics, cavitation, air bronchogram, growth, doubling time, satellite nodules, nutrient vessels [Spanish] Una revision bibliografica es realizada sobre el nodulo pulmonar solitario, para determinar los metodos de diagnostico y caracteristicas especificas. Los metodos de diagnostico utilizados han sido: la radiografia de torax, tomografia computarizada, tomografia por emision de positrones y resonancia magnetica. Las caracteristicas radiologicas son definidas: localizacion, tamano, definicion de los bordes o contornos (margenes), caracteristicas densitometricas y de atenuacion, cavitacion, broncograma aereo, crecimiento, tiempo de duplicacion, nodulos satelite, vasos nutrientes.

  2. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. The types of gonad shields in use are discussed as are the types of diagnostic examinations that should include gonad shielding. It was found that when properly used, most shields provided substantial gonad dose reductions

  3. Diagnostic efficacy of radiological examinations in clefts of the hard palate; Skutecznosc diagnostyczna badan rentgenowskich w rozszczepach podniebienia twardego

    Energy Technology Data Exchange (ETDEWEB)

    Cieslinska-Wilk, G. [Pomorska Akademia Medyczna, Szczecin (Poland)

    1992-12-31

    The aim of the work has been: (1) evaluating the efficiency of individual radiological methods in visualizing the bone structure of the hard palate; (2) elaboration of a method for skull examination, by means of which the hard palate region in patients would be best visible; (3) presentation of radiological symptomatology of hard palate clefts; (4) establishing algorithms of diagnostic procedure and determining the type of radiological examination most helpful in planning the treatment of this anomaly. Selected problems from normal anatomy of the hard palate are presented, and the technique of radiological examination in the form of occlusal radiograms, pantomography and computerized tomography (CT) are discussed. Clinical material encompassed the total of 312 patients. A total of 470 radiograms were performed, 150 occlusal ones of hard palate, 200 pantomograms (jointly with the control group) as well as 120 scannings during CT examination. It has been stated the greatest efficiency and effectiveness in planning the treatment are ascribed to computerized tomography, the second place goes to pantomography, on the third position are occlusal radiograms targeted at the region of the cleft. Algorithms have been provided for roentgen-diagnostic procedure in cases of the hard palate clefts, with an emphasis that the very first examination of a child should include the occlusal radiograms targeted at the cleft region and pantomogram; in the course of conservative treatment only pantomogram is proposed to be made, and in case of planned operative procedure - CT examination. For evaluating the calcification of the cleft, the best and with the least irradiation are the intraoral occlusal radiograms, targeted at the region of the cleft, performed 12 months after the operation. (author). 100 refs, 21 figs, 12 tabs.

  4. An Advanced Radiological Survey and Mapping System

    International Nuclear Information System (INIS)

    McCown, J.; Rogers, D.; Waggoner, Ch.

    2009-01-01

    A variety of radiological surveying systems have been described in the literature. This paper describes relative performances of a system that can employ a variety of radiological sensors including NaI, LiI, and LaBr 3 units of various sizes. The system includes navigation and data collection software that facilitates surveying without the use of survey grid-lines. Parameters presented to the operator via a graphical user interface (GUI) for monitoring system performance and navigation are described. Radiological spectra are logged along with position data from three differential GPS sensors to enhance position accuracy by taking into account the pitch and roll as the survey vehicle moves over uneven terrain. Accuracy of position data increases the potential for, and value of, data fusion with other survey data such as electromagnetic induction images. The survey system described has been developed around a zero turn radius lawn mower equipped with on-board generator/inverter for powering electronic and data communication equipment to maximize surveying effectiveness. Detection limits for U-238 will be discussed for the NaI (FIDLER, 75x75 mm, and 100x100x400 mm) and LaBr 3 (75x75 mm) detectors. These parameters will be reported for a variety of survey speeds (stationary, 1, 2, and 3 m/s), with and without the use of advanced signal processing to increase detection sensitivity. A background subtraction algorithm evaluating each spectrum for the presence of naturally occurring radiological materials will also be described for correcting each datum prior to mapping using Geosoft Oasis montaj. (authors)

  5. Guidelines on radiology standards for primary dental care

    International Nuclear Information System (INIS)

    1994-01-01

    A Joint Working Party (JWP) on patient dose reduction in diagnostic radiology was established between the Royal College of Radiologists (RCR) and the National Radiological Protection Board (NRPB) towards the end of 1988. JWP identified a large potential for patient dose reduction on a national scale, and a report of its findings was published in 1990. This guidance was only generally applicable to dental radiology and in 1992 a further joint venture between RCR and NRPB resulted in the formation of a Working Party (WP) to consider all aspects of dental radiology applicable to primary dental care. Dental radiology is one of the largest single groups of radiographic examination performed, although the effective dose per radiograph is small. This means that individual risks from dental radiology are low, but WP has identified a significant potential for reduction in the collective dose and for improvements in the diagnostic quality of radiographs. The WP recommendations cover all aspects of dental radiology: training and examination regimes for dentists and staff, patient selection and clinical justification for radiography, diagnostic interpretation, equipment and procedural aspects, and finally the question of quality assurance in dental radiology. The economic impact of the many recommendations by WP has been considered in some detail. The benefits and cost of each recommendation either have been assigned a monetary value or have been assessed more qualitatively. The conclusion is that there is a strong economic justification for implementation of the full package of recommendations. (Author)

  6. Administrative organization in diagnostic radiology residency program leadership.

    Science.gov (United States)

    Webber, Grant R; Mullins, Mark E; Chen, Zhengjia; Meltzer, Carolyn C

    2012-04-01

    The aim of this study was to document the current state of administrative structure in US diagnostic radiology (DR) residency program leadership. A secondary objective was to assess for correlation(s), if any, with DR residency programs that equipped positions such as assistant, associate, and emeritus program director (PD) with respect to residency size and region of the country. The Fellowship and Residency Electronic Interactive Database, as well as direct communication and programmatic Web site searches, were used to gather data regarding current US DR residency leadership. Data collected included the presence of additional leadership titles, including assistant PD, associate PD, and PD emeritus, and how many faculty members currently held each position. Programs were excluded if results could not be identified. Analysis of variance and t tests were used to estimate the correlations of the size of a residency with having additional or shared PD positions and the types of positions, respectively. Chi-square tests were used to assess for any regional differences. As of the time of this project, the Fellowship and Residency Electronic Interactive Database defined 186 US DR residency programs. A total of 173 programs (93%) were included in the analysis; the remainder were excluded because of unavailability of relevant data. Seventy-two percent (124 of 173) of programs had additional DR leadership positions. Of these, 30 programs (17%) had more than one such position. There were no significant differences in the sizes of the programs that used these additional positions (mean, 25 ± 12; range, 6-72) compared with those that did not (mean, 24 ± 12; range, 7-51). There were no significant differences between programs that had additional positions with respect to region of the country. The majority of US DR residency programs used some form of additional DR leadership position. In the majority of cases, this was in the form of an assistant or associate PD. Nearly one

  7. Radiology of the small intestine

    International Nuclear Information System (INIS)

    Trueber, E.; Engelbrecht, V.

    1998-01-01

    The book presents the state of the art in radiology of the small intestine, discussing diagnostic fundamentals in the general, introductory chapter and continuing with the specific modalities available and applicable for diagnostic evaluation of the various symptoms and lesions. (orig./CB) [de

  8. Radiological diagnostics of malignant tumors of the musculoskeletal system in childhood and adolescence; Radiologische Diagnostik maligner Tumoren des Muskuloskelettalsystems im Kindes- und Adoleszentenalter

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, S.F.; Krestan, C.R. [Medizinische Universitaet Wien, Klinische Abteilung fuer Neuroradiologie und muskuloskelettale Radiologie, Wien (Austria); Hojreh, A.; Hoermann, M. [Medizinische Universitaet Wien, Klinische Abteilung fuer Allgemeine Radiologie und Kinderradiologie, Wien (Austria)

    2008-10-15

    Rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma are the most common malignant tumors of the musculoskeletal system in childhood and adolescence representing about 10% of newly diagnosed cancers in children and adolescents. In the last two decades the prognosis of patients with such malignancies improved significantly. On the one hand because of the advances in chemotherapy and orthopedic surgery, on the other hand also because of the innovations in radiological diagnostics. The precise pre-therapeutical staging of tumors of the musculoskeletal system provides important prognostic information and has impact on the entire therapy management. During respectively after therapy, imaging is extremely important in the follow-up and in diagnosing a possible recurrent disease. Modern imaging diagnostics of musculoskeletal tumors basically consist of conventional X-ray, of computed tomography (CT) and magnetic resonance imaging (MRI), and of modalities of nuclear medicine such as szintigraphy, positron emission tomography (PET) and PET CT. (orig.) [German] Das Rhabdomyosarkom, das Osteosarkom und das Ewing-Sarkom sind die am haeufigsten auftretenden malignen Tumoren des Muskuloskelettalsystems im Kindes- und Adoleszentenalter. Diese Erkrankungen repraesentieren etwa 10% der bei Kindern und Jugendlichen neu diagnostizierten Tumoren. In den letzten beiden Jahrzehnten hat sich insgesamt die Prognose der Patienten mit solchen Malignomen deutlich gebessert. Einerseits aufgrund der Fortschritte in der Chemotherapie und orthopaedischen Tumorchirurgie, andererseits nicht zuletzt aufgrund der zahlreichen Innovationen der radiologischen Diagnostik. Das praezise praetherapeutische Staging von Tumoren des Muskuloskelettalsystems liefert wichtige prognostische Informationen und beeinflusst das gesamte Therapiemanagement. Waehrend bzw. nach erfolgter Therapie ist die Bildgebung ganz entscheidend im Follow-up und bei der Diagnostik einer moeglichen Rezidiverkrankung. Die moderne

  9. Criteria for radiologic diagnosis of hypochondroplasia in neonates

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Tomoko; Nagasaki, Keisuke; Wada, Masaki; Nyuzuki, Hiromi; Saitoh, Akihiko [Niigata University Graduate School of Medical and Dental Sciences, Division of Pediatrics, Department of Homeostatic Regulation and Development (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Radiology, Tokyo (Japan); Takagi, Masaki [Tokyo Metropolitan Children' s Medical Center, Department of Endocrinology, Tokyo (Japan); Keio University School of Medicine, Department of Pediatrics, Tokyo (Japan); Hasegawa, Tomonobu; Amano, Naoko [Keio University School of Medicine, Department of Pediatrics, Tokyo (Japan); Murotsuki, Jun [Tohoku University Graduate School of Medicine, Miyagi Children' s Hospital, Department of Maternal and Fetal Medicine, Sendai (Japan); Sawai, Hideaki [Hyogo College of Medicine, Departments of Obstetrics and Gynecology, Hyogo (Japan); Yamada, Takahiro [Hokkaido University Hospital, Departments of Obstetrics and Gynecology, Hokkaido (Japan); Sato, Shuhei [Aomori Rosai Hospital, Department of Obstetrics and Gynecology, Aomori (Japan)

    2016-04-15

    A radiologic diagnosis of hypochondroplasia is hampered by the absence of age-dependent radiologic criteria, particularly in the neonatal period. To establish radiologic criteria and scoring system for identifying neonates with fibroblast growth factor receptor 3 (FGFR3)-associated hypochondroplasia. This retrospective study included 7 hypochondroplastic neonates and 30 controls. All subjects underwent radiologic examination within 28 days after birth. We evaluated parameters reflecting the presence of (1) short ilia, (2) squared ilia, (3) short greater sciatic notch, (4) horizontal acetabula, (5) short femora, (6) broad femora, (7) metaphyseal flaring, (8) lumbosacral interpedicular distance narrowing and (9) ovoid radiolucency of the proximal femora. Only parameters 1, 3, 4, 5 and 6 were statistically different between the two groups. Parameters 3, 5 and 6 did not overlap between the groups, while parameters 1 and 4 did. Based on these results, we propose a scoring system for hypochondroplasia. Two major criteria (parameters 3 and 6) were assigned scores of 2, whereas 4 minor criteria (parameters 1, 4, 5 and 9) were assigned scores of 1. All neonates with hypochondroplasia in our material scored ≥6. Our set of diagnostic radiologic criteria might be useful for early identification of hypochondroplastic neonates. (orig.)

  10. Criteria for radiologic diagnosis of hypochondroplasia in neonates

    International Nuclear Information System (INIS)

    Saito, Tomoko; Nagasaki, Keisuke; Wada, Masaki; Nyuzuki, Hiromi; Saitoh, Akihiko; Nishimura, Gen; Takagi, Masaki; Hasegawa, Tomonobu; Amano, Naoko; Murotsuki, Jun; Sawai, Hideaki; Yamada, Takahiro; Sato, Shuhei

    2016-01-01

    A radiologic diagnosis of hypochondroplasia is hampered by the absence of age-dependent radiologic criteria, particularly in the neonatal period. To establish radiologic criteria and scoring system for identifying neonates with fibroblast growth factor receptor 3 (FGFR3)-associated hypochondroplasia. This retrospective study included 7 hypochondroplastic neonates and 30 controls. All subjects underwent radiologic examination within 28 days after birth. We evaluated parameters reflecting the presence of (1) short ilia, (2) squared ilia, (3) short greater sciatic notch, (4) horizontal acetabula, (5) short femora, (6) broad femora, (7) metaphyseal flaring, (8) lumbosacral interpedicular distance narrowing and (9) ovoid radiolucency of the proximal femora. Only parameters 1, 3, 4, 5 and 6 were statistically different between the two groups. Parameters 3, 5 and 6 did not overlap between the groups, while parameters 1 and 4 did. Based on these results, we propose a scoring system for hypochondroplasia. Two major criteria (parameters 3 and 6) were assigned scores of 2, whereas 4 minor criteria (parameters 1, 4, 5 and 9) were assigned scores of 1. All neonates with hypochondroplasia in our material scored ≥6. Our set of diagnostic radiologic criteria might be useful for early identification of hypochondroplastic neonates. (orig.)

  11. Data analysis and review of radiology services at Glasgow 2014 Commonwealth Games

    International Nuclear Information System (INIS)

    Bethapudi, Sarath; Ritchie, David; Bongale, Santosh; Gordon, Jonny; MacLean, John; Mendl, Liz

    2015-01-01

    Medical services at the Glasgow 2014 Commonwealth Games (CWG) were provided though a purpose-built medical polyclinic, which had a fully equipped radiology department along with other services, set up within the main Games Village. Data analysis of radiology services offered at CWG has not been published before. Imaging services within the polyclinic, Athletes Village, Glasgow 2014 CWG. The aim of the paper is to analyse data on radiological investigations and assess the demand and distribution of workload on imaging services at CWG 2014. Data on radiology investigations at the CWG 2014 was retrieved from the Carestream picture archiving and communication system (PACS) and Pharmasys (CWG official centralised electronic database system) and analysed. Six hundred ninety-seven diagnostic and interventional procedures were performed. Of these 37.9 % were magnetic resonance imaging (MRI) scans, 22 % were diagnostic ultrasound (US) examinations, 33.1 % were radiographs, 4.3 % were computed tomography (CT) scans and 2.7 % were imaging-guided interventional procedures. 88 % of imaging was performed on athletes and the remainder were performed on team officials and workforce. Demand on radiology services gradually picked up through the pre-competition period and peaked half way through the CWG. Radiology played a vital role in the successful provision of medical services at the Glasgow 2014 CWG. High demand on imaging services can be expected at major international sporting events and therefore pre-event planning is vital. Having back-up facilities in case of technical failure should be given due importance when planning radiology services at future CWG events. (orig.)

  12. Data analysis and review of radiology services at Glasgow 2014 Commonwealth Games.

    Science.gov (United States)

    Bethapudi, Sarath; Ritchie, David; Bongale, Santosh; Gordon, Jonny; MacLean, John; Mendl, Liz

    2015-10-01

    Medical services at the Glasgow 2014 Commonwealth Games (CWG) were provided though a purpose-built medical polyclinic, which had a fully equipped radiology department along with other services, set up within the main Games Village. Data analysis of radiology services offered at CWG has not been published before. Imaging services within the polyclinic, Athletes Village, Glasgow 2014 CWG. The aim of the paper is to analyse data on radiological investigations and assess the demand and distribution of workload on imaging services at CWG 2014. Data on radiology investigations at the CWG 2014 was retrieved from the Carestream picture archiving and communication system (PACS) and Pharmasys (CWG official centralised electronic database system) and analysed. Six hundred ninety-seven diagnostic and interventional procedures were performed. Of these 37.9% were magnetic resonance imaging (MRI) scans, 22% were diagnostic ultrasound (US) examinations, 33.1% were radiographs, 4.3% were computed tomography (CT) scans and 2.7% were imaging-guided interventional procedures. 88% of imaging was performed on athletes and the remainder were performed on team officials and workforce. Demand on radiology services gradually picked up through the pre-competition period and peaked half way through the CWG. Radiology played a vital role in the successful provision of medical services at the Glasgow 2014 CWG. High demand on imaging services can be expected at major international sporting events and therefore pre-event planning is vital. Having back-up facilities in case of technical failure should be given due importance when planning radiology services at future CWG events.

  13. Data analysis and review of radiology services at Glasgow 2014 Commonwealth Games

    Energy Technology Data Exchange (ETDEWEB)

    Bethapudi, Sarath [County Durham Darlington Foundation NHS Trust, Durham (United Kingdom); Glasgow 2014 Commonwealth Games, Glasgow (United Kingdom); Ritchie, David [Glasgow 2014 Commonwealth Games, Glasgow (United Kingdom); Greater Glasgow and Clyde Hospitals NHS Trust, Western Infirmary, Glasgow (United Kingdom); Bongale, Santosh [Glasgow 2014 Commonwealth Games, Immediate Care Department, Glasgow (United Kingdom); NHS Greater Glasgow and Clyde, Royal Alexandra Hospital, Paisley (United Kingdom); Gordon, Jonny [Glasgow 2014 Commonwealth Games, Glasgow (United Kingdom); NHS Greater Glasgow and Clyde, Glasgow (United Kingdom); MacLean, John [Glasgow 2014 Commonwealth Games, Glasgow (United Kingdom); National Stadium Sports Medicine Centre, Glasgow (United Kingdom); Mendl, Liz [Glasgow 2014 Commonwealth Games, Glasgow (United Kingdom)

    2015-10-15

    Medical services at the Glasgow 2014 Commonwealth Games (CWG) were provided though a purpose-built medical polyclinic, which had a fully equipped radiology department along with other services, set up within the main Games Village. Data analysis of radiology services offered at CWG has not been published before. Imaging services within the polyclinic, Athletes Village, Glasgow 2014 CWG. The aim of the paper is to analyse data on radiological investigations and assess the demand and distribution of workload on imaging services at CWG 2014. Data on radiology investigations at the CWG 2014 was retrieved from the Carestream picture archiving and communication system (PACS) and Pharmasys (CWG official centralised electronic database system) and analysed. Six hundred ninety-seven diagnostic and interventional procedures were performed. Of these 37.9 % were magnetic resonance imaging (MRI) scans, 22 % were diagnostic ultrasound (US) examinations, 33.1 % were radiographs, 4.3 % were computed tomography (CT) scans and 2.7 % were imaging-guided interventional procedures. 88 % of imaging was performed on athletes and the remainder were performed on team officials and workforce. Demand on radiology services gradually picked up through the pre-competition period and peaked half way through the CWG. Radiology played a vital role in the successful provision of medical services at the Glasgow 2014 CWG. High demand on imaging services can be expected at major international sporting events and therefore pre-event planning is vital. Having back-up facilities in case of technical failure should be given due importance when planning radiology services at future CWG events. (orig.)

  14. Course of radiological protection and safety in the medical diagnostic with X-rays; Curso de proteccion y seguridad radiologica en el diagnostico medico con rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, C.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The obtention of images of human body to the medical diagnostic is one of the more old and generalized applications for X-ray. Therefore the design and performance of equipment and installations as well as the operation procedures must be oriented toward safety with the purpose to guarantee this radiological practice will bring a net positive benefit to the society. Given that in Mexico only exists the standardization related to source and equipment generators of ionizing radiation in the industrial area and medical therapy, but not so to the medical diagnostic area it is the purpose of this work to present those standards related with this application branch. Also it is presented the preparation of a manual for the course named Formation of teachers in radiological protection and safety in the X-ray medical diagnostic in 1997 which was imparted at ININ. (Author)

  15. WHO basic radiological system: Manual of radiographic interpretation for general practitioners

    International Nuclear Information System (INIS)

    Palmer, P.E.S.; Cockshott, W.P.; Hegedus, V.; Samuel, E.

    1985-01-01

    This manual serves as a guide to basic radiologic procedures such as chest, abdominal, and skeletal examinations as well as simple nonfluoroscopic studies using contrast material. The book concentrates on the more common diagnostic problems encountered in medicine, as the services of a radiologist would be required for the more complicated techniques. The text begins with a short introductory note describing the intentions of the manual and the goals of the BRS. Following this, there are several complete sections covering essential areas in radiology. The first section, on radiation risks and protective countermeasures, serves to instruct radiologic personnel concisely on how to minimize their exposure to the harmful effects of radiation. In the second section, adverse reactions to intravenous drugs used in urography are described, and the appropriate treatment for such reactions are outlined. Following this, proper patient care and first-aid measures to be employed in the event of an emergency are described in several pages

  16. WHO basic radiological system: Manual of radiographic interpretation for general practitioners

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, P.E.S.; Cockshott, W.P.; Hegedus, V.; Samuel, E.

    1985-01-01

    This manual serves as a guide to basic radiologic procedures such as chest, abdominal, and skeletal examinations as well as simple nonfluoroscopic studies using contrast material. The book concentrates on the more common diagnostic problems encountered in medicine, as the services of a radiologist would be required for the more complicated techniques. The text begins with a short introductory note describing the intentions of the manual and the goals of the BRS. Following this, there are several complete sections covering essential areas in radiology. The first section, on radiation risks and protective countermeasures, serves to instruct radiologic personnel concisely on how to minimize their exposure to the harmful effects of radiation. In the second section, adverse reactions to intravenous drugs used in urography are described, and the appropriate treatment for such reactions are outlined. Following this, proper patient care and first-aid measures to be employed in the event of an emergency are described in several pages.

  17. Evolution of the system of radiological protection

    International Nuclear Information System (INIS)

    2004-01-01

    The development of new radiological protection recommendations by the International Commission on Radiological Protection (ICRP) continues to be a strategically important undertaking, both nationally and internationally. With the growing recognition of the importance of stakeholder aspects in radiological protection decision making, regional and cultural aspects have also emerged as having potentially significant influence on how protection of the public, workers and the environment are viewed. Differing cultural aspects should therefore be considered by the ICRP in its development of new recommendations. Based on this assumption, the NEA organised the Asian Regional Conference on the Evolution of the System of Radiological Protection to express and explore views from the Far East. Held in Tokyo on 24-25 October 2002, the conference included presentations by the ICRP Chair as well as by radiological protection experts from Japan, the Republic of Korea, China and Australia. The distinct views and needs of these countries were discussed in the context of their regional and cultural heritages. These views, along with a summary of the conference results, are presented in these proceedings. (author)

  18. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality assurance...

  19. Benefits of an automatic patient dose registry system for interventional radiology and cardiology at five hospitals of the Madrid area

    International Nuclear Information System (INIS)

    Fernandez-Soto, J.M.; Vano, E.; Sanchez, R.M.; Ten, J.I.; Espana, M.; Pifarre, X.

    2015-01-01

    The purpose of this article is to present the results of connecting the interventional radiology and cardiology laboratories of five university hospitals to a unique server using an automatic patient dose registry system (Dose On Line for Interventional Radiology, DOLIR) developed in-house, and to evaluate its feasibility more than a year after its introduction. The system receives and stores demographic and dosimetric parameters included in the MPPS DICOM objects sent by the modalities to a database. A web service provides a graphical interface to analyse the information received. During 2013, the system processed 10 788 procedures (6874 cardiac, 2906 vascular and 1008 neuro interventional). The percentages of patients requiring clinical follow-up due to potential tissue reactions before and after the use of DOLIR are presented. The system allowed users to verify in real-time, if diagnostic (or interventional) reference levels are fulfilled. (authors)

  20. Dosimetric studies in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamadain, K. E. M.

    2004-04-01

    A dosimetric study in pediatric radiology and adult patients was currently being carried out at the pediatrics units of two large hospitals in Rio de Janeiro city: IPPMG (Instituto de Pediatric e Puericultura Martagao Gesteira, University hospital of federal University of Rio de Janeiro), IFF (Instituto Fernandes Figueira, FIOCRUZ) and Hospital Geral de Bonsucesso, a large public hospital in Rio de Janeiro city (HGB) Brazil. The dosimetric study was also performed at three pediatrics units in Sudan, namely, Ahmed Gasim, Khartoum and Omdurman hospitals. For chest x-ray examination the entrance skin dose(ESD) for AP, PA and LAT projections of pediatric patients, and the scattered dose at the thyroid, ovary and gonads have been obtained with thermoluminescent dosimeters (TLD) and with use of a software package Dosecal in thr Brazilian hospitals, and with the software dosecal in the Sudanese hospitals.The aim of this work was to estimate the entrance skin dose (ESD), the effective dose (ED) and the body organ dose (BOD) for chest x-ray exposure in pediatric patients, and different exams for adults patients, and to compare the results obtained in the tow Countries Sudan and Brazil with the reference dose level. For ESD evaluation of the chest x-ray, three different TL dosimeters have been used, namely LiF: Mg, Ti (TLD 100) CaSo 4 : Dy and LiF:Mg, Cu,P (TLD 100 H). The age intervals considered were: 0-1 years, 1-5 years, 5-10 years and 10-15 years. The results obtained with all dosimeters were in good agreement with, those obtained by the dosecal software, especially for AP and PA projection. However, some discrepancies were found for the LAT projection. The results within Brazil were some what consistent while in Sudan, large difference were observed, it was also noted that the doses in Brazil hospitals were less than the reference dose levels while in Sudanese hospitals the doses were higher than the reference dose levels. For adult patients only the software dosecal

  1. Issues in radiology related to the new technologies

    International Nuclear Information System (INIS)

    Elkin, M.

    1982-01-01

    A number of interrelated issues facing radiology have been highlighted by our new technologies. The issues discussed in this presentation are: subspecialization of radiology; the use of economic analyses (CEA/CBA) to judge the cost effectiveness of radiologic procedures, the alleged overuse of radiologic examinations; and the need for the diagnostic radiologist to become more actively involved in patient management

  2. Influences of Radiology Trainees on Screening Mammography Interpretation.

    Science.gov (United States)

    Hawley, Jeffrey R; Taylor, Clayton R; Cubbison, Alyssa M; Erdal, B Selnur; Yildiz, Vedat O; Carkaci, Selin

    2016-05-01

    Participation of radiology trainees in screening mammographic interpretation is a critical component of radiology residency and fellowship training. The aim of this study was to investigate and quantify the effects of trainee involvement on screening mammographic interpretation and diagnostic outcomes. Screening mammograms interpreted at an academic medical center by six dedicated breast imagers over a three-year period were identified, with cases interpreted by an attending radiologist alone or in conjunction with a trainee. Trainees included radiology residents, breast imaging fellows, and fellows from other radiology subspecialties during breast imaging rotations. Trainee participation, patient variables, results of diagnostic evaluations, and pathology were recorded. A total of 47,914 mammograms from 34,867 patients were included, with an overall recall rate for attending radiologists reading alone of 14.7% compared with 18.0% when involving a trainee (P radiology trainees, with no change in cancer detection rate. Radiology faculty members should be aware of this potentiality and mitigate tendencies toward greater false positives. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Measurement of the performance characteristics of diagnostic X-ray systems used in medicine

    International Nuclear Information System (INIS)

    1981-01-01

    A booklet has been produced by the Diagnostic Radiology Topic Group of the Hospital Physicists' Association, providing the basis for exhaustive performance tests on X-ray image intensifier television systems. After a general introduction to the equipment, the parameters which may need to be assessed are outlined in section 1. The measurement techniques and equipment necessary to undertake the measurements are presented in section 2. Specimen data sheets are also presented which the user may find useful to record the data acquired in the field. (U.K.)

  4. Radiological contribution to skeletal changes in systemic mastocytosis - urticaria pigmentosa

    Energy Technology Data Exchange (ETDEWEB)

    Schratter, M.; Canigiani, G.; Schoenbauer, C.; Mach, K.

    1983-11-01

    Three patients are demonstrated suffering from systemic mastocytosis with skin and skeletal involvement. History, clinical and radiological results are reported. After a brief analysis of the pathogenetic mechanism, the radiological findings on the skeletal system in systemic mastocytosis are discussed. Finally, roentgenological differential diagnosis of the osseous lesions is explained.

  5. Radiological protection program in x-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Melara F, N.E.

    1996-01-01

    This paper presents a basic document to initiate a discussion which will originate a Unified Protocol in Latin America and the Caribbean for radiological protection in the installations of medical radiology. The following principal elements are considered an inherent part of radiology protection: 1. Quality control of equipment. 2. Conditions in the dark room which coincide in the quality of the image. Levels of patient exposure and the processes for the quality control of the processors are not discussed, and it is limited to the installation of radiographic medical x-ray equipment, stationary and mobile. Each point to be put into effect is presented in a diagram, frequency and criteria for acceptance. A detailed explanation of each point along with a clear explanation of the recommended method for each follows in the same order in which they are presented in the diagram. Finally adequate forms for easily acquiring data are presented. (author)

  6. Operational characteristics of pediatric radiology: Image display stations

    International Nuclear Information System (INIS)

    Taira, R.K.

    1987-01-01

    The display of diagnostic images is accomplished in the UCLA Pediatric Radiology Clinical Radiology Imaging System (CRIS) using 3 different types of digital viewing stations. These include a low resolution station with six 512 x 512 monitors, a high resolution station with three 1024 x 1024 monitors, and a very high resolution workstation with two 2048 x 2048 monitors. The display stations provide very basic image processing manipulations including zoom and scroll, contrast enhancement, and contrast reversal. The display stations are driven by a computer system which is dedicated for clinical use. During times when the clinical computer is unavailable (maintenance or system malfunction), the 512 x 512 workstation can be switched to operate from a research PACS system in the UCLA Image Processing Laboratory via a broadband communication network. Our initial clinical implementation involves digital viewing for pediatric radiology conferences. Presentation of inpatient cases use the six monitor 512 x 512 multiple viewing station. Later stages of the clinical implementation involve the use of higher resolution displays for the purpose of primary diagnosis from video displays

  7. Airborne systems for emergency radiological monitoring

    International Nuclear Information System (INIS)

    Jupiter, C.; Boyns, P.

    1976-01-01

    A variety of aerial radiological monitoring systems are available to respond to a radiological accident or incident affecting large areas. These are operated by EG and G, Inc. for ERDA's Division of Operational Safety. A survey system can be airborne within approximately two hours after notification. Both airborne and terrestrial radioactivity can be measured and mapped. Special analysis procedures allow discrimination between radioactivity from most man-made radioelements and naturally occurring radioelements. A position accuracy of +-54 feet can be maintained over a large area survey. Detection sensitivity for gamma sources employing NaI detector arrays on board an airplane flying at 500 feet altitude is better than 2 μR/hr for surface planar contaminants and approximately 10 mCi for a point gamma source

  8. Assessing the value of diagnostic imaging: the role of perception

    Science.gov (United States)

    Potchen, E. J.; Cooper, Thomas G.

    2000-04-01

    The value of diagnostic radiology rests in its ability to provide information. Information is defined as a reduction in randomness. Quality improvement in any system requires diminution in the variation in its performance. The major variation in performance of the system of diagnostic radiology occurs in observer performance and in the communication of information from the observer to someone who will apply that information to the benefit of the patient. The ability to provide information can be determined by observer performance studies using a receiver-operating characteristic (ROC) curve analysis. The amount of information provided by each observer can be measured in terms of the uncertainty they reduce. Using a set of standardized radiographs, some normal and some abnormal, sorting them randomly, and then asking an observer to redistribute them according to their probability of normality can measure the difference in the value added by different observers. By applying this observer performance measure, we have been able to characterize individual radiologists, groups of radiologists, and regions of the United States in their ability to add value in chest radiology. The use of these technologies in health care may improve upon the contribution of diagnostic imaging.

  9. Air kerma standardization for diagnostic radiology in a secondary standard laboratory

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Peixoto, J. Guilherme P.; Lopes, Ricardo T.

    2009-01-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Brazilian Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. The objective of this work was to implement the standardization of the air kerma for the unatenuated qualities (RQR) of IEC 61267 in the National Laboratory of Metrology of the Ionizing Radiations (LNMRI) of the Institute of Radiation Protection and Dosimetry (IRD). Technical procedures were developed together with uncertainty budget. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. (author)

  10. Converting Radiology Operations in a Six-Hospital Healthcare System from Film-Based to Digital: Another Leadership Role for the Diagnostic Medical Physicist

    International Nuclear Information System (INIS)

    Arreola, Manuel M.; Rill, Lynn N.

    2004-01-01

    As medical facilities across the United States continue to convert their radiology operations from film-based to digital environments, partially accomplished and failed endeavors are frequent because of the lack of competent and knowledgeable leadership. The diagnostic medical physicist is, without a doubt, in a privileged position to take such a leadership role, not only because of her/his understanding of the basics principles of new imaging modalities, but also because of her/his inherent participation in workflow design and educational/training activities. A well-structured approach by the physicist will certainly lead the project to a successful completion, opening, in turn, new opportunities for the medical physicist to become an active participant in the decision-making process for an institution

  11. Converting Radiology Operations in a Six-Hospital Healthcare System from Film-Based to Digital: Another Leadership Role for the Diagnostic Medical Physicist

    Science.gov (United States)

    Arreola, Manuel M.; Rill, Lynn N.

    2004-09-01

    As medical facilities across the United States continue to convert their radiology operations from film-based to digital environments, partially accomplished and failed endeavors are frequent because of the lack of competent and knowledgeable leadership. The diagnostic medical physicist is, without a doubt, in a privileged position to take such a leadership role, not only because of her/his understanding of the basics principles of new imaging modalities, but also because of her/his inherent participation in workflow design and educational/training activities. A well-structured approach by the physicist will certainly lead the project to a successful completion, opening, in turn, new opportunities for the medical physicist to become an active participant in the decision-making process for an institution.

  12. Dose evaluation in medical staff during diagnostics procedures in interventional radiology; Avaliacao da dose na equipe medica durante procedimentos diagnoticos de radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Bacchim Neto, Fernando A.; Alves, Allan F.F.; Rosa, Maria E.D.; Miranda, Jose R.A. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Instituto de Biociencias. Departamento de Fisica e Biofisica; Moura, Regina [Faculdade de Medicina de Botucatu, SP (Brazil). Departamento de Cirurgia e Ortopedia; Pina, Diana R., E-mail: bacchim@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina. Departamento de Doencas Tropicais e Diagnostico por Imagem

    2014-08-15

    Studies show that personal dosimeters may underestimate the dose values in interventional physicians, especially in extremities and crystalline. The objective of this work was to study the radiation exposure levels of medical staff in diagnostic interventional radiology procedures. For this purpose LiF:Mg,Ti (TLD-100) dosimeters were placed in different regions of the physician body. When comparing with reference dose levels, the maximum numbers of annual procedures were found. This information is essential to ensure the radiological protection of those professionals. (author)

  13. Sedation for pediatric diagnostic imaging: use of pediatric and nursing resources as an alternative to a radiology department sedation team

    International Nuclear Information System (INIS)

    Ruess, Lynne; O'Connor, Stephen C.; Mikita, Cecilia P.; Creamer, Kevin M.

    2002-01-01

    Objective. To develop a pathway to provide safe, effective, and efficient sedation for pediatric diagnostic imaging studies using non-radiology personnel. Materials and methods. A multidisciplinary team considered manpower and training requirements and national sedation standards before designing a sedation pathway, which included scheduling, pre-sedation history and physical, medication protocols, and monitoring. Oral and IV medication protocols were developed based on patient age and weight. Sedation delays were defined as >15 min (IV) or >30 min (PO) from start of sedation to start of imaging. A sedation failure resulted in an incomplete diagnostic imaging study. Failure rates of 124 sedations before and 388 sedations after the pathway were compared.Results. The sedation failure rate for 7 months prior to pathway initiation was 15% (19/124). In the first 25 months after pathway initiation, failures were significantly reduced to 1.5% (6/388) (P 55 min). Deviation from the recommended medication protocol accounted for most of the 115 delays. Only minor adverse events were seen (12/388, 3.1%).Conclusion. Implementing a pediatric sedation pathway significantly decreases the sedation failure rate. Pediatric residents and nurses can safely, effectively and efficiently sedate pediatric patients for routine diagnostic imaging procedures without the need for a radiology department sedation team in a department with a small-to-moderate volume of pediatric patients. (orig.)

  14. Urogenital system diseases's radiological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, S; Mecozzi, B

    1985-01-01

    Radiological urogenital radiography reliability, can be compromised because of absence of a correct urodynamic diagnosis. It is then required that specialist radiologists know the problems concerning the urogenital system radiographies cannot be made in many cases, because of the scarcity in hospitals of idoneous urodynamic services.

  15. ICRP Publication 138: Ethical Foundations of the System of Radiological Protection.

    Science.gov (United States)

    Cho, K-W; Cantone, M-C; Kurihara-Saio, C; Le Guen, B; Martinez, N; Oughton, D; Schneider, T; Toohey, R; ZöLzer, F

    2018-02-01

    Despite a longstanding recognition that radiological protection is not only a matter of science, but also ethics, ICRP publications have rarely addressed the ethical foundations of the system of radiological protection explicitly. The purpose of this publication is to describe how the Commission has relied on ethical values, either intentionally or indirectly, in developing the system of radiological protection with the objective of presenting a coherent view of how ethics is part of this system. In so doing, it helps to clarify the inherent value judgements made in achieving the aim of the radiological protection system as underlined by the Commission in Publication 103. Although primarily addressed to the radiological protection community, this publication is also intended to address authorities, operators, workers, medical professionals, patients, the public, and its representatives (e.g. NGOs) acting in the interest of the protection of people and the environment. This publication provides the key steps concerning the scientific, ethical, and practical evolutions of the system of radiological protection since the first ICRP publication in 1928. It then describes the four core ethical values underpinning the present system: beneficence/ non-maleficence, prudence, justice, and dignity. It also discusses how these core ethical values relate to the principles of radiological protection, namely justification, optimisation, and limitation. The publication finally addresses key procedural values that are required for the practical implementation of the system, focusing on accountability, transparency, and inclusiveness. The Commission sees this publication as a founding document to be elaborated further in different situations and circumstances.

  16. Significant use of diagnostic radiology for sport injuries and damages

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, C J; Kessler, M

    1983-09-01

    The diagnosis of a sport injury or a sport damage is usually made by the clinical investigation. However, the X-ray examination is indispensable. In addition to standard projections further radiologic techniques such as passive motion, tomography, computed tomography, arthrography or angiography are necessary. The relevant use of these X-ray methods with regard to sports injuries or damages of the particular regions of the locomotor system are described.

  17. Significant use of diagnostic radiology for sport injuries and damages

    International Nuclear Information System (INIS)

    Wirth, C.J.; Kessler, M.

    1983-01-01

    The diagnosis of a sport injury or a sport damage is usually made by the clinical investigation. However, the X-ray examination is indispensable. In addition to standard projections further radiologic techniques such as passive motion, tomography, computed tomography, arthrography or angiography are necessary. The relevant use of these X-ray methods with regard to sports injuries or damages of the particular regions of the locomotor system are described. (orig.)

  18. Fetal exposure in diagnostic radiology

    International Nuclear Information System (INIS)

    Baker, M.L.; Vandergrift, J.F.; Dalrymple, G.V.

    1979-01-01

    The problem of possible radiation damage to the fetus or embryo as a result of diagnostic radiography during pregnancy, particularly in the early stages, is discussed. Recommendations of therapeutic abortion after fetal exposure require an adequate knowledge of the doses involved. In the absence of actual dose measurements or estimates, approximate exposure levels may be determined from the literature. A summary of published values for radiography involving the lower abdomen is given. Data is also presented from a series of fetal exposures resulting mostly from routine diagnostic radiography when pregnancy was not known at the time but was established later. Results of actual dose measurements using a phantom and of dose calculations based on published values are in reasonable agreement indicating that literature values of dose provide a satisfactory alternative to measurement. These data suggest that diagnostic radiography rarely, if ever, results in fetal exposures high enough to justify therapeutic abortion. (author)

  19. Digital imaging in conventional diagnostic radiology: status and trends

    International Nuclear Information System (INIS)

    Pfeiler, M.; Marhoff, P.; Schipper, P.

    1984-01-01

    Digital techniques, i.e. techniques using microcomputers of minicomputers, are getting increasingly common in so-called conventional radiography. These nonreconstructive techniques are referred to here as 'digital, direct-imaging radiography' in order to contrast them with the reconstructive techniques of computerized tomography. Digitalisation of imaging and image processing operation and control will change the jobs of the radiologist and radiological assistants in such manner that only X-ray units with film-foil systems or with X-ray image intensification should be classified as conventional systems. Digital and conventional systems differ in that digital techniques imply the possibility of establishing data pools which may eventually be developed into a digital image interconnection and archiving system. The authors first describe the general system in which the digital imaging systems must be integrated on a medium-term and long-term basis and then proceed to discuss digital imaging and image processing in some more detail. (orig./WU) [de

  20. Operational, professional, and business characteristics of radiology groups in the United States.

    Science.gov (United States)

    Sunshine, J H; Bansal, S

    1992-05-01

    To learn the main operational, professional, and business characteristics of U.S. radiology group practices, researchers at the American College of Radiology surveyed these groups. Major findings included the following: Approximately 30% of groups provide only diagnostic radiologic services, a similar percentage provides only radiation therapy for oncologic patients, and the remainder provides both types of services. Forty-one percent of groups practice only in hospitals, 11% practice only in an office, and 48% practice in both settings. Diagnostic-only practices average 10,000-12,000 procedures per full-time equivalent radiologist per year. Groups typically require new members to be part of the group for almost 3 years before they become full partners. Formal call schedules are nearly universal among radiology groups. Groups are becoming increasingly involved with health maintenance organizations and other "alternative delivery systems," but fee-for-service remains by far the dominant source of groups' revenue. Most studied characteristics of groups are changing relatively slowly, and trends are generally toward increasing formalization of arrangements.

  1. Radiological diagnosis in lung disease: factoring treatment options into the choice of diagnostic modality.

    Science.gov (United States)

    Wielpütz, Mark O; Heußel, Claus P; Herth, Felix J F; Kauczor, Hans-Ulrich

    2014-03-14

    Chest X-ray, computed tomography (CT), and magnetic resonance imaging (MRI) each have characteristic advantages and disadvantages that need to be considered in clinical decision-making. This point is discussed in reference to the main types of lung disease that are encountered in practice. A selective literature search was performed in the PubMed and Google Scholar databases. Existing clinical guidelines on the main types of lung disease and studies concerning radiological diagnosis were also con - sidered in this review. There have been no more than a few large-scale, controlled comparative trials of different radiological techniques. Chest X-ray provides general orientation as an initial diagnostic study and is especially useful in the diagnosis of pneumonia, cancer, and chronic obstructive pulmonary disease (COPD). Multi-detector CT affords nearly isotropic spatial resolution at a radiation dose of only 0.2-5 mSv, much lower than before. Its main indications, according to current guidelines, are tumors, acute pulmonary embolism, pulmonary hypertension, pulmonary fibrosis, advanced COPD, and pneumonia in a high-risk patient. MRI is used in the diagnosis of cystic fibrosis, pulmonary embolism, pulmonary hypertension, and bronchial carcinoma. The positive predictive value (PPV) of a chest X-ray in outpatients with pneumonia is only 27% (gold standard, CT); in contrast, an initial, non-randomized trial of MRI in nosocomial pneumonia revealed a PPV of 95%. For the staging of mediastinal lymph nodes in bronchial carcinoma, MRI has a PPV of 88% and positron emission tomography with CT (PET/CT) has a PPV of 79%, while CT alone has a PPV of 41% (gold standard, histology). The choice of radiologicalal technique for the detection, staging, follow-up, and quantification of lung disease should be based on the individual clinical options, so that appropriate treatment can be provided without excessive use of diagnostic testing.

  2. Radiology illustrated. Hepatobiliary and pancreatic radiology

    International Nuclear Information System (INIS)

    Choi, Byung Ihn

    2014-01-01

    Clear, practical guide to the diagnostic imaging of diseases of the liver, biliary tree, gallbladder, pancreas, and spleen. A wealth of carefully selected and categorized illustrations. Highlighted key points to facilitate rapid review. Aid to differential diagnosis. Radiology Illustrated: Hepatobiliary and Pancreatic Radiology is the first of two volumes that will serve as a clear, practical guide to the diagnostic imaging of abdominal diseases. This volume, devoted to diseases of the liver, biliary tree, gallbladder, pancreas, and spleen, covers congenital disorders, vascular diseases, benign and malignant tumors, and infectious conditions. Liver transplantation, evaluation of the therapeutic response of hepatocellular carcinoma, trauma, and post-treatment complications are also addressed. The book presents approximately 560 cases with more than 2100 carefully selected and categorized illustrations, along with key text messages and tables, that will allow the reader easily to recall the relevant images as an aid to differential diagnosis. At the end of each text message, key points are summarized to facilitate rapid review and learning. In addition, brief descriptions of each clinical problem are provided, followed by both common and uncommon case studies that illustrate the role of different imaging modalities, such as ultrasound, radiography, CT, and MRI.

  3. Radiology illustrated. Hepatobiliary and pancreatic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ihn (ed.) [Seoul National Univ. Hospital (Korea, Republic of). Dept. of Radiology

    2014-04-01

    Clear, practical guide to the diagnostic imaging of diseases of the liver, biliary tree, gallbladder, pancreas, and spleen. A wealth of carefully selected and categorized illustrations. Highlighted key points to facilitate rapid review. Aid to differential diagnosis. Radiology Illustrated: Hepatobiliary and Pancreatic Radiology is the first of two volumes that will serve as a clear, practical guide to the diagnostic imaging of abdominal diseases. This volume, devoted to diseases of the liver, biliary tree, gallbladder, pancreas, and spleen, covers congenital disorders, vascular diseases, benign and malignant tumors, and infectious conditions. Liver transplantation, evaluation of the therapeutic response of hepatocellular carcinoma, trauma, and post-treatment complications are also addressed. The book presents approximately 560 cases with more than 2100 carefully selected and categorized illustrations, along with key text messages and tables, that will allow the reader easily to recall the relevant images as an aid to differential diagnosis. At the end of each text message, key points are summarized to facilitate rapid review and learning. In addition, brief descriptions of each clinical problem are provided, followed by both common and uncommon case studies that illustrate the role of different imaging modalities, such as ultrasound, radiography, CT, and MRI.

  4. Differential Motivations for Pursuing Diagnostic Radiology by Gender: Implications for Residency Recruitment.

    Science.gov (United States)

    Grimm, Lars J; Lowell, Dorothy A; Cater, Sarah W; Yoon, Sora C

    2017-10-01

    The purpose of this study is to determine how the motivations to pursue a career in radiology differ by gender. In addition, the influence of medical school radiology education will be assessed. Radiology applicants to our institution from the 2015-2016 interview season were offered an online survey in February 2016. Respondents scored the influence of 24 aspects of radiology on their decision to pursue radiology. Comparisons were made between male and female respondents. Respondents were also asked the type of medical school radiology education they received and to score the influence this experience had on their decision to pursue radiology. There were 202 total respondents (202/657) including 47 women and 155 men. Compared to men, the following factors had a more negative impact on women: flexible work hours (P = 0.04), work environment (P = 0.04), lifestyle (P = 0.04), impact on patient care (P = 0.05), high current debt load (P = 0.02), gender distribution of the field (P = 0.04), and use of emerging/advanced technology (P = 0.02). In contrast, women felt more favorably about the opportunities for leadership (P = 0.04) and research (P < 0.01). Dedicated radiology exposure was as follows: 20% (n = 20) none, 48% (n = 96) preclinical exposure, 55% (n = 111) elective rotation, and 18% (n = 37) core rotation. More intensive radiology exposure via a core rotation had a significantly positive impact on the decision to pursue radiology (P < 0.01). Male and female radiology applicants are motivated by different aspects of radiology, which may influence residency recruitment practices. In addition, more intensive radiology exposure has a net positive impact on the decision to pursue radiology. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. A comprehensive radiology information system

    International Nuclear Information System (INIS)

    Jost, R.G.

    1985-01-01

    DECrad version II was recently tested by members of the Radiology Information System Consortium (RISC) and was found to meet the specifications prepared by the consortium. It is a comprehensive tailorable system that can be interfaced to practically any HIS. This paper provides an overall view of the major functions of the system which include registration, scheduling, tracking, film library management, reporting, statistics, and teaching modules. The evolution of the specification and user experiences is reported

  6. A presentation system for just-in-time learning in radiology.

    Science.gov (United States)

    Kahn, Charles E; Santos, Amadeu; Thao, Cheng; Rock, Jayson J; Nagy, Paul G; Ehlers, Kevin C

    2007-03-01

    There is growing interest in bringing medical educational materials to the point of care. We sought to develop a system for just-in-time learning in radiology. A database of 34 learning modules was derived from previously published journal articles. Learning objectives were specified for each module, and multiple-choice test items were created. A web-based system-called TEMPO-was developed to allow radiologists to select and view the learning modules. Web services were used to exchange clinical context information between TEMPO and the simulated radiology work station. Preliminary evaluation was conducted using the System Usability Scale (SUS) questionnaire. TEMPO identified learning modules that were relevant to the age, sex, imaging modality, and body part or organ system of the patient being viewed by the radiologist on the simulated clinical work station. Users expressed a high degree of satisfaction with the system's design and user interface. TEMPO enables just-in-time learning in radiology, and can be extended to create a fully functional learning management system for point-of-care learning in radiology.

  7. Perceptual error and the culture of open disclosure in Australian radiology.

    Science.gov (United States)

    Pitman, A G

    2006-06-01

    The work of diagnostic radiology consists of the complete detection of all abnormalities in an imaging examination and their accurate diagnosis. Errors in diagnostic radiology comprise perceptual errors, which are a failure of detection, and interpretation errors, which are errors of diagnosis. Perceptual errors are subject to rules of human perception and can be expected in a proportion of observations by any human observer including a trained professional under ideal conditions. Current legal standards of medical negligence make no allowance for perceptual errors, comparing human performance to an ideal standard. Diagnostic radiology in Australia has a culture of open disclosure, where full unbiased evidence from an examination is provided to the patient together with the report. This practice benefits the public by allowing genuine differences of opinion and also by allowing a second chance of correct diagnosis in cases of perceptual error. The culture of open disclosure, which is unique to diagnostic radiology, places radiologists at distinct medicolegal disadvantage compared with other specialties. (i) Perceptual error should be acknowledged as an integral inevitable part of diagnostic radiology; (ii) culture of open disclosure should be encouraged by the profession; and (iii) a pragmatic definition of medical negligence should reflect the imperfect performance of human observers.

  8. Perceptual error and the culture of open disclosure in Australian radiology

    International Nuclear Information System (INIS)

    Pitman, A.G.

    2006-01-01

    The work of diagnostic radiology consists of the complete detection of all abnormalities in an imaging examination and their accurate diagnosis. Errors in diagnostic radiology comprise perceptual errors, which are a failure of detection, and interpretation errors, which are errors of diagnosis. Perceptual errors are subject to rules of human perception and can be expected in a proportion of observations by any human observer including a trained professional under ideal conditions. Current legal standards of medical negligence make no allowance for perceptual errors, comparing human performance to an ideal standard. Diagnostic radiology in Australia has a culture of open disclosure, where full unbiased evidence from an examination is provided to the patient together with the report. This practice benefits the public by allowing genuine differences of opinion and also by allowing a second chance of correct diagnosis in cases of perceptual error. The culture of open disclosure, which is unique to diagnostic radiology, places radiologists at distinct medicolegal disadvantage compared with other specialties, (i) Perceptual error should be acknowledged as an integral inevitable part of diagnostic radiology; (ii) culture of open disclosure should be encouraged by the profession; and (iii) a pragmatic definition of medical negligence should reflect the imperfect performance of human observers Copyright (2006) Blackwell Publishing Asia Pty Ltd

  9. [Controlling instruments in radiology].

    Science.gov (United States)

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  10. MO-C-BRB-03: RSNA President [Diagnostic radiology and radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Arenson, R. [RSNA (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  11. MO-C-BRB-02: ASTRO President [Diagnostic radiology and radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, B. [ASTRO (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  12. Predicting diagnostic error in Radiology via eye-tracking and image analytics: Application in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie [ORNL; Pinto, Frank M [ORNL; Morin-Ducote, Garnetta [University of Tennessee, Knoxville (UTK); Hudson, Kathy [University of Tennessee, Knoxville (UTK); Tourassi, Georgia [ORNL

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADs images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.

  13. Application of the new International Code of Practice for dosimetry in diagnostic radiology to conventional exams

    International Nuclear Information System (INIS)

    Martinez Gonzalez, A.; Cardenas Herrera, J.; Walwyn Salas, G.; Machado, A.; Mora Machado, R. de la

    2008-01-01

    Full text: During the recent years, a policy for updating and installation of the X-ray equipment, specialized as well as conventional, have been carrying out, in Cuba. Conventional equipment has reached almost the whole primary level. Considering this situation, the quality control programs and clinical dosimetry have become even more important. Regarding the last one, an International Code of Practice for Dosimetry in Diagnostic Radiology had been published by the International Atomic Energy Agency in order to been used as a guide and to standardize the methodologies used to evaluate the patient exposure in radiodiagnostic. Taken into consideration the above reasons, an assessment of the aforementioned code of practice was done in order to choose the most feasible methodology to implement in the country. The evaluation was performed considering the lack of dosimetric equipment and medical physicists in this practice, in the interests of increasing the measurements scope to a large number of services as well as to standardize the methodology on a national scale. The present work shows the results obtained from the application of the new code of practice to conventional radiology exams in some medical institutions. Out of 3 on patients measurements methodologies described in the code of practice, the one of measurement of the incident air kerma was chosen. This methodology allow to the physicist to focus on the diagnostic equipment tests and to delegate the collection of the patient and exposure parameters data to the technicians, which make the increased of the patient and diagnostic departments sample, possible. The measurements were carried out in 2 hospital of the capital. The exams involved in the assessments were thorax PA, lumbar spine AP and lumbar spine LAT. In every diagnostic service, 25 patients were chosen on each projection. The weight and height average of the patient sample were 68 kg and 167 cm respectively. In the assessment were considered only

  14. Education and training of medical physicists in radiology

    International Nuclear Information System (INIS)

    Todorov, V.; Vassileva, J.

    2006-01-01

    Full text: Medical radiology is chronologically the first and widest field of work of medical physicists. Therefore the education and training of medical radiological physicists is of big importance for both diagnostics and therapy. The education of medical radiological physicists in Bulgaria is organized in two levels: university and postgraduate, which is a good achievement of Bulgarian educational system. University education is in the framework of the M. Sc. program in Medical physics with a prevalent training in medical radiological physics. Three universities in the country have been carrying out this education since more than ten years. Postgraduate education covers specialties Medical Radiological Physics and Radiation Hygiene. It is organized by the Medical University but the training is opened also to specialists outside the health care system. The interests in both levels of education and training in Medical Physics is increasing with about 40 trainees in last years. The university and postgraduate education has good quality in theory but still inadequate in practical aspects. The continuous training and qualification of medical physicists has also difficulties; the main reasons are insufficient technical and financial resources as well as the lack of interest of the staff of the training centers. The responsibilities for education and training of medical physicists in radiology should be shared between physicists and physicians in the country

  15. Anti-scatter grids, applied in diagnostic radiology

    International Nuclear Information System (INIS)

    Porubszky, T.

    2012-01-01

    During imaging in diagnostic radiology, X-ray beam is scattered on all media between X-ray source and X-ray image receptor. The most important one from these is the patient itself. Scattered radiation, reaching X-ray image receptor - which may be even 5-6 times more intensive than X-ray pattern, in case of pelvis of a corpulent patient - reduces image contrast, impairs detail visibility and, moreover - in case of examinations during which staff stays in the controlled area, it causes radiation exposure of the staff. For diminishing scattered radiation, in principle, there are two possibilities. One of them is the so-called air gap, i.e. increasing the distance between the patient and the X-ray image receptor; however, because of the geometric magnification it is not always applicable or appropriate. The other way is application of anti-scatter grids directly in front of the X-ray image receptor. Interest of the patient is firstly the image, appropriate for diagnosis, and only after it the possible lowest radiation exposure. In most cases radiation exposure is optimized if image quality impairing effect of scattered radiation is decreased, although entrance skin dose and so radiation exposure of the patient may increase then by a factor of 2 to 5. Examinations of babies and small children as well as extremities, however, are exceptions: in these cases antiscatter grids are to be removed from the beam as amount of scattered radiation is very small, therefore optimizing radiation exposure in these cases reached by examination without grid. The presentation deals with the most important characteristics of anti-scatter grids as new edition of their international standard will be published next year. (author)

  16. Radiology's value chain.

    Science.gov (United States)

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  17. Development of JT-60 diagnostics system

    International Nuclear Information System (INIS)

    Suzuki, Yasuo

    1988-01-01

    The various kinds of plasma diagnostics have been developed and utilized in the JT-60 experiments. The features of JT-60 diagnostics system and the historical proceeding of the development are described in this paper. Taking account of the design consideration, JT-60 diagnostics system is sorted out into eight groups, which include six diagnostics systems, the data processing system and diagnostics supporting system. The all devices in the JT-60 diagnostics system were instrumented on schedule in the end of the fiscal year of 1985 and have contributed to JT-60 experiments. (author)

  18. Diagnostic radiology in the rheumatic diseases

    International Nuclear Information System (INIS)

    Klein, A.; Martin, W.

    1986-01-01

    In the radiological investigation of joint disease there are several signs which are helpful in making a diagnosis, Individually these signs will often suggest the presence of joint disease but may not be specific. However when present in combination or when considering the anatomic distribution, a definitive diagnosis is possible. Several of the signs of rheumatic disease can occur in other nonrheumatic conditions

  19. Educational course in emergency radiology

    International Nuclear Information System (INIS)

    Velkova, K.; Stoeva, M.; Cvetkova, S.; Hilendarov, A.; Petrova, A.; Stefanov, P.; Simova, E.; Georgieva, V.; Sirakov, N.

    2012-01-01

    Emergency radiology is the part of radiology primarily focused on acute diagnosing conditions in ER patients. This advanced area of radiology improves the quality of care and treatment of patients and of the emergency medicine as a whole. The educational course in Emergency (ER) Radiology is available for medical students in their 8th and 9th semester. The main objective of the ER course is to obtain knowledge about the indications, possibilities and diagnostic value of the contemporary imaging methods in ER cases. Therapeutic methods under imaging control are also covered by the course. The curriculum of the course consists of 6 lectures and 12 practical classes. (authors)

  20. Normal or abnormal?, That is the question. Anatomical Osteomuscular Variants in Pediatric Radiology

    International Nuclear Information System (INIS)

    Ferreira, Hugo H; Garcia, Carlos A

    2009-01-01

    The objective is to describe some normal radiological variants that can cause diagnostic errors being interpreted as abnormal. Method: Its present some radiologic cases from San Ignacio Hospital and Reina Sofia Clinic of some patients with different clinical scenarios, in whom a simple radiograph was obtained. The radiologic findings are described. Results: Radiologic findings observed in these patients are normal anatomic variants, there were confirmed by a literature review. Conclusion: There are innumerable radiologic variants in the human body anatomy. It is important to know them, in order to prevent diagnostic errors and unnecessary studies.

  1. Dosimetry in Radiology

    International Nuclear Information System (INIS)

    Andisco, D.; Blanco, S.; Buzzi, A.E

    2014-01-01

    The steady growth in the use of ionizing radiation in diagnostic imaging requires to maintain a proper management of patient’s dose. Dosimetry in Radiology is a difficult topic to address, but vital for proper estimation of the dose the patient is receiving. The awareness that every day is perceived in our country on these issues is the appropriate response to this problem. This article describes the main dosimetric units used and easily exemplifies doses in radiology through internationally known reference values. (authors) [es

  2. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic; Sistema de gerenciamento da dosimetria pessoal baseado na ISO 9001:2008 para radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner, E-mail: brasilrad@brasilrad.com.br [Brasilrad Consultoria em Radioprotecao, Florianopolis, SC (Brazil)

    2013-07-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers.

  3. Radiological diagnostics of birth trauma in newborns

    Directory of Open Access Journals (Sweden)

    Юрій Анатолійович Коломійченко

    2015-10-01

    Full Text Available Aim of the work. To analyze indices of the different radiological methods and to compare it.Materials and methods. The newborns with spinal trauma (n=33 were analyzed, the children who have been excluded this diagnosis (n=27 formed the control group. All children underwent the radiography of cervical spine, the part of them – MRT and USG. There was carried out the visual assessment and analysis of metrical indices.Results. Patients were separated into groups of heaviness, 16 patients with slight degree, 10 with middle one and 7 with heavy degree of injury. At all methods the width of the Cruveilhier joint fissure in children with an injury of upper cervical spine reliably (р<0,001 differs from the one in the control group, and was detected the moderate correlation (r>0,4.When using radiology and MRT in children with traumatic injures the width of prevertebral soft tissues was reliably more and the degree of reliability was higher at radiology (р<0,001, than at MRT (р<0,01. The correlations between the width of soft tissues and the degree of heaviness were detected at all levels at radiography and only at the level C1 at MRT.Conclusions. An analysis demonstrated the different degree of importance of some indices for detecting injuries of the upper cervical spine in newborns. There was also proved that the metrical data of the different methods not reliably differ

  4. An advanced microcosting system for forecasting and managing radiology expenses

    International Nuclear Information System (INIS)

    Arenson, R.; Viale, R.; VanDerVoorde, F.

    1985-01-01

    The new prospective payment system encourages hospital cost containment and necessitates understanding actual cost for radiology procedures. The automated microcosting system described in this paper, utilizing data from the Radiology Information Management System, hospital expense reports, and payroll management reports, calculates an accurate unit cost for each procedure type. This data is very useful for cost control, enhancement of department efficiency, and planning

  5. Radiological findings of the chondroblastomas on the atypical sites of the skeleton system

    International Nuclear Information System (INIS)

    Zhang He; Yao Weiwu; Yang Shixun; Li Minghua; Cheng Yingsheng; Zhang Huizhen

    2007-01-01

    Objective: To review the radiological findings of the chondroblastomas on the atypical sites of the skeleton system. Methods: We collected the total image data of 13 patients who were pathologically confirmed the chondroblastomas on the atypical sites of the bone system from the department of orthopedics in shanghai No. 6 hospital since 1991. Among all the patients, 11 eases were male and others were female. The range of age was 10-50 years and the average age of the patients was 26.2 years old. A retrospective analysis of radiological signs from different diagnostic imaging modalities was made. Results: X-ray examination was underdone on all case. On the plain X-ray films, all cases were lyric lesions. The radiolucent lesions were seen in 10 cases, mixed density in 3 cases. 10 cases manifested expansible contour. Eleven cases were performed computed tomography (CT) examination. On CT, there were visible calcification in 8 cases, sclerotic margin in 10 cases, internal septation in 4 cases. Soft masses could be seen in 3 cases. Magnetic resonance examination (MRI) was done on 5 cases. On T 1 weighted images (T 1 WI) , the lesion was hypo and intermediate intense signal and heterogeneous hyperintense signal on T 2 weighed images (T 2 WI). The fluid-fluid level and solid-fluid level were seen on 3 cases. On one post-contrast examination, the moderate enhancement was seen on the solid portion of the tumor and however, the obvious enhancement on the septation within the lesion. Conclusion: The radiological findings of the chondroblastomas on the atypical sites of the bone system were not suggestive. However, it could display some particular signs of the chondroid tumors such as calcification, septation, etc. To effectively apply the different imaging modalities can be helpful to make a right diagnosis before the operation. (authors)

  6. Emergency radiology curriculum at Medical University - Plovdiv

    International Nuclear Information System (INIS)

    Velkova, K.; Hilendarov, A.; Cvetkova, S.; Stoeva, M.; Petrova, A.; Stefanov, P.; Simova, E.; Georgieva, V.; Sirakov, N.

    2012-01-01

    Full text: Introduction: Recent advances in contemporary radiology turn it into one of the major sources for patient information with improved emergency techniques. Emergency Radiology (EP) focuses on acute diagnosing conditions in ER patients. Objectives: The main objective of this paper is to present the ER curriculum at Medical Imaging Department, Medical University - Plovdiv, aiming to deliver knowledge about the indications, possibilities and diagnostic value of the contemporary imaging methods in ER cases. Material and methods: The curriculum covers various aspects of ER Radiology - diagnostic imaging methods, contrast enhanced examinations, imaging topography, traumatic and acute conditions, physical and technical aspects. It includes 6 lectures and 12 practical classes. Results and discussion: The educational course in Emergency Radiology is available for medical students in their 8-th and 9-th semester. Therapeutic methods under imaging control are also covered by the course. Conclusion: Being one of the most advanced areas of radiology, ER improves the quality of care and treatment of patients and of the emergency medicine as a whole

  7. Radiology education: a radiology curriculum for all medical students?

    Science.gov (United States)

    Zwaan, Laura; Kok, Ellen M; van der Gijp, Anouk

    2017-09-26

    Diagnostic errors in radiology are frequent and can cause severe patient harm. Despite large performance differences between radiologists and non-radiology physicians, the latter often interpret medical images because electronic health records make images available throughout the hospital. Some people argue that non-radiologists should not diagnose medical images at all, and that medical school should focus on teaching ordering skills instead of image interpretation skills. We agree that teaching ordering skills is crucial as most physicians will need to order medical images in their professional life. However, we argue that the availability of medical images is so ubiquitous that it is important that non-radiologists are also trained in the basics of medical image interpretation and, additionally in recognizing when radiological consultancy should be sought. In acute situations, basic image interpretations skills can be life-saving. We plead for a radiology curriculum for all medical students. This should include the interpretation of common abnormalities on chest and skeletal radiographs and a basic distinction of normal from abnormal images. Furthermore, substantial attention should be given to the correct ordering of radiological images. Finally, it is critical that students are trained in deciding when to consult a radiologist.

  8. Work procedures and risk factors for high rdiation exposure among radiologic technologists in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Young; Choi, Yeong Chull [Dept. of Preventive Medicine, Keimyung University College of Medicine, Daegu (Korea, Republic of); Lee, Won Jin; Cha, Eun Shil [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Radiologic technologists currently consist of 31.5% among diagnostic radiation workers in South Korea. Among diagnostic radiation workers, radiologic technologists receive the highest annual and collective doses in South Korea. Comprehensive assessment of the work practices and associated radiation doses from diagnostic radiology procedures should be undertaken for effective prevention for radiologic technologists. Using the national survey, this study aimed (1) to explore the distribution of the work procedures performed by gender, (2) to evaluate occupational radiation exposure by work characteristics and safety compliance, (3) to identify the primary factors influencing high radiation exposure among radiologic technologists in South Korea. This study provided detailed information on work practices, number of procedures performed on weekly basis, and occupational radiation doses among radiologic technologists in South Korea. Average radiation dose for radiologic technologists is higher than other countries, and type of facility, work safety, and wearing lead apron explained quite a portion of increased risk in the association between radiology procedures and radiation exposure among radiologic technologists.

  9. Work procedures and risk factors for high rdiation exposure among radiologic technologists in South Korea

    International Nuclear Information System (INIS)

    Kim, Jae Young; Choi, Yeong Chull; Lee, Won Jin; Cha, Eun Shil

    2016-01-01

    Radiologic technologists currently consist of 31.5% among diagnostic radiation workers in South Korea. Among diagnostic radiation workers, radiologic technologists receive the highest annual and collective doses in South Korea. Comprehensive assessment of the work practices and associated radiation doses from diagnostic radiology procedures should be undertaken for effective prevention for radiologic technologists. Using the national survey, this study aimed (1) to explore the distribution of the work procedures performed by gender, (2) to evaluate occupational radiation exposure by work characteristics and safety compliance, (3) to identify the primary factors influencing high radiation exposure among radiologic technologists in South Korea. This study provided detailed information on work practices, number of procedures performed on weekly basis, and occupational radiation doses among radiologic technologists in South Korea. Average radiation dose for radiologic technologists is higher than other countries, and type of facility, work safety, and wearing lead apron explained quite a portion of increased risk in the association between radiology procedures and radiation exposure among radiologic technologists.

  10. Clinical operations management in radiology.

    Science.gov (United States)

    Ondategui-Parra, Silvia; Gill, Ileana E; Bhagwat, Jui G; Intrieri, Lisa A; Gogate, Adheet; Zou, Kelly H; Nathanson, Eric; Seltzer, Steven E; Ros, Pablo R

    2004-09-01

    Providing radiology services is a complex and technically demanding enterprise in which the application of operations management (OM) tools can play a substantial role in process management and improvement. This paper considers the benefits of an OM process in a radiology setting. Available techniques and concepts of OM are addressed, along with gains and benefits that can be derived from these processes. A reference framework for the radiology processes is described, distinguishing two phases in the initial assessment of a unit: the diagnostic phase and the redesign phase.

  11. Evidence-based radiology: why and how?

    International Nuclear Information System (INIS)

    Sardanelli, Francesco; Di Leo, Giovanni; Hunink, Myriam G.; Gilbert, Fiona J.; Krestin, Gabriel P.

    2010-01-01

    To provide an overview of evidence-based medicine (EBM) in relation to radiology and to define a policy for adoption of this principle in the European radiological community. Starting from Sackett's definition of EBM we illustrate the top-down and bottom-up approaches to EBM as well as EBM's limitations. Delayed diffusion and peculiar features of evidence-based radiology (EBR) are defined with emphasis on the need to shift from the demonstration of the increasing ability to see more and better, to the demonstration of a significant change in treatment planning or, at best, of a significant gain in patient outcome. The ''as low as reasonably achievable'' (ALARA) principle is thought as a dimension of EBR while EBR is proposed as part of the core curriculum of radiology residency. Moreover, we describe the process of health technology assessment in radiology with reference to the six-level scale of hierarchy of studies on diagnostic tests, the main sources of bias in studies on diagnostic performance, and levels of evidence and degrees of recommendations according to the Centre for Evidence-Based Medicine (Oxford, UK) as well as the approach proposed by the GRADE working group. Problems and opportunities offered by evidence-based guidelines in radiology are considered. Finally, we suggest nine points to be actioned by the ESR in order to promote EBR. Radiology will benefit greatly from the improvement in practice that will result from adopting this more rigorous approach to all aspects of our work. (orig.)

  12. Exercises in diagnostic radiology. Vol. 1. 4. rev. ed.

    International Nuclear Information System (INIS)

    Squire, L.F.; Colaiace, W.M.; Strutynsky, N.

    1983-01-01

    Intention of this book is to impart - by means of numerous exercises to be done - knowledge about radiology. It shall be used around the termination of the study of medicine, more or less in the sense of a self-test and supplement of the previous lectures and previously revised text books. The exercises of this first volume proceed from a certain knowledge about thorax radiology to be present. (orig./MG) [de

  13. Radiology Reporting System Data Exchange With the Electronic Health Record System: A Case Study in Iran.

    Science.gov (United States)

    Ahmadi, Maryam; Ghazisaeidi, Marjan; Bashiri, Azadeh

    2015-03-18

    In order to better designing of electronic health record system in Iran, integration of health information systems based on a common language must be done to interpret and exchange this information with this system is required. This study provides a conceptual model of radiology reporting system using unified modeling language. The proposed model can solve the problem of integration this information system with the electronic health record system. By using this model and design its service based, easily connect to electronic health record in Iran and facilitate transfer radiology report data. This is a cross-sectional study that was conducted in 2013. The study population was 22 experts that working at the Imaging Center in Imam Khomeini Hospital in Tehran and the sample was accorded with the community. Research tool was a questionnaire that prepared by the researcher to determine the information requirements. Content validity and test-retest method was used to measure validity and reliability of questioner respectively. Data analyzed with average index, using SPSS. Also Visual Paradigm software was used to design a conceptual model. Based on the requirements assessment of experts and related texts, administrative, demographic and clinical data and radiological examination results and if the anesthesia procedure performed, anesthesia data suggested as minimum data set for radiology report and based it class diagram designed. Also by identifying radiology reporting system process, use case was drawn. According to the application of radiology reports in electronic health record system for diagnosing and managing of clinical problem of the patient, with providing the conceptual Model for radiology reporting system; in order to systematically design it, the problem of data sharing between these systems and electronic health records system would eliminate.

  14. 27. Czechoslovak radiological congress and symposium on ultrasound

    International Nuclear Information System (INIS)

    1990-06-01

    The publication contains abstracts of 117 contributions concerned with various problems in radiology, radiodiagnostics, radiotherapy, tomography, ultrasonography and other diagnostic methods; related topics such as the education and training of radiological personnel were also dealt with. (B.S.)

  15. Patient dosimetry and image quality in conventional diagnostic radiology. An experience from a local Serbian hospital

    International Nuclear Information System (INIS)

    Olivera Ciraj-Bjelac; Milojko Kovacevic; Dusko Kosutic; Milan Loncar; Dajana Veljkovic

    2007-01-01

    Complete test of publication follows. The optimization of image quality vs. patient dose ins an important task in medical imaging. Maximal validity of optimization has to be based on clinical images. Simultaneous measurement of patient dose levels and image quality assessment is used to investigate possibilities for dose reduction and maintain image quality. The survey was conducted in a local hospital performing more than 60000 images annually and representing typical Serbian practice. For four most frequent diagnostic procedures (seven projections) patient exposure was measured using kerma area product meter. Image quality was assessed by experienced radiologists using 'European Guidelines on Quality Criteria for Diagnostic Radiographic Images'. Following examination types were included into the survey: chest PA, chest LAT, pelvis AP, lumbar spine AP, lumbar spine LAT and LSJ, skull PA and skull LAT. Comparing actual radiographic technique with recommended technique in European Guidelines, modification of practice was proposed and implemented and image quality was re-assessed. At least 10 adult patients were followed for each projection, before and after corrective actions. Large dose saving without compromising diagnostic information were found for some examination types, showing that this simple method is very efficient dose reduction tool in conventional diagnostic radiology. Also, need for staff training and difficulties related to practical implementation of optimization methods in Serbia were discussed.

  16. Professional Acceptance Of Electronic Images In Radiologic Practice

    Science.gov (United States)

    Gitlin, Joseph N.; Curtis, David J.; Kerlin, Barbara D.; Olmsted, William W.

    1983-05-01

    During the past four years, a large number of radiographic images have been interpreted in both film and video modes in an effort to determine the utility of digital/analogue systems in general practice. With the cooperation of the Department of Defense, the MITRE Corporation, and several university-based radiology departments, the Public Health Service has participated in laboratory experiments and a teleradiology field trial to meet this objective. During the field trial, 30 radiologists participated in the interpretation of more than 4,000 diagnostic x-ray examinations that were performed at distant clinics, digitized, and transmitted to a medical center for interpretation on video monitors. As part of the evaluation, all of the participating radiologists and the attending physicians at the clinics were queried regarding the teleradiology system, particularly with respect to the diagnostic quality of the electronic images. The original films for each of the 4,000 examinations were read independently, and the findings and impressions from each mode were compared to identify discrepancies. In addition, a sample of 530 cases was reviewed and interpreted by a consensus panel to measure the accuracy of findings and impressions of both film and video readings. The sample has been retained in an automated archive for future study at the National Center of Devices and Radiological Health facilities in Rockville, Maryland. The studies include a comparison of diagnostic findings and impressions from 1024 x 1024 matrices with those obtained from the 512 x 512 format used in the field trial. The archive also provides a database for determining the effect of data compression techniques on diagnostic interpretations and establishing the utility of image processing algorithms. The paper will include an analysis of the final results of the field trial and preliminary findings from the ongoing studies using the archive of cases at the National Center for Devices and Radiological

  17. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung-Sun; Kim, Jae-Kwang; Kim, Jung-Soo

    2007-01-01

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism

  18. Treatment delay and radiological errors in patients with bone metastases

    International Nuclear Information System (INIS)

    Ichinohe, K.; Takahashi, M.; Tooyama, N.

    2003-01-01

    During routine investigations, we are surprised to find that therapy for bone metastases is sometimes delayed for a considerable period of time. To determine the extent of this delay and its causes, we reviewed the medical records of symptomatic patients seen at our hospital who had been recently diagnosed as having bone metastases for the last four years. The treatment delay was defined as the interval between presentation with symptoms and definitive treatment for bone metastases. The diagnostic delay was defined as the interval between presentation with symptoms and diagnosis of bone metastases. The results of diagnostic radiological examinations were also reviewed for errors. The study population included 76 males and 34 females with a median age of 66 years. Most bone metastases were diagnosed radiologically. Over 75% of patients were treated with radiotherapy. The treatment delay ranged from 2 to 307 days, with a mean of 53.3 days. In 490 radiological studies reviewed, we identified 166 (33.9%) errors concerning 62 (56.4%) patients. The diagnostic delay was significantly longer for patients with radiological errors than for patients without radiological errors (P < 0.001), and much of it was due to radiological errors. In conclusion, the treatment delay in patients with symptomatic bone metastases was much longer than expected, and much of it was caused by radiological errors. Considerable efforts should therefore be made to more carefully examine the radiological studies in order to ensure prompt treatment of bone metastases. (author)

  19. MFTF-B plasma-diagnostic system

    International Nuclear Information System (INIS)

    Throop, A.L.; Goerz, D.A.; Thomas, S.R.

    1981-01-01

    This paper describes the current design status of the plasma diagnostic system for MFTF-B. In this paper we describe the system requirement changes which have occurred as a result of the funded rescoping of the original MFTF facility into MFTF-B. We outline the diagnostic instruments which are currently planned, and present an overview of the diagnostic system

  20. Mandatory quality assurance programmes for diagnostic radiology facilities in Ontario, Canada

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    Regulations made under the Healing Arts Radiation Protection (HARP) Act, Government of Ontario, Canada, were promulgated in the form of a safety Code in November, 1985. These regulations require a minimum technical quality assurance (QA) programme for all diagnostic radiology facilities in the Province. The mandatory QA programme requires certain tests and procedures to be carried out at specified intervals. The tests include photographic quality control, patient entrance exposure measurement, collimation, half-value layer, phototiming parameters, fluoroscopic parameters including maximum patient entrance exposure rate, resolution, limit timer and automatic brightness control, and tomographic parameters including fulcrum accuracy, thickness of cut and mechanical stability. Records of the results of these tests must be kept for at least 6 years. A set of HARP guidelines published in June 1987 includes a description of appropriate measuring methods for each test together with a set of forms for recording the results of such tests. The regulations specify limiting values for a number of equipment performance parameters, including the maximum allowable patient skin entrance exposure values for common radiographic projections. (author)

  1. Evidence-based radiology: a new approach to evaluate the clinical practice of radiology

    International Nuclear Information System (INIS)

    Puig, S.; Felder-Puig, R.

    2006-01-01

    Over the last several years, the concept and methodology of evidence-based medicine (EBM) have received significant attention in the scientific community. However, compared to therapeutic medical disciplines, EBM-based radiological publications are still underrepresented. This article summarizes the principles of EBM and discusses the possibilities of their application in radiology. The presented topics include the critical appraisal of studies on the basis on EBM principles, the explanation of EBM-relevant statistical outcome parameters (e.g., ''likelihood ratio'' for diagnostic and ''number needed to treat'' for interventional procedures), as well as the problems facing evidence-based radiology. Evidence-based evaluation of radiological procedures does not only address aspects of cost-effectiveness, but is also particularly helpful in identifying patient-specific usefulness. Therefore it should become an integral part of radiologist training. (orig.)

  2. Streamlining interventional radiology admissions: The role of the interventional radiology clinic and physician's assistant

    International Nuclear Information System (INIS)

    White, R.I. Jr.; Rizer, D.M.; Shuman, K.; White, E.J.; Adams, P.; Doyle, K.; Kinnison, M.

    1987-01-01

    During a 5-year period (1982-1987), 376 patients were admitted to an interventional radiology service where they were managed by the senior physician and interventional radiology fellows. Sixty-eight percent of patients were admitted for angioplasty and 32% for elective embolotherapy/diagnostic angiography. A one-half-day, twice weekly interventional radiology clinic and employment of a physician's assistant who performed preadmission history and physicals and wrote orders accounted, in part, for a decrease in hospital stay length from 3.74 days (1982-1983) to 2.41 days (1986-1987). The authors conclude that use of the clinic and the physician's assistant streamlines patient flow and the admitting process and is partially responsible for a decreased length of stay for patients admitted to an interventional radiology service

  3. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    International Nuclear Information System (INIS)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho; Woo, Hyun Soo; Jo, Jae Min; Lee, Min Hee

    2015-01-01

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques

  4. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Woo, Hyun Soo [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Jo, Jae Min [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Min Hee [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-11-15

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques.

  5. Development of archetypes of radiology for electronic health record; Desenvolvimento de arquetipos de radiologia para registro eletronico de saude

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Tiago V.; Pires, Silvio R.; Paiva, Paulo B., E-mail: tiago.veloso@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Dept. de Informatica em Saude

    2013-08-15

    This paper presents a proposal to develop archetypes for electronic patient records system based the openEHR Foundation model. Archetypes were developed specifically for the areas of radiology and diagnostic imaging, as for the early implementation of an electronic health records system. The archetypes developed are related to the examinations request, their execution and report, corresponding to both the administrative as diagnostic workflow inside a diagnostic imaging sector. (author)

  6. Financial ratios in diagnostic radiology practices: variability and trends.

    Science.gov (United States)

    Hogan, Christopher; Sunshine, Jonathan H

    2004-03-01

    To evaluate variation in financial ratios for radiology practices nationwide and trends in these ratios and in payments. In 1999, the American College of Radiology surveyed radiology practices by mail. The final response rate was 66%. Weighting was used to make responses representative of all radiology practices in the United States. Self-reported financial ratios (payments, charges, accounts receivable turnover) were analyzed; 449 responses had usable data on these ratios. Comparison with results of a similar 1992 survey and combined analysis with Medicare data on billed charges provided information on trends. All measures of payment collections declined sharply from 1992 to 1999, with the gross collections rate (revenues as percentage of billed charges) decreasing from 71% to 55%. Average payment for a typical radiology service decreased approximately 4% in dollar terms or approximately 19% in inflation-adjusted terms. In 1999, nonmetropolitan practices appeared to fare better than others. Among insurers, Medicaid stood out as a low and slow payer, but neither managed care nor Medicare had a consistent effect on financial ratios. The gross collections rate varied substantially across geographic areas, as did, in an inverse pattern, the level of billed charges. One-quarter of practices had accounts receivable equal to 90 or more days of billings. The opposing geographic pattern of billed charges and gross collection rate suggests that geographic variation in the latter is driven more by variation in billed charges than by variation in payment levels. Radiologists saw a substantial decrease in the real (inflation-adjusted) value of payment per service during the 1990s. The large fraction of practices with accounts receivable of 90 or more days of billings-a level considered potentially imprudent by financial management advisors-suggests that many practices should improve financial management and that state prompt-payment laws have not had a substantial positive

  7. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    Science.gov (United States)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  8. Thyroid Radiation Dose to Patients from Diagnostic Radiology Procedures over Eight Decades: 1930-2010.

    Science.gov (United States)

    Chang, Lienard A; Miller, Donald L; Lee, Choonsik; Melo, Dunstana R; Villoing, Daphnée; Drozdovitch, Vladimir; Thierry-Chef, Isabelle; Winters, Sarah J; Labrake, Michael; Myers, Charles F; Lim, Hyeyeun; Kitahara, Cari M; Linet, Martha S; Simon, Steven L

    2017-12-01

    This study summarizes and compares estimates of radiation absorbed dose to the thyroid gland for typical patients who underwent diagnostic radiology examinations in the years from 1930 to 2010. The authors estimated the thyroid dose for common examinations, including radiography, mammography, dental radiography, fluoroscopy, nuclear medicine, and computed tomography (CT). For the most part, a clear downward trend in thyroid dose over time for each procedure was observed. Historically, the highest thyroid doses came from the nuclear medicine thyroid scans in the 1960s (630 mGy), full-mouth series dental radiography (390 mGy) in the early years of the use of x rays in dentistry (1930s), and the barium swallow (esophagram) fluoroscopic exam also in the 1930s (140 mGy). Thyroid uptake nuclear medicine examinations and pancreatic scans also gave relatively high doses to the thyroid (64 mGy and 21 mGy, respectively, in the 1960s). In the 21st century, the highest thyroid doses still result from nuclear medicine thyroid scans (130 mGy), but high thyroid doses are also associated with chest/abdomen/pelvis CT scans (18 and 19 mGy for males and females, respectively). Thyroid doses from CT scans did not exhibit the same downward trend as observed for other examinations. The largest thyroid doses from conventional radiography came from cervical spine and skull examinations. Thyroid doses from mammography (which began in the 1960s) were generally a fraction of 1 mGy. The highest average doses to the thyroid from mammography were about 0.42 mGy, with modestly larger doses associated with imaging of breasts with large compressed thicknesses. Thyroid doses from dental radiographic procedures have decreased markedly throughout the decades, from an average of 390 mGy for a full-mouth series in the 1930s to an average of 0.31 mGy today. Upper GI series fluoroscopy examinations resulted in up to two orders of magnitude lower thyroid doses than the barium swallow. There are

  9. Radiation Protection Education in Diagnostic Radiology in Uruguay

    International Nuclear Information System (INIS)

    Cotelo, E.; Paolini, G.

    2003-01-01

    In Uruguay the lack of Radiation Protection (RP) laws makes education in medical use of ionizing radiations at University, a decisive factor of changes. The six years experience in teaching technicians, radiologists, interventional cardiologists and anesthetists in curricular lectures, continuing education courses and workshops, show the importance of a close link between educators and occupationally exposed professionals. Regarding training and education in the optimization of the procedures, it is essential that both teacher and student comprehend the exact meaning of ALARA concept. This implies that although the educator is the one who manages the physical basis of RP, the student is who teaches the educator about the procedures. This turns RP education into a dynamic process in which at the same time, both educator and student learn and teach. After the theoretical lectures, it is essential that students show their ability in applying the acquired knowledge in their everyday practice. Last nut not least, in order to fulfill the first RP principle,all medicine students need to be educated in RP and quality image criteria before the get their medical doctor degree. Our experience shows that RP education in diagnostic radiology requires an expert with both medical physics and Image technology knowledge that allow an approach to students work, language and everyday problems. Despite the fact that the main result of the Education Program is the way professionals improve their practice, another consequence was that the Regulatory Authority of the country called the teacher team to coordinate the first RP national course. (Author) 14 refs

  10. Radiological aspects of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Schacherl, M.

    1985-01-01

    An introductory summary of the imaging-diagnosis will be given. The necessity of acquiring a catalogue of application to particular imaging methods is emphasized. Discussion of step by step diagnosis regarding rheumatologic questions is given on example of the hand. Technically insufficient radiographs and bad habits during diagnostic analysis are pointed out. Radiologic problems in differentiating arthritis/osteoarthrosis will be mentioned. The discussion of these points is followed by outlining the radiology of rheumatoid arthritis and the complexity of this disease. Introduction of a new stage classification. Finally twelve basic radiologic types of rheumatoid arthritis will be presented. (orig.) [de

  11. Basic demands for radiological information systems (RIS)

    International Nuclear Information System (INIS)

    Traupe, H.; Purgold, S.

    1993-01-01

    One of the most important problems in medicine today is quality control and the achievement of a cost-benefit analysis in the areas of both treatment and diagnosis. With modern software techniques, complex relations between medical and aministrative data can be shown up and analysed. Preconditions are a vocabulary that can be processed by computer for medical facts and decisions and a database system capable of collecting a large amount of heterogeneous data and costing everything precisely. We have developed an object description language and, on the basis of the relational database approach, a complex system covering most aspects of medical and administrative data handling in radiology. The basic demands and elements of modern information handling in radiology are described and discussed. (orig.) [de

  12. Radiologic considerations

    International Nuclear Information System (INIS)

    Judge, L.O.

    1987-01-01

    An increasing variety of imaging modalities as well as refinements of interventional techniques have led to a resurgence of radiologic interest and participation in urolithiasis management. Judicious selection of the diagnostic examination, close monitoring during the procedure, consultation with urologic colleagues, and a careful regard for radiation safety guidelines define the role of the radiologist in renal stone disease

  13. Prerequisites for the introduction of computer-assisted radiological systems of organization

    International Nuclear Information System (INIS)

    Timmermann, U.; Jacob, A.

    1988-01-01

    This paper describes the steps necessary for the introduction of a radiological information system (RIS) for organizational and work-flow support within a large radiology department. The authors experience with a pilot trial of a system purchased and adapted to departmental needs is reported. (orig.) [de

  14. Radiological/biological/aerosol removal system

    Science.gov (United States)

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  15. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil

    1997-07-01

    A radiological dose assessment system named FADAS has been developed. This system is necessary to estimated the radiological consequences against a nuclear accident. Mass-consistent wind field module was adopted for the generation of wind field over the whole domain using the several measured wind data. Random-walk dispersion module is used for the calculation of the distribution of radionuclides in the atmosphere. And volume-equivalent numerical integration method has been developed for the assessment of external gamma exposure given from a randomly distributed radioactive materials and a dose data library has been made for rapid calculation. Field tracer experiments have been carried out for the purpose of analyzing the site-specific meteorological characteristics and increasing the accuracy of wind field generation and atmospheric dispersion module of FADAS. At first, field tracer experiment was carried out over flat terrain covered with rice fields using the gas samplers which were designed and manufactured by the staffs of KAERI. The sampled gas was analyzed using gas chromatograph. SODAR and airsonde were used to measure the upper wind. Korean emergency preparedness system CARE was integrated at Kori 4 nuclear power plants in 1995. One of the main functions of CARE is to estimate the radiological dose. The developed real-time dose assessment system FADAS was adopted in CARE as a tool for the radiological dose assessment. (author). 79 refs., 52 tabs., 94 figs.

  16. Audit of radiology communication systems for critical, urgent, and unexpected significant findings

    International Nuclear Information System (INIS)

    Duncan, K.A.; Drinkwater, K.J.; Dugar, N.; Howlett, D.C.

    2016-01-01

    Aim: To determine the compliance of UK radiology departments and trusts/healthcare organisations with National Patient Safety Agency and Royal College of Radiologist's published guidance on the communication of critical, urgent, and unexpected significant radiological findings. Materials and methods: A questionnaire was sent to all UK radiology department audit leads asking for details of their current departmental policy regarding the issuing of alerts; use of automated electronic alert systems; methods of notification of clinicians of critical, urgent, and unexpected significant radiological findings; monitoring of results receipt; and examples of the more common types of serious pathologies for which alerts were issued. Results: One hundred and fifty-four of 229 departments (67%) responded. Eighty-eight percent indicated that they had a policy in place for the communication of critical, urgent, and unexpected significant radiological findings. Only 34% had an automated electronic alert system in place and only 17% had a facility for service-wide electronic tracking of radiology reports. In only 11 departments with an electronic acknowledgement system was someone regularly monitoring the read rate. Conclusion: There is wide variation in practice across the UK with regard to the communication and monitoring of reports with many departments/trusts not fully compliant with published UK guidance. Despite the widespread use of electronic systems, only a minority of departments/trusts have and use electronic tracking to ensure reports have been read and acted upon. - Highlights: • UK wide audit of communication of significant radiology results. • 88% of departments have a communication policy in place. • 34% of departments have an automated electronic alert system. • 17% of Trusts have facility for service wide electronic tracking of radiology reports.

  17. Developing standard transmission system for radiology reporting including key images

    International Nuclear Information System (INIS)

    Kim, Seon Chil

    2007-01-01

    Development of hospital information system and Picture Archiving Communication System is not new in the medical field, and the development of internet and information technology are also universal. In the course of such development, however, it is hard to share medical information without a refined standard format. Especially in the department of radiology, the role of PACS has become very important in interchanging information with other disparate hospital information systems. A specific system needs to be developed that radiological reports are archived into a database efficiently. This includes sharing of medical images. A model is suggested in this study in which an internal system is developed where radiologists store necessary images and transmit them is the standard international clinical format, Clinical Document Architecture, and share the information with hospitals. CDA document generator was made to generate a new file format and separate the existing storage system from the new system. This was to ensure the access to required data in XML documents. The model presented in this study added a process where crucial images in reading are inserted in the CDA radiological report generator. Therefore, this study suggests a storage and transmission model for CDA documents, which is different from the existing DICOM SR. Radiological reports could be better shared, when the application function for inserting images and the analysis of standard clinical terms are completed

  18. Multisystem Radiologic Manifestations of Erdheim-Chester Disease

    Directory of Open Access Journals (Sweden)

    Umairullah Lodhi

    2016-01-01

    Full Text Available Erdheim-Chester Disease is a rare form of multiorgan non-Langerhans’ cell histiocytosis that affects individuals between the ages of 50 and 70 with an equal distribution among males and females. It is associated with significant morbidity and mortality that is mostly due to infiltration of critical organs. Some of the sites that Erdheim-Chester Disease affects include the skeletal system, central nervous system, cardiovascular system, lungs, kidneys (retroperitoneum, and skin. The most common presenting symptom of Erdheim-Chester Disease is bone pain although a large majority of patients are diagnosed incidentally during a workup for a different disease process. Diagnosing Erdheim-Chester Disease is challenging due its rarity and mimicry to other infiltrative processes. Therefore, a multimodality diagnostic approach is employed with imaging being at the forefront. As of date, a comprehensive radiologic review of the manifestations of Erdheim-Chester Disease has rarely been reported. Here we present radiologic findings of an individual suffering from Erdheim-Chester Disease.

  19. Radiological sciences in Turkey: its past, present and future

    International Nuclear Information System (INIS)

    Ozyar, E.

    2002-01-01

    After the discovery of X-rays in 1895, first X-rays was produced with an X-ray tube one year after in Istanbul and used with diagnostic and therapeutic aims thereafter. Parallel to the technological advances in radiology, radiation oncology and nuclear medicine, all kind of modern tools became available in Turkish Republic. There are two oncology institutes affiliated with major universities in Turkey currently. These institutions are located in Ankara and Istanbul and aimed for the research, education, and the application of the newest technology for the diagnosis and treatment in the field of basic and clinical oncology as well as in cancer epidemiology and prevention. Beside these comprehensive cancer centers there were more than 50 university hospitals with radiology, nuclear medicine and radiation oncology facilities in Turkey. Diagnostic and interventional radiology was widely available in university and governmental hospitals. Currently conventional X-ray techniques, ultrasonography, mammography, computed tomography, magnetic resonance imaging, was available in most of the cities. Interventional procedures are performed in most of the centers. There are more than 20 university hospitals equipped with Cobalt-60 units, linear accelerators, LDR, MDR, HDR brachytherapy, stereotactic radiosurgery, gamma knife, computerized treatment planning systems. All these departments have all facilities for precise in-vivo and in-vitro measurements mandatory for precise radiotherapy. Two comprehensive cancer centers have post graduate programs of radiation physics and treatment planning. The field of .nuclear medicine is rapidly growing in Turkey. Routine diagnostic services are given in almost every city. These diagnostic studies frequently performed include bone, renal, thyroid, lung and myocardial Perfusion, whole body Gallium scans, and other scintigraphic images such as gastrointestinal bleeding, gastroesophageal reflux, I-131-MIBG studies etc. Treatment is also

  20. Tumour forms and microcalcifications as radiological diagnostic criteria of mammography

    International Nuclear Information System (INIS)

    Cullmann, H.

    1979-01-01

    289 cases of breast carcinoma which had occurred over a period of 7 years were examined at mammograms and histological preparations. Especially in view were the frequency of radiologically visible criteria of malignancy with special stress laid on microcalcifications, typical radiological forms of imaging the various sorts of carcinoma, and a statement on the definiteness of diagnoses made with mammography. The exactness of diagnoses of breast cancer established by means of mammography can be states as 96.9% in 289 cases of carcinoma. 81.7% were assessed as definitely malignant and 15.2% were suspected to be malignant. In these cases, surgery confirmed the teutative diagnosis. 3.1% of the cases must be seen as mammographic false diagnoses in the sense of ''false negative''. These percentages are in correspondence with those obtained by other examiners. The radiologically visible growth form of breast cancer often typically reflect the histomorphological sort of the cancer. In 174 (67.1%) of 259 cases, the histological type of carcinoma could be recognized from the radiologically visible growth form. (orig./MG) [de