WorldWideScience

Sample records for diagnostic imaging algorithm

  1. Image microarrays derived from tissue microarrays (IMA-TMA: New resource for computer-aided diagnostic algorithm development

    Directory of Open Access Journals (Sweden)

    Jennifer A Hipp

    2012-01-01

    Full Text Available Background: Conventional tissue microarrays (TMAs consist of cores of tissue inserted into a recipient paraffin block such that a tissue section on a single glass slide can contain numerous patient samples in a spatially structured pattern. Scanning TMAs into digital slides for subsequent analysis by computer-aided diagnostic (CAD algorithms all offers the possibility of evaluating candidate algorithms against a near-complete repertoire of variable disease morphologies. This parallel interrogation approach simplifies the evaluation, validation, and comparison of such candidate algorithms. A recently developed digital tool, digital core (dCORE, and image microarray maker (iMAM enables the capture of uniformly sized and resolution-matched images, with these representing key morphologic features and fields of view, aggregated into a single monolithic digital image file in an array format, which we define as an image microarray (IMA. We further define the TMA-IMA construct as IMA-based images derived from whole slide images of TMAs themselves. Methods: Here we describe the first combined use of the previously described dCORE and iMAM tools, toward the goal of generating a higher-order image construct, with multiple TMA cores from multiple distinct conventional TMAs assembled as a single digital image montage. This image construct served as the basis of the carrying out of a massively parallel image analysis exercise, based on the use of the previously described spatially invariant vector quantization (SIVQ algorithm. Results: Multicase, multifield TMA-IMAs of follicular lymphoma and follicular hyperplasia were separately rendered, using the aforementioned tools. Each of these two IMAs contained a distinct spectrum of morphologic heterogeneity with respect to both tingible body macrophage (TBM appearance and apoptotic body morphology. SIVQ-based pattern matching, with ring vectors selected to screen for either tingible body macrophages or apoptotic

  2. Imaging of chest trauma: radiological patterns of injury and diagnostic algorithms

    International Nuclear Information System (INIS)

    Lomoschitz, Fritz M.; Eisenhuber, Edith; Linnau, Ken F.; Peloschek, Philipp; Schoder, Maria; Bankier, Alexander A.

    2003-01-01

    In patients after chest trauma, imaging plays a key role for both, the primary diagnostic work-up, and the secondary assessment of potential treatment. Despite its well-known limitations, the anteroposterior chest radiograph remains the starting point of the imaging work-up. Adjunctive imaging with computed tomography, that recently is increasingly often performed on multidetector computed tomography units, adds essential information not readily available on the conventional radiograph. This allows better definition of trauma-associated thoracic injuries not only in acute traumatic aortic injury, but also in pulmonary, tracheobronchial, cardiac, diaphragmal, and thoracic skeletal injuries. This article reviews common radiographic findings in patients after chest trauma, shows typical imaging features resulting from thoracic injury, presents imaging algorithms, and recalls to the reader less common but clinically relevant entities encountered in patients after thoracic trauma

  3. Indices of diagnostic algorithm in imaging diagnosis of the gastrointestinal tract

    International Nuclear Information System (INIS)

    Pomakov, P.

    2002-01-01

    The diagnostic algorithm (DA) is a method of consistent successive selection of the diagnostic imaging section in a given nosological entity. Depending on the diagnostic task undertaken one or more methods of consecutive investigation may be chosen - differing in scope, complexity and means of resolving the problem. The indices underlying the choice are divided up into two groups: primary effectiveness, accessibility, hazards and clinical relevance, and secondary - examiner, time, outfit and auxiliary means. For the purpose English terminology is used. The indices make part of the following formula: DA = RA (EOM) / DP (EOMT). In the numerator are included factors with positive effect, and in the denominator - factors with unfavourable effect. The primary factors are basic, leading and conclusive in nature, acting in all medical institutions and practicable in all nosological entities. Of the latter the most important is the obtained final result - R. The secondary factors are submitted in parenthesis. They vary within broad limits, changing in relatively short time intervals and having local relevance - only for the concrete medical facility where the imaging method is conducted. Not infrequently, the final outcome - diagnosis - is a function of the interaction between all the rest of the basic factors and those with local effect. (author)

  4. Image quality enhancement for skin cancer optical diagnostics

    Science.gov (United States)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  5. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  6. Ant Colony Clustering Algorithm and Improved Markov Random Fusion Algorithm in Image Segmentation of Brain Images

    Directory of Open Access Journals (Sweden)

    Guohua Zou

    2016-12-01

    Full Text Available New medical imaging technology, such as Computed Tomography and Magnetic Resonance Imaging (MRI, has been widely used in all aspects of medical diagnosis. The purpose of these imaging techniques is to obtain various qualitative and quantitative data of the patient comprehensively and accurately, and provide correct digital information for diagnosis, treatment planning and evaluation after surgery. MR has a good imaging diagnostic advantage for brain diseases. However, as the requirements of the brain image definition and quantitative analysis are always increasing, it is necessary to have better segmentation of MR brain images. The FCM (Fuzzy C-means algorithm is widely applied in image segmentation, but it has some shortcomings, such as long computation time and poor anti-noise capability. In this paper, firstly, the Ant Colony algorithm is used to determine the cluster centers and the number of FCM algorithm so as to improve its running speed. Then an improved Markov random field model is used to improve the algorithm, so that its antinoise ability can be improved. Experimental results show that the algorithm put forward in this paper has obvious advantages in image segmentation speed and segmentation effect.

  7. Algorithms evaluation for fundus images enhancement

    International Nuclear Information System (INIS)

    Braem, V; Marcos, M; Bizai, G; Drozdowicz, B; Salvatelli, A

    2011-01-01

    Color images of the retina inherently involve noise and illumination artifacts. In order to improve the diagnostic quality of the images, it is desirable to homogenize the non-uniform illumination and increase contrast while preserving color characteristics. The visual result of different pre-processing techniques can be very dissimilar and it is necessary to make an objective assessment of the techniques in order to select the most suitable. In this article the performance of eight algorithms to correct the non-uniform illumination, contrast modification and color preservation was evaluated. In order to choose the most suitable a general score was proposed. The results got good impression from experts, although some differences suggest that not necessarily the best statistical quality of image is the one of best diagnostic quality to the trained doctor eye. This means that the best pre-processing algorithm for an automatic classification may be different to the most suitable one for visual diagnosis. However, both should result in the same final diagnosis.

  8. Diagnostic imaging in intensive care patients

    International Nuclear Information System (INIS)

    Afione, Cristina; Binda, Maria del C.

    2004-01-01

    Purpose: To determine the role of imaging diagnostic methods in the location of infection causes of unknown origin in the critical care patient. Material and methods: A comprehensive medical literature search has been done. Recommendations for the diagnostic imaging of septic focus in intensive care patients are presented for each case, with analysis based on evidence. The degree of evidence utilized has been that of Oxford Center for Evidence-based Medicine. Results: Nosocomial infection is the most frequent complication in the intensive care unit (25 to 33%) with high sepsis incidence rate. In order to locate the infection focus, imaging methods play an important role, as a diagnostic tool and to guide therapeutic procedures. The most frequent causes of infection are: ventilation associated pneumonia, sinusitis, intra-abdominal infections and an acute acalculous cholecystitis. This paper analyses the diagnostic imaging of hospital infection, with the evaluation of choice methods for each one and proposes an algorithm to assess the septic patient. Conclusion: There are evidences, with different degrees of recommendation, for the use of diagnostic imaging methods for infectious focuses in critical care patients. The studies have been selected based on their diagnostic precision, on the capacity of the medical team and on the availability of resources, considering the risk-benefit balance for the best safety of the patient. (author)

  9. Structured diagnostic imaging in patients with multiple trauma

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M.; Kanz, K.G.

    2002-01-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [de

  10. Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content

    Energy Technology Data Exchange (ETDEWEB)

    Tourassi, Georgia [ORNL; Voisin, Sophie [ORNL; Paquit, Vincent C [ORNL; Krupinski, Elizabeth [University of Arizona

    2013-01-01

    Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By pooling the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.

  11. Investigating the link between radiologists’ gaze, diagnostic decision, and image content

    Science.gov (United States)

    Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent; Krupinski, Elizabeth

    2013-01-01

    Objective To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods Gaze data and diagnostic decisions were collected from three breast imaging radiologists and three radiology residents who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Image analysis was performed in mammographic regions that attracted radiologists’ attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results By pooling the data from all readers, machine learning produced highly accurate predictive models linking image content, gaze, and cognition. Potential linking of those with diagnostic error was also supported to some extent. Merging readers’ gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the readers’ diagnostic errors while confirming 97.3% of their correct diagnoses. The readers’ individual perceptual and cognitive behaviors could be adequately predicted by modeling the behavior of others. However, personalized tuning was in many cases beneficial for capturing more accurately individual behavior. Conclusions There is clearly an interaction between radiologists’ gaze, diagnostic decision, and image content which can be modeled with machine learning algorithms. PMID:23788627

  12. Comparison of different reconstruction algorithms for three-dimensional ultrasound imaging in a neurosurgical setting.

    Science.gov (United States)

    Miller, D; Lippert, C; Vollmer, F; Bozinov, O; Benes, L; Schulte, D M; Sure, U

    2012-09-01

    Freehand three-dimensional ultrasound imaging (3D-US) is increasingly used in image-guided surgery. During image acquisition, a set of B-scans is acquired that is distributed in a non-parallel manner over the area of interest. Reconstructing these images into a regular array allows 3D visualization. However, the reconstruction process may introduce artefacts and may therefore reduce image quality. The aim of the study is to compare different algorithms with respect to image quality and diagnostic value for image guidance in neurosurgery. 3D-US data sets were acquired during surgery of various intracerebral lesions using an integrated ultrasound-navigation device. They were stored for post-hoc evaluation. Five different reconstruction algorithms, a standard multiplanar reconstruction with interpolation (MPR), a pixel nearest neighbour method (PNN), a voxel nearest neighbour method (VNN) and two voxel based distance-weighted algorithms (VNN2 and DW) were tested with respect to image quality and artefact formation. The capability of the algorithm to fill gaps within the sample volume was investigated and a clinical evaluation with respect to the diagnostic value of the reconstructed images was performed. MPR was significantly worse than the other algorithms in filling gaps. In an image subtraction test, VNN2 and DW reliably reconstructed images even if large amounts of data were missing. However, the quality of the reconstruction improved, if data acquisition was performed in a structured manner. When evaluating the diagnostic value of reconstructed axial, sagittal and coronal views, VNN2 and DW were judged to be significantly better than MPR and VNN. VNN2 and DW could be identified as robust algorithms that generate reconstructed US images with a high diagnostic value. These algorithms improve the utility and reliability of 3D-US imaging during intraoperative navigation. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Rationale diagnostic approach to biliary tract imaging

    International Nuclear Information System (INIS)

    Helmberger, H.; Huppertz, A.; Ruell, T.; Zillinger, C.; Ehrenberg, C.; Roesch, T.

    1998-01-01

    Since the introduction of MR cholangiography (MRC) diagnostic imaging of the biliary tract has been significantly improved. While percutaneous ultrasonography is still the primary examination, computed tomography (CT), conventional magnetic resonance imaging (MRI), as well as the direct imaging modalities of the biliary tract - iv cholangiography, endoscopic-retrograde-cholangiography (ERC), and percutaneous-transhepatic-cholangiography (PTC) are in use. This article discusses the clinical value of the different diagnostic techniques for the various biliary pathologies with special attention to recent developments in MRC techniques. An algorithm is presented offering a rational approach to biliary disorders. With further technical improvement shifts from ERC(P) to MRC(P) for biliary imaging could be envisioned, ERCP further concentrating on its role as a minimal invasive treatment option. (orig.) [de

  14. Development and image quality assessment of a contrast-enhancement algorithm for display of digital chest radiographs

    International Nuclear Information System (INIS)

    Rehm, K.

    1992-01-01

    This dissertation presents a contrast-enhancement algorithm Artifact-Suppressed Adaptive Histogram Equalization (ASAHE). This algorithm was developed as part of a larger effort to replace the film radiographs currently used in radiology departments with digital images. Among the expected benefits of digital radiology are improved image management and greater diagnostic accuracy. Film radiographs record X-ray transmission data at high spatial resolution, and a wide dynamic range of signal. Current digital radiography systems record an image at reduced spatial resolution and with coarse sampling of the available dynamic range. These reductions have a negative impact on diagnostic accuracy. The contrast-enhancement algorithm presented in this dissertation is designed to boost diagnostic accuracy of radiologists using digital images. The ASAHE algorithm is an extension of an earlier technique called Adaptive Histogram Equalization (AHE). The AHE algorithm is unsuitable for chest radiographs because it over-enhances noise, and introduces boundary artifacts. The modifications incorporated in ASAHE suppress the artifacts and allow processing of chest radiographs. This dissertation describes the psychophysical methods used to evaluate the effects of processing algorithms on human observer performance. An experiment conducted with anthropomorphic phantoms and simulated nodules showed the ASAHE algorithm to be superior for human detection of nodules when compared to a computed radiography system's algorithm that is in current use. An experiment conducted using clinical images demonstrating pneumothoraces (partial lung collapse) indicated no difference in human observer accuracy when ASAHE images were compared to computed radiography images, but greater ease of diagnosis when ASAHE images were used. These results provide evidence to suggest that Artifact-Suppressed Adaptive Histogram Equalization can be effective in increasing diagnostic accuracy and efficiency

  15. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.

    Science.gov (United States)

    Ehteshami Bejnordi, Babak; Veta, Mitko; Johannes van Diest, Paul; van Ginneken, Bram; Karssemeijer, Nico; Litjens, Geert; van der Laak, Jeroen A W M; Hermsen, Meyke; Manson, Quirine F; Balkenhol, Maschenka; Geessink, Oscar; Stathonikos, Nikolaos; van Dijk, Marcory Crf; Bult, Peter; Beca, Francisco; Beck, Andrew H; Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Zhong, Aoxiao; Dou, Qi; Li, Quanzheng; Chen, Hao; Lin, Huang-Jing; Heng, Pheng-Ann; Haß, Christian; Bruni, Elia; Wong, Quincy; Halici, Ugur; Öner, Mustafa Ümit; Cetin-Atalay, Rengul; Berseth, Matt; Khvatkov, Vitali; Vylegzhanin, Alexei; Kraus, Oren; Shaban, Muhammad; Rajpoot, Nasir; Awan, Ruqayya; Sirinukunwattana, Korsuk; Qaiser, Talha; Tsang, Yee-Wah; Tellez, David; Annuscheit, Jonas; Hufnagl, Peter; Valkonen, Mira; Kartasalo, Kimmo; Latonen, Leena; Ruusuvuori, Pekka; Liimatainen, Kaisa; Albarqouni, Shadi; Mungal, Bharti; George, Ami; Demirci, Stefanie; Navab, Nassir; Watanabe, Seiryo; Seno, Shigeto; Takenaka, Yoichi; Matsuda, Hideo; Ahmady Phoulady, Hady; Kovalev, Vassili; Kalinovsky, Alexander; Liauchuk, Vitali; Bueno, Gloria; Fernandez-Carrobles, M Milagro; Serrano, Ismael; Deniz, Oscar; Racoceanu, Daniel; Venâncio, Rui

    2017-12-12

    Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image

  16. Ordering of diagnostic information in encoded medical images. Accuracy progression

    Science.gov (United States)

    Przelaskowski, A.; Jóźwiak, R.; Krzyżewski, T.; Wróblewska, A.

    2008-03-01

    A concept of diagnostic accuracy progression for embedded coding of medical images was presented. Implementation of JPEG2000 encoder with a modified PCRD optimization algorithm was realized and initially verified as a tool for accurate medical image streaming. Mean square error as a distortion measure was replaced by other numerical measures to revise quality progression according to diagnostic importance of successively encoded image information. A faster increment of image diagnostic importance during reconstruction of initial packets of code stream was reached. Modified Jasper code was initially tested on a set of mammograms containing clusters of microcalcifications and malignant masses, and other radiograms. Teleradiologic applications were considered as the first area of interests.

  17. Spiral-CT-angiography of acute pulmonary embolism: factors that influence the implementation into standard diagnostic algorithms

    International Nuclear Information System (INIS)

    Bankier, A.; Herold, C.J.; Fleischmann, D.; Janata-Schwatczek, K.

    1998-01-01

    Purpose: Debate about the potential implementation of Spiral-CT in diagnostic algorithms of pulmonary embolism are often focussed on sensitivity and specificity in the context of comparative methodologic studies. We intend to investigate whether additional factors might influence this debate. Results: The factors availability, acceptance, patient-outcome, and cost-effectiveness-studies do have substantial influence on the implementation of Spiral-CT in the diagnostic algorithms of pulmonary embolism. Incorporation of these factors into the discussion might lead to more flexible and more patient-oriented algorithms for the diagnosis of pulmonary embolism. Conclusion: Availability of equipment, acceptance among clinicians, patient-out-come, and cost-effectiveness evaluations should be implemented into the debate about potential implementation of Spiral-CT in routine diagnostic imaging algorithms of pulmonary embolism. (orig./AJ) [de

  18. Algorithm of Functional Musculoskeletal Disorders Diagnostics

    OpenAIRE

    Alexandra P. Eroshenko

    2012-01-01

    The article scientifically justifies the algorithm of complex diagnostics of functional musculoskeletal disorders during resort treatment, aimed at the optimal application of modern methods of physical rehabilitation (correction programs formation), based on diagnostic methodologies findings

  19. Algorithm of Functional Musculoskeletal Disorders Diagnostics

    Directory of Open Access Journals (Sweden)

    Alexandra P. Eroshenko

    2012-04-01

    Full Text Available The article scientifically justifies the algorithm of complex diagnostics of functional musculoskeletal disorders during resort treatment, aimed at the optimal application of modern methods of physical rehabilitation (correction programs formation, based on diagnostic methodologies findings

  20. Tree-structured vector quantization of CT chest scans: Image quality and diagnostic accuracy

    International Nuclear Information System (INIS)

    Cosman, P.C.; Tseng, C.; Gray, R.M.; Olshen, R.A.; Moses, L.E.; Davidson, H.C.; Bergin, C.J.; Riskin, E.A.

    1993-01-01

    The quality of lossy compressed images is often characterized by signal-to-noise ratios, informal tests of subjective quality, or receiver operating characteristic (ROC) curves that include subjective appraisals of the value of an image for a particular application. The authors believe that for medical applications, lossy compressed images should be judged by a more natural and fundamental aspect of relative image quality: their use in making accurate diagnoses. They apply a lossy compression algorithm to medical images, and quantify the quality of the images by the diagnostic performance of radiologists, as well as by traditional signal-to-noise ratios and subjective ratings. The study is unlike previous studies of the effects of lossy compression in that they consider non-binary detection tasks, simulate actual diagnostic practice instead of using paired tests or confidence rankings, use statistical methods that are more appropriate for non-binary clinical data than are the popular ROC curves, and use low-complexity predictive tree-structured vector quantization for compression rather than DCT-based transform codes combined with entropy coding. Their diagnostic tasks are the identification of nodules (tumors) in the lungs and lymphadenopathy in the mediastinum from computerized tomography (CT) chest scans. For the image modality, compression algorithm, and diagnostic tasks they consider, the original 12 bit per pixel (bpp) CT image can be compressed to between 1 bpp and 2 bpp with no significant changes in diagnostic accuracy

  1. Development of Multi-perspective Diagnostics and Analysis Algorithms with Applications to Subsonic and Supersonic Combustors

    Science.gov (United States)

    Wickersham, Andrew Joseph

    There are two critical research needs for the study of hydrocarbon combustion in high speed flows: 1) combustion diagnostics with adequate temporal and spatial resolution, and 2) mathematical techniques that can extract key information from large datasets. The goal of this work is to address these needs, respectively, by the use of high speed and multi-perspective chemiluminescence and advanced mathematical algorithms. To obtain the measurements, this work explored the application of high speed chemiluminescence diagnostics and the use of fiber-based endoscopes (FBEs) for non-intrusive and multi-perspective chemiluminescence imaging up to 20 kHz. Non-intrusive and full-field imaging measurements provide a wealth of information for model validation and design optimization of propulsion systems. However, it is challenging to obtain such measurements due to various implementation difficulties such as optical access, thermal management, and equipment cost. This work therefore explores the application of FBEs for non-intrusive imaging to supersonic propulsion systems. The FBEs used in this work are demonstrated to overcome many of the aforementioned difficulties and provided datasets from multiple angular positions up to 20 kHz in a supersonic combustor. The combustor operated on ethylene fuel at Mach 2 with an inlet stagnation temperature and pressure of approximately 640 degrees Fahrenheit and 70 psia, respectively. The imaging measurements were obtained from eight perspectives simultaneously, providing full-field datasets under such flow conditions for the first time, allowing the possibility of inferring multi-dimensional measurements. Due to the high speed and multi-perspective nature, such new diagnostic capability generates a large volume of data and calls for analysis algorithms that can process the data and extract key physics effectively. To extract the key combustion dynamics from the measurements, three mathematical methods were investigated in this work

  2. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2017-01-01

    Full Text Available Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM. Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA, while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA, the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM is of great value, indicating the feasibility of digitalized tongue diagnosis.

  3. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    International Nuclear Information System (INIS)

    Paulson, E

    2014-01-01

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  4. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  5. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    Science.gov (United States)

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  6. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders

    International Nuclear Information System (INIS)

    Goebel, Georg; Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph; Donnemiller, Eveline; Warwitz, Boris; Virgolini, Irene

    2011-01-01

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [ 123 I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP ND ) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP ND image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [ 123 I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [ 123 I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [ 123 I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit. (orig.)

  7. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders.

    Science.gov (United States)

    Goebel, Georg; Seppi, Klaus; Donnemiller, Eveline; Warwitz, Boris; Wenning, Gregor K; Virgolini, Irene; Poewe, Werner; Scherfler, Christoph

    2011-04-01

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [(123)I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP(ND)) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP(ND) image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [(123)I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [(123)I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [(123)I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit.

  8. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    International Nuclear Information System (INIS)

    Jiang, J; Hall, T J

    2007-01-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows (registered) system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s -1 ) that exceed our previous methods

  9. A novel computer-assisted image analysis of [{sup 123}I]{beta}-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Georg [Innsbruck Medical University, Department of Medical Statistics, Informatics and Health Economics, Innsbruck (Austria); Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Donnemiller, Eveline; Warwitz, Boris; Virgolini, Irene [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2011-04-15

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [{sup 123}I]{beta}-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP{sub ND}) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP{sub ND} image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [{sup 123}I]{beta}-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [{sup 123}I]{beta}-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [{sup 123}I]{beta}-CIT SPECT in patients presenting with parkinsonism at their initial visit. (orig.)

  10. Metal artifact reduction algorithm based on model images and spatial information

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jay [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Shih, Cheng-Ting [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Huang, Tzung-Chi [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (China); Sun, Jing-Yi [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec. 2, Linong Street, Taipei 112, Taiwan (China)

    2011-10-01

    Computed tomography (CT) has become one of the most favorable choices for diagnosis of trauma. However, high-density metal implants can induce metal artifacts in CT images, compromising image quality. In this study, we proposed a model-based metal artifact reduction (MAR) algorithm. First, we built a model image using the k-means clustering technique with spatial information and calculated the difference between the original image and the model image. Then, the projection data of these two images were combined using an exponential weighting function. At last, the corrected image was reconstructed using the filter back-projection algorithm. Two metal-artifact contaminated images were studied. For the cylindrical water phantom image, the metal artifact was effectively removed. The mean CT number of water was improved from -28.95{+-}97.97 to -4.76{+-}4.28. For the clinical pelvic CT image, the dark band and the metal line were removed, and the continuity and uniformity of the soft tissue were recovered as well. These results indicate that the proposed MAR algorithm is useful for reducing metal artifact and could improve the diagnostic value of metal-artifact contaminated CT images.

  11. Management algorithm for images of hepatic incidentalomas, renal and adrenal detected by computed tomography

    International Nuclear Information System (INIS)

    Montero Gonzalez, Allan

    2012-01-01

    A literature review has been carried out in the diagnostic and monitoring algorithms for image of incidentalomas of solid abdominal organs (liver, kidney and adrenal glands) detected by computed tomography (CT). The criteria have been unified and updated for a effective diagnosis. Posed algorithms have been made in simplified form. The imaging techniques have been specified for each pathology, showing the advantages and disadvantages of using it and justifying the application in daily practice [es

  12. Speckle imaging algorithms for planetary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    I will discuss the speckle imaging algorithms used to process images of the impact sites of the collision of comet Shoemaker-Levy 9 with Jupiter. The algorithms use a phase retrieval process based on the average bispectrum of the speckle image data. High resolution images are produced by estimating the Fourier magnitude and Fourier phase of the image separately, then combining them and inverse transforming to achieve the final result. I will show raw speckle image data and high-resolution image reconstructions from our recent experiment at Lick Observatory.

  13. Novel medical image enhancement algorithms

    Science.gov (United States)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  14. Picosecond image-converter diagnostics

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1975-01-01

    A brief review is presented of the improvements in picosecond image-converter diagnostics carried out since the previous Congress in 1972. The account is given under the following headings: picosecond image converter cameras for visible and x-ray radiation diagnostics; Nd:glass and ruby mode-locked laser measurements; x-ray plasma emission diagnostics; computer treatment of pictures produced by picosecond cameras. (U.K.)

  15. Diagnostic Imaging Workshop

    International Nuclear Information System (INIS)

    Sociedad Argentina de Fisica Medica

    2012-01-01

    The American Association of Physicist in Medicine (AAPM), the International Organization for Medical Physics (IOMP) and the Argentina Society of Medical Physics (SAFIM) was organized the Diagnostic Imaging Workshop 2012, in the city of Buenos Aires, Argentina. This workshop was an oriented training and scientific exchange between professionals and technicians who work in medical physics, especially in the areas of diagnostic imaging, nuclear medicine and radiotherapy, with special emphasis on the use of multimodal imaging for radiation treatment, planning as well of quality assurance associates.

  16. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICA

    Directory of Open Access Journals (Sweden)

    О. E. Prokopchenko

    2015-09-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article & based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematica may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  17. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-01-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  18. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  19. Fitting-free algorithm for efficient quantification of collagen fiber alignment in SHG imaging applications.

    Science.gov (United States)

    Hall, Gunnsteinn; Liang, Wenxuan; Li, Xingde

    2017-10-01

    Collagen fiber alignment derived from second harmonic generation (SHG) microscopy images can be important for disease diagnostics. Image processing algorithms are needed to robustly quantify the alignment in images with high sensitivity and reliability. Fourier transform (FT) magnitude, 2D power spectrum, and image autocorrelation have previously been used to extract fiber information from images by assuming a certain mathematical model (e.g. Gaussian distribution of the fiber-related parameters) and fitting. The fitting process is slow and fails to converge when the data is not Gaussian. Herein we present an efficient constant-time deterministic algorithm which characterizes the symmetricity of the FT magnitude image in terms of a single parameter, named the fiber alignment anisotropy R ranging from 0 (randomized fibers) to 1 (perfect alignment). This represents an important improvement of the technology and may bring us one step closer to utilizing the technology for various applications in real time. In addition, we present a digital image phantom-based framework for characterizing and validating the algorithm, as well as assessing the robustness of the algorithm against different perturbations.

  20. Primary retroperitoneal soft tissue sarcoma: Imaging appearances, pitfalls and diagnostic algorithm.

    Science.gov (United States)

    Messiou, C; Moskovic, E; Vanel, D; Morosi, C; Benchimol, R; Strauss, D; Miah, A; Douis, H; van Houdt, W; Bonvalot, S

    2017-07-01

    Although retroperitoneal sarcomas are rare tumours, they can be encountered by a wide variety of clinicians as they can be incidental findings on imaging or present with non specific symptoms and signs. Surgical resection can offer hope of cure and patient outcomes are improved when patients are managed in high-volume specialist centers. Failure to recognize retroperitoneal sarcomas on imaging can lead to inappropriate management in inexperienced centers. Therefore it is critical that a diagnosis of retroperitoneal sarcoma should be considered in the differential diagnosis of a retroperitoneal mass with prompt referral to a soft tissue sarcoma unit. In particular, the most common retroperitoneal sarcoma subtypes, liposarcoma and leiomyosarcoma, have characteristic imaging appearances which are discussed. This review therefore aims to set the context and guide clinicians through a diagnostic pathway for retroperitoneal masses in adults which arise extrinsic to the solid abdominal viscera. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm.

    Science.gov (United States)

    Sethi, Gaurav; Saini, B S

    2015-12-01

    This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.

  2. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

    Directory of Open Access Journals (Sweden)

    O. Ye. Prokopchenko

    2015-10-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  3. [Diagnostic imaging and radiation hazards].

    Science.gov (United States)

    Claudon, Michel; Guillaume, Luc

    2015-01-01

    For the last 20 years, the exposure of the population to medical radiation has been increased by 600%, mainly due to the extension of new imaging modalities such as CT or interventional radiology. The risk for radio-induced hazards is especially marked for children, because of the high sensivity of tissues to radiation especially during the first decade of the life. Two main ways allow to better control and reduce the mean effective dose per patient in diagnostic imaging: the introduction of recent technical improvement (i.e. low dose CT scans using iterative reconstruction algorithms, low dose technique for pediatric spine), and the substitution to non-radiating techniques such as ultrasound and MRI. The French National institute of Radioprotection and Nuclear Safety periodically publishes dose reference levels for conventional films and CT examinations, for both adults and pediatric patients. A close relationship between clinicians and radiologists remains essential for a better appreciation of the risk/benefit ratio of each individual examination using X-Rays.

  4. Algorithm of imaging modalities in cases of mandibular fractures

    International Nuclear Information System (INIS)

    Mihailova, H.

    2009-01-01

    Mandibular fracture is the most common bone fracture of maxillo-facial trauma. Up to now the main method for examination of the mandible is radiography. The aim of the issue is to present an algorithm of imaging modalities for investigation of patients in cases of mandibular trauma. It consists of series of X ray techniques and views of the facial skull named mandibulo-facial. This standardizes mandibulo-facial series includes exactly determined four projections done by conventional X ray techniques: posterior-anterior view of skull (PA or AP), oblique view of the left mandible; oblique view of the right mandible; occipito-mental view. Using these four planned radiograms is obligatory for each mandibular trauma. Panoramic X-ray is obligatory in cases of apparatus availability; this abolish only oblique views (left and right). Occipito-mental view of the skull gives anatomically better the coronoid process of the mandible, the zygoma complex, the orbital edges and maxillar sinus than Waters projection. So mandibulo-facial series of four planned radiograms is not only for diagnostic of mandibular fractures, but as a screening of mandibulo-facial trauma too. Thus using algorithm of imaging modalities in cases of mandibular fracture leads to optimization of diagnostic process in patients with mandibular trauma. (author)

  5. Computer-aided assessment of diagnostic images for epidemiological research

    Directory of Open Access Journals (Sweden)

    Gange Stephen J

    2009-11-01

    Full Text Available Abstract Background Diagnostic images are often assessed for clinical outcomes using subjective methods, which are limited by the skill of the reviewer. Computer-aided diagnosis (CAD algorithms that assist reviewers in their decisions concerning outcomes have been developed to increase sensitivity and specificity in the clinical setting. However, these systems have not been well utilized in research settings to improve the measurement of clinical endpoints. Reductions in bias through their use could have important implications for etiologic research. Methods Using the example of cortical cataract detection, we developed an algorithm for assisting a reviewer in evaluating digital images for the presence and severity of lesions. Available image processing and statistical methods that were easily implementable were used as the basis for the CAD algorithm. The performance of the system was compared to the subjective assessment of five reviewers using 60 simulated images. Cortical cataract severity scores from 0 to 16 were assigned to the images by the reviewers and the CAD system, with each image assessed twice to obtain a measure of variability. Image characteristics that affected reviewer bias were also assessed by systematically varying the appearance of the simulated images. Results The algorithm yielded severity scores with smaller bias on images where cataract severity was mild to moderate (approximately ≤ 6/16ths. On high severity images, the bias of the CAD system exceeded that of the reviewers. The variability of the CAD system was zero on repeated images but ranged from 0.48 to 1.22 for the reviewers. The direction and magnitude of the bias exhibited by the reviewers was a function of the number of cataract opacities, the shape and the contrast of the lesions in the simulated images. Conclusion CAD systems are feasible to implement with available software and can be valuable when medical images contain exposure or outcome information for

  6. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  7. An image fiber based fluorescent probe with associated signal processing scheme for biomedical diagnostics

    International Nuclear Information System (INIS)

    Vaishakh, M; Murukeshan, V M; Seah, L K

    2008-01-01

    A dual-modality image fiber based fluorescent probe that can be used for depth sensitive imaging and suppression of fluorescent emissions with nanosecond lifetime difference is proposed and illustrated in this paper. The system can give high optical sectioning and employs an algorithm for obtaining phase sensitive images. The system can find main application in in vivo biomedical diagnostics for detecting biochemical changes for distinguishing malignant tissue from healthy tissue

  8. Algorithms for Image Analysis and Combination of Pattern Classifiers with Application to Medical Diagnosis

    Science.gov (United States)

    Georgiou, Harris

    2009-10-01

    Medical Informatics and the application of modern signal processing in the assistance of the diagnostic process in medical imaging is one of the more recent and active research areas today. This thesis addresses a variety of issues related to the general problem of medical image analysis, specifically in mammography, and presents a series of algorithms and design approaches for all the intermediate levels of a modern system for computer-aided diagnosis (CAD). The diagnostic problem is analyzed with a systematic approach, first defining the imaging characteristics and features that are relevant to probable pathology in mammo-grams. Next, these features are quantified and fused into new, integrated radio-logical systems that exhibit embedded digital signal processing, in order to improve the final result and minimize the radiological dose for the patient. In a higher level, special algorithms are designed for detecting and encoding these clinically interest-ing imaging features, in order to be used as input to advanced pattern classifiers and machine learning models. Finally, these approaches are extended in multi-classifier models under the scope of Game Theory and optimum collective deci-sion, in order to produce efficient solutions for combining classifiers with minimum computational costs for advanced diagnostic systems. The material covered in this thesis is related to a total of 18 published papers, 6 in scientific journals and 12 in international conferences.

  9. A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application

    Directory of Open Access Journals (Sweden)

    Shashwat Pathak

    2016-09-01

    Full Text Available This paper proposes and evaluates an algorithm to automatically detect the cataracts from color images in adult human subjects. Currently, methods available for cataract detection are based on the use of either fundus camera or Digital Single-Lens Reflex (DSLR camera; both are very expensive. The main motive behind this work is to develop an inexpensive, robust and convenient algorithm which in conjugation with suitable devices will be able to diagnose the presence of cataract from the true color images of an eye. An algorithm is proposed for cataract screening based on texture features: uniformity, intensity and standard deviation. These features are first computed and mapped with diagnostic opinion by the eye expert to define the basic threshold of screening system and later tested on real subjects in an eye clinic. Finally, a tele-ophthamology model using our proposed system has been suggested, which confirms the telemedicine application of the proposed system.

  10. On the performance of SART and ART algorithms for microwave imaging

    Science.gov (United States)

    Aprilliyani, Ria; Prabowo, Rian Gilang; Basari

    2018-02-01

    The development of advanced technology leads to the change of human lifestyle in current society. One of the disadvantage impact is arising the degenerative diseases such as cancers and tumors, not just common infectious diseases. Every year, victims of cancers and tumors grow significantly leading to one of the death causes in the world. In early stage, cancer/tumor does not have definite symptoms, but it will grow abnormally as tissue cells and damage normal tissue. Hence, early cancer detection is required. Some common diagnostics modalities such as MRI, CT and PET are quite difficult to be operated in home or mobile environment such as ambulance. Those modalities are also high cost, unpleasant, complex, less safety and harder to move. Hence, this paper proposes a microwave imaging system due to its portability and low cost. In current study, we address on the performance of simultaneous algebraic reconstruction technique (SART) algorithm that was applied in microwave imaging. In addition, SART algorithm performance compared with our previous work on algebraic reconstruction technique (ART), in order to have performance comparison, especially in the case of reconstructed image quality. The result showed that by applying SART algorithm on microwave imaging, suspicious cancer/tumor can be detected with better image quality.

  11. An algorithm for improving the quality of structural images of turbid media in endoscopic optical coherence tomography

    Science.gov (United States)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    High-quality OCT structural images reconstruction algorithm for endoscopic optical coherence tomography of biological tissue is described. The key features of the presented algorithm are: (1) raster scanning and averaging of adjacent Ascans and pixels; (2) speckle level minimization. The described algorithm can be used in the gastroenterology, urology, gynecology, otorhinolaryngology for mucous membranes and skin diagnostics in vivo and in situ.

  12. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  13. Use of hyperspectral imaging technology to develop a diagnostic support system for gastric cancer

    Science.gov (United States)

    Goto, Atsushi; Nishikawa, Jun; Kiyotoki, Shu; Nakamura, Munetaka; Nishimura, Junichi; Okamoto, Takeshi; Ogihara, Hiroyuki; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao

    2015-01-01

    Hyperspectral imaging (HSI) is a new technology that obtains spectroscopic information and renders it in image form. This study examined the difference in the spectral reflectance (SR) of gastric tumors and normal mucosa recorded with a hyperspectral camera equipped with HSI technology and attempted to determine the specific wavelength that is useful for the diagnosis of gastric cancer. A total of 104 gastric tumors removed by endoscopic submucosal dissection from 96 patients at Yamaguchi University Hospital were recorded using a hyperspectral camera. We determined the optimal wavelength and the cut-off value for differentiating tumors from normal mucosa to establish a diagnostic algorithm. We also attempted to highlight tumors by image processing using the hyperspectral camera's analysis software. A wavelength of 770 nm and a cut-off value of 1/4 the corrected SR were selected as the respective optimal wavelength and cut-off values. The rates of sensitivity, specificity, and accuracy of the algorithm's diagnostic capability were 71%, 98%, and 85%, respectively. It was possible to enhance tumors by image processing at the 770-nm wavelength. HSI can be used to measure the SR in gastric tumors and to differentiate between tumorous and normal mucosa.

  14. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    Science.gov (United States)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  15. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience

    Energy Technology Data Exchange (ETDEWEB)

    Apfaltrer, Paul, E-mail: paul.apfaltrer@medma.uni-heidelberg.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoendube, Harald, E-mail: harald.schoendube@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Allmendinger, Thomas, E-mail: thomas.allmendinger@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Tricarico, Francesco, E-mail: francescotricarico82@gmail.com [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Department of Bioimaging and Radiological Sciences, Catholic University of the Sacred Heart, “A. Gemelli” Hospital, Largo A. Gemelli 8, Rome (Italy); Schindler, Andreas, E-mail: andreas.schindler@campus.lmu.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Vogt, Sebastian, E-mail: sebastian.vogt@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Sunnegårdh, Johan, E-mail: johan.sunnegardh@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); and others

    2013-02-15

    Objective: To evaluate the effect of a temporal resolution improvement method (TRIM) for cardiac CT on diagnostic image quality for coronary artery assessment. Materials and methods: The TRIM-algorithm employs an iterative approach to reconstruct images from less than 180° of projections and uses a histogram constraint to prevent the occurrence of limited-angle artifacts. This algorithm was applied in 11 obese patients (7 men, 67.2 ± 9.8 years) who had undergone second generation dual-source cardiac CT with 120 kV, 175–426 mAs, and 500 ms gantry rotation. All data were reconstructed with a temporal resolution of 250 ms using traditional filtered-back projection (FBP) and of 200 ms using the TRIM-algorithm. Contrast attenuation and contrast-to-noise-ratio (CNR) were measured in the ascending aorta. The presence and severity of coronary motion artifacts was rated on a 4-point Likert scale. Results: All scans were considered of diagnostic quality. Mean BMI was 36 ± 3.6 kg/m{sup 2}. Average heart rate was 60 ± 9 bpm. Mean effective dose was 13.5 ± 4.6 mSv. When comparing FBP- and TRIM reconstructed series, the attenuation within the ascending aorta (392 ± 70.7 vs. 396.8 ± 70.1 HU, p > 0.05) and CNR (13.2 ± 3.2 vs. 11.7 ± 3.1, p > 0.05) were not significantly different. A total of 110 coronary segments were evaluated. All studies were deemed diagnostic; however, there was a significant (p < 0.05) difference in the severity score distribution of coronary motion artifacts between FBP (median = 2.5) and TRIM (median = 2.0) reconstructions. Conclusion: The algorithm evaluated here delivers diagnostic imaging quality of the coronary arteries despite 500 ms gantry rotation. Possible applications include improvement of cardiac imaging on slower gantry rotation systems or mitigation of the trade-off between temporal resolution and CNR in obese patients.

  16. OPTIMIZATION OF DIAGNOSTIC IMAGING IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    S. A. Velichko

    2015-01-01

    Full Text Available The paper presents the results of breast imaging for 47200 women. Breast cancer was detected in 862 (1.9% patients, fibroadenoma in 1267 (2.7% patients and isolated breast cysts in 1162 (2.4% patients. Different types of fibrocystic breast disease (adenosis, diffuse fibrocystic changes, local fibrosis and others were observed in 60.1% of women. Problems of breast cancer visualization during mammography, characterized by the appearance of fibrocystic mastopathy (sclerosing adenosis, fibrous bands along the ducts have been analyzed. Data on the development of diagnostic algorithms including the modern techniques for ultrasound and interventional radiology aimed at detecting early breast cancer have been presented.  

  17. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  18. Image diagnostic of colonic diseases - controversial questions

    International Nuclear Information System (INIS)

    Pomakov, P.; Rizov, A.; Stancheva, I.

    2013-01-01

    In the system of colonic diseases' diagnostic algorithm, fibrocolonoscopy (FCS) is defined as 'Golden Standard'. By this reason some X-ray diagnostic methods - irrigography, etc. are currently not being used in a number of health institutions. The aim of this study is a comparative analysis of FCS and irrigography diagnostic efficacy in various colonic diseases. For 10-years period, in cooperation with a gastroenterologist-gastroscopist, 2151 patients with various colonic diseases were evaluated by FCS and irrigography with pharmaco-diagnostics/when necessary. Advantage of FCS was established in diagnosing diseases with patho-morfologic changes on the inner surface of the colon - benign and malignant neoplastic processes, chronic inflammatory diseases, etc. At the same time functional changes - irritated colon syndrome, changes in defecation act, etc., are not an object of diagnosis through FCS. Correction in colonic diseases diagnostic algorithm is necessary. FCS should be mandatory. If result is negative - irrigography with pharmaco-diagnostics should be done. (authors)

  19. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  20. Complications in diagnostic imaging. 2. ed.

    International Nuclear Information System (INIS)

    Ansell, G.; Wilkins, R.A.; Medical Research Council, Harrow

    1987-01-01

    Thirty-seven chapters review various complications which may arise for patients and staff in medical diagnostic imaging. Five of these chapters are indexed separately covering topics on the complications of using radiopharmaceuticals, safety considerations in magnetic resonance imaging, radiation hazards of diagnostic radiology and medico-legal problems involving diagnostic radiology in both the UK and the USA. (UK)

  1. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    Science.gov (United States)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  2. Confirmation of Thermal Images and Vibration Signals for Intelligent Machine Fault Diagnostics

    Directory of Open Access Journals (Sweden)

    Achmad Widodo

    2012-01-01

    Full Text Available This paper deals with the maintenance technique for industrial machinery using the artificial neural network so-called self-organizing map (SOM. The aim of this work is to develop intelligent maintenance system for machinery based on an alternative way, namely, thermal images instead of vibration signals. SOM is selected due to its simplicity and is categorized as an unsupervised algorithm. Following the SOM training, machine fault diagnostics is performed by using the pattern recognition technique of machine conditions. The data used in this work are thermal images and vibration signals, which were acquired from machine fault simulator (MFS. It is a reliable tool and is able to simulate several conditions of faulty machine such as unbalance, misalignment, looseness, and rolling element bearing faults (outer race, inner race, ball, and cage defects. Data acquisition were conducted simultaneously by infrared thermography camera and vibration sensors installed in the MFS. The experimental data are presented as thermal image and vibration signal in the time domain. Feature extraction was carried out to obtain salient features sensitive to machine conditions from thermal images and vibration signals. These features are then used to train the SOM for intelligent machine diagnostics process. The results show that SOM can perform intelligent fault diagnostics with plausible accuracies.

  3. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    Science.gov (United States)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  4. Effectiveness of a Staged US and Unenhanced MR Imaging Algorithm in the Diagnosis of Pediatric Appendicitis.

    Science.gov (United States)

    Dibble, Elizabeth H; Swenson, David W; Cartagena, Claudia; Baird, Grayson L; Herliczek, Thaddeus W

    2018-03-01

    Purpose To establish, in a large cohort, the diagnostic performance of a staged algorithm involving ultrasonography (US) followed by conditional unenhanced magnetic resonance (MR) imaging for the imaging work-up of pediatric appendicitis. Materials and Methods A staged imaging algorithm in which US and unenhanced MR imaging were performed in pediatric patients suspected of having appendicitis was implemented at the authors' institution on January 1, 2011, with US as the initial modality followed by unenhanced MR imaging when US findings were equivocal. A search of the radiology database revealed 2180 pediatric patients who had undergone imaging for suspected appendicitis from January 1, 2011, through December 31, 2012. Of the 2180 patients, 1982 (90.9%) were evaluated according to the algorithm. The authors reviewed the electronic medical records and imaging reports for all patients. Imaging reports were reviewed and classified as positive, negative, or equivocal for appendicitis and correlated with surgical and pathology reports. Results The frequency of appendicitis was 20.5% (407 of 1982 patients). US alone was performed in 1905 of the 1982 patients (96.1%), yielding a sensitivity of 98.7% (386 of 391 patients) and specificity of 97.1% (1470 of 1514 patients) for appendicitis. Seventy-seven patients underwent unenhanced MR imaging after equivocal US findings, yielding an overall algorithm sensitivity of 98.2% (400 of 407 patients) and specificity of 97.1% (1530 of 1575 patients). Seven of the 1982 patients (0.4%) had false-negative results with the staged algorithm. The negative predictive value of the staged algorithm was 99.5% (1530 of 1537 patients). Conclusion A staged algorithm of US and unenhanced MR imaging for pediatric appendicitis appears to be effective. The results of this study demonstrate that this staged algorithm is 98.2% sensitive and 97.1% specific for the diagnosis of appendicitis in pediatric patients. © RSNA, 2017.

  5. Active imaging for monitoring and technical diagnostics

    Directory of Open Access Journals (Sweden)

    Marek Piszczek

    2014-08-01

    Full Text Available The article presents the results of currently running work in the field of active imaging. The term active refers to both the image acquisition methods, so-called methods of the spatio-temporal framing and active visualization method applying augmented reality. Also results of application of the HMD and 6DoF modules as well as the experimental laser photography device are given. The device works by methods of spatio-temporal framing and it has been developed at the IOE WAT. In terms of image acquisition - active imaging involves the use of illumination of the observed scene. In the field of information visualization - active imaging directly concerns the issues of interaction human-machine environment. The results show the possibility of using the described techniques, among others, rescue (fire brigade, security of mass events (police or the protection of critical infrastructure as well as broadly understood diagnostic problems. Examples presented in the article show a wide range of possible uses of the methods both in observational techniques and measurement. They are relatively innovative solutions and require elaboration of series of hardware and algorithmic issues. However, already at this stage it is clear that active acquisition and visualization methods indicate a high potential for this type of information solutions.[b]Keywords[/b]: active imaging, augmented reality, digital image processing

  6. Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: Effects on image quality, artefacts and diagnostic performance for the detection of stenosis.

    Science.gov (United States)

    Leithner, Doris; Mahmoudi, Scherwin; Wichmann, Julian L; Martin, Simon S; Lenga, Lukas; Albrecht, Moritz H; Booz, Christian; Arendt, Christophe T; Beeres, Martin; D'Angelo, Tommaso; Bodelle, Boris; Vogl, Thomas J; Scholtz, Jan-Erik

    2018-02-01

    To investigate the impact of traditional (VMI) and noise-optimized virtual monoenergetic imaging (VMI+) algorithms on quantitative and qualitative image quality, and the assessment of stenosis in carotid and intracranial dual-energy CTA (DE-CTA). DE-CTA studies of 40 patients performed on a third-generation 192-slice dual-source CT scanner were included in this retrospective study. 120-kVp image-equivalent linearly-blended, VMI and VMI+ series were reconstructed. Quantitative analysis included evaluation of contrast-to-noise ratios (CNR) of the aorta, common carotid artery, internal carotid artery, middle cerebral artery, and basilar artery. VMI and VMI+ with highest CNR, and linearly-blended series were rated qualitatively. Three radiologists assessed artefacts and suitability for evaluation at shoulder height, carotid bifurcation, siphon, and intracranial using 5-point Likert scales. Detection and grading of stenosis were performed at carotid bifurcation and siphon. Highest CNR values were observed for 40-keV VMI+ compared to 65-keV VMI and linearly-blended images (P evaluation at shoulder and bifurcation height. Suitability was significantly higher in VMI+ and VMI compared to linearly-blended images for intracranial and ICA assessment (P performance. 40-keV VMI+ showed improved quantitative image quality compared to 65-keV VMI and linearly-blended series in supraaortic DE-CTA. VMI and VMI+ provided increased suitability for carotid and intracranial artery evaluation with excellent assessment of stenosis, but did not translate into increased diagnostic performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The diagnostic efficiency of ultrasound guided imaging algorithm in evaluation of patients with hematuria

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Alparslan, E-mail: alparslanunsal@yahoo.com [Adnan Menderes University, Faculty of Medicine, Department of Radiology, 09100 Aydin (Turkey); Caliskan, Eda Kazak [Adnan Menderes University, Faculty of Medicine, Department of Radiology, 09100 Aydin (Turkey); Erol, Haluk [Adnan Menderes University, Faculty of Medicine, Department of Urology, 09100 Aydin (Turkey); Karaman, Can Zafer [Adnan Menderes University, Faculty of Medicine, Department of Radiology, 09100 Aydin (Turkey)

    2011-07-15

    Purpose: To assess the efficiency of the following imaging algorithm, including intravenous urography (IVU) or computed tomography urography (CTU) based on ultrasonographic (US) selection, in the radiological management of hematuria. Materials and methods: One hundred and forty-one patients with hematuria were prospectively evaluated. Group 1 included 106 cases with normal or nearly normal US result and then they were examined with IVU. Group 2 was composed of the remaining 35 cases which had any urinary tract abnormality, and they were directed to CTU. Radiological results were compared with clinical diagnosis. Results: Ultrasonography and IVU results of 97 cases were congruent in group 1. Eight simple cysts were detected with US and 1 non-obstructing ureter stone was detected with IVU in remaining 9 patients. The only discordant case in clinical comparison was found to have urinary bladder cancer on conventional cystoscopy. Ultrasonography and CTU results were congruent in 30 cases. Additional lesions were detected with CTU (3 ureter stones, 1 ureter TCC, 1 advanced RCC) in remaining 5 patients. Ultrasonography + CTU combination results were all concordant with clinical diagnosis. Except 1 case, radio-clinical agreement was achieved. Conclusion: Cross-sectional imaging modalities are preferred in evaluation of hematuria. CTU is the method of choice; however the limitations preclude using CTU as first line or screening test. Ultrasonography is now being accepted as a first line imaging modality with the increased sensitivity in mass detection compared to IVU. The US guided imaging algorithm can be used effectively in radiological approach to hematuria.

  8. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  9. Prosthetic joint infection development of an evidence-based diagnostic algorithm.

    Science.gov (United States)

    Mühlhofer, Heinrich M L; Pohlig, Florian; Kanz, Karl-Georg; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; Kelch, Sarah; Harrasser, Norbert; von Eisenhart-Rothe, Rüdiger; Schauwecker, Johannes

    2017-03-09

    Increasing rates of prosthetic joint infection (PJI) have presented challenges for general practitioners, orthopedic surgeons and the health care system in the recent years. The diagnosis of PJI is complex; multiple diagnostic tools are used in the attempt to correctly diagnose PJI. Evidence-based algorithms can help to identify PJI using standardized diagnostic steps. We reviewed relevant publications between 1990 and 2015 using a systematic literature search in MEDLINE and PUBMED. The selected search results were then classified into levels of evidence. The keywords were prosthetic joint infection, biofilm, diagnosis, sonication, antibiotic treatment, implant-associated infection, Staph. aureus, rifampicin, implant retention, pcr, maldi-tof, serology, synovial fluid, c-reactive protein level, total hip arthroplasty (THA), total knee arthroplasty (TKA) and combinations of these terms. From an initial 768 publications, 156 publications were stringently reviewed. Publications with class I-III recommendations (EAST) were considered. We developed an algorithm for the diagnostic approach to display the complex diagnosis of PJI in a clear and logically structured process according to ISO 5807. The evidence-based standardized algorithm combines modern clinical requirements and evidence-based treatment principles. The algorithm provides a detailed transparent standard operating procedure (SOP) for diagnosing PJI. Thus, consistently high, examiner-independent process quality is assured to meet the demands of modern quality management in PJI diagnosis.

  10. Using qualitative research to inform development of a diagnostic algorithm for UTI in children.

    Science.gov (United States)

    de Salis, Isabel; Whiting, Penny; Sterne, Jonathan A C; Hay, Alastair D

    2013-06-01

    Diagnostic and prognostic algorithms can help reduce clinical uncertainty. The selection of candidate symptoms and signs to be measured in case report forms (CRFs) for potential inclusion in diagnostic algorithms needs to be comprehensive, clearly formulated and relevant for end users. To investigate whether qualitative methods could assist in designing CRFs in research developing diagnostic algorithms. Specifically, the study sought to establish whether qualitative methods could have assisted in designing the CRF for the Health Technology Association funded Diagnosis of Urinary Tract infection in Young children (DUTY) study, which will develop a diagnostic algorithm to improve recognition of urinary tract infection (UTI) in children aged children in primary care and a Children's Emergency Department. We elicited features that clinicians believed useful in diagnosing UTI and compared these for presence or absence and terminology with the DUTY CRF. Despite much agreement between clinicians' accounts and the DUTY CRFs, we identified a small number of potentially important symptoms and signs not included in the CRF and some included items that could have been reworded to improve understanding and final data analysis. This study uniquely demonstrates the role of qualitative methods in the design and content of CRFs used for developing diagnostic (and prognostic) algorithms. Research groups developing such algorithms should consider using qualitative methods to inform the selection and wording of candidate symptoms and signs.

  11. Predicting diagnostic error in Radiology via eye-tracking and image analytics: Application in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie [ORNL; Pinto, Frank M [ORNL; Morin-Ducote, Garnetta [University of Tennessee, Knoxville (UTK); Hudson, Kathy [University of Tennessee, Knoxville (UTK); Tourassi, Georgia [ORNL

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADs images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.

  12. Diagnostic Imaging in Snakes and Lizards

    OpenAIRE

    Banzato , Tommaso

    2013-01-01

    The increasing popularity of snakes and lizards as pets has led to an increasing demand of specialised veterinary duties in these animals. Diagnostic imaging is often a fundamental step of the clinical investigation. The interpretation of diagnostic images is complex and requires a broad knowledge of anatomy, physiology and pathology of the species object of the clinical investigation. Moreover, in order to achieve a correct diagnosis, the comparison between normal and abnormal diagnostic im...

  13. Diagnostic imaging of shoulder impingement

    International Nuclear Information System (INIS)

    Merl, T.; Weinhardt, H.; Oettl, G.; Lenz, M.; Riel, K.A.

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage [de

  14. Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation

    International Nuclear Information System (INIS)

    Niu Lili; Qian Ming; Yu Wentao; Jin Qiaofeng; Ling Tao; Zheng Hairong; Wan Kun; Gao Shen

    2010-01-01

    This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.

  15. A new chaotic algorithm for image encryption

    International Nuclear Information System (INIS)

    Gao Haojiang; Zhang Yisheng; Liang Shuyun; Li Dequn

    2006-01-01

    Recent researches of image encryption algorithms have been increasingly based on chaotic systems, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper presents a new nonlinear chaotic algorithm (NCA) which uses power function and tangent function instead of linear function. Its structural parameters are obtained by experimental analysis. And an image encryption algorithm in a one-time-one-password system is designed. The experimental results demonstrate that the image encryption algorithm based on NCA shows advantages of large key space and high-level security, while maintaining acceptable efficiency. Compared with some general encryption algorithms such as DES, the encryption algorithm is more secure

  16. Role of teleradiology in modern diagnostic imaging

    International Nuclear Information System (INIS)

    Chrzan, R.; Urbanik, A.; Wyrobek -Renczynska, M.; Podsiadlo, L.

    2004-01-01

    Teleradiology is a dynamically expanding technology of electronic transmission of radiologic images. History of teleradiology development, methods of obtaining images in digital form, media used for their transmission, factors affecting time of transmission, methods of visualization of transmitted images, attempts at standardization of new technology and at last typical applications of teleradiology were presented. Teleradiology from the position of technical curiosity advanced to the role of everyday work tool. Possibility of specialist diagnostic imaging assurance in poorly developed regions, not possessing sufficient number of radiologists, turned out particularly important. Cooperation of regional hospitals with specialist centers of diagnostic images reporting and archiving created a chance for making better use of owned equipment and reducing the costs of diagnostics. For the sake of broader and broader access to teleradiology not only over the world but also in Poland it is advisable to familiarize with its possibilities by both radiologists and clinicists using the results of diagnostic imaging. (author)

  17. Behaviors study of image registration algorithms in image guided radiation therapy

    International Nuclear Information System (INIS)

    Zou Lian; Hou Qing

    2008-01-01

    Objective: Study the behaviors of image registration algorithms, and analyze the elements which influence the performance of image registrations. Methods: Pre-known corresponding coordinates were appointed for reference image and moving image, and then the influence of region of interest (ROI) selection, transformation function initial parameters and coupled parameter spaces on registration results were studied with a software platform developed in home. Results: Region of interest selection had a manifest influence on registration performance. An improperly chosen ROI resulted in a bad registration. Transformation function initial parameters selection based on pre-known information could improve the accuracy of image registration. Coupled parameter spaces would enhance the dependence of image registration algorithm on ROI selection. Conclusions: It is necessary for clinic IGRT to obtain a ROI selection strategy (depending on specific commercial software) correlated to tumor sites. Three suggestions for image registration technique developers are automatic selection of the initial parameters of transformation function based on pre-known information, developing specific image registration algorithm for specific image feature, and assembling real-time image registration algorithms according to tumor sites selected by software user. (authors)

  18. Algorithms for contrast enhancement of electronic portal images

    International Nuclear Information System (INIS)

    Díez, S.; Sánchez, S.

    2015-01-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results. - Highlights: • Two Algorithms are implemented to improve the contrast of Electronic Portal Images. • The multi-leaf and conformed beam are automatically segmented into Portal Images. • Hidden anatomical and bony structures in portal images are revealed. • The task related to the patient setup verification is facilitated by the contrast enhancement then achieved.

  19. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    Directory of Open Access Journals (Sweden)

    Adis Alihodzic

    2014-01-01

    Full Text Available Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed.

  20. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    Science.gov (United States)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  1. Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

    Science.gov (United States)

    Rodgers, M; Nixon, J; Hempel, S; Aho, T; Kelly, J; Neal, D; Duffy, S; Ritchie, G; Kleijnen, J; Westwood, M

    2006-06-01

    of false results, but evidence was lacking regarding the accuracy of routine microscopy and estimates were adopted for the model. The model for imaging the upper urinary tract showed that US detects more tumours than IVU at one-third of the cost, and is also associated with fewer false results. For any cause of haematuria, CT was shown to have a mean incremental cost-effectiveness ratio of pounds sterling 9939 in comparison with the next best option, US. When US is followed up with CT for negative results with persistent haematuria, it dominates the initial use of CT alone, with a saving of pounds sterling 235,000 for the evaluation of 1000 patients. The model for investigation of the lower urinary tract showed that for low-risk patients the use of immediate cystoscopy could be avoided if cystoscopy were used for follow-up patients with a negative initial test using tumour markers and/or cytology, resulting in a saving of pounds sterling 483,000 for the evaluation of 1000 patients. The clinical and economic impact on delayed detection of both upper and lower urinary tract tumours through the use of follow-up testing should be evaluated in future studies. There are insufficient data currently available to derive an evidence-based algorithm of the diagnostic pathway for haematuria. A hypothetical algorithm based on the opinion and practice of clinical experts in the review team, other published algorithms and the results of economic modelling is presented in this report. This algorithm is presented, for comparative purposes, alongside current US and UK guidelines. The ideas contained in these algorithms and the specific questions outlined should form the basis of future research. Quality assessment of the diagnostic accuracy studies included in this review highlighted several areas of deficiency.

  2. Comparison of adaptive statistical iterative reconstruction (ASiRTM) and model-based iterative reconstruction (VeoTM) for paediatric abdominal CT examinations: an observer performance study of diagnostic image quality

    International Nuclear Information System (INIS)

    Hultenmo, Maria; Caisander, Haakan; Mack, Karsten; Thilander-Klang, Anne

    2016-01-01

    The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR TM ) and model-based IR (Veo TM )-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft TM convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. (authors)

  3. Facial biometrics of Yorubas of Nigeria using Akinlolu-Raji image-processing algorithm

    Directory of Open Access Journals (Sweden)

    Adelaja Abdulazeez Akinlolu

    2016-01-01

    Full Text Available Background: Forensic anthropology deals with the establishment of human identity using genetics, biometrics, and face recognition technology. This study aims to compute facial biometrics of Yorubas of Osun State of Nigeria using a novel Akinlolu-Raji image-processing algorithm. Materials and Methods: Three hundred Yorubas of Osun State (150 males and 150 females, aged 15–33 years were selected as subjects for the study with informed consents and when established as Yorubas by parents and grandparents. Height, body weight, and facial biometrics (evaluated on three-dimensional [3D] facial photographs were measured on all subjects. The novel Akinlolu-Raji image-processing algorithm for forensic face recognition was developed using the modified row method of computer programming. Facial width, total face height, short forehead height, long forehead height, upper face height, nasal bridge length, nose height, morphological face height, and lower face height computed from readings of the Akinlolu-Raji image-processing algorithm were analyzed using z-test (P ≤ 0.05 of 2010 Microsoft Excel statistical software. Results: Statistical analyzes of facial measurements showed nonsignificant higher mean values (P > 0.05 in Yoruba males compared to females. Yoruba males and females have the leptoprosopic face type based on classifications of face types from facial indices. Conclusions: Akinlolu-Raji image-processing algorithm can be employed for computing anthropometric, forensic, diagnostic, or any other measurements on 2D and 3D images, and data computed from its readings can be converted to actual or life sizes as obtained in 1D measurements. Furthermore, Yoruba males and females have the leptoprosopic face type.

  4. Diagnostic performance of reduced-dose CT with a hybrid iterative reconstruction algorithm for the detection of hypervascular liver lesions: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Atsushi; Tanaka, Yoshikazu; Juri, Hiroshi; Nakai, Go; Narumi, Yoshifumi [Osaka Medical College, Department of Radiology, Takatsuki, Osaka (Japan); Yoshikawa, Shushi [Osaka Medical College Hospital, Central Radiology Department, Takatsuki, Osaka (Japan)

    2017-07-15

    To investigate the diagnostic performance of reduced-dose CT with a hybrid iterative reconstruction (IR) algorithm for the detection of hypervascular liver lesions. Thirty liver phantoms with or without simulated hypervascular lesions were scanned with a 320-slice CT scanner with control-dose (40 mAs) and reduced-dose (30 and 20 mAs) settings. Control-dose images were reconstructed with filtered back projection (FBP), and reduced-dose images were reconstructed with FBP and a hybrid IR algorithm. Objective image noise and the lesion to liver contrast-to-noise ratio (CNR) were evaluated quantitatively. Images were interpreted independently by 2 blinded radiologists, and jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Hybrid IR images with reduced-dose settings (both 30 and 20 mAs) yielded significantly lower objective image noise and higher CNR than control-dose FBP images (P <.05). However, hybrid IR images with reduced-dose settings had lower JAFROC1 figure of merit than control-dose FBP images, although only the difference between 20 mAs images and control-dose FBP images was significant for both readers (P <.01). An aggressive reduction of the radiation dose would impair the detectability of hypervascular liver lesions, although objective image noise and CNR would be preserved by a hybrid IR algorithm. (orig.)

  5. The neutron imaging diagnostic at NIF (invited).

    Science.gov (United States)

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  6. The neutron imaging diagnostic at NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  7. Image-based Proof of Work Algorithm for the Incentivization of Blockchain Archival of Interesting Images

    OpenAIRE

    Billings, Jake

    2017-01-01

    A new variation of blockchain proof of work algorithm is proposed to incentivize the timely execution of image processing algorithms. A sample image processing algorithm is proposed to determine interesting images using analysis of the entropy of pixel subsets within images. The efficacy of the image processing algorithm is examined using two small sets of training and test data. The interesting image algorithm is then integrated into a simplified blockchain mining proof of work algorithm bas...

  8. Image enhancement of digital periapical radiographs according to diagnostic tasks

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung

    2014-01-01

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  9. Image enhancement of digital periapical radiographs according to diagnostic tasks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of)

    2014-03-15

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  10. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rosenberger C

    2008-01-01

    Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  11. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    H. Laurent

    2008-05-01

    Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  12. A diagnostic algorithm for atypical spitzoid tumors: guidelines for immunohistochemical and molecular assessment.

    Science.gov (United States)

    Cho-Vega, Jeong Hee

    2016-07-01

    Atypical spitzoid tumors are a morphologically diverse group of rare melanocytic lesions most frequently seen in children and young adults. As atypical spitzoid tumors bear striking resemblance to Spitz nevus and spitzoid melanomas clinically and histopathologically, it is crucial to determine its malignant potential and predict its clinical behavior. To date, many researchers have attempted to differentiate atypical spitzoid tumors from unequivocal melanomas based on morphological, immonohistochemical, and molecular diagnostic differences. A diagnostic algorithm is proposed here to assess the malignant potential of atypical spitzoid tumors by using a combination of immunohistochemical and cytogenetic/molecular tests. Together with classical morphological evaluation, this algorithm includes a set of immunohistochemistry assays (p16(Ink4a), a dual-color Ki67/MART-1, and HMB45), fluorescence in situ hybridization (FISH) with five probes (6p25, 8q24, 11q13, CEN9, and 9p21), and an array-based comparative genomic hybridization. This review discusses details of the algorithm, the rationale of each test used in the algorithm, and utility of this algorithm in routine dermatopathology practice. This algorithmic approach will provide a comprehensive diagnostic tool that complements conventional histological criteria and will significantly contribute to improve the diagnosis and prediction of the clinical behavior of atypical spitzoid tumors.

  13. Structured diagnostic imaging in patients with multiple trauma; Strukturierte radiologische Diagnostik beim Polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M. [Institut fuer Klinische Radiologie, Klinikum der Universitaet Muenchen, Innenstadt (Germany); Kanz, K.G. [Chirurgische Klinik, Klinikum der Universitaet Muenchen, Innenstadt (Germany)

    2002-07-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [German] Fragestellung. Entwicklung eines strukturierten Konzeptes zur radiologischen Diagnostik polytraumatisierter Patienten.Methodik. Die Datenevaluation erfolgte auf Basis einer prospektiven interdisziplinaere Polytraumastudie mit ueber 2400 Patienten. Alle diagnostischen und therapeutischen Schritte werden jeweils unter Angabe von Zeitpunkt und auftretenden Komplikationen erfasst, ein primaeres oder sekundaeres Versterben und die 90-Tage-Letalitaet werden dokumentiert.Die strukturierte radiologische Diagnostik von Mehrfachverletzen verlangt die Integration eines erfahrenen Radiologen in

  14. Algorithmic acquisition of diagnostic patterns in district heating billing system

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2012-01-01

    An application of algorithmic exploration of billing data is examined for fault detection, diagnosis (FDD) based on evaluation of present state and detection of unexpected changes in energy efficiency of buildings. Large data sets from district heating (DH) billing systems are used for construction of feature space, diagnostic rules and classification of the buildings according to their energy efficiency properties. The algorithmic approach automates discovering knowledge about common, thus accepted changes in buildings’ properties, in equipment and in habitants’ behavior reflecting progress in technology and life style. In this article implementation of Data Mining and Knowledge Discovery (DMKD) method in supervision system with exemplary results based on real data is presented. Crucial steps of data processing influencing diagnostic results are described in details.

  15. Half-unit weighted bilinear algorithm for image contrast enhancement in capsule endoscopy

    Science.gov (United States)

    Rukundo, Olivier

    2018-04-01

    This paper proposes a novel enhancement method based exclusively on the bilinear interpolation algorithm for capsule endoscopy images. The proposed method does not convert the original RBG image components to HSV or any other color space or model; instead, it processes directly RGB components. In each component, a group of four adjacent pixels and half-unit weight in the bilinear weighting function are used to calculate the average pixel value, identical for each pixel in that particular group. After calculations, groups of identical pixels are overlapped successively in horizontal and vertical directions to achieve a preliminary-enhanced image. The final-enhanced image is achieved by halving the sum of the original and preliminary-enhanced image pixels. Quantitative and qualitative experiments were conducted focusing on pairwise comparisons between original and enhanced images. Final-enhanced images have generally the best diagnostic quality and gave more details about the visibility of vessels and structures in capsule endoscopy images.

  16. The Downside of Diagnostic Imaging

    Science.gov (United States)

    An article about radiation exposure during computed tomography and nuclear imaging procedures and the risk of cancer. Several studies released in 2009 have helped to quantify the risk and the growing use of these diagnostic imaging methods.

  17. Preparing diagnostic 3D images for image registration with planning CT images

    International Nuclear Information System (INIS)

    Tracton, Gregg S.; Miller, Elizabeth P.; Rosenman, Julian; Chang, Sha X.; Sailer, Scott; Boxwala, Azaz; Chaney, Edward L.

    1997-01-01

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  18. A combinational fast algorithm for image reconstruction

    International Nuclear Information System (INIS)

    Wu Zhongquan

    1987-01-01

    A combinational fast algorithm has been developed in order to increase the speed of reconstruction. First, an interpolation method based on B-spline functions is used in image reconstruction. Next, the influence of the boundary conditions assumed here on the interpolation of filtered projections and on the image reconstruction is discussed. It is shown that this boundary condition has almost no influence on the image in the central region of the image space, because the error of interpolation rapidly decreases by a factor of ten in shifting two pixels from the edge toward the center. In addition, a fast algorithm for computing the detecting angle has been used with the mentioned interpolation algorithm, and the cost for detecting angle computaton is reduced by a factor of two. The implementation results show that in the same subjective and objective fidelity, the computational cost for the interpolation using this algorithm is about one-twelfth of the conventional algorithm

  19. Incident Light Frequency-Based Image Defogging Algorithm

    Directory of Open Access Journals (Sweden)

    Wenbo Zhang

    2017-01-01

    Full Text Available To solve the color distortion problem produced by the dark channel prior algorithm, an improved method for calculating transmittance of all channels, respectively, was proposed in this paper. Based on the Beer-Lambert Law, the influence between the frequency of the incident light and the transmittance was analyzed, and the ratios between each channel’s transmittance were derived. Then, in order to increase efficiency, the input image was resized to a smaller size before acquiring the refined transmittance which will be resized to the same size of original image. Finally, all the transmittances were obtained with the help of the proportion between each color channel, and then they were used to restore the defogging image. Experiments suggest that the improved algorithm can produce a much more natural result image in comparison with original algorithm, which means the problem of high color saturation was eliminated. What is more, the improved algorithm speeds up by four to nine times compared to the original algorithm.

  20. Investigation into diagnostic agreement using automated computer-assisted histopathology pattern recognition image analysis

    Directory of Open Access Journals (Sweden)

    Joshua D Webster

    2012-01-01

    Full Text Available The extent to which histopathology pattern recognition image analysis (PRIA agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression. Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden 0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1. Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

  1. Investigation into diagnostic agreement using automated computer-assisted histopathology pattern recognition image analysis.

    Science.gov (United States)

    Webster, Joshua D; Michalowski, Aleksandra M; Dwyer, Jennifer E; Corps, Kara N; Wei, Bih-Rong; Juopperi, Tarja; Hoover, Shelley B; Simpson, R Mark

    2012-01-01

    The extent to which histopathology pattern recognition image analysis (PRIA) agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression). Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden 0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1). Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

  2. Overuse of Diagnostic Imaging for Work-Related Injuries.

    Science.gov (United States)

    Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace

    2017-02-01

    Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.

  3. Managing digitally formatted diagnostic image data

    International Nuclear Information System (INIS)

    Templeton, A.W.; Dwyer, S.J.

    1985-01-01

    Diagnostic radiologists are very comfortable using analog radiographic film and interpreting its recorded images. To improve patient care, the radiologist has sought the finest quality radiographic film for use with the best radiographic imaging systems. The proper choice and use of x-ray tubes, generators, film-screen combinations, and contrast media has occupied the professional attention of the radiologist since the inception of radiology. Image quality can be significantly improved with digitally formatted diagnostic imaging systems by providing dynamic ranges in excess of those possible with analog x-ray films. In a CT scanner, the digital acquisition and reconstruction system can obtain a dynamic range (contrast resolution) of 10,000 to 1. Digital subtraction angiography systems achieve 10-bit dynamic ranges for each of the acquired television frames. Increases in the dynamic ranges of the various imaging modalities have been coupled with improved spatial resolution. A digitally formatted image is a two-dimensional, numerical array of discrete image elements. Each picture element is called a pixel. Each pixel has a discrete size. Figure 15.1 illustrates a digitally formatted image depicting the spatial resolution, array size, and quantization or numerical range of the pixel values. Currently, 512 x 512 image arrays are standard. Development of 1024 x 1024 digital arrays are underway. Significant improvements have also been achieved in the rates at which digital diagnostic imaging data can be acquired, manipulated, and archived

  4. Does MR imaging effectively replace diagnostic arthroscopy

    International Nuclear Information System (INIS)

    Ruwe, P.; McCarthy, S.; Wright, J.; Randall, L.; Lynch, K.; Jokyl, P.

    1990-01-01

    This paper determines if MR imaging reduces the number of diagnostic arthroscopic procedures required in patients with knee complaints and if MR imaging is cost-effective compared with diagnostic arthroscopy. The cohort analysis consists of 100 patients seen in a sports medicine clinic by two orthopedic surgeons who agreed on well-defined criteria for performing MR imaging and arthroscopy. Each orthopedic surgeon referring a patient for MR imaging checked a form regarding the plans for arthroscopy. Outcome analysis was conducted at 6 months

  5. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    International Nuclear Information System (INIS)

    Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank; Morin-Ducote, Garnetta; Hudson, Kathleen B.

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content

  6. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie; Tourassi, Georgia D. [Biomedical Science and Engineering Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pinto, Frank [School of Engineering, Science, and Technology, Virginia State University, Petersburg, Virginia 23806 (United States); Morin-Ducote, Garnetta; Hudson, Kathleen B. [Department of Radiology, University of Tennessee Medical Center at Knoxville, Knoxville, Tennessee 37920 (United States)

    2013-10-15

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.

  7. Comparison of SeaWinds Backscatter Imaging Algorithms

    Science.gov (United States)

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  8. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  9. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  10. Approximation algorithms for a genetic diagnostics problem.

    Science.gov (United States)

    Kosaraju, S R; Schäffer, A A; Biesecker, L G

    1998-01-01

    We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.

  11. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-01-01

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 deg.) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  12. Diagnostic imaging capabilities of the Ocelot -Optical Coherence Tomography System, ex-vivo evaluation and clinical relevance

    International Nuclear Information System (INIS)

    Dohad, Suhail; Shao, John; Cawich, Ian; Kankaria, Manish; Desai, Arjun

    2015-01-01

    consistent physician interpretation of images acquired by the Ocelot and the Dragonfly OCT systems in-spite of distinct image processing algorithms and catheter configurations. This represents a dramatic shift away from both fluoroscopic imaging and diagnostic-only OCT imaging during peripheral arterial intervention towards therapeutic devices that incorporate real time diagnostic OCT imaging. In the clinical practice, these diagnostic capabilities have translated to best-in-class safety and efficacy for CTO crossing using the Ocelot catheter

  13. Adaptive Algorithms for Automated Processing of Document Images

    Science.gov (United States)

    2011-01-01

    ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University

  14. High speed display algorithm for 3D medical images using Multi Layer Range Image

    International Nuclear Information System (INIS)

    Ban, Hideyuki; Suzuki, Ryuuichi

    1993-01-01

    We propose high speed algorithm that display 3D voxel images obtained from medical imaging systems such as MRI. This algorithm convert voxel image data to 6 Multi Layer Range Image (MLRI) data, which is an augmentation of the range image data. To avoid the calculation for invisible voxels, the algorithm selects at most 3 MLRI data from 6 in accordance with the view direction. The proposed algorithm displays 256 x 256 x 256 voxel data within 0.6 seconds using 22 MIPS Workstation without a special hardware such as Graphics Engine. Real-time display will be possible on 100 MIPS class Workstation by our algorithm. (author)

  15. Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Robert M, Malone; John R, Celesteb; Peter M, Celliers; Brent C, Froggeta; Robert L, Guyton; Morris I, Kaufman; Tony L, Lee; Brian J, MacGowan; Edmund W, Ng; Imants P, Reinbachs; Ronald B, Robinson; Lynn G, Seppala; Tom W, Tunnell; Phillip W, Watts

    2005-01-01

    Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1-5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber

  16. Impact of an intra-cycle motion correction algorithm on overall evaluability and diagnostic accuracy of computed tomography coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Pontone, Gianluca; Bertella, Erika; Baggiano, Andrea; Mushtaq, Saima; Loguercio, Monica; Segurini, Chiara; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Petulla, Maria; Trabattoni, Daniela; Pepi, Mauro [Centro Cardiologico Monzino, IRCCS, Milan (Italy); Andreini, Daniele; Montorsi, Piero; Bartorelli, Antonio L. [Centro Cardiologico Monzino, IRCCS, Milan (Italy); University of Milan, Department of Cardiovascular Sciences and Community Health, Milan (Italy); Guaricci, Andrea I. [University of Foggia, Department of Cardiology, Foggia (Italy)

    2016-01-15

    The aim of this study was to evaluate the impact of a novel intra-cycle motion correction algorithm (MCA) on overall evaluability and diagnostic accuracy of cardiac computed tomography coronary angiography (CCT). From a cohort of 900 consecutive patients referred for CCT for suspected coronary artery disease (CAD), we enrolled 160 (18 %) patients (mean age 65.3 ± 11.7 years, 101 male) with at least one coronary segment classified as non-evaluable for motion artefacts. The CCT data sets were evaluated using a standard reconstruction algorithm (SRA) and MCA and compared in terms of subjective image quality, evaluability and diagnostic accuracy. The mean heart rate during the examination was 68.3 ± 9.4 bpm. The MCA showed a higher Likert score (3.1 ± 0.9 vs. 2.5 ± 1.1, p < 0.001) and evaluability (94%vs.79 %, p < 0.001) than the SRA. In a 45-patient subgroup studied by clinically indicated invasive coronary angiography, specificity, positive predictive value and accuracy were higher in MCA vs. SRA in segment-based and vessel-based models, respectively (87%vs.73 %, 50%vs.34 %, 85%vs.73 %, p < 0.001 and 62%vs.28 %, 66%vs.51 % and 75%vs.57 %, p < 0.001). In a patient-based model, MCA showed higher accuracy vs. SCA (93%vs.76 %, p < 0.05). MCA can significantly improve subjective image quality, overall evaluability and diagnostic accuracy of CCT. (orig.)

  17. Algorithms for boundary detection in radiographic images

    International Nuclear Information System (INIS)

    Gonzaga, Adilson; Franca, Celso Aparecido de

    1996-01-01

    Edge detecting techniques applied to radiographic digital images are discussed. Some algorithms have been implemented and the results are displayed to enhance boundary or hide details. An algorithm applied in a pre processed image with contrast enhanced is proposed and the results are discussed

  18. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.

  19. A Multiresolution Image Completion Algorithm for Compressing Digital Color Images

    Directory of Open Access Journals (Sweden)

    R. Gomathi

    2014-01-01

    Full Text Available This paper introduces a new framework for image coding that uses image inpainting method. In the proposed algorithm, the input image is subjected to image analysis to remove some of the portions purposefully. At the same time, edges are extracted from the input image and they are passed to the decoder in the compressed manner. The edges which are transmitted to decoder act as assistant information and they help inpainting process fill the missing regions at the decoder. Textural synthesis and a new shearlet inpainting scheme based on the theory of p-Laplacian operator are proposed for image restoration at the decoder. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. This novel shearlet p-Laplacian inpainting model can effectively reduce the staircase effect in Total Variation (TV inpainting model whereas it can still keep edges as well as TV model. In the proposed scheme, neural network is employed to enhance the value of compression ratio for image coding. Test results are compared with JPEG 2000 and H.264 Intracoding algorithms. The results show that the proposed algorithm works well.

  20. Dual-Energy Computed Tomography Angiography of the Lower Extremity Runoff: Impact of Noise-Optimized Virtual Monochromatic Imaging on Image Quality and Diagnostic Accuracy.

    Science.gov (United States)

    Wichmann, Julian L; Gillott, Matthew R; De Cecco, Carlo N; Mangold, Stefanie; Varga-Szemes, Akos; Yamada, Ricardo; Otani, Katharina; Canstein, Christian; Fuller, Stephen R; Vogl, Thomas J; Todoran, Thomas M; Schoepf, U Joseph

    2016-02-01

    The aim of this study was to evaluate the impact of a noise-optimized virtual monochromatic imaging algorithm (VMI+) on image quality and diagnostic accuracy at dual-energy computed tomography angiography (CTA) of the lower extremity runoff. This retrospective Health Insurance Portability and Accountability Act-compliant study was approved by the local institutional review board. We evaluated dual-energy CTA studies of the lower extremity runoff in 48 patients (16 women; mean age, 63.3 ± 13.8 years) performed on a third-generation dual-source CT system. Images were reconstructed with standard linear blending (F_0.5), VMI+, and traditional monochromatic (VMI) algorithms at 40 to 120 keV in 10-keV intervals. Vascular attenuation and image noise in 18 artery segments were measured; signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used to subjectively evaluate vascular attenuation and image noise. In a subgroup of 21 patients who underwent additional invasive catheter angiography, diagnostic accuracy for the detection of significant stenosis (≥50% lumen restriction) of F_0.5, 50-keV VMI+, and 60-keV VMI data sets were assessed. Objective image quality metrics were highest in the 40- and 50-keV VMI+ series (SNR: 20.2 ± 10.7 and 19.0 ± 9.5, respectively; CNR: 18.5 ± 10.3 and 16.8 ± 9.1, respectively) and were significantly (all P traditional VMI technique and standard linear blending for evaluation of the lower extremity runoff using dual-energy CTA.

  1. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rutman, Aaron M. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Kuo, Michael D. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Center for Translational Medical Systems, University of California San Diego Medical Center, San Diego, CA 92103 (United States)], E-mail: mkuo@ucsd.edu

    2009-05-15

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  2. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    International Nuclear Information System (INIS)

    Rutman, Aaron M.; Kuo, Michael D.

    2009-01-01

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  3. Diagnostic imaging procedure volume in the United States

    International Nuclear Information System (INIS)

    Johnson, J.L.; Abernathy, D.L.

    1983-01-01

    Comprehensive data on 1979 and 1980 diagnostic imaging procedure volume were collected from a stratified random sample of U.S. short-term general-care hospitals and private practices of radiologists, cardiologists, obstetricians/gynecologists, orthopedic surgeons, and neurologists/neurosurgeons. Approximately 181 million imaging procedures (within the study scope) were performed in 1980. Despite the rapidly increasing use of newer imaging methods, plain film radiography (140.3 million procedures) and contrast studies (22.9 million procedures) continue to comprise the vast majority of diagnostic imaging volume. Ultrasound, computed tomography, nuclear medicine, and special procedures make up less than 10% of total diagnostic imaging procedures. Comparison of the data from this study with data from an earlier study indicates that imaging procedure volume in hospitals expanded at an annual growth rate of almost 8% from 1973 to 1980

  4. Mathematical (diagnostic algorithms in the digitization of oral histopathology: The new frontier in histopathological diagnosis

    Directory of Open Access Journals (Sweden)

    Abhishek Banerjee

    2015-01-01

    Full Text Available The technological progress in the digitalization of a complete histological glass slide has opened a new door in the tissue based diagnosis. Automated slide diagnosis can be made possible by the use of mathematical algorithms which are formulated by binary codes or values. These algorithms (diagnostic algorithms include both object based (object features, structures and pixel based (texture measures. The intra- and inter-observer errors inherent in the visual diagnosis of a histopathological slide are largely replaced by the use of diagnostic algorithms leading to a standardized and reproducible diagnosis. The present paper reviews the advances in digital histopathology especially related to the use of mathematical algorithms (diagnostic algorithms in the field of oral histopathology. The literature was reviewed for data relating to the use of algorithms utilized in the construction of computational software with special applications in oral histopathological diagnosis. The data were analyzed, and the types and end targets of the algorithms were tabulated. The advantages, specificities and reproducibility of the software, its shortcomings and its comparison with traditional methods of histopathological diagnosis were evaluated. Algorithms help in automated slide diagnosis by creating software with possible reduced errors and bias with a high degree of specificity, sensitivity, and reproducibility. Akin to the identification of thumbprints and faces, software for histopathological diagnosis will in the near future be an important part of the histopathological diagnosis.

  5. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships.

    Science.gov (United States)

    Hatipoglu, Nuh; Bilgin, Gokhan

    2017-10-01

    In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

  6. Encyclopedia of diagnostic imaging

    International Nuclear Information System (INIS)

    Baert, A.L.

    2008-01-01

    The simple A to Z format provides easy access to relevant information in the field of imaging. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on diagnostic radiology contributing to the broad field of imaging. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of diagnostic imaging. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list. (orig.)

  7. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  8. Diagnostic imaging of hypertrophic pyloric stenosis (HPS)

    International Nuclear Information System (INIS)

    Frkovic, M.; Seronja Kuhar, M.; Perhoc, Z.; Barbaric-Babic, V.; Molnar, M.; Vukovic, J.

    2001-01-01

    Background. Imaging of the abdomen in children with suspected hypertrophic pyloric stenosis has been traditionally performed by plain film radiography and upper gastrointestinal contrast studies. In many clinical situations, this approach has been modified or replaced by ultrasound examination. The authors aimed to analyse the value of diagnostic algorithm in children with hypertrophic pyloric stenosis confirmed at surgery in our hospital. Patients and methods. The authors made a five year retrospective review of hospital records of all children operated on for HPS in Clinical Hospital Centre Zagreb - Rebro and found out that 14 boys, between 2 (17 days) and 10 weeks of life (75 days) underwent surgery due to HPS. Results. Specific radiographic signs were: string sign, double track sign, elongation and narrowing of pyloric canal, mushroom sign, gastric distension with fluid and beak sign. Ultrasound was performed in 9 patients, one of them was false negative (sonographer admitted that he had no experience), the rest were positive. Conclusions. If the physical examination is negative or equivocal, sonography by an experienced sonographer must be performed. If the ultrasound finding is negative, than the infant should undergo to barium upper gastrointestinal studies (UGI). If HPS isn't a primary diagnostic question, it's better to perform UGI first in order to make a correct diagnosis. (author)

  9. Is the S.O.S. diagnostic algorithm applicable to creating highly safe protective systems?

    International Nuclear Information System (INIS)

    Drab, F.

    1994-01-01

    The S.O.S. diagnostic system is analyzed and compared with KOMPARACE and MIN-MAX type diagnostic systems. Designed for the identification of failed sensors, the S.O.S. dynamic algorithm is based on a digital monitoring of output signals from a pair of sensors measuring the same technological parameter. The last 3 output signal data from the two sensors are stored in the algorithm memory. The analysis indicates that S.O.S. is no major achievement in the field of diagnosis because its properties are nearly identical with those of the conventional MIN-MAX system. Some degradation failures of the sensor are incorrectly interpreted by the new algorithm, some failures are not detected at all. From this point of view the new algorithm is inferior to the KOMPARACE type algorithm. (J.B.). 2 figs., 5 refs

  10. Medical image segmentation using genetic algorithms.

    Science.gov (United States)

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  11. The Noise Clinic: a Blind Image Denoising Algorithm

    Directory of Open Access Journals (Sweden)

    Marc Lebrun

    2015-01-01

    Full Text Available This paper describes the complete implementation of a blind image algorithm, that takes any digital image as input. In a first step the algorithm estimates a Signal and Frequency Dependent (SFD noise model. In a second step, the image is denoised by a multiscale adaptation of the Non-local Bayes denoising method. We focus here on a careful analysis of the denoising step and present a detailed discussion of the influence of its parameters. Extensive commented tests of the blind denoising algorithm are presented, on real JPEG images and scans of old photographs.

  12. Application of multislice spiral CT (MSCT) in multiple injured patients and its effect on diagnostic and therapeutic algorithms

    International Nuclear Information System (INIS)

    Boehm, T.; Alkadhi, H.; Schertler, T.; Baumert, B.; Roos, J.; Marincek, B.; Wildermuth, S.

    2004-01-01

    The initial diagnostic work-up of trauma victims with multiple injuries is currently a combination of conventional radiography (CR), ultrasound (US), and computed tomography (CT). This article reviews the diagnostic quality of the different imaging modalities regarding detection and classification of injuries. CT performs better than US in detecting traumatic lesions of abdominal parenchymal organs. Furthermore, CT is better than CR in detecting therapeutically relevant chest and bone injuries. MSCT may replace CR and US under the condition that it is faster than or at least as fast as the conventional approach to diagnose lite threatening injuries. This can be achieved only by changing the work-flow for the entire trauma team including radiologist. Furthermore, certain prerequisites must be fulfilled including integration of a MSCT scanner into the emergency room. An optimized whole body CT protocol for the assessment of trauma victims using MSCT as well as a two-step algorithm for reporting the imaging findings depending on their clinical significance is presented. (orig.)

  13. Diagnostic algorithm for relapsing acquired demyelinating syndromes in children.

    Science.gov (United States)

    Hacohen, Yael; Mankad, Kshitij; Chong, W K; Barkhof, Frederik; Vincent, Angela; Lim, Ming; Wassmer, Evangeline; Ciccarelli, Olga; Hemingway, Cheryl

    2017-07-18

    To establish whether children with relapsing acquired demyelinating syndromes (RDS) and myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) show distinctive clinical and radiologic features and to generate a diagnostic algorithm for the main RDS for clinical use. A panel reviewed the clinical characteristics, MOG-Ab and aquaporin-4 (AQP4) Ab, intrathecal oligoclonal bands, and Epstein-Barr virus serology results of 110 children with RDS. A neuroradiologist blinded to the diagnosis scored the MRI scans. Clinical, radiologic, and serologic tests results were compared. The findings showed that 56.4% of children were diagnosed with multiple sclerosis (MS), 25.4% with neuromyelitis optica spectrum disorder (NMOSD), 12.7% with multiphasic disseminated encephalomyelitis (MDEM), and 5.5% with relapsing optic neuritis (RON). Blinded analysis defined baseline MRI as typical of MS in 93.5% of children with MS. Acute disseminated encephalomyelitis presentation was seen only in the non-MS group. Of NMOSD cases, 30.7% were AQP4-Ab positive. MOG-Ab were found in 83.3% of AQP4-Ab-negative NMOSD, 100% of MDEM, and 33.3% of RON. Children with MOG-Ab were younger, were less likely to present with area postrema syndrome, and had lower disability, longer time to relapse, and more cerebellar peduncle lesions than children with AQP4-Ab NMOSD. A diagnostic algorithm applicable to any episode of CNS demyelination leads to 4 main phenotypes: MS, AQP4-Ab NMOSD, MOG-Ab-associated disease, and antibody-negative RDS. Children with MS and AQP4-Ab NMOSD showed features typical of adult cases. Because MOG-Ab-positive children showed notable and distinctive clinical and MRI features, they were grouped into a unified phenotype (MOG-Ab-associated disease), included in a new diagnostic algorithm. © 2017 American Academy of Neurology.

  14. A Constrained Algorithm Based NMFα for Image Representation

    Directory of Open Access Journals (Sweden)

    Chenxue Yang

    2014-01-01

    Full Text Available Nonnegative matrix factorization (NMF is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image data sets. Particularly, we impose label information as additional hard constraints to the α-divergence-NMF unsupervised learning algorithm. The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT conditions as well as the projected gradient and its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our method with the parameters has the best classification accuracy on three image data sets.

  15. A revolution in diagnostic imaging.

    Science.gov (United States)

    Mamula, Paul W

    2003-03-01

    In November 1966, Sandy Koufax, the star left-handed pitcher of the Los Angeles Dodgers, retired after spending his final season coping with traumatic arthritis in his elbow, the compounded effects of a sliding injury to his pitching arm the previous season and 12 years of hard throwing.1 Had his career begun a few years later, he might have been able to benefit from the advances in diagnostic imaging and treatment that were introduced at that time. Modern arthroscopy and computed tomography (CT) did not become available until the mid 1970s,2 and the first elbow reconstruction was done by Frank Jobe, MD, about 10 years after Koufax retired.1 Arthroscopy was first used as a diagnostic tool, but it later became a surgical tool, affecting treatment of knees, then, later, shoulders. Since 1973, when The Physician and Sportsmedicine was launched, we have witnessed a revolution in diagnostic imaging and are continuing to see an evolution of modalities.

  16. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich

    2014-01-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton–Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR C ) and (4) GREIT with individual thorax geometry (GR T ). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal–Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms. (paper)

  17. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.

    Science.gov (United States)

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-06-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.

  18. Analysis of licensed South African diagnostic imaging equipment ...

    African Journals Online (AJOL)

    Analysis of licensed South African diagnostic imaging equipment. ... Pan African Medical Journal ... Introduction: Objective: To conduct an analysis of all registered South Africa (SA) diagnostic radiology equipment, assess the number of equipment units per capita by imaging modality, and compare SA figures with published ...

  19. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  20. Diagnostic imaging in medicine. 2. ed.

    International Nuclear Information System (INIS)

    Reba, R.C.; Goodenough, D.J.

    1984-01-01

    This book describes to practitioners the evolutionary progression of new non-invasive diagnostic imaging techniques. The utility of the procedures is also described in a series of state-of-the-art lectures given by outstanding international clinical investigators from NATO countries. Subjects of the papers include the following: advances in source and detector technology, acoustical imaging, NMR and microwave imaging, positron and single photon emission tomography, digital radiography and image processing and display techniques. Fundamental papers describing the theory of non-invasive procedures are included along with papers describing clinical examinations. Examples of utility and studies of diseases of the abdomen and pelvis, heart and lung, and central nervous system are included. Cost-effective and cost-benefit assessment of the new high technology procedures, as well as the use of diagnostic imaging techniques in developing countries are also presented. An index of leading topics completes the volume. (orig.)

  1. An improved ASIFT algorithm for indoor panorama image matching

    Science.gov (United States)

    Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong

    2017-07-01

    The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.

  2. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    Science.gov (United States)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  3. Parallel image encryption algorithm based on discretized chaotic map

    International Nuclear Information System (INIS)

    Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue

    2008-01-01

    Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms

  4. [Diagnostic imaging and acute abdominal pain].

    Science.gov (United States)

    Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2015-01-19

    Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.

  5. Fast image matching algorithm based on projection characteristics

    Science.gov (United States)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  6. Image segmentation algorithm based on T-junctions cues

    Science.gov (United States)

    Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie

    2016-03-01

    To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.

  7. A study of diagnostic imaging in pancreatic trauma

    International Nuclear Information System (INIS)

    Hirota, Masashi; Kanazumi, Naohito; Kato, Koichi; Eguchi, Takehiko; Kobayashi, Hironobu; Suzuki, Yuichi; Kimura, Jiro; Ishii, Masataka

    2002-01-01

    Pancreatic trauma treatment depends on pancreatic ductal injury. We examined the usefulness and problems of diagnostic imaging, such as enhanced CT, ERP, and CT after ERP, in pancreatic trauma. Subjects were 12 patients with pancreatic trauma treated in our hospital between April 1993 and March 2000. Enhanced CT was performed in 6 patients undergoing diagnostic imagings and ERP in 4 of the 6. Overall diagnostic accuracy of pancreatic ductal injury in enhanced CT was 16.7% and accuracy in ERP with CT after ERP was 100%. Intraoperative diagnosis of main pancreatic ductal injury was difficult in 1 of 2 patients in whom ERP failed. The importance of preoperative diagnostic imaging is thus clear. We expect that MRCP, recently evaluated in pancreatic disease diagnosis, will become a new pancreatic trauma modality. (author)

  8. New hallmark of hepatocellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: a new diagnostic algorithm.

    Science.gov (United States)

    Renzulli, Matteo; Biselli, Maurizio; Brocchi, Stefano; Granito, Alessandro; Vasuri, Francesco; Tovoli, Francesco; Sessagesimi, Elisa; Piscaglia, Fabio; D'Errico, Antonietta; Bolondi, Luigi; Golfieri, Rita

    2018-02-03

    Many improvements have been made in diagnosing hepatocellular carcinoma (HCC), but the radiological hallmarks of HCC have remained the same for many years. We prospectively evaluated the imaging criteria of HCC, early HCC and high-grade dysplastic nodules (HGDNs) in patients under surveillance for chronic liver disease, using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) MRI and diffusion-weighted imaging. Our study population included 420 nodules >1 cm in 228 patients. The MRI findings of each nodule were collected in all sequences/phases. The diagnosis of HCC was made according to the American Association for the Study of Liver Diseases (AASLD) criteria; all atypical nodules were diagnosed using histology. A classification and regression tree was developed using three MRI findings which were independently significant correlated variables for early HCC/HCC, and the best sequence of their application in a new diagnostic algorithm (hepatobiliary hypointensity, arterial hyperintensity and diffusion restriction) was suggested. This algorithm demonstrated, both in the entire study population and for nodules ≤2 cm, higher sensitivity (96% [95% CI 93.5% to 97.6%] and 96.6% [95% CI 93.9% to 98.5%], P<0.001, respectively) and slightly lower specificity (91.8% [95% CI 88.6% to 94.1%], P=0.063, and 92.7% [95% CI 88.9% to 95.4%], P=0.125, respectively) than those of the AASLD criteria. Our new diagnostic algorithm also showed a very high sensitivity (94.7%; 95% CI 92% to 96.6%) and specificity (99.3%; 95% CI 97.7% to 99.8%) in classifying HGDN. Our new diagnostic algorithm demonstrated significantly higher sensitivity and comparable specificity than those of the AASLD imaging criteria for HCC in patients with cirrhosis evaluated using Gd-EOB-DTPA MRI, even for lesions ≤2 cm. Moreover, this diagnostic algorithm allowed evaluating other lesions which could arise in a cirrhotic liver, such as early HCC and HGDN. © Article author

  9. Diagnostic reference levels in medical imaging

    International Nuclear Information System (INIS)

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  10. Vertigo in childhood: proposal for a diagnostic algorithm based upon clinical experience.

    Science.gov (United States)

    Casani, A P; Dallan, I; Navari, E; Sellari Franceschini, S; Cerchiai, N

    2015-06-01

    The aim of this paper is to analyse, after clinical experience with a series of patients with established diagnoses and review of the literature, all relevant anamnestic features in order to build a simple diagnostic algorithm for vertigo in childhood. This study is a retrospective chart review. A series of 37 children underwent complete clinical and instrumental vestibular examination. Only neurological disorders or genetic diseases represented exclusion criteria. All diagnoses were reviewed after applying the most recent diagnostic guidelines. In our experience, the most common aetiology for dizziness is vestibular migraine (38%), followed by acute labyrinthitis/neuritis (16%) and somatoform vertigo (16%). Benign paroxysmal vertigo was diagnosed in 4 patients (11%) and paroxysmal torticollis was diagnosed in a 1-year-old child. In 8% (3 patients) of cases, the dizziness had a post-traumatic origin: 1 canalolithiasis of the posterior semicircular canal and 2 labyrinthine concussions, respectively. Menière's disease was diagnosed in 2 cases. A bilateral vestibular failure of unknown origin caused chronic dizziness in 1 patient. In conclusion, this algorithm could represent a good tool for guiding clinical suspicion to correct diagnostic assessment in dizzy children where no neurological findings are detectable. The algorithm has just a few simple steps, based mainly on two aspects to be investigated early: temporal features of vertigo and presence of hearing impairment. A different algorithm has been proposed for cases in which a traumatic origin is suspected.

  11. Whole-body MR imaging versus sequential multimodal diagnostic algorithm for staging patients with rectal cancer. Cost analysis

    International Nuclear Information System (INIS)

    Huppertz, A.; Charite Universitaetsklinikum Berlin; Schmidt, M.; Schoeffski, O.; Wagner, M.; Asbach, P.; Maurer, M.H.; Puettcher, O.; Strassburg, J.; Stoeckmann, F.

    2010-01-01

    Purpose: To compare the direct costs of two diagnostic algorithms for pretherapeutic TNM staging of rectal cancer. Materials and Methods: In a study including 33 patients (mean age: 62.5 years), the direct fixed and variable costs of a sequential multimodal algorithm (rectoscopy, endoscopic and abdominal ultrasound, chest X-ray, thoracic/abdominal CT in the case of positive findings in abdominal ultrasound or chest X-ray) were compared to those of a novel algorithm of rectoscopy followed by MRI using a whole-body scanner. MRI included T 2w sequences of the rectum, 3D T 1w sequences of the liver and chest after bolus injection of gadoxetic acid, and delayed phases of the liver. The personnel work times, material items, and work processes were tracked to the nearest minute by interviewing those responsible for the process (surgeon, gastroenterologist, two radiologists). The costs of labor and materials were determined from personnel reimbursement data and hospital accounting records. Fixed costs were determined from vendor pricing. Results: The mean MRI time was 55 min. CT was performed in 19 / 33 patients (57 %) causing an additional day of hospitalization (costs 374 Euro). The costs for equipment and material were higher for MRI compared to sequential algorithm (equipment 116 vs. 30 Euro; material 159 vs. 60 Euro per patient). The personnel costs were markedly lower for MRI (436 vs. 732 Euro per patient). Altogether, the absolute cost advantage of MRI was 31.3 % (711 vs. 1035 Euro for sequential algorithm). Conclusion: Substantial savings are achievable with the use of whole-body MRI for the preoperative TNM staging of patients with rectal cancer. (orig.)

  12. RANZAR Body Systems Framework of diagnostic imaging examination descriptors

    International Nuclear Information System (INIS)

    Pitman, Alexander D.; Penlington, Lisa; Doromal, Darren; Vukolova, Natalia; Slater, Gregory

    2014-01-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were ‘greyed out’. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities.

  13. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    Science.gov (United States)

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  14. Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media

    Science.gov (United States)

    Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.

    2017-09-01

    It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.

  15. Parallel asynchronous systems and image processing algorithms

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  16. Algorithms for image processing and computer vision

    CERN Document Server

    Parker, J R

    2010-01-01

    A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It's an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists wh

  17. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    Science.gov (United States)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  18. Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval

    Science.gov (United States)

    Jiexian, Zeng; Xiupeng, Liu

    2014-01-01

    Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416

  19. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  20. Application of the EM algorithm to radiographic images.

    Science.gov (United States)

    Brailean, J C; Little, D; Giger, M L; Chen, C T; Sullivan, B J

    1992-01-01

    The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm.

  1. High performance deformable image registration algorithms for manycore processors

    CERN Document Server

    Shackleford, James; Sharp, Gregory

    2013-01-01

    High Performance Deformable Image Registration Algorithms for Manycore Processors develops highly data-parallel image registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Focusing on deformable registration, we show how to develop data-parallel versions of the registration algorithm suitable for execution on the GPU. Image registration is the process of aligning two or more images into a common coordinate frame and is a fundamental step to be able to compare or fuse data obtained from different sensor measurements. E

  2. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  3. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  4. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    Science.gov (United States)

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  5. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    Science.gov (United States)

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    that can be approximated with a simple sinusoidal function. This algorithm has potential applications in diagnostic CT imaging and radiotherapy in terms of motion management.

  6. Diagnostic imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Hospital for Cardiovascular Diseases, Bad Neustadt an der Saale (Germany). Dept. of Radiology; Lanz, Ulrich [Perlach Hospital, Munich (Germany). Dept. of Hand Surgery

    2008-07-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  7. Diagnostic imaging of the hand

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2008-01-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  8. Meniscal tear. Diagnostic errors in MR imaging

    International Nuclear Information System (INIS)

    Barrera, M. C.; Recondo, J. A.; Gervas, C.; Fernandez, E.; Villanua, J. A.M.; Salvador, E.

    2003-01-01

    To analyze diagnostic discrepancies found between magnetic resonance (MR) and arthroscopy, and the determine the reasons that they occur. Two-hundred and forty-eight MR knee explorations were retrospectively checked. Forty of these showed diagnostic discrepancies between MR and arthroscopy. Two radiologists independently re-analyzed the images from 29 of the 40 studies without knowing which diagnosis had resulted from which of the two techniques. Their interpretations were correlated with the initial MR diagnosis, MR images and arthroscopic results. Initial errors in MR imaging were classified as either unavoidable, interpretive, or secondary to equivocal findings. Eleven MR examinations could not be checked since their corresponding imaging results could not be located. Of 34 errors found in the original diagnoses, 12 (35.5%)were classified as unavoidable, 14 (41.2%) as interpretative and 8 (23.5%) as secondary to equivocal findings. 41.2% of the errors were avoided in the retrospective study probably due to our department having greater experience in interpreting MR images, 25.5% were unavailable even in the retrospective study. A small percentage of diagnostic errors were due to the presence of subtle equivocal findings. (Author) 15 refs

  9. An enhanced fractal image denoising algorithm

    International Nuclear Information System (INIS)

    Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong

    2008-01-01

    In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently

  10. The Role of Diagnostic Algorithms in the Management of Blunt Splenic Injury

    Directory of Open Access Journals (Sweden)

    Liang-Yu Chen

    2005-08-01

    Conclusion: Diagnostic algorithms using sonograms for screening provide an initial means of selecting patients for NOM. Patients with higher grades of splenic injury can then be managed non-operatively.

  11. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  12. [Diagnostic imaging of breast cancer : An update].

    Science.gov (United States)

    Funke, M

    2016-10-01

    Advances in imaging of the female breast have substantially influenced the diagnosis and probably also the therapy and prognosis of breast cancer in the past few years. This article gives an overview of the most important imaging modalities in the diagnosis of breast cancer. Digital mammography is considered to be the gold standard for the early detection of breast cancer. Digital breast tomosynthesis can increase the diagnostic accuracy of mammography and is used for the assessment of equivocal or suspicious mammography findings. Other modalities, such as ultrasound and contrast-enhanced magnetic resonance imaging (MRI) play an important role in the diagnostics, staging and follow-up of breast cancer. Percutaneous needle biopsy is a rapid and minimally invasive method for the histological verification of breast cancer. New breast imaging modalities, such as contrast-enhanced spectral mammography, diffusion-weighted MRI and MR spectroscopy can possibly further improve breast cancer diagnostics; however, further studies are necessary to prove the advantages of these methods so that they cannot yet be recommended for routine clinical use.

  13. Diagnostic information management system for the evaluation of medical images

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina

    1985-04-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions.

  14. Diagnostic information management system for the evaluation of medical images

    International Nuclear Information System (INIS)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina.

    1985-01-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions. (author)

  15. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Zagzebski, J. [University of Wisconsin (United States)

    2016-06-15

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  16. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    International Nuclear Information System (INIS)

    Zagzebski, J.

    2016-01-01

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  17. Regularization iteration imaging algorithm for electrical capacitance tomography

    Science.gov (United States)

    Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao

    2018-03-01

    The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.

  18. An efficient fractal image coding algorithm using unified feature and DCT

    International Nuclear Information System (INIS)

    Zhou Yiming; Zhang Chao; Zhang Zengke

    2009-01-01

    Fractal image compression is a promising technique to improve the efficiency of image storage and image transmission with high compression ratio, however, the huge time consumption for the fractal image coding is a great obstacle to the practical applications. In order to improve the fractal image coding, efficient fractal image coding algorithms using a special unified feature and a DCT coder are proposed in this paper. Firstly, based on a necessary condition to the best matching search rule during fractal image coding, the fast algorithm using a special unified feature (UFC) is addressed, and it can reduce the search space obviously and exclude most inappropriate matching subblocks before the best matching search. Secondly, on the basis of UFC algorithm, in order to improve the quality of the reconstructed image, a DCT coder is combined to construct a hybrid fractal image algorithm (DUFC). Experimental results show that the proposed algorithms can obtain good quality of the reconstructed images and need much less time than the baseline fractal coding algorithm.

  19. HIV misdiagnosis in sub-Saharan Africa: performance of diagnostic algorithms at six testing sites

    Science.gov (United States)

    Kosack, Cara S.; Shanks, Leslie; Beelaert, Greet; Benson, Tumwesigye; Savane, Aboubacar; Ng’ang’a, Anne; Andre, Bita; Zahinda, Jean-Paul BN; Fransen, Katrien; Page, Anne-Laure

    2017-01-01

    Abstract Introduction: We evaluated the diagnostic accuracy of HIV testing algorithms at six programmes in five sub-Saharan African countries. Methods: In this prospective multisite diagnostic evaluation study (Conakry, Guinea; Kitgum, Uganda; Arua, Uganda; Homa Bay, Kenya; Doula, Cameroun and Baraka, Democratic Republic of Congo), samples from clients (greater than equal to five years of age) testing for HIV were collected and compared to a state-of-the-art algorithm from the AIDS reference laboratory at the Institute of Tropical Medicine, Belgium. The reference algorithm consisted of an enzyme-linked immuno-sorbent assay, a line-immunoassay, a single antigen-enzyme immunoassay and a DNA polymerase chain reaction test. Results: Between August 2011 and January 2015, over 14,000 clients were tested for HIV at 6 HIV counselling and testing sites. Of those, 2786 (median age: 30; 38.1% males) were included in the study. Sensitivity of the testing algorithms ranged from 89.5% in Arua to 100% in Douala and Conakry, while specificity ranged from 98.3% in Doula to 100% in Conakry. Overall, 24 (0.9%) clients, and as many as 8 per site (1.7%), were misdiagnosed, with 16 false-positive and 8 false-negative results. Six false-negative specimens were retested with the on-site algorithm on the same sample and were found to be positive. Conversely, 13 false-positive specimens were retested: 8 remained false-positive with the on-site algorithm. Conclusions: The performance of algorithms at several sites failed to meet expectations and thresholds set by the World Health Organization, with unacceptably high rates of false results. Alongside the careful selection of rapid diagnostic tests and the validation of algorithms, strictly observing correct procedures can reduce the risk of false results. In the meantime, to identify false-positive diagnoses at initial testing, patients should be retested upon initiating antiretroviral therapy. PMID:28691437

  20. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    Science.gov (United States)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  1. Trends in utilization: has extremity MR imaging replaced diagnostic arthroscopy?

    International Nuclear Information System (INIS)

    Glynn, Nicole; Morrison, William B.; Parker, Laurence; Schweitzer, Mark E.; Carrino, John A.

    2004-01-01

    To examine the relative change in utilization of magnetic resonance (MR) imaging of the extremities versus diagnostic and therapeutic arthroscopy. Using the 1993, 1996, and 1999 nationwide Medicare Part B databases, utilization rates (per 100,000) were determined for upper and lower extremity MR imaging, diagnostic arthroscopy and therapeutic arthroscopy using CPT-4 codes. Utilization of extremity MR imaging was compared with that of diagnostic and therapeutic arthroscopy in 10 geographic regions of the United States and tracked over time. Combined lower and upper extremity MR imaging utilization per 100,000 increased from 393 to 1,056 in 1999 (+168.7%). Utilization of diagnostic arthroscopy of the extremities decreased from 18 in 1993 to 8 in 1999 (-55.6%); therapeutic arthroscopy rates increased from 461 in 1993 to 636 in 1999 (+40.0%). Specifically, from 1993 to 1999, utilization of lower extremity MR imaging increased from 270 to 661 (+144.8%). Utilization of diagnostic arthroscopy of the knee over the same time period decreased from 11 to 5 (-54.5%); therapeutic arthroscopy increased from 394 to 501 (+27.2%). Similarly, utilization rates for upper extremity MR imaging increased from 123 to 395 (+221.1%). Utilization of diagnostic arthroscopy of the shoulder over the same time period decreased from 7 to 2 (-71.4%); therapeutic arthroscopy increased from 44 to 104 (+136.4%). No specific geographic trends were ascertained. The utilization of MR imaging of the extremities has markedly increased from 1993 to 1999. During the same time period the utilization of diagnostic arthroscopy has decreased and that of therapeutic arthroscopy has increased. These findings support the hypothesis that there is increased reliance of clinical practitioners on the diagnostic information provided by MR imaging in preoperative clinical decision-making. (orig.)

  2. Autonomous algorithms for image restoration

    OpenAIRE

    Griniasty , Meir

    1994-01-01

    We describe a general theoretical framework for algorithms that adaptively tune all their parameters during the restoration of a noisy image. The adaptation procedure is based on a mean field approach which is known as ``Deterministic Annealing'', and is reminiscent of the ``Deterministic Bolzmann Machiné'. The algorithm is less time consuming in comparison with its simulated annealing alternative. We apply the theory to several architectures and compare their performances.

  3. Comparison of analyzer-based imaging computed tomography extraction algorithms and application to bone-cartilage imaging

    International Nuclear Information System (INIS)

    Diemoz, Paul C; Bravin, Alberto; Coan, Paola; Glaser, Christian

    2010-01-01

    In x-ray phase-contrast analyzer-based imaging, the contrast is provided by a combination of absorption, refraction and scattering effects. Several extraction algorithms, which attempt to separate and quantify these different physical contributions, have been proposed and applied. In a previous work, we presented a quantitative comparison of five among the most well-known extraction algorithms based on the geometrical optics approximation applied to planar images: diffraction-enhanced imaging (DEI), extended diffraction-enhanced imaging (E-DEI), generalized diffraction-enhanced imaging (G-DEI), multiple-image radiography (MIR) and Gaussian curve fitting (GCF). In this paper, we compare these algorithms in the case of the computed tomography (CT) modality. The extraction algorithms are applied to analyzer-based CT images of both plastic phantoms and biological samples (cartilage-on-bone cylinders). Absorption, refraction and scattering signals are derived. Results obtained with the different algorithms may vary greatly, especially in the case of large refraction angles. We show that ABI-CT extraction algorithms can provide an excellent tool to enhance the visualization of cartilage internal structures, which may find applications in a clinical context. Besides, by using the refraction images, the refractive index decrements for both the cartilage matrix and the cartilage cells have been estimated.

  4. Low-Complexity Regularization Algorithms for Image Deblurring

    KAUST Repository

    Alanazi, Abdulrahman

    2016-11-01

    Image restoration problems deal with images in which information has been degraded by blur or noise. In practice, the blur is usually caused by atmospheric turbulence, motion, camera shake, and several other mechanical or physical processes. In this study, we present two regularization algorithms for the image deblurring problem. We first present a new method based on solving a regularized least-squares (RLS) problem. This method is proposed to find a near-optimal value of the regularization parameter in the RLS problems. Experimental results on the non-blind image deblurring problem are presented. In all experiments, comparisons are made with three benchmark methods. The results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and structural similarity, as well as the visual quality of the deblurred images. To reduce the complexity of the proposed algorithm, we propose a technique based on the bootstrap method to estimate the regularization parameter in low and high-resolution images. Numerical results show that the proposed technique can effectively reduce the computational complexity of the proposed algorithms. In addition, for some cases where the point spread function (PSF) is separable, we propose using a Kronecker product so as to reduce the computations. Furthermore, in the case where the image is smooth, it is always desirable to replace the regularization term in the RLS problems by a total variation term. Therefore, we propose a novel method for adaptively selecting the regularization parameter in a so-called square root regularized total variation (SRTV). Experimental results demonstrate that our proposed method outperforms the other benchmark methods when applied to smooth images in terms of PSNR, SSIM and the restored image quality. In this thesis, we focus on the non-blind image deblurring problem, where the blur kernel is assumed to be known. However, we developed algorithms that also work

  5. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.

    Science.gov (United States)

    Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng

    2017-09-08

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

  6. Child abuse. Diagnostic imaging of skeletal injuries

    International Nuclear Information System (INIS)

    Stenzel, Martin; Mentzel, Hans-Joachim

    2012-01-01

    Diagnostic imaging, besides medical history and clinical examination, is a major component in assessment of cases of suspected physical child abuse. Performance of proper imaging technique, and knowledge of specific injury patterns is required for accurate image interpretation by the radiologist, and serves protection of the child in case of proven abuse. On the other side, it is essential to protect the family in unjustified accusations. The reader will be familiarised with essentials of the topic 'Physical child abuse', in order to be able to correctly assess quality, completeness, and results of X-ray films. Moreover, opportunities and limitations of alternative diagnostic modalities will be discussed. (orig.)

  7. LSB Based Quantum Image Steganography Algorithm

    Science.gov (United States)

    Jiang, Nan; Zhao, Na; Wang, Luo

    2016-01-01

    Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.

  8. Thinning an object boundary on digital image using pipelined algorithm

    International Nuclear Information System (INIS)

    Dewanto, S.; Aliyanta, B.

    1997-01-01

    In digital image processing, the thinning process to an object boundary is required to analyze the image structure with a measurement of parameter such as area, circumference of the image object. The process needs a sufficient large memory and time consuming if all the image pixels stored in the memory and the following process is done after all the pixels has ben transformed. pipelined algorithm can reduce the time used in the process. This algorithm uses buffer memory where its size can be adjusted. the next thinning process doesn't need to wait all the transformation of pixels. This paper described pipelined algorithm with some result on the use of the algorithm to digital image

  9. Evaluation of Underwater Image Enhancement Algorithms under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Marino Mangeruga

    2018-01-01

    Full Text Available Underwater images usually suffer from poor visibility, lack of contrast and colour casting, mainly due to light absorption and scattering. In literature, there are many algorithms aimed to enhance the quality of underwater images through different approaches. Our purpose was to identify an algorithm that performs well in different environmental conditions. We have selected some algorithms from the state of the art and we have employed them to enhance a dataset of images produced in various underwater sites, representing different environmental and illumination conditions. These enhanced images have been evaluated through some quantitative metrics. By analysing the results of these metrics, we tried to understand which of the selected algorithms performed better than the others. Another purpose of our research was to establish if a quantitative metric was enough to judge the behaviour of an underwater image enhancement algorithm. We aim to demonstrate that, even if the metrics can provide an indicative estimation of image quality, they could lead to inconsistent or erroneous evaluations.

  10. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    Science.gov (United States)

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  11. Intelligent Diagnostic Assistant for Complicated Skin Diseases through C5's Algorithm.

    Science.gov (United States)

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Kermany, Zahra Arab

    2017-09-01

    Intelligent Diagnostic Assistant can be used for complicated diagnosis of skin diseases, which are among the most common causes of disability. The aim of this study was to design and implement a computerized intelligent diagnostic assistant for complicated skin diseases through C5's Algorithm. An applied-developmental study was done in 2015. Knowledge base was developed based on interviews with dermatologists through questionnaires and checklists. Knowledge representation was obtained from the train data in the database using Excel Microsoft Office. Clementine Software and C5's Algorithms were applied to draw the decision tree. Analysis of test accuracy was performed based on rules extracted using inference chains. The rules extracted from the decision tree were entered into the CLIPS programming environment and the intelligent diagnostic assistant was designed then. The rules were defined using forward chaining inference technique and were entered into Clips programming environment as RULE. The accuracy and error rates obtained in the training phase from the decision tree were 99.56% and 0.44%, respectively. The accuracy of the decision tree was 98% and the error was 2% in the test phase. Intelligent diagnostic assistant can be used as a reliable system with high accuracy, sensitivity, specificity, and agreement.

  12. Spatial compression algorithm for the analysis of very large multivariate images

    Science.gov (United States)

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  13. Optimization of image processing algorithms on mobile platforms

    Science.gov (United States)

    Poudel, Pramod; Shirvaikar, Mukul

    2011-03-01

    This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.

  14. Diagnostic imaging in medicine. 2nd ed

    Energy Technology Data Exchange (ETDEWEB)

    Reba, R C; Goodenough, D J; Davidson, H F

    1984-01-01

    This book describes to practitioners the evolutionary progression of new non-invasive diagnostic imaging techniques. The utility of the procedures is also described in a series of state-of-the-art lectures given by outstanding international clinical investigators from NATO countries. Subjects of the papers include the following: advances in source and detector technology, acoustical imaging, NMR and microwave imaging, positron and single photon emission tomography, digital radiography and image processing and display techniques. Fundamental papers describing the theory of non-invasive procedures are included along with papers describing clinical examinations. Examples of utility and studies of diseases of the abdomen and pelvis, heart and lung, and central nervous system are included. Cost-effective and cost-benefit assessment of the new high technology procedures, as well as the use of diagnostic imaging techniques in developing countries are also presented. An index of leading topics completes the volume.

  15. Diagnostic imaging in internal medicine

    International Nuclear Information System (INIS)

    Eisenberg, R.L.

    1985-01-01

    This book examines medical diagnostic techniques. Topics considered include biological considerations in the approach to clinical medicines; infectious diseases; disorders of the heart; disorders of the vascular system; disorders of the respiratory system; diseases of the kidneys and urinary tract; disorders of the alimentary tract; disorders of the hepatobiliary system and pancreas; disorders of the hematopoietic system; disorders of bone and bone mineralization; disorders of the joints, connective tissues, and striated muscles; disorders of the nervous system; miscellaneous disorders; and procedures in diagnostic imaging

  16. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  17. Algorithms for diagnostics of the measuring channels and technological equipment at NPP with WWER-1000

    International Nuclear Information System (INIS)

    Vysotskij, V.G.

    1997-01-01

    An algorithm for diagnostics of the state of measuring channels of an information computer system with usage of analysis of statistical channel characteristics is presented. An algorithm for testing the generalized state of the NPP technological equipment is proposed

  18. Analysis and improvement of a chaos-based image encryption algorithm

    International Nuclear Information System (INIS)

    Xiao Di; Liao Xiaofeng; Wei Pengcheng

    2009-01-01

    The security of digital image attracts much attention recently. In Guan et al. [Guan Z, Huang F, Guan W. Chaos-based image encryption algorithm. Phys Lett A 2005; 346: 153-7.], a chaos-based image encryption algorithm has been proposed. In this paper, the cause of potential flaws in the original algorithm is analyzed in detail, and then the corresponding enhancement measures are proposed. Both theoretical analysis and computer simulation indicate that the improved algorithm can overcome these flaws and maintain all the merits of the original one.

  19. Multilevel Image Segmentation Based on an Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2016-01-01

    Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.

  20. Secure image encryption algorithm design using a novel chaos based S-Box

    International Nuclear Information System (INIS)

    Çavuşoğlu, Ünal; Kaçar, Sezgin; Pehlivan, Ihsan; Zengin, Ahmet

    2017-01-01

    Highlights: • A new chaotic system is developed for creating S-Box and image encryption algorithm. • Chaos based random number generator is designed with the help of the new chaotic system. NIST tests are run on generated random numbers to verify randomness. • A new S-Box design algorithm is developed to create the chaos based S-Box to be utilized in encryption algorithm and performance tests are made. • The new developed S-Box based image encryption algorithm is introduced and image encryption application is carried out. • To show the quality and strong of the encryption process, security analysis are performed and compared with the AES and chaos algorithms. - Abstract: In this study, an encryption algorithm that uses chaos based S-BOX is developed for secure and speed image encryption. First of all, a new chaotic system is developed for creating S-Box and image encryption algorithm. Chaos based random number generator is designed with the help of the new chaotic system. Then, NIST tests are run on generated random numbers to verify randomness. A new S-Box design algorithm is developed to create the chaos based S-Box to be utilized in encryption algorithm and performance tests are made. As the next step, the new developed S-Box based image encryption algorithm is introduced in detail. Finally, image encryption application is carried out. To show the quality and strong of the encryption process, security analysis are performed. Proposed algorithm is compared with the AES and chaos algorithms. According to tests results, the proposed image encryption algorithm is secure and speed for image encryption application.

  1. Brain-inspired algorithms for retinal image analysis

    NARCIS (Netherlands)

    ter Haar Romeny, B.M.; Bekkers, E.J.; Zhang, J.; Abbasi-Sureshjani, S.; Huang, F.; Duits, R.; Dasht Bozorg, Behdad; Berendschot, T.T.J.M.; Smit-Ockeloen, I.; Eppenhof, K.A.J.; Feng, J.; Hannink, J.; Schouten, J.; Tong, M.; Wu, H.; van Triest, J.W.; Zhu, S.; Chen, D.; He, W.; Xu, L.; Han, P.; Kang, Y.

    2016-01-01

    Retinal image analysis is a challenging problem due to the precise quantification required and the huge numbers of images produced in screening programs. This paper describes a series of innovative brain-inspired algorithms for automated retinal image analysis, recently developed for the RetinaCheck

  2. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    Energy Technology Data Exchange (ETDEWEB)

    Murari, A.; Barana, O. [Consorzio RFX Associazione EURATOM ENEA per la Fusione, Corso Stati Uniti 4, Padua (Italy); Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon (United Kingdom); Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D. [Association EURATOM-CEA, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Albanese, R. [Assoc. Euratom-ENEA-CREATE, Univ. Mediterranea RC (Italy); Arena, P.; Bruno, M. [Assoc. Euratom-ENEA-CREATE, Univ.di Catania (Italy); Ambrosino, G.; Ariola, M. [Assoc. Euratom-ENEA-CREATE, Univ. Napoli Federico Napoli (Italy); Crisanti, F. [Associazone EURATOM ENEA sulla Fusione, C.R. Frascati (Italy); Luna, E. de la; Sanchez, J. [Associacion EURATOM CIEMAT para Fusion, Madrid (Spain)

    2004-07-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  3. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Murari, A.; Barana, O.; Albanese, R.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with internal transport barriers. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  4. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Barana, O.; Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Albanese, R.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  5. A Superresolution Image Reconstruction Algorithm Based on Landweber in Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    Chen Deyun

    2013-01-01

    Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.

  6. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  7. A chaos-based image encryption algorithm with variable control parameters

    International Nuclear Information System (INIS)

    Wang Yong; Wong, K.-W.; Liao Xiaofeng; Xiang Tao; Chen Guanrong

    2009-01-01

    In recent years, a number of image encryption algorithms based on the permutation-diffusion structure have been proposed. However, the control parameters used in the permutation stage are usually fixed in the whole encryption process, which favors attacks. In this paper, a chaos-based image encryption algorithm with variable control parameters is proposed. The control parameters used in the permutation stage and the keystream employed in the diffusion stage are generated from two chaotic maps related to the plain-image. As a result, the algorithm can effectively resist all known attacks against permutation-diffusion architectures. Theoretical analyses and computer simulations both confirm that the new algorithm possesses high security and fast encryption speed for practical image encryption.

  8. A hash-based image encryption algorithm

    Science.gov (United States)

    Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul

    2010-03-01

    There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.

  9. An Example-Based Super-Resolution Algorithm for Selfie Images

    Directory of Open Access Journals (Sweden)

    Jino Hans William

    2016-01-01

    Full Text Available A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR rear camera and a low-resolution (LR front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details.

  10. Diagnostic imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Gradzki, J.; Nowak, S.; Paprzycki, W.

    1993-01-01

    40 patients have been examined with operational and histological confirmation of craniopharyngioma. CT image and X-ray plane of skull were performed in case all of these patients. TMR was conformed to examine 4 patients. X-ray planes was compared to CT. CT permits tumor cyst detection. The efficacy of mentioned above diagnostic techniques was compared with surgical findings. (author)

  11. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    spatial resolution bar patterns demonstrated that the BONE (GE) and B46f (Siemens) showed higher spatial resolution compared to the STANDARD (GE) or B30f (Siemens) reconstruction algorithms typically used for routine body CT imaging. Only the sharper images were deemed clinically acceptable for the evaluation of diffuse lung disease (e.g. emphysema). Quantitative analyses of the extent of emphysema in patient data showed the percent volumes above the -950 HU threshold as 9.4% for the BONE reconstruction, 5.9% for the STANDARD reconstruction, and 4.7% for the BONE filtered images. Contrary to the practice of using standard resolution CT images for the quantitation of diffuse lung disease, these data demonstrate that a single sharp reconstruction (BONE/B46f) should be used for both the qualitative and quantitative evaluation of diffuse lung disease. The sharper reconstruction images, which are required for diagnostic interpretation, provide accurate CT numbers over the range of -1000 to +900 HU and preserve the fidelity of small structures in the reconstructed images. A filtered version of the sharper images can be accurately substituted for images reconstructed with smoother kernels for comparison to previously published results.

  12. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  13. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    Science.gov (United States)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  14. Optimum image compression rate maintaining diagnostic image quality of digital intraoral radiographs

    International Nuclear Information System (INIS)

    Song, Ju Seop; Koh, Kwang Joon

    2000-01-01

    The aims of the present study are to determine the optimum compression rate in terms of file size reduction and diagnostic quality of the images after compression and evaluate the transmission speed of original or each compressed images. The material consisted of 24 extracted human premolars and molars. The occlusal surfaces and proximal surfaces of the teeth had a clinical disease spectrum that ranged from sound to varying degrees of fissure discoloration and cavitation. The images from Digora system were exported in TIFF and the images from conventional intraoral film were scanned and digitalized in TIFF by Nikon SF-200 scanner(Nikon, Japan). And six compression factors were chosen and applied on the basis of the results from a pilot study. The total number of images to be assessed were 336. Three radiologists assessed the occlusal and proximal surfaces of the teeth with 5-rank scale. Finally diagnosed as either sound or carious lesion by one expert oral pathologist. And sensitivity and specificity and kappa value for diagnostic agreement was calculated. Also the area (Az) values under the ROC curve were calculated and paired t-test and oneway ANOVA test was performed. Thereafter, transmission time of the image files of the each compression level were compared with that of the original image files. No significant difference was found between original and the corresponding images up to 7% (1:14) compression ratio for both the occlusal and proximal caries (p<0.05). JPEG3 (1:14) image files are transmitted fast more than 10 times, maintained diagnostic information in image, compared with original image files. 1:14 compressed image file may be used instead of the original image and reduce storage needs and transmission time.

  15. Imaging diagnostics of the foot; Bildgebende Diagnostik des Fusses

    Energy Technology Data Exchange (ETDEWEB)

    Szeimies, Ulrike; Staebler, Axel [Radiologie in Muenchen-Harlaching, Muenchen (Germany); Walther, Markus (eds.) [Schoen-Klinik Muenchen-Harlaching, Muenchen (Germany). Zentrum fuer Fuss- und Sprunggelenkchirurgie

    2012-11-01

    The book on imaging diagnostics of the foot contains the following chapters: (1) Imaging techniques. (2) Clinical diagnostics. (3) Ankle joint and hind foot. (4) Metatarsus. (5) Forefoot. (6) Pathology of plantar soft tissue. (7) Nervous system diseases. (8) Diseases without specific anatomic localization. (9) System diseases including the foot. (10) Tumor like lesions. (11) Normative variants.

  16. SU-E-J-252: A Motion Algorithm to Extract Physical and Motion Parameters of a Mobile Target in Cone-Beam Computed Tomographic Imaging Retrospective to Image Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Department of Electrical and Computer Engineering, Ada, OH (United States)

    2014-06-01

    Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embedded into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract

  17. Image quality evaluation of full reference algorithm

    Science.gov (United States)

    He, Nannan; Xie, Kai; Li, Tong; Ye, Yushan

    2018-03-01

    Image quality evaluation is a classic research topic, the goal is to design the algorithm, given the subjective feelings consistent with the evaluation value. This paper mainly introduces several typical reference methods of Mean Squared Error(MSE), Peak Signal to Noise Rate(PSNR), Structural Similarity Image Metric(SSIM) and feature similarity(FSIM) of objective evaluation methods. The different evaluation methods are tested by Matlab, and the advantages and disadvantages of these methods are obtained by analyzing and comparing them.MSE and PSNR are simple, but they are not considered to introduce HVS characteristics into image quality evaluation. The evaluation result is not ideal. SSIM has a good correlation and simple calculation ,because it is considered to the human visual effect into image quality evaluation,However the SSIM method is based on a hypothesis,The evaluation result is limited. The FSIM method can be used for test of gray image and color image test, and the result is better. Experimental results show that the new image quality evaluation algorithm based on FSIM is more accurate.

  18. Evaluation of compression ratio using JPEG 2000 on diagnostic images in dentistry

    International Nuclear Information System (INIS)

    Jung, Gi Hun; Han, Won Jeong; Yoo, Dong Soo; Kim, Eun Kyung; Choi, Soon Chul

    2005-01-01

    To find out the proper compression ratios without degrading image quality and affecting lesion detectability on diagnostic images used in dentistry compressed with JPEG 2000 algorithm. Sixty Digora peri apical images, sixty panoramic computed radiographic (CR) images, sixty computed tomography (CT) images, and sixty magnetic resonance (MR) images were compressed into JPEG 2000 with ratios of 10 levels from 5:1 to 50:1. To evaluate the lesion detectability, the images were graded with 5 levels (1 : definitely absent ; 2 : probably absent ; 3 : equivocal ; 4 : probably present ; 5 : definitely present), and then receiver operating characteristic analysis was performed using the original image as a gold standard. Also to evaluate subjectively the image quality, the images were graded with 5 levels (1 : definitely unacceptable ; 2 : probably unacceptable ; 3 : equivocal ; 4 : probably acceptable ; 5 : definitely acceptable), and then paired t-test was performed. In Digora, CR panoramic and CT images, compressed images up to ratios of 15:1 showed nearly the same lesion detectability as original images, and in MR images, compressed images did up to ratios of 25:1. In Digora and CR panoramic images, compressed images up to ratios of 5:1 showed little difference between the original and reconstructed images in subjective assessment of image quality. In CT images, compressed images did up to ratios of 10:1 and in MR images up to ratios of 15:1. We considered compression ratios up to 5:1 in Digora and CR panoramic images, up to 10:1 in CT images, up to 15:1 in MR images as clinically applicable compression ratios.

  19. Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches

    Directory of Open Access Journals (Sweden)

    Ufuk Çelik

    2015-01-01

    Full Text Available The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.

  20. Application aspects of advanced antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2015-01-01

    This paper focuses on two important applications of the 3D reconstruction algorithm of the commercial software DIATOOL for antenna diagnostics. The first one is the accurate and detailed identification of array malfunctioning, thanks to the available enhanced spatial resolution of the reconstruct...... fields and currents. The second one is the filtering of the scattering from support structures and feed network leakage. Representative experimental results are presented and guidelines on the recommended measurement parameters for obtaining the best diagnostics results are provided....

  1. Imaging for dismantlement verification: Information management and analysis algorithms

    International Nuclear Information System (INIS)

    Robinson, S.M.; Jarman, K.D.; Pitts, W.K.; Seifert, A.; Misner, A.C.; Woodring, M.L.; Myjak, M.J.

    2012-01-01

    The level of detail discernible in imaging techniques has generally excluded them from consideration as verification tools in inspection regimes. An image will almost certainly contain highly sensitive information, and storing a comparison image will almost certainly violate a cardinal principle of information barriers: that no sensitive information be stored in the system. To overcome this problem, some features of the image might be reduced to a few parameters suitable for definition as an attribute, which must be non-sensitive to be acceptable in an Information Barrier regime. However, this process must be performed with care. Features like the perimeter, area, and intensity of an object, for example, might reveal sensitive information. Any data-reduction technique must provide sufficient information to discriminate a real object from a spoofed or incorrect one, while avoiding disclosure (or storage) of any sensitive object qualities. Ultimately, algorithms are intended to provide only a yes/no response verifying the presence of features in the image. We discuss the utility of imaging for arms control applications and present three image-based verification algorithms in this context. The algorithms reduce full image information to non-sensitive feature information, in a process that is intended to enable verification while eliminating the possibility of image reconstruction. The underlying images can be highly detailed, since they are dynamically generated behind an information barrier. We consider the use of active (conventional) radiography alone and in tandem with passive (auto) radiography. We study these algorithms in terms of technical performance in image analysis and application to an information barrier scheme.

  2. Novel prediction- and subblock-based algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Chung, K.-L.; Hsu, C.-H.

    2006-01-01

    Fractal encoding is the most consuming part in fractal image compression. In this paper, a novel two-phase prediction- and subblock-based fractal encoding algorithm is presented. Initially the original gray image is partitioned into a set of variable-size blocks according to the S-tree- and interpolation-based decomposition principle. In the first phase, each current block of variable-size range block tries to find the best matched domain block based on the proposed prediction-based search strategy which utilizes the relevant neighboring variable-size domain blocks. The first phase leads to a significant computation-saving effect. If the domain block found within the predicted search space is unacceptable, in the second phase, a subblock strategy is employed to partition the current variable-size range block into smaller blocks to improve the image quality. Experimental results show that our proposed prediction- and subblock-based fractal encoding algorithm outperforms the conventional full search algorithm and the recently published spatial-correlation-based algorithm by Truong et al. in terms of encoding time and image quality. In addition, the performance comparison among our proposed algorithm and the other two algorithms, the no search-based algorithm and the quadtree-based algorithm, are also investigated

  3. A segmentation algorithm based on image projection for complex text layout

    Science.gov (United States)

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  4. Validation of Diagnostic Imaging Based on Repeat Examinations. An Image Interpretation Model

    International Nuclear Information System (INIS)

    Isberg, B.; Jorulf, H.; Thorstensen, Oe.

    2004-01-01

    Purpose: To develop an interpretation model, based on repeatedly acquired images, aimed at improving assessments of technical efficacy and diagnostic accuracy in the detection of small lesions. Material and Methods: A theoretical model is proposed. The studied population consists of subjects that develop focal lesions which increase in size in organs of interest during the study period. The imaging modality produces images that can be re-interpreted with high precision, e.g. conventional radiography, computed tomography, and magnetic resonance imaging. At least four repeat examinations are carried out. Results: The interpretation is performed in four or five steps: 1. Independent readers interpret the examinations chronologically without access to previous or subsequent films. 2. Lesions found on images at the last examination are included in the analysis, with interpretation in consensus. 3. By concurrent back-reading in consensus, the lesions are identified on previous images until they are so small that even in retrospect they are undetectable. The earliest examination at which included lesions appear is recorded, and the lesions are verified by their growth (imaging reference standard). Lesion size and other characteristics may be recorded. 4. Records made at step 1 are corrected to those of steps 2 and 3. False positives are recorded. 5. (Optional) Lesion type is confirmed by another diagnostic test. Conclusion: Applied on subjects with progressive disease, the proposed image interpretation model may improve assessments of technical efficacy and diagnostic accuracy in the detection of small focal lesions. The model may provide an accurate imaging reference standard as well as repeated detection rates and false-positive rates for tested imaging modalities. However, potential review bias necessitates a strict protocol

  5. FACT. New image parameters based on the watershed-algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Linhoff, Lena; Bruegge, Kai Arno; Buss, Jens [TU Dortmund (Germany). Experimentelle Physik 5b; Collaboration: FACT-Collaboration

    2016-07-01

    FACT, the First G-APD Cherenkov Telescope, is the first imaging atmospheric Cherenkov telescope that is using Geiger-mode avalanche photodiodes (G-APDs) as photo sensors. The raw data produced by this telescope are processed in an analysis chain, which leads to a classification of the primary particle that induce a shower and to an estimation of its energy. One important step in this analysis chain is the parameter extraction from shower images. By the application of a watershed algorithm to the camera image, new parameters are computed. Perceiving the brightness of a pixel as height, a set of pixels can be seen as 'landscape' with hills and valleys. A watershed algorithm groups all pixels to a cluster that belongs to the same hill. From the emerging segmented image, one can find new parameters for later analysis steps, e.g. number of clusters, their shape and containing photon charge. For FACT data, the FellWalker algorithm was chosen from the class of watershed algorithms, because it was designed to work on discrete distributions, in this case the pixels of a camera image. The FellWalker algorithm is implemented in FACT-tools, which provides the low level analysis framework for FACT. This talk will focus on the computation of new, FellWalker based, image parameters, which can be used for the gamma-hadron separation. Additionally, their distributions concerning real and Monte Carlo Data are compared.

  6. Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering

    Science.gov (United States)

    Jiang, Lu; Piao, Yan

    2018-04-01

    The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.

  7. Improving performance of wavelet-based image denoising algorithm using complex diffusion process

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Sharifzadeh, Sara; Korhonen, Jari

    2012-01-01

    using a variety of standard images and its performance has been compared against several de-noising algorithms known from the prior art. Experimental results show that the proposed algorithm preserves the edges better and in most cases, improves the measured visual quality of the denoised images......Image enhancement and de-noising is an essential pre-processing step in many image processing algorithms. In any image de-noising algorithm, the main concern is to keep the interesting structures of the image. Such interesting structures often correspond to the discontinuities (edges...... in comparison to the existing methods known from the literature. The improvement is obtained without excessive computational cost, and the algorithm works well on a wide range of different types of noise....

  8. A high-performance spatial database based approach for pathology imaging algorithm evaluation.

    Science.gov (United States)

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A D; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J; Saltz, Joel H

    2013-01-01

    Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. WE HAVE CONSIDERED TWO SCENARIOS FOR ALGORITHM EVALUATION: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and

  9. A Rotor Tip Vortex Tracing Algorithm for Image Post-Processing

    Science.gov (United States)

    Overmeyer, Austin D.

    2015-01-01

    A neurite tracing algorithm, originally developed for medical image processing, was used to trace the location of the rotor tip vortex in density gradient flow visualization images. The tracing algorithm was applied to several representative test images to form case studies. The accuracy of the tracing algorithm was compared to two current methods including a manual point and click method and a cross-correlation template method. It is shown that the neurite tracing algorithm can reduce the post-processing time to trace the vortex by a factor of 10 to 15 without compromising the accuracy of the tip vortex location compared to other methods presented in literature.

  10. A locally adaptive algorithm for shadow correction in color images

    Science.gov (United States)

    Karnaukhov, Victor; Kober, Vitaly

    2017-09-01

    The paper deals with correction of color images distorted by spatially nonuniform illumination. A serious distortion occurs in real conditions when a part of the scene containing 3D objects close to a directed light source is illuminated much brighter than the rest of the scene. A locally-adaptive algorithm for correction of shadow regions in color images is proposed. The algorithm consists of segmentation of shadow areas with rank-order statistics followed by correction of nonuniform illumination with human visual perception approach. The performance of the proposed algorithm is compared to that of common algorithms for correction of color images containing shadow regions.

  11. Optimisation of centroiding algorithms for photon event counting imaging

    International Nuclear Information System (INIS)

    Suhling, K.; Airey, R.W.; Morgan, B.L.

    1999-01-01

    Approaches to photon event counting imaging in which the output events of an image intensifier are located using a centroiding technique have long been plagued by fixed pattern noise in which a grid of dimensions similar to those of the CCD pixels is superimposed on the image. This is caused by a mismatch between the photon event shape and the centroiding algorithm. We have used hyperbolic cosine, Gaussian, Lorentzian, parabolic as well as 3-, 5-, and 7-point centre of gravity algorithms, and hybrids thereof, to assess means of minimising this fixed pattern noise. We show that fixed pattern noise generated by the widely used centre of gravity centroiding is due to intrinsic features of the algorithm. Our results confirm that the recently proposed use of Gaussian centroiding does indeed show a significant reduction of fixed pattern noise compared to centre of gravity centroiding (Michel et al., Mon. Not. R. Astron. Soc. 292 (1997) 611-620). However, the disadvantage of a Gaussian algorithm is a centroiding failure for small pulses, caused by a division by zero, which leads to a loss of detective quantum efficiency (DQE) and to small amounts of residual fixed pattern noise. Using both real data from an image intensifier system employing a progressive scan camera, framegrabber and PC, and also synthetic data from Monte-Carlo simulations, we find that hybrid centroiding algorithms can reduce the fixed pattern noise without loss of resolution or loss of DQE. Imaging a test pattern to assess the features of the different algorithms shows that a hybrid of Gaussian and 3-point centre of gravity centroiding algorithms results in an optimum combination of low fixed pattern noise (lower than a simple Gaussian), high DQE, and high resolution. The Lorentzian algorithm gives the worst results in terms of high fixed pattern noise and low resolution, and the Gaussian and hyperbolic cosine algorithms have the lowest DQEs

  12. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  13. Optimizing diagnostic workup in the DRG environment: Dynamic algorithms and minimizing radiologic costs may cost your hospital money

    International Nuclear Information System (INIS)

    Saint-Louis, L.A.; Henschke, C.I.; Balter, S.; Whalen, J.P.; Balter, P.

    1987-01-01

    In certain diagnosis-related group (DRG) categories, the availability of sufficient CT scanners or of new equipment, such as MR equipment, can expedite the definitive workup. This will reduce the average length of stay and hospital cost. We analyzed the total hospital and radiologic charges by DRG category for all patients admitted to our hospital in 1985 and 1986. Although the cost per procedure is relatively high, the radiologic component is a small percentage of total hospital costs (median, 3%; maximum, <10%). The authors developed alternative diagnostic algorithms for radiologic-intensive DRG categories. Different diagnostic algorithms proposed for the same clinical problems were compared analytically in terms of impact on the hospital (cost, equipment availability, and length of stay). An example is the workup for FUO. Traditional approach uses plain x-rays and gallium scans and only uses CT when localizing symptoms are present. An alternative approach is to perform CT only. Although more CT examinations would be required, there is considerable reduction in the length of hospital stay and in overall charges. Neurologic and thoracic workups will be given as examples of classes or problems that can be addressed analytically: sequencing of the workup; prevalence; patient population; resource of allocation; and introduction of new imaging modality

  14. Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.

    Science.gov (United States)

    Culik, Karel II; Kari, Jarkko

    1994-01-01

    Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…

  15. Molecular cardiovascular imaging

    International Nuclear Information System (INIS)

    Schaefers, M.

    2007-01-01

    Although huge and long-lasting research efforts have been spent on the development of new diagnostic techniques investigating cardiovascular diseases, still fundamental challenges exist; the main challenge being the diagnosis of a suspected or known coronary artery disease or its consequences (myocardial infarction, heart failure etc.). Beside morphological techniques, functional imaging modalities are available in clinical diagnostic algorithms, whereas molecular cardiovascular imaging techniques are still under development. This review summarizes clinical-diagnostical challenges of modern cardiovascular medicine as well as the potential of new molecular imaging techniques to face these. (orig.)

  16. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  17. Diagnostic imaging in undergraduate medical education: an expanding role

    International Nuclear Information System (INIS)

    Miles, K.A.

    2005-01-01

    Radiologists have been involved in anatomy instruction for medical students for decades. However, recent technical advances in radiology, such as multiplanar imaging, 'virtual endoscopy', functional and molecular imaging, and spectroscopy, offer new ways in which to use imaging for teaching basic sciences to medical students. The broad dissemination of picture archiving and communications systems is making such images readily available to medical schools, providing new opportunities for the incorporation of diagnostic imaging into the undergraduate medical curriculum. Current reforms in the medical curriculum and the establishment of new medical schools in the UK further underline the prospects for an expanding role for imaging in medical education. This article reviews the methods by which diagnostic imaging can be used to support the learning of anatomy and other basic sciences

  18. Decoding using back-project algorithm from coded image in ICF

    International Nuclear Information System (INIS)

    Jiang shaoen; Liu Zhongli; Zheng Zhijian; Tang Daoyuan

    1999-01-01

    The principle of the coded imaging and its decoding in inertial confinement fusion is described simply. The authors take ring aperture microscope for example and use back-project (BP) algorithm to decode the coded image. The decoding program has been performed for numerical simulation. Simulations of two models are made, and the results show that the accuracy of BP algorithm is high and effect of reconstruction is good. Thus, it indicates that BP algorithm is applicable to decoding for coded image in ICF experiments

  19. Present practice of diagnostic imaging in the newborn infants

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi

    1994-01-01

    The present practice of diagnostic imaging in our NICU (which includes premature unit) was studied, surveying the total 637 admitted newborn infants during the year of 1992. The total number of diagnostic imaging performed other than scout radiography was 939. The number of ultrasonography of the heart and the brain, and brain CT was 752 or 80.0% of the total. These were done more frequently in the cases of very low birth weight infants. In our NICU, ultrasonography including pulse-doppler method, is performed for diagnosis of structural and functional abnormality of the cardiopulmonary systems and also for finding intracranial lesion, on the basis of finding in plain chest films. In spite of various limitation, we are performing, as the necessity commands, fluoroscopic contrast study, angiography, scintigraphy and MRI for the low birth weight (≥1,500g) and mature infants. Some of the actual cases in which diagnostic imaging was helpful were presented. Recently, upon admittance to the NICU for the specific abnormality of the newborn and premature infants, orginally, asymptomatic diseases are often found and diagnosed. This should be the results of progress in diagnostic imaging in recent years. (author)

  20. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    DEFF Research Database (Denmark)

    Karagiannis, Georgios; Antón Castro, Francesc/François; Mioc, Darka

    2016-01-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detec...... of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches....

  1. Diagnostic Medical Imaging in Pediatric Patients and Subsequent Cancer Risk.

    Science.gov (United States)

    Mulvihill, David J; Jhawar, Sachin; Kostis, John B; Goyal, Sharad

    2017-11-01

    The use of diagnostic medical imaging is becoming increasingly more commonplace in the pediatric setting. However, many medical imaging modalities expose pediatric patients to ionizing radiation, which has been shown to increase the risk of cancer development in later life. This review article provides a comprehensive overview of the available data regarding the risk of cancer development following exposure to ionizing radiation from diagnostic medical imaging. Attention is paid to modalities such as computed tomography scans and fluoroscopic procedures that can expose children to radiation doses orders of magnitude higher than standard diagnostic x-rays. Ongoing studies that seek to more precisely determine the relationship of diagnostic medical radiation in children and subsequent cancer development are discussed, as well as modern strategies to better quantify this risk. Finally, as cardiovascular imaging and intervention contribute substantially to medical radiation exposure, we discuss strategies to enhance radiation safety in these areas. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction

    International Nuclear Information System (INIS)

    Mundy, Daniel W.; Herman, Michael G.

    2011-01-01

    Purpose: Compton camera imaging (CCI) systems are currently under investigation for radiotherapy dose reconstruction and verification. The ability of such a system to provide real-time images during dose delivery will be limited by the computational speed of the image reconstruction algorithm. In this work, the authors present a fast and simple method by which to generate an initial back-projected image from acquired CCI data, suitable for use in a filtered back-projection algorithm or as a starting point for iterative reconstruction algorithms, and compare its performance to the current state of the art. Methods: Each detector event in a CCI system describes a conical surface that includes the true point of origin of the detected photon. Numerical image reconstruction algorithms require, as a first step, the back-projection of each of these conical surfaces into an image space. The algorithm presented here first generates a solution matrix for each slice of the image space by solving the intersection of the conical surface with the image plane. Each element of the solution matrix is proportional to the distance of the corresponding voxel from the true intersection curve. A threshold function was developed to extract those pixels sufficiently close to the true intersection to generate a binary intersection curve. This process is repeated for each image plane for each CCI detector event, resulting in a three-dimensional back-projection image. The performance of this algorithm was tested against a marching algorithm known for speed and accuracy. Results: The threshold-based algorithm was found to be approximately four times faster than the current state of the art with minimal deficit to image quality, arising from the fact that a generically applicable threshold function cannot provide perfect results in all situations. The algorithm fails to extract a complete intersection curve in image slices near the detector surface for detector event cones having axes nearly

  3. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  4. An AK-LDMeans algorithm based on image clustering

    Science.gov (United States)

    Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan

    2018-03-01

    Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.

  5. Performance evaluation of the EM algorithm applied to radiographic images

    International Nuclear Information System (INIS)

    Brailean, J.C.; Giger, M.L.; Chen, C.T.; Sullivan, B.J.

    1990-01-01

    In this paper the authors evaluate the expectation maximization (EM) algorithm, both qualitatively and quantitatively, as a technique for enhancing radiographic images. Previous studies have qualitatively shown the usefulness of the EM algorithm but have failed to quantify and compare its performance with those of other image processing techniques. Recent studies by Loo et al, Ishida et al, and Giger et al, have explained improvements in image quality quantitatively in terms of a signal-to-noise ratio (SNR) derived from signal detection theory. In this study, we take a similar approach in quantifying the effect of the EM algorithm on detection of simulated low-contrast square objects superimposed on radiographic mottle. The SNRs of the original and processed images are calculated taking into account both the human visual system response and the screen-film transfer function as well as a noise component internal to the eye-brain system. The EM algorithm was also implemented on digital screen-film images of test patterns and clinical mammograms

  6. Diagnostic performance of line-immunoassay based algorithms for incident HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Schüpbach Jörg

    2012-04-01

    Full Text Available Abstract Background Serologic testing algorithms for recent HIV seroconversion (STARHS provide important information for HIV surveillance. We have previously demonstrated that a patient's antibody reaction pattern in a confirmatory line immunoassay (INNO-LIA™ HIV I/II Score provides information on the duration of infection, which is unaffected by clinical, immunological and viral variables. In this report we have set out to determine the diagnostic performance of Inno-Lia algorithms for identifying incident infections in patients with known duration of infection and evaluated the algorithms in annual cohorts of HIV notifications. Methods Diagnostic sensitivity was determined in 527 treatment-naive patients infected for up to 12 months. Specificity was determined in 740 patients infected for longer than 12 months. Plasma was tested by Inno-Lia and classified as either incident ( Results The 10 best algorithms had a mean raw sensitivity of 59.4% and a mean specificity of 95.1%. Adjustment for overrepresentation of patients in the first quarter year of infection further reduced the sensitivity. In the preferred model, the mean adjusted sensitivity was 37.4%. Application of the 10 best algorithms to four annual cohorts of HIV-1 notifications totalling 2'595 patients yielded a mean IIR of 0.35 in 2005/6 (baseline and of 0.45, 0.42 and 0.35 in 2008, 2009 and 2010, respectively. The increase between baseline and 2008 and the ensuing decreases were highly significant. Other adjustment models yielded different absolute IIR, although the relative changes between the cohorts were identical for all models. Conclusions The method can be used for comparing IIR in annual cohorts of HIV notifications. The use of several different algorithms in combination, each with its own sensitivity and specificity to detect incident infection, is advisable as this reduces the impact of individual imperfections stemming primarily from relatively low sensitivities and

  7. Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2014-01-01

    Full Text Available To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constraint. Secondly, the EM algorithm is improved by combining the AO imaging system parameters and regularization technique. A cost function for the joint-deconvolution multiframe AO images is given, and the optimization model for their parameter estimations is built. Lastly, the image-restoration experiments on both analog images and the real AO are performed to verify the recovery effect of our algorithm. The experimental results show that comparing with the Wiener-IBD or RL-IBD algorithm, our iterations decrease 14.3% and well improve the estimation accuracy. The model distinguishes the PSF of the AO images and recovers the observed target images clearly.

  8. Images Encryption Method using Steganographic LSB Method, AES and RSA algorithm

    Science.gov (United States)

    Moumen, Abdelkader; Sissaoui, Hocine

    2017-03-01

    Vulnerability of communication of digital images is an extremely important issue nowadays, particularly when the images are communicated through insecure channels. To improve communication security, many cryptosystems have been presented in the image encryption literature. This paper proposes a novel image encryption technique based on an algorithm that is faster than current methods. The proposed algorithm eliminates the step in which the secrete key is shared during the encryption process. It is formulated based on the symmetric encryption, asymmetric encryption and steganography theories. The image is encrypted using a symmetric algorithm, then, the secret key is encrypted by means of an asymmetrical algorithm and it is hidden in the ciphered image using a least significant bits steganographic scheme. The analysis results show that while enjoying the faster computation, our method performs close to optimal in terms of accuracy.

  9. Neural Network Blind Equalization Algorithm Applied in Medical CT Image Restoration

    Directory of Open Access Journals (Sweden)

    Yunshan Sun

    2013-01-01

    Full Text Available A new algorithm for iterative blind image restoration is presented in this paper. The method extends blind equalization found in the signal case to the image. A neural network blind equalization algorithm is derived and used in conjunction with Zigzag coding to restore the original image. As a result, the effect of PSF can be removed by using the proposed algorithm, which contributes to eliminate intersymbol interference (ISI. In order to obtain the estimation of the original image, what is proposed in this method is to optimize constant modulus blind equalization cost function applied to grayscale CT image by using conjugate gradient method. Analysis of convergence performance of the algorithm verifies the feasibility of this method theoretically; meanwhile, simulation results and performance evaluations of recent image quality metrics are provided to assess the effectiveness of the proposed method.

  10. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2013-01-01

    Full Text Available Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS data model. Aims: (1 Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2 Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3 Develop a set of queries to support data sampling and result comparisons; (4 Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1 algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2 algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The

  11. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  12. Implementation of digital image encryption algorithm using logistic function and DNA encoding

    Science.gov (United States)

    Suryadi, MT; Satria, Yudi; Fauzi, Muhammad

    2018-03-01

    Cryptography is a method to secure information that might be in form of digital image. Based on past research, in order to increase security level of chaos based encryption algorithm and DNA based encryption algorithm, encryption algorithm using logistic function and DNA encoding was proposed. Digital image encryption algorithm using logistic function and DNA encoding use DNA encoding to scramble the pixel values into DNA base and scramble it in DNA addition, DNA complement, and XOR operation. The logistic function in this algorithm used as random number generator needed in DNA complement and XOR operation. The result of the test show that the PSNR values of cipher images are 7.98-7.99 bits, the entropy values are close to 8, the histogram of cipher images are uniformly distributed and the correlation coefficient of cipher images are near 0. Thus, the cipher image can be decrypted perfectly and the encryption algorithm has good resistance to entropy attack and statistical attack.

  13. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology

    International Nuclear Information System (INIS)

    Doi, Kunio

    2006-01-01

    Over the last 50 years, diagnostic imaging has grown from a state of infancy to a high level of maturity. Many new imaging modalities have been developed. However, modern medical imaging includes not only image production but also image processing, computer-aided diagnosis (CAD), image recording and storage, and image transmission, most of which are included in a picture archiving and communication system (PACS). The content of this paper includes a short review of research and development in medical imaging science and technology, which covers (a) diagnostic imaging in the 1950s, (b) the importance of image quality and diagnostic performance, (c) MTF, Wiener spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems, (f) digital imaging systems, (g) image processing, (h) computer-aided diagnosis, (i) PACS, (j) 3D imaging and (k) future directions. Although some of the modalities are already very sophisticated, further improvements will be made in image quality for MRI, ultrasound and molecular imaging. The infrastructure of PACS is likely to be improved further in terms of its reliability, speed and capacity. However, CAD is currently still in its infancy, and is likely to be a subject of research for a long time. (review)

  14. Retinex enhancement of infrared images.

    Science.gov (United States)

    Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili

    2008-01-01

    With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.

  15. MR imaging diagnostic protocol for unilocular lesions of the jaw

    Directory of Open Access Journals (Sweden)

    Hironobu Konouchi

    2012-08-01

    Using our MR imaging diagnostic protocol to diagnose 31 cases, we obtained a positivity rate of 71.0%. The use of our MR imaging diagnostic protocol for unilocular lesions, which are especially difficult to differentiate by radiography, would improve the morphological and qualitative diagnosis of soft tissue lesions.

  16. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    Science.gov (United States)

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  17. Image Reconstruction Algorithm For Electrical Capacitance Tomography (ECT)

    International Nuclear Information System (INIS)

    Arko

    2001-01-01

    ). Most image reconstruction algorithms for electrical capacitance tomography (ECT) use sensitivity maps as weighting factors. The computation is fast, involving a simple multiply-and- accumulate (MAC) operation, but the resulting image suffers from blurring due to the soft-field effect of the sensor. This paper presents a low cost iterative method employing proportional thresholding, which improves image quality dramatically. The strategy for implementation, computational cost, and achievable speed is examined when using a personal computer (PC) and Digital Signal Processor (DSP). For PC implementation, Watcom C++ 10.6 and Visual C++ 5.0 compilers were used. The experimental results are compared to the images reconstructed by commercially available software. The new algorithm improves the image quality significantly at a cost of a few iterations. This technique can be readily exploited for online applications

  18. 3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm

    Science.gov (United States)

    Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd

    2017-12-01

    A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.

  19. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  20. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  1. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    Science.gov (United States)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  2. A Novel Perceptual Hash Algorithm for Multispectral Image Authentication

    Directory of Open Access Journals (Sweden)

    Kaimeng Ding

    2018-01-01

    Full Text Available The perceptual hash algorithm is a technique to authenticate the integrity of images. While a few scholars have worked on mono-spectral image perceptual hashing, there is limited research on multispectral image perceptual hashing. In this paper, we propose a perceptual hash algorithm for the content authentication of a multispectral remote sensing image based on the synthetic characteristics of each band: firstly, the multispectral remote sensing image is preprocessed with band clustering and grid partition; secondly, the edge feature of the band subsets is extracted by band fusion-based edge feature extraction; thirdly, the perceptual feature of the same region of the band subsets is compressed and normalized to generate the perceptual hash value. The authentication procedure is achieved via the normalized Hamming distance between the perceptual hash value of the recomputed perceptual hash value and the original hash value. The experiments indicated that our proposed algorithm is robust compared to content-preserved operations and it efficiently authenticates the integrity of multispectral remote sensing images.

  3. A Degree Distribution Optimization Algorithm for Image Transmission

    Science.gov (United States)

    Jiang, Wei; Yang, Junjie

    2016-09-01

    Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.

  4. Research on Image Reconstruction Algorithms for Tuber Electrical Resistance Tomography System

    Directory of Open Access Journals (Sweden)

    Jiang Zili

    2016-01-01

    Full Text Available The application of electrical resistance tomography (ERT technology has been expanded to the field of agriculture, and the concept of TERT (Tuber Electrical Resistance Tomography is proposed. On the basis of the research on the forward and the inverse problems of the TERT system, a hybrid algorithm based on genetic algorithm is proposed, which can be used in TERT system to monitor the growth status of the plant tubers. The image reconstruction of TERT system is different from the conventional ERT system for two phase-flow measurement. Imaging of TERT needs more precision measurement and the conventional ERT cares more about the image reconstruction speed. A variety of algorithms are analyzed and optimized for the purpose of making them suitable for TERT system. For example: linear back projection, modified Newton-Raphson and genetic algorithm. Experimental results showed that the novel hybrid algorithm is superior to other algorithm and it can effectively improve the image reconstruction quality.

  5. Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    R. V. V. Krishna

    2016-10-01

    Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.

  6. A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    W. Lu

    2017-09-01

    Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.

  7. Diagnostic imaging in focal epilepsy

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2013-01-01

    Focal epilepsies account for 60% of all seizure disorders worldwide. In this review the classic and new classification system of epileptic seizures and syndromes as well as genetic forms are discussed. Magnetic resonance (MR) is the technique of choice for diagnostic imaging in focal epilepsy because of its sensitivity and high tissue contrast. The review is focused on the lack of consensus of imaging protocols and reported findings in refractory epilepsy. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics are depicted. Diagnosis of hippocampal sclerosis and malformations of cortical development as two major causes of refractory focal epilepsy is described in details. Some promising new techniques as positron emission tomography computed tomography (PET/CT) and MR and PET/CT fusion are briefly discussed. Also the relevance of adequate imaging in focal epilepsy, some practical points in imaging interpretation and differential diagnosis are highlighted. (author)

  8. Improved SURF Algorithm and Its Application in Seabed Relief Image Matching

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Mei

    2017-01-01

    Full Text Available The matching based on seabed relief image is widely used in underwater relief matching navigation and target recognition, etc. However, being influenced by various factors, some conventional matching algorithms are difficult to obtain an ideal result in the matching of seabed relief image. SURF(Speeded Up Robust Features algorithm is based on feature points pair to achieve matching, and can get good results in the seabed relief image matching. However, in practical applications, the traditional SURF algorithm is easy to get false matching, especially when the area’s features are similar or not obvious, the problem is more seriously. In order to improve the robustness of the algorithm, this paper proposes an improved matching algorithm, which combines the SURF, and RANSAC (Random Sample Consensus algorithms. The new algorithm integrates the two algorithms advantages, firstly, the SURF algorithm is applied to detect and extract the feature points then to pre-match. Secondly, RANSAC algorithm is utilized to eliminate mismatching points, and then the accurate matching is accomplished with the correct matching points. The experimental results show that the improved algorithm overcomes the mismatching problem effectively and have better precision and faster speed than the traditional SURF algorithm.

  9. From Pixels to Region: A Salient Region Detection Algorithm for Location-Quantification Image

    Directory of Open Access Journals (Sweden)

    Mengmeng Zhang

    2014-01-01

    Full Text Available Image saliency detection has become increasingly important with the development of intelligent identification and machine vision technology. This process is essential for many image processing algorithms such as image retrieval, image segmentation, image recognition, and adaptive image compression. We propose a salient region detection algorithm for full-resolution images. This algorithm analyzes the randomness and correlation of image pixels and pixel-to-region saliency computation mechanism. The algorithm first obtains points with more saliency probability by using the improved smallest univalue segment assimilating nucleus operator. It then reconstructs the entire saliency region detection by taking these points as reference and combining them with image spatial color distribution, as well as regional and global contrasts. The results for subjective and objective image saliency detection show that the proposed algorithm exhibits outstanding performance in terms of technology indices such as precision and recall rates.

  10. A recommender system for medical imaging diagnostic.

    Science.gov (United States)

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  11. Diagnostic imaging in fertility disorders

    International Nuclear Information System (INIS)

    Winfield, A.C.; Fleischer, A.C.

    1987-01-01

    Some 10%-15% of married couples are affected by a fertility disorder. The number of infertile couples seeking medical assistance has increased dramatically in the past decade. The roles of diagnostic imaging with radiography and US (conventional and transvaginal) is emphasized in the assessment of couples with fertility disorders and an unexpectedly higher incidence of fetal wastage secondary to unsuspected uterine anomalies. The most frequently utilized radiographic examination in infertile patients is hysterosalpingography (HSG). Techniques and complications of HSG are illustrated. The normal anatomy, variants, and congenital anomalies of the uterus and fallopian tubes are demonstrated, as are the numerous abnormalities such as filling defects of the uterine cavity, synechiae, effects of maternal diethylstilbestrol exposure, inflammatory tubal disease, and the more common HSG findings following uterine and tubal surgery. The role of diagnostic imaging in male infertility, including vasography and varicocele detection, are addressed. Conventional and transvaginal US in the management of gynecologic fertility disorders are examined, with an emphasis on follicular monitoring, guided follicular aspirations, endometrial evaluations, and evaluation of other disorders (such as endometriosis) associated with infertility

  12. Fast, fat-suppressed diagnostic imaging of the breast

    International Nuclear Information System (INIS)

    Metzger, G.J.; Weatherall, P.

    1999-01-01

    Maximum sensitivity and diagnostic precision of MR imaging of the breast can be achieved only with fat-suppressed diagnostic scans with high resolution. Optimal results were obtained with a 3D-FFE sequence and excitation by a binomial pulse and an amplitude-modulated binomial pulse. (orig./CB) [de

  13. Image Encryption Using a Lightweight Stream Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Saeed Bahrami

    2012-01-01

    Full Text Available Security of the multimedia data including image and video is one of the basic requirements for the telecommunications and computer networks. In this paper, we consider a simple and lightweight stream encryption algorithm for image encryption, and a series of tests are performed to confirm suitability of the described encryption algorithm. These tests include visual test, histogram analysis, information entropy, encryption quality, correlation analysis, differential analysis, and performance analysis. Based on this analysis, it can be concluded that the present algorithm in comparison to A5/1 and W7 stream ciphers has the same security level, is better in terms of the speed of performance, and is used for real-time applications.

  14. Algorithms for reconstructing images for industrial applications

    International Nuclear Information System (INIS)

    Lopes, R.T.; Crispim, V.R.

    1986-01-01

    Several algorithms for reconstructing objects from their projections are being studied in our Laboratory, for industrial applications. Such algorithms are useful locating the position and shape of different composition of materials in the object. A Comparative study of two algorithms is made. The two investigated algorithsm are: The MART (Multiplicative - Algebraic Reconstruction Technique) and the Convolution Method. The comparison are carried out from the point view of the quality of the image reconstructed, number of views and cost. (Author) [pt

  15. Magnetic resonance imaging of the wrist: Diagnostic performance statistics

    International Nuclear Information System (INIS)

    Hobby, Jonathan L.; Tom, Brian D.M.; Bearcroft, Philip W.P.; Dixon, Adrian K.

    2001-01-01

    AIM: To review the published diagnostic performance statistics for magnetic resonance imaging (MRI) of the wrist for tears of the triangular fibrocartilage complex, the intrinsic carpal ligaments, and for osteonecrosis of the carpal bones. MATERIALS AND METHODS: We used Medline and Embase to search the English language literature. Studies evaluating the diagnostic performance of MRI of the wrist in living patients with surgical confirmation of MR findings were identified. RESULTS: We identified 11 studies reporting the diagnostic performance of MRI for tears of the triangular fibrocartilage complex for a total of 410 patients, six studies for the scapho-lunate ligament (159 patients), six studies for the luno-triquetral ligament (142 patients) and four studies (56 patients) for osteonecrosis of the carpal bones. CONCLUSIONS: Magnetic resonance imaging is an accurate means of diagnosing tears of the triangular fibrocartilage and carpal osteonecrosis. Although MRI is highly specific for tears of the intrinsic carpal ligaments, its sensitivity is low. The diagnostic performance of MRI in the wrist is improved by using high-resolution T2* weighted 3D gradient echo sequences. Using current imaging techniques without intra-articular contrast medium, magnetic resonance imaging cannot reliably exclude tears of the intrinsic carpal ligaments. Hobby, J.L. (2001)

  16. A Spherical Model Based Keypoint Descriptor and Matching Algorithm for Omnidirectional Images

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available Omnidirectional images generally have nonlinear distortion in radial direction. Unfortunately, traditional algorithms such as scale-invariant feature transform (SIFT and Descriptor-Nets (D-Nets do not work well in matching omnidirectional images just because they are incapable of dealing with the distortion. In order to solve this problem, a new voting algorithm is proposed based on the spherical model and the D-Nets algorithm. Because the spherical-based keypoint descriptor contains the distortion information of omnidirectional images, the proposed matching algorithm is invariant to distortion. Keypoint matching experiments are performed on three pairs of omnidirectional images, and comparison is made among the proposed algorithm, the SIFT and the D-Nets. The result shows that the proposed algorithm is more robust and more precise than the SIFT, and the D-Nets in matching omnidirectional images. Comparing with the SIFT and the D-Nets, the proposed algorithm has two main advantages: (a there are more real matching keypoints; (b the coverage range of the matching keypoints is wider, including the seriously distorted areas.

  17. Efficient Active Contour and K-Means Algorithms in Image Segmentation

    Directory of Open Access Journals (Sweden)

    J.R. Rommelse

    2004-01-01

    Full Text Available In this paper we discuss a classic clustering algorithm that can be used to segment images and a recently developed active contour image segmentation model. We propose integrating aspects of the classic algorithm to improve the active contour model. For the resulting CVK and B-means segmentation algorithms we examine methods to decrease the size of the image domain. The CVK method has been implemented to run on parallel and distributed computers. By changing the order of updating the pixels, it was possible to replace synchronous communication with asynchronous communication and subsequently the parallel efficiency is improved.

  18. Diagnostic imaging of exotic pets

    International Nuclear Information System (INIS)

    Silverman, S.

    1993-01-01

    Radiographic, ultrasonographic, and computed tomographic (CT) imaging are important diagnostic modalities in exotic pets. The use of appropriate radiographic equipment, film-screen combinations, and radiographic projections enhances the information obtained from radiographs. Both normal findings and common radiographic abnormalities are discussed. The use of ultrasonography and CT scanning for exotic small mammals and reptiles is described

  19. A MAP blind image deconvolution algorithm with bandwidth over-constrained

    Science.gov (United States)

    Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong

    2018-03-01

    We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.

  20. Iris recognition using image moments and k-means algorithm.

    Science.gov (United States)

    Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed

    2014-01-01

    This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.

  1. Diagnostic imaging in pregraduate integrated curricula

    International Nuclear Information System (INIS)

    Kainberger, F.; Kletter, K.

    2007-01-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula. (orig.)

  2. [Diagnostic imaging in pregraduate integrated curricula].

    Science.gov (United States)

    Kainberger, F; Kletter, K

    2007-11-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula.

  3. New Autism Diagnostic Interview-Revised Algorithms for Toddlers and Young Preschoolers from 12 to 47 Months of Age

    Science.gov (United States)

    Kim, So Hyun; Lord, Catherine

    2012-01-01

    Autism Diagnostic Interview-Revised (Rutter et al. in "Autism diagnostic interview-revised." Western Psychological Services, Los Angeles, 2003) diagnostic algorithms specific to toddlers and young preschoolers were created using 829 assessments of children aged from 12 to 47 months with ASD, nonspectrum disorders, and typical development. The…

  4. A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.

    Science.gov (United States)

    Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong

    2015-12-01

    Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.

  5. An adaptive clustering algorithm for image matching based on corner feature

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  6. A comparative study of image low level feature extraction algorithms

    Directory of Open Access Journals (Sweden)

    M.M. El-gayar

    2013-07-01

    Full Text Available Feature extraction and matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods for assessing the performance of popular image matching algorithms are presented and rely on costly descriptors for detection and matching. Specifically, the method assesses the type of images under which each of the algorithms reviewed herein perform to its maximum or highest efficiency. The efficiency is measured in terms of the number of matches founds by the algorithm and the number of type I and type II errors encountered when the algorithm is tested against a specific pair of images. Current comparative studies asses the performance of the algorithms based on the results obtained in different criteria such as speed, sensitivity, occlusion, and others. This study addresses the limitations of the existing comparative tools and delivers a generalized criterion to determine beforehand the level of efficiency expected from a matching algorithm given the type of images evaluated. The algorithms and the respective images used within this work are divided into two groups: feature-based and texture-based. And from this broad classification only three of the most widely used algorithms are assessed: color histogram, FAST (Features from Accelerated Segment Test, SIFT (Scale Invariant Feature Transform, PCA-SIFT (Principal Component Analysis-SIFT, F-SIFT (fast-SIFT and SURF (speeded up robust features. The performance of the Fast-SIFT (F-SIFT feature detection methods are compared for scale changes, rotation, blur, illumination changes and affine transformations. All the experiments use repeatability measurement and the number of correct matches for the evaluation measurements. SIFT presents its stability in most situations although its slow. F-SIFT is the fastest one with good performance as the same as SURF, SIFT, PCA-SIFT show its advantages in rotation and illumination changes.

  7. Development of information preserving data compression algorithm for CT images

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio

    1989-01-01

    Although digital imaging techniques in radiology develop rapidly, problems arise in archival storage and communication of image data. This paper reports on a new information preserving data compression algorithm for computed tomographic (CT) images. This algorithm consists of the following five processes: 1. Pixels surrounding the human body showing CT values smaller than -900 H.U. are eliminated. 2. Each pixel is encoded by its numerical difference from its neighboring pixel along a matrix line. 3. Difference values are encoded by a newly designed code rather than the natural binary code. 4. Image data, obtained with the above process, are decomposed into bit planes. 5. The bit state transitions in each bit plane are encoded by run length coding. Using this new algorithm, the compression ratios of brain, chest, and abdomen CT images are 4.49, 4.34. and 4.40 respectively. (author)

  8. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer

    NARCIS (Netherlands)

    Bejnordi, Babak Ehteshami; Veta, Mitko; van Diest, Paul Johannes; Van Ginneken, Bram; Karssemeijer, Nico; Litjens, Geert; van der Laak, Jeroen A.W.M.; Hermsen, Meyke; Manson, Quirine F.; Balkenhol, Maschenka; Geessink, Oscar; Stathonikos, Nikolaos; Van Dijk, Marcory C.R.F.; Bult, Peter; Beca, Francisco; Beck, Andrew H.; Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Zhong, Aoxiao; Dou, Qi; Li, Quanzheng; Chen, Hao; Lin, Huang Jing; Heng, Pheng Ann; Haß, Christian; Bruni, Elia; Wong, Quincy; Halici, Ugur; Öner, Mustafa Ümit; Cetin-Atalay, Rengul; Berseth, Matt; Khvatkov, Vitali; Vylegzhanin, Alexei; Kraus, Oren; Shaban, Muhammad; Rajpoot, Nasir; Awan, Ruqayya; Sirinukunwattana, Korsuk; Qaiser, Talha; Tsang, Yee Wah; Tellez, David; Annuscheit, Jonas; Hufnagl, Peter; Valkonen, Mira; Kartasalo, Kimmo; Latonen, Leena; Ruusuvuori, Pekka; Liimatainen, Kaisa

    2017-01-01

    IMPORTANCE: Application of deep learning algorithms to whole-slide pathology imagescan potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph

  9. Post-graduate training in imaging diagnostics, nuclear medicine and radiotherapy for radiographers

    International Nuclear Information System (INIS)

    Petkova, E.; Velkova, K.; Shangova, M.; Karidova, S.

    2006-01-01

    Full text: The application of new technologies in imaging diagnostics, as well as the use of digital processing and storing of information, has increased the quality and scope of imaging diagnostics. The potentials of therapeutic methods connected with imaging diagnostics and nuclear medicine, interventional therapeutic procedures (dilatation, embolism, stent, etc.), basins with radio-pharmaceuticals, etc., are constantly increasing. The constant training of radiographers in working with the new, advanced image-diagnostic equipment has become an established international practice in the process of training the human resources of the imaging-diagnostic departments and centers. Objectives: 1. Investigating the potentials of post-graduate training for monitoring the dynamics in the development of the principles, methods and techniques in imaging diagnostics; 2. The attitude of radiographers towards post-graduate training. Systematic approach and critical analysis of published data and mathematical-statistical methods with regard to the need of post-graduate training. The processed data of the survey on the necessity for post-graduate training conducted among 3rd year students in the last 3 years - 75 % consider post-graduate training mandatory, 11% deem it necessary, and 14% have no opinion on the issue; and among the working radiographers in the last 3 years the results are as follows: mandatory - 91%, necessary - 7%, no opinion - 2%. The improvement and advances in imaging diagnostic equipment and apparatuses have considerably outstripped the professional training of radiographers. The key word in the race for knowledge is constant learning and training, which can successfully be achieved within the framework of post-graduate training

  10. The ANACONDA algorithm for deformable image registration in radiotherapy

    International Nuclear Information System (INIS)

    Weistrand, Ola; Svensson, Stina

    2015-01-01

    Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularization term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA

  11. Algorithm-Architecture Matching for Signal and Image Processing

    CERN Document Server

    Gogniat, Guy; Morawiec, Adam; Erdogan, Ahmet

    2011-01-01

    Advances in signal and image processing together with increasing computing power are bringing mobile technology closer to applications in a variety of domains like automotive, health, telecommunication, multimedia, entertainment and many others. The development of these leading applications, involving a large diversity of algorithms (e.g. signal, image, video, 3D, communication, cryptography) is classically divided into three consecutive steps: a theoretical study of the algorithms, a study of the target architecture, and finally the implementation. Such a linear design flow is reaching its li

  12. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-01-01

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting

  13. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress

    International Nuclear Information System (INIS)

    Liu, Patrick T.; Pavlicek, William P.; Peter, Mary B.; Roberts, Catherine C.; Paden, Robert G.; Spangehl, Mark J.

    2009-01-01

    Despite recent advances in CT technology, metal orthopedic implants continue to cause significant artifacts on many CT exams, often obscuring diagnostic information. We performed this prospective study to evaluate the effectiveness of an experimental metal artifact reduction (MAR) image reconstruction program for CT. We examined image quality on CT exams performed in patients with hip arthroplasties as well as other types of implanted metal orthopedic devices. The exam raw data were reconstructed using two different methods, the standard filtered backprojection (FBP) program and the MAR program. Images were evaluated for quality of the metal-cement-bone interfaces, trabeculae ≤1 cm from the metal, trabeculae 5 cm apart from the metal, streak artifact, and overall soft tissue detail. The Wilcoxon Rank Sum test was used to compare the image scores from the large and small prostheses. Interobserver agreement was calculated. When all patients were grouped together, the MAR images showed mild to moderate improvement over the FBP images. However, when the cases were divided by implant size, the MAR images consistently received higher image quality scores than the FBP images for large metal implants (total hip prostheses). For small metal implants (screws, plates, staples), conversely, the MAR images received lower image quality scores than the FBP images due to blurring artifact. The difference of image scores for the large and small implants was significant (p=0.002). Interobserver agreement was found to be high for all measures of image quality (k>0.9). The experimental MAR reconstruction algorithm significantly improved CT image quality for patients with large metal implants. However, the MAR algorithm introduced blurring artifact that reduced image quality with small metal implants. (orig.)

  14. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    International Nuclear Information System (INIS)

    Smarda, M; Alexopoulou, E; Mazioti, A; Kordolaimi, S; Ploussi, A; Efstathopoulos, E; Priftis, K

    2015-01-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions. (paper)

  15. An Image Encryption Algorithm Based on Balanced Pixel and Chaotic Map

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-01-01

    Full Text Available Image encryption technology has been applied in many fields and is becoming the main way of protecting the image information security. There are also many ways of image encryption. However, the existing encryption algorithms, in order to obtain a better effect of encryption, always need encrypting several times. There is not an effective method to decide the number of encryption times, generally determined by the human eyes. The paper proposes an image encryption algorithm based on chaos and simultaneously proposes a balanced pixel algorithm to determine the times of image encryption. Many simulation experiments have been done including encryption effect and security analysis. Experimental results show that the proposed method is feasible and effective.

  16. Diagnostic accuracy of imaging modalities for internal derangements of temporomandibular joint

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Igarashi, Chinami; Yuasa, Masao; Imanaka, Masahiro; Kondoh, Toshirou

    1998-01-01

    The purpose of this study was to evaluate and review the diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value of imaging diagnosis for temporomandibular disorders. The role of diagnostic imaging is to detect and document specific anatomic abnormalities associated with the signs and symptoms in the temporomandibular joint. Magnetic resonance imaging (MR imaging) can accurately depict disc displacement and disc deformity. MR imaging is our first choice among the various imaging modalities for the patients with clinical signs and symptoms. However, it has been shown that intra-capsular adhesions and perforations of the disc and retrodiscal tissue are sometimes not detected by MR imaging. To improve the diagnostic technique for adhesions and perforations, double-contrast arthrotomography with fluoroscopy should be employed. The irregular surface of the eminences and the glenoid fossae shown by MR imaging and tomography are correlated with subchondral bone exposure by arthroscopy. Erosion of the condyles detected by MR imaging, tomography and rotational panoramic radiography is correlated with subchondral bone exposure detected by arthroscopy. (author). 69 refs

  17. New segmentation-based tone mapping algorithm for high dynamic range image

    Science.gov (United States)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  18. The clinician's guide to diagnostic imaging: Cost-effective pathways. Second edition

    International Nuclear Information System (INIS)

    Grossman, Z.D.; Chew, F.S.; Ellis, D.A.; Brigham, S.C.

    1987-01-01

    The authors developed a cost-effective approach to imaging studies, based on initial selection of an exam that best addresses the specific clinical problem and obviates the need for additional diagnostic tests. Tightly reasoned arguments compare available imaging options with respect to diagnostic yield, feasibility, risk, and cost. To aid the clinician in making cost comparisons, each paper of the Second Edition lists the dollar cost of relevant imaging studies. The Second Edition has been thoroughly revised to reflect the important advances in diagnostic imaging of the past three years, highlighting CT's expanding role in thoracic and abdominal problems, magnetic resonance imaging as a spectacular diagnostic tool for the central nervous system, and the clinical application of many newly-developed radiopharmaceuticals. New chapters cover breast cancer screening, acute spinal trauma, search for primary cancer of unknown origin, acute anuria, blunt chest trauma, new onset seizures, and spinal cord compression from metastases. Other papers have been rewritten for greater clarity and to incorporate new techniques, like dipyridamole stress testing. A glossary and an introduction define and explain the capabilities and limitations of current techniques

  19. First results of genetic algorithm application in ML image reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Smolik, W.

    1999-01-01

    This paper concerns application of genetic algorithm in maximum likelihood image reconstruction in emission tomography. The example of genetic algorithm for image reconstruction is presented. The genetic algorithm was based on the typical genetic scheme modified due to the nature of solved problem. The convergence of algorithm was examined. The different adaption functions, selection and crossover methods were verified. The algorithm was tested on simulated SPECT data. The obtained results of image reconstruction are discussed. (author)

  20. Diagnostic imaging of lymphomas in pediatric patients

    International Nuclear Information System (INIS)

    Petrova, A.

    2010-01-01

    Lymphoma is the third most common malignancy in children, after leukemias and brain tumors, most commonly during early childhood before 14 years. In definite stages cancer can engage all organs and systems. These conditions associate with immunodeficiency, increased susceptibility to infections and second neoplasms. The social importance of the problem requires early diagnosis, accurate staging, and assessment of the treatment and determination of the risk for relapse of the disease. The aim of the present review is to represent the role of the modern methods of diagnostic imaging - ultrasonography (US), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emisson Tomography (PET) scan in the process of diagnostics, in the decision of therapeutic strategy and the follow-up of children with lymphomas

  1. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  2. Basic artefacts of diagnostic imaging by the magnetic resonance method

    International Nuclear Information System (INIS)

    Vitak, T.; Seidl, Z.; Obenberger, J.; Vaneckova, M.; Danes, J.; Krasensky, J.; Peterkova, V

    2000-01-01

    Artefacts in diagnostic imaging are defined as a geometric or anatomic misrepresentation of the reality by the image formed. The article deals with artefacts due to field and frequency shifts, in particular due to the water-fat chemical shift and due to magnetic susceptibility. The physical nature of the artefacts is explained and their diagnostic significance is discussed. (P.A.)

  3. A novel image encryption algorithm based on a 3D chaotic map

    Science.gov (United States)

    Kanso, A.; Ghebleh, M.

    2012-07-01

    Recently [Solak E, Çokal C, Yildiz OT Biyikoǧlu T. Cryptanalysis of Fridrich's chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich's algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.

  4. A novel algorithm for thermal image encryption.

    Science.gov (United States)

    Hussain, Iqtadar; Anees, Amir; Algarni, Abdulmohsen

    2018-04-16

    Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.

  5. A new modified fast fractal image compression algorithm

    DEFF Research Database (Denmark)

    Salarian, Mehdi; Nadernejad, Ehsan; MiarNaimi, Hossein

    2013-01-01

    In this paper, a new fractal image compression algorithm is proposed, in which the time of the encoding process is considerably reduced. The algorithm exploits a domain pool reduction approach, along with the use of innovative predefined values for contrast scaling factor, S, instead of searching...

  6. Diagnostic imaging in child abuse

    International Nuclear Information System (INIS)

    Stoever, B.

    2007-01-01

    Diagnostic imaging in child abuse plays an important role and includes the depiction of skeletal injuries, soft tissue lesions, visceral injuries in ''battered child syndrome'' and brain injuries in ''shaken baby syndrome''. The use of appropriate imaging modalities allows specific fractures to be detected, skeletal lesions to be dated and the underlying mechanism of the lesion to be described. The imaging results must be taken into account when assessing the clinical history, clinical findings and differential diagnoses. Computed tomography (CT) and magnetic resonance imaging (MRI) examinations must be performed in order to detect lesions of the central nervous system (CNS) immediately. CT is necessary in the initial diagnosis to delineate oedema and haemorrhages. Early detection of brain injuries in children with severe neurological symptoms can prevent serious late sequelae. MRI is performed in follow-up investigations and is used to describe residual lesions, including parenchymal findings. (orig.) [de

  7. Multidetector CT: a new gold standard in the diagnosis of pulmonary embolism? State of the art and diagnostic algorithms

    International Nuclear Information System (INIS)

    Russo, Vincenzo; Piva, Tommaso; Lovato, Luigi; Fattori, Rossella; Gavelli, Giampaolo

    2005-01-01

    Purpose: From the early 90s, spiral CT technology has considerably changed the diagnostic capability of Pulmonary Embolism (PE), giving a direct vision of intravascular thrombi. Further technological progress has straightened its diagnostic impact leading to an essential role in clinical practice. The advent of Multi-Detector CT (MDCT) has subsequently increased the reliability of this technique to the point of undermining the role of pulmonary angiography as the gold standard and occupying a central position in diagnostic algorithms. The aim of this paper is to appraise this evolution by means of a meta-analysis of the relevant literature from 1995 to 2004. Results: The review of the literature showed the sensitivity and specificity of CT to have increased from 37-94% and 91-100% (single detector CT) to 87-94% and 94-100% (4-channel multidetector CT), especially thanks to the possibility of depicting subsegmental clots, with an interobserver agreement of 0.63-0.94 (k). Conclusions: CT is one of the most reliable and effective methods in the diagnosis is PE, with the advantage of being extremely fast and providing alternative diagnoses. Recent improvements in MDCT technology confers the highest value of diagnostic accuracy with respect to other imaging modalities such as scintigraphy, angiography, MRI, D-dimer essay and Doppler US [it

  8. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

  9. HEREDITARY CONNECTIVE TISSUE DISORDERS: NOMENCLATURE AND DIAGNOSTIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. V. Klemenov

    2015-01-01

    Full Text Available Hereditary connective tissue disorders (HCTDs are a genetically and clinically diverse group of diseases, which encompasses common congenital disorders of fibrous connective tissue structures. Out of the whole variety of the clinical manifestations of NCTDs, only differentiated monogenic syndromes with the agreed guidelines for their diagnosis have been long the focus of the medical community’s attention. Many unclassified forms of the pathology (dysplasia phenotypes have been disregarded while assessing a person’s prognosis and defining treatment policy. With no clear definition of NCTDs or their approved diagnostic algorithm, it is difficult to study their real prevalence in the population, to compare literature data, and to constructively discuss various scientific and practical aspects of this disease. Efforts to systematize individual clinical types of NCTD and to formulate their diagnostic criteria are set forth in the All-Russian Research Society Expert Committee national guidelines approved in 2009 and revised in 2012. The paper gives current views on the nomenclature of NCTDs, considers diagnostic criteria for both classified monogenic syndromes (Marfan's syndrome, Ehlers–Danlos' syndrome, MASS phenotype, primary mitral valve prolapse, joint hypermobility syndrome and unclassified dysplasia phenotypes (MASS-like phenotype, marfanoid appearance, Ehlers–Danlos-like phenotype, benign joint hypermobility syndrome, unclassified phenotype. The above abnormalities are presented as a continuous list drawn up in the decreasing order of the degree of their clinical manifestations and prognostic value (the phenotypic continuum described by M.J. Glesby and R.E. Pyentz: from monogenic syndromes through dysplasia phenotypes to an unclassified phenotype. Emphasis is laid on the clinical NCTD identification difficulties associated with the lack of specificity of external and visceral markers of connective tissue asthenia and with the certain

  10. Image Retrieval Algorithm Based on Discrete Fractional Transforms

    Science.gov (United States)

    Jindal, Neeru; Singh, Kulbir

    2013-06-01

    The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.

  11. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  12. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  13. Acceleration of the direct reconstruction of linear parametric images using nested algorithms

    International Nuclear Information System (INIS)

    Wang Guobao; Qi Jinyi

    2010-01-01

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  14. An algorithm for 4D CT image sorting using spatial continuity.

    Science.gov (United States)

    Li, Chen; Liu, Jie

    2013-01-01

    4D CT, which could locate the position of the movement of the tumor in the entire respiratory cycle and reduce image artifacts effectively, has been widely used in making radiation therapy of tumors. The current 4D CT methods required external surrogates of respiratory motion obtained from extra instruments. However, respiratory signals recorded by these external makers may not always accurately represent the internal tumor and organ movements, especially when irregular breathing patterns happened. In this paper we have proposed a novel automatic 4D CT sorting algorithm that performs without these external surrogates. The sorting algorithm requires collecting the image data with a cine scan protocol. Beginning with the first couch position, images from the adjacent couch position are selected out according to spatial continuity. The process is continued until images from all couch positions are sorted and the entire 3D volume is produced. The algorithm is verified by respiratory phantom image data and clinical image data. The primary test results show that the 4D CT images created by our algorithm have eliminated the motion artifacts effectively and clearly demonstrated the movement of tumor and organ in the breath period.

  15. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  16. Diagnostic value of imaging in infective endocarditis: a systematic review.

    Science.gov (United States)

    Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu

    2017-01-01

    Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of infective endocarditis; however, their diagnostic value is unclear. We did a systematic literature review to critically appraise the evidence for the diagnostic performance of these imaging modalities, according to PRISMA and GRADE criteria. We searched PubMed, Embase, and Cochrane databases. 31 studies were included that presented original data on the performance of electrocardiogram (ECG)-gated multidetector CT angiography (MDCTA), ECG-gated MRI, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/CT, and leucocyte scintigraphy in diagnosis of native valve endocarditis, intracardiac prosthetic material-related infection, and extracardiac foci in adults. We consistently found positive albeit weak evidence for the diagnostic benefit of 18 F-FDG PET/CT and MDCTA. We conclude that additional imaging techniques should be considered if infective endocarditis is suspected. We propose an evidence-based diagnostic work-up for infective endocarditis including these non-invasive techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A novel highly parallel algorithm for linearly unmixing hyperspectral images

    Science.gov (United States)

    Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto

    2014-10-01

    Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.

  18. Image quality - physical and diagnostic parameters. The radiologist's viewpoint

    International Nuclear Information System (INIS)

    Stender, H.St.

    1985-01-01

    The quality of a radiograph is determined by the diagnostic information it provides. This depends upon the visual detection of diagnostically relevant structures. The technical radiographic requirements are dependent upon the physical measurements and the physiological and optical conditions. Such physical factors as spatial resolution, contrast and noise are quantitative measurements, which must be oriented to the qualitative visual characteristics of the radiograph. The influence of subjective perception and complexity of structural noise on the detectability of details and structures particularly demands attention. Since radiographic quality depends upon the detection of diagnostically relevant structure and features, it is important to define these parameters on the basis of extensive radiographic analysis and the corresponding clinical findings. The diagnostically relevant radiographic parameters and image details and critical structures have been worked out for the examination of the lungs, colon, stomach, urinary tract and skeleton. Good image quality requires coordination of the physical-technical parameters with the visual ability of the observer, since only in this way can the diagnostic information be represented with sufficient clarity. (author)

  19. Algorithms imaging tests comparison following the first febrile urinary tract infection in children.

    Science.gov (United States)

    Tombesi, María M; Alconcher, Laura F; Lucarelli, Lucas; Ciccioli, Agustina

    2017-08-01

    To compare the diagnostic sensitivity, costs and radiation doses of imaging tests algorithms developed by the Argentine Society of Pediatrics in 2003 and 2015, against British and American guidelines after the first febrile urinary tract infection (UTI). Inclusion criteria: children ≤ 2 years old with their first febrile UTI and normal ultrasound, voiding cystourethrography and dimercaptosuccinic acid scintigraphy, according to the algorithm established by the Argentine Society of Pediatrics in 2003, treated between 2003 and 2010. The comparisons between algorithms were carried out through retrospective simulation. Eighty (80) patients met the inclusion criteria; 51 (63%) had vesicoureteral reflux (VUR); 6% of the cases were severe. Renal scarring was observed in 6 patients (7.5%). Cost: ARS 404,000. Radiation: 160 millisieverts. With the Argentine Society of Pediatrics' algorithm developed in 2015, the diagnosis of 4 VURs and 2 cases of renal scarring would have been missed. The cost of this omission would have been ARS 301,800 and 124 millisieverts of radiation. British and American guidelines would have missed the diagnosis of all VURs and all cases of renal scarring, with a related cost of ARS 23,000 and ARS 40,000, respectively and 0 radiation. Intensive protocols are highly sensitive to VUR and renal scarring, but they imply high costs and doses of radiation, and result in questionable benefits. Sociedad Argentina de Pediatría

  20. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  1. Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding

    Directory of Open Access Journals (Sweden)

    Yongjian Nian

    2013-01-01

    Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

  2. Diagnostic imaging of the pancreas

    International Nuclear Information System (INIS)

    Araki, Tsutomu; Itai, Yuji

    1981-01-01

    Diagnostic imaging of the pancreas, ultrasonography (US), computed tomography (CT), radionuclide (RN) scintigraphy, angiography, and endoscopic retrograde pancreaticography (ERP). First three noninvasive methods, were the most effective to diagnose psudo-cyst or cystoadenoma. Especially, CT gives the clear image of inflammation and shows pancreatic stones and calcification, with high sensitivity. As for pancreatic carcinomas there was no noninvasive methods to apply at an early stage. In order to diagnose the cancer the combination of angiography and ERP was preferable. The problem was how to select the candidates for the investigation of combined method out of the patients with negative CT or US. (Tsunoda, M.)

  3. High-speed computation of the EM algorithm for PET image reconstruction

    International Nuclear Information System (INIS)

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1994-01-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution backprojection algorithms. However, two major drawbacks have impeded the routine use of the EM algorithm, namely, the long computational time due to slow convergence and the large memory required for the storage of the image, projection data and the probability matrix. In this study, the authors attempts to solve these two problems by parallelizing the EM algorithm on a multiprocessor system. The authors have implemented an extended hypercube (EH) architecture for the high-speed computation of the EM algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs). The authors discuss and compare the performance of the EM algorithm on a 386/387 machine, CD 4360 mainframe, and on the EH system. The results show that the computational speed performance of an EH using DSP chips as PEs executing the EM image reconstruction algorithm is about 130 times better than that of the CD 4360 mainframe. The EH topology is expandable with more number of PEs

  4. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    International Nuclear Information System (INIS)

    Wright, R.; Zander, M.; Brown, S.; Sandoval, D.; Gilpatrick, D.; Gibson, H.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) is discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. (Author) (3 figs., 4 refs.)

  5. IMPLANT-ASSOCIATED PATHOLOGY: AN ALGORITHM FOR IDENTIFYING PARTICLES IN HISTOPATHOLOGIC SYNOVIALIS/SLIM DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    V. Krenn

    2014-01-01

    Full Text Available In histopathologic SLIM diagnostic (synovial-like interface membrane, SLIM apart from diagnosing periprosthetic infection particle identification has an important role to play. The differences in particle pathogenesis and variability of materials in endoprosthetics explain the particle heterogeneity that hampers the diagnostic identification of particles. For this reason, a histopathological particle algorithm has been developed. With minimal methodical complexity this histopathological particle algorithm offers a guide to prosthesis material-particle identification. Light microscopic-morphological as well as enzyme-histochemical characteristics and polarization-optical proporties have set and particles are defined by size (microparticles, macroparticles and supra- macroparticles and definitely characterized in accordance with a dichotomous principle. Based on these criteria, identification and validation of the particles was carried out in 120 joint endoprosthesis pathological cases. A histopathological particle score (HPS is proposed that summarizes the most important information for the orthopedist, material scientist and histopathologist concerning particle identification in the SLIM.

  6. Microwave imaging for plasma diagnostics and its applications

    International Nuclear Information System (INIS)

    Mase, A.; Kogi, Y.; Ito, N.

    2007-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering, and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Important plasma parameters were measured to clarify the physics issues such as stability, wave phenomena, and fluctuation-induced transport. Recent advances in microwave and millimeter-wave technology together with computer technology have enabled the development of advanced diagnostics for visualization of 2D and 3D structures of plasmas. Microwave/millimeter-wave imaging is expected to be one of the most promising diagnostic methods for this purpose. We report here on the representative microwave diagnostics and their industrial applications as well as application to magnetically-confined plasmas. (author)

  7. Primary ureteral carcinoma: MRI diagnosis and comparison with other diagnostic imaging facilities

    International Nuclear Information System (INIS)

    An Ningyu; Jiang Bo; Cai Youquan; Liang Yan

    2004-01-01

    Objective: To investigate MRI examination methods and imaging manifestations of primary ureteral carcinoma, and to evaluate its clinical values when comparing with other diagnostic imaging facilities. Methods: Eighty-seven cases of primary ureteral carcinoma who were operated within recent 8 years came into the study, among which, 35 cases had MRI examinations. For MRI examination, coronal heavy T 2 WI (water imaging) was performed to show the dilated ureter, then axial T 2 WI and T 1 WI were scanned at the obstruction level. 11 cases underwent additional Gd-DTPA dynamic contrast enhanced scans. The original pre-operative diagnostic reports of various imaging facilities were analyzed comparing with the results of operation and pathology. Results: MRI showed ureteral dilatation in 33 of 35 cases, no abnormal appearance in 1 case, and only primary kidney atrophy post renal transplantation in 1 case. Among the 33 cases with ureteral obstruction, soft mass at the obstruction level was detected on axial scans in 32 cases. The lesions showed gradual and homogeneous mild to moderate enhancement on contrast MRI. The overall employment rate of imaging facilities was as follows: ultrasound (94.3%), IVU (59.8%), CT (52.9%), MRI (40.2%), and RUP (35.6%). The accurate diagnostic rate was as follows :MRI (91.4%), RUP (80.6%), CT (63.0%), ultrasound (47.6%), and IVU (11.5%). Conclusion: Combination of MR water imaging and conventional sequences can demonstrate most primary ureteral carcinoma lesions and has a highest diagnostic accuracy among the current diagnostic imaging facilities. It should be taken as the first diagnostic imaging method of choice when primary ureteral carcinoma is suspected after ultrasound screening

  8. Hypercube algorithms suitable for image understanding in uncertain environments

    International Nuclear Information System (INIS)

    Huntsberger, T.L.; Sengupta, A.

    1988-01-01

    Computer vision in a dynamic environment needs to be fast and able to tolerate incomplete or uncertain intermediate results. An appropriately chose representation coupled with a parallel architecture addresses both concerns. The wide range of numerical and symbolic processing needed for robust computer vision can only be achieved through a blend of SIMD and MIMD processing techniques. The 1024 element hypercube architecture has these capabilities, and was chosen as the test-bed hardware for development of highly parallel computer vision algorithms. This paper presents and analyzes parallel algorithms for color image segmentation and edge detection. These algorithms are part of a recently developed computer vision system which uses multiple valued logic to represent uncertainty in the imaging process and in intermediate results. Algorithms for the extraction of three dimensional properties of objects using dynamic scene analysis techniques within the same framework are examined. Results from experimental studies using a 1024 element hypercube implementation of the algorithm as applied to a series of natural scenes are reported

  9. Evaluation of imaging protocol for ECT based on CS image reconstruction algorithm

    International Nuclear Information System (INIS)

    Zhou Xiaolin; Yun Mingkai; Cao Xuexiang; Liu Shuangquan; Wang Lu; Huang Xianchao; Wei Long

    2014-01-01

    Single-photon emission computerized tomography and positron emission tomography are essential medical imaging tools, for which the sampling angle number and scan time should be carefully chosen to give a good compromise between image quality and radiopharmaceutical dose. In this study, the image quality of different acquisition protocols was evaluated via varied angle number and count number per angle with Monte Carlo simulation data. It was shown that, when similar imaging counts were used, the factor of acquisition counts was more important than that of the sampling number in emission computerized tomography. To further reduce the activity requirement and the scan duration, an iterative image reconstruction algorithm for limited-view and low-dose tomography based on compressed sensing theory has been developed. The total variation regulation was added to the reconstruction process to improve the signal to noise Ratio and reduce artifacts caused by the limited angle sampling. Maximization of the maximum likelihood of the estimated image and the measured data and minimization of the total variation of the image are alternatively implemented. By using this advanced algorithm, the reconstruction process is able to achieve image quality matching or exceed that of normal scans with only half of the injection radiopharmaceutical dose. (authors)

  10. Diagnostic imaging of compression neuropathy

    International Nuclear Information System (INIS)

    Weishaupt, D.; Andreisek, G.

    2007-01-01

    Compression-induced neuropathy of peripheral nerves can cause severe pain of the foot and ankle. Early diagnosis is important to institute prompt treatment and to minimize potential injury. Although clinical examination combined with electrophysiological studies remain the cornerstone of the diagnostic work-up, in certain cases, imaging may provide key information with regard to the exact anatomic location of the lesion or aid in narrowing the differential diagnosis. In other patients with peripheral neuropathies of the foot and ankle, imaging may establish the etiology of the condition and provide information crucial for management and/or surgical planning. MR imaging and ultrasound provide direct visualization of the nerve and surrounding abnormalities. Bony abnormalities contributing to nerve compression are best assessed by radiographs and CT. Knowledge of the anatomy, the etiology, typical clinical findings, and imaging features of peripheral neuropathies affecting the peripheral nerves of the foot and ankle will allow for a more confident diagnosis. (orig.) [de

  11. Clustering Batik Images using Fuzzy C-Means Algorithm Based on Log-Average Luminance

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2012-06-01

    Full Text Available Batik is a fabric or clothes that are made ​​with a special staining technique called wax-resist dyeing and is one of the cultural heritage which has high artistic value. In order to improve the efficiency and give better semantic to the image, some researchers apply clustering algorithm for managing images before they can be retrieved. Image clustering is a process of grouping images based on their similarity. In this paper we attempt to provide an alternative method of grouping batik image using fuzzy c-means (FCM algorithm based on log-average luminance of the batik. FCM clustering algorithm is an algorithm that works using fuzzy models that allow all data from all cluster members are formed with different degrees of membership between 0 and 1. Log-average luminance (LAL is the average value of the lighting in an image. We can compare different image lighting from one image to another using LAL. From the experiments that have been made, it can be concluded that fuzzy c-means algorithm can be used for batik image clustering based on log-average luminance of each image possessed.

  12. Does a Diagnostic Classification Algorithm Help to Predict the Course of Low Back Pain?

    DEFF Research Database (Denmark)

    Hartvigsen, Lisbeth; Kongsted, Alice; Vach, Werner

    2018-01-01

    ). Objectives To investigate if a diagnostic classification algorithm is associated with activity limitation and LBP intensity at 2-week and 3-month follow up, and 1-year trajectories of LBP intensity, and if it improves prediction of outcome when added to a set of known predictors. Methods 934 consecutive......Study Design A prospective observational study. Background A diagnostic classification algorithm was developed by Petersen et al., consisting of 12 categories based on a standardized examination protocol with the primary purpose of identifying clinically homogeneous subgroups of low back pain (LBP...... adult patients, with new episodes of LBP, who were visiting chiropractic practices in primary care were categorized according to the Petersen classification. Outcomes were disability and pain intensity measured at 2 weeks and 3 months, and 1-year trajectories of LBP based on weekly responses to text...

  13. A Fuzzy Homomorphic Algorithm for Image Enhancement | Nnolim ...

    African Journals Online (AJOL)

    The implementation and analysis of a novel Fuzzy Homomorphic image enhancement technique is presented. The technique combines the logarithmic transform with fuzzy membership functions to deliver an intuitive method of image enhancement. This algorithm reduces the computational complexity by eliminating the ...

  14. Diagnostic radiology on multiple injured patients: interdisciplinary management

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Pfeifer, K.J.; Kanz, K.G.; Mutschler, W.

    2001-01-01

    The presence of a radiologist within the admitting area of an emergency department and his capability as a member of the trauma team have a major impact on the role of diagnostic radiology in trauma care. The knowledge of clinical decision criteria, algorithms, and standards of patient care are essential for the acceptance within a trauma team. We present an interdisciplinary management concept of diagnostic radiology for trauma patients, which comprises basic diagnosis, organ diagnosis, radiological ABC, and algorithms of early clinical care. It is the result of a prospective study comprising over 2000 documented multiple injured patients. The radiologist on a trauma team should support trauma surgery and anesthesia in diagnostic and clinical work-up. The radiological ABC provides a structured approach for diagnostic imaging in all steps of the early clinical care of the multiple injured patient. Radiological ABC requires a reevaluation in cases of equivocal findings or difficulties in the clinical course. Direct communication of radiological findings with the trauma team enables quick clinical decisions. In addition, the radiologist can priority-oriented influence the therapy by using interventional procedures. The clinical radiologist is an active member of the interdisciplinary trauma team, not only providing diagnostic imaging but also participating in clinical decisions. (orig.) [de

  15. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco

    2011-01-01

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  16. FPGA implementation of image dehazing algorithm for real time applications

    Science.gov (United States)

    Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.

    2017-09-01

    Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.

  17. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

  18. TRANSFORMATION ALGORITHM FOR IMAGES OBTAINED BY OMNIDIRECTIONAL CAMERAS

    Directory of Open Access Journals (Sweden)

    V. P. Lazarenko

    2015-01-01

    Full Text Available Omnidirectional optoelectronic systems find their application in areas where a wide viewing angle is critical. However, omnidirectional optoelectronic systems have a large distortion that makes their application more difficult. The paper compares the projection functions of traditional perspective lenses and omnidirectional wide angle fish-eye lenses with a viewing angle not less than 180°. This comparison proves that distortion models of omnidirectional cameras cannot be described as a deviation from the classic model of pinhole camera. To solve this problem, an algorithm for transforming omnidirectional images has been developed. The paper provides a brief comparison of the four calibration methods available in open source toolkits for omnidirectional optoelectronic systems. Geometrical projection model is given used for calibration of omnidirectional optical system. The algorithm consists of three basic steps. At the first step, we calculate he field of view of a virtual pinhole PTZ camera. This field of view is characterized by an array of 3D points in the object space. At the second step the array of corresponding pixels for these three-dimensional points is calculated. Then we make a calculation of the projection function that expresses the relation between a given 3D point in the object space and a corresponding pixel point. In this paper we use calibration procedure providing the projection function for calibrated instance of the camera. At the last step final image is formed pixel-by-pixel from the original omnidirectional image using calculated array of 3D points and projection function. The developed algorithm gives the possibility for obtaining an image for a part of the field of view of an omnidirectional optoelectronic system with the corrected distortion from the original omnidirectional image. The algorithm is designed for operation with the omnidirectional optoelectronic systems with both catadioptric and fish-eye lenses

  19. Improving the diagnostic performance of lung scintigraphy in suspected pulmonary embolic disease

    International Nuclear Information System (INIS)

    Gleeson, F.V.; Turner, S.; Scarsbrook, A.F.

    2006-01-01

    Aim: to determine the effectiveness of a new imaging algorithm in the investigation of suspected pulmonary embolism (PE). Materials and methods: A new imaging algorithm for suspected PE was introduced following the installation of a multisection computed tomography (CT) machine at our institution. Before its installation, patients with suspected PE were evaluated with ventilation/perfusion (V/Q) scintigraphy. Subsequently, patients were triaged according to chest radiography (CR) and respiratory history to either lung scintigraphy or CT pulmonary angiography (CTPA). Patients with a normal CR and no history of lung disease were evaluated using perfusion (Q) scintigraphy [ventilation (V) scintigraphy was no longer performed]. Patients with an abnormal CR, asthma or chronic lung disease were evaluated using CTPA. All V/Q images in a continuous 3-year period before the introduction of the new imaging algorithm and all Q images performed in a 3-year period after its introduction were retrospectively reviewed. Imaging reports were categorized into normal, non-diagnostic (low or intermediate probability) or high probability for PE. Patients in the later group who subsequently underwent CTPA, were also reviewed. Results: After the policy change the percentage of normal scintigrams significantly increased (39 to 60%; p < 0.001). There was a non-significant increase in the percentage of high probability scintigrams (15 to 18%; p = 0.716). Overall the diagnostic yield of lung scintigraphy improved significantly (54 to 78%; p < 0.001). Conclusion: the diagnostic performance of lung scintigraphy can be improved by careful triage of patients to either Q scintigraphy or CTPA based on clinical history and CR findings. Q scintigraphy remains a valuable diagnostic test in the investigation of suspected PE in carefully selected patients

  20. Linear array implementation of the EM algorithm for PET image reconstruction

    International Nuclear Information System (INIS)

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1995-01-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution back projection algorithms. However, the PET image reconstruction based on the EM algorithm is computationally burdensome for today's single processor systems. In addition, a large memory is required for the storage of the image, projection data, and the probability matrix. Since the computations are easily divided into tasks executable in parallel, multiprocessor configurations are the ideal choice for fast execution of the EM algorithms. In tis study, the authors attempt to overcome these two problems by parallelizing the EM algorithm on a multiprocessor systems. The parallel EM algorithm on a linear array topology using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PE's) has been implemented. The performance of the EM algorithm on a 386/387 machine, IBM 6000 RISC workstation, and on the linear array system is discussed and compared. The results show that the computational speed performance of a linear array using 8 DSP chips as PE's executing the EM image reconstruction algorithm is about 15.5 times better than that of the IBM 6000 RISC workstation. The novelty of the scheme is its simplicity. The linear array topology is expandable with a larger number of PE's. The architecture is not dependant on the DSP chip chosen, and the substitution of the latest DSP chip is straightforward and could yield better speed performance

  1. A novel algorithm for segmentation of brain MR images

    International Nuclear Information System (INIS)

    Sial, M.Y.; Yu, L.; Chowdhry, B.S.; Rajput, A.Q.K.; Bhatti, M.I.

    2006-01-01

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  2. [EYECUBE as 3D multimedia imaging in macular diagnostics].

    Science.gov (United States)

    Hassenstein, Andrea; Scholz, F; Richard, G

    2011-11-01

    In the new generation of EYECUBE devices, the angiography image and the OCT are included in a 3D illustration as an integration. Other diagnostic procedures such as autofluorescence and ICG can also be correlated to the OCT. The aim was to precisely classify various two-dimensional findings in relation to each other. The new generation of OCT devices enables imaging with a low incidence of motion artefacts with very good fundus image quality - and with that, permits a largely automatic classification. The feature enabling the integration of the EYECUBE was further developed with new software, so that not only the topographic image (red-free, autofluorescence) can be correlated to the Cirrus OCT, but also all other findings gathered within the same time frame can be correlated to each other. These were brightened and projected onto the cube surface in a defined interval. The imaging procedures can be selected in a menu toolbar. Topographic volumetry OCT images can be overlayed. The practical application of the new method was tested on patients with macular disorders. By lightening up the results from various diagnostic procedures, it is possible of late to directly compare pathologies to each other and to the OCT results. In all patients (n = 45 eyes) with good single-image quality, the automated integration into the EYECUBE was possible (to a great extent). The application is not dependent on a certain type of device used in the procedures performed. The increasing level of precision in imaging procedures and the handling of large data volumes has led to the possibility of examining each macular diagnostics procedure from the comparative perspective: imaging (photo) with perfusion (FLA, ICG) and morphology (OCT). The exclusion of motion artefacts and the reliable scan position in the course of the imaging process increases the informative value of OCT. © Georg Thieme Verlag KG Stuttgart · New York.

  3. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  4. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    Science.gov (United States)

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  5. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  6. A Modified Image Comparison Algorithm Using Histogram Features

    OpenAIRE

    Al-Oraiqat, Anas M.; Kostyukova, Natalya S.

    2018-01-01

    This article discuss the problem of color image content comparison. Particularly, methods of image content comparison are analyzed, restrictions of color histogram are described and a modified method of images content comparison is proposed. This method uses the color histograms and considers color locations. Testing and analyzing of based and modified algorithms are performed. The modified method shows 97% average precision for a collection containing about 700 images without loss of the adv...

  7. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    Science.gov (United States)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  8. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    Science.gov (United States)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  9. Iterative Object Localization Algorithm Using Visual Images with a Reference Coordinate

    Directory of Open Access Journals (Sweden)

    We-Duke Cho

    2008-09-01

    Full Text Available We present a simplified algorithm for localizing an object using multiple visual images that are obtained from widely used digital imaging devices. We use a parallel projection model which supports both zooming and panning of the imaging devices. Our proposed algorithm is based on a virtual viewable plane for creating a relationship between an object position and a reference coordinate. The reference point is obtained from a rough estimate which may be obtained from the preestimation process. The algorithm minimizes localization error through the iterative process with relatively low-computational complexity. In addition, nonlinearity distortion of the digital image devices is compensated during the iterative process. Finally, the performances of several scenarios are evaluated and analyzed in both indoor and outdoor environments.

  10. Automatic volumetry on MR brain images can support diagnostic decision making

    Directory of Open Access Journals (Sweden)

    Aviv Richard I

    2008-05-01

    Full Text Available Abstract Background Diagnostic decisions in clinical imaging currently rely almost exclusively on visual image interpretation. This can lead to uncertainty, for example in dementia disease, where some of the changes resemble those of normal ageing. We hypothesized that extracting volumetric data from patients' MR brain images, relating them to reference data and presenting the results as a colour overlay on the grey scale data would aid diagnostic readers in classifying dementia disease versus normal ageing. Methods A proof-of-concept forced-choice reader study was designed using MR brain images from 36 subjects. Images were segmented into 43 regions using an automatic atlas registration-based label propagation procedure. Seven subjects had clinically probable AD, the remaining 29 of a similar age range were used as controls. Seven of the control subject data sets were selected at random to be presented along with the seven AD datasets to two readers, who were blinded to all clinical and demographic information except age and gender. Readers were asked to review the grey scale MR images and to record their choice of diagnosis (AD or non-AD along with their confidence in this decision. Afterwards, readers were given the option to switch on a false-colour overlay representing the relative size of the segmented structures. Colorization was based on the size rank of the test subject when compared with a reference group consisting of the 22 control subjects who were not used as review subjects. The readers were then asked to record whether and how the additional information had an impact on their diagnostic confidence. Results The size rank colour overlays were useful in 18 of 28 diagnoses, as determined by their impact on readers' diagnostic confidence. A not useful result was found in 6 of 28 cases. The impact of the additional information on diagnostic confidence was significant (p Conclusion Volumetric anatomical information extracted from brain

  11. How far can the radiation dose be lowered in head CT with iterative reconstruction? Analysis of imaging quality and diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung-Hsin; Sun, Jing-Yi [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hung, Sheng-Che; Lin, Chung-Jung; Chiu, Chen Fen; Liu, Min-Jsuan; Teng, Michael Mu Huo; Guo, Wan-Yuo; Chang, Cheng-Yen [Taipei Veterans General Hospital, Department of Radiology, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Lin, Chung-Hsien [National Taiwan University, Graduate Institute of Epidemiology and Preventive Medicine, Taipei (China)

    2013-09-15

    To evaluate the imaging quality of head CT at lowered radiation dose by combining filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Experimental group A (n = 66) underwent CT with 43 % tube current reduction, and group B (n = 58) received an equivalent reduced dose by lowering the tube voltage. An age- and sex-matched control group (n = 72) receiving the conventional radiation dose was retrospectively collected. Imaging for the control group was reconstructed by FBP only, while images for groups A and B were reconstructed by FBP and IR. The signal-to-noise ratios (SNRs), contrast-to-noise ratios (CNRs), sharpness, number of infarcts and severity of subcortical arteriosclerotic encephalopathy (SAE) were compared to assess imaging quality and diagnostic accuracy. There were no significant differences in SNRs and CNRs between group A and the control group. There were significantly decreased SNRs and increased CNRs in group B. Image sharpness decreased in both groups. Correlations between detected infarcts and severity of SAE across FBP and IR were high (r = 0.73-0.93). Head diameter was the only significant factor inversely correlated with infratentorial imaging quality. Head CT with 43 % reduced tube current reconstructed by IR provides diagnostic imaging quality for outpatient management. (orig.)

  12. ProxImaL: efficient image optimization using proximal algorithms

    KAUST Repository

    Heide, Felix

    2016-07-11

    Computational photography systems are becoming increasingly diverse, while computational resources-for example on mobile platforms-are rapidly increasing. As diverse as these camera systems may be, slightly different variants of the underlying image processing tasks, such as demosaicking, deconvolution, denoising, inpainting, image fusion, and alignment, are shared between all of these systems. Formal optimization methods have recently been demonstrated to achieve state-of-the-art quality for many of these applications. Unfortunately, different combinations of natural image priors and optimization algorithms may be optimal for different problems, and implementing and testing each combination is currently a time-consuming and error-prone process. ProxImaL is a domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety of linear and nonlinear image formation models and cost functions, advanced image priors, and noise models. The compiler intelligently chooses the best way to translate a problem formulation and choice of optimization algorithm into an efficient solver implementation. In applications to the image processing pipeline, deconvolution in the presence of Poisson-distributed shot noise, and burst denoising, we show that a few lines of ProxImaL code can generate highly efficient solvers that achieve state-of-the-art results. We also show applications to the nonlinear and nonconvex problem of phase retrieval.

  13. [Radiological diagnostics in CUP syndrome].

    Science.gov (United States)

    Kazmierczak, P M; Nikolaou, K; Rominger, A; Graser, A; Reiser, M F; Cyran, C C

    2014-02-01

    Imaging plays an essential role in the therapeutic management of cancer of unknown primary (CUP) patients for localizing the primary tumor, for the identification of tumor entities for which a dedicated therapy regimen is available and for the characterization of clinicopathological subentities that direct the subsequent diagnostic and therapeutic strategy. Modalities include conventional x-ray, computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound as well as positron emission tomography (PET)-CT and MRI-PET. In whole body imaging CT has a high sensitivity for tumor entities which frequently present as a metastasized cancer illness. According to the current literature CT is diagnostic in 86% of patients with pancreatic carcinoma, in 36% of patients with colon carcinoma and in 74% of patients with lung carcinoma. Additionally a meta-analysis showed that for patients with squamous cell carcinoma and cervical lymph node metastases a positive diagnosis was possible in 22% of the cases using CT, in 36% using MRI and in 28-57% using 18F-fluorodeoxyglucose PET-CT ((18)F-FDG PET-CT). In addition, MRI plays an important role in the localization of primary occult tumors (e.g. breast and prostate) because of its high soft tissue contrast and options for functional imaging. At the beginning of the diagnostic algorithm stands the search for a possible primary tumor and CT of the neck, thorax and abdomen is most frequently used for whole body staging. Subsequent organ-specific imaging examinations follow, e.g. mammography in women with axillary lymphadenopathy. For histological and immunohistochemical characterization of tumor tissue, imaging is also applied to identify the most accessible and representative tumor manifestation for biopsy. Tumor biopsy may be guided by CT, MRI or ultrasound and MRI also plays a central role in the localization of primary occult tumors because of superior soft tissue contrast and options for functional imaging (perfusion

  14. Mapping the different methods adopted for diagnostic imaging instruction at medical schools in Brazil.

    Science.gov (United States)

    Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe

    2017-01-01

    To map the different methods for diagnostic imaging instruction at medical schools in Brazil. In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.

  15. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, Evren [Department of Electrical and Electronics Engineering, Mersin University, Mersin (Turkey); Eyueboglu, B Murat [Department of Electrical and Electronics Engineering, Middle East Technical University, 06531, Ankara (Turkey)

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  16. Performance evaluation of 2D image registration algorithms with the numeric image registration and comparison platform

    International Nuclear Information System (INIS)

    Gerganov, G.; Kuvandjiev, V.; Dimitrova, I.; Mitev, K.; Kawrakow, I.

    2012-01-01

    The objective of this work is to present the capabilities of the NUMERICS web platform for evaluation of the performance of image registration algorithms. The NUMERICS platform is a web accessible tool which provides access to dedicated numerical algorithms for registration and comparison of medical images (http://numerics.phys.uni-sofia.bg). The platform allows comparison of noisy medical images by means of different types of image comparison algorithms, which are based on statistical tests for outliers. The platform also allows 2D image registration with different techniques like Elastic Thin-Plate Spline registration, registration based on rigid transformations, affine transformations, as well as non-rigid image registration based on Mobius transformations. In this work we demonstrate how the platform can be used as a tool for evaluation of the quality of the image registration process. We demonstrate performance evaluation of a deformable image registration technique based on Mobius transformations. The transformations are applied with appropriate cost functions like: Mutual information, Correlation coefficient, Sum of Squared Differences. The accent is on the results provided by the platform to the user and their interpretation in the context of the performance evaluation of 2D image registration. The NUMERICS image registration and image comparison platform provides detailed statistical information about submitted image registration jobs and can be used to perform quantitative evaluation of the performance of different image registration techniques. (authors)

  17. The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm

    Science.gov (United States)

    Tan, Linglong; Li, Changkai; Wang, Yueqin

    2018-04-01

    SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.

  18. Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics

    Directory of Open Access Journals (Sweden)

    Marion Semmler

    2017-06-01

    Full Text Available Recently, we reported on the in vivo application of a miniaturized measuring device for 3D visualization of the superior vocal fold vibrations from high-speed recordings in combination with a laser projection unit (LPU. As a long-term vision for this proof of principle, we strive to integrate the further developed laserendoscopy as a diagnostic method in daily clinical routine. The new LPU mainly comprises a Nd:YAG laser source (532 nm/CW/2 ω and a diffractive optical element (DOE generating a regular laser grid (31 × 31 laser points that is projected on the vocal folds. By means of stereo triangulation, the 3D coordinates of the laser points are reconstructed from the endoscopic high-speed footage. The new design of the laserendoscope constitutes a compromise between robust image processing and laser safety regulations. The algorithms for calibration and analysis are now optimized with respect to their overall duration and the number of required interactions, which is objectively assessed using binary classifiers. The sensitivity and specificity of the calibration procedure are increased by 40.1% and 22.3%, which is statistically significant. The overall duration for the laser point detection is reduced by 41.9%. The suggested semi-automatic reconstruction software represents an important stepping-stone towards potential real time processing and a comprehensive, objective diagnostic tool of evidence-based medicine.

  19. Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. Sri Madhava Raja

    2014-01-01

    Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.

  20. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  1. Algorithm of pulmonary emphysema extraction using thoracic 3D CT images

    Science.gov (United States)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2007-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  2. Automatic brightness control algorithms and their effect on fluoroscopic imaging

    International Nuclear Information System (INIS)

    Quinn, P.W.; Gagne, R.M.

    1989-01-01

    This paper reports a computer model used to investigate the effect on dose and image quality of three automatic brightness control (ABC) algorithms used in the imaging of barium during general-purpose fluoroscopy. A model incorporating all aspects of image formation - i.e., x- ray production, phantom attenuation, and energy absorption in the CSI phosphor - was driven according to each ABC algorithm as a function of patient thickness. The energy absorbed in the phosphor was kept constant, while the changes in exposure, integral dose, organ dose, and contrast were monitored

  3. Successive approximation algorithm for cancellation of artifacts in DSA images

    International Nuclear Information System (INIS)

    Funakami, Raiko; Hiroshima, Kyoichi; Nishino, Junji

    2000-01-01

    In this paper, we propose an algorithm for cancellation of artifacts in DSA images. We have already proposed an automatic registration method based on the detection of local movements. When motion of the object is large, it is difficult to estimate the exact movement, and the cancellation of artifacts may therefore fail. The algorithm we propose here is based on a simple rigid model. We present the results of applying the proposed method to a series of experimental X-ray images, as well as the results of applying the algorithm as preprocessing for a registration method based on local movement. (author)

  4. Algorithms for detection of objects in image sequences captured from an airborne imaging system

    Science.gov (United States)

    Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak

    1995-01-01

    This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.

  5. An Improved Recovery Algorithm for Decayed AES Key Schedule Images

    Science.gov (United States)

    Tsow, Alex

    A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.

  6. Development of a novel diagnostic algorithm to predict NASH in HCV-positive patients.

    Science.gov (United States)

    Gallotta, Andrea; Paneghetti, Laura; Mrázová, Viera; Bednárová, Adriana; Kružlicová, Dáša; Frecer, Vladimir; Miertus, Stanislav; Biasiolo, Alessandra; Martini, Andrea; Pontisso, Patrizia; Fassina, Giorgio

    2018-05-01

    Non-alcoholic steato-hepatitis (NASH) is a severe disease characterised by liver inflammation and progressive hepatic fibrosis, which may progress to cirrhosis and hepatocellular carcinoma. Clinical evidence suggests that in hepatitis C virus patients steatosis and NASH are associated with faster fibrosis progression and hepatocellular carcinoma. A safe and reliable non-invasive diagnostic method to detect NASH at its early stages is still needed to prevent progression of the disease. We prospectively enrolled 91 hepatitis C virus-positive patients with histologically proven chronic liver disease: 77 patients were included in our study; of these, 10 had NASH. For each patient, various clinical and serological variables were collected. Different algorithms combining squamous cell carcinoma antigen-immunoglobulin-M (SCCA-IgM) levels with other common clinical data were created to provide the probability of having NASH. Our analysis revealed a statistically significant correlation between the histological presence of NASH and SCCA-IgM, insulin, homeostasis model assessment, haemoglobin, high-density lipoprotein and ferritin levels, and smoke. Compared to the use of a single marker, algorithms that combined four, six or seven variables identified NASH with higher accuracy. The best diagnostic performance was obtained with the logistic regression combination, which included all seven variables correlated with NASH. The combination of SCCA-IgM with common clinical data shows promising diagnostic performance for the detection of NASH in hepatitis C virus patients.

  7. An automated algorithm for photoreceptors counting in adaptive optics retinal images

    Science.gov (United States)

    Liu, Xu; Zhang, Yudong; Yun, Dai

    2012-10-01

    Eyes are important organs of humans that detect light and form spatial and color vision. Knowing the exact number of cones in retinal image has great importance in helping us understand the mechanism of eyes' function and the pathology of some eye disease. In order to analyze data in real time and process large-scale data, an automated algorithm is designed to label cone photoreceptors in adaptive optics (AO) retinal images. Images acquired by the flood-illuminated AO system are taken to test the efficiency of this algorithm. We labeled these images both automatically and manually, and compared the results of the two methods. A 94.1% to 96.5% agreement rate between the two methods is achieved in this experiment, which demonstrated the reliability and efficiency of the algorithm.

  8. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    Science.gov (United States)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  9. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm

    International Nuclear Information System (INIS)

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-01-01

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence. (paper)

  10. Diagnostic imaging of craniofacial trauma and fractures and their sequelae

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.H.; Kunz, C.

    2001-01-01

    The value and applications of the CT modalities are on the rise, particularly since the availability of spiral CT techniques, while conventional native diagnostics is increasingly used for special imaging purposes. Multiplanar spiral CT enables high-quality coronary 2D reconstructions which, in the acute phase, make redundant primary coronary imaging modalities. Exact knowledge of typical fracture patterns facilitates the analysis of images of the relevant facial areas. 3D reconstructions are indispensable in pin-pointed surgery planning, generation of stereolithographic models, and image-guided interventions for examination of post-traumatic deformities. Since a secondary correction only very rarely leads to restitutio ad integrum, it is necessary to detect the therapy-relevant injuries very early, during acute diagnostic imaging, in order to lay the basis for subsequent therapy and restoration of the craniofacial structures and functions. (orig./CB) [de

  11. Algorithms of image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Oliveira, V.A.

    1990-01-01

    The problem of image restoration from noisy measurements as encountered in Nuclear Medicine is considered. A new approach for treating the measurements wherein they are represented by a spatial noncausal interaction model prior to maximum entropy restoration is given. This model describes the statistical dependence among the image values and their neighbourhood. The particular application of the algorithms presented here relates to gamma ray imaging systems, and is aimed at improving the resolution-noise suppression product. Results for actual gamma camera data are presented and compared with more conventional techniques. (author)

  12. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  13. A novel high-frequency encoding algorithm for image compression

    Science.gov (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  14. An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds

    Directory of Open Access Journals (Sweden)

    Xiaole Shen

    2015-09-01

    Full Text Available The uneven illumination phenomenon caused by thin clouds will reduce the quality of remote sensing images, and bring adverse effects to the image interpretation. To remove the effect of thin clouds on images, an uneven illumination correction can be applied. In this paper, an effective uneven illumination correction algorithm is proposed to remove the effect of thin clouds and to restore the ground information of the optical remote sensing image. The imaging model of remote sensing images covered by thin clouds is analyzed. Due to the transmission attenuation, reflection, and scattering, the thin cloud cover usually increases region brightness and reduces saturation and contrast of the image. As a result, a wavelet domain enhancement is performed for the image in Hue-Saturation-Value (HSV color space. We use images with thin clouds in Wuhan area captured by QuickBird and ZiYuan-3 (ZY-3 satellites for experiments. Three traditional uneven illumination correction algorithms, i.e., multi-scale Retinex (MSR algorithm, homomorphic filtering (HF-based algorithm, and wavelet transform-based MASK (WT-MASK algorithm are performed for comparison. Five indicators, i.e., mean value, standard deviation, information entropy, average gradient, and hue deviation index (HDI are used to analyze the effect of the algorithms. The experimental results show that the proposed algorithm can effectively eliminate the influences of thin clouds and restore the real color of ground objects under thin clouds.

  15. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    International Nuclear Information System (INIS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Vermandel, Maximilien; Baillet, Clio

    2015-01-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging.Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used.Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results.The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging. (paper)

  16. Algorithms and programming tools for image processing on the MPP:3

    Science.gov (United States)

    Reeves, Anthony P.

    1987-01-01

    This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.

  17. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    Science.gov (United States)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  18. Appropriate use of diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, P.E.S.; Cockshott, W.P.

    1984-11-16

    This article discusses ways in which more appropriate use can be made of roentgenography with a resulting decrease in radiation doses to the patient population. The authors recommend that fewer films be made and that traditional roentgenography be replaced with endoscopy, ultrasound, computerized tomography, or angiography where appropriate. They also recommend that medical schools and medical subspecialty groups study the World Health Organization document which provides indications for diagnostic imaging, the choice of procedure and the limitations of each.

  19. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    Science.gov (United States)

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  20. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    Science.gov (United States)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  1. Adaptive Proximal Point Algorithms for Total Variation Image Restoration

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-02-01

    Full Text Available Image restoration is a fundamental problem in various areas of imaging sciences. This paper presents a class of adaptive proximal point algorithms (APPA with contraction strategy for total variational image restoration. In each iteration, the proposed methods choose an adaptive proximal parameter matrix which is not necessary symmetric. In fact, there is an inner extrapolation in the prediction step, which is followed by a correction step for contraction. And the inner extrapolation is implemented by an adaptive scheme. By using the framework of contraction method, global convergence result and a convergence rate of O(1/N could be established for the proposed methods. Numerical results are reported to illustrate the efficiency of the APPA methods for solving total variation image restoration problems. Comparisons with the state-of-the-art algorithms demonstrate that the proposed methods are comparable and promising.

  2. IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS

    International Nuclear Information System (INIS)

    Vedantham, Harish; Udaya Shankar, N.; Subrahmanyan, Ravi

    2012-01-01

    Tomography of redshifted 21 cm transition from neutral hydrogen using Fourier synthesis telescopes is a promising tool to study the Epoch of Reionization (EoR). Limiting the confusion from Galactic and extragalactic foregrounds is critical to the success of these telescopes. The instrumental response or the point-spread function (PSF) of such telescopes is inherently three dimensional with frequency mapping to the line-of-sight (LOS) distance. EoR signals will necessarily have to be detected in data where continuum confusion persists; therefore, it is important that the PSF has acceptable frequency structure so that the residual foreground does not confuse the EoR signature. This paper aims to understand the three-dimensional PSF and foreground contamination in the same framework. We develop a formalism to estimate the foreground contamination along frequency, or equivalently LOS dimension, and establish a relationship between foreground contamination in the image plane and visibility weights on the Fourier plane. We identify two dominant sources of LOS foreground contamination—'PSF contamination' and 'gridding contamination'. We show that PSF contamination is localized in LOS wavenumber space, beyond which there potentially exists an 'EoR window' with negligible foreground contamination where we may focus our efforts to detect EoR. PSF contamination in this window may be substantially reduced by judicious choice of a frequency window function. Gridding and imaging algorithms create additional gridding contamination and we propose a new imaging algorithm using the Chirp Z Transform that significantly reduces this contamination. Finally, we demonstrate the analytical relationships and the merit of the new imaging algorithm for the case of imaging with the Murchison Widefield Array.

  3. New method for detection of gastric cancer by hyperspectral imaging: a pilot study

    Science.gov (United States)

    Kiyotoki, Shu; Nishikawa, Jun; Okamoto, Takeshi; Hamabe, Kouichi; Saito, Mari; Goto, Atsushi; Fujita, Yusuke; Hamamoto, Yoshihiko; Takeuchi, Yusuke; Satori, Shin; Sakaida, Isao

    2013-02-01

    We developed a new, easy, and objective method to detect gastric cancer using hyperspectral imaging (HSI) technology combining spectroscopy and imaging A total of 16 gastroduodenal tumors removed by endoscopic resection or surgery from 14 patients at Yamaguchi University Hospital, Japan, were recorded using a hyperspectral camera (HSC) equipped with HSI technology Corrected spectral reflectance was obtained from 10 samples of normal mucosa and 10 samples of tumors for each case The 16 cases were divided into eight training cases (160 training samples) and eight test cases (160 test samples) We established a diagnostic algorithm with training samples and evaluated it with test samples Diagnostic capability of the algorithm for each tumor was validated, and enhancement of tumors by image processing using the HSC was evaluated The diagnostic algorithm used the 726-nm wavelength, with a cutoff point established from training samples The sensitivity, specificity, and accuracy rates of the algorithm's diagnostic capability in the test samples were 78.8% (63/80), 92.5% (74/80), and 85.6% (137/160), respectively Tumors in HSC images of 13 (81.3%) cases were well enhanced by image processing Differences in spectral reflectance between tumors and normal mucosa suggested that tumors can be clearly distinguished from background mucosa with HSI technology.

  4. An three-dimensional imaging algorithm based on the radiation model of electric dipole

    International Nuclear Information System (INIS)

    Tian Bo; Zhong Weijun; Tong Chuangming

    2011-01-01

    A three-dimensional imaging algorithm based on the radiation model of dipole (DBP) is presented. On the foundation of researching the principle of the back projection (BP) algorithm, the relationship between the near field imaging model and far field imaging model is analyzed based on the scattering model. Firstly, the far field sampling data is transferred to the near field sampling data through applying the radiation theory of dipole. Then the dealt sampling data was projected to the imaging region to obtain the images of targets. The capability of the new algorithm to detect targets is verified by using finite-difference time-domain method (FDTD), and the coupling effect for imaging is analyzed. (authors)

  5. Spatial correlation genetic algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Wu, M.-S.; Teng, W.-C.; Jeng, J.-H.; Hsieh, J.-G.

    2006-01-01

    Fractal image compression explores the self-similarity property of a natural image and utilizes the partitioned iterated function system (PIFS) to encode it. This technique is of great interest both in theory and application. However, it is time-consuming in the encoding process and such drawback renders it impractical for real time applications. The time is mainly spent on the search for the best-match block in a large domain pool. In this paper, a spatial correlation genetic algorithm (SC-GA) is proposed to speed up the encoder. There are two stages for the SC-GA method. The first stage makes use of spatial correlations in images for both the domain pool and the range pool to exploit local optima. The second stage is operated on the whole image to explore more adequate similarities if the local optima are not satisfied. With the aid of spatial correlation in images, the encoding time is 1.5 times faster than that of traditional genetic algorithm method, while the quality of the retrieved image is almost the same. Moreover, about half of the matched blocks come from the correlated space, so fewer bits are required to represent the fractal transform and therefore the compression ratio is also improved

  6. A Novel Image Encryption Algorithm Based on DNA Subsequence Operation

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2012-01-01

    Full Text Available We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc. combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

  7. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    Science.gov (United States)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  8. [X-ray endoscopic semiotics and diagnostic algorithm of radiation studies of preneoplastic gastric mucosa changes].

    Science.gov (United States)

    Akberov, R F; Gorshkov, A N

    1997-01-01

    The X-ray endoscopic semiotics of precancerous gastric mucosal changes (epithelial dysplasia, intestinal epithelial rearrangement) was examined by the results of 1574 gastric examination. A diagnostic algorithm was developed for radiation studies in the diagnosis of the above pathology.

  9. Reliable Line Matching Algorithm for Stereo Images with Topological Relationship

    Directory of Open Access Journals (Sweden)

    WANG Jingxue

    2017-11-01

    Full Text Available Because of the lack of relationships between matching line and adjacent lines in the process of individual line matching, and the weak reliability of the individual line descriptor facing on discontinue texture, this paper presents a reliable line matching algorithm for stereo images with topological relationship. The algorithm firstly generates grouped line pairs from lines extracted from the reference image and searching image according to the basic topological relationships such as distance and angle between the lines. Then it takes the grouped line pairs as matching primitives, and matches these grouped line pairs by using epipolar constraint, homography constraint, quadrant constraint and gray correlation constraint of irregular triangle in order. And finally, it resolves the corresponding line pairs into two pairs of corresponding individual lines, and obtains one to one matching results after the post-processing of integrating, fitting, and checking. This paper adopts digital aerial images and close-range images with typical texture features to deal with the parameter analysis and line matching, and the experiment results demonstrate that the proposed algorithm in this paper can obtain reliable line matching results.

  10. Image compression of bone images

    International Nuclear Information System (INIS)

    Hayrapetian, A.; Kangarloo, H.; Chan, K.K.; Ho, B.; Huang, H.K.

    1989-01-01

    This paper reports a receiver operating characteristic (ROC) experiment conducted to compare the diagnostic performance of a compressed bone image with the original. The compression was done on custom hardware that implements an algorithm based on full-frame cosine transform. The compression ratio in this study is approximately 10:1, which was decided after a pilot experiment. The image set consisted of 45 hand images, including normal images and images containing osteomalacia and osteitis fibrosa. Each image was digitized with a laser film scanner to 2,048 x 2,048 x 8 bits. Six observers, all board-certified radiologists, participated in the experiment. For each ROC session, an independent ROC curve was constructed and the area under that curve calculated. The image set was randomized for each session, as was the order for viewing the original and reconstructed images. Analysis of variance was used to analyze the data and derive statistically significant results. The preliminary results indicate that the diagnostic quality of the reconstructed image is comparable to that of the original image

  11. High resolution reconstruction of PET images using the iterative OSEM algorithm

    International Nuclear Information System (INIS)

    Doll, J.; Bublitz, O.; Werling, A.; Haberkorn, U.; Semmler, W.; Adam, L.E.; Pennsylvania Univ., Philadelphia, PA; Brix, G.

    2004-01-01

    Aim: Improvement of the spatial resolution in positron emission tomography (PET) by incorporation of the image-forming characteristics of the scanner into the process of iterative image reconstruction. Methods: All measurements were performed at the whole-body PET system ECAT EXACT HR + in 3D mode. The acquired 3D sinograms were sorted into 2D sinograms by means of the Fourier rebinning (FORE) algorithm, which allows the usage of 2D algorithms for image reconstruction. The scanner characteristics were described by a spatially variant line-spread function (LSF), which was determined from activated copper-64 line sources. This information was used to model the physical degradation processes in PET measurements during the course of 2D image reconstruction with the iterative OSEM algorithm. To assess the performance of the high-resolution OSEM algorithm, phantom measurements performed at a cylinder phantom, the hotspot Jaszczack phantom, and the 3D Hoffmann brain phantom as well as different patient examinations were analyzed. Results: Scanner characteristics could be described by a Gaussian-shaped LSF with a full-width at half-maximum increasing from 4.8 mm at the center to 5.5 mm at a radial distance of 10.5 cm. Incorporation of the LSF into the iteration formula resulted in a markedly improved resolution of 3.0 and 3.5 mm, respectively. The evaluation of phantom and patient studies showed that the high-resolution OSEM algorithm not only lead to a better contrast resolution in the reconstructed activity distributions but also to an improved accuracy in the quantification of activity concentrations in small structures without leading to an amplification of image noise or even the occurrence of image artifacts. Conclusion: The spatial and contrast resolution of PET scans can markedly be improved by the presented image restauration algorithm, which is of special interest for the examination of both patients with brain disorders and small animals. (orig.)

  12. Information theoretic methods for image processing algorithm optimization

    Science.gov (United States)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  13. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  14. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  15. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Li Tianfang; Yang Yong; Heron, Dwight E; Huq, M Saiful, E-mail: lix@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 (United States)

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  16. An efficient feedback calibration algorithm for direct imaging radio telescopes

    Science.gov (United States)

    Beardsley, Adam P.; Thyagarajan, Nithyanandan; Bowman, Judd D.; Morales, Miguel F.

    2017-10-01

    We present the E-field Parallel Imaging Calibration (EPICal) algorithm, which addresses the need for a fast calibration method for direct imaging radio astronomy correlators. Direct imaging involves a spatial fast Fourier transform of antenna signals, alleviating an O(Na ^2) computational bottleneck typical in radio correlators, and yielding a more gentle O(Ng log _2 Ng) scaling, where Na is the number of antennas in the array and Ng is the number of gridpoints in the imaging analysis. This can save orders of magnitude in computation cost for next generation arrays consisting of hundreds or thousands of antennas. However, because antenna signals are mixed in the imaging correlator without creating visibilities, gain correction must be applied prior to imaging, rather than on visibilities post-correlation. We develop the EPICal algorithm to form gain solutions quickly and without ever forming visibilities. This method scales as the number of antennas, and produces results comparable to those from visibilities. We use simulations to demonstrate the EPICal technique and study the noise properties of our gain solutions, showing they are similar to visibility-based solutions in realistic situations. By applying EPICal to 2 s of Long Wavelength Array data, we achieve a 65 per cent dynamic range improvement compared to uncalibrated images, showing this algorithm is a promising solution for next generation instruments.

  17. An analytical phantom for the evaluation of medical flow imaging algorithms

    International Nuclear Information System (INIS)

    Pashaei, A; Fatouraee, N

    2009-01-01

    Blood flow characteristics (e.g. velocity, pressure, shear stress, streamline and volumetric flow rate) are effective tools in diagnosis of cardiovascular diseases such as atherosclerotic plaque, aneurism and cardiac muscle failure. Noninvasive estimation of cardiovascular blood flow characteristics is mostly limited to the measurement of velocity components by medical imaging modalities. Once the velocity field is obtained from the images, other flow characteristics within the cardiovascular system can be determined using algorithms relating them to the velocity components. In this work, we propose an analytical flow phantom to evaluate these algorithms accurately. The Navier-Stokes equations are used to derive this flow phantom. The exact solution of these equations obtains analytical expression for the flow characteristics inside the domain. Features such as pulsatility, incompressibility and viscosity of flow are included in a three-dimensional domain. The velocity domain of the resulted system is presented as reference images. These images could be employed to evaluate the performance of different flow characteristic algorithms. In this study, we also present some applications of the obtained phantom. The calculation of pressure domain from velocity data, volumetric flow rate, wall shear stress and particle trace are the characteristics whose algorithms are evaluated here. We also present the application of this phantom in the analysis of noisy and low-resolution images. The presented phantom can be considered as a benchmark test to compare the accuracy of different flow characteristic algorithms.

  18. MRI-based diagnostic imaging of the intratemporal facial nerve

    International Nuclear Information System (INIS)

    Kress, B.; Baehren, W.

    2001-01-01

    Detailed imaging of the five sections of the full intratemporal course of the facial nerve can be achieved by MRI and using thin tomographic section techniques and surface coils. Contrast media are required for tomographic imaging of pathological processes. Established methods are available for diagnostic evaluation of cerebellopontine angle tumors and chronic Bell's palsy, as well as hemifacial spasms. A method still under discussion is MRI for diagnostic evaluation of Bell's palsy in the presence of fractures of the petrous bone, when blood volumes in the petrous bone make evaluation even more difficult. MRI-based diagnostic evaluation of the idiopatic facial paralysis currently is subject to change. Its usual application cannot be recommended for routine evaluation at present. However, a quantitative analysis of contrast medium uptake of the nerve may be an approach to improve the prognostic value of MRI in acute phases of Bell's palsy. (orig./CB) [de

  19. A robust color image watermarking algorithm against rotation attacks

    Science.gov (United States)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  20. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  1. Study design for concurrent development, assessment, and implementation of new diagnostic imaging technology

    NARCIS (Netherlands)

    M.G.M. Hunink (Myriam); G.P. Krestin (Gabriel)

    2002-01-01

    textabstractWith current constraints on health care resources and emphasis on value for money, new diagnostic imaging technologies must be assessed and their value demonstrated. The state of the art in the field of diagnostic imaging technology assessment advocates a hierarchical

  2. ITERATION FREE FRACTAL COMPRESSION USING GENETIC ALGORITHM FOR STILL COLOUR IMAGES

    Directory of Open Access Journals (Sweden)

    A.R. Nadira Banu Kamal

    2014-02-01

    Full Text Available The storage requirements for images can be excessive, if true color and a high-perceived image quality are desired. An RGB image may be viewed as a stack of three gray-scale images that when fed into the red, green and blue inputs of a color monitor, produce a color image on the screen. The abnormal size of many images leads to long, costly, transmission times. Hence, an iteration free fractal algorithm is proposed in this research paper to design an efficient search of the domain pools for colour image compression using Genetic Algorithm (GA. The proposed methodology reduces the coding process time and intensive computation tasks. Parameters such as image quality, compression ratio and coding time are analyzed. It is observed that the proposed method achieves excellent performance in image quality with reduction in storage space.

  3. Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method

    OpenAIRE

    Zhang, Lijuan; Li, Dongming; Su, Wei; Yang, Jinhua; Jiang, Yutong

    2014-01-01

    To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constrain...

  4. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    Science.gov (United States)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  5. A Digital Image Denoising Algorithm Based on Gaussian Filtering and Bilateral Filtering

    Directory of Open Access Journals (Sweden)

    Piao Weiying

    2018-01-01

    Full Text Available Bilateral filtering has been applied in the area of digital image processing widely, but in the high gradient region of the image, bilateral filtering may generate staircase effect. Bilateral filtering can be regarded as one particular form of local mode filtering, according to above analysis, an mixed image de-noising algorithm is proposed based on Gaussian filter and bilateral filtering. First of all, it uses Gaussian filter to filtrate the noise image and get the reference image, then to take both the reference image and noise image as the input for range kernel function of bilateral filter. The reference image can provide the image’s low frequency information, and noise image can provide image’s high frequency information. Through the competitive experiment on both the method in this paper and traditional bilateral filtering, the experimental result showed that the mixed de-noising algorithm can effectively overcome staircase effect, and the filtrated image was more smooth, its textural features was also more close to the original image, and it can achieve higher PSNR value, but the amount of calculation of above two algorithms are basically the same.

  6. An efficient algorithm for reconstruction of spect images in the presence of spatially varying attenuation

    International Nuclear Information System (INIS)

    Zeeberg, B.R.; Bacharach, S.; Carson, R.; Green, M.V.; Larson, S.M.; Soucaille, J.F.

    1985-01-01

    An algorithm is presented which permits the reconstruction of SPECT images in the presence of spatially varying attenuation. The algorithm considers the spatially variant attenuation as a perturbation of the constant attenuation case and computes a reconstructed image and a correction image to estimate the effects of this perturbation. The corrected image will be computed from these two images and is of comparable quality both visually and quantitatively to those simulated for zero or constant attenuation taken as standard reference images. In addition, the algorithm is time efficient, in that the time required is approximately 2.5 times that for a standard convolution-back projection algorithm

  7. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Science.gov (United States)

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  8. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  9. Autofocus algorithm for curvilinear SAR imaging

    Science.gov (United States)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2012-05-01

    We describe an approach to autofocusing for large apertures on curved SAR trajectories. It is a phase-gradient type method in which phase corrections compensating trajectory perturbations are estimated not directly from the image itself, but rather on the basis of partial" SAR data { functions of the slow and fast times { recon- structed (by an appropriate forward-projection procedure) from windowed scene patches, of sizes comparable to distances between distinct targets or localized features of the scene. The resulting partial data" can be shown to contain the same information on the phase perturbations as that in the original data, provided the frequencies of the perturbations do not exceed a quantity proportional to the patch size. The algorithm uses as input a sequence of conventional scene images based on moderate-size subapertures constituting the full aperture for which the phase corrections are to be determined. The subaperture images are formed with pixel sizes comparable to the range resolution which, for the optimal subaperture size, should be also approximately equal the cross-range resolution. The method does not restrict the size or shape of the synthetic aperture and can be incorporated in the data collection process in persistent sensing scenarios. The algorithm has been tested on the publicly available set of GOTCHA data, intentionally corrupted by random-walk-type trajectory uctuations (a possible model of errors caused by imprecise inertial navigation system readings) of maximum frequencies compatible with the selected patch size. It was able to eciently remove image corruption for apertures of sizes up to 360 degrees.

  10. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    Science.gov (United States)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  11. CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, T.M.

    1994-02-21

    In this paper, we propose a method for calculating the similarity between two digital images. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized distance between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to an example target image. This algorithm is applied to the problem of search and retrieval for database containing pulmonary CT imagery, and experimental results are provided.

  12. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    Directory of Open Access Journals (Sweden)

    Chih-Feng Chao

    2015-01-01

    Full Text Available Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  13. Analysis and Evaluation of IKONOS Image Fusion Algorithm Based on Land Cover Classification

    Institute of Scientific and Technical Information of China (English)

    Xia; JING; Yan; BAO

    2015-01-01

    Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy.

  14. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image

    Directory of Open Access Journals (Sweden)

    Xi Wenfei

    2017-07-01

    Full Text Available Feature point extraction technology has become a research hotspot in the photogrammetry and computer vision. The commonly used point feature extraction operators are SIFT operator, Forstner operator, Harris operator and Moravec operator, etc. With the high spatial resolution characteristics, UAV image is different from the traditional aviation image. Based on these characteristics of the unmanned aerial vehicle (UAV, this paper uses several operators referred above to extract feature points from the building images, grassland images, shrubbery images, and vegetable greenhouses images. Through the practical case analysis, the performance, advantages, disadvantages and adaptability of each algorithm are compared and analyzed by considering their speed and accuracy. Finally, the suggestions of how to adapt different algorithms in diverse environment are proposed.

  15. Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow.

    Science.gov (United States)

    Zhang, Weilong; Guo, Bingxuan; Li, Ming; Liao, Xuan; Li, Wenzhuo

    2018-04-16

    Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images.

  16. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  17. Implementation of dictionary pair learning algorithm for image quality improvement

    Science.gov (United States)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    This paper proposes an image denoising on dictionary pair learning algorithm. Visual information is transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmissions is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image.

  18. An improved feature extraction algorithm based on KAZE for multi-spectral image

    Science.gov (United States)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  19. A Novel Algorithm of Surface Eliminating in Undersurface Optoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Zhulina Yulia V

    2004-01-01

    Full Text Available This paper analyzes the task of optoacoustic imaging of the objects located under the surface covering them. In this paper, we suggest the algorithm of the surface eliminating based on the fact that the intensity of the image as a function of the spatial point should change slowly inside the local objects, and will suffer a discontinuity of the spatial gradients on their boundaries. The algorithm forms the 2-dimensional curves along which the discontinuity of the signal derivatives is detected. Then, the algorithm divides the signal space into the areas along these curves. The signals inside the areas with the maximum level of the signal amplitudes and the maximal gradient absolute values on their edges are put equal to zero. The rest of the signals are used for the image restoration. This method permits to reconstruct the picture of the surface boundaries with a higher contrast than that of the surface detection technique based on the maximums of the received signals. This algorithm does not require any prior knowledge of the signals' statistics inside and outside the local objects. It may be used for reconstructing any images with the help of the signals representing the integral over the object's volume. Simulation and real data are also provided to validate the proposed method.

  20. Single image super resolution algorithm based on edge interpolation in NSCT domain

    Science.gov (United States)

    Zhang, Mengqun; Zhang, Wei; He, Xinyu

    2017-11-01

    In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.

  1. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  2. The Modified Frequency Algorithm of Digital Watermarking of Still Images Resistant to JPEG Compression

    Directory of Open Access Journals (Sweden)

    V. A. Batura

    2015-01-01

    Full Text Available Digital watermarking is an effective copyright protection for multimedia products (in particular, still images. Digital marking represents process of embedding into object of protection of a digital watermark which is invisible for a human eye. However there is rather large number of the harmful influences capable to destroy the watermark which is embedded into the still image. The most widespread attack is JPEG compression that is caused by efficiency of this format of compression and its big prevalence on the Internet.The new algorithm which is modification of algorithm of Elham is presented in the present article. The algorithm of digital marking of motionless images carries out embedding of a watermark in frequency coefficients of discrete Hadamard transform of the chosen image blocks. The choice of blocks of the image for embedding of a digital watermark is carried out on the basis of the set threshold of entropy of pixels. The choice of low-frequency coefficients for embedding is carried out on the basis of comparison of values of coefficients of discrete cosine transformation with a predetermined threshold, depending on the product of the built-in watermark coefficient on change coefficient.Resistance of new algorithm to compression of JPEG, noising, filtration, change of color, the size and histogram equalization is in details analysed. Research of algorithm consists in comparison of the appearance taken from the damaged image of a watermark with the introduced logo. Ability of algorithm to embedding of a watermark with a minimum level of distortions of the image is in addition analysed. It is established that the new algorithm in comparison by initial algorithm of Elham showed full resistance to compression of JPEG, and also the improved resistance to a noising, change of brightness and histogram equalization.The developed algorithm can be used for copyright protection on the static images. Further studies will be used to study the

  3. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  4. An efficient similarity measure for content based image retrieval using memetic algorithm

    Directory of Open Access Journals (Sweden)

    Mutasem K. Alsmadi

    2017-06-01

    Full Text Available Content based image retrieval (CBIR systems work by retrieving images which are related to the query image (QI from huge databases. The available CBIR systems extract limited feature sets which confine the retrieval efficacy. In this work, extensive robust and important features were extracted from the images database and then stored in the feature repository. This feature set is composed of color signature with the shape and color texture features. Where, features are extracted from the given QI in the similar fashion. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic algorithm (genetic algorithm with great deluge is achieved between the features of the QI and the features of the database images. Our proposed CBIR system is assessed by inquiring number of images (from the test dataset and the efficiency of the system is evaluated by calculating precision-recall value for the results. The results were superior to other state-of-the-art CBIR systems in regard to precision.

  5. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  6. A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map

    International Nuclear Information System (INIS)

    Xiao Di; Cai Hong-Kun; Zheng Hong-Ying

    2015-01-01

    In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. (paper)

  7. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  8. Patient dose with quality image under diagnostic reference levels

    International Nuclear Information System (INIS)

    Akula, Suresh Kumar; Singh, Gurvinder; Chougule, Arun

    2016-01-01

    Need to set Diagnostic Reference Level (DRL) for locations for all diagnostic procedures in local as compared to National. The review of DRL's should compare local with national or referenced averages and a note made of any significant variances to these averages and the justification for it. To survey and asses radiation doses to patient and reduce the redundancy in patient imaging to maintain DRLs

  9. IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING

    Science.gov (United States)

    Roth, D. J.

    1994-01-01

    IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.

  10. Quantitative Methods for Molecular Diagnostic and Therapeutic Imaging

    OpenAIRE

    Li, Quanzheng

    2013-01-01

    This theme issue provides an overview on the basic quantitative methods, an in-depth discussion on the cutting-edge quantitative analysis approaches as well as their applications for both static and dynamic molecular diagnostic and therapeutic imaging.

  11. SU-F-T-427: Utilization and Evaluation of Diagnostic CT Imaging with MAR Technique for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Xu, M; Foster, R; Parks, H; Pankuch, M

    2016-01-01

    Purpose: The objective was to utilize and evaluate diagnostic CT-MAR technique for radiation therapy treatment planning. Methods: A Toshiba-diagnostic-CT acquisition with SEMAR(Single-energy-MAR)-algorism was performed to make the metal-artifact-reduction (MAR) for patient treatment planning. CT-imaging datasets with and without SEMAR were taken on a Catphan-phantom. Two sets of CT-numbers were calibrated with the relative electron densities (RED). A tissue characterization phantom with Gammex various simulating material rods was used to establish the relationship between known REDs and corresponding CT-numbers. A GE-CT-sim acquisition was taken on the Catphan for comparison. A patient with bilateral hip arthroplasty was scanned in the radiotherapy CT-sim and the diagnostic SEMAR-CT on a flat panel. The derived SEMAR images were used as a primary CT dataset to create contours for the target, critical-structures, and for planning. A deformable registration was performed with VelocityAI to track voxel changes between SEMAR and CT-sim images. The SEMAR-CT images with minimal artifacts and high quality of geometrical and spatial integrity were employed for a treatment plan. Treatment-plans were evaluated based on deformable registration of SEMAR-CT and CT-sim dataset with assigned CT-numbers in the metal artifact regions in Eclipse v11 TPS. Results: The RED and CT-number relationships were consistent for the datasets in CT-sim and CT’s with and without SEMAR. SEMAR datasets with high image quality were used for PTV and organ delineation in the treatment planning process. For dose distribution to the PTV through the DVH analysis, the plan using CT-sim with the assigned CT-number showed a good agreement to those on deformable CT-SEMAR. Conclusion: A diagnostic-CT with MAR-algorithm can be utilized for radiotherapy treatment planning with CT-number calibrated to the RED. Treatment planning comparison and DVH shows a good agreement in the PTV and critical organs between

  12. On combining algorithms for deformable image registration

    NARCIS (Netherlands)

    Muenzing, S.E.A.; Ginneken, van B.; Pluim, J.P.W.; Dawant, B.M.

    2012-01-01

    We propose a meta-algorithm for registration improvement by combining deformable image registrations (MetaReg). It is inspired by a well-established method from machine learning, the combination of classifiers. MetaReg consists of two main components: (1) A strategy for composing an improved

  13. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  14. Image noise reduction algorithm for digital subtraction angiography: clinical results.

    Science.gov (United States)

    Söderman, Michael; Holmin, Staffan; Andersson, Tommy; Palmgren, Charlotta; Babic, Draženko; Hoornaert, Bart

    2013-11-01

    To test the hypothesis that an image noise reduction algorithm designed for digital subtraction angiography (DSA) in interventional neuroradiology enables a reduction in the patient entrance dose by a factor of 4 while maintaining image quality. This clinical prospective study was approved by the local ethics committee, and all 20 adult patients provided informed consent. DSA was performed with the default reference DSA program, a quarter-dose DSA program with modified acquisition parameters (to reduce patient radiation dose exposure), and a real-time noise-reduction algorithm. Two consecutive biplane DSA data sets were acquired in each patient. The dose-area product (DAP) was calculated for each image and compared. A randomized, blinded, offline reading study was conducted to show noninferiority of the quarter-dose image sets. Overall, 40 samples per treatment group were necessary to acquire 80% power, which was calculated by using a one-sided α level of 2.5%. The mean DAP with the quarter-dose program was 25.3% ± 0.8 of that with the reference program. The median overall image quality scores with the reference program were 9, 13, and 12 for readers 1, 2, and 3, respectively. These scores increased slightly to 12, 15, and 12, respectively, with the quarter-dose program imaging chain. In DSA, a change in technique factors combined with a real-time noise-reduction algorithm will reduce the patient entrance dose by 75%, without a loss of image quality. RSNA, 2013

  15. Diagnostic imaging of the nose and paranasal sinuses

    International Nuclear Information System (INIS)

    Lloyd, G.A.S.

    1988-01-01

    This book offers extensively illustrated and comprehensive coverage of diagnostic imaging techniques of the nose and paranasal sinuses. The important feature of the work is the way it correlates histology with CT and MRI and includes magnetic resonance contrast studies using Gadolinium DTPA. Furthermore, it is the first text to treat the imaging of the various types of tumors of the nose and paranasal sinuses on an individual basis

  16. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  17. Robust digital image inpainting algorithm in the wireless environment

    Science.gov (United States)

    Karapetyan, G.; Sarukhanyan, H. G.; Agaian, S. S.

    2014-05-01

    Image or video inpainting is the process/art of retrieving missing portions of an image without introducing undesirable artifacts that are undetectable by an ordinary observer. An image/video can be damaged due to a variety of factors, such as deterioration due to scratches, laser dazzling effects, wear and tear, dust spots, loss of data when transmitted through a channel, etc. Applications of inpainting include image restoration (removing laser dazzling effects, dust spots, date, text, time, etc.), image synthesis (texture synthesis), completing panoramas, image coding, wireless transmission (recovery of the missing blocks), digital culture protection, image de-noising, fingerprint recognition, and film special effects and production. Most inpainting methods can be classified in two key groups: global and local methods. Global methods are used for generating large image regions from samples while local methods are used for filling in small image gaps. Each method has its own advantages and limitations. For example, the global inpainting methods perform well on textured image retrieval, whereas the classical local methods perform poorly. In addition, some of the techniques are computationally intensive; exceeding the capabilities of most currently used mobile devices. In general, the inpainting algorithms are not suitable for the wireless environment. This paper presents a new and efficient scheme that combines the advantages of both local and global methods into a single algorithm. Particularly, it introduces a blind inpainting model to solve the above problems by adaptively selecting support area for the inpainting scheme. The proposed method is applied to various challenging image restoration tasks, including recovering old photos, recovering missing data on real and synthetic images, and recovering the specular reflections in endoscopic images. A number of computer simulations demonstrate the effectiveness of our scheme and also illustrate the main properties

  18. The Peak Pairs algorithm for strain mapping from HRTEM images

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)

    2007-11-15

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  19. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  20. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  1. Accuracy of a Diagnostic Algorithm to Diagnose Breakthrough Cancer Pain as Compared With Clinical Assessment.

    Science.gov (United States)

    Webber, Katherine; Davies, Andrew N; Cowie, Martin R

    2015-10-01

    Breakthrough cancer pain (BTCP) is a heterogeneous condition, and there are no internationally agreed standardized criteria to diagnose it. There are published algorithms to assist with diagnosis, but these differ in content. There are no comparative data to support use. To compare the diagnostic ability of a simple algorithm against a comprehensive clinical assessment to diagnose BTCP and to assess if verbal rating descriptors can adequately discriminate controlled background pain. Patients with cancer pain completed a three-step algorithm with a researcher to determine if they had controlled background pain and BTCP. This was followed by a detailed pain consultation with a clinical specialist who was blinded to the algorithm results and determined an independent pain diagnosis. The sensitivity, specificity, and positive and negative predictive values were calculated for the condition of BTCP. Further analysis determined which verbal pain severity descriptors corresponded with the condition of controlled background pain. The algorithm had a sensitivity of 0.54 and a specificity of 0.76 in the identification of BTCP. The positive predictive value was 0.7, and the negative predictive value was 0.62. The sensitivity of a background pain severity rating of mild or less to accurately categorize controlled background pain was 0.69 compared with 0.97 for severity of moderate or less; however, this was balanced by a higher specificity rating for mild or less, 0.78 compared with 0.2. The diagnostic breakthrough pain algorithm had a good positive predictive value but limited sensitivity using a cutoff score of "mild" to define controlled background pain. When the cutoff level was changed to moderate, the sensitivity increased, but specificity reduced. A comprehensive clinical assessment remains the preferred method to diagnose BTCP. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  2. Parkinson's disease: diagnostic utility of volumetric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Che; Chen, Meng-Hsiang [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); Chou, Kun-Hsien [National Yang-Ming University, Brain Research Center, Taipei (China); Lee, Pei-Lin [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Tsai, Nai-Wen; Lu, Cheng-Hsien [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Neurology, Kaohsiung (China); Chen, Hsiu-Ling [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hsu, Ai-Ling [National Taiwan University, Institute of Biomedical Electronics and Bioinformatics, Taipei (China); Huang, Yung-Cheng [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Nuclear Medicine, Kaohsiung (China); Lin, Ching-Po [National Yang-Ming University, Brain Research Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2017-04-15

    This paper aims to examine the effectiveness of structural imaging as an aid in the diagnosis of Parkinson's disease (PD). High-resolution T{sub 1}-weighted magnetic resonance imaging was performed in 72 patients with idiopathic PD (mean age, 61.08 years) and 73 healthy subjects (mean age, 58.96 years). The whole brain was parcellated into 95 regions of interest using composite anatomical atlases, and region volumes were calculated. Three diagnostic classifiers were constructed using binary multiple logistic regression modeling: the (i) basal ganglion prior classifier, (ii) data-driven classifier, and (iii) basal ganglion prior/data-driven hybrid classifier. Leave-one-out cross validation was used to unbiasedly evaluate the predictive accuracy of imaging features. Pearson's correlation analysis was further performed to correlate outcome measurement using the best PD classifier with disease severity. Smaller volume in susceptible regions is diagnostic for Parkinson's disease. Compared with the other two classifiers, the basal ganglion prior/data-driven hybrid classifier had the highest diagnostic reliability with a sensitivity of 74%, specificity of 75%, and accuracy of 74%. Furthermore, outcome measurement using this classifier was associated with disease severity. Brain structural volumetric analysis with multiple logistic regression modeling can be a complementary tool for diagnosing PD. (orig.)

  3. Development of an EMC3-EIRENE Synthetic Imaging Diagnostic

    Science.gov (United States)

    Meyer, William; Allen, Steve; Samuell, Cameron; Lore, Jeremy

    2017-10-01

    2D and 3D flow measurements are critical for validating numerical codes such as EMC3-EIRENE. Toroidal symmetry assumptions preclude tomographic reconstruction of 3D flows from single camera views. In addition, the resolution of the grids utilized in numerical code models can easily surpass the resolution of physical camera diagnostic geometries. For these reasons we have developed a Synthetic Imaging Diagnostic capability for forward projection comparisons of EMC3-EIRENE model solutions with the line integrated images from the Doppler Coherence Imaging diagnostic on DIII-D. The forward projection matrix is 2.8 Mpixel by 6.4 Mcells for the non-axisymmetric case we present. For flow comparisons, both simple line integral, and field aligned component matrices must be calculated. The calculation of these matrices is a massive embarrassingly parallel problem and performed with a custom dispatcher that allows processing platforms to join mid-problem as they become available, or drop out if resources are needed for higher priority tasks. The matrices are handled using standard sparse matrix techniques. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences. LLNL-ABS-734800.

  4. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm

    DEFF Research Database (Denmark)

    Sidky, Emil Y.; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    The primal–dual optimization algorithm developed in Chambolle and Pock (CP) (2011 J. Math. Imag. Vis. 40 1–26) is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems...... for the purpose of designing iterative image reconstruction algorithms for CT. The primal–dual algorithm is briefly summarized in this paper, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application...

  5. E-PLE: an Algorithm for Image Inpainting

    Directory of Open Access Journals (Sweden)

    Yi-Qing Wang

    2013-12-01

    Full Text Available Gaussian mixture is a powerful tool for modeling the patch prior. In this work, a probabilisticview of an existing algorithm piecewise linear estimation (PLE for image inpainting is presentedwhich leads to several theoretical and numerical improvements based on an effective use ofGaussian mixture.

  6. Methodology for quantitative evaluation of diagnostic medical imaging

    International Nuclear Information System (INIS)

    Metz, C.

    1980-01-01

    This report deals with the evaluation of the performance of diagnostic medical imaging procedures using the Receiver Operating Characteristic or ROC analysis. The development of new tests for the statistical significance of apparent differences between ROC curves is discussed

  7. Thymic hyperplasia - clinical course and imaging diagnostic

    International Nuclear Information System (INIS)

    Drebov, R.; Panov, M.; Totev, M.; Deliverski, T.; Tcandev, I.; Velkovski, I.

    2006-01-01

    The real thymic hyperplasia is benign disease sometimes simulating malignant tumours. The aim of this study is to analyse the clinical symptoms of real thymic hyperplasia and the results from imaging diagnostic based on our clinical material. Clinical material include 27 children, aged from two months to 15 years, admitted in department of thoracic surgery, for a period of 20 years (1985 - 2004). We retrospectively analyze the clinical signs and results from X-ray investigation, CT (Siemens Somatom DRG and Philips Secura) and echocardiography (Acuson TX, 5 and 7 MHz). We discuss the diagnostic value of different methods as well as typical and atypical findings. (authors)

  8. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system

    Science.gov (United States)

    Wang, Zhen; Huang, Xia; Li, Yu-Xia; Song, Xiao-Na

    2013-01-01

    We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.

  9. A fast image encryption algorithm based on chaotic map

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  10. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    Science.gov (United States)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  11. Diagnostic Accuracy of Clinical Examination and Imaging Findings for Identifying Subacromial Pain.

    Science.gov (United States)

    Cadogan, Angela; McNair, Peter J; Laslett, Mark; Hing, Wayne A

    2016-01-01

    The diagnosis of subacromial pathology is limited by the poor accuracy of clinical tests for specific pathologies. The aim of this study was to estimate the diagnostic accuracy of clinical examination and imaging features for identifying subacromial pain (SAP) defined by a positive response to diagnostic injection, and to evaluate the influence of imaging findings on the clinical diagnosis of SAP. In a prospective, diagnostic accuracy design, 208 consecutive patients presenting to their primary healthcare practitioner for the first time with a new episode of shoulder pain were recruited. All participants underwent a standardized clinical examination, shoulder x-ray series and diagnostic ultrasound scan. Results were compared with the response to a diagnostic block of xylocaineTM injected into the SAB under ultrasound guidance using ≥80% post-injection reduction in pain intensity as the positive anaesthetic response (PAR) criterion. Diagnostic accuracy statistics were calculated for combinations of clinical and imaging variables demonstrating the highest likelihood of a PAR. A PAR was reported by 34% of participants. In participants with no loss of passive external rotation, combinations of three clinical variables (anterior shoulder pain, strain injury, absence of symptoms at end-range external rotation (in abduction)) demonstrated 100% specificity for a PAR when all three were positive (LR+ infinity; 95%CI 2.9, infinity). A full-thickness supraspinatus tear on ultrasound increased the likelihood of a PAR irrespective of age (specificity 98% (95%CI 94, 100); LR+ 6.2; 95% CI 1.5, 25.7)). Imaging did not improve the ability to rule-out a PAR. Combinations of clinical examination findings and a full-thickness supraspinatus tear on ultrasound scan can help confirm, but not exclude, the presence of subacromial pain. Other imaging findings were of limited value for diagnosing SAP.

  12. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    Science.gov (United States)

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. A high performance hardware implementation image encryption with AES algorithm

    Science.gov (United States)

    Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab

    2011-06-01

    This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.

  14. COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES

    Directory of Open Access Journals (Sweden)

    A.A. Haseena Thasneem

    2015-05-01

    Full Text Available This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive, Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging, Contour models (Active Contour Model and Chan - Vese Model and Spectral Clustering. Accuracy, sensitivity, specificity, Border error, Hammoude distance, Hausdorff distance, MSE, PSNR and elapsed time metrices were used to evaluate various segmentation techniques.

  15. Image processing algorithm for robot tracking in reactor vessel

    International Nuclear Information System (INIS)

    Kim, Tae Won; Choi, Young Soo; Lee, Sung Uk; Jeong, Kyung Min; Kim, Nam Kyun

    2011-01-01

    In this paper, we proposed an image processing algorithm to find the position of an underwater robot in the reactor vessel. Proposed algorithm is composed of Modified SURF(Speeded Up Robust Feature) based on Mean-Shift and CAMSHIFT(Continuously Adaptive Mean Shift Algorithm) based on color tracking algorithm. Noise filtering using luminosity blend method and color clipping are preprocessed. Initial tracking area for the CAMSHIFT is determined by using modified SURF. And then extracting the contour and corner points in the area of target tracked by CAMSHIFT method. Experiments are performed at the reactor vessel mockup and verified to use in the control of robot by visual tracking

  16. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-03-01

    Full Text Available A sub-block algorithm is usually applied in the super-resolution (SR reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  17. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    Science.gov (United States)

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm 3 ) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics.

  18. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  19. Diagnostic imaging of the kidney and the urinary tract in infancy

    International Nuclear Information System (INIS)

    Troeger, J.; Darge, K.; Rohrschneider, W.

    1999-01-01

    Imaging flow charts differ in pediatric and general radiology. The reasons are: Different illnesses, different consequences arising out of imaging results and different sequence of imaging methods. Ultrasound is always the first imaging method of the urinary tract in infancy and childhood starts with ultrasound with the exception of severe abdominal trauma which is investigated by computertomography. The decision 'normal or abnormal' is possible using ultrasound in the most pediatric cases. The diagnostic value and significance of ultrasound in infancy and childhood is far better than in general radiology because of the higher resolution of the high-frequency units taken. The result of the ultrasound examination should be the basis for the following imaging procedures. We will describe diagnostic flow charts starting with three important clinical symptoms: Prenatal pathology, urinary tract obstruction and urinary tract infection. (orig.) [de

  20. Diagnostic imaging of the diabetic foot

    International Nuclear Information System (INIS)

    Ranachowska, C.; Lass, P.; Korzon-Burakowska, A.; Dobosz, M.

    2010-01-01

    Diabetic foot syndrome is a significant complication of diabetes. Diagnostic imaging is a crucial factor determining surgical decision and extent of surgical intervention. At present the gold standard is MRI scanning, whilst the role of bone scanning is decreasing, although in some cases it brings valuable information. In particular, in early stages of osteitis and Charcot neuro-osteoarthropathy, radionuclide imaging may be superior to MRI. Additionally, a significant contribution of inflammation-targeted scintigraphy should be noted. Probably the role of PET scanning will grow, although its high cost and low availability may be a limiting factor. In every case, vascular status should be determined, at least with Doppler ultrasound, with following conventional angiography or MR angiography. (authors)

  1. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X. [University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  2. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

    Science.gov (United States)

    Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

    2018-04-01

    Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

  3. A diagnostic algorithm for metabolic myopathies.

    Science.gov (United States)

    Berardo, Andres; DiMauro, Salvatore; Hirano, Michio

    2010-03-01

    Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1). Fig. 1 Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK-creatine kinase; COX-cytochrome c oxidase; CPT-carnitine palmitoyl transferase; cyt b-cytochrome b; mtDNA-mitochondrial DNA; nDNA-nuclear DNA; PFK-phosphofructokinase; PGAM-phosphoglycerate mutase; PGK-phosphoglycerate kinase; PPL-myophosphorylase; RRF-ragged red fibers; TFP-trifunctional protein deficiency; VLCAD-very long-chain acyl-coenzyme A dehydrogenase.

  4. Feedback control and beam diagnostic algorithms for a multiprocessor DSP system

    International Nuclear Information System (INIS)

    Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S.

    1996-09-01

    The multibunch longitudinal feedback system developed for use by PEP-II, ALS and DAΦNE uses a parallel array of digital signal processors to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320 K samples of data collected in one beam transient measurement are discussed and the solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion(used to quantify growth and damping rates of instabilities) and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL

  5. Statistical trajectory of an approximate EM algorithm for probabilistic image processing

    International Nuclear Information System (INIS)

    Tanaka, Kazuyuki; Titterington, D M

    2007-01-01

    We calculate analytically a statistical average of trajectories of an approximate expectation-maximization (EM) algorithm with generalized belief propagation (GBP) and a Gaussian graphical model for the estimation of hyperparameters from observable data in probabilistic image processing. A statistical average with respect to observed data corresponds to a configuration average for the random-field Ising model in spin glass theory. In the present paper, hyperparameters which correspond to interactions and external fields of spin systems are estimated by an approximate EM algorithm. A practical algorithm is described for gray-level image restoration based on a Gaussian graphical model and GBP. The GBP approach corresponds to the cluster variation method in statistical mechanics. Our main result in the present paper is to obtain the statistical average of the trajectory in the approximate EM algorithm by using loopy belief propagation and GBP with respect to degraded images generated from a probability density function with true values of hyperparameters. The statistical average of the trajectory can be expressed in terms of recursion formulas derived from some analytical calculations

  6. Double-Stage Delay Multiply and Sum Beamforming Algorithm: Application to Linear-Array Photoacoustic Imaging

    OpenAIRE

    Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Adabi, Saba; Nasiriavanaki, Mohammadreza

    2018-01-01

    Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely Delay-Multiply-and-Sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging...

  7. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    Directory of Open Access Journals (Sweden)

    Shaoming Pan

    Full Text Available Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  8. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    Science.gov (United States)

    Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  9. Evidence-Based Diagnostic Algorithm for Glioma: Analysis of the Results of Pathology Panel Review and Molecular Parameters of EORTC 26951 and 26882 Trials.

    Science.gov (United States)

    Kros, Johan M; Huizer, Karin; Hernández-Laín, Aurelio; Marucci, Gianluca; Michotte, Alex; Pollo, Bianca; Rushing, Elisabeth J; Ribalta, Teresa; French, Pim; Jaminé, David; Bekka, Nawal; Lacombe, Denis; van den Bent, Martin J; Gorlia, Thierry

    2015-06-10

    With the rapid discovery of prognostic and predictive molecular parameters for glioma, the status of histopathology in the diagnostic process should be scrutinized. Our project aimed to construct a diagnostic algorithm for gliomas based on molecular and histologic parameters with independent prognostic values. The pathology slides of 636 patients with gliomas who had been included in EORTC 26951 and 26882 trials were reviewed using virtual microscopy by a panel of six neuropathologists who independently scored 18 histologic features and provided an overall diagnosis. The molecular data for IDH1, 1p/19q loss, EGFR amplification, loss of chromosome 10 and chromosome arm 10q, gain of chromosome 7, and hypermethylation of the promoter of MGMT were available for some of the cases. The slides were divided in discovery (n = 426) and validation sets (n = 210). The diagnostic algorithm resulting from analysis of the discovery set was validated in the latter. In 66% of cases, consensus of overall diagnosis was present. A diagnostic algorithm consisting of two molecular markers and one consensus histologic feature was created by conditional inference tree analysis. The order of prognostic significance was: 1p/19q loss, EGFR amplification, and astrocytic morphology, which resulted in the identification of four diagnostic nodes. Validation of the nodes in the validation set confirmed the prognostic value (P diagnostic algorithm for anaplastic glioma based on multivariable analysis of consensus histopathology and molecular parameters. © 2015 by American Society of Clinical Oncology.

  10. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  11. Diagnostic imaging in psychiatry; Bildgebende Verfahren in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Stoppe, G.; Hentschel, F.; Munz, D.L. (eds.)

    2000-07-01

    The textbook presents an exhaustive survey of diagnostic imaging methods available for clinical evaluation of the entire range of significant psychiatric symptoms via imaging of the anatomy and functions of the brain. The chapters discuss: The methods and their efficient use for given diagnostic objectives, image analysis, description and interpretation of findings with respect to the clinical symptoms. Morphology and functional correlation of findings. The book is intended to help psychiatrists and neurologists as well as doctors in the radiology and nuclear medicine departments. (orig./CB) [German] Die Entwicklung der modernen Bildgebung ermoeglicht faszinierende Einblicke in Anatomie und Funktionen des Gehirns und ihre Veraenderungen bei psychiatrischen Erkrankungen. Die Methodik der Untersuchungsverfahren und die Befunde bei allen wichtigen psychiatrischen Krankheitsbildern sind in diesem Buch systematisch und umfassend beschrieben: - gezielter und effizienter Einsatz der Verfahren, - Bildanalyse und Befundbeschreibung, - Bewertung der Befunde und Beziehung zum klinischen Bild, - morphologische und funktionelle Korrelate der Befunde. Psychiater und Neurologen werden ebenso angesprochen wie Radiologen und Nuklearmediziner. (orig.)

  12. Diagnostic imaging, a 'parallel' discipline. Can current technology provide a reliable digital diagnostic radiology department

    International Nuclear Information System (INIS)

    Moore, C.J.; Eddleston, B.

    1985-01-01

    Only recently has any detailed criticism been voiced about the practicalities of the introduction of generalised, digital, imaging complexes in diagnostic radiology. Although attendant technological problems are highlighted the authors argue that the fundamental causes of current difficulties are not in the generation but in the processing, filing and subsequent retrieval for display of digital image records. In the real world, looking at images is a parallel process of some complexity and so it is perhaps untimely to expect versatile handling of vast image data bases by existing computer hardware and software which, by their current nature, perform tasks serially. (author)

  13. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons

    Science.gov (United States)

    2014-01-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. PMID:24919829

  14. Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.

    Science.gov (United States)

    Obuchowski, Nancy A; Reeves, Anthony P; Huang, Erich P; Wang, Xiao-Feng; Buckler, Andrew J; Kim, Hyun J Grace; Barnhart, Huiman X; Jackson, Edward F; Giger, Maryellen L; Pennello, Gene; Toledano, Alicia Y; Kalpathy-Cramer, Jayashree; Apanasovich, Tatiyana V; Kinahan, Paul E; Myers, Kyle J; Goldgof, Dmitry B; Barboriak, Daniel P; Gillies, Robert J; Schwartz, Lawrence H; Sullivan, Daniel C

    2015-02-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2016-06-01

    Full Text Available Plain radiography reveals specific, yet late changes of advanced psoriatic arthritis. Early inflammatory changes are seen both on magnetic resonance imaging and ultrasound within peripheral joints (arthritis, synovitis, tendons sheaths (tenosynovitis, tendovaginitis and entheses (enthesitis, enthesopathy. In addition, magnetic resonance imaging enables the assessment of inflammatory features in the sacroiliac joints (sacroiliitis, and the spine (spondylitis. In this article, we review current opinions on the diagnostics of some selective, and distinctive features of psoriatic arthritis concerning magnetic resonance imaging and ultrasound and present some hypotheses on psoriatic arthritis etiopathogenesis, which have been studied with the use of magnetic resonance imaging. The following elements of the psoriatic arthritis are discussed: enthesitis, extracapsular inflammation, dactylitis, distal interphalangeal joint and nail disease, and the ability of magnetic resonance imaging to differentiate undifferentiated arthritis, the value of whole-body magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging.

  16. A Parallel Algorithm for Connected Component Labelling of Gray-scale Images on Homogeneous Multicore Architectures

    International Nuclear Information System (INIS)

    Niknam, Mehdi; Thulasiraman, Parimala; Camorlinga, Sergio

    2010-01-01

    Connected component labelling is an essential step in image processing. We provide a parallel version of Suzuki's sequential connected component algorithm in order to speed up the labelling process. Also, we modify the algorithm to enable labelling gray-scale images. Due to the data dependencies in the algorithm we used a method similar to pipeline to exploit parallelism. The parallel algorithm method achieved a speedup of 2.5 for image size of 256 x 256 pixels using 4 processing threads.

  17. Distortion correction algorithm for UAV remote sensing image based on CUDA

    International Nuclear Information System (INIS)

    Wenhao, Zhang; Yingcheng, Li; Delong, Li; Changsheng, Teng; Jin, Liu

    2014-01-01

    In China, natural disasters are characterized by wide distribution, severe destruction and high impact range, and they cause significant property damage and casualties every year. Following a disaster, timely and accurate acquisition of geospatial information can provide an important basis for disaster assessment, emergency relief, and reconstruction. In recent years, Unmanned Aerial Vehicle (UAV) remote sensing systems have played an important role in major natural disasters, with UAVs becoming an important technique of obtaining disaster information. UAV is equipped with a non-metric digital camera with lens distortion, resulting in larger geometric deformation for acquired images, and affecting the accuracy of subsequent processing. The slow speed of the traditional CPU-based distortion correction algorithm cannot meet the requirements of disaster emergencies. Therefore, we propose a Compute Unified Device Architecture (CUDA)-based image distortion correction algorithm for UAV remote sensing, which takes advantage of the powerful parallel processing capability of the GPU, greatly improving the efficiency of distortion correction. Our experiments show that, compared with traditional CPU algorithms and regardless of image loading and saving times, the maximum acceleration ratio using our proposed algorithm reaches 58 times that using the traditional algorithm. Thus, data processing time can be reduced by one to two hours, thereby considerably improving disaster emergency response capability

  18. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    Directory of Open Access Journals (Sweden)

    Dongming Li

    2017-04-01

    Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  19. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    Science.gov (United States)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  20. Comparison of Diagnostic Algorithms for Detecting Toxigenic Clostridium difficile in Routine Practice at a Tertiary Referral Hospital in Korea.

    Science.gov (United States)

    Moon, Hee-Won; Kim, Hyeong Nyeon; Hur, Mina; Shim, Hee Sook; Kim, Heejung; Yun, Yeo-Min

    2016-01-01

    Since every single test has some limitations for detecting toxigenic Clostridium difficile, multistep algorithms are recommended. This study aimed to compare the current, representative diagnostic algorithms for detecting toxigenic C. difficile, using VIDAS C. difficile toxin A&B (toxin ELFA), VIDAS C. difficile GDH (GDH ELFA, bioMérieux, Marcy-l'Etoile, France), and Xpert C. difficile (Cepheid, Sunnyvale, California, USA). In 271 consecutive stool samples, toxigenic culture, toxin ELFA, GDH ELFA, and Xpert C. difficile were performed. We simulated two algorithms: screening by GDH ELFA and confirmation by Xpert C. difficile (GDH + Xpert) and combined algorithm of GDH ELFA, toxin ELFA, and Xpert C. difficile (GDH + Toxin + Xpert). The performance of each assay and algorithm was assessed. The agreement of Xpert C. difficile and two algorithms (GDH + Xpert and GDH+ Toxin + Xpert) with toxigenic culture were strong (Kappa, 0.848, 0.857, and 0.868, respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of algorithms (GDH + Xpert and GDH + Toxin + Xpert) were 96.7%, 95.8%, 85.0%, 98.1%, and 94.5%, 95.8%, 82.3%, 98.5%, respectively. There were no significant differences between Xpert C. difficile and two algorithms in sensitivity, specificity, PPV and NPV. The performances of both algorithms for detecting toxigenic C. difficile were comparable to that of Xpert C. difficile. Either algorithm would be useful in clinical laboratories and can be optimized in the diagnostic workflow of C. difficile depending on costs, test volume, and clinical needs.

  1. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    Science.gov (United States)

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  2. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S., E-mail: s.wognum@gmail.com; Heethuis, S. E.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Rosario, T. [Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam (Netherlands); Hoogeman, M. S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2014-07-15

    Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Five excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure

  3. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    Science.gov (United States)

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on

  4. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    International Nuclear Information System (INIS)

    Wognum, S.; Heethuis, S. E.; Bel, A.; Rosario, T.; Hoogeman, M. S.

    2014-01-01

    Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Five excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure

  5. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    Science.gov (United States)

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  6. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  7. Diagnostic Imaging of Reproductive Tract Disorders in Reptiles.

    Science.gov (United States)

    Gumpenberger, Michaela

    2017-05-01

    Diagnostic imaging of the reproductive tract in reptiles is used for gender determination, evaluation of breeding status, detection of pathologic changes, and supervising treatment. Whole-body radiographs provide an overview and support detection of mineralized egg shells. Sonography is used to evaluate follicles, nonmineralized eggs, and the salpinx in all reptiles. Computed tomography is able to overcome imaging limitations in chelonian species. This article provides detailed information about the performance of different imaging techniques. Multiple images demonstrate the physiologic appearance of the male and female reproductive tract in various reptile species and pathologic changes. Advantages and disadvantages of radiography, sonography, and computed tomography are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. UWGSP6: a diagnostic radiology workstation of the future

    Science.gov (United States)

    Milton, Stuart W.; Han, Sang; Choi, Hyung-Sik; Kim, Yongmin

    1993-06-01

    The Univ. of Washington's Image Computing Systems Lab. (ICSL) has been involved in research into the development of a series of PACS workstations since the middle 1980's. The most recent research, a joint UW-IBM project, attempted to create a diagnostic radiology workstation using an IBM RISC System 6000 (RS6000) computer workstation and the X-Window system. While the results are encouraging, there are inherent limitations in the workstation hardware which prevent it from providing an acceptable level of functionality for diagnostic radiology. Realizing the RS6000 workstation's limitations, a parallel effort was initiated to design a workstation, UWGSP6 (Univ. of Washington Graphics System Processor #6), that provides the required functionality. This paper documents the design of UWGSP6, which not only addresses the requirements for a diagnostic radiology workstation in terms of display resolution, response time, etc., but also includes the processing performance necessary to support key functions needed in the implementation of algorithms for computer-aided diagnosis. The paper includes a description of the workstation architecture, and specifically its image processing subsystem. Verification of the design through hardware simulation is then discussed, and finally, performance of selected algorithms based on detailed simulation is provided.

  9. Incorporation of local dependent reliability information into the Prior Image Constrained Compressed Sensing (PICCS) reconstruction algorithm

    International Nuclear Information System (INIS)

    Vaegler, Sven; Sauer, Otto; Stsepankou, Dzmitry; Hesser, Juergen

    2015-01-01

    The reduction of dose in cone beam computer tomography (CBCT) arises from the decrease of the tube current for each projection as well as from the reduction of the number of projections. In order to maintain good image quality, sophisticated image reconstruction techniques are required. The Prior Image Constrained Compressed Sensing (PICCS) incorporates prior images into the reconstruction algorithm and outperforms the widespread used Feldkamp-Davis-Kress-algorithm (FDK) when the number of projections is reduced. However, prior images that contain major variations are not appropriately considered so far in PICCS. We therefore propose the partial-PICCS (pPICCS) algorithm. This framework is a problem-specific extension of PICCS and enables the incorporation of the reliability of the prior images additionally. We assumed that the prior images are composed of areas with large and small deviations. Accordingly, a weighting matrix considered the assigned areas in the objective function. We applied our algorithm to the problem of image reconstruction from few views by simulations with a computer phantom as well as on clinical CBCT projections from a head-and-neck case. All prior images contained large local variations. The reconstructed images were compared to the reconstruction results by the FDK-algorithm, by Compressed Sensing (CS) and by PICCS. To show the gain of image quality we compared image details with the reference image and used quantitative metrics (root-mean-square error (RMSE), contrast-to-noise-ratio (CNR)). The pPICCS reconstruction framework yield images with substantially improved quality even when the number of projections was very small. The images contained less streaking, blurring and inaccurately reconstructed structures compared to the images reconstructed by FDK, CS and conventional PICCS. The increased image quality is also reflected in large RMSE differences. We proposed a modification of the original PICCS algorithm. The pPICCS algorithm

  10. Diagnostic imaging in pediatric renal inflammatory disease

    International Nuclear Information System (INIS)

    Sty, J.R.; Wells, R.G.; Schroeder, B.A.; Starshak, R.J.

    1986-01-01

    Some form of imaging procedure should be used to document the presence of infection of the upper urinary tract in troublesome cases in children. During the past several years, sonography, nuclear radiology, and computed tomography (CT) have had a significant influence on renal imaging. The purpose of this article is to reevaluate the noninvasive imaging procedures that can be used to diagnose pediatric renal inflammatory disease and to assess the relative value of each modality in the various types of renal infection. The authors will not discuss the radiologic evaluation of the child who has had a previous renal infection, in whom cortical scarring or reflux nephropathy is a possibility; these are different clinical problems and require different diagnostic evaluation

  11. Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Jacques, Thomas S.; Sebire, Neil J.; Guy, Anna; Chong, W.K.; Gunny, Roxanna; Saunders, Dawn; Olsen, Oystein E.; Thayyil, Sudhin; Wade, Angie; Jones, Rod; Norman, Wendy; Taylor, Andrew M.; Scott, Rosemary; Robertson, Nicola J.; Owens, Catherine M.; Offiah, Amaka C.; Chitty, Lyn S.

    2016-01-01

    To compare the diagnostic yield of whole-body post-mortem computed tomography (PMCT) imaging to post-mortem magnetic resonance (PMMR) imaging in a prospective study of fetuses and children. We compared PMCT and PMMR to conventional autopsy as the gold standard for the detection of (a) major pathological abnormalities related to the cause of death and (b) all diagnostic findings in five different body organ systems. Eighty two cases (53 fetuses and 29 children) underwent PMCT and PMMR prior to autopsy, at which 55 major abnormalities were identified. Significantly more PMCT than PMMR examinations were non-diagnostic (18/82 vs. 4/82; 21.9 % vs. 4.9 %, diff 17.1 % (95 % CI 6.7, 27.6; p < 0.05)). PMMR gave an accurate diagnosis in 24/55 (43.64 %; 95 % CI 31.37, 56.73 %) compared to 18/55 PMCT (32.73 %; 95 % CI 21.81, 45.90). PMCT was particularly poor in fetuses <24 weeks, with 28.6 % (8.1, 46.4 %) more non-diagnostic scans. Where both PMCT and PMMR were diagnostic, PMMR gave slightly higher diagnostic accuracy than PMCT (62.8 % vs. 59.4 %). Unenhanced PMCT has limited value in detection of major pathology primarily because of poor-quality, non-diagnostic fetal images. On this basis, PMMR should be the modality of choice for non-invasive PM imaging in fetuses and children. (orig.)

  12. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    International Nuclear Information System (INIS)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.; Yang, Deshan; Tan, Jun

    2016-01-01

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated

  13. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    Science.gov (United States)

    Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.

    2016-01-01

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated

  14. TV-constrained incremental algorithms for low-intensity CT image reconstruction

    DEFF Research Database (Denmark)

    Rose, Sean D.; Andersen, Martin S.; Sidky, Emil Y.

    2015-01-01

    constraint can be guided by an image reconstructed by filtered backprojection (FBP). We apply our algorithm to low-dose synchrotron X-ray CT data from the Advanced Photon Source (APS) at Argonne National Labs (ANL) to demonstrate its potential utility. We find that the algorithm provides a means of edge-preserving...

  15. The X-ray endoscopic semiotics and diagnostic algorithm of radiation studies of precancerous gastric mucosal changes

    International Nuclear Information System (INIS)

    Akabekov, R.F.; Gorshkov, A.N.

    1997-01-01

    The X-ray endoscopic semiotics of precancerous gastric mucosal changes (epithelial dysplasia, intestinal epithelial rearrangement) was examined by the results of 1574 gastric examination. A diagnostic algorithm was developed for radiation studies in the diagnosis of the above pathology. 7 refs., 4 figs

  16. Global and Local Page Replacement Algorithms on Virtual Memory Systems for Image Processing

    OpenAIRE

    WADA, Ben Tsutom

    1985-01-01

    Three virtual memory systems for image processing, different one another in frame allocation algorithms and page replacement algorithms, were examined experimentally upon their page-fault characteristics. The hypothesis, that global page replacement algorithms are susceptible to thrashing, held in the raster scan experiment, while it did not in another non raster-scan experiment. The results of the experiments may be useful also in making parallel image processors more efficient, while they a...

  17. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    International Nuclear Information System (INIS)

    Ali, I; Ahmad, S; Alsbou, N

    2015-01-01

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  18. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  19. Research and implementation of the algorithm for unwrapped and distortion correction basing on CORDIC for panoramic image

    Science.gov (United States)

    Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang

    2008-03-01

    The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.

  20. A Near-Lossless Image Compression Algorithm Suitable for Hardware Design in Wireless Endoscopy System

    Directory of Open Access Journals (Sweden)

    Xie Xiang

    2007-01-01

    Full Text Available In order to decrease the communication bandwidth and save the transmitting power in the wireless endoscopy capsule, this paper presents a new near-lossless image compression algorithm based on the Bayer format image suitable for hardware design. This algorithm can provide low average compression rate ( bits/pixel with high image quality (larger than dB for endoscopic images. Especially, it has low complexity hardware overhead (only two line buffers and supports real-time compressing. In addition, the algorithm can provide lossless compression for the region of interest (ROI and high-quality compression for other regions. The ROI can be selected arbitrarily by varying ROI parameters. In addition, the VLSI architecture of this compression algorithm is also given out. Its hardware design has been implemented in m CMOS process.